aboutsummaryrefslogtreecommitdiff
path: root/src/share
diff options
context:
space:
mode:
Diffstat (limited to 'src/share')
-rw-r--r--src/share/algebra/browse.daase2598
-rw-r--r--src/share/algebra/category.daase4201
-rw-r--r--src/share/algebra/compress.daase1335
-rw-r--r--src/share/algebra/interp.daase10249
-rw-r--r--src/share/algebra/operation.daase31465
5 files changed, 25132 insertions, 24716 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index d765e330..1fd81673 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,19 +1,19 @@
-(2282756 . 3452645032)
+(2284136 . 3452782368)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
(-20 S)
-((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
+((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
NIL
NIL
(-21)
-((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
+((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
NIL
NIL
(-22 S)
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4404 . T) (-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4400 . T) (-4405 . T) (-4399 . T))
+((-4407 . T) (-4405 . T) (-4404 . T) ((-4412 "*") . T) (-4403 . T) (-4408 . T) (-4402 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -2306)
+(-32 R -2234)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))))
+((|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4407)))
+((|HasAttribute| |#1| (QUOTE -4410)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4407 . T) (-4408 . T))
+((-4410 . T) (-4411 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -2306 UP UPUP -3056)
+(-40 -2234 UP UPUP -1472)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4400 |has| (-407 |#2|) (-363)) (-4405 |has| (-407 |#2|) (-363)) (-4399 |has| (-407 |#2|) (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2807 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2807 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2807 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-2807 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
-(-41 R -2306)
+((-4403 |has| (-407 |#2|) (-363)) (-4408 |has| (-407 |#2|) (-363)) (-4402 |has| (-407 |#2|) (-363)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2706 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2706 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2706 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-2706 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
+(-41 R -2234)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,31 +106,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-307))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4404 |has| |#1| (-556)) (-4402 . T) (-4401 . T))
+((-4407 |has| |#1| (-556)) (-4405 . T) (-4404 . T))
((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4407 . T) (-4408 . T))
-((-2807 (-12 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#2|))))))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#2|)))))))
+((-4410 . T) (-4411 . T))
+((-2706 (-12 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-848))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#2|))))))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-848))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-848))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-564)))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1036) (QUOTE (-564)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4404 . T))
+((-4407 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -2306)
+(-54 |Base| R -2234)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4407 . T) (-4408 . T))
+((-4410 . T) (-4411 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-61 -2562)
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-61 -2461)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2562)
+(-62 -2461)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -2562)
+(-63 -2461)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2562)
+(-64 -2461)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2562)
+(-65 -2461)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2562)
+(-66 -2461)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -2562)
+(-67 -2461)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2562)
+(-68 -2461)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2562)
+(-69 -2461)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -2562)
+(-70 -2461)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -2562)
+(-71 -2461)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -2562)
+(-72 -2461)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -2562)
+(-73 -2461)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -2562)
+(-74 -2461)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -2562)
+(-77 -2461)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2562)
+(-78 -2461)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -2562)
+(-79 -2461)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2562)
+(-80 -2461)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2562)
+(-81 -2461)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -2562)
+(-82 -2461)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2562)
+(-83 -2461)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2562)
+(-84 -2461)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2562)
+(-85 -2461)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2562)
+(-86 -2461)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2562)
+(-87 -2461)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -2562)
+(-88 -2461)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -2562)
+(-89 -2461)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-363))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4407 . T))
+((-4410 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4407 . T) ((-4409 "*") . T) (-4408 . T) (-4404 . T) (-4402 . T) (-4401 . T) (-4400 . T) (-4405 . T) (-4399 . T) (-4398 . T) (-4397 . T) (-4396 . T) (-4395 . T) (-4403 . T) (-4406 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4394 . T))
+((-4410 . T) ((-4412 "*") . T) (-4411 . T) (-4407 . T) (-4405 . T) (-4404 . T) (-4403 . T) (-4408 . T) (-4402 . T) (-4401 . T) (-4400 . T) (-4399 . T) (-4398 . T) (-4406 . T) (-4409 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4397 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4404 . T))
+((-4407 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4409 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4412 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4407 . T))
+((-4410 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4408 . T))
+((-4411 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-564) (QUOTE (-905))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1018))) (|HasCategory| (-564) (QUOTE (-816))) (-2807 (|HasCategory| (-564) (QUOTE (-816))) (|HasCategory| (-564) (QUOTE (-846)))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (|HasCategory| (-564) (QUOTE (-145)))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-564) (QUOTE (-907))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1020))) (|HasCategory| (-564) (QUOTE (-818))) (-2706 (|HasCategory| (-564) (QUOTE (-818))) (|HasCategory| (-564) (QUOTE (-848)))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1148))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (|HasCategory| (-564) (QUOTE (-145)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4408 . T) (-4407 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4411 . T) (-4410 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1097))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-112) (QUOTE (-1097))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-860)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4402 . T) (-4401 . T))
+((-4405 . T) (-4404 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -385,25 +385,25 @@ NIL
NIL
NIL
(-114)
-((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op,{} p,{} v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op,{} p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op,{} p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op,{} p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,{}p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f,{} a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
+((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op,{} p,{} v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op,{} p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op,{} p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op,{} p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,{}p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f,{} a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-115 -2306 UP)
+(-115 -2234 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-905))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1018))) (|HasCategory| (-116 |#1|) (QUOTE (-816))) (-2807 (|HasCategory| (-116 |#1|) (QUOTE (-816))) (|HasCategory| (-116 |#1|) (QUOTE (-846)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-1145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-907))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1020))) (|HasCategory| (-116 |#1|) (QUOTE (-818))) (-2706 (|HasCategory| (-116 |#1|) (QUOTE (-818))) (|HasCategory| (-116 |#1|) (QUOTE (-848)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-1148))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-848))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-907)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)))
+((|HasAttribute| |#1| (QUOTE -4411)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,20 +430,20 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4407 . T) (-4408 . T))
+((-4410 . T) (-4411 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
(-128)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-2807 (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-129) (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1094)))) (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))))
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| (-129) (QUOTE (-848))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1097))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-2706 (-12 (|HasCategory| (-129) (QUOTE (-1097))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-129) (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| (-129) (QUOTE (-848))) (|HasCategory| (-129) (QUOTE (-1097)))) (|HasCategory| (-129) (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-129) (QUOTE (-1097))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-129) (QUOTE (-1097))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))))
(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -466,13 +466,13 @@ NIL
NIL
(-134)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4409 "*") . T))
+(((-4412 "*") . T))
NIL
-(-135 |minix| -3599 S T$)
+(-135 |minix| -3554 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-136 |minix| -3599 R)
+(-136 |minix| -3554 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -494,8 +494,8 @@ NIL
NIL
(-141)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4407 . T) (-4397 . T) (-4408 . T))
-((-2807 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-4410 . T) (-4400 . T) (-4411 . T))
+((-2706 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-142 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -510,7 +510,7 @@ NIL
NIL
(-145)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4404 . T))
+((-4407 . T))
NIL
(-146 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -518,9 +518,9 @@ NIL
NIL
(-147)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4404 . T))
+((-4407 . T))
NIL
-(-148 -2306 UP UPUP)
+(-148 -2234 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -531,14 +531,14 @@ NIL
(-150 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasAttribute| |#1| (QUOTE -4407)))
+((|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasAttribute| |#1| (QUOTE -4410)))
(-151 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-152 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4402 . T) (-4401 . T) (-4404 . T))
+((-4405 . T) (-4404 . T) (-4407 . T))
NIL
(-153)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -560,7 +560,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-158 R -2306)
+(-158 R -2234)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -591,10 +591,10 @@ NIL
(-165 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4403)) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))))
+((|HasCategory| |#2| (QUOTE (-907))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1000))) (|HasCategory| |#2| (QUOTE (-1197))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4400 -2807 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4403 |has| |#1| (-6 -4403)) (-4406 |has| |#1| (-6 -4406)) (-3654 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 -2706 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4409 |has| |#1| (-6 -4409)) (-3609 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -606,8 +606,8 @@ NIL
NIL
(-169 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4400 -2807 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4403 |has| |#1| (-6 -4403)) (-4406 |has| |#1| (-6 -4406)) (-3654 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-824)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1194)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| |#1| (QUOTE (-1054))) (-12 (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasAttribute| |#1| (QUOTE -4403)) (|HasAttribute| |#1| (QUOTE -4406)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170))))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-349)))))
+((-4403 -2706 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4409 |has| |#1| (-6 -4409)) (-3609 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1197)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-907))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-907)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-907))))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-1057))) (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasAttribute| |#1| (QUOTE -4409)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173))))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-349)))))
(-170 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -618,7 +618,7 @@ NIL
NIL
(-172)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-173)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -626,7 +626,7 @@ NIL
NIL
(-174 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4409 "*") . T) (-4400 . T) (-4405 . T) (-4399 . T) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") . T) (-4403 . T) (-4408 . T) (-4402 . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-175)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -643,7 +643,7 @@ NIL
(-178 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-948 |#2|) (LIST (QUOTE -882) (|devaluate| |#1|))))
+((|HasCategory| (-950 |#2|) (LIST (QUOTE -884) (|devaluate| |#1|))))
(-179 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -680,7 +680,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-188 R -2306)
+(-188 R -2234)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -788,23 +788,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-215 -2306 UP UPUP R)
+(-215 -2234 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-216 -2306 FP)
+(-216 -2234 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-217)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-564) (QUOTE (-905))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1018))) (|HasCategory| (-564) (QUOTE (-816))) (-2807 (|HasCategory| (-564) (QUOTE (-816))) (|HasCategory| (-564) (QUOTE (-846)))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (|HasCategory| (-564) (QUOTE (-145)))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-564) (QUOTE (-907))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1020))) (|HasCategory| (-564) (QUOTE (-818))) (-2706 (|HasCategory| (-564) (QUOTE (-818))) (|HasCategory| (-564) (QUOTE (-848)))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1148))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (|HasCategory| (-564) (QUOTE (-145)))))
(-218)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-219 R -2306)
+(-219 R -2234)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -818,19 +818,19 @@ NIL
NIL
(-222 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
(-223 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4404 . T))
+((-4407 . T))
NIL
-(-224 R -2306)
+(-224 R -2234)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-225)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3646 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-3601 . T) (-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-226)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -838,23 +838,23 @@ NIL
NIL
(-227 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4409 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4412 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
(-228 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-229 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4408 . T))
+((-4411 . T))
NIL
(-230 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))))
+((|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233))))
(-231 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4404 . T))
+((-4407 . T))
NIL
(-232 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -862,36 +862,36 @@ NIL
NIL
(-233)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4404 . T))
+((-4407 . T))
NIL
(-234 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4407)))
+((|HasAttribute| |#1| (QUOTE -4410)))
(-235 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4408 . T))
+((-4411 . T))
NIL
(-236)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-237 S -3599 R)
+(-237 S -3554 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasAttribute| |#3| (QUOTE -4404)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1094))))
-(-238 -3599 R)
+((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-846))) (|HasAttribute| |#3| (QUOTE -4407)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-1097))))
+(-238 -3554 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T))
+((-4404 |has| |#2| (-1047)) (-4405 |has| |#2| (-1047)) (-4407 |has| |#2| (-6 -4407)) ((-4412 "*") |has| |#2| (-172)) (-4410 . T))
NIL
-(-239 -3599 A B)
+(-239 -3554 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-240 -3599 R)
+(-240 -3554 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-2807 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-2807 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+((-4404 |has| |#2| (-1047)) (-4405 |has| |#2| (-1047)) (-4407 |has| |#2| (-6 -4407)) ((-4412 "*") |has| |#2| (-172)) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (QUOTE (-363))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-791))) (-2706 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-724))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-233))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasCategory| |#2| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-724)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097))))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-2706 (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasAttribute| |#2| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-241)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -902,7 +902,7 @@ NIL
NIL
(-243)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4400 . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-244 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -910,16 +910,16 @@ NIL
NIL
(-245 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-246 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-247 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-556)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4412 "*") |has| |#2| (-172)) (-4403 |has| |#2| (-556)) (-4408 |has| |#2| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#2| (QUOTE (-907))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-248)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -930,23 +930,23 @@ NIL
NIL
(-250 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4404 -2807 (-2358 (|has| |#4| (-1045)) (|has| |#4| (-233))) (-2358 (|has| |#4| (-1045)) (|has| |#4| (-896 (-1170)))) (|has| |#4| (-6 -4404)) (-2358 (|has| |#4| (-1045)) (|has| |#4| (-637 (-564))))) (-4401 |has| |#4| (-1045)) (-4402 |has| |#4| (-1045)) ((-4409 "*") |has| |#4| (-172)) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-363))) (-2807 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1045)))) (-2807 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (QUOTE (-789))) (-2807 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (QUOTE (-844)))) (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (QUOTE (-172))) (-2807 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2807 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-722)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-789)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-844)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094))))) (-2807 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-2807 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-722))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564))))) (-2807 (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094)))) (-2807 (|HasAttribute| |#4| (QUOTE -4404)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))))
+((-4407 -2706 (-2275 (|has| |#4| (-1047)) (|has| |#4| (-233))) (-2275 (|has| |#4| (-1047)) (|has| |#4| (-898 (-1173)))) (|has| |#4| (-6 -4407)) (-2275 (|has| |#4| (-1047)) (|has| |#4| (-637 (-564))))) (-4404 |has| |#4| (-1047)) (-4405 |has| |#4| (-1047)) ((-4412 "*") |has| |#4| (-172)) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-724))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-846))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#4| (QUOTE (-363))) (-2706 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1047)))) (-2706 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-791))) (-2706 (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (QUOTE (-846)))) (|HasCategory| |#4| (QUOTE (-846))) (|HasCategory| |#4| (QUOTE (-724))) (-2706 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1047)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2706 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1047)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-724)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-791)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-846)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1097))))) (-2706 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-724))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-846))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1047))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-724))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-846))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1047)))) (-2706 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1047)))) (|HasCategory| |#4| (QUOTE (-724))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564))))) (-2706 (|HasCategory| |#4| (QUOTE (-1047))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1097)))) (-2706 (|HasAttribute| |#4| (QUOTE -4407)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))))
(-251 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4404 -2807 (-2358 (|has| |#3| (-1045)) (|has| |#3| (-233))) (-2358 (|has| |#3| (-1045)) (|has| |#3| (-896 (-1170)))) (|has| |#3| (-6 -4404)) (-2358 (|has| |#3| (-1045)) (|has| |#3| (-637 (-564))))) (-4401 |has| |#3| (-1045)) (-4402 |has| |#3| (-1045)) ((-4409 "*") |has| |#3| (-172)) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-363))) (-2807 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2807 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-2807 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-2807 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2807 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-2807 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2807 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-722))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-2807 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-2807 (|HasAttribute| |#3| (QUOTE -4404)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
+((-4407 -2706 (-2275 (|has| |#3| (-1047)) (|has| |#3| (-233))) (-2275 (|has| |#3| (-1047)) (|has| |#3| (-898 (-1173)))) (|has| |#3| (-6 -4407)) (-2275 (|has| |#3| (-1047)) (|has| |#3| (-637 (-564))))) (-4404 |has| |#3| (-1047)) (-4405 |has| |#3| (-1047)) ((-4412 "*") |has| |#3| (-172)) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#3| (QUOTE (-363))) (-2706 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2706 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-791))) (-2706 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-846)))) (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (QUOTE (-724))) (-2706 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2706 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-724)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-791)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-846)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1097))))) (-2706 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1047))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2706 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-724))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-2706 (|HasCategory| |#3| (QUOTE (-1047))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1097)))) (-2706 (|HasAttribute| |#3| (QUOTE -4407)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
(-252 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-233))))
(-253 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
NIL
(-254 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4407 . T) (-4408 . T))
+((-4410 . T) (-4411 . T))
NIL
(-255)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -986,8 +986,8 @@ NIL
NIL
(-264 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-907))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-265 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1032,11 +1032,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-276 R -2306)
+(-276 R -2234)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-277 R -2306)
+(-277 R -2234)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1055,10 +1055,10 @@ NIL
(-281 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))))
+((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))))
(-282 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4408 . T))
+((-4411 . T))
NIL
(-283 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1079,18 +1079,18 @@ NIL
(-287 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)))
+((|HasAttribute| |#1| (QUOTE -4411)))
(-288 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-289 S R |Mod| -1812 -3669 |exactQuo|)
+(-289 S R |Mod| -1790 -2740 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-290)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4400 . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-291)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1106,21 +1106,21 @@ NIL
NIL
(-294 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4404 -2807 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4401 |has| |#1| (-1045)) (-4402 |has| |#1| (-1045)))
-((|HasCategory| |#1| (QUOTE (-363))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2807 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722)))) (|HasCategory| |#1| (QUOTE (-473))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-1094)))) (-2807 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-302))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-2807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722)))) (-2807 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-172))))
+((-4407 -2706 (|has| |#1| (-1047)) (|has| |#1| (-473))) (-4404 |has| |#1| (-1047)) (-4405 |has| |#1| (-1047)))
+((|HasCategory| |#1| (QUOTE (-363))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2706 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-724)))) (|HasCategory| |#1| (QUOTE (-473))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-1097)))) (-2706 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-302))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-2706 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-724)))) (-2706 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-724))))
(-295 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#2|)))))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#2|)))))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))))
(-296)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-297 -2306 S)
+(-297 -2234 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-298 E -2306)
+(-298 E -2234)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1135,7 +1135,7 @@ NIL
(-301 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1045))))
+((|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1047))))
(-302)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
@@ -1158,7 +1158,7 @@ NIL
NIL
(-307)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-308 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1168,7 +1168,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-310 -2306)
+(-310 -2234)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1182,8 +1182,8 @@ NIL
NIL
(-313 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1018))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (-2807 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-846)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-846))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145)))) (-2807 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145))))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-907))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-1020))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-818))) (-2706 (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-818))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-848)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-1148))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-848))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-907))) (|HasCategory| $ (QUOTE (-145)))) (-2706 (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3| |#4|) (QUOTE (-907))) (|HasCategory| $ (QUOTE (-145))))))
(-314 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1194,9 +1194,9 @@ NIL
NIL
(-316 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4404 -2807 (-2358 (|has| |#1| (-1045)) (|has| |#1| (-637 (-564)))) (-12 (|has| |#1| (-556)) (-2807 (-2358 (|has| |#1| (-1045)) (|has| |#1| (-637 (-564)))) (|has| |#1| (-1045)) (|has| |#1| (-473)))) (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) ((-4409 "*") |has| |#1| (-556)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-556)) (-4399 |has| |#1| (-556)))
-((-2807 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (-2807 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-2807 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-2807 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-2807 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-2807 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-564)))))
-(-317 R -2306)
+((-4407 -2706 (-2275 (|has| |#1| (-1047)) (|has| |#1| (-637 (-564)))) (-12 (|has| |#1| (-556)) (-2706 (-2275 (|has| |#1| (-1047)) (|has| |#1| (-637 (-564)))) (|has| |#1| (-1047)) (|has| |#1| (-473)))) (|has| |#1| (-1047)) (|has| |#1| (-473))) (-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) ((-4412 "*") |has| |#1| (-556)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-556)) (-4402 |has| |#1| (-556)))
+((-2706 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (-2706 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-21))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1109)))) (-2706 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-2706 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1109)))) (-2706 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-2706 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1036) (QUOTE (-564)))))
+(-317 R -2234)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1206,8 +1206,8 @@ NIL
NIL
(-319 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2070) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))))
(-320 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1218,8 +1218,8 @@ NIL
NIL
(-322 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4402 . T) (-4401 . T))
-((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-788))))
+((-4405 . T) (-4404 . T))
+((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-790))))
(-323 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1227,26 +1227,26 @@ NIL
(-324 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-767) (QUOTE (-788))))
+((|HasCategory| (-769) (QUOTE (-790))))
(-325 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))))
(-326 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-327 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-328 S -2306)
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-328 S -2234)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))))
-(-329 -2306)
+(-329 -2234)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-330)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1264,54 +1264,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-334 S -2306 UP UPUP R)
+(-334 S -2234 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-335 -2306 UP UPUP R)
+(-335 -2234 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-336 -2306 UP UPUP R)
+(-336 -2234 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-337 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))))
(-338 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-339 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-564)))))
+((-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1036) (QUOTE (-564)))))
(-340 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-341 S -2306 UP UPUP)
+(-341 S -2234 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-363))))
-(-342 -2306 UP UPUP)
+(-342 -2234 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4400 |has| (-407 |#2|) (-363)) (-4405 |has| (-407 |#2|) (-363)) (-4399 |has| (-407 |#2|) (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 |has| (-407 |#2|) (-363)) (-4408 |has| (-407 |#2|) (-363)) (-4402 |has| (-407 |#2|) (-363)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-343 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| (-908 |#1|) (QUOTE (-145))) (|HasCategory| (-908 |#1|) (QUOTE (-368)))) (|HasCategory| (-908 |#1|) (QUOTE (-147))) (|HasCategory| (-908 |#1|) (QUOTE (-368))) (|HasCategory| (-908 |#1|) (QUOTE (-145))))
(-344 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-345 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-346 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1326,33 +1326,33 @@ NIL
NIL
(-349)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-350 R UP -2306)
+(-350 R UP -2234)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-351 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| (-908 |#1|) (QUOTE (-145))) (|HasCategory| (-908 |#1|) (QUOTE (-368)))) (|HasCategory| (-908 |#1|) (QUOTE (-147))) (|HasCategory| (-908 |#1|) (QUOTE (-368))) (|HasCategory| (-908 |#1|) (QUOTE (-145))))
(-352 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-353 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-354 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| (-908 |#1|) (QUOTE (-145))) (|HasCategory| (-908 |#1|) (QUOTE (-368)))) (|HasCategory| (-908 |#1|) (QUOTE (-147))) (|HasCategory| (-908 |#1|) (QUOTE (-368))) (|HasCategory| (-908 |#1|) (QUOTE (-145))))
(-355 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
-(-356 -2306 GF)
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+(-356 -2234 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1360,21 +1360,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-358 -2306 FP FPP)
+(-358 -2234 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-359 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-360 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-361 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4404 . T))
+((-4407 . T))
NIL
(-362 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1382,7 +1382,7 @@ NIL
NIL
(-363)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-364 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1398,7 +1398,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-556))))
(-367 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4404 |has| |#1| (-556)) (-4402 . T) (-4401 . T))
+((-4407 |has| |#1| (-556)) (-4405 . T) (-4404 . T))
NIL
(-368)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1410,7 +1410,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-363))))
(-370 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-371 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1419,14 +1419,14 @@ NIL
(-372 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))))
+((|HasAttribute| |#1| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))))
(-373 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4407 . T))
+((-4410 . T))
NIL
(-374 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4402 . T) (-4401 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4405 . T) (-4404 . T))
NIL
(-375 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1438,7 +1438,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))))
(-377 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4404 . T))
+((-4407 . T))
NIL
(-378 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1446,7 +1446,7 @@ NIL
NIL
(-379)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4390 . T) (-4398 . T) (-3646 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4393 . T) (-4401 . T) (-3601 . T) (-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-380 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1454,11 +1454,11 @@ NIL
NIL
(-381 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4402 . T) (-4401 . T))
+((-4405 . T) (-4404 . T))
((|HasCategory| |#1| (QUOTE (-172))))
(-382 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4402 . T) (-4401 . T))
+((-4405 . T) (-4404 . T))
NIL
(-383)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1470,15 +1470,15 @@ NIL
NIL
(-385 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4402 . T) (-4401 . T))
+((-4405 . T) (-4404 . T))
((|HasCategory| |#1| (QUOTE (-172))))
(-386 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
-((|HasCategory| |#1| (QUOTE (-846))))
+((|HasCategory| |#1| (QUOTE (-848))))
(-387)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-388)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1490,13 +1490,13 @@ NIL
NIL
(-390 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4402 . T) (-4401 . T))
+((-4405 . T) (-4404 . T))
NIL
(-391)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-392 -2306 UP UPUP R)
+(-392 -2234 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1520,11 +1520,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-398 -2562 |returnType| -2838 |symbols|)
+(-398 -2461 |returnType| -2737 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-399 -2306 UP)
+(-399 -2234 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1538,15 +1538,15 @@ NIL
NIL
(-402)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-403 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4390)) (|HasAttribute| |#1| (QUOTE -4398)))
+((|HasAttribute| |#1| (QUOTE -4393)) (|HasAttribute| |#1| (QUOTE -4401)))
(-404)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3646 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-3601 . T) (-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-405 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1558,20 +1558,20 @@ NIL
NIL
(-407 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4394 -12 (|has| |#1| (-6 -4405)) (|has| |#1| (-452)) (|has| |#1| (-6 -4394))) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-816))) (-2807 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-846)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#1| (QUOTE -4394)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((-4397 -12 (|has| |#1| (-6 -4408)) (|has| |#1| (-452)) (|has| |#1| (-6 -4397))) (-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-907))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-818))) (-2706 (|HasCategory| |#1| (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-848)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1148))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826))))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-826)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4397)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-408 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-409 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-410 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))
+((|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))
(-411 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
@@ -1580,14 +1580,14 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-413 R -2306 UP A)
+(-413 R -2234 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4404 . T))
+((-4407 . T))
NIL
-(-414 R -2306 UP A |ibasis|)
+(-414 R -2234 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1034) (|devaluate| |#2|))))
+((|HasCategory| |#4| (LIST (QUOTE -1036) (|devaluate| |#2|))))
(-415 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1598,12 +1598,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))))
(-417 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4404 |has| |#1| (-556)) (-4402 . T) (-4401 . T))
+((-4407 |has| |#1| (-556)) (-4405 . T) (-4404 . T))
NIL
(-418 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1213))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1213)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452))))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1216))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1216)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452))))
(-419 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1627,40 +1627,40 @@ NIL
(-424 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368))))
+((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-368))))
(-425 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4407 . T) (-4397 . T) (-4408 . T))
+((-4410 . T) (-4400 . T) (-4411 . T))
NIL
-(-426 R -2306)
+(-426 R -2234)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-427 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4394 -12 (|has| |#1| (-6 -4394)) (|has| |#2| (-6 -4394))) (-4401 . T) (-4402 . T) (-4404 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4394)) (|HasAttribute| |#2| (QUOTE -4394))))
-(-428 R -2306)
+((-4397 -12 (|has| |#1| (-6 -4397)) (|has| |#2| (-6 -4397))) (-4404 . T) (-4405 . T) (-4407 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4397)) (|HasAttribute| |#2| (QUOTE -4397))))
+(-428 R -2234)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
(-429 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))))
+((|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))))
(-430 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4404 -2807 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) ((-4409 "*") |has| |#1| (-556)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-556)) (-4399 |has| |#1| (-556)))
+((-4407 -2706 (|has| |#1| (-1047)) (|has| |#1| (-473))) (-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) ((-4412 "*") |has| |#1| (-556)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-556)) (-4402 |has| |#1| (-556)))
NIL
-(-431 R -2306)
+(-431 R -2234)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-432 R -2306)
+(-432 R -2234)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-433 R -2306)
+(-433 R -2234)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1668,10 +1668,10 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-435 R -2306 UP)
+(-435 R -2234 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-48)))))
+((|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-48)))))
(-436)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
@@ -1700,7 +1700,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-443 R UP -2306)
+(-443 R UP -2234)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1738,16 +1738,16 @@ NIL
NIL
(-452)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-453 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4404 |has| (-407 (-948 |#1|)) (-556)) (-4402 . T) (-4401 . T))
-((|HasCategory| (-407 (-948 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-407 (-948 |#1|)) (QUOTE (-556))))
+((-4407 |has| (-407 (-950 |#1|)) (-556)) (-4405 . T) (-4404 . T))
+((|HasCategory| (-407 (-950 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-407 (-950 |#1|)) (QUOTE (-556))))
(-454 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-556)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4412 "*") |has| |#2| (-172)) (-4403 |has| |#2| (-556)) (-4408 |has| |#2| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#2| (QUOTE (-907))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-455 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1774,7 +1774,7 @@ NIL
NIL
(-461 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4402 . T) (-4401 . T))
+((-4405 . T) (-4404 . T))
NIL
(-462 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1782,8 +1782,8 @@ NIL
NIL
(-463 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4408 . T) (-4407 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4411 . T) (-4410 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860)))))
(-464 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1812,7 +1812,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-471 |lv| -2306 R)
+(-471 |lv| -2234 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1822,23 +1822,23 @@ NIL
NIL
(-473)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4404 . T))
+((-4407 . T))
NIL
(-474 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2070) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))))
(-475 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#2|)))))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))))
+((-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#2|)))))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-848))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))))
(-476 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4408 . T) (-4407 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4411 . T) (-4410 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860)))))
(-477)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-478)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1846,29 +1846,29 @@ NIL
NIL
(-479 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#2|)))))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#2|)))))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))))
(-480)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-481 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-556)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-482 -3599 S)
+(((-4412 "*") |has| |#2| (-172)) (-4403 |has| |#2| (-556)) (-4408 |has| |#2| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#2| (QUOTE (-907))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-482 -3554 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-2807 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-2807 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+((-4404 |has| |#2| (-1047)) (-4405 |has| |#2| (-1047)) (-4407 |has| |#2| (-6 -4407)) ((-4412 "*") |has| |#2| (-172)) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (QUOTE (-363))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-791))) (-2706 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-724))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-233))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasCategory| |#2| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-724)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097))))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-2706 (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasAttribute| |#2| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-483)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
NIL
(-484 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-485 -2306 UP UPUP R)
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-485 -2234 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1878,12 +1878,12 @@ NIL
NIL
(-487)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-564) (QUOTE (-905))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1018))) (|HasCategory| (-564) (QUOTE (-816))) (-2807 (|HasCategory| (-564) (QUOTE (-816))) (|HasCategory| (-564) (QUOTE (-846)))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (|HasCategory| (-564) (QUOTE (-145)))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-564) (QUOTE (-907))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1020))) (|HasCategory| (-564) (QUOTE (-818))) (-2706 (|HasCategory| (-564) (QUOTE (-818))) (|HasCategory| (-564) (QUOTE (-848)))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1148))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (|HasCategory| (-564) (QUOTE (-145)))))
(-488 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4407)) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))))
+((|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4411)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))))
(-489 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1904,34 +1904,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-494 -2306 UP |AlExt| |AlPol|)
+(-494 -2234 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-495)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-564)))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1036) (QUOTE (-564)))))
(-496 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-497 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
(-498 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-499 R UP -2306)
+(-499 R UP -2234)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-500 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4408 . T) (-4407 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4411 . T) (-4410 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1097))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-112) (QUOTE (-1097))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-860)))))
(-501 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1944,10 +1944,10 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-504 -2306 |Expon| |VarSet| |DPoly|)
+(-504 -2234 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-1170)))))
+((|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-1173)))))
(-505 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -1991,39 +1991,39 @@ NIL
(-515 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-788))))
+((|HasCategory| |#2| (QUOTE (-790))))
(-516 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-517)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-518 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| (-581 |#1|) (QUOTE (-145))) (|HasCategory| (-581 |#1|) (QUOTE (-368)))) (|HasCategory| (-581 |#1|) (QUOTE (-147))) (|HasCategory| (-581 |#1|) (QUOTE (-368))) (|HasCategory| (-581 |#1|) (QUOTE (-145))))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| (-581 |#1|) (QUOTE (-145))) (|HasCategory| (-581 |#1|) (QUOTE (-368)))) (|HasCategory| (-581 |#1|) (QUOTE (-147))) (|HasCategory| (-581 |#1|) (QUOTE (-368))) (|HasCategory| (-581 |#1|) (QUOTE (-145))))
(-519 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
(-520 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-521 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4408)))
+((|HasAttribute| |#3| (QUOTE -4411)))
(-522 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4408)))
+((|HasAttribute| |#7| (QUOTE -4411)))
(-523 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4409 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4412 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
(-524)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2056,7 +2056,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-532 K -2306 |Par|)
+(-532 K -2234 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2080,7 +2080,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-538 K -2306 |Par|)
+(-538 K -2234 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2110,7 +2110,7 @@ NIL
NIL
(-545)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4408 . T) (-4409 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-546)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
@@ -2130,13 +2130,13 @@ NIL
NIL
(-550 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#2|)))))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))))
-(-551 R -2306)
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#2|)))))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))))
+(-551 R -2234)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-552 R0 -2306 UP UPUP R)
+(-552 R0 -2234 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2146,7 +2146,7 @@ NIL
NIL
(-554 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3646 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-3601 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-555 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2154,9 +2154,9 @@ NIL
NIL
(-556)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-557 R -2306)
+(-557 R -2234)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2168,39 +2168,39 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-560 R -2306 L)
+(-560 R -2234 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -652) (|devaluate| |#2|))))
+((|HasCategory| |#3| (LIST (QUOTE -654) (|devaluate| |#2|))))
(-561)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-562 -2306 UP UPUP R)
+(-562 -2234 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-563 -2306 UP)
+(-563 -2234 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-564)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4389 . T) (-4395 . T) (-4399 . T) (-4394 . T) (-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4392 . T) (-4398 . T) (-4402 . T) (-4397 . T) (-4408 . T) (-4409 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-565)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-566 R -2306 L)
+(-566 R -2234 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -652) (|devaluate| |#2|))))
-(-567 R -2306)
+((|HasCategory| |#3| (LIST (QUOTE -654) (|devaluate| |#2|))))
+(-567 R -2234)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-627)))))
-(-568 -2306 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1136)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-627)))))
+(-568 -2234 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2208,27 +2208,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-570 -2306)
+(-570 -2234)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-571 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3646 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-3601 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-572)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-573 R -2306)
+(-573 R -2234)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-627))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-556))))
-(-574 -2306 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-627))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-556))))
+(-574 -2234 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-575 R -2306)
+(-575 R -2234)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2250,28 +2250,28 @@ NIL
NIL
(-580 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
(-581 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368))))
(-582)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-583 R -2306)
+(-583 R -2234)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-584 E -2306)
+(-584 E -2234)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-585 -2306)
+(-585 -2234)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4402 . T) (-4401 . T))
-((|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1170)))))
+((-4405 . T) (-4404 . T))
+((|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-1173)))))
(-586 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2298,19 +2298,19 @@ NIL
NIL
(-592 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-2807 (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-2706 (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-144) (QUOTE (-1097)))) (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-593 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-594 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))) (|HasCategory| (-564) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))) (|HasCategory| (-564) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))))
(-595 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4402 |has| |#1| (-556)) (-4401 |has| |#1| (-556)) ((-4409 "*") |has| |#1| (-556)) (-4400 |has| |#1| (-556)) (-4404 . T))
+((-4405 |has| |#1| (-556)) (-4404 |has| |#1| (-556)) ((-4412 "*") |has| |#1| (-556)) (-4403 |has| |#1| (-556)) (-4407 . T))
((|HasCategory| |#1| (QUOTE (-556))))
(-596 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
@@ -2320,7 +2320,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-598 R -2306 FG)
+(-598 R -2234 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2330,12 +2330,12 @@ NIL
NIL
(-600 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#1| (QUOTE (-1047))) (-12 (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-601 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-846))) (|HasAttribute| |#1| (QUOTE -4407)) (|HasCategory| |#3| (QUOTE (-1094))))
+((|HasAttribute| |#1| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-848))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#3| (QUOTE (-1097))))
(-602 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2350,19 +2350,19 @@ NIL
NIL
(-605 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4404 -2807 (-2358 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4402 . T) (-4401 . T))
-((-2807 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
+((-4407 -2706 (-2275 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4405 . T) (-4404 . T))
+((-2706 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
(-606 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-846))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (LIST (QUOTE -611) (QUOTE (-858)))))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-1155))) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| (-1155) (QUOTE (-848))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (LIST (QUOTE -611) (QUOTE (-860)))))
(-607 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-608 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4408 . T))
+((-4411 . T))
NIL
(-609 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2371,7 +2371,7 @@ NIL
(-610 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))))
+((|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))))
(-611 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
@@ -2380,7 +2380,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-613 -2306 UP)
+(-613 -2234 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2402,20 +2402,20 @@ NIL
NIL
(-618 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4404 . T))
+((-4407 . T))
NIL
(-619 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-844))))
-(-620 R -2306)
+((-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-846))))
+(-620 R -2234)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-621 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4400 . T) (-4404 . T))
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))))
+((-4405 . T) (-4404 . T) ((-4412 "*") . T) (-4403 . T) (-4407 . T))
+((|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))))
(-622 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2430,7 +2430,7 @@ NIL
NIL
(-625 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4404 . T))
+((-4407 . T))
NIL
(-626 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2440,30 +2440,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-628 R -2306)
+(-628 R -2234)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-629 |lv| -2306)
+(-629 |lv| -2234)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-630)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -3813) (QUOTE (-52))))))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1152) (QUOTE (-846))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (QUOTE (-1094))))
+((-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-1155))) (LIST (QUOTE |:|) (QUOTE -3778) (QUOTE (-52))))))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-52) (QUOTE (-1097)))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1155) (QUOTE (-848))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (QUOTE (-1097))))
(-631 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))))
(-632 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4402 . T) (-4401 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4405 . T) (-4404 . T))
NIL
(-633 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4404 -2807 (-2358 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4402 . T) (-4401 . T))
-((-2807 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
+((-4407 -2706 (-2275 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4405 . T) (-4404 . T))
+((-2706 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
(-634 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2475,2610 +2475,2622 @@ NIL
(-636 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2351 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363))))
+((-2268 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363))))
(-637 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4404 . T))
+((-4407 . T))
NIL
-(-638 A B)
-((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
+(-638 R)
+((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
(-639 A B)
+((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
+NIL
+NIL
+(-640 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-640 A B C)
+(-641 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-641 S)
+(-642 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-642 T$)
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-643 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-643 S)
-((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
(-644 R)
-((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
+((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{LeftModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
+NIL
+NIL
+(-645 S)
+((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-646 R)
+((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-645 S E |un|)
+(-647 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-646 A S)
+(-648 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)))
-(-647 S)
+((|HasAttribute| |#1| (QUOTE -4411)))
+(-649 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-648 R -2306 L)
+(-650 R -2234 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-649 A)
+(-651 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
-(-650 A M)
+((-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
+(-652 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
-(-651 S A)
+((-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
+(-653 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))))
-(-652 A)
+(-654 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-653 -2306 UP)
+(-655 -2234 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-654 A -4234)
+(-656 A -2297)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
-(-655 A L)
+((-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
+(-657 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-656 S)
+(-658 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-657)
+(-659)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-658 M R S)
+(-660 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4402 . T) (-4401 . T))
-((|HasCategory| |#1| (QUOTE (-787))))
-(-659 R)
+((-4405 . T) (-4404 . T))
+((|HasCategory| |#1| (QUOTE (-789))))
+(-661 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-660 |VarSet| R)
+(-662 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4402 . T) (-4401 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4405 . T) (-4404 . T))
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-172))))
-(-661 A S)
+(-663 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-662 S)
+(-664 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-663 -2306)
+(-665 -2234)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-664 -2306 |Row| |Col| M)
+(-666 -2234 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-665 R E OV P)
+(-667 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-666 |n| R)
+(-668 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4404 . T) (-4407 . T) (-4401 . T) (-4402 . T))
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-2807 (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
-(-667)
+((-4407 . T) (-4410 . T) (-4404 . T) (-4405 . T))
+((|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4412 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-2706 (|HasAttribute| |#2| (QUOTE (-4412 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+(-669)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-668 |VarSet|)
+(-670 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-669 A S)
+(-671 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-670 S)
+(-672 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-671 R)
+(-673 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-672)
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-674)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-673 |VarSet|)
+(-675 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-674 A)
+(-676 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-675 A C)
+(-677 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument.")))
NIL
NIL
-(-676 A B C)
+(-678 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-677)
+(-679)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-678 A)
+(-680 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-679 A C)
+(-681 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-680 A B C)
+(-682 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-681 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-683 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-682 S R |Row| |Col|)
+(-684 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))))
-(-683 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4412 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))))
+(-685 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4407 . T) (-4408 . T))
+((-4410 . T) (-4411 . T))
NIL
-(-684 R |Row| |Col| M)
+(-686 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))))
-(-685 R)
+(-687 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4407 . T) (-4408 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4409 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-686 R)
+((-4410 . T) (-4411 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4412 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-688 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-687 T$)
+(-689 T$)
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-688 S -2306 FLAF FLAS)
+(-690 S -2234 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-689 R Q)
+(-691 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-690)
+(-692)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4400 . T) (-4405 |has| (-695) (-363)) (-4399 |has| (-695) (-363)) (-3654 . T) (-4406 |has| (-695) (-6 -4406)) (-4403 |has| (-695) (-6 -4403)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-695) (QUOTE (-147))) (|HasCategory| (-695) (QUOTE (-145))) (|HasCategory| (-695) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-368))) (|HasCategory| (-695) (QUOTE (-363))) (-2807 (|HasCategory| (-695) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-233))) (-2807 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (LIST (QUOTE -286) (QUOTE (-695)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -309) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-695) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (-2807 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-695) (QUOTE (-1018))) (|HasCategory| (-695) (QUOTE (-1194))) (-12 (|HasCategory| (-695) (QUOTE (-998))) (|HasCategory| (-695) (QUOTE (-1194)))) (-2807 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (|HasCategory| (-695) (QUOTE (-363))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-905))))) (-2807 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (-12 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-905)))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-905))))) (|HasCategory| (-695) (QUOTE (-545))) (-12 (|HasCategory| (-695) (QUOTE (-1054))) (|HasCategory| (-695) (QUOTE (-1194)))) (|HasCategory| (-695) (QUOTE (-1054))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905))) (-2807 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (|HasCategory| (-695) (QUOTE (-363)))) (-2807 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (|HasCategory| (-695) (QUOTE (-556)))) (-12 (|HasCategory| (-695) (QUOTE (-233))) (|HasCategory| (-695) (QUOTE (-363)))) (-12 (|HasCategory| (-695) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-556))) (|HasAttribute| (-695) (QUOTE -4406)) (|HasAttribute| (-695) (QUOTE -4403)) (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (|HasCategory| (-695) (QUOTE (-145)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-905)))) (|HasCategory| (-695) (QUOTE (-349)))))
-(-691 S)
+((-4403 . T) (-4408 |has| (-697) (-363)) (-4402 |has| (-697) (-363)) (-3609 . T) (-4409 |has| (-697) (-6 -4409)) (-4406 |has| (-697) (-6 -4406)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-697) (QUOTE (-147))) (|HasCategory| (-697) (QUOTE (-145))) (|HasCategory| (-697) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-697) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-697) (QUOTE (-368))) (|HasCategory| (-697) (QUOTE (-363))) (-2706 (|HasCategory| (-697) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-697) (QUOTE (-363)))) (|HasCategory| (-697) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-697) (QUOTE (-233))) (-2706 (|HasCategory| (-697) (QUOTE (-363))) (|HasCategory| (-697) (QUOTE (-349)))) (|HasCategory| (-697) (QUOTE (-349))) (|HasCategory| (-697) (LIST (QUOTE -286) (QUOTE (-697)) (QUOTE (-697)))) (|HasCategory| (-697) (LIST (QUOTE -309) (QUOTE (-697)))) (|HasCategory| (-697) (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE (-697)))) (|HasCategory| (-697) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-697) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-697) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-697) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (-2706 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-363))) (|HasCategory| (-697) (QUOTE (-349)))) (|HasCategory| (-697) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-697) (QUOTE (-1020))) (|HasCategory| (-697) (QUOTE (-1197))) (-12 (|HasCategory| (-697) (QUOTE (-1000))) (|HasCategory| (-697) (QUOTE (-1197)))) (-2706 (-12 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (|HasCategory| (-697) (QUOTE (-363))) (-12 (|HasCategory| (-697) (QUOTE (-349))) (|HasCategory| (-697) (QUOTE (-907))))) (-2706 (-12 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (-12 (|HasCategory| (-697) (QUOTE (-363))) (|HasCategory| (-697) (QUOTE (-907)))) (-12 (|HasCategory| (-697) (QUOTE (-349))) (|HasCategory| (-697) (QUOTE (-907))))) (|HasCategory| (-697) (QUOTE (-545))) (-12 (|HasCategory| (-697) (QUOTE (-1057))) (|HasCategory| (-697) (QUOTE (-1197)))) (|HasCategory| (-697) (QUOTE (-1057))) (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907))) (-2706 (-12 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (|HasCategory| (-697) (QUOTE (-363)))) (-2706 (-12 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (|HasCategory| (-697) (QUOTE (-556)))) (-12 (|HasCategory| (-697) (QUOTE (-233))) (|HasCategory| (-697) (QUOTE (-363)))) (-12 (|HasCategory| (-697) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-697) (QUOTE (-363)))) (|HasCategory| (-697) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-697) (QUOTE (-556))) (|HasAttribute| (-697) (QUOTE -4409)) (|HasAttribute| (-697) (QUOTE -4406)) (-12 (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (|HasCategory| (-697) (QUOTE (-145)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-697) (QUOTE (-307))) (|HasCategory| (-697) (QUOTE (-907)))) (|HasCategory| (-697) (QUOTE (-349)))))
+(-693 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4408 . T))
+((-4411 . T))
NIL
-(-692 U)
+(-694 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-693)
+(-695)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-694 OV E -2306 PG)
+(-696 OV E -2234 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-695)
+(-697)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3646 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-3601 . T) (-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-696 R)
+(-698 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-697)
+(-699)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4406 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4409 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-698 S D1 D2 I)
+(-700 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-699 S)
+(-701 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-700 S)
+(-702 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-701 S T$)
+(-703 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-702 S -4063 I)
+(-704 S -4044 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-703 E OV R P)
+(-705 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented")))
NIL
NIL
-(-704 R)
+(-706 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-705 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-707 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-706)
+(-708)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-707 R |Mod| -1812 -3669 |exactQuo|)
+(-709 R |Mod| -1790 -2740 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-708 R |Rep|)
+(-710 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-709 IS E |ff|)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1148))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-711 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-710 R M)
+(-712 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T))
+((-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) (-4407 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-711 R |Mod| -1812 -3669 |exactQuo|)
+(-713 R |Mod| -1790 -2740 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4404 . T))
+((-4407 . T))
NIL
-(-712 S R)
+(-714 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-713 R)
+(-715 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4402 . T) (-4401 . T))
+((-4405 . T) (-4404 . T))
NIL
-(-714 -2306)
+(-716 -2234)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4404 . T))
+((-4407 . T))
NIL
-(-715 S)
+(-717 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-716)
+(-718)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-717 S)
+(-719 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-718)
+(-720)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-719 S R UP)
+(-721 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))))
-(-720 R UP)
+(-722 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4400 |has| |#1| (-363)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 |has| |#1| (-363)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-721 S)
+(-723 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-722)
+(-724)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-723 -2306 UP)
+(-725 -2234 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-724 |VarSet| E1 E2 R S PR PS)
+(-726 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-725 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-727 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-726 E OV R PPR)
+(-728 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-727 |vl| R)
+(-729 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-556)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-728 E OV R PRF)
+(((-4412 "*") |has| |#2| (-172)) (-4403 |has| |#2| (-556)) (-4408 |has| |#2| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#2| (QUOTE (-907))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-862 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-730 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-729 E OV R P)
+(-731 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-730 R S M)
+(-732 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-731 R M)
+(-733 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-846))))
-(-732 S)
+((-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) (-4407 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-848))))
+(-734 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4397 . T) (-4408 . T))
+((-4400 . T) (-4411 . T))
NIL
-(-733 S)
+(-735 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4407 . T) (-4397 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-734)
+((-4410 . T) (-4400 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-736)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-735 S)
+(-737 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-736 |Coef| |Var|)
+(-738 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4402 . T) (-4401 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4405 . T) (-4404 . T) (-4407 . T))
NIL
-(-737 OV E R P)
+(-739 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-738 E OV R P)
+(-740 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-739 S R)
+(-741 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-740 R)
+(-742 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4402 . T) (-4401 . T))
+((-4405 . T) (-4404 . T))
NIL
-(-741)
+(-743)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-742)
+(-744)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-743)
+(-745)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-744)
+(-746)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-745)
+(-747)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-746)
+(-748)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-747)
+(-749)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-748)
+(-750)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-749)
+(-751)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-750)
+(-752)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-751)
+(-753)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-752)
+(-754)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-753)
+(-755)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-754)
+(-756)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-755)
+(-757)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-756 S)
+(-758 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-757)
+(-759)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-758 S)
+(-760 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-759)
+(-761)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-760 |Par|)
+(-762 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-761 -2306)
+(-763 -2234)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-762 P -2306)
+(-764 P -2234)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-763 T$)
+(-765 T$)
NIL
NIL
NIL
-(-764 UP -2306)
+(-766 UP -2234)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-765)
+(-767)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-766 R)
+(-768 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-767)
+(-769)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4409 "*") . T))
+(((-4412 "*") . T))
NIL
-(-768 R -2306)
+(-770 R -2234)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-769 S)
+(-771 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-770)
+(-772)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-771 R |PolR| E |PolE|)
+(-773 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-772 R E V P TS)
+(-774 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-773 -2306 |ExtF| |SUEx| |ExtP| |n|)
+(-775 -2234 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-774 BP E OV R P)
+(-776 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-775 |Par|)
+(-777 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-776 R |VarSet|)
+(-778 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2351 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2351 (|HasCategory| |#1| (QUOTE (-545)))) (-2351 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2351 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564))))) (-2351 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2351 (|HasCategory| |#1| (LIST (QUOTE -988) (QUOTE (-564))))))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-777 R S)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-907))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))) (-2268 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))) (-2268 (|HasCategory| |#1| (QUOTE (-545)))) (-2268 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))) (-2268 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564))))) (-2268 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1173)))) (-2268 (|HasCategory| |#1| (LIST (QUOTE -990) (QUOTE (-564))))))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-779 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-778 R)
+(-780 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-779 R)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1148))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-781 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))
-(-780 R E V P)
+(-782 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-781 S)
+(-783 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-172))))
-(-782)
+((-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-172))))
+(-784)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-783)
+(-785)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-784)
+(-786)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-785)
+(-787)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-786 |Curve|)
+(-788 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-787)
+(-789)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-788)
+(-790)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-789)
+(-791)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-790)
+(-792)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-791)
+(-793)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-792 S R)
+(-794 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368))))
-(-793 R)
+((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-368))))
+(-795 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-794 -2807 R OS S)
+(-796 -2706 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-795 R)
+(-797 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-2807 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2807 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))))
-(-796)
+((-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-2706 (|HasCategory| (-997 |#1|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2706 (|HasCategory| (-997 |#1|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-997 |#1|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-997 |#1|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))))
+(-798)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-797 R -2306 L)
+(-799 R -2234 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-798 R -2306)
+(-800 R -2234)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-799)
+(-801)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-800 R -2306)
+(-802 R -2234)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-801)
+(-803)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-802 -2306 UP UPUP R)
+(-804 -2234 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-803 -2306 UP L LQ)
+(-805 -2234 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-804)
+(-806)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-805 -2306 UP L LQ)
+(-807 -2234 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-806 -2306 UP)
+(-808 -2234 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-807 -2306 L UP A LO)
+(-809 -2234 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-808 -2306 UP)
+(-810 -2234 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-809 -2306 LO)
+(-811 -2234 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-810 -2306 LODO)
+(-812 -2234 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-811 -3599 S |f|)
+(-813 -3554 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-2807 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170))))) (-2807 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
-(-812 R)
+((-4404 |has| |#2| (-1047)) (-4405 |has| |#2| (-1047)) (-4407 |has| |#2| (-6 -4407)) ((-4412 "*") |has| |#2| (-172)) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (QUOTE (-363))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-791))) (-2706 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-724))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-233))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasCategory| |#2| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-724)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097))))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173))))) (-2706 (|HasCategory| |#2| (QUOTE (-1047))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1097)))) (|HasAttribute| |#2| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+(-814 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-814 (-1170)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-814 (-1170)) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-814 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-814 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-814 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-813 |Kernels| R |var|)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-907))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-816 (-1173)) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-816 (-1173)) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-816 (-1173)) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-816 (-1173)) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-816 (-1173)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-815 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4409 "*") |has| |#2| (-363)) (-4400 |has| |#2| (-363)) (-4405 |has| |#2| (-363)) (-4399 |has| |#2| (-363)) (-4404 . T) (-4402 . T) (-4401 . T))
+(((-4412 "*") |has| |#2| (-363)) (-4403 |has| |#2| (-363)) (-4408 |has| |#2| (-363)) (-4402 |has| |#2| (-363)) (-4407 . T) (-4405 . T) (-4404 . T))
((|HasCategory| |#2| (QUOTE (-363))))
-(-814 S)
+(-816 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-815 S)
+(-817 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-816)
+(-818)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-817)
+(-819)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-818)
+(-820)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-819)
+(-821)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-820)
+(-822)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-821)
+(-823)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-822 R)
+(-824 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-823 P R)
+(-825 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4404 . T) (-4405 . T) (-4407 . T))
((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233))))
-(-824)
+(-826)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-825)
+(-827)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-826 S)
+(-828 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4407 . T) (-4397 . T) (-4408 . T))
+((-4410 . T) (-4400 . T) (-4411 . T))
NIL
-(-827)
+(-829)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-828 R S)
+(-830 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-829 R)
+(-831 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4404 |has| |#1| (-844)))
-((|HasCategory| |#1| (QUOTE (-844))) (-2807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2807 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
-(-830 A S)
-((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'.")))
+((-4407 |has| |#1| (-846)))
+((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-21))) (-2706 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2706 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))))
+(-832 A S)
+((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,{}n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-831 S)
-((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'.")))
+(-833 S)
+((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,{}n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-832 R)
+(-834 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T))
+((-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) (-4407 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-833)
+(-835)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-834)
+(-836)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,{}sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}.")))
NIL
NIL
-(-835)
+(-837)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-836)
+(-838)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-837)
+(-839)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-838 R S)
+(-840 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-839 R)
+(-841 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4404 |has| |#1| (-844)))
-((|HasCategory| |#1| (QUOTE (-844))) (-2807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2807 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
-(-840)
+((-4407 |has| |#1| (-846)))
+((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-21))) (-2706 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2706 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))))
+(-842)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-841 -3599 S)
+(-843 -3554 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-842)
+(-844)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-843 S)
+(-845 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-844)
+(-846)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4404 . T))
+((-4407 . T))
NIL
-(-845 S)
+(-847 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-846)
+(-848)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-847 S R)
+(-849 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))))
-(-848 R)
+(-850 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-849 R C)
+(-851 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))))
-(-850 R |sigma| -1924)
+(-852 R |sigma| -1926)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
-(-851 |x| R |sigma| -1924)
+((-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
+(-853 |x| R |sigma| -1926)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363))))
-(-852 R)
+((-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363))))
+(-854 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))
-(-853)
+(-855)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-854)
+(-856)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-855 S)
+(-857 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-856)
+(-858)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-857)
+(-859)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-858)
+(-860)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-859)
+(-861)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-860 |VariableList|)
+(-862 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-861)
+(-863)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-862 R |vl| |wl| |wtlevel|)
+(-864 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T))
+((-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) (-4407 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))))
-(-863 R PS UP)
+(-865 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-864 R |x| |pt|)
+(-866 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-865 |p|)
+(-867 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-866 |p|)
+(-868 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-867 |p|)
+(-869 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-866 |#1|) (QUOTE (-905))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-866 |#1|) (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-147))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-866 |#1|) (QUOTE (-1018))) (|HasCategory| (-866 |#1|) (QUOTE (-816))) (-2807 (|HasCategory| (-866 |#1|) (QUOTE (-816))) (|HasCategory| (-866 |#1|) (QUOTE (-846)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-866 |#1|) (QUOTE (-1145))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-866 |#1|) (QUOTE (-233))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -866) (|devaluate| |#1|)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (QUOTE (-307))) (|HasCategory| (-866 |#1|) (QUOTE (-545))) (|HasCategory| (-866 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (|HasCategory| (-866 |#1|) (QUOTE (-145)))))
-(-868 |p| PADIC)
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-868 |#1|) (QUOTE (-907))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-868 |#1|) (QUOTE (-145))) (|HasCategory| (-868 |#1|) (QUOTE (-147))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-868 |#1|) (QUOTE (-1020))) (|HasCategory| (-868 |#1|) (QUOTE (-818))) (-2706 (|HasCategory| (-868 |#1|) (QUOTE (-818))) (|HasCategory| (-868 |#1|) (QUOTE (-848)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-868 |#1|) (QUOTE (-1148))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-868 |#1|) (QUOTE (-233))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -868) (|devaluate| |#1|)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -868) (|devaluate| |#1|)))) (|HasCategory| (-868 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -868) (|devaluate| |#1|)) (LIST (QUOTE -868) (|devaluate| |#1|)))) (|HasCategory| (-868 |#1|) (QUOTE (-307))) (|HasCategory| (-868 |#1|) (QUOTE (-545))) (|HasCategory| (-868 |#1|) (QUOTE (-848))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-868 |#1|) (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-868 |#1|) (QUOTE (-907)))) (|HasCategory| (-868 |#1|) (QUOTE (-145)))))
+(-870 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (-2807 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-869 S T$)
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#2| (QUOTE (-907))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-818))) (-2706 (|HasCategory| |#2| (QUOTE (-818))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1148))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-848))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-871 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))))
-(-870)
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))))
+(-872)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-871)
+(-873)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-872 CF1 CF2)
+(-874 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-873 |ComponentFunction|)
+(-875 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-874 CF1 CF2)
+(-876 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-875 |ComponentFunction|)
+(-877 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-876)
+(-878)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-877 CF1 CF2)
+(-879 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-878 |ComponentFunction|)
+(-880 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-879)
+(-881)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-880 R)
+(-882 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-881 R S L)
+(-883 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-882 S)
+(-884 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-883 |Base| |Subject| |Pat|)
+(-885 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2351 (|HasCategory| |#2| (QUOTE (-1045)))) (-2351 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (-2351 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))))
-(-884 R A B)
+((-12 (-2268 (|HasCategory| |#2| (QUOTE (-1047)))) (-2268 (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (-2268 (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))))
+(-886 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-885 R S)
+(-887 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-886 R -4063)
+(-888 R -4044)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-887 R S)
+(-889 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-888 R)
+(-890 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-889 |VarSet|)
+(-891 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-890 UP R)
+(-892 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-891)
+(-893)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-892 UP -2306)
+(-894 UP -2234)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-893)
+(-895)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-894)
+(-896)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-895 A S)
+(-897 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-896 S)
+(-898 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4404 . T))
+((-4407 . T))
NIL
-(-897 S)
+(-899 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-898 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-900 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-899 S)
+(-901 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4404 . T))
+((-4407 . T))
NIL
-(-900 S)
+(-902 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-901 S)
+(-903 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4404 . T))
-((-2807 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846))))
-(-902 R E |VarSet| S)
+((-4407 . T))
+((-2706 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-848))))
+(-904 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-903 R S)
+(-905 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-904 S)
+(-906 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-145))))
-(-905)
+(-907)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-906 |p|)
+(-908 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368))))
-(-907 R0 -2306 UP UPUP R)
+(-909 R0 -2234 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-908 UP UPUP R)
+(-910 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-909 UP UPUP)
+(-911 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-910 R)
+(-912 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-911 R)
+(-913 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-912 E OV R P)
+(-914 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-913)
+(-915)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-914 -2306)
+(-916 -2234)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-915 R)
+(-917 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-916)
+(-918)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-917)
+(-919)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4409 "*") . T))
+(((-4412 "*") . T))
NIL
-(-918 -2306 P)
+(-920 -2234 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-919 |xx| -2306)
+(-921 |xx| -2234)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-920 R |Var| |Expon| GR)
+(-922 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-921 S)
+(-923 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-922)
+(-924)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-923)
+(-925)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-924)
+(-926)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-925 R -2306)
+(-927 R -2234)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-926)
+(-928)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-927 S A B)
+(-929 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-928 S R -2306)
+(-930 S R -2234)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-929 I)
+(-931 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-930 S E)
+(-932 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-931 S R L)
+(-933 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-932 S E V R P)
+(-934 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -882) (|devaluate| |#1|))))
-(-933 R -2306 -4063)
+((|HasCategory| |#3| (LIST (QUOTE -884) (|devaluate| |#1|))))
+(-935 R -2234 -4044)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-934 -4063)
+(-936 -4044)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-935 S R Q)
+(-937 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-936 S)
+(-938 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-937 S R P)
+(-939 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-938)
+(-940)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-939 R)
+(-941 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-940 |lv| R)
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#1| (QUOTE (-1047))) (-12 (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-942 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-941 |TheField| |ThePols|)
+(-943 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-844))))
-(-942 R S)
+((|HasCategory| |#1| (QUOTE (-846))))
+(-944 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-943 |x| R)
+(-945 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-944 S R E |VarSet|)
+(-946 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-905))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))))
-(-945 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-907))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))))
+(-947 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
NIL
-(-946 E V R P -2306)
+(-948 E V R P -2234)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-947 E |Vars| R P S)
+(-949 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-948 R)
+(-950 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-949 E V R P -2306)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-907))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1173) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1173) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1173) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1173) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1173) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-951 E V R P -2234)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-452))))
-(-950)
+(-952)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-951)
+(-953)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-952 R L)
+(-954 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-953 A B)
+(-955 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-954 S)
+(-956 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-955)
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-957)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-956 -2306)
+(-958 -2234)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-957 I)
+(-959 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-958)
+(-960)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-959 R E)
+(-961 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4405)))
-(-960 A B)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4408)))
+(-962 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4404 -12 (|has| |#2| (-473)) (|has| |#1| (-473))))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846)))))
-(-961)
+((-4407 -12 (|has| |#2| (-473)) (|has| |#1| (-473))))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-848))))) (-12 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-791)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-791))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-791))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-724))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-724)))) (-12 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-791))))) (-12 (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-724)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-848)))))
+(-963)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-962 T$)
+(-964 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-963)
+(-965)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-964 S)
+(-966 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4407 . T) (-4408 . T))
+((-4410 . T) (-4411 . T))
NIL
-(-965 R |polR|)
+(-967 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-452))))
-(-966)
+(-968)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-967)
+(-969)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-968 S |Coef| |Expon| |Var|)
+(-970 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-969 |Coef| |Expon| |Var|)
+(-971 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-970)
+(-972)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-971 S R E |VarSet| P)
+(-973 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
((|HasCategory| |#2| (QUOTE (-556))))
-(-972 R E |VarSet| P)
+(-974 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4407 . T))
+((-4410 . T))
NIL
-(-973 R E V P)
+(-975 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-452))))
-(-974 K)
+(-976 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-975 |VarSet| E RC P)
+(-977 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-976 R)
+(-978 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-977 R1 R2)
+(-979 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-978 R)
+(-980 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-979 K)
+(-981 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-980 R E OV PPR)
+(-982 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-981 K R UP -2306)
+(-983 K R UP -2234)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-982 |vl| |nv|)
+(-984 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-983 R |Var| |Expon| |Dpoly|)
+(-985 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307)))))
-(-984 R E V P TS)
+(-986 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-985)
+(-987)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-986 A B R S)
+(-988 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-987 A S)
+(-989 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145))))
-(-988 S)
+((|HasCategory| |#2| (QUOTE (-907))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-818))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1148))))
+(-990 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-989 |n| K)
+(-991 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-990)
+(-992)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-991 S)
+(-993 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4407 . T) (-4408 . T))
+((-4410 . T) (-4411 . T))
NIL
-(-992 S R)
+(-994 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-290))))
-(-993 R)
+((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-290))))
+(-995 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4400 |has| |#1| (-290)) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 |has| |#1| (-290)) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-994 QR R QS S)
+(-996 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-995 R)
+(-997 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4400 |has| |#1| (-290)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-2807 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))))
-(-996 S)
+((-4403 |has| |#1| (-290)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-2706 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-545))))
+(-998 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-997 S)
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-999 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-998)
+(-1000)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-999 -2306 UP UPUP |radicnd| |n|)
+(-1001 -2234 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4400 |has| (-407 |#2|) (-363)) (-4405 |has| (-407 |#2|) (-363)) (-4399 |has| (-407 |#2|) (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2807 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2807 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2807 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-2807 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
-(-1000 |bb|)
+((-4403 |has| (-407 |#2|) (-363)) (-4408 |has| (-407 |#2|) (-363)) (-4402 |has| (-407 |#2|) (-363)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2706 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2706 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2706 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-2706 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
+(-1002 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-564) (QUOTE (-905))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1018))) (|HasCategory| (-564) (QUOTE (-816))) (-2807 (|HasCategory| (-564) (QUOTE (-816))) (|HasCategory| (-564) (QUOTE (-846)))) (|HasCategory| (-564) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-905)))) (|HasCategory| (-564) (QUOTE (-145)))))
-(-1001)
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-564) (QUOTE (-907))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1020))) (|HasCategory| (-564) (QUOTE (-818))) (-2706 (|HasCategory| (-564) (QUOTE (-818))) (|HasCategory| (-564) (QUOTE (-848)))) (|HasCategory| (-564) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1148))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1173)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-907)))) (|HasCategory| (-564) (QUOTE (-145)))))
+(-1003)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-1002)
+(-1004)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-1003 RP)
+(-1005 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-1004 S)
+(-1006 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-1005 A S)
+(-1007 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-1094))))
-(-1006 S)
+((|HasAttribute| |#1| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-1097))))
+(-1008 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-1007 S)
+(-1009 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-1008)
+(-1010)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4400 . T) (-4405 . T) (-4399 . T) (-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4404 . T))
+((-4403 . T) (-4408 . T) (-4402 . T) (-4405 . T) (-4404 . T) ((-4412 "*") . T) (-4407 . T))
NIL
-(-1009 R -2306)
+(-1011 R -2234)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1010 R -2306)
+(-1012 R -2234)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1011 -2306 UP)
+(-1013 -2234 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1012 -2306 UP)
+(-1014 -2234 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1013 S)
+(-1015 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1014 F1 UP UPUP R F2)
+(-1016 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-1015)
+(-1017)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1016 |Pol|)
+(-1018 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1017 |Pol|)
+(-1019 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1018)
+(-1020)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1019)
+(-1021)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1020 |TheField|)
+(-1022 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4400 . T) (-4405 . T) (-4399 . T) (-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4404 . T))
-((-2807 (|HasCategory| (-407 (-564)) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1034) (QUOTE (-564)))))
-(-1021 -2306 L)
+((-4403 . T) (-4408 . T) (-4402 . T) (-4405 . T) (-4404 . T) ((-4412 "*") . T) (-4407 . T))
+((-2706 (|HasCategory| (-407 (-564)) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1036) (QUOTE (-564)))))
+(-1023 -2234 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1022 S)
+(-1024 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1094))))
-(-1023 R E V P)
+((|HasCategory| |#1| (QUOTE (-1097))))
+(-1025 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4408 . T) (-4407 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1024 R)
+((-4411 . T) (-4410 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1026 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4409 "*"))))
-(-1025 R)
+((|HasAttribute| |#1| (QUOTE (-4412 "*"))))
+(-1027 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))))
-(-1026 S)
+(-1028 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1027)
+(-1029)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1028 S)
+(-1030 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1029 S)
+(-1031 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1030 -2306 |Expon| |VarSet| |FPol| |LFPol|)
+(-1032 -2234 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1031)
+(-1033)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -3813) (QUOTE (-52))))))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1094))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1032)
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-1173))) (LIST (QUOTE |:|) (QUOTE -3778) (QUOTE (-52))))))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-52) (QUOTE (-1097)))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-1173) (QUOTE (-848))) (|HasCategory| (-52) (QUOTE (-1097))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1034)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1033 A S)
+(-1035 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1034 S)
+(-1036 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1035 Q R)
+(-1037 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1036)
+(-1038)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1037 UP)
+(-1039 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1038 R)
+(-1040 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1039 R)
+(-1041 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1040 T$)
+(-1042 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
NIL
-(-1041 T$)
+(-1043 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1042 R |ls|)
+(-1044 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4408 . T) (-4407 . T))
-((-12 (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1094))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -776) (|devaluate| |#1|) (LIST (QUOTE -860) (|devaluate| |#2|)))))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-860 |#2|) (QUOTE (-368))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1043)
+((-4411 . T) (-4410 . T))
+((-12 (|HasCategory| (-778 |#1| (-862 |#2|)) (QUOTE (-1097))) (|HasCategory| (-778 |#1| (-862 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -778) (|devaluate| |#1|) (LIST (QUOTE -862) (|devaluate| |#2|)))))) (|HasCategory| (-778 |#1| (-862 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-778 |#1| (-862 |#2|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-862 |#2|) (QUOTE (-368))) (|HasCategory| (-778 |#1| (-862 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1045)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1044 S)
+(-1046 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1045)
+(-1047)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4404 . T))
+((-4407 . T))
NIL
-(-1046 |xx| -2306)
+(-1048 |xx| -2234)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1047 S |m| |n| R |Row| |Col|)
+(-1049 R)
+((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
+NIL
+NIL
+(-1050 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
((|HasCategory| |#4| (QUOTE (-307))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-556))) (|HasCategory| |#4| (QUOTE (-172))))
-(-1048 |m| |n| R |Row| |Col|)
+(-1051 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4407 . T) (-4402 . T) (-4401 . T))
+((-4410 . T) (-4405 . T) (-4404 . T))
NIL
-(-1049 |m| |n| R)
+(-1052 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4407 . T) (-4402 . T) (-4401 . T))
-((-2807 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1050 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4410 . T) (-4405 . T) (-4404 . T))
+((|HasCategory| |#3| (QUOTE (-172))) (-2706 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1053 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1051 R)
-((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
+(-1054 R)
+((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-1052)
+(-1055)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1053 S)
+(-1056 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1054)
+(-1057)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1055 |TheField| |ThePolDom|)
+(-1058 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1056)
+(-1059)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4395 . T) (-4399 . T) (-4394 . T) (-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4398 . T) (-4402 . T) (-4397 . T) (-4408 . T) (-4409 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1057)
+(-1060)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -3813) (QUOTE (-52))))))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1094))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1058 S R E V)
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-1173))) (LIST (QUOTE |:|) (QUOTE -3778) (QUOTE (-52))))))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-52) (QUOTE (-1097)))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1097))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (QUOTE (-1097))) (|HasCategory| (-1173) (QUOTE (-848))) (|HasCategory| (-52) (QUOTE (-1097))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1061 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -988) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-1170)))))
-(-1059 R E V)
+((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -990) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-1173)))))
+(-1062 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
NIL
-(-1060)
+(-1063)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1061 S |TheField| |ThePols|)
+(-1064 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1062 |TheField| |ThePols|)
+(-1065 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1063 R E V P TS)
+(-1066 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1064 S R E V P)
+(-1067 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1065 R E V P)
+(-1068 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-1066 R E V P TS)
+(-1069 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1067)
+(-1070)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1068)
+(-1071)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,{}y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1069 |f|)
+(-1072 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1070 |Base| R -2306)
+(-1073 |Base| R -2234)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1071 |Base| R -2306)
+(-1074 |Base| R -2234)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-1072 R |ls|)
+(-1075 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1073 UP SAE UPA)
+(-1076 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1074 R UP M)
+(-1077 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4400 |has| |#1| (-363)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))))
-(-1075 UP SAE UPA)
+((-4403 |has| |#1| (-363)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))))
+(-1078 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1076)
+(-1079)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1077)
+(-1080)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1078 S)
+(-1081 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1079)
+(-1082)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1080 R)
+(-1083 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1081 R)
+(-1084 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1082 S)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-907))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1085 (-1173)) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1085 (-1173)) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1085 (-1173)) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1085 (-1173)) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1085 (-1173)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1085 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1083 R S)
+(-1086 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-844))))
-(-1084)
+((|HasCategory| |#1| (QUOTE (-846))))
+(-1087)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1085 R S)
+(-1088 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1086 S)
+(-1089 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1094))))
-(-1087 S)
+((|HasCategory| |#1| (QUOTE (-1097))))
+(-1090 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1088 S)
+(-1091 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1094))))
-(-1089 S L)
+((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1097))))
+(-1092 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
NIL
NIL
-(-1090)
+(-1093)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1091 A S)
+(-1094 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1092 S)
+(-1095 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4397 . T))
+((-4400 . T))
NIL
-(-1093 S)
+(-1096 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1094)
+(-1097)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1095 |m| |n|)
+(-1098 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1096 S)
+(-1099 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4407 . T) (-4397 . T) (-4408 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-1097 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4410 . T) (-4400 . T) (-4411 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-1100 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1098)
+(-1101)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1099 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1102 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1100 R FS)
+(-1103 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1101 R E V P TS)
+(-1104 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1102 R E V P TS)
+(-1105 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1103 R E V P)
+(-1106 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-1104)
+(-1107)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1105 S)
+(-1108 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1106)
+(-1109)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1107 |dimtot| |dim1| S)
+(-1110 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4401 |has| |#3| (-1045)) (-4402 |has| |#3| (-1045)) (-4404 |has| |#3| (-6 -4404)) ((-4409 "*") |has| |#3| (-172)) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-2807 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#3| (QUOTE (-363))) (-2807 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2807 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-2807 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-2807 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (-2807 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1094)))) (-2807 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2807 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2807 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2807 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-2807 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1170))))) (-2807 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (|HasAttribute| |#3| (QUOTE -4404)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
-(-1108 R |x|)
+((-4404 |has| |#3| (-1047)) (-4405 |has| |#3| (-1047)) (-4407 |has| |#3| (-6 -4407)) ((-4412 "*") |has| |#3| (-172)) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-2706 (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1097)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#3| (QUOTE (-363))) (-2706 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2706 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-791))) (-2706 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-846)))) (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (QUOTE (-724))) (-2706 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (-2706 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2706 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2706 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2706 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-233))) (-2706 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-1097)))) (|HasCategory| |#3| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-724)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-791)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-846)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1097))))) (-2706 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1047))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-724))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-846))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-848))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-1173))))) (-2706 (|HasCategory| |#3| (QUOTE (-1047))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1097)))) (|HasAttribute| |#3| (QUOTE -4407)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#3| (QUOTE (-1097))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
+(-1111 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-452))))
-(-1109)
+(-1112)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1110 R -2306)
+(-1113 R -2234)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1111 R)
+(-1114 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1112)
+(-1115)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1113)
+(-1116)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1114)
+(-1117)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4395 . T) (-4399 . T) (-4394 . T) (-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4398 . T) (-4402 . T) (-4397 . T) (-4408 . T) (-4409 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1115 S)
+(-1118 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4407 . T) (-4408 . T))
+((-4410 . T) (-4411 . T))
NIL
-(-1116 S |ndim| R |Row| |Col|)
+(-1119 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-363))) (|HasAttribute| |#3| (QUOTE (-4409 "*"))) (|HasCategory| |#3| (QUOTE (-172))))
-(-1117 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-363))) (|HasAttribute| |#3| (QUOTE (-4412 "*"))) (|HasCategory| |#3| (QUOTE (-172))))
+(-1120 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4407 . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4410 . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1118 R |Row| |Col| M)
+(-1121 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1119 R |VarSet|)
+(-1122 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1120 |Coef| |Var| SMP)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-907))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1123 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))))
-(-1121 R E V P)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))))
+(-1124 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-1122 UP -2306)
+(-1125 UP -2234)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1123 R)
+(-1126 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1124 R)
+(-1127 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1125 R)
+(-1128 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1126 S A)
+(-1129 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-846))))
-(-1127 R)
+((|HasCategory| |#1| (QUOTE (-848))))
+(-1130 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1128 R)
+(-1131 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1129)
+(-1132)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1130)
+(-1133)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1131)
+(-1134)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
-(-1132)
+(-1135)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1133)
+(-1136)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1134 V C)
+(-1137 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1135 V C)
+(-1138 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))) (-2807 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))))) (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1136 |ndim| R)
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| (-1137 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1137) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1137 |#1| |#2|) (QUOTE (-1097)))) (|HasCategory| (-1137 |#1| |#2|) (QUOTE (-1097))) (-2706 (|HasCategory| (-1137 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-1137 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1137) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1137 |#1| |#2|) (QUOTE (-1097))))) (|HasCategory| (-1137 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1139 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4404 . T) (-4396 |has| |#2| (-6 (-4409 "*"))) (-4407 . T) (-4401 . T) (-4402 . T))
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (-2807 (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
-(-1137 S)
+((-4407 . T) (-4399 |has| |#2| (-6 (-4412 "*"))) (-4410 . T) (-4404 . T) (-4405 . T))
+((|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4412 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-363))) (-2706 (|HasAttribute| |#2| (QUOTE (-4412 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+(-1140 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1138)
+(-1141)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-1139 R E V P TS)
+(-1142 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1140 R E V P)
+(-1143 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4408 . T) (-4407 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1141 S)
+((-4411 . T) (-4410 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1144 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1142 A S)
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1145 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1143 S)
+(-1146 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1144 |Key| |Ent| |dent|)
+(-1147 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#2|)))))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))))
-(-1145)
+((-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#2|)))))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-848))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))))
+(-1148)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1146 |Coef|)
+(-1149 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1147 S)
+(-1150 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1148 A B)
+(-1151 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1149 A B C)
+(-1152 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1150 S)
+(-1153 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1151)
+((-4411 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1154)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-1152)
+(-1155)
NIL
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
-(-1153 |Entry|)
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| (-144) (QUOTE (-1097))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+(-1156 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#1|)))))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1094)))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1154 A)
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-1155))) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#1|)))))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-1097)))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (QUOTE (-1097))) (|HasCategory| (-1155) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1157 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))
-(-1155 |Coef|)
+(-1158 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1156 |Coef|)
+(-1159 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1157 R UP)
+(-1160 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-307))))
-(-1158 |n| R)
+(-1161 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1159 S1 S2)
+(-1162 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1160)
+(-1163)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1161 |Coef| |var| |cen|)
+(-1164 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4409 "*") -2807 (-2358 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2358 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-905)))) (-4400 -2807 (-2358 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-816))) (|has| |#1| (-556)) (-2358 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2807 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2807 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-2807 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-2807 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2070) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2807 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1162 R -2306)
+(((-4412 "*") -2706 (-2275 (|has| |#1| (-363)) (|has| (-1171 |#1| |#2| |#3|) (-818))) (|has| |#1| (-172)) (-2275 (|has| |#1| (-363)) (|has| (-1171 |#1| |#2| |#3|) (-907)))) (-4403 -2706 (-2275 (|has| |#1| (-363)) (|has| (-1171 |#1| |#2| |#3|) (-818))) (|has| |#1| (-556)) (-2275 (|has| |#1| (-363)) (|has| (-1171 |#1| |#2| |#3|) (-907)))) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-1148))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2706 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2706 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-2706 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1109))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-363)))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-2706 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-1148))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2706 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1171 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1165 R -2234)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1163 R)
+(-1166 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1164 R S)
+(-1167 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1165 E OV R P)
+(-1168 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1166 R)
+(-1169 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1167 |Coef| |var| |cen|)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1148))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1170 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2070) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
-(-1168 |Coef| |var| |cen|)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))))
+(-1171 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2070) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
-(-1169)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-769)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-769)) (|devaluate| |#1|)))) (|HasCategory| (-769) (QUOTE (-1109))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-769))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-769))))) (|HasCategory| |#1| (QUOTE (-363))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))))
+(-1172)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1170)
+(-1173)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1171 R)
+(-1174 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1172 R)
+(-1175 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-6 -4405)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-967) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasAttribute| |#1| (QUOTE -4405)))
-(-1173)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-6 -4408)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-969) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasAttribute| |#1| (QUOTE -4408)))
+(-1176)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1174)
+(-1177)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1175)
+(-1178)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1176 N)
+(-1179 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1177 N)
+(-1180 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
NIL
NIL
-(-1178 R)
+(-1181 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1179)
+(-1182)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1180 S)
+(-1183 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1181 S)
+(-1184 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1182 |Key| |Entry|)
+(-1185 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1901) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3813) (|devaluate| |#2|)))))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1094))) (-2807 (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1183 R)
+((-4410 . T) (-4411 . T))
+((-12 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3778) (|devaluate| |#2|)))))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#2| (QUOTE (-1097)))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1097))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1097))) (-2706 (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-860)))) (|HasCategory| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1186 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1184 S |Key| |Entry|)
+(-1187 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1185 |Key| |Entry|)
+(-1188 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4408 . T))
+((-4411 . T))
NIL
-(-1186 |Key| |Entry|)
+(-1189 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1187)
+(-1190)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1188 S)
+(-1191 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1189)
+(-1192)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1190)
+(-1193)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1191 R)
+(-1194 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1192)
+(-1195)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1193 S)
+(-1196 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1194)
+(-1197)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1195 S)
+(-1198 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4408 . T) (-4407 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1196 S)
+((-4411 . T) (-4410 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1097))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1199 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1197)
+(-1200)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1198 R -2306)
+(-1201 R -2234)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1199 R |Row| |Col| M)
+(-1202 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1200 R -2306)
+(-1203 R -2234)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -882) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -882) (|devaluate| |#1|)))))
-(-1201 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -890) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -884) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -884) (|devaluate| |#1|)))))
+(-1204 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-368))))
-(-1202 R E V P)
+(-1205 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-1203 |Coef|)
+(-1206 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))))
-(-1204 |Curve|)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))))
+(-1207 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1205)
+(-1208)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1206 S)
+(-1209 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1207 -2306)
+((|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1210 -2234)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1208)
+(-1211)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1209)
+(-1212)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1210 S)
+(-1213 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-846))))
-(-1211)
+((|HasCategory| |#1| (QUOTE (-848))))
+(-1214)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1212 S)
+(-1215 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1213)
+(-1216)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1214)
+(-1217)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1215)
+(-1218)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1216)
+(-1219)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1217)
+(-1220)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1218 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1221 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1219 |Coef|)
+(-1222 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1220 S |Coef| UTS)
+(-1223 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))))
-(-1221 |Coef| UTS)
+(-1224 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1222 |Coef| UTS)
+(-1225 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-2807 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))))) (-2807 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1170)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2070) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-905))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))))
-(-1223 |Coef| |var| |cen|)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-818)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-907)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1148)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-2706 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1109))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-907)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-818)))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-818)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-848))))) (-2706 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-818)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-907)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1148)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-1173)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1148)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1173)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-907))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))))
+(-1226 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4409 "*") -2807 (-2358 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2358 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-905)))) (-4400 -2807 (-2358 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-816))) (|has| |#1| (-556)) (-2358 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((-2807 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2807 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2807 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-2807 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-2807 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2070) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2807 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1224 ZP)
+(((-4412 "*") -2706 (-2275 (|has| |#1| (-363)) (|has| (-1254 |#1| |#2| |#3|) (-818))) (|has| |#1| (-172)) (-2275 (|has| |#1| (-363)) (|has| (-1254 |#1| |#2| |#3|) (-907)))) (-4403 -2706 (-2275 (|has| |#1| (-363)) (|has| (-1254 |#1| |#2| |#3|) (-818))) (|has| |#1| (-556)) (-2275 (|has| |#1| (-363)) (|has| (-1254 |#1| |#2| |#3|) (-907)))) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
+((-2706 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-1148))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2706 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2706 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-2706 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1109))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-363)))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-2706 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-1148))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1173)) (LIST (QUOTE -1254) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2706 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-818))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-907))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1254 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1227 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1225 R S)
+(-1228 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-844))))
-(-1226 S)
+((|HasCategory| |#1| (QUOTE (-846))))
+(-1229 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1094))))
-(-1227 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1097))))
+(-1230 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1228 R Q UP)
+(-1231 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1229 R UP)
+(-1232 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1230 R UP)
+(-1233 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1231 R U)
+(-1234 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1232 |x| R)
+(-1235 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-556)) (-4403 |has| |#2| (-363)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -882) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -888) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-564)))) (-2807 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (-2807 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2807 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-1233 R PR S PS)
+(((-4412 "*") |has| |#2| (-172)) (-4403 |has| |#2| (-556)) (-4406 |has| |#2| (-363)) (-4408 |has| |#2| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#2| (QUOTE (-907))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-379))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -884) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -884) (QUOTE (-564))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-379)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -890) (QUOTE (-564)))))) (-12 (|HasCategory| (-1079) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (QUOTE (-564)))) (-2706 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (-2706 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1148))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (-2706 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-907)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-1236 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1234 S R)
+(-1237 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1145))))
-(-1235 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1148))))
+(-1238 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4406 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4405 . T) (-4404 . T) (-4407 . T))
NIL
-(-1236 S |Coef| |Expon|)
+(-1239 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1106))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2423) (LIST (|devaluate| |#2|) (QUOTE (-1170))))))
-(-1237 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1109))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2327) (LIST (|devaluate| |#2|) (QUOTE (-1173))))))
+(-1240 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1238 RC P)
+(-1241 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1239 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1242 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1240 |Coef|)
+(-1243 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1241 S |Coef| ULS)
+(-1244 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1242 |Coef| ULS)
+(-1245 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1243 |Coef| ULS)
+(-1246 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2070) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))
-(-1244 |Coef| |var| |cen|)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))
+(-1247 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2807 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2070) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
-(-1245 R FE |var| |cen|)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4402 |has| |#1| (-363)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-363))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2706 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))))
+(-1248 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4409 "*") |has| (-1244 |#2| |#3| |#4|) (-172)) (-4400 |has| (-1244 |#2| |#3| |#4|) (-556)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-172))) (-2807 (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-564)))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-556))))
-(-1246 A S)
+(((-4412 "*") |has| (-1247 |#2| |#3| |#4|) (-172)) (-4403 |has| (-1247 |#2| |#3| |#4|) (-556)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| (-1247 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-172))) (-2706 (|HasCategory| (-1247 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1247 |#2| |#3| |#4|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| (-1247 |#2| |#3| |#4|) (LIST (QUOTE -1036) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1247 |#2| |#3| |#4|) (LIST (QUOTE -1036) (QUOTE (-564)))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1247 |#2| |#3| |#4|) (QUOTE (-556))))
+(-1249 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)))
-(-1247 S)
+((|HasAttribute| |#1| (QUOTE -4411)))
+(-1250 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1248 |Coef1| |Coef2| UTS1 UTS2)
+(-1251 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1249 S |Coef|)
+(-1252 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasSignature| |#2| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2070) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))))
-(-1250 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-957))) (|HasCategory| |#2| (QUOTE (-1197))) (|HasSignature| |#2| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4107) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1173))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))))
+(-1253 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1251 |Coef| |var| |cen|)
+(-1254 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-556)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2807 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -2423) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-2807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2070) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -3836) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
-(-1252 |Coef| UTS)
+(((-4412 "*") |has| |#1| (-172)) (-4403 |has| |#1| (-556)) (-4404 . T) (-4405 . T) (-4407 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2706 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-1173)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-769)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-769)) (|devaluate| |#1|)))) (|HasCategory| (-769) (QUOTE (-1109))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-769))))) (|HasSignature| |#1| (LIST (QUOTE -2327) (LIST (|devaluate| |#1|) (QUOTE (-1173)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-769))))) (|HasCategory| |#1| (QUOTE (-363))) (-2706 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-1197))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1173))))) (|HasSignature| |#1| (LIST (QUOTE -3802) (LIST (LIST (QUOTE -642) (QUOTE (-1173))) (|devaluate| |#1|)))))))
+(-1255 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1253 -2306 UP L UTS)
+(-1256 -2234 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-556))))
-(-1254)
+(-1257)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1255 |sym|)
+(-1258 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1256 S R)
+(-1259 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1257 R)
+((|HasCategory| |#2| (QUOTE (-1000))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-724))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1260 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4408 . T) (-4407 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-1258 A B)
+(-1261 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1259 R)
+(-1262 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4408 . T) (-4407 . T))
-((-2807 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2807 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2807 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-564) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-1260)
+((-4411 . T) (-4410 . T))
+((-2706 (-12 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2706 (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2706 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097)))) (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| (-564) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-724))) (|HasCategory| |#1| (QUOTE (-1047))) (-12 (|HasCategory| |#1| (QUOTE (-1000))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-1097))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-1263)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1261)
+(-1264)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1262)
+(-1265)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1263)
+(-1266)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1264)
+(-1267)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1265 A S)
+(-1268 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1266 S)
+(-1269 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4402 . T) (-4401 . T))
+((-4405 . T) (-4404 . T))
NIL
-(-1267 R)
+(-1270 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1268 K R UP -2306)
+(-1271 K R UP -2234)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1269)
+(-1272)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1270)
+(-1273)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1271 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1274 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T))
+((-4405 |has| |#1| (-172)) (-4404 |has| |#1| (-172)) (-4407 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))))
-(-1272 R E V P)
+(-1275 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4408 . T) (-4407 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-858)))))
-(-1273 R)
+((-4411 . T) (-4410 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1097))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-860)))))
+(-1276 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1274 |vl| R)
+(-1277 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4404 . T) (-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4400)))
-(-1275 R |VarSet| XPOLY)
+((-4407 . T) (-4403 |has| |#2| (-6 -4403)) (-4405 . T) (-4404 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4403)))
+(-1278 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1276 |vl| R)
+(-1279 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T))
+((-4403 |has| |#2| (-6 -4403)) (-4405 . T) (-4404 . T) (-4407 . T))
NIL
-(-1277 S -2306)
+(-1280 S -2234)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))))
-(-1278 -2306)
+(-1281 -2234)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4408 . T) (-4403 . T) ((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
-(-1279 |VarSet| R)
+(-1282 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -713) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasAttribute| |#2| (QUOTE -4400)))
-(-1280 |vl| R)
+((-4403 |has| |#2| (-6 -4403)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -715) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasAttribute| |#2| (QUOTE -4403)))
+(-1283 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T))
+((-4403 |has| |#2| (-6 -4403)) (-4405 . T) (-4404 . T) (-4407 . T))
NIL
-(-1281 R)
+(-1284 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4400 |has| |#1| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4400)))
-(-1282 R E)
+((-4403 |has| |#1| (-6 -4403)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4403)))
+(-1285 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4404 . T) (-4405 |has| |#1| (-6 -4405)) (-4400 |has| |#1| (-6 -4400)) (-4402 . T) (-4401 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#1| (QUOTE -4400)))
-(-1283 |VarSet| R)
+((-4407 . T) (-4408 |has| |#1| (-6 -4408)) (-4403 |has| |#1| (-6 -4403)) (-4405 . T) (-4404 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4407)) (|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4403)))
+(-1286 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4400)))
-(-1284 A)
+((-4403 |has| |#2| (-6 -4403)) (-4405 . T) (-4404 . T) (-4407 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4403)))
+(-1287 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1285 R |ls| |ls2|)
+(-1288 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1286 R)
+(-1289 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1287 |p|)
+(-1290 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4412 "*") . T) (-4404 . T) (-4405 . T) (-4407 . T))
NIL
NIL
NIL
@@ -5096,4 +5108,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2282736 2282741 2282746 2282751) (-2 NIL 2282716 2282721 2282726 2282731) (-1 NIL 2282696 2282701 2282706 2282711) (0 NIL 2282676 2282681 2282686 2282691) (-1287 "ZMOD.spad" 2282485 2282498 2282614 2282671) (-1286 "ZLINDEP.spad" 2281529 2281540 2282475 2282480) (-1285 "ZDSOLVE.spad" 2271378 2271400 2281519 2281524) (-1284 "YSTREAM.spad" 2270871 2270882 2271368 2271373) (-1283 "XRPOLY.spad" 2270091 2270111 2270727 2270796) (-1282 "XPR.spad" 2267882 2267895 2269809 2269908) (-1281 "XPOLY.spad" 2267437 2267448 2267738 2267807) (-1280 "XPOLYC.spad" 2266754 2266770 2267363 2267432) (-1279 "XPBWPOLY.spad" 2265191 2265211 2266534 2266603) (-1278 "XF.spad" 2263652 2263667 2265093 2265186) (-1277 "XF.spad" 2262093 2262110 2263536 2263541) (-1276 "XFALG.spad" 2259117 2259133 2262019 2262088) (-1275 "XEXPPKG.spad" 2258368 2258394 2259107 2259112) (-1274 "XDPOLY.spad" 2257982 2257998 2258224 2258293) (-1273 "XALG.spad" 2257642 2257653 2257938 2257977) (-1272 "WUTSET.spad" 2253481 2253498 2257288 2257315) (-1271 "WP.spad" 2252680 2252724 2253339 2253406) (-1270 "WHILEAST.spad" 2252478 2252487 2252670 2252675) (-1269 "WHEREAST.spad" 2252149 2252158 2252468 2252473) (-1268 "WFFINTBS.spad" 2249712 2249734 2252139 2252144) (-1267 "WEIER.spad" 2247926 2247937 2249702 2249707) (-1266 "VSPACE.spad" 2247599 2247610 2247894 2247921) (-1265 "VSPACE.spad" 2247292 2247305 2247589 2247594) (-1264 "VOID.spad" 2246969 2246978 2247282 2247287) (-1263 "VIEW.spad" 2244591 2244600 2246959 2246964) (-1262 "VIEWDEF.spad" 2239788 2239797 2244581 2244586) (-1261 "VIEW3D.spad" 2223623 2223632 2239778 2239783) (-1260 "VIEW2D.spad" 2211360 2211369 2223613 2223618) (-1259 "VECTOR.spad" 2210035 2210046 2210286 2210313) (-1258 "VECTOR2.spad" 2208662 2208675 2210025 2210030) (-1257 "VECTCAT.spad" 2206562 2206573 2208630 2208657) (-1256 "VECTCAT.spad" 2204270 2204283 2206340 2206345) (-1255 "VARIABLE.spad" 2204050 2204065 2204260 2204265) (-1254 "UTYPE.spad" 2203694 2203703 2204040 2204045) (-1253 "UTSODETL.spad" 2202987 2203011 2203650 2203655) (-1252 "UTSODE.spad" 2201175 2201195 2202977 2202982) (-1251 "UTS.spad" 2195964 2195992 2199642 2199739) (-1250 "UTSCAT.spad" 2193415 2193431 2195862 2195959) (-1249 "UTSCAT.spad" 2190510 2190528 2192959 2192964) (-1248 "UTS2.spad" 2190103 2190138 2190500 2190505) (-1247 "URAGG.spad" 2184735 2184746 2190093 2190098) (-1246 "URAGG.spad" 2179331 2179344 2184691 2184696) (-1245 "UPXSSING.spad" 2176974 2177000 2178412 2178545) (-1244 "UPXS.spad" 2174122 2174150 2175106 2175255) (-1243 "UPXSCONS.spad" 2171879 2171899 2172254 2172403) (-1242 "UPXSCCA.spad" 2170444 2170464 2171725 2171874) (-1241 "UPXSCCA.spad" 2169151 2169173 2170434 2170439) (-1240 "UPXSCAT.spad" 2167732 2167748 2168997 2169146) (-1239 "UPXS2.spad" 2167273 2167326 2167722 2167727) (-1238 "UPSQFREE.spad" 2165685 2165699 2167263 2167268) (-1237 "UPSCAT.spad" 2163278 2163302 2165583 2165680) (-1236 "UPSCAT.spad" 2160577 2160603 2162884 2162889) (-1235 "UPOLYC.spad" 2155555 2155566 2160419 2160572) (-1234 "UPOLYC.spad" 2150425 2150438 2155291 2155296) (-1233 "UPOLYC2.spad" 2149894 2149913 2150415 2150420) (-1232 "UP.spad" 2147087 2147102 2147480 2147633) (-1231 "UPMP.spad" 2145977 2145990 2147077 2147082) (-1230 "UPDIVP.spad" 2145540 2145554 2145967 2145972) (-1229 "UPDECOMP.spad" 2143777 2143791 2145530 2145535) (-1228 "UPCDEN.spad" 2142984 2143000 2143767 2143772) (-1227 "UP2.spad" 2142346 2142367 2142974 2142979) (-1226 "UNISEG.spad" 2141699 2141710 2142265 2142270) (-1225 "UNISEG2.spad" 2141192 2141205 2141655 2141660) (-1224 "UNIFACT.spad" 2140293 2140305 2141182 2141187) (-1223 "ULS.spad" 2130845 2130873 2131938 2132367) (-1222 "ULSCONS.spad" 2123239 2123259 2123611 2123760) (-1221 "ULSCCAT.spad" 2120968 2120988 2123085 2123234) (-1220 "ULSCCAT.spad" 2118805 2118827 2120924 2120929) (-1219 "ULSCAT.spad" 2117021 2117037 2118651 2118800) (-1218 "ULS2.spad" 2116533 2116586 2117011 2117016) (-1217 "UINT8.spad" 2116410 2116419 2116523 2116528) (-1216 "UINT64.spad" 2116286 2116295 2116400 2116405) (-1215 "UINT32.spad" 2116162 2116171 2116276 2116281) (-1214 "UINT16.spad" 2116038 2116047 2116152 2116157) (-1213 "UFD.spad" 2115103 2115112 2115964 2116033) (-1212 "UFD.spad" 2114230 2114241 2115093 2115098) (-1211 "UDVO.spad" 2113077 2113086 2114220 2114225) (-1210 "UDPO.spad" 2110504 2110515 2113033 2113038) (-1209 "TYPE.spad" 2110436 2110445 2110494 2110499) (-1208 "TYPEAST.spad" 2110355 2110364 2110426 2110431) (-1207 "TWOFACT.spad" 2109005 2109020 2110345 2110350) (-1206 "TUPLE.spad" 2108489 2108500 2108904 2108909) (-1205 "TUBETOOL.spad" 2105326 2105335 2108479 2108484) (-1204 "TUBE.spad" 2103967 2103984 2105316 2105321) (-1203 "TS.spad" 2102556 2102572 2103532 2103629) (-1202 "TSETCAT.spad" 2089683 2089700 2102524 2102551) (-1201 "TSETCAT.spad" 2076796 2076815 2089639 2089644) (-1200 "TRMANIP.spad" 2071162 2071179 2076502 2076507) (-1199 "TRIMAT.spad" 2070121 2070146 2071152 2071157) (-1198 "TRIGMNIP.spad" 2068638 2068655 2070111 2070116) (-1197 "TRIGCAT.spad" 2068150 2068159 2068628 2068633) (-1196 "TRIGCAT.spad" 2067660 2067671 2068140 2068145) (-1195 "TREE.spad" 2066231 2066242 2067267 2067294) (-1194 "TRANFUN.spad" 2066062 2066071 2066221 2066226) (-1193 "TRANFUN.spad" 2065891 2065902 2066052 2066057) (-1192 "TOPSP.spad" 2065565 2065574 2065881 2065886) (-1191 "TOOLSIGN.spad" 2065228 2065239 2065555 2065560) (-1190 "TEXTFILE.spad" 2063785 2063794 2065218 2065223) (-1189 "TEX.spad" 2060917 2060926 2063775 2063780) (-1188 "TEX1.spad" 2060473 2060484 2060907 2060912) (-1187 "TEMUTL.spad" 2060028 2060037 2060463 2060468) (-1186 "TBCMPPK.spad" 2058121 2058144 2060018 2060023) (-1185 "TBAGG.spad" 2057157 2057180 2058101 2058116) (-1184 "TBAGG.spad" 2056201 2056226 2057147 2057152) (-1183 "TANEXP.spad" 2055577 2055588 2056191 2056196) (-1182 "TABLE.spad" 2053988 2054011 2054258 2054285) (-1181 "TABLEAU.spad" 2053469 2053480 2053978 2053983) (-1180 "TABLBUMP.spad" 2050252 2050263 2053459 2053464) (-1179 "SYSTEM.spad" 2049480 2049489 2050242 2050247) (-1178 "SYSSOLP.spad" 2046953 2046964 2049470 2049475) (-1177 "SYSNNI.spad" 2046133 2046144 2046943 2046948) (-1176 "SYSINT.spad" 2045537 2045548 2046123 2046128) (-1175 "SYNTAX.spad" 2041731 2041740 2045527 2045532) (-1174 "SYMTAB.spad" 2039787 2039796 2041721 2041726) (-1173 "SYMS.spad" 2035772 2035781 2039777 2039782) (-1172 "SYMPOLY.spad" 2034779 2034790 2034861 2034988) (-1171 "SYMFUNC.spad" 2034254 2034265 2034769 2034774) (-1170 "SYMBOL.spad" 2031681 2031690 2034244 2034249) (-1169 "SWITCH.spad" 2028438 2028447 2031671 2031676) (-1168 "SUTS.spad" 2025337 2025365 2026905 2027002) (-1167 "SUPXS.spad" 2022472 2022500 2023469 2023618) (-1166 "SUP.spad" 2019277 2019288 2020058 2020211) (-1165 "SUPFRACF.spad" 2018382 2018400 2019267 2019272) (-1164 "SUP2.spad" 2017772 2017785 2018372 2018377) (-1163 "SUMRF.spad" 2016738 2016749 2017762 2017767) (-1162 "SUMFS.spad" 2016371 2016388 2016728 2016733) (-1161 "SULS.spad" 2006910 2006938 2008016 2008445) (-1160 "SUCHTAST.spad" 2006679 2006688 2006900 2006905) (-1159 "SUCH.spad" 2006359 2006374 2006669 2006674) (-1158 "SUBSPACE.spad" 1998366 1998381 2006349 2006354) (-1157 "SUBRESP.spad" 1997526 1997540 1998322 1998327) (-1156 "STTF.spad" 1993625 1993641 1997516 1997521) (-1155 "STTFNC.spad" 1990093 1990109 1993615 1993620) (-1154 "STTAYLOR.spad" 1982491 1982502 1989974 1989979) (-1153 "STRTBL.spad" 1980996 1981013 1981145 1981172) (-1152 "STRING.spad" 1980405 1980414 1980419 1980446) (-1151 "STRICAT.spad" 1980193 1980202 1980373 1980400) (-1150 "STREAM.spad" 1977051 1977062 1979718 1979733) (-1149 "STREAM3.spad" 1976596 1976611 1977041 1977046) (-1148 "STREAM2.spad" 1975664 1975677 1976586 1976591) (-1147 "STREAM1.spad" 1975368 1975379 1975654 1975659) (-1146 "STINPROD.spad" 1974274 1974290 1975358 1975363) (-1145 "STEP.spad" 1973475 1973484 1974264 1974269) (-1144 "STBL.spad" 1972001 1972029 1972168 1972183) (-1143 "STAGG.spad" 1971076 1971087 1971991 1971996) (-1142 "STAGG.spad" 1970149 1970162 1971066 1971071) (-1141 "STACK.spad" 1969500 1969511 1969756 1969783) (-1140 "SREGSET.spad" 1967204 1967221 1969146 1969173) (-1139 "SRDCMPK.spad" 1965749 1965769 1967194 1967199) (-1138 "SRAGG.spad" 1960846 1960855 1965717 1965744) (-1137 "SRAGG.spad" 1955963 1955974 1960836 1960841) (-1136 "SQMATRIX.spad" 1953579 1953597 1954495 1954582) (-1135 "SPLTREE.spad" 1948131 1948144 1953015 1953042) (-1134 "SPLNODE.spad" 1944719 1944732 1948121 1948126) (-1133 "SPFCAT.spad" 1943496 1943505 1944709 1944714) (-1132 "SPECOUT.spad" 1942046 1942055 1943486 1943491) (-1131 "SPADXPT.spad" 1934185 1934194 1942036 1942041) (-1130 "spad-parser.spad" 1933650 1933659 1934175 1934180) (-1129 "SPADAST.spad" 1933351 1933360 1933640 1933645) (-1128 "SPACEC.spad" 1917364 1917375 1933341 1933346) (-1127 "SPACE3.spad" 1917140 1917151 1917354 1917359) (-1126 "SORTPAK.spad" 1916685 1916698 1917096 1917101) (-1125 "SOLVETRA.spad" 1914442 1914453 1916675 1916680) (-1124 "SOLVESER.spad" 1912962 1912973 1914432 1914437) (-1123 "SOLVERAD.spad" 1908972 1908983 1912952 1912957) (-1122 "SOLVEFOR.spad" 1907392 1907410 1908962 1908967) (-1121 "SNTSCAT.spad" 1906992 1907009 1907360 1907387) (-1120 "SMTS.spad" 1905252 1905278 1906557 1906654) (-1119 "SMP.spad" 1902727 1902747 1903117 1903244) (-1118 "SMITH.spad" 1901570 1901595 1902717 1902722) (-1117 "SMATCAT.spad" 1899680 1899710 1901514 1901565) (-1116 "SMATCAT.spad" 1897722 1897754 1899558 1899563) (-1115 "SKAGG.spad" 1896683 1896694 1897690 1897717) (-1114 "SINT.spad" 1895509 1895518 1896549 1896678) (-1113 "SIMPAN.spad" 1895237 1895246 1895499 1895504) (-1112 "SIG.spad" 1894565 1894574 1895227 1895232) (-1111 "SIGNRF.spad" 1893673 1893684 1894555 1894560) (-1110 "SIGNEF.spad" 1892942 1892959 1893663 1893668) (-1109 "SIGAST.spad" 1892323 1892332 1892932 1892937) (-1108 "SHP.spad" 1890241 1890256 1892279 1892284) (-1107 "SHDP.spad" 1879952 1879979 1880461 1880592) (-1106 "SGROUP.spad" 1879560 1879569 1879942 1879947) (-1105 "SGROUP.spad" 1879166 1879177 1879550 1879555) (-1104 "SGCF.spad" 1872047 1872056 1879156 1879161) (-1103 "SFRTCAT.spad" 1870975 1870992 1872015 1872042) (-1102 "SFRGCD.spad" 1870038 1870058 1870965 1870970) (-1101 "SFQCMPK.spad" 1864675 1864695 1870028 1870033) (-1100 "SFORT.spad" 1864110 1864124 1864665 1864670) (-1099 "SEXOF.spad" 1863953 1863993 1864100 1864105) (-1098 "SEX.spad" 1863845 1863854 1863943 1863948) (-1097 "SEXCAT.spad" 1861396 1861436 1863835 1863840) (-1096 "SET.spad" 1859696 1859707 1860817 1860856) (-1095 "SETMN.spad" 1858130 1858147 1859686 1859691) (-1094 "SETCAT.spad" 1857452 1857461 1858120 1858125) (-1093 "SETCAT.spad" 1856772 1856783 1857442 1857447) (-1092 "SETAGG.spad" 1853293 1853304 1856752 1856767) (-1091 "SETAGG.spad" 1849822 1849835 1853283 1853288) (-1090 "SEQAST.spad" 1849525 1849534 1849812 1849817) (-1089 "SEGXCAT.spad" 1848647 1848660 1849515 1849520) (-1088 "SEG.spad" 1848460 1848471 1848566 1848571) (-1087 "SEGCAT.spad" 1847367 1847378 1848450 1848455) (-1086 "SEGBIND.spad" 1846439 1846450 1847322 1847327) (-1085 "SEGBIND2.spad" 1846135 1846148 1846429 1846434) (-1084 "SEGAST.spad" 1845849 1845858 1846125 1846130) (-1083 "SEG2.spad" 1845274 1845287 1845805 1845810) (-1082 "SDVAR.spad" 1844550 1844561 1845264 1845269) (-1081 "SDPOL.spad" 1841976 1841987 1842267 1842394) (-1080 "SCPKG.spad" 1840055 1840066 1841966 1841971) (-1079 "SCOPE.spad" 1839204 1839213 1840045 1840050) (-1078 "SCACHE.spad" 1837886 1837897 1839194 1839199) (-1077 "SASTCAT.spad" 1837795 1837804 1837876 1837881) (-1076 "SAOS.spad" 1837667 1837676 1837785 1837790) (-1075 "SAERFFC.spad" 1837380 1837400 1837657 1837662) (-1074 "SAE.spad" 1835555 1835571 1836166 1836301) (-1073 "SAEFACT.spad" 1835256 1835276 1835545 1835550) (-1072 "RURPK.spad" 1832897 1832913 1835246 1835251) (-1071 "RULESET.spad" 1832338 1832362 1832887 1832892) (-1070 "RULE.spad" 1830542 1830566 1832328 1832333) (-1069 "RULECOLD.spad" 1830394 1830407 1830532 1830537) (-1068 "RTVALUE.spad" 1830127 1830136 1830384 1830389) (-1067 "RSTRCAST.spad" 1829844 1829853 1830117 1830122) (-1066 "RSETGCD.spad" 1826222 1826242 1829834 1829839) (-1065 "RSETCAT.spad" 1816006 1816023 1826190 1826217) (-1064 "RSETCAT.spad" 1805810 1805829 1815996 1816001) (-1063 "RSDCMPK.spad" 1804262 1804282 1805800 1805805) (-1062 "RRCC.spad" 1802646 1802676 1804252 1804257) (-1061 "RRCC.spad" 1801028 1801060 1802636 1802641) (-1060 "RPTAST.spad" 1800730 1800739 1801018 1801023) (-1059 "RPOLCAT.spad" 1780090 1780105 1800598 1800725) (-1058 "RPOLCAT.spad" 1759164 1759181 1779674 1779679) (-1057 "ROUTINE.spad" 1755027 1755036 1757811 1757838) (-1056 "ROMAN.spad" 1754355 1754364 1754893 1755022) (-1055 "ROIRC.spad" 1753435 1753467 1754345 1754350) (-1054 "RNS.spad" 1752338 1752347 1753337 1753430) (-1053 "RNS.spad" 1751327 1751338 1752328 1752333) (-1052 "RNG.spad" 1751062 1751071 1751317 1751322) (-1051 "RMODULE.spad" 1750700 1750711 1751052 1751057) (-1050 "RMCAT2.spad" 1750108 1750165 1750690 1750695) (-1049 "RMATRIX.spad" 1748932 1748951 1749275 1749314) (-1048 "RMATCAT.spad" 1744465 1744496 1748888 1748927) (-1047 "RMATCAT.spad" 1739888 1739921 1744313 1744318) (-1046 "RINTERP.spad" 1739776 1739796 1739878 1739883) (-1045 "RING.spad" 1739246 1739255 1739756 1739771) (-1044 "RING.spad" 1738724 1738735 1739236 1739241) (-1043 "RIDIST.spad" 1738108 1738117 1738714 1738719) (-1042 "RGCHAIN.spad" 1736687 1736703 1737593 1737620) (-1041 "RGBCSPC.spad" 1736468 1736480 1736677 1736682) (-1040 "RGBCMDL.spad" 1735998 1736010 1736458 1736463) (-1039 "RF.spad" 1733612 1733623 1735988 1735993) (-1038 "RFFACTOR.spad" 1733074 1733085 1733602 1733607) (-1037 "RFFACT.spad" 1732809 1732821 1733064 1733069) (-1036 "RFDIST.spad" 1731797 1731806 1732799 1732804) (-1035 "RETSOL.spad" 1731214 1731227 1731787 1731792) (-1034 "RETRACT.spad" 1730642 1730653 1731204 1731209) (-1033 "RETRACT.spad" 1730068 1730081 1730632 1730637) (-1032 "RETAST.spad" 1729880 1729889 1730058 1730063) (-1031 "RESULT.spad" 1727940 1727949 1728527 1728554) (-1030 "RESRING.spad" 1727287 1727334 1727878 1727935) (-1029 "RESLATC.spad" 1726611 1726622 1727277 1727282) (-1028 "REPSQ.spad" 1726340 1726351 1726601 1726606) (-1027 "REP.spad" 1723892 1723901 1726330 1726335) (-1026 "REPDB.spad" 1723597 1723608 1723882 1723887) (-1025 "REP2.spad" 1713169 1713180 1723439 1723444) (-1024 "REP1.spad" 1707159 1707170 1713119 1713124) (-1023 "REGSET.spad" 1704956 1704973 1706805 1706832) (-1022 "REF.spad" 1704285 1704296 1704911 1704916) (-1021 "REDORDER.spad" 1703461 1703478 1704275 1704280) (-1020 "RECLOS.spad" 1702244 1702264 1702948 1703041) (-1019 "REALSOLV.spad" 1701376 1701385 1702234 1702239) (-1018 "REAL.spad" 1701248 1701257 1701366 1701371) (-1017 "REAL0Q.spad" 1698530 1698545 1701238 1701243) (-1016 "REAL0.spad" 1695358 1695373 1698520 1698525) (-1015 "RDUCEAST.spad" 1695079 1695088 1695348 1695353) (-1014 "RDIV.spad" 1694730 1694755 1695069 1695074) (-1013 "RDIST.spad" 1694293 1694304 1694720 1694725) (-1012 "RDETRS.spad" 1693089 1693107 1694283 1694288) (-1011 "RDETR.spad" 1691196 1691214 1693079 1693084) (-1010 "RDEEFS.spad" 1690269 1690286 1691186 1691191) (-1009 "RDEEF.spad" 1689265 1689282 1690259 1690264) (-1008 "RCFIELD.spad" 1686451 1686460 1689167 1689260) (-1007 "RCFIELD.spad" 1683723 1683734 1686441 1686446) (-1006 "RCAGG.spad" 1681635 1681646 1683713 1683718) (-1005 "RCAGG.spad" 1679474 1679487 1681554 1681559) (-1004 "RATRET.spad" 1678834 1678845 1679464 1679469) (-1003 "RATFACT.spad" 1678526 1678538 1678824 1678829) (-1002 "RANDSRC.spad" 1677845 1677854 1678516 1678521) (-1001 "RADUTIL.spad" 1677599 1677608 1677835 1677840) (-1000 "RADIX.spad" 1674500 1674514 1676066 1676159) (-999 "RADFF.spad" 1672914 1672950 1673032 1673188) (-998 "RADCAT.spad" 1672508 1672516 1672904 1672909) (-997 "RADCAT.spad" 1672100 1672110 1672498 1672503) (-996 "QUEUE.spad" 1671443 1671453 1671707 1671734) (-995 "QUAT.spad" 1670025 1670035 1670367 1670432) (-994 "QUATCT2.spad" 1669644 1669662 1670015 1670020) (-993 "QUATCAT.spad" 1667809 1667819 1669574 1669639) (-992 "QUATCAT.spad" 1665725 1665737 1667492 1667497) (-991 "QUAGG.spad" 1664551 1664561 1665693 1665720) (-990 "QQUTAST.spad" 1664320 1664328 1664541 1664546) (-989 "QFORM.spad" 1663783 1663797 1664310 1664315) (-988 "QFCAT.spad" 1662486 1662496 1663685 1663778) (-987 "QFCAT.spad" 1660780 1660792 1661981 1661986) (-986 "QFCAT2.spad" 1660471 1660487 1660770 1660775) (-985 "QEQUAT.spad" 1660028 1660036 1660461 1660466) (-984 "QCMPACK.spad" 1654775 1654794 1660018 1660023) (-983 "QALGSET.spad" 1650850 1650882 1654689 1654694) (-982 "QALGSET2.spad" 1648846 1648864 1650840 1650845) (-981 "PWFFINTB.spad" 1646156 1646177 1648836 1648841) (-980 "PUSHVAR.spad" 1645485 1645504 1646146 1646151) (-979 "PTRANFN.spad" 1641611 1641621 1645475 1645480) (-978 "PTPACK.spad" 1638699 1638709 1641601 1641606) (-977 "PTFUNC2.spad" 1638520 1638534 1638689 1638694) (-976 "PTCAT.spad" 1637769 1637779 1638488 1638515) (-975 "PSQFR.spad" 1637076 1637100 1637759 1637764) (-974 "PSEUDLIN.spad" 1635934 1635944 1637066 1637071) (-973 "PSETPK.spad" 1621367 1621383 1635812 1635817) (-972 "PSETCAT.spad" 1615287 1615310 1621347 1621362) (-971 "PSETCAT.spad" 1609181 1609206 1615243 1615248) (-970 "PSCURVE.spad" 1608164 1608172 1609171 1609176) (-969 "PSCAT.spad" 1606931 1606960 1608062 1608159) (-968 "PSCAT.spad" 1605788 1605819 1606921 1606926) (-967 "PRTITION.spad" 1604733 1604741 1605778 1605783) (-966 "PRTDAST.spad" 1604452 1604460 1604723 1604728) (-965 "PRS.spad" 1594014 1594031 1604408 1604413) (-964 "PRQAGG.spad" 1593445 1593455 1593982 1594009) (-963 "PROPLOG.spad" 1592740 1592748 1593435 1593440) (-962 "PROPFRML.spad" 1591548 1591559 1592730 1592735) (-961 "PROPERTY.spad" 1591034 1591042 1591538 1591543) (-960 "PRODUCT.spad" 1588714 1588726 1589000 1589055) (-959 "PR.spad" 1587100 1587112 1587805 1587932) (-958 "PRINT.spad" 1586852 1586860 1587090 1587095) (-957 "PRIMES.spad" 1585103 1585113 1586842 1586847) (-956 "PRIMELT.spad" 1583084 1583098 1585093 1585098) (-955 "PRIMCAT.spad" 1582707 1582715 1583074 1583079) (-954 "PRIMARR.spad" 1581712 1581722 1581890 1581917) (-953 "PRIMARR2.spad" 1580435 1580447 1581702 1581707) (-952 "PREASSOC.spad" 1579807 1579819 1580425 1580430) (-951 "PPCURVE.spad" 1578944 1578952 1579797 1579802) (-950 "PORTNUM.spad" 1578719 1578727 1578934 1578939) (-949 "POLYROOT.spad" 1577548 1577570 1578675 1578680) (-948 "POLY.spad" 1574881 1574891 1575398 1575525) (-947 "POLYLIFT.spad" 1574142 1574165 1574871 1574876) (-946 "POLYCATQ.spad" 1572244 1572266 1574132 1574137) (-945 "POLYCAT.spad" 1565650 1565671 1572112 1572239) (-944 "POLYCAT.spad" 1558394 1558417 1564858 1564863) (-943 "POLY2UP.spad" 1557842 1557856 1558384 1558389) (-942 "POLY2.spad" 1557437 1557449 1557832 1557837) (-941 "POLUTIL.spad" 1556378 1556407 1557393 1557398) (-940 "POLTOPOL.spad" 1555126 1555141 1556368 1556373) (-939 "POINT.spad" 1553965 1553975 1554052 1554079) (-938 "PNTHEORY.spad" 1550631 1550639 1553955 1553960) (-937 "PMTOOLS.spad" 1549388 1549402 1550621 1550626) (-936 "PMSYM.spad" 1548933 1548943 1549378 1549383) (-935 "PMQFCAT.spad" 1548520 1548534 1548923 1548928) (-934 "PMPRED.spad" 1547989 1548003 1548510 1548515) (-933 "PMPREDFS.spad" 1547433 1547455 1547979 1547984) (-932 "PMPLCAT.spad" 1546503 1546521 1547365 1547370) (-931 "PMLSAGG.spad" 1546084 1546098 1546493 1546498) (-930 "PMKERNEL.spad" 1545651 1545663 1546074 1546079) (-929 "PMINS.spad" 1545227 1545237 1545641 1545646) (-928 "PMFS.spad" 1544800 1544818 1545217 1545222) (-927 "PMDOWN.spad" 1544086 1544100 1544790 1544795) (-926 "PMASS.spad" 1543094 1543102 1544076 1544081) (-925 "PMASSFS.spad" 1542059 1542075 1543084 1543089) (-924 "PLOTTOOL.spad" 1541839 1541847 1542049 1542054) (-923 "PLOT.spad" 1536670 1536678 1541829 1541834) (-922 "PLOT3D.spad" 1533090 1533098 1536660 1536665) (-921 "PLOT1.spad" 1532231 1532241 1533080 1533085) (-920 "PLEQN.spad" 1519447 1519474 1532221 1532226) (-919 "PINTERP.spad" 1519063 1519082 1519437 1519442) (-918 "PINTERPA.spad" 1518845 1518861 1519053 1519058) (-917 "PI.spad" 1518452 1518460 1518819 1518840) (-916 "PID.spad" 1517408 1517416 1518378 1518447) (-915 "PICOERCE.spad" 1517065 1517075 1517398 1517403) (-914 "PGROEB.spad" 1515662 1515676 1517055 1517060) (-913 "PGE.spad" 1506915 1506923 1515652 1515657) (-912 "PGCD.spad" 1505797 1505814 1506905 1506910) (-911 "PFRPAC.spad" 1504940 1504950 1505787 1505792) (-910 "PFR.spad" 1501597 1501607 1504842 1504935) (-909 "PFOTOOLS.spad" 1500855 1500871 1501587 1501592) (-908 "PFOQ.spad" 1500225 1500243 1500845 1500850) (-907 "PFO.spad" 1499644 1499671 1500215 1500220) (-906 "PF.spad" 1499218 1499230 1499449 1499542) (-905 "PFECAT.spad" 1496884 1496892 1499144 1499213) (-904 "PFECAT.spad" 1494578 1494588 1496840 1496845) (-903 "PFBRU.spad" 1492448 1492460 1494568 1494573) (-902 "PFBR.spad" 1489986 1490009 1492438 1492443) (-901 "PERM.spad" 1485667 1485677 1489816 1489831) (-900 "PERMGRP.spad" 1480403 1480413 1485657 1485662) (-899 "PERMCAT.spad" 1478955 1478965 1480383 1480398) (-898 "PERMAN.spad" 1477487 1477501 1478945 1478950) (-897 "PENDTREE.spad" 1476826 1476836 1477116 1477121) (-896 "PDRING.spad" 1475317 1475327 1476806 1476821) (-895 "PDRING.spad" 1473816 1473828 1475307 1475312) (-894 "PDEPROB.spad" 1472831 1472839 1473806 1473811) (-893 "PDEPACK.spad" 1466833 1466841 1472821 1472826) (-892 "PDECOMP.spad" 1466295 1466312 1466823 1466828) (-891 "PDECAT.spad" 1464649 1464657 1466285 1466290) (-890 "PCOMP.spad" 1464500 1464513 1464639 1464644) (-889 "PBWLB.spad" 1463082 1463099 1464490 1464495) (-888 "PATTERN.spad" 1457513 1457523 1463072 1463077) (-887 "PATTERN2.spad" 1457249 1457261 1457503 1457508) (-886 "PATTERN1.spad" 1455551 1455567 1457239 1457244) (-885 "PATRES.spad" 1453098 1453110 1455541 1455546) (-884 "PATRES2.spad" 1452760 1452774 1453088 1453093) (-883 "PATMATCH.spad" 1450917 1450948 1452468 1452473) (-882 "PATMAB.spad" 1450342 1450352 1450907 1450912) (-881 "PATLRES.spad" 1449426 1449440 1450332 1450337) (-880 "PATAB.spad" 1449190 1449200 1449416 1449421) (-879 "PARTPERM.spad" 1446552 1446560 1449180 1449185) (-878 "PARSURF.spad" 1445980 1446008 1446542 1446547) (-877 "PARSU2.spad" 1445775 1445791 1445970 1445975) (-876 "script-parser.spad" 1445295 1445303 1445765 1445770) (-875 "PARSCURV.spad" 1444723 1444751 1445285 1445290) (-874 "PARSC2.spad" 1444512 1444528 1444713 1444718) (-873 "PARPCURV.spad" 1443970 1443998 1444502 1444507) (-872 "PARPC2.spad" 1443759 1443775 1443960 1443965) (-871 "PAN2EXPR.spad" 1443171 1443179 1443749 1443754) (-870 "PALETTE.spad" 1442141 1442149 1443161 1443166) (-869 "PAIR.spad" 1441124 1441137 1441729 1441734) (-868 "PADICRC.spad" 1438454 1438472 1439629 1439722) (-867 "PADICRAT.spad" 1436469 1436481 1436690 1436783) (-866 "PADIC.spad" 1436164 1436176 1436395 1436464) (-865 "PADICCT.spad" 1434705 1434717 1436090 1436159) (-864 "PADEPAC.spad" 1433384 1433403 1434695 1434700) (-863 "PADE.spad" 1432124 1432140 1433374 1433379) (-862 "OWP.spad" 1431364 1431394 1431982 1432049) (-861 "OVERSET.spad" 1430937 1430945 1431354 1431359) (-860 "OVAR.spad" 1430718 1430741 1430927 1430932) (-859 "OUT.spad" 1429802 1429810 1430708 1430713) (-858 "OUTFORM.spad" 1419098 1419106 1429792 1429797) (-857 "OUTBFILE.spad" 1418516 1418524 1419088 1419093) (-856 "OUTBCON.spad" 1417514 1417522 1418506 1418511) (-855 "OUTBCON.spad" 1416510 1416520 1417504 1417509) (-854 "OSI.spad" 1415985 1415993 1416500 1416505) (-853 "OSGROUP.spad" 1415903 1415911 1415975 1415980) (-852 "ORTHPOL.spad" 1414364 1414374 1415820 1415825) (-851 "OREUP.spad" 1413817 1413845 1414044 1414083) (-850 "ORESUP.spad" 1413116 1413140 1413497 1413536) (-849 "OREPCTO.spad" 1410935 1410947 1413036 1413041) (-848 "OREPCAT.spad" 1404992 1405002 1410891 1410930) (-847 "OREPCAT.spad" 1398939 1398951 1404840 1404845) (-846 "ORDSET.spad" 1398105 1398113 1398929 1398934) (-845 "ORDSET.spad" 1397269 1397279 1398095 1398100) (-844 "ORDRING.spad" 1396659 1396667 1397249 1397264) (-843 "ORDRING.spad" 1396057 1396067 1396649 1396654) (-842 "ORDMON.spad" 1395912 1395920 1396047 1396052) (-841 "ORDFUNS.spad" 1395038 1395054 1395902 1395907) (-840 "ORDFIN.spad" 1394858 1394866 1395028 1395033) (-839 "ORDCOMP.spad" 1393323 1393333 1394405 1394434) (-838 "ORDCOMP2.spad" 1392608 1392620 1393313 1393318) (-837 "OPTPROB.spad" 1391246 1391254 1392598 1392603) (-836 "OPTPACK.spad" 1383631 1383639 1391236 1391241) (-835 "OPTCAT.spad" 1381306 1381314 1383621 1383626) (-834 "OPSIG.spad" 1380958 1380966 1381296 1381301) (-833 "OPQUERY.spad" 1380507 1380515 1380948 1380953) (-832 "OP.spad" 1380249 1380259 1380329 1380396) (-831 "OPERCAT.spad" 1379837 1379847 1380239 1380244) (-830 "OPERCAT.spad" 1379423 1379435 1379827 1379832) (-829 "ONECOMP.spad" 1378168 1378178 1378970 1378999) (-828 "ONECOMP2.spad" 1377586 1377598 1378158 1378163) (-827 "OMSERVER.spad" 1376588 1376596 1377576 1377581) (-826 "OMSAGG.spad" 1376376 1376386 1376544 1376583) (-825 "OMPKG.spad" 1374988 1374996 1376366 1376371) (-824 "OM.spad" 1373953 1373961 1374978 1374983) (-823 "OMLO.spad" 1373378 1373390 1373839 1373878) (-822 "OMEXPR.spad" 1373212 1373222 1373368 1373373) (-821 "OMERR.spad" 1372755 1372763 1373202 1373207) (-820 "OMERRK.spad" 1371789 1371797 1372745 1372750) (-819 "OMENC.spad" 1371133 1371141 1371779 1371784) (-818 "OMDEV.spad" 1365422 1365430 1371123 1371128) (-817 "OMCONN.spad" 1364831 1364839 1365412 1365417) (-816 "OINTDOM.spad" 1364594 1364602 1364757 1364826) (-815 "OFMONOID.spad" 1360781 1360791 1364584 1364589) (-814 "ODVAR.spad" 1360042 1360052 1360771 1360776) (-813 "ODR.spad" 1359686 1359712 1359854 1360003) (-812 "ODPOL.spad" 1357068 1357078 1357408 1357535) (-811 "ODP.spad" 1346915 1346935 1347288 1347419) (-810 "ODETOOLS.spad" 1345498 1345517 1346905 1346910) (-809 "ODESYS.spad" 1343148 1343165 1345488 1345493) (-808 "ODERTRIC.spad" 1339089 1339106 1343105 1343110) (-807 "ODERED.spad" 1338476 1338500 1339079 1339084) (-806 "ODERAT.spad" 1336027 1336044 1338466 1338471) (-805 "ODEPRRIC.spad" 1332918 1332940 1336017 1336022) (-804 "ODEPROB.spad" 1332175 1332183 1332908 1332913) (-803 "ODEPRIM.spad" 1329449 1329471 1332165 1332170) (-802 "ODEPAL.spad" 1328825 1328849 1329439 1329444) (-801 "ODEPACK.spad" 1315427 1315435 1328815 1328820) (-800 "ODEINT.spad" 1314858 1314874 1315417 1315422) (-799 "ODEIFTBL.spad" 1312253 1312261 1314848 1314853) (-798 "ODEEF.spad" 1307620 1307636 1312243 1312248) (-797 "ODECONST.spad" 1307139 1307157 1307610 1307615) (-796 "ODECAT.spad" 1305735 1305743 1307129 1307134) (-795 "OCT.spad" 1303873 1303883 1304589 1304628) (-794 "OCTCT2.spad" 1303517 1303538 1303863 1303868) (-793 "OC.spad" 1301291 1301301 1303473 1303512) (-792 "OC.spad" 1298790 1298802 1300974 1300979) (-791 "OCAMON.spad" 1298638 1298646 1298780 1298785) (-790 "OASGP.spad" 1298453 1298461 1298628 1298633) (-789 "OAMONS.spad" 1297973 1297981 1298443 1298448) (-788 "OAMON.spad" 1297834 1297842 1297963 1297968) (-787 "OAGROUP.spad" 1297696 1297704 1297824 1297829) (-786 "NUMTUBE.spad" 1297283 1297299 1297686 1297691) (-785 "NUMQUAD.spad" 1285145 1285153 1297273 1297278) (-784 "NUMODE.spad" 1276281 1276289 1285135 1285140) (-783 "NUMINT.spad" 1273839 1273847 1276271 1276276) (-782 "NUMFMT.spad" 1272679 1272687 1273829 1273834) (-781 "NUMERIC.spad" 1264751 1264761 1272484 1272489) (-780 "NTSCAT.spad" 1263253 1263269 1264719 1264746) (-779 "NTPOLFN.spad" 1262798 1262808 1263170 1263175) (-778 "NSUP.spad" 1255844 1255854 1260384 1260537) (-777 "NSUP2.spad" 1255236 1255248 1255834 1255839) (-776 "NSMP.spad" 1251467 1251486 1251775 1251902) (-775 "NREP.spad" 1249839 1249853 1251457 1251462) (-774 "NPCOEF.spad" 1249085 1249105 1249829 1249834) (-773 "NORMRETR.spad" 1248683 1248722 1249075 1249080) (-772 "NORMPK.spad" 1246585 1246604 1248673 1248678) (-771 "NORMMA.spad" 1246273 1246299 1246575 1246580) (-770 "NONE.spad" 1246014 1246022 1246263 1246268) (-769 "NONE1.spad" 1245690 1245700 1246004 1246009) (-768 "NODE1.spad" 1245159 1245175 1245680 1245685) (-767 "NNI.spad" 1244046 1244054 1245133 1245154) (-766 "NLINSOL.spad" 1242668 1242678 1244036 1244041) (-765 "NIPROB.spad" 1241209 1241217 1242658 1242663) (-764 "NFINTBAS.spad" 1238669 1238686 1241199 1241204) (-763 "NETCLT.spad" 1238643 1238654 1238659 1238664) (-762 "NCODIV.spad" 1236841 1236857 1238633 1238638) (-761 "NCNTFRAC.spad" 1236483 1236497 1236831 1236836) (-760 "NCEP.spad" 1234643 1234657 1236473 1236478) (-759 "NASRING.spad" 1234239 1234247 1234633 1234638) (-758 "NASRING.spad" 1233833 1233843 1234229 1234234) (-757 "NARNG.spad" 1233177 1233185 1233823 1233828) (-756 "NARNG.spad" 1232519 1232529 1233167 1233172) (-755 "NAGSP.spad" 1231592 1231600 1232509 1232514) (-754 "NAGS.spad" 1221117 1221125 1231582 1231587) (-753 "NAGF07.spad" 1219510 1219518 1221107 1221112) (-752 "NAGF04.spad" 1213742 1213750 1219500 1219505) (-751 "NAGF02.spad" 1207551 1207559 1213732 1213737) (-750 "NAGF01.spad" 1203154 1203162 1207541 1207546) (-749 "NAGE04.spad" 1196614 1196622 1203144 1203149) (-748 "NAGE02.spad" 1186956 1186964 1196604 1196609) (-747 "NAGE01.spad" 1182840 1182848 1186946 1186951) (-746 "NAGD03.spad" 1180760 1180768 1182830 1182835) (-745 "NAGD02.spad" 1173291 1173299 1180750 1180755) (-744 "NAGD01.spad" 1167404 1167412 1173281 1173286) (-743 "NAGC06.spad" 1163191 1163199 1167394 1167399) (-742 "NAGC05.spad" 1161660 1161668 1163181 1163186) (-741 "NAGC02.spad" 1160915 1160923 1161650 1161655) (-740 "NAALG.spad" 1160450 1160460 1160883 1160910) (-739 "NAALG.spad" 1160005 1160017 1160440 1160445) (-738 "MULTSQFR.spad" 1156963 1156980 1159995 1160000) (-737 "MULTFACT.spad" 1156346 1156363 1156953 1156958) (-736 "MTSCAT.spad" 1154380 1154401 1156244 1156341) (-735 "MTHING.spad" 1154037 1154047 1154370 1154375) (-734 "MSYSCMD.spad" 1153471 1153479 1154027 1154032) (-733 "MSET.spad" 1151413 1151423 1153177 1153216) (-732 "MSETAGG.spad" 1151258 1151268 1151381 1151408) (-731 "MRING.spad" 1148229 1148241 1150966 1151033) (-730 "MRF2.spad" 1147797 1147811 1148219 1148224) (-729 "MRATFAC.spad" 1147343 1147360 1147787 1147792) (-728 "MPRFF.spad" 1145373 1145392 1147333 1147338) (-727 "MPOLY.spad" 1142844 1142859 1143203 1143330) (-726 "MPCPF.spad" 1142108 1142127 1142834 1142839) (-725 "MPC3.spad" 1141923 1141963 1142098 1142103) (-724 "MPC2.spad" 1141565 1141598 1141913 1141918) (-723 "MONOTOOL.spad" 1139900 1139917 1141555 1141560) (-722 "MONOID.spad" 1139219 1139227 1139890 1139895) (-721 "MONOID.spad" 1138536 1138546 1139209 1139214) (-720 "MONOGEN.spad" 1137282 1137295 1138396 1138531) (-719 "MONOGEN.spad" 1136050 1136065 1137166 1137171) (-718 "MONADWU.spad" 1134064 1134072 1136040 1136045) (-717 "MONADWU.spad" 1132076 1132086 1134054 1134059) (-716 "MONAD.spad" 1131220 1131228 1132066 1132071) (-715 "MONAD.spad" 1130362 1130372 1131210 1131215) (-714 "MOEBIUS.spad" 1129048 1129062 1130342 1130357) (-713 "MODULE.spad" 1128918 1128928 1129016 1129043) (-712 "MODULE.spad" 1128808 1128820 1128908 1128913) (-711 "MODRING.spad" 1128139 1128178 1128788 1128803) (-710 "MODOP.spad" 1126798 1126810 1127961 1128028) (-709 "MODMONOM.spad" 1126527 1126545 1126788 1126793) (-708 "MODMON.spad" 1123322 1123338 1124041 1124194) (-707 "MODFIELD.spad" 1122680 1122719 1123224 1123317) (-706 "MMLFORM.spad" 1121540 1121548 1122670 1122675) (-705 "MMAP.spad" 1121280 1121314 1121530 1121535) (-704 "MLO.spad" 1119707 1119717 1121236 1121275) (-703 "MLIFT.spad" 1118279 1118296 1119697 1119702) (-702 "MKUCFUNC.spad" 1117812 1117830 1118269 1118274) (-701 "MKRECORD.spad" 1117414 1117427 1117802 1117807) (-700 "MKFUNC.spad" 1116795 1116805 1117404 1117409) (-699 "MKFLCFN.spad" 1115751 1115761 1116785 1116790) (-698 "MKBCFUNC.spad" 1115236 1115254 1115741 1115746) (-697 "MINT.spad" 1114675 1114683 1115138 1115231) (-696 "MHROWRED.spad" 1113176 1113186 1114665 1114670) (-695 "MFLOAT.spad" 1111692 1111700 1113066 1113171) (-694 "MFINFACT.spad" 1111092 1111114 1111682 1111687) (-693 "MESH.spad" 1108824 1108832 1111082 1111087) (-692 "MDDFACT.spad" 1107017 1107027 1108814 1108819) (-691 "MDAGG.spad" 1106304 1106314 1106997 1107012) (-690 "MCMPLX.spad" 1102316 1102324 1102930 1103131) (-689 "MCDEN.spad" 1101524 1101536 1102306 1102311) (-688 "MCALCFN.spad" 1098626 1098652 1101514 1101519) (-687 "MAYBE.spad" 1097910 1097921 1098616 1098621) (-686 "MATSTOR.spad" 1095186 1095196 1097900 1097905) (-685 "MATRIX.spad" 1093890 1093900 1094374 1094401) (-684 "MATLIN.spad" 1091216 1091240 1093774 1093779) (-683 "MATCAT.spad" 1082801 1082823 1091184 1091211) (-682 "MATCAT.spad" 1074258 1074282 1082643 1082648) (-681 "MATCAT2.spad" 1073526 1073574 1074248 1074253) (-680 "MAPPKG3.spad" 1072425 1072439 1073516 1073521) (-679 "MAPPKG2.spad" 1071759 1071771 1072415 1072420) (-678 "MAPPKG1.spad" 1070577 1070587 1071749 1071754) (-677 "MAPPAST.spad" 1069890 1069898 1070567 1070572) (-676 "MAPHACK3.spad" 1069698 1069712 1069880 1069885) (-675 "MAPHACK2.spad" 1069463 1069475 1069688 1069693) (-674 "MAPHACK1.spad" 1069093 1069103 1069453 1069458) (-673 "MAGMA.spad" 1066883 1066900 1069083 1069088) (-672 "MACROAST.spad" 1066462 1066470 1066873 1066878) (-671 "M3D.spad" 1064158 1064168 1065840 1065845) (-670 "LZSTAGG.spad" 1061386 1061396 1064148 1064153) (-669 "LZSTAGG.spad" 1058612 1058624 1061376 1061381) (-668 "LWORD.spad" 1055317 1055334 1058602 1058607) (-667 "LSTAST.spad" 1055101 1055109 1055307 1055312) (-666 "LSQM.spad" 1053327 1053341 1053725 1053776) (-665 "LSPP.spad" 1052860 1052877 1053317 1053322) (-664 "LSMP.spad" 1051700 1051728 1052850 1052855) (-663 "LSMP1.spad" 1049504 1049518 1051690 1051695) (-662 "LSAGG.spad" 1049173 1049183 1049472 1049499) (-661 "LSAGG.spad" 1048862 1048874 1049163 1049168) (-660 "LPOLY.spad" 1047816 1047835 1048718 1048787) (-659 "LPEFRAC.spad" 1047073 1047083 1047806 1047811) (-658 "LO.spad" 1046474 1046488 1047007 1047034) (-657 "LOGIC.spad" 1046076 1046084 1046464 1046469) (-656 "LOGIC.spad" 1045676 1045686 1046066 1046071) (-655 "LODOOPS.spad" 1044594 1044606 1045666 1045671) (-654 "LODO.spad" 1043978 1043994 1044274 1044313) (-653 "LODOF.spad" 1043022 1043039 1043935 1043940) (-652 "LODOCAT.spad" 1041680 1041690 1042978 1043017) (-651 "LODOCAT.spad" 1040336 1040348 1041636 1041641) (-650 "LODO2.spad" 1039609 1039621 1040016 1040055) (-649 "LODO1.spad" 1039009 1039019 1039289 1039328) (-648 "LODEEF.spad" 1037781 1037799 1038999 1039004) (-647 "LNAGG.spad" 1033583 1033593 1037771 1037776) (-646 "LNAGG.spad" 1029349 1029361 1033539 1033544) (-645 "LMOPS.spad" 1026085 1026102 1029339 1029344) (-644 "LMODULE.spad" 1025727 1025737 1026075 1026080) (-643 "LMDICT.spad" 1025010 1025020 1025278 1025305) (-642 "LITERAL.spad" 1024916 1024927 1025000 1025005) (-641 "LIST.spad" 1022634 1022644 1024063 1024090) (-640 "LIST3.spad" 1021925 1021939 1022624 1022629) (-639 "LIST2.spad" 1020565 1020577 1021915 1021920) (-638 "LIST2MAP.spad" 1017442 1017454 1020555 1020560) (-637 "LINEXP.spad" 1016874 1016884 1017422 1017437) (-636 "LINDEP.spad" 1015651 1015663 1016786 1016791) (-635 "LIMITRF.spad" 1013565 1013575 1015641 1015646) (-634 "LIMITPS.spad" 1012448 1012461 1013555 1013560) (-633 "LIE.spad" 1010462 1010474 1011738 1011883) (-632 "LIECAT.spad" 1009938 1009948 1010388 1010457) (-631 "LIECAT.spad" 1009442 1009454 1009894 1009899) (-630 "LIB.spad" 1007490 1007498 1008101 1008116) (-629 "LGROBP.spad" 1004843 1004862 1007480 1007485) (-628 "LF.spad" 1003762 1003778 1004833 1004838) (-627 "LFCAT.spad" 1002781 1002789 1003752 1003757) (-626 "LEXTRIPK.spad" 998284 998299 1002771 1002776) (-625 "LEXP.spad" 996287 996314 998264 998279) (-624 "LETAST.spad" 995986 995994 996277 996282) (-623 "LEADCDET.spad" 994370 994387 995976 995981) (-622 "LAZM3PK.spad" 993074 993096 994360 994365) (-621 "LAUPOL.spad" 991763 991776 992667 992736) (-620 "LAPLACE.spad" 991336 991352 991753 991758) (-619 "LA.spad" 990776 990790 991258 991297) (-618 "LALG.spad" 990552 990562 990756 990771) (-617 "LALG.spad" 990336 990348 990542 990547) (-616 "KVTFROM.spad" 990071 990081 990326 990331) (-615 "KTVLOGIC.spad" 989583 989591 990061 990066) (-614 "KRCFROM.spad" 989321 989331 989573 989578) (-613 "KOVACIC.spad" 988034 988051 989311 989316) (-612 "KONVERT.spad" 987756 987766 988024 988029) (-611 "KOERCE.spad" 987493 987503 987746 987751) (-610 "KERNEL.spad" 986028 986038 987277 987282) (-609 "KERNEL2.spad" 985731 985743 986018 986023) (-608 "KDAGG.spad" 984834 984856 985711 985726) (-607 "KDAGG.spad" 983945 983969 984824 984829) (-606 "KAFILE.spad" 982908 982924 983143 983170) (-605 "JORDAN.spad" 980735 980747 982198 982343) (-604 "JOINAST.spad" 980429 980437 980725 980730) (-603 "JAVACODE.spad" 980295 980303 980419 980424) (-602 "IXAGG.spad" 978418 978442 980285 980290) (-601 "IXAGG.spad" 976396 976422 978265 978270) (-600 "IVECTOR.spad" 975167 975182 975322 975349) (-599 "ITUPLE.spad" 974312 974322 975157 975162) (-598 "ITRIGMNP.spad" 973123 973142 974302 974307) (-597 "ITFUN3.spad" 972617 972631 973113 973118) (-596 "ITFUN2.spad" 972347 972359 972607 972612) (-595 "ITAYLOR.spad" 970139 970154 972183 972308) (-594 "ISUPS.spad" 962550 962565 969113 969210) (-593 "ISUMP.spad" 962047 962063 962540 962545) (-592 "ISTRING.spad" 961050 961063 961216 961243) (-591 "ISAST.spad" 960769 960777 961040 961045) (-590 "IRURPK.spad" 959482 959501 960759 960764) (-589 "IRSN.spad" 957442 957450 959472 959477) (-588 "IRRF2F.spad" 955917 955927 957398 957403) (-587 "IRREDFFX.spad" 955518 955529 955907 955912) (-586 "IROOT.spad" 953849 953859 955508 955513) (-585 "IR.spad" 951638 951652 953704 953731) (-584 "IR2.spad" 950658 950674 951628 951633) (-583 "IR2F.spad" 949858 949874 950648 950653) (-582 "IPRNTPK.spad" 949618 949626 949848 949853) (-581 "IPF.spad" 949183 949195 949423 949516) (-580 "IPADIC.spad" 948944 948970 949109 949178) (-579 "IP4ADDR.spad" 948501 948509 948934 948939) (-578 "IOMODE.spad" 948122 948130 948491 948496) (-577 "IOBFILE.spad" 947483 947491 948112 948117) (-576 "IOBCON.spad" 947348 947356 947473 947478) (-575 "INVLAPLA.spad" 946993 947009 947338 947343) (-574 "INTTR.spad" 940239 940256 946983 946988) (-573 "INTTOOLS.spad" 937950 937966 939813 939818) (-572 "INTSLPE.spad" 937256 937264 937940 937945) (-571 "INTRVL.spad" 936822 936832 937170 937251) (-570 "INTRF.spad" 935186 935200 936812 936817) (-569 "INTRET.spad" 934618 934628 935176 935181) (-568 "INTRAT.spad" 933293 933310 934608 934613) (-567 "INTPM.spad" 931656 931672 932936 932941) (-566 "INTPAF.spad" 929424 929442 931588 931593) (-565 "INTPACK.spad" 919734 919742 929414 929419) (-564 "INT.spad" 919095 919103 919588 919729) (-563 "INTHERTR.spad" 918361 918378 919085 919090) (-562 "INTHERAL.spad" 918027 918051 918351 918356) (-561 "INTHEORY.spad" 914440 914448 918017 918022) (-560 "INTG0.spad" 907903 907921 914372 914377) (-559 "INTFTBL.spad" 901932 901940 907893 907898) (-558 "INTFACT.spad" 900991 901001 901922 901927) (-557 "INTEF.spad" 899306 899322 900981 900986) (-556 "INTDOM.spad" 897921 897929 899232 899301) (-555 "INTDOM.spad" 896598 896608 897911 897916) (-554 "INTCAT.spad" 894851 894861 896512 896593) (-553 "INTBIT.spad" 894354 894362 894841 894846) (-552 "INTALG.spad" 893536 893563 894344 894349) (-551 "INTAF.spad" 893028 893044 893526 893531) (-550 "INTABL.spad" 891546 891577 891709 891736) (-549 "INT8.spad" 891426 891434 891536 891541) (-548 "INT64.spad" 891305 891313 891416 891421) (-547 "INT32.spad" 891184 891192 891295 891300) (-546 "INT16.spad" 891063 891071 891174 891179) (-545 "INS.spad" 888530 888538 890965 891058) (-544 "INS.spad" 886083 886093 888520 888525) (-543 "INPSIGN.spad" 885517 885530 886073 886078) (-542 "INPRODPF.spad" 884583 884602 885507 885512) (-541 "INPRODFF.spad" 883641 883665 884573 884578) (-540 "INNMFACT.spad" 882612 882629 883631 883636) (-539 "INMODGCD.spad" 882096 882126 882602 882607) (-538 "INFSP.spad" 880381 880403 882086 882091) (-537 "INFPROD0.spad" 879431 879450 880371 880376) (-536 "INFORM.spad" 876592 876600 879421 879426) (-535 "INFORM1.spad" 876217 876227 876582 876587) (-534 "INFINITY.spad" 875769 875777 876207 876212) (-533 "INETCLTS.spad" 875746 875754 875759 875764) (-532 "INEP.spad" 874278 874300 875736 875741) (-531 "INDE.spad" 874007 874024 874268 874273) (-530 "INCRMAPS.spad" 873428 873438 873997 874002) (-529 "INBFILE.spad" 872500 872508 873418 873423) (-528 "INBFF.spad" 868270 868281 872490 872495) (-527 "INBCON.spad" 866558 866566 868260 868265) (-526 "INBCON.spad" 864844 864854 866548 866553) (-525 "INAST.spad" 864505 864513 864834 864839) (-524 "IMPTAST.spad" 864213 864221 864495 864500) (-523 "IMATRIX.spad" 863158 863184 863670 863697) (-522 "IMATQF.spad" 862252 862296 863114 863119) (-521 "IMATLIN.spad" 860857 860881 862208 862213) (-520 "ILIST.spad" 859513 859528 860040 860067) (-519 "IIARRAY2.spad" 858901 858939 859120 859147) (-518 "IFF.spad" 858311 858327 858582 858675) (-517 "IFAST.spad" 857925 857933 858301 858306) (-516 "IFARRAY.spad" 855412 855427 857108 857135) (-515 "IFAMON.spad" 855274 855291 855368 855373) (-514 "IEVALAB.spad" 854663 854675 855264 855269) (-513 "IEVALAB.spad" 854050 854064 854653 854658) (-512 "IDPO.spad" 853848 853860 854040 854045) (-511 "IDPOAMS.spad" 853604 853616 853838 853843) (-510 "IDPOAM.spad" 853324 853336 853594 853599) (-509 "IDPC.spad" 852258 852270 853314 853319) (-508 "IDPAM.spad" 852003 852015 852248 852253) (-507 "IDPAG.spad" 851750 851762 851993 851998) (-506 "IDENT.spad" 851400 851408 851740 851745) (-505 "IDECOMP.spad" 848637 848655 851390 851395) (-504 "IDEAL.spad" 843560 843599 848572 848577) (-503 "ICDEN.spad" 842711 842727 843550 843555) (-502 "ICARD.spad" 841900 841908 842701 842706) (-501 "IBPTOOLS.spad" 840493 840510 841890 841895) (-500 "IBITS.spad" 839692 839705 840129 840156) (-499 "IBATOOL.spad" 836567 836586 839682 839687) (-498 "IBACHIN.spad" 835054 835069 836557 836562) (-497 "IARRAY2.spad" 834042 834068 834661 834688) (-496 "IARRAY1.spad" 833087 833102 833225 833252) (-495 "IAN.spad" 831300 831308 832903 832996) (-494 "IALGFACT.spad" 830901 830934 831290 831295) (-493 "HYPCAT.spad" 830325 830333 830891 830896) (-492 "HYPCAT.spad" 829747 829757 830315 830320) (-491 "HOSTNAME.spad" 829555 829563 829737 829742) (-490 "HOMOTOP.spad" 829298 829308 829545 829550) (-489 "HOAGG.spad" 826566 826576 829288 829293) (-488 "HOAGG.spad" 823609 823621 826333 826338) (-487 "HEXADEC.spad" 821711 821719 822076 822169) (-486 "HEUGCD.spad" 820726 820737 821701 821706) (-485 "HELLFDIV.spad" 820316 820340 820716 820721) (-484 "HEAP.spad" 819708 819718 819923 819950) (-483 "HEADAST.spad" 819239 819247 819698 819703) (-482 "HDP.spad" 809082 809098 809459 809590) (-481 "HDMP.spad" 806294 806309 806912 807039) (-480 "HB.spad" 804531 804539 806284 806289) (-479 "HASHTBL.spad" 803001 803032 803212 803239) (-478 "HASAST.spad" 802717 802725 802991 802996) (-477 "HACKPI.spad" 802200 802208 802619 802712) (-476 "GTSET.spad" 801139 801155 801846 801873) (-475 "GSTBL.spad" 799658 799693 799832 799847) (-474 "GSERIES.spad" 796825 796852 797790 797939) (-473 "GROUP.spad" 796094 796102 796805 796820) (-472 "GROUP.spad" 795371 795381 796084 796089) (-471 "GROEBSOL.spad" 793859 793880 795361 795366) (-470 "GRMOD.spad" 792430 792442 793849 793854) (-469 "GRMOD.spad" 790999 791013 792420 792425) (-468 "GRIMAGE.spad" 783604 783612 790989 790994) (-467 "GRDEF.spad" 781983 781991 783594 783599) (-466 "GRAY.spad" 780442 780450 781973 781978) (-465 "GRALG.spad" 779489 779501 780432 780437) (-464 "GRALG.spad" 778534 778548 779479 779484) (-463 "GPOLSET.spad" 777988 778011 778216 778243) (-462 "GOSPER.spad" 777253 777271 777978 777983) (-461 "GMODPOL.spad" 776391 776418 777221 777248) (-460 "GHENSEL.spad" 775460 775474 776381 776386) (-459 "GENUPS.spad" 771561 771574 775450 775455) (-458 "GENUFACT.spad" 771138 771148 771551 771556) (-457 "GENPGCD.spad" 770722 770739 771128 771133) (-456 "GENMFACT.spad" 770174 770193 770712 770717) (-455 "GENEEZ.spad" 768113 768126 770164 770169) (-454 "GDMP.spad" 765167 765184 765943 766070) (-453 "GCNAALG.spad" 759062 759089 764961 765028) (-452 "GCDDOM.spad" 758234 758242 758988 759057) (-451 "GCDDOM.spad" 757468 757478 758224 758229) (-450 "GB.spad" 754986 755024 757424 757429) (-449 "GBINTERN.spad" 751006 751044 754976 754981) (-448 "GBF.spad" 746763 746801 750996 751001) (-447 "GBEUCLID.spad" 744637 744675 746753 746758) (-446 "GAUSSFAC.spad" 743934 743942 744627 744632) (-445 "GALUTIL.spad" 742256 742266 743890 743895) (-444 "GALPOLYU.spad" 740702 740715 742246 742251) (-443 "GALFACTU.spad" 738867 738886 740692 740697) (-442 "GALFACT.spad" 729000 729011 738857 738862) (-441 "FVFUN.spad" 726023 726031 728990 728995) (-440 "FVC.spad" 725075 725083 726013 726018) (-439 "FUNDESC.spad" 724753 724761 725065 725070) (-438 "FUNCTION.spad" 724602 724614 724743 724748) (-437 "FT.spad" 722895 722903 724592 724597) (-436 "FTEM.spad" 722058 722066 722885 722890) (-435 "FSUPFACT.spad" 720958 720977 721994 721999) (-434 "FST.spad" 719044 719052 720948 720953) (-433 "FSRED.spad" 718522 718538 719034 719039) (-432 "FSPRMELT.spad" 717346 717362 718479 718484) (-431 "FSPECF.spad" 715423 715439 717336 717341) (-430 "FS.spad" 709485 709495 715198 715418) (-429 "FS.spad" 703325 703337 709040 709045) (-428 "FSINT.spad" 702983 702999 703315 703320) (-427 "FSERIES.spad" 702170 702182 702803 702902) (-426 "FSCINT.spad" 701483 701499 702160 702165) (-425 "FSAGG.spad" 700600 700610 701439 701478) (-424 "FSAGG.spad" 699679 699691 700520 700525) (-423 "FSAGG2.spad" 698378 698394 699669 699674) (-422 "FS2UPS.spad" 692861 692895 698368 698373) (-421 "FS2.spad" 692506 692522 692851 692856) (-420 "FS2EXPXP.spad" 691629 691652 692496 692501) (-419 "FRUTIL.spad" 690571 690581 691619 691624) (-418 "FR.spad" 684265 684275 689595 689664) (-417 "FRNAALG.spad" 679352 679362 684207 684260) (-416 "FRNAALG.spad" 674451 674463 679308 679313) (-415 "FRNAAF2.spad" 673905 673923 674441 674446) (-414 "FRMOD.spad" 673299 673329 673836 673841) (-413 "FRIDEAL.spad" 672494 672515 673279 673294) (-412 "FRIDEAL2.spad" 672096 672128 672484 672489) (-411 "FRETRCT.spad" 671607 671617 672086 672091) (-410 "FRETRCT.spad" 670984 670996 671465 671470) (-409 "FRAMALG.spad" 669312 669325 670940 670979) (-408 "FRAMALG.spad" 667672 667687 669302 669307) (-407 "FRAC.spad" 664771 664781 665174 665347) (-406 "FRAC2.spad" 664374 664386 664761 664766) (-405 "FR2.spad" 663708 663720 664364 664369) (-404 "FPS.spad" 660517 660525 663598 663703) (-403 "FPS.spad" 657354 657364 660437 660442) (-402 "FPC.spad" 656396 656404 657256 657349) (-401 "FPC.spad" 655524 655534 656386 656391) (-400 "FPATMAB.spad" 655286 655296 655514 655519) (-399 "FPARFRAC.spad" 653759 653776 655276 655281) (-398 "FORTRAN.spad" 652265 652308 653749 653754) (-397 "FORT.spad" 651194 651202 652255 652260) (-396 "FORTFN.spad" 648364 648372 651184 651189) (-395 "FORTCAT.spad" 648048 648056 648354 648359) (-394 "FORMULA.spad" 645512 645520 648038 648043) (-393 "FORMULA1.spad" 644991 645001 645502 645507) (-392 "FORDER.spad" 644682 644706 644981 644986) (-391 "FOP.spad" 643883 643891 644672 644677) (-390 "FNLA.spad" 643307 643329 643851 643878) (-389 "FNCAT.spad" 641894 641902 643297 643302) (-388 "FNAME.spad" 641786 641794 641884 641889) (-387 "FMTC.spad" 641584 641592 641712 641781) (-386 "FMONOID.spad" 638639 638649 641540 641545) (-385 "FM.spad" 638334 638346 638573 638600) (-384 "FMFUN.spad" 635364 635372 638324 638329) (-383 "FMC.spad" 634416 634424 635354 635359) (-382 "FMCAT.spad" 632070 632088 634384 634411) (-381 "FM1.spad" 631427 631439 632004 632031) (-380 "FLOATRP.spad" 629148 629162 631417 631422) (-379 "FLOAT.spad" 622436 622444 629014 629143) (-378 "FLOATCP.spad" 619853 619867 622426 622431) (-377 "FLINEXP.spad" 619565 619575 619833 619848) (-376 "FLINEXP.spad" 619231 619243 619501 619506) (-375 "FLASORT.spad" 618551 618563 619221 619226) (-374 "FLALG.spad" 616197 616216 618477 618546) (-373 "FLAGG.spad" 613215 613225 616177 616192) (-372 "FLAGG.spad" 610134 610146 613098 613103) (-371 "FLAGG2.spad" 608815 608831 610124 610129) (-370 "FINRALG.spad" 606844 606857 608771 608810) (-369 "FINRALG.spad" 604799 604814 606728 606733) (-368 "FINITE.spad" 603951 603959 604789 604794) (-367 "FINAALG.spad" 592932 592942 603893 603946) (-366 "FINAALG.spad" 581925 581937 592888 592893) (-365 "FILE.spad" 581508 581518 581915 581920) (-364 "FILECAT.spad" 580026 580043 581498 581503) (-363 "FIELD.spad" 579432 579440 579928 580021) (-362 "FIELD.spad" 578924 578934 579422 579427) (-361 "FGROUP.spad" 577533 577543 578904 578919) (-360 "FGLMICPK.spad" 576320 576335 577523 577528) (-359 "FFX.spad" 575695 575710 576036 576129) (-358 "FFSLPE.spad" 575184 575205 575685 575690) (-357 "FFPOLY.spad" 566436 566447 575174 575179) (-356 "FFPOLY2.spad" 565496 565513 566426 566431) (-355 "FFP.spad" 564893 564913 565212 565305) (-354 "FF.spad" 564341 564357 564574 564667) (-353 "FFNBX.spad" 562853 562873 564057 564150) (-352 "FFNBP.spad" 561366 561383 562569 562662) (-351 "FFNB.spad" 559831 559852 561047 561140) (-350 "FFINTBAS.spad" 557245 557264 559821 559826) (-349 "FFIELDC.spad" 554820 554828 557147 557240) (-348 "FFIELDC.spad" 552481 552491 554810 554815) (-347 "FFHOM.spad" 551229 551246 552471 552476) (-346 "FFF.spad" 548664 548675 551219 551224) (-345 "FFCGX.spad" 547511 547531 548380 548473) (-344 "FFCGP.spad" 546400 546420 547227 547320) (-343 "FFCG.spad" 545192 545213 546081 546174) (-342 "FFCAT.spad" 538219 538241 545031 545187) (-341 "FFCAT.spad" 531325 531349 538139 538144) (-340 "FFCAT2.spad" 531070 531110 531315 531320) (-339 "FEXPR.spad" 522779 522825 530826 530865) (-338 "FEVALAB.spad" 522485 522495 522769 522774) (-337 "FEVALAB.spad" 521976 521988 522262 522267) (-336 "FDIV.spad" 521418 521442 521966 521971) (-335 "FDIVCAT.spad" 519460 519484 521408 521413) (-334 "FDIVCAT.spad" 517500 517526 519450 519455) (-333 "FDIV2.spad" 517154 517194 517490 517495) (-332 "FCPAK1.spad" 515707 515715 517144 517149) (-331 "FCOMP.spad" 515086 515096 515697 515702) (-330 "FC.spad" 505001 505009 515076 515081) (-329 "FAXF.spad" 497936 497950 504903 504996) (-328 "FAXF.spad" 490923 490939 497892 497897) (-327 "FARRAY.spad" 489069 489079 490106 490133) (-326 "FAMR.spad" 487189 487201 488967 489064) (-325 "FAMR.spad" 485293 485307 487073 487078) (-324 "FAMONOID.spad" 484943 484953 485247 485252) (-323 "FAMONC.spad" 483165 483177 484933 484938) (-322 "FAGROUP.spad" 482771 482781 483061 483088) (-321 "FACUTIL.spad" 480967 480984 482761 482766) (-320 "FACTFUNC.spad" 480143 480153 480957 480962) (-319 "EXPUPXS.spad" 476976 476999 478275 478424) (-318 "EXPRTUBE.spad" 474204 474212 476966 476971) (-317 "EXPRODE.spad" 471076 471092 474194 474199) (-316 "EXPR.spad" 466351 466361 467065 467472) (-315 "EXPR2UPS.spad" 462443 462456 466341 466346) (-314 "EXPR2.spad" 462146 462158 462433 462438) (-313 "EXPEXPAN.spad" 459084 459109 459718 459811) (-312 "EXIT.spad" 458755 458763 459074 459079) (-311 "EXITAST.spad" 458491 458499 458745 458750) (-310 "EVALCYC.spad" 457949 457963 458481 458486) (-309 "EVALAB.spad" 457513 457523 457939 457944) (-308 "EVALAB.spad" 457075 457087 457503 457508) (-307 "EUCDOM.spad" 454617 454625 457001 457070) (-306 "EUCDOM.spad" 452221 452231 454607 454612) (-305 "ESTOOLS.spad" 444061 444069 452211 452216) (-304 "ESTOOLS2.spad" 443662 443676 444051 444056) (-303 "ESTOOLS1.spad" 443347 443358 443652 443657) (-302 "ES.spad" 435894 435902 443337 443342) (-301 "ES.spad" 428347 428357 435792 435797) (-300 "ESCONT.spad" 425120 425128 428337 428342) (-299 "ESCONT1.spad" 424869 424881 425110 425115) (-298 "ES2.spad" 424364 424380 424859 424864) (-297 "ES1.spad" 423930 423946 424354 424359) (-296 "ERROR.spad" 421251 421259 423920 423925) (-295 "EQTBL.spad" 419723 419745 419932 419959) (-294 "EQ.spad" 414597 414607 417396 417508) (-293 "EQ2.spad" 414313 414325 414587 414592) (-292 "EP.spad" 410627 410637 414303 414308) (-291 "ENV.spad" 409279 409287 410617 410622) (-290 "ENTIRER.spad" 408947 408955 409223 409274) (-289 "EMR.spad" 408148 408189 408873 408942) (-288 "ELTAGG.spad" 406388 406407 408138 408143) (-287 "ELTAGG.spad" 404592 404613 406344 406349) (-286 "ELTAB.spad" 404039 404057 404582 404587) (-285 "ELFUTS.spad" 403418 403437 404029 404034) (-284 "ELEMFUN.spad" 403107 403115 403408 403413) (-283 "ELEMFUN.spad" 402794 402804 403097 403102) (-282 "ELAGG.spad" 400737 400747 402774 402789) (-281 "ELAGG.spad" 398617 398629 400656 400661) (-280 "ELABEXPR.spad" 397540 397548 398607 398612) (-279 "EFUPXS.spad" 394316 394346 397496 397501) (-278 "EFULS.spad" 391152 391175 394272 394277) (-277 "EFSTRUC.spad" 389107 389123 391142 391147) (-276 "EF.spad" 383873 383889 389097 389102) (-275 "EAB.spad" 382149 382157 383863 383868) (-274 "E04UCFA.spad" 381685 381693 382139 382144) (-273 "E04NAFA.spad" 381262 381270 381675 381680) (-272 "E04MBFA.spad" 380842 380850 381252 381257) (-271 "E04JAFA.spad" 380378 380386 380832 380837) (-270 "E04GCFA.spad" 379914 379922 380368 380373) (-269 "E04FDFA.spad" 379450 379458 379904 379909) (-268 "E04DGFA.spad" 378986 378994 379440 379445) (-267 "E04AGNT.spad" 374828 374836 378976 378981) (-266 "DVARCAT.spad" 371513 371523 374818 374823) (-265 "DVARCAT.spad" 368196 368208 371503 371508) (-264 "DSMP.spad" 365663 365677 365968 366095) (-263 "DROPT.spad" 359608 359616 365653 365658) (-262 "DROPT1.spad" 359271 359281 359598 359603) (-261 "DROPT0.spad" 354098 354106 359261 359266) (-260 "DRAWPT.spad" 352253 352261 354088 354093) (-259 "DRAW.spad" 344853 344866 352243 352248) (-258 "DRAWHACK.spad" 344161 344171 344843 344848) (-257 "DRAWCX.spad" 341603 341611 344151 344156) (-256 "DRAWCURV.spad" 341140 341155 341593 341598) (-255 "DRAWCFUN.spad" 330312 330320 341130 341135) (-254 "DQAGG.spad" 328480 328490 330280 330307) (-253 "DPOLCAT.spad" 323821 323837 328348 328475) (-252 "DPOLCAT.spad" 319248 319266 323777 323782) (-251 "DPMO.spad" 311474 311490 311612 311913) (-250 "DPMM.spad" 303713 303731 303838 304139) (-249 "DOMCTOR.spad" 303605 303613 303703 303708) (-248 "DOMAIN.spad" 302736 302744 303595 303600) (-247 "DMP.spad" 299994 300009 300566 300693) (-246 "DLP.spad" 299342 299352 299984 299989) (-245 "DLIST.spad" 297921 297931 298525 298552) (-244 "DLAGG.spad" 296332 296342 297911 297916) (-243 "DIVRING.spad" 295874 295882 296276 296327) (-242 "DIVRING.spad" 295460 295470 295864 295869) (-241 "DISPLAY.spad" 293640 293648 295450 295455) (-240 "DIRPROD.spad" 283220 283236 283860 283991) (-239 "DIRPROD2.spad" 282028 282046 283210 283215) (-238 "DIRPCAT.spad" 280970 280986 281892 282023) (-237 "DIRPCAT.spad" 279641 279659 280565 280570) (-236 "DIOSP.spad" 278466 278474 279631 279636) (-235 "DIOPS.spad" 277450 277460 278446 278461) (-234 "DIOPS.spad" 276408 276420 277406 277411) (-233 "DIFRING.spad" 275700 275708 276388 276403) (-232 "DIFRING.spad" 275000 275010 275690 275695) (-231 "DIFEXT.spad" 274159 274169 274980 274995) (-230 "DIFEXT.spad" 273235 273247 274058 274063) (-229 "DIAGG.spad" 272865 272875 273215 273230) (-228 "DIAGG.spad" 272503 272515 272855 272860) (-227 "DHMATRIX.spad" 270807 270817 271960 271987) (-226 "DFSFUN.spad" 264215 264223 270797 270802) (-225 "DFLOAT.spad" 260936 260944 264105 264210) (-224 "DFINTTLS.spad" 259145 259161 260926 260931) (-223 "DERHAM.spad" 257055 257087 259125 259140) (-222 "DEQUEUE.spad" 256373 256383 256662 256689) (-221 "DEGRED.spad" 255988 256002 256363 256368) (-220 "DEFINTRF.spad" 253513 253523 255978 255983) (-219 "DEFINTEF.spad" 252009 252025 253503 253508) (-218 "DEFAST.spad" 251377 251385 251999 252004) (-217 "DECIMAL.spad" 249483 249491 249844 249937) (-216 "DDFACT.spad" 247282 247299 249473 249478) (-215 "DBLRESP.spad" 246880 246904 247272 247277) (-214 "DBASE.spad" 245534 245544 246870 246875) (-213 "DATAARY.spad" 244996 245009 245524 245529) (-212 "D03FAFA.spad" 244824 244832 244986 244991) (-211 "D03EEFA.spad" 244644 244652 244814 244819) (-210 "D03AGNT.spad" 243724 243732 244634 244639) (-209 "D02EJFA.spad" 243186 243194 243714 243719) (-208 "D02CJFA.spad" 242664 242672 243176 243181) (-207 "D02BHFA.spad" 242154 242162 242654 242659) (-206 "D02BBFA.spad" 241644 241652 242144 242149) (-205 "D02AGNT.spad" 236448 236456 241634 241639) (-204 "D01WGTS.spad" 234767 234775 236438 236443) (-203 "D01TRNS.spad" 234744 234752 234757 234762) (-202 "D01GBFA.spad" 234266 234274 234734 234739) (-201 "D01FCFA.spad" 233788 233796 234256 234261) (-200 "D01ASFA.spad" 233256 233264 233778 233783) (-199 "D01AQFA.spad" 232702 232710 233246 233251) (-198 "D01APFA.spad" 232126 232134 232692 232697) (-197 "D01ANFA.spad" 231620 231628 232116 232121) (-196 "D01AMFA.spad" 231130 231138 231610 231615) (-195 "D01ALFA.spad" 230670 230678 231120 231125) (-194 "D01AKFA.spad" 230196 230204 230660 230665) (-193 "D01AJFA.spad" 229719 229727 230186 230191) (-192 "D01AGNT.spad" 225778 225786 229709 229714) (-191 "CYCLOTOM.spad" 225284 225292 225768 225773) (-190 "CYCLES.spad" 222116 222124 225274 225279) (-189 "CVMP.spad" 221533 221543 222106 222111) (-188 "CTRIGMNP.spad" 220023 220039 221523 221528) (-187 "CTOR.spad" 219714 219722 220013 220018) (-186 "CTORKIND.spad" 219317 219325 219704 219709) (-185 "CTORCAT.spad" 218566 218574 219307 219312) (-184 "CTORCAT.spad" 217813 217823 218556 218561) (-183 "CTORCALL.spad" 217393 217401 217803 217808) (-182 "CSTTOOLS.spad" 216636 216649 217383 217388) (-181 "CRFP.spad" 210340 210353 216626 216631) (-180 "CRCEAST.spad" 210060 210068 210330 210335) (-179 "CRAPACK.spad" 209103 209113 210050 210055) (-178 "CPMATCH.spad" 208603 208618 209028 209033) (-177 "CPIMA.spad" 208308 208327 208593 208598) (-176 "COORDSYS.spad" 203201 203211 208298 208303) (-175 "CONTOUR.spad" 202608 202616 203191 203196) (-174 "CONTFRAC.spad" 198220 198230 202510 202603) (-173 "CONDUIT.spad" 197978 197986 198210 198215) (-172 "COMRING.spad" 197652 197660 197916 197973) (-171 "COMPPROP.spad" 197166 197174 197642 197647) (-170 "COMPLPAT.spad" 196933 196948 197156 197161) (-169 "COMPLEX.spad" 191071 191081 191315 191576) (-168 "COMPLEX2.spad" 190784 190796 191061 191066) (-167 "COMPFACT.spad" 190386 190400 190774 190779) (-166 "COMPCAT.spad" 188454 188464 190120 190381) (-165 "COMPCAT.spad" 186251 186263 187919 187924) (-164 "COMMUPC.spad" 185997 186015 186241 186246) (-163 "COMMONOP.spad" 185530 185538 185987 185992) (-162 "COMM.spad" 185339 185347 185520 185525) (-161 "COMMAAST.spad" 185102 185110 185329 185334) (-160 "COMBOPC.spad" 184007 184015 185092 185097) (-159 "COMBINAT.spad" 182752 182762 183997 184002) (-158 "COMBF.spad" 180120 180136 182742 182747) (-157 "COLOR.spad" 178957 178965 180110 180115) (-156 "COLONAST.spad" 178623 178631 178947 178952) (-155 "CMPLXRT.spad" 178332 178349 178613 178618) (-154 "CLLCTAST.spad" 177994 178002 178322 178327) (-153 "CLIP.spad" 174086 174094 177984 177989) (-152 "CLIF.spad" 172725 172741 174042 174081) (-151 "CLAGG.spad" 169210 169220 172715 172720) (-150 "CLAGG.spad" 165566 165578 169073 169078) (-149 "CINTSLPE.spad" 164891 164904 165556 165561) (-148 "CHVAR.spad" 162969 162991 164881 164886) (-147 "CHARZ.spad" 162884 162892 162949 162964) (-146 "CHARPOL.spad" 162392 162402 162874 162879) (-145 "CHARNZ.spad" 162145 162153 162372 162387) (-144 "CHAR.spad" 160013 160021 162135 162140) (-143 "CFCAT.spad" 159329 159337 160003 160008) (-142 "CDEN.spad" 158487 158501 159319 159324) (-141 "CCLASS.spad" 156636 156644 157898 157937) (-140 "CATEGORY.spad" 155726 155734 156626 156631) (-139 "CATCTOR.spad" 155617 155625 155716 155721) (-138 "CATAST.spad" 155235 155243 155607 155612) (-137 "CASEAST.spad" 154949 154957 155225 155230) (-136 "CARTEN.spad" 150052 150076 154939 154944) (-135 "CARTEN2.spad" 149438 149465 150042 150047) (-134 "CARD.spad" 146727 146735 149412 149433) (-133 "CAPSLAST.spad" 146501 146509 146717 146722) (-132 "CACHSET.spad" 146123 146131 146491 146496) (-131 "CABMON.spad" 145676 145684 146113 146118) (-130 "BYTEORD.spad" 145351 145359 145666 145671) (-129 "BYTE.spad" 144776 144784 145341 145346) (-128 "BYTEBUF.spad" 142633 142641 143945 143972) (-127 "BTREE.spad" 141702 141712 142240 142267) (-126 "BTOURN.spad" 140705 140715 141309 141336) (-125 "BTCAT.spad" 140093 140103 140673 140700) (-124 "BTCAT.spad" 139501 139513 140083 140088) (-123 "BTAGG.spad" 138623 138631 139469 139496) (-122 "BTAGG.spad" 137765 137775 138613 138618) (-121 "BSTREE.spad" 136500 136510 137372 137399) (-120 "BRILL.spad" 134695 134706 136490 136495) (-119 "BRAGG.spad" 133619 133629 134685 134690) (-118 "BRAGG.spad" 132507 132519 133575 133580) (-117 "BPADICRT.spad" 130488 130500 130743 130836) (-116 "BPADIC.spad" 130152 130164 130414 130483) (-115 "BOUNDZRO.spad" 129808 129825 130142 130147) (-114 "BOP.spad" 124826 124834 129798 129803) (-113 "BOP1.spad" 122246 122256 124816 124821) (-112 "BOOLEAN.spad" 121678 121686 122236 122241) (-111 "BMODULE.spad" 121390 121402 121646 121673) (-110 "BITS.spad" 120809 120817 121026 121053) (-109 "BINDING.spad" 120220 120228 120799 120804) (-108 "BINARY.spad" 118331 118339 118687 118780) (-107 "BGAGG.spad" 117528 117538 118311 118326) (-106 "BGAGG.spad" 116733 116745 117518 117523) (-105 "BFUNCT.spad" 116297 116305 116713 116728) (-104 "BEZOUT.spad" 115431 115458 116247 116252) (-103 "BBTREE.spad" 112250 112260 115038 115065) (-102 "BASTYPE.spad" 111922 111930 112240 112245) (-101 "BASTYPE.spad" 111592 111602 111912 111917) (-100 "BALFACT.spad" 111031 111044 111582 111587) (-99 "AUTOMOR.spad" 110478 110487 111011 111026) (-98 "ATTREG.spad" 107197 107204 110230 110473) (-97 "ATTRBUT.spad" 103220 103227 107177 107192) (-96 "ATTRAST.spad" 102937 102944 103210 103215) (-95 "ATRIG.spad" 102407 102414 102927 102932) (-94 "ATRIG.spad" 101875 101884 102397 102402) (-93 "ASTCAT.spad" 101779 101786 101865 101870) (-92 "ASTCAT.spad" 101681 101690 101769 101774) (-91 "ASTACK.spad" 101014 101023 101288 101315) (-90 "ASSOCEQ.spad" 99814 99825 100970 100975) (-89 "ASP9.spad" 98895 98908 99804 99809) (-88 "ASP8.spad" 97938 97951 98885 98890) (-87 "ASP80.spad" 97260 97273 97928 97933) (-86 "ASP7.spad" 96420 96433 97250 97255) (-85 "ASP78.spad" 95871 95884 96410 96415) (-84 "ASP77.spad" 95240 95253 95861 95866) (-83 "ASP74.spad" 94332 94345 95230 95235) (-82 "ASP73.spad" 93603 93616 94322 94327) (-81 "ASP6.spad" 92470 92483 93593 93598) (-80 "ASP55.spad" 90979 90992 92460 92465) (-79 "ASP50.spad" 88796 88809 90969 90974) (-78 "ASP4.spad" 88091 88104 88786 88791) (-77 "ASP49.spad" 87090 87103 88081 88086) (-76 "ASP42.spad" 85497 85536 87080 87085) (-75 "ASP41.spad" 84076 84115 85487 85492) (-74 "ASP35.spad" 83064 83077 84066 84071) (-73 "ASP34.spad" 82365 82378 83054 83059) (-72 "ASP33.spad" 81925 81938 82355 82360) (-71 "ASP31.spad" 81065 81078 81915 81920) (-70 "ASP30.spad" 79957 79970 81055 81060) (-69 "ASP29.spad" 79423 79436 79947 79952) (-68 "ASP28.spad" 70696 70709 79413 79418) (-67 "ASP27.spad" 69593 69606 70686 70691) (-66 "ASP24.spad" 68680 68693 69583 69588) (-65 "ASP20.spad" 68144 68157 68670 68675) (-64 "ASP1.spad" 67525 67538 68134 68139) (-63 "ASP19.spad" 62211 62224 67515 67520) (-62 "ASP12.spad" 61625 61638 62201 62206) (-61 "ASP10.spad" 60896 60909 61615 61620) (-60 "ARRAY2.spad" 60256 60265 60503 60530) (-59 "ARRAY1.spad" 59091 59100 59439 59466) (-58 "ARRAY12.spad" 57760 57771 59081 59086) (-57 "ARR2CAT.spad" 53422 53443 57728 57755) (-56 "ARR2CAT.spad" 49104 49127 53412 53417) (-55 "ARITY.spad" 48476 48483 49094 49099) (-54 "APPRULE.spad" 47720 47742 48466 48471) (-53 "APPLYORE.spad" 47335 47348 47710 47715) (-52 "ANY.spad" 45677 45684 47325 47330) (-51 "ANY1.spad" 44748 44757 45667 45672) (-50 "ANTISYM.spad" 43187 43203 44728 44743) (-49 "ANON.spad" 42880 42887 43177 43182) (-48 "AN.spad" 41181 41188 42696 42789) (-47 "AMR.spad" 39360 39371 41079 41176) (-46 "AMR.spad" 37376 37389 39097 39102) (-45 "ALIST.spad" 34788 34809 35138 35165) (-44 "ALGSC.spad" 33911 33937 34660 34713) (-43 "ALGPKG.spad" 29620 29631 33867 33872) (-42 "ALGMFACT.spad" 28809 28823 29610 29615) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2284116 2284121 2284126 2284131) (-2 NIL 2284096 2284101 2284106 2284111) (-1 NIL 2284076 2284081 2284086 2284091) (0 NIL 2284056 2284061 2284066 2284071) (-1290 "ZMOD.spad" 2283865 2283878 2283994 2284051) (-1289 "ZLINDEP.spad" 2282909 2282920 2283855 2283860) (-1288 "ZDSOLVE.spad" 2272758 2272780 2282899 2282904) (-1287 "YSTREAM.spad" 2272251 2272262 2272748 2272753) (-1286 "XRPOLY.spad" 2271471 2271491 2272107 2272176) (-1285 "XPR.spad" 2269262 2269275 2271189 2271288) (-1284 "XPOLY.spad" 2268817 2268828 2269118 2269187) (-1283 "XPOLYC.spad" 2268134 2268150 2268743 2268812) (-1282 "XPBWPOLY.spad" 2266571 2266591 2267914 2267983) (-1281 "XF.spad" 2265032 2265047 2266473 2266566) (-1280 "XF.spad" 2263473 2263490 2264916 2264921) (-1279 "XFALG.spad" 2260497 2260513 2263399 2263468) (-1278 "XEXPPKG.spad" 2259748 2259774 2260487 2260492) (-1277 "XDPOLY.spad" 2259362 2259378 2259604 2259673) (-1276 "XALG.spad" 2259022 2259033 2259318 2259357) (-1275 "WUTSET.spad" 2254861 2254878 2258668 2258695) (-1274 "WP.spad" 2254060 2254104 2254719 2254786) (-1273 "WHILEAST.spad" 2253858 2253867 2254050 2254055) (-1272 "WHEREAST.spad" 2253529 2253538 2253848 2253853) (-1271 "WFFINTBS.spad" 2251092 2251114 2253519 2253524) (-1270 "WEIER.spad" 2249306 2249317 2251082 2251087) (-1269 "VSPACE.spad" 2248979 2248990 2249274 2249301) (-1268 "VSPACE.spad" 2248672 2248685 2248969 2248974) (-1267 "VOID.spad" 2248349 2248358 2248662 2248667) (-1266 "VIEW.spad" 2245971 2245980 2248339 2248344) (-1265 "VIEWDEF.spad" 2241168 2241177 2245961 2245966) (-1264 "VIEW3D.spad" 2225003 2225012 2241158 2241163) (-1263 "VIEW2D.spad" 2212740 2212749 2224993 2224998) (-1262 "VECTOR.spad" 2211414 2211425 2211665 2211692) (-1261 "VECTOR2.spad" 2210041 2210054 2211404 2211409) (-1260 "VECTCAT.spad" 2207941 2207952 2210009 2210036) (-1259 "VECTCAT.spad" 2205648 2205661 2207718 2207723) (-1258 "VARIABLE.spad" 2205428 2205443 2205638 2205643) (-1257 "UTYPE.spad" 2205072 2205081 2205418 2205423) (-1256 "UTSODETL.spad" 2204365 2204389 2205028 2205033) (-1255 "UTSODE.spad" 2202553 2202573 2204355 2204360) (-1254 "UTS.spad" 2197342 2197370 2201020 2201117) (-1253 "UTSCAT.spad" 2194793 2194809 2197240 2197337) (-1252 "UTSCAT.spad" 2191888 2191906 2194337 2194342) (-1251 "UTS2.spad" 2191481 2191516 2191878 2191883) (-1250 "URAGG.spad" 2186113 2186124 2191471 2191476) (-1249 "URAGG.spad" 2180709 2180722 2186069 2186074) (-1248 "UPXSSING.spad" 2178352 2178378 2179790 2179923) (-1247 "UPXS.spad" 2175500 2175528 2176484 2176633) (-1246 "UPXSCONS.spad" 2173257 2173277 2173632 2173781) (-1245 "UPXSCCA.spad" 2171822 2171842 2173103 2173252) (-1244 "UPXSCCA.spad" 2170529 2170551 2171812 2171817) (-1243 "UPXSCAT.spad" 2169110 2169126 2170375 2170524) (-1242 "UPXS2.spad" 2168651 2168704 2169100 2169105) (-1241 "UPSQFREE.spad" 2167063 2167077 2168641 2168646) (-1240 "UPSCAT.spad" 2164656 2164680 2166961 2167058) (-1239 "UPSCAT.spad" 2161955 2161981 2164262 2164267) (-1238 "UPOLYC.spad" 2156933 2156944 2161797 2161950) (-1237 "UPOLYC.spad" 2151803 2151816 2156669 2156674) (-1236 "UPOLYC2.spad" 2151272 2151291 2151793 2151798) (-1235 "UP.spad" 2148465 2148480 2148858 2149011) (-1234 "UPMP.spad" 2147355 2147368 2148455 2148460) (-1233 "UPDIVP.spad" 2146918 2146932 2147345 2147350) (-1232 "UPDECOMP.spad" 2145155 2145169 2146908 2146913) (-1231 "UPCDEN.spad" 2144362 2144378 2145145 2145150) (-1230 "UP2.spad" 2143724 2143745 2144352 2144357) (-1229 "UNISEG.spad" 2143077 2143088 2143643 2143648) (-1228 "UNISEG2.spad" 2142570 2142583 2143033 2143038) (-1227 "UNIFACT.spad" 2141671 2141683 2142560 2142565) (-1226 "ULS.spad" 2132223 2132251 2133316 2133745) (-1225 "ULSCONS.spad" 2124617 2124637 2124989 2125138) (-1224 "ULSCCAT.spad" 2122346 2122366 2124463 2124612) (-1223 "ULSCCAT.spad" 2120183 2120205 2122302 2122307) (-1222 "ULSCAT.spad" 2118399 2118415 2120029 2120178) (-1221 "ULS2.spad" 2117911 2117964 2118389 2118394) (-1220 "UINT8.spad" 2117788 2117797 2117901 2117906) (-1219 "UINT64.spad" 2117664 2117673 2117778 2117783) (-1218 "UINT32.spad" 2117540 2117549 2117654 2117659) (-1217 "UINT16.spad" 2117416 2117425 2117530 2117535) (-1216 "UFD.spad" 2116481 2116490 2117342 2117411) (-1215 "UFD.spad" 2115608 2115619 2116471 2116476) (-1214 "UDVO.spad" 2114455 2114464 2115598 2115603) (-1213 "UDPO.spad" 2111882 2111893 2114411 2114416) (-1212 "TYPE.spad" 2111814 2111823 2111872 2111877) (-1211 "TYPEAST.spad" 2111733 2111742 2111804 2111809) (-1210 "TWOFACT.spad" 2110383 2110398 2111723 2111728) (-1209 "TUPLE.spad" 2109867 2109878 2110282 2110287) (-1208 "TUBETOOL.spad" 2106704 2106713 2109857 2109862) (-1207 "TUBE.spad" 2105345 2105362 2106694 2106699) (-1206 "TS.spad" 2103934 2103950 2104910 2105007) (-1205 "TSETCAT.spad" 2091061 2091078 2103902 2103929) (-1204 "TSETCAT.spad" 2078174 2078193 2091017 2091022) (-1203 "TRMANIP.spad" 2072540 2072557 2077880 2077885) (-1202 "TRIMAT.spad" 2071499 2071524 2072530 2072535) (-1201 "TRIGMNIP.spad" 2070016 2070033 2071489 2071494) (-1200 "TRIGCAT.spad" 2069528 2069537 2070006 2070011) (-1199 "TRIGCAT.spad" 2069038 2069049 2069518 2069523) (-1198 "TREE.spad" 2067609 2067620 2068645 2068672) (-1197 "TRANFUN.spad" 2067440 2067449 2067599 2067604) (-1196 "TRANFUN.spad" 2067269 2067280 2067430 2067435) (-1195 "TOPSP.spad" 2066943 2066952 2067259 2067264) (-1194 "TOOLSIGN.spad" 2066606 2066617 2066933 2066938) (-1193 "TEXTFILE.spad" 2065163 2065172 2066596 2066601) (-1192 "TEX.spad" 2062295 2062304 2065153 2065158) (-1191 "TEX1.spad" 2061851 2061862 2062285 2062290) (-1190 "TEMUTL.spad" 2061406 2061415 2061841 2061846) (-1189 "TBCMPPK.spad" 2059499 2059522 2061396 2061401) (-1188 "TBAGG.spad" 2058535 2058558 2059479 2059494) (-1187 "TBAGG.spad" 2057579 2057604 2058525 2058530) (-1186 "TANEXP.spad" 2056955 2056966 2057569 2057574) (-1185 "TABLE.spad" 2055366 2055389 2055636 2055663) (-1184 "TABLEAU.spad" 2054847 2054858 2055356 2055361) (-1183 "TABLBUMP.spad" 2051630 2051641 2054837 2054842) (-1182 "SYSTEM.spad" 2050858 2050867 2051620 2051625) (-1181 "SYSSOLP.spad" 2048331 2048342 2050848 2050853) (-1180 "SYSNNI.spad" 2047511 2047522 2048321 2048326) (-1179 "SYSINT.spad" 2046915 2046926 2047501 2047506) (-1178 "SYNTAX.spad" 2043109 2043118 2046905 2046910) (-1177 "SYMTAB.spad" 2041165 2041174 2043099 2043104) (-1176 "SYMS.spad" 2037150 2037159 2041155 2041160) (-1175 "SYMPOLY.spad" 2036157 2036168 2036239 2036366) (-1174 "SYMFUNC.spad" 2035632 2035643 2036147 2036152) (-1173 "SYMBOL.spad" 2033059 2033068 2035622 2035627) (-1172 "SWITCH.spad" 2029816 2029825 2033049 2033054) (-1171 "SUTS.spad" 2026715 2026743 2028283 2028380) (-1170 "SUPXS.spad" 2023850 2023878 2024847 2024996) (-1169 "SUP.spad" 2020655 2020666 2021436 2021589) (-1168 "SUPFRACF.spad" 2019760 2019778 2020645 2020650) (-1167 "SUP2.spad" 2019150 2019163 2019750 2019755) (-1166 "SUMRF.spad" 2018116 2018127 2019140 2019145) (-1165 "SUMFS.spad" 2017749 2017766 2018106 2018111) (-1164 "SULS.spad" 2008288 2008316 2009394 2009823) (-1163 "SUCHTAST.spad" 2008057 2008066 2008278 2008283) (-1162 "SUCH.spad" 2007737 2007752 2008047 2008052) (-1161 "SUBSPACE.spad" 1999744 1999759 2007727 2007732) (-1160 "SUBRESP.spad" 1998904 1998918 1999700 1999705) (-1159 "STTF.spad" 1995003 1995019 1998894 1998899) (-1158 "STTFNC.spad" 1991471 1991487 1994993 1994998) (-1157 "STTAYLOR.spad" 1983869 1983880 1991352 1991357) (-1156 "STRTBL.spad" 1982374 1982391 1982523 1982550) (-1155 "STRING.spad" 1981783 1981792 1981797 1981824) (-1154 "STRICAT.spad" 1981571 1981580 1981751 1981778) (-1153 "STREAM.spad" 1978429 1978440 1981096 1981111) (-1152 "STREAM3.spad" 1977974 1977989 1978419 1978424) (-1151 "STREAM2.spad" 1977042 1977055 1977964 1977969) (-1150 "STREAM1.spad" 1976746 1976757 1977032 1977037) (-1149 "STINPROD.spad" 1975652 1975668 1976736 1976741) (-1148 "STEP.spad" 1974853 1974862 1975642 1975647) (-1147 "STBL.spad" 1973379 1973407 1973546 1973561) (-1146 "STAGG.spad" 1972454 1972465 1973369 1973374) (-1145 "STAGG.spad" 1971527 1971540 1972444 1972449) (-1144 "STACK.spad" 1970878 1970889 1971134 1971161) (-1143 "SREGSET.spad" 1968582 1968599 1970524 1970551) (-1142 "SRDCMPK.spad" 1967127 1967147 1968572 1968577) (-1141 "SRAGG.spad" 1962224 1962233 1967095 1967122) (-1140 "SRAGG.spad" 1957341 1957352 1962214 1962219) (-1139 "SQMATRIX.spad" 1954957 1954975 1955873 1955960) (-1138 "SPLTREE.spad" 1949509 1949522 1954393 1954420) (-1137 "SPLNODE.spad" 1946097 1946110 1949499 1949504) (-1136 "SPFCAT.spad" 1944874 1944883 1946087 1946092) (-1135 "SPECOUT.spad" 1943424 1943433 1944864 1944869) (-1134 "SPADXPT.spad" 1935563 1935572 1943414 1943419) (-1133 "spad-parser.spad" 1935028 1935037 1935553 1935558) (-1132 "SPADAST.spad" 1934729 1934738 1935018 1935023) (-1131 "SPACEC.spad" 1918742 1918753 1934719 1934724) (-1130 "SPACE3.spad" 1918518 1918529 1918732 1918737) (-1129 "SORTPAK.spad" 1918063 1918076 1918474 1918479) (-1128 "SOLVETRA.spad" 1915820 1915831 1918053 1918058) (-1127 "SOLVESER.spad" 1914340 1914351 1915810 1915815) (-1126 "SOLVERAD.spad" 1910350 1910361 1914330 1914335) (-1125 "SOLVEFOR.spad" 1908770 1908788 1910340 1910345) (-1124 "SNTSCAT.spad" 1908370 1908387 1908738 1908765) (-1123 "SMTS.spad" 1906630 1906656 1907935 1908032) (-1122 "SMP.spad" 1904105 1904125 1904495 1904622) (-1121 "SMITH.spad" 1902948 1902973 1904095 1904100) (-1120 "SMATCAT.spad" 1901058 1901088 1902892 1902943) (-1119 "SMATCAT.spad" 1899100 1899132 1900936 1900941) (-1118 "SKAGG.spad" 1898061 1898072 1899068 1899095) (-1117 "SINT.spad" 1896887 1896896 1897927 1898056) (-1116 "SIMPAN.spad" 1896615 1896624 1896877 1896882) (-1115 "SIG.spad" 1895943 1895952 1896605 1896610) (-1114 "SIGNRF.spad" 1895051 1895062 1895933 1895938) (-1113 "SIGNEF.spad" 1894320 1894337 1895041 1895046) (-1112 "SIGAST.spad" 1893701 1893710 1894310 1894315) (-1111 "SHP.spad" 1891619 1891634 1893657 1893662) (-1110 "SHDP.spad" 1881330 1881357 1881839 1881970) (-1109 "SGROUP.spad" 1880938 1880947 1881320 1881325) (-1108 "SGROUP.spad" 1880544 1880555 1880928 1880933) (-1107 "SGCF.spad" 1873425 1873434 1880534 1880539) (-1106 "SFRTCAT.spad" 1872353 1872370 1873393 1873420) (-1105 "SFRGCD.spad" 1871416 1871436 1872343 1872348) (-1104 "SFQCMPK.spad" 1866053 1866073 1871406 1871411) (-1103 "SFORT.spad" 1865488 1865502 1866043 1866048) (-1102 "SEXOF.spad" 1865331 1865371 1865478 1865483) (-1101 "SEX.spad" 1865223 1865232 1865321 1865326) (-1100 "SEXCAT.spad" 1862774 1862814 1865213 1865218) (-1099 "SET.spad" 1861074 1861085 1862195 1862234) (-1098 "SETMN.spad" 1859508 1859525 1861064 1861069) (-1097 "SETCAT.spad" 1858830 1858839 1859498 1859503) (-1096 "SETCAT.spad" 1858150 1858161 1858820 1858825) (-1095 "SETAGG.spad" 1854671 1854682 1858130 1858145) (-1094 "SETAGG.spad" 1851200 1851213 1854661 1854666) (-1093 "SEQAST.spad" 1850903 1850912 1851190 1851195) (-1092 "SEGXCAT.spad" 1850025 1850038 1850893 1850898) (-1091 "SEG.spad" 1849838 1849849 1849944 1849949) (-1090 "SEGCAT.spad" 1848745 1848756 1849828 1849833) (-1089 "SEGBIND.spad" 1847817 1847828 1848700 1848705) (-1088 "SEGBIND2.spad" 1847513 1847526 1847807 1847812) (-1087 "SEGAST.spad" 1847227 1847236 1847503 1847508) (-1086 "SEG2.spad" 1846652 1846665 1847183 1847188) (-1085 "SDVAR.spad" 1845928 1845939 1846642 1846647) (-1084 "SDPOL.spad" 1843354 1843365 1843645 1843772) (-1083 "SCPKG.spad" 1841433 1841444 1843344 1843349) (-1082 "SCOPE.spad" 1840582 1840591 1841423 1841428) (-1081 "SCACHE.spad" 1839264 1839275 1840572 1840577) (-1080 "SASTCAT.spad" 1839173 1839182 1839254 1839259) (-1079 "SAOS.spad" 1839045 1839054 1839163 1839168) (-1078 "SAERFFC.spad" 1838758 1838778 1839035 1839040) (-1077 "SAE.spad" 1836933 1836949 1837544 1837679) (-1076 "SAEFACT.spad" 1836634 1836654 1836923 1836928) (-1075 "RURPK.spad" 1834275 1834291 1836624 1836629) (-1074 "RULESET.spad" 1833716 1833740 1834265 1834270) (-1073 "RULE.spad" 1831920 1831944 1833706 1833711) (-1072 "RULECOLD.spad" 1831772 1831785 1831910 1831915) (-1071 "RTVALUE.spad" 1831505 1831514 1831762 1831767) (-1070 "RSTRCAST.spad" 1831222 1831231 1831495 1831500) (-1069 "RSETGCD.spad" 1827600 1827620 1831212 1831217) (-1068 "RSETCAT.spad" 1817384 1817401 1827568 1827595) (-1067 "RSETCAT.spad" 1807188 1807207 1817374 1817379) (-1066 "RSDCMPK.spad" 1805640 1805660 1807178 1807183) (-1065 "RRCC.spad" 1804024 1804054 1805630 1805635) (-1064 "RRCC.spad" 1802406 1802438 1804014 1804019) (-1063 "RPTAST.spad" 1802108 1802117 1802396 1802401) (-1062 "RPOLCAT.spad" 1781468 1781483 1801976 1802103) (-1061 "RPOLCAT.spad" 1760542 1760559 1781052 1781057) (-1060 "ROUTINE.spad" 1756405 1756414 1759189 1759216) (-1059 "ROMAN.spad" 1755733 1755742 1756271 1756400) (-1058 "ROIRC.spad" 1754813 1754845 1755723 1755728) (-1057 "RNS.spad" 1753716 1753725 1754715 1754808) (-1056 "RNS.spad" 1752705 1752716 1753706 1753711) (-1055 "RNG.spad" 1752440 1752449 1752695 1752700) (-1054 "RMODULE.spad" 1752205 1752216 1752430 1752435) (-1053 "RMCAT2.spad" 1751613 1751670 1752195 1752200) (-1052 "RMATRIX.spad" 1750437 1750456 1750780 1750819) (-1051 "RMATCAT.spad" 1745970 1746001 1750393 1750432) (-1050 "RMATCAT.spad" 1741393 1741426 1745818 1745823) (-1049 "RLINSET.spad" 1740787 1740798 1741383 1741388) (-1048 "RINTERP.spad" 1740675 1740695 1740777 1740782) (-1047 "RING.spad" 1740145 1740154 1740655 1740670) (-1046 "RING.spad" 1739623 1739634 1740135 1740140) (-1045 "RIDIST.spad" 1739007 1739016 1739613 1739618) (-1044 "RGCHAIN.spad" 1737586 1737602 1738492 1738519) (-1043 "RGBCSPC.spad" 1737367 1737379 1737576 1737581) (-1042 "RGBCMDL.spad" 1736897 1736909 1737357 1737362) (-1041 "RF.spad" 1734511 1734522 1736887 1736892) (-1040 "RFFACTOR.spad" 1733973 1733984 1734501 1734506) (-1039 "RFFACT.spad" 1733708 1733720 1733963 1733968) (-1038 "RFDIST.spad" 1732696 1732705 1733698 1733703) (-1037 "RETSOL.spad" 1732113 1732126 1732686 1732691) (-1036 "RETRACT.spad" 1731541 1731552 1732103 1732108) (-1035 "RETRACT.spad" 1730967 1730980 1731531 1731536) (-1034 "RETAST.spad" 1730779 1730788 1730957 1730962) (-1033 "RESULT.spad" 1728839 1728848 1729426 1729453) (-1032 "RESRING.spad" 1728186 1728233 1728777 1728834) (-1031 "RESLATC.spad" 1727510 1727521 1728176 1728181) (-1030 "REPSQ.spad" 1727239 1727250 1727500 1727505) (-1029 "REP.spad" 1724791 1724800 1727229 1727234) (-1028 "REPDB.spad" 1724496 1724507 1724781 1724786) (-1027 "REP2.spad" 1714068 1714079 1724338 1724343) (-1026 "REP1.spad" 1708058 1708069 1714018 1714023) (-1025 "REGSET.spad" 1705855 1705872 1707704 1707731) (-1024 "REF.spad" 1705184 1705195 1705810 1705815) (-1023 "REDORDER.spad" 1704360 1704377 1705174 1705179) (-1022 "RECLOS.spad" 1703143 1703163 1703847 1703940) (-1021 "REALSOLV.spad" 1702275 1702284 1703133 1703138) (-1020 "REAL.spad" 1702147 1702156 1702265 1702270) (-1019 "REAL0Q.spad" 1699429 1699444 1702137 1702142) (-1018 "REAL0.spad" 1696257 1696272 1699419 1699424) (-1017 "RDUCEAST.spad" 1695978 1695987 1696247 1696252) (-1016 "RDIV.spad" 1695629 1695654 1695968 1695973) (-1015 "RDIST.spad" 1695192 1695203 1695619 1695624) (-1014 "RDETRS.spad" 1693988 1694006 1695182 1695187) (-1013 "RDETR.spad" 1692095 1692113 1693978 1693983) (-1012 "RDEEFS.spad" 1691168 1691185 1692085 1692090) (-1011 "RDEEF.spad" 1690164 1690181 1691158 1691163) (-1010 "RCFIELD.spad" 1687350 1687359 1690066 1690159) (-1009 "RCFIELD.spad" 1684622 1684633 1687340 1687345) (-1008 "RCAGG.spad" 1682534 1682545 1684612 1684617) (-1007 "RCAGG.spad" 1680373 1680386 1682453 1682458) (-1006 "RATRET.spad" 1679733 1679744 1680363 1680368) (-1005 "RATFACT.spad" 1679425 1679437 1679723 1679728) (-1004 "RANDSRC.spad" 1678744 1678753 1679415 1679420) (-1003 "RADUTIL.spad" 1678498 1678507 1678734 1678739) (-1002 "RADIX.spad" 1675399 1675413 1676965 1677058) (-1001 "RADFF.spad" 1673812 1673849 1673931 1674087) (-1000 "RADCAT.spad" 1673405 1673414 1673802 1673807) (-999 "RADCAT.spad" 1672997 1673007 1673395 1673400) (-998 "QUEUE.spad" 1672340 1672350 1672604 1672631) (-997 "QUAT.spad" 1670922 1670932 1671264 1671329) (-996 "QUATCT2.spad" 1670541 1670559 1670912 1670917) (-995 "QUATCAT.spad" 1668706 1668716 1670471 1670536) (-994 "QUATCAT.spad" 1666622 1666634 1668389 1668394) (-993 "QUAGG.spad" 1665448 1665458 1666590 1666617) (-992 "QQUTAST.spad" 1665217 1665225 1665438 1665443) (-991 "QFORM.spad" 1664680 1664694 1665207 1665212) (-990 "QFCAT.spad" 1663383 1663393 1664582 1664675) (-989 "QFCAT.spad" 1661677 1661689 1662878 1662883) (-988 "QFCAT2.spad" 1661368 1661384 1661667 1661672) (-987 "QEQUAT.spad" 1660925 1660933 1661358 1661363) (-986 "QCMPACK.spad" 1655672 1655691 1660915 1660920) (-985 "QALGSET.spad" 1651747 1651779 1655586 1655591) (-984 "QALGSET2.spad" 1649743 1649761 1651737 1651742) (-983 "PWFFINTB.spad" 1647053 1647074 1649733 1649738) (-982 "PUSHVAR.spad" 1646382 1646401 1647043 1647048) (-981 "PTRANFN.spad" 1642508 1642518 1646372 1646377) (-980 "PTPACK.spad" 1639596 1639606 1642498 1642503) (-979 "PTFUNC2.spad" 1639417 1639431 1639586 1639591) (-978 "PTCAT.spad" 1638666 1638676 1639385 1639412) (-977 "PSQFR.spad" 1637973 1637997 1638656 1638661) (-976 "PSEUDLIN.spad" 1636831 1636841 1637963 1637968) (-975 "PSETPK.spad" 1622264 1622280 1636709 1636714) (-974 "PSETCAT.spad" 1616184 1616207 1622244 1622259) (-973 "PSETCAT.spad" 1610078 1610103 1616140 1616145) (-972 "PSCURVE.spad" 1609061 1609069 1610068 1610073) (-971 "PSCAT.spad" 1607828 1607857 1608959 1609056) (-970 "PSCAT.spad" 1606685 1606716 1607818 1607823) (-969 "PRTITION.spad" 1605630 1605638 1606675 1606680) (-968 "PRTDAST.spad" 1605349 1605357 1605620 1605625) (-967 "PRS.spad" 1594911 1594928 1605305 1605310) (-966 "PRQAGG.spad" 1594342 1594352 1594879 1594906) (-965 "PROPLOG.spad" 1593637 1593645 1594332 1594337) (-964 "PROPFRML.spad" 1592445 1592456 1593627 1593632) (-963 "PROPERTY.spad" 1591931 1591939 1592435 1592440) (-962 "PRODUCT.spad" 1589611 1589623 1589897 1589952) (-961 "PR.spad" 1587997 1588009 1588702 1588829) (-960 "PRINT.spad" 1587749 1587757 1587987 1587992) (-959 "PRIMES.spad" 1586000 1586010 1587739 1587744) (-958 "PRIMELT.spad" 1583981 1583995 1585990 1585995) (-957 "PRIMCAT.spad" 1583604 1583612 1583971 1583976) (-956 "PRIMARR.spad" 1582609 1582619 1582787 1582814) (-955 "PRIMARR2.spad" 1581332 1581344 1582599 1582604) (-954 "PREASSOC.spad" 1580704 1580716 1581322 1581327) (-953 "PPCURVE.spad" 1579841 1579849 1580694 1580699) (-952 "PORTNUM.spad" 1579616 1579624 1579831 1579836) (-951 "POLYROOT.spad" 1578445 1578467 1579572 1579577) (-950 "POLY.spad" 1575778 1575788 1576295 1576422) (-949 "POLYLIFT.spad" 1575039 1575062 1575768 1575773) (-948 "POLYCATQ.spad" 1573141 1573163 1575029 1575034) (-947 "POLYCAT.spad" 1566547 1566568 1573009 1573136) (-946 "POLYCAT.spad" 1559291 1559314 1565755 1565760) (-945 "POLY2UP.spad" 1558739 1558753 1559281 1559286) (-944 "POLY2.spad" 1558334 1558346 1558729 1558734) (-943 "POLUTIL.spad" 1557275 1557304 1558290 1558295) (-942 "POLTOPOL.spad" 1556023 1556038 1557265 1557270) (-941 "POINT.spad" 1554861 1554871 1554948 1554975) (-940 "PNTHEORY.spad" 1551527 1551535 1554851 1554856) (-939 "PMTOOLS.spad" 1550284 1550298 1551517 1551522) (-938 "PMSYM.spad" 1549829 1549839 1550274 1550279) (-937 "PMQFCAT.spad" 1549416 1549430 1549819 1549824) (-936 "PMPRED.spad" 1548885 1548899 1549406 1549411) (-935 "PMPREDFS.spad" 1548329 1548351 1548875 1548880) (-934 "PMPLCAT.spad" 1547399 1547417 1548261 1548266) (-933 "PMLSAGG.spad" 1546980 1546994 1547389 1547394) (-932 "PMKERNEL.spad" 1546547 1546559 1546970 1546975) (-931 "PMINS.spad" 1546123 1546133 1546537 1546542) (-930 "PMFS.spad" 1545696 1545714 1546113 1546118) (-929 "PMDOWN.spad" 1544982 1544996 1545686 1545691) (-928 "PMASS.spad" 1543990 1543998 1544972 1544977) (-927 "PMASSFS.spad" 1542955 1542971 1543980 1543985) (-926 "PLOTTOOL.spad" 1542735 1542743 1542945 1542950) (-925 "PLOT.spad" 1537566 1537574 1542725 1542730) (-924 "PLOT3D.spad" 1533986 1533994 1537556 1537561) (-923 "PLOT1.spad" 1533127 1533137 1533976 1533981) (-922 "PLEQN.spad" 1520343 1520370 1533117 1533122) (-921 "PINTERP.spad" 1519959 1519978 1520333 1520338) (-920 "PINTERPA.spad" 1519741 1519757 1519949 1519954) (-919 "PI.spad" 1519348 1519356 1519715 1519736) (-918 "PID.spad" 1518304 1518312 1519274 1519343) (-917 "PICOERCE.spad" 1517961 1517971 1518294 1518299) (-916 "PGROEB.spad" 1516558 1516572 1517951 1517956) (-915 "PGE.spad" 1507811 1507819 1516548 1516553) (-914 "PGCD.spad" 1506693 1506710 1507801 1507806) (-913 "PFRPAC.spad" 1505836 1505846 1506683 1506688) (-912 "PFR.spad" 1502493 1502503 1505738 1505831) (-911 "PFOTOOLS.spad" 1501751 1501767 1502483 1502488) (-910 "PFOQ.spad" 1501121 1501139 1501741 1501746) (-909 "PFO.spad" 1500540 1500567 1501111 1501116) (-908 "PF.spad" 1500114 1500126 1500345 1500438) (-907 "PFECAT.spad" 1497780 1497788 1500040 1500109) (-906 "PFECAT.spad" 1495474 1495484 1497736 1497741) (-905 "PFBRU.spad" 1493344 1493356 1495464 1495469) (-904 "PFBR.spad" 1490882 1490905 1493334 1493339) (-903 "PERM.spad" 1486563 1486573 1490712 1490727) (-902 "PERMGRP.spad" 1481299 1481309 1486553 1486558) (-901 "PERMCAT.spad" 1479851 1479861 1481279 1481294) (-900 "PERMAN.spad" 1478383 1478397 1479841 1479846) (-899 "PENDTREE.spad" 1477722 1477732 1478012 1478017) (-898 "PDRING.spad" 1476213 1476223 1477702 1477717) (-897 "PDRING.spad" 1474712 1474724 1476203 1476208) (-896 "PDEPROB.spad" 1473727 1473735 1474702 1474707) (-895 "PDEPACK.spad" 1467729 1467737 1473717 1473722) (-894 "PDECOMP.spad" 1467191 1467208 1467719 1467724) (-893 "PDECAT.spad" 1465545 1465553 1467181 1467186) (-892 "PCOMP.spad" 1465396 1465409 1465535 1465540) (-891 "PBWLB.spad" 1463978 1463995 1465386 1465391) (-890 "PATTERN.spad" 1458409 1458419 1463968 1463973) (-889 "PATTERN2.spad" 1458145 1458157 1458399 1458404) (-888 "PATTERN1.spad" 1456447 1456463 1458135 1458140) (-887 "PATRES.spad" 1453994 1454006 1456437 1456442) (-886 "PATRES2.spad" 1453656 1453670 1453984 1453989) (-885 "PATMATCH.spad" 1451813 1451844 1453364 1453369) (-884 "PATMAB.spad" 1451238 1451248 1451803 1451808) (-883 "PATLRES.spad" 1450322 1450336 1451228 1451233) (-882 "PATAB.spad" 1450086 1450096 1450312 1450317) (-881 "PARTPERM.spad" 1447448 1447456 1450076 1450081) (-880 "PARSURF.spad" 1446876 1446904 1447438 1447443) (-879 "PARSU2.spad" 1446671 1446687 1446866 1446871) (-878 "script-parser.spad" 1446191 1446199 1446661 1446666) (-877 "PARSCURV.spad" 1445619 1445647 1446181 1446186) (-876 "PARSC2.spad" 1445408 1445424 1445609 1445614) (-875 "PARPCURV.spad" 1444866 1444894 1445398 1445403) (-874 "PARPC2.spad" 1444655 1444671 1444856 1444861) (-873 "PAN2EXPR.spad" 1444067 1444075 1444645 1444650) (-872 "PALETTE.spad" 1443037 1443045 1444057 1444062) (-871 "PAIR.spad" 1442020 1442033 1442625 1442630) (-870 "PADICRC.spad" 1439350 1439368 1440525 1440618) (-869 "PADICRAT.spad" 1437365 1437377 1437586 1437679) (-868 "PADIC.spad" 1437060 1437072 1437291 1437360) (-867 "PADICCT.spad" 1435601 1435613 1436986 1437055) (-866 "PADEPAC.spad" 1434280 1434299 1435591 1435596) (-865 "PADE.spad" 1433020 1433036 1434270 1434275) (-864 "OWP.spad" 1432260 1432290 1432878 1432945) (-863 "OVERSET.spad" 1431833 1431841 1432250 1432255) (-862 "OVAR.spad" 1431614 1431637 1431823 1431828) (-861 "OUT.spad" 1430698 1430706 1431604 1431609) (-860 "OUTFORM.spad" 1419994 1420002 1430688 1430693) (-859 "OUTBFILE.spad" 1419412 1419420 1419984 1419989) (-858 "OUTBCON.spad" 1418410 1418418 1419402 1419407) (-857 "OUTBCON.spad" 1417406 1417416 1418400 1418405) (-856 "OSI.spad" 1416881 1416889 1417396 1417401) (-855 "OSGROUP.spad" 1416799 1416807 1416871 1416876) (-854 "ORTHPOL.spad" 1415260 1415270 1416716 1416721) (-853 "OREUP.spad" 1414713 1414741 1414940 1414979) (-852 "ORESUP.spad" 1414012 1414036 1414393 1414432) (-851 "OREPCTO.spad" 1411831 1411843 1413932 1413937) (-850 "OREPCAT.spad" 1405888 1405898 1411787 1411826) (-849 "OREPCAT.spad" 1399835 1399847 1405736 1405741) (-848 "ORDSET.spad" 1399001 1399009 1399825 1399830) (-847 "ORDSET.spad" 1398165 1398175 1398991 1398996) (-846 "ORDRING.spad" 1397555 1397563 1398145 1398160) (-845 "ORDRING.spad" 1396953 1396963 1397545 1397550) (-844 "ORDMON.spad" 1396808 1396816 1396943 1396948) (-843 "ORDFUNS.spad" 1395934 1395950 1396798 1396803) (-842 "ORDFIN.spad" 1395754 1395762 1395924 1395929) (-841 "ORDCOMP.spad" 1394219 1394229 1395301 1395330) (-840 "ORDCOMP2.spad" 1393504 1393516 1394209 1394214) (-839 "OPTPROB.spad" 1392142 1392150 1393494 1393499) (-838 "OPTPACK.spad" 1384527 1384535 1392132 1392137) (-837 "OPTCAT.spad" 1382202 1382210 1384517 1384522) (-836 "OPSIG.spad" 1381854 1381862 1382192 1382197) (-835 "OPQUERY.spad" 1381403 1381411 1381844 1381849) (-834 "OP.spad" 1381145 1381155 1381225 1381292) (-833 "OPERCAT.spad" 1380609 1380619 1381135 1381140) (-832 "OPERCAT.spad" 1380071 1380083 1380599 1380604) (-831 "ONECOMP.spad" 1378816 1378826 1379618 1379647) (-830 "ONECOMP2.spad" 1378234 1378246 1378806 1378811) (-829 "OMSERVER.spad" 1377236 1377244 1378224 1378229) (-828 "OMSAGG.spad" 1377024 1377034 1377192 1377231) (-827 "OMPKG.spad" 1375636 1375644 1377014 1377019) (-826 "OM.spad" 1374601 1374609 1375626 1375631) (-825 "OMLO.spad" 1374026 1374038 1374487 1374526) (-824 "OMEXPR.spad" 1373860 1373870 1374016 1374021) (-823 "OMERR.spad" 1373403 1373411 1373850 1373855) (-822 "OMERRK.spad" 1372437 1372445 1373393 1373398) (-821 "OMENC.spad" 1371781 1371789 1372427 1372432) (-820 "OMDEV.spad" 1366070 1366078 1371771 1371776) (-819 "OMCONN.spad" 1365479 1365487 1366060 1366065) (-818 "OINTDOM.spad" 1365242 1365250 1365405 1365474) (-817 "OFMONOID.spad" 1361429 1361439 1365232 1365237) (-816 "ODVAR.spad" 1360690 1360700 1361419 1361424) (-815 "ODR.spad" 1360334 1360360 1360502 1360651) (-814 "ODPOL.spad" 1357716 1357726 1358056 1358183) (-813 "ODP.spad" 1347563 1347583 1347936 1348067) (-812 "ODETOOLS.spad" 1346146 1346165 1347553 1347558) (-811 "ODESYS.spad" 1343796 1343813 1346136 1346141) (-810 "ODERTRIC.spad" 1339737 1339754 1343753 1343758) (-809 "ODERED.spad" 1339124 1339148 1339727 1339732) (-808 "ODERAT.spad" 1336675 1336692 1339114 1339119) (-807 "ODEPRRIC.spad" 1333566 1333588 1336665 1336670) (-806 "ODEPROB.spad" 1332823 1332831 1333556 1333561) (-805 "ODEPRIM.spad" 1330097 1330119 1332813 1332818) (-804 "ODEPAL.spad" 1329473 1329497 1330087 1330092) (-803 "ODEPACK.spad" 1316075 1316083 1329463 1329468) (-802 "ODEINT.spad" 1315506 1315522 1316065 1316070) (-801 "ODEIFTBL.spad" 1312901 1312909 1315496 1315501) (-800 "ODEEF.spad" 1308268 1308284 1312891 1312896) (-799 "ODECONST.spad" 1307787 1307805 1308258 1308263) (-798 "ODECAT.spad" 1306383 1306391 1307777 1307782) (-797 "OCT.spad" 1304521 1304531 1305237 1305276) (-796 "OCTCT2.spad" 1304165 1304186 1304511 1304516) (-795 "OC.spad" 1301939 1301949 1304121 1304160) (-794 "OC.spad" 1299438 1299450 1301622 1301627) (-793 "OCAMON.spad" 1299286 1299294 1299428 1299433) (-792 "OASGP.spad" 1299101 1299109 1299276 1299281) (-791 "OAMONS.spad" 1298621 1298629 1299091 1299096) (-790 "OAMON.spad" 1298482 1298490 1298611 1298616) (-789 "OAGROUP.spad" 1298344 1298352 1298472 1298477) (-788 "NUMTUBE.spad" 1297931 1297947 1298334 1298339) (-787 "NUMQUAD.spad" 1285793 1285801 1297921 1297926) (-786 "NUMODE.spad" 1276929 1276937 1285783 1285788) (-785 "NUMINT.spad" 1274487 1274495 1276919 1276924) (-784 "NUMFMT.spad" 1273327 1273335 1274477 1274482) (-783 "NUMERIC.spad" 1265399 1265409 1273132 1273137) (-782 "NTSCAT.spad" 1263901 1263917 1265367 1265394) (-781 "NTPOLFN.spad" 1263446 1263456 1263818 1263823) (-780 "NSUP.spad" 1256492 1256502 1261032 1261185) (-779 "NSUP2.spad" 1255884 1255896 1256482 1256487) (-778 "NSMP.spad" 1252115 1252134 1252423 1252550) (-777 "NREP.spad" 1250487 1250501 1252105 1252110) (-776 "NPCOEF.spad" 1249733 1249753 1250477 1250482) (-775 "NORMRETR.spad" 1249331 1249370 1249723 1249728) (-774 "NORMPK.spad" 1247233 1247252 1249321 1249326) (-773 "NORMMA.spad" 1246921 1246947 1247223 1247228) (-772 "NONE.spad" 1246662 1246670 1246911 1246916) (-771 "NONE1.spad" 1246338 1246348 1246652 1246657) (-770 "NODE1.spad" 1245807 1245823 1246328 1246333) (-769 "NNI.spad" 1244694 1244702 1245781 1245802) (-768 "NLINSOL.spad" 1243316 1243326 1244684 1244689) (-767 "NIPROB.spad" 1241857 1241865 1243306 1243311) (-766 "NFINTBAS.spad" 1239317 1239334 1241847 1241852) (-765 "NETCLT.spad" 1239291 1239302 1239307 1239312) (-764 "NCODIV.spad" 1237489 1237505 1239281 1239286) (-763 "NCNTFRAC.spad" 1237131 1237145 1237479 1237484) (-762 "NCEP.spad" 1235291 1235305 1237121 1237126) (-761 "NASRING.spad" 1234887 1234895 1235281 1235286) (-760 "NASRING.spad" 1234481 1234491 1234877 1234882) (-759 "NARNG.spad" 1233825 1233833 1234471 1234476) (-758 "NARNG.spad" 1233167 1233177 1233815 1233820) (-757 "NAGSP.spad" 1232240 1232248 1233157 1233162) (-756 "NAGS.spad" 1221765 1221773 1232230 1232235) (-755 "NAGF07.spad" 1220158 1220166 1221755 1221760) (-754 "NAGF04.spad" 1214390 1214398 1220148 1220153) (-753 "NAGF02.spad" 1208199 1208207 1214380 1214385) (-752 "NAGF01.spad" 1203802 1203810 1208189 1208194) (-751 "NAGE04.spad" 1197262 1197270 1203792 1203797) (-750 "NAGE02.spad" 1187604 1187612 1197252 1197257) (-749 "NAGE01.spad" 1183488 1183496 1187594 1187599) (-748 "NAGD03.spad" 1181408 1181416 1183478 1183483) (-747 "NAGD02.spad" 1173939 1173947 1181398 1181403) (-746 "NAGD01.spad" 1168052 1168060 1173929 1173934) (-745 "NAGC06.spad" 1163839 1163847 1168042 1168047) (-744 "NAGC05.spad" 1162308 1162316 1163829 1163834) (-743 "NAGC02.spad" 1161563 1161571 1162298 1162303) (-742 "NAALG.spad" 1161098 1161108 1161531 1161558) (-741 "NAALG.spad" 1160653 1160665 1161088 1161093) (-740 "MULTSQFR.spad" 1157611 1157628 1160643 1160648) (-739 "MULTFACT.spad" 1156994 1157011 1157601 1157606) (-738 "MTSCAT.spad" 1155028 1155049 1156892 1156989) (-737 "MTHING.spad" 1154685 1154695 1155018 1155023) (-736 "MSYSCMD.spad" 1154119 1154127 1154675 1154680) (-735 "MSET.spad" 1152061 1152071 1153825 1153864) (-734 "MSETAGG.spad" 1151906 1151916 1152029 1152056) (-733 "MRING.spad" 1148877 1148889 1151614 1151681) (-732 "MRF2.spad" 1148445 1148459 1148867 1148872) (-731 "MRATFAC.spad" 1147991 1148008 1148435 1148440) (-730 "MPRFF.spad" 1146021 1146040 1147981 1147986) (-729 "MPOLY.spad" 1143492 1143507 1143851 1143978) (-728 "MPCPF.spad" 1142756 1142775 1143482 1143487) (-727 "MPC3.spad" 1142571 1142611 1142746 1142751) (-726 "MPC2.spad" 1142213 1142246 1142561 1142566) (-725 "MONOTOOL.spad" 1140548 1140565 1142203 1142208) (-724 "MONOID.spad" 1139867 1139875 1140538 1140543) (-723 "MONOID.spad" 1139184 1139194 1139857 1139862) (-722 "MONOGEN.spad" 1137930 1137943 1139044 1139179) (-721 "MONOGEN.spad" 1136698 1136713 1137814 1137819) (-720 "MONADWU.spad" 1134712 1134720 1136688 1136693) (-719 "MONADWU.spad" 1132724 1132734 1134702 1134707) (-718 "MONAD.spad" 1131868 1131876 1132714 1132719) (-717 "MONAD.spad" 1131010 1131020 1131858 1131863) (-716 "MOEBIUS.spad" 1129696 1129710 1130990 1131005) (-715 "MODULE.spad" 1129566 1129576 1129664 1129691) (-714 "MODULE.spad" 1129456 1129468 1129556 1129561) (-713 "MODRING.spad" 1128787 1128826 1129436 1129451) (-712 "MODOP.spad" 1127446 1127458 1128609 1128676) (-711 "MODMONOM.spad" 1127175 1127193 1127436 1127441) (-710 "MODMON.spad" 1123970 1123986 1124689 1124842) (-709 "MODFIELD.spad" 1123328 1123367 1123872 1123965) (-708 "MMLFORM.spad" 1122188 1122196 1123318 1123323) (-707 "MMAP.spad" 1121928 1121962 1122178 1122183) (-706 "MLO.spad" 1120355 1120365 1121884 1121923) (-705 "MLIFT.spad" 1118927 1118944 1120345 1120350) (-704 "MKUCFUNC.spad" 1118460 1118478 1118917 1118922) (-703 "MKRECORD.spad" 1118062 1118075 1118450 1118455) (-702 "MKFUNC.spad" 1117443 1117453 1118052 1118057) (-701 "MKFLCFN.spad" 1116399 1116409 1117433 1117438) (-700 "MKBCFUNC.spad" 1115884 1115902 1116389 1116394) (-699 "MINT.spad" 1115323 1115331 1115786 1115879) (-698 "MHROWRED.spad" 1113824 1113834 1115313 1115318) (-697 "MFLOAT.spad" 1112340 1112348 1113714 1113819) (-696 "MFINFACT.spad" 1111740 1111762 1112330 1112335) (-695 "MESH.spad" 1109472 1109480 1111730 1111735) (-694 "MDDFACT.spad" 1107665 1107675 1109462 1109467) (-693 "MDAGG.spad" 1106952 1106962 1107645 1107660) (-692 "MCMPLX.spad" 1102963 1102971 1103577 1103778) (-691 "MCDEN.spad" 1102171 1102183 1102953 1102958) (-690 "MCALCFN.spad" 1099273 1099299 1102161 1102166) (-689 "MAYBE.spad" 1098557 1098568 1099263 1099268) (-688 "MATSTOR.spad" 1095833 1095843 1098547 1098552) (-687 "MATRIX.spad" 1094537 1094547 1095021 1095048) (-686 "MATLIN.spad" 1091863 1091887 1094421 1094426) (-685 "MATCAT.spad" 1083448 1083470 1091831 1091858) (-684 "MATCAT.spad" 1074905 1074929 1083290 1083295) (-683 "MATCAT2.spad" 1074173 1074221 1074895 1074900) (-682 "MAPPKG3.spad" 1073072 1073086 1074163 1074168) (-681 "MAPPKG2.spad" 1072406 1072418 1073062 1073067) (-680 "MAPPKG1.spad" 1071224 1071234 1072396 1072401) (-679 "MAPPAST.spad" 1070537 1070545 1071214 1071219) (-678 "MAPHACK3.spad" 1070345 1070359 1070527 1070532) (-677 "MAPHACK2.spad" 1070110 1070122 1070335 1070340) (-676 "MAPHACK1.spad" 1069740 1069750 1070100 1070105) (-675 "MAGMA.spad" 1067530 1067547 1069730 1069735) (-674 "MACROAST.spad" 1067109 1067117 1067520 1067525) (-673 "M3D.spad" 1064805 1064815 1066487 1066492) (-672 "LZSTAGG.spad" 1062033 1062043 1064795 1064800) (-671 "LZSTAGG.spad" 1059259 1059271 1062023 1062028) (-670 "LWORD.spad" 1055964 1055981 1059249 1059254) (-669 "LSTAST.spad" 1055748 1055756 1055954 1055959) (-668 "LSQM.spad" 1053974 1053988 1054372 1054423) (-667 "LSPP.spad" 1053507 1053524 1053964 1053969) (-666 "LSMP.spad" 1052347 1052375 1053497 1053502) (-665 "LSMP1.spad" 1050151 1050165 1052337 1052342) (-664 "LSAGG.spad" 1049820 1049830 1050119 1050146) (-663 "LSAGG.spad" 1049509 1049521 1049810 1049815) (-662 "LPOLY.spad" 1048463 1048482 1049365 1049434) (-661 "LPEFRAC.spad" 1047720 1047730 1048453 1048458) (-660 "LO.spad" 1047121 1047135 1047654 1047681) (-659 "LOGIC.spad" 1046723 1046731 1047111 1047116) (-658 "LOGIC.spad" 1046323 1046333 1046713 1046718) (-657 "LODOOPS.spad" 1045241 1045253 1046313 1046318) (-656 "LODO.spad" 1044625 1044641 1044921 1044960) (-655 "LODOF.spad" 1043669 1043686 1044582 1044587) (-654 "LODOCAT.spad" 1042327 1042337 1043625 1043664) (-653 "LODOCAT.spad" 1040983 1040995 1042283 1042288) (-652 "LODO2.spad" 1040256 1040268 1040663 1040702) (-651 "LODO1.spad" 1039656 1039666 1039936 1039975) (-650 "LODEEF.spad" 1038428 1038446 1039646 1039651) (-649 "LNAGG.spad" 1034230 1034240 1038418 1038423) (-648 "LNAGG.spad" 1029996 1030008 1034186 1034191) (-647 "LMOPS.spad" 1026732 1026749 1029986 1029991) (-646 "LMODULE.spad" 1026500 1026510 1026722 1026727) (-645 "LMDICT.spad" 1025783 1025793 1026051 1026078) (-644 "LLINSET.spad" 1025180 1025190 1025773 1025778) (-643 "LITERAL.spad" 1025086 1025097 1025170 1025175) (-642 "LIST.spad" 1022804 1022814 1024233 1024260) (-641 "LIST3.spad" 1022095 1022109 1022794 1022799) (-640 "LIST2.spad" 1020735 1020747 1022085 1022090) (-639 "LIST2MAP.spad" 1017612 1017624 1020725 1020730) (-638 "LINSET.spad" 1017234 1017244 1017602 1017607) (-637 "LINEXP.spad" 1016666 1016676 1017214 1017229) (-636 "LINDEP.spad" 1015443 1015455 1016578 1016583) (-635 "LIMITRF.spad" 1013357 1013367 1015433 1015438) (-634 "LIMITPS.spad" 1012240 1012253 1013347 1013352) (-633 "LIE.spad" 1010254 1010266 1011530 1011675) (-632 "LIECAT.spad" 1009730 1009740 1010180 1010249) (-631 "LIECAT.spad" 1009234 1009246 1009686 1009691) (-630 "LIB.spad" 1007282 1007290 1007893 1007908) (-629 "LGROBP.spad" 1004635 1004654 1007272 1007277) (-628 "LF.spad" 1003554 1003570 1004625 1004630) (-627 "LFCAT.spad" 1002573 1002581 1003544 1003549) (-626 "LEXTRIPK.spad" 998076 998091 1002563 1002568) (-625 "LEXP.spad" 996079 996106 998056 998071) (-624 "LETAST.spad" 995778 995786 996069 996074) (-623 "LEADCDET.spad" 994162 994179 995768 995773) (-622 "LAZM3PK.spad" 992866 992888 994152 994157) (-621 "LAUPOL.spad" 991555 991568 992459 992528) (-620 "LAPLACE.spad" 991128 991144 991545 991550) (-619 "LA.spad" 990568 990582 991050 991089) (-618 "LALG.spad" 990344 990354 990548 990563) (-617 "LALG.spad" 990128 990140 990334 990339) (-616 "KVTFROM.spad" 989863 989873 990118 990123) (-615 "KTVLOGIC.spad" 989375 989383 989853 989858) (-614 "KRCFROM.spad" 989113 989123 989365 989370) (-613 "KOVACIC.spad" 987826 987843 989103 989108) (-612 "KONVERT.spad" 987548 987558 987816 987821) (-611 "KOERCE.spad" 987285 987295 987538 987543) (-610 "KERNEL.spad" 985820 985830 987069 987074) (-609 "KERNEL2.spad" 985523 985535 985810 985815) (-608 "KDAGG.spad" 984626 984648 985503 985518) (-607 "KDAGG.spad" 983737 983761 984616 984621) (-606 "KAFILE.spad" 982700 982716 982935 982962) (-605 "JORDAN.spad" 980527 980539 981990 982135) (-604 "JOINAST.spad" 980221 980229 980517 980522) (-603 "JAVACODE.spad" 980087 980095 980211 980216) (-602 "IXAGG.spad" 978210 978234 980077 980082) (-601 "IXAGG.spad" 976188 976214 978057 978062) (-600 "IVECTOR.spad" 974958 974973 975113 975140) (-599 "ITUPLE.spad" 974103 974113 974948 974953) (-598 "ITRIGMNP.spad" 972914 972933 974093 974098) (-597 "ITFUN3.spad" 972408 972422 972904 972909) (-596 "ITFUN2.spad" 972138 972150 972398 972403) (-595 "ITAYLOR.spad" 969930 969945 971974 972099) (-594 "ISUPS.spad" 962341 962356 968904 969001) (-593 "ISUMP.spad" 961838 961854 962331 962336) (-592 "ISTRING.spad" 960841 960854 961007 961034) (-591 "ISAST.spad" 960560 960568 960831 960836) (-590 "IRURPK.spad" 959273 959292 960550 960555) (-589 "IRSN.spad" 957233 957241 959263 959268) (-588 "IRRF2F.spad" 955708 955718 957189 957194) (-587 "IRREDFFX.spad" 955309 955320 955698 955703) (-586 "IROOT.spad" 953640 953650 955299 955304) (-585 "IR.spad" 951429 951443 953495 953522) (-584 "IR2.spad" 950449 950465 951419 951424) (-583 "IR2F.spad" 949649 949665 950439 950444) (-582 "IPRNTPK.spad" 949409 949417 949639 949644) (-581 "IPF.spad" 948974 948986 949214 949307) (-580 "IPADIC.spad" 948735 948761 948900 948969) (-579 "IP4ADDR.spad" 948292 948300 948725 948730) (-578 "IOMODE.spad" 947913 947921 948282 948287) (-577 "IOBFILE.spad" 947274 947282 947903 947908) (-576 "IOBCON.spad" 947139 947147 947264 947269) (-575 "INVLAPLA.spad" 946784 946800 947129 947134) (-574 "INTTR.spad" 940030 940047 946774 946779) (-573 "INTTOOLS.spad" 937741 937757 939604 939609) (-572 "INTSLPE.spad" 937047 937055 937731 937736) (-571 "INTRVL.spad" 936613 936623 936961 937042) (-570 "INTRF.spad" 934977 934991 936603 936608) (-569 "INTRET.spad" 934409 934419 934967 934972) (-568 "INTRAT.spad" 933084 933101 934399 934404) (-567 "INTPM.spad" 931447 931463 932727 932732) (-566 "INTPAF.spad" 929215 929233 931379 931384) (-565 "INTPACK.spad" 919525 919533 929205 929210) (-564 "INT.spad" 918886 918894 919379 919520) (-563 "INTHERTR.spad" 918152 918169 918876 918881) (-562 "INTHERAL.spad" 917818 917842 918142 918147) (-561 "INTHEORY.spad" 914231 914239 917808 917813) (-560 "INTG0.spad" 907694 907712 914163 914168) (-559 "INTFTBL.spad" 901723 901731 907684 907689) (-558 "INTFACT.spad" 900782 900792 901713 901718) (-557 "INTEF.spad" 899097 899113 900772 900777) (-556 "INTDOM.spad" 897712 897720 899023 899092) (-555 "INTDOM.spad" 896389 896399 897702 897707) (-554 "INTCAT.spad" 894642 894652 896303 896384) (-553 "INTBIT.spad" 894145 894153 894632 894637) (-552 "INTALG.spad" 893327 893354 894135 894140) (-551 "INTAF.spad" 892819 892835 893317 893322) (-550 "INTABL.spad" 891337 891368 891500 891527) (-549 "INT8.spad" 891217 891225 891327 891332) (-548 "INT64.spad" 891096 891104 891207 891212) (-547 "INT32.spad" 890975 890983 891086 891091) (-546 "INT16.spad" 890854 890862 890965 890970) (-545 "INS.spad" 888321 888329 890756 890849) (-544 "INS.spad" 885874 885884 888311 888316) (-543 "INPSIGN.spad" 885308 885321 885864 885869) (-542 "INPRODPF.spad" 884374 884393 885298 885303) (-541 "INPRODFF.spad" 883432 883456 884364 884369) (-540 "INNMFACT.spad" 882403 882420 883422 883427) (-539 "INMODGCD.spad" 881887 881917 882393 882398) (-538 "INFSP.spad" 880172 880194 881877 881882) (-537 "INFPROD0.spad" 879222 879241 880162 880167) (-536 "INFORM.spad" 876383 876391 879212 879217) (-535 "INFORM1.spad" 876008 876018 876373 876378) (-534 "INFINITY.spad" 875560 875568 875998 876003) (-533 "INETCLTS.spad" 875537 875545 875550 875555) (-532 "INEP.spad" 874069 874091 875527 875532) (-531 "INDE.spad" 873798 873815 874059 874064) (-530 "INCRMAPS.spad" 873219 873229 873788 873793) (-529 "INBFILE.spad" 872291 872299 873209 873214) (-528 "INBFF.spad" 868061 868072 872281 872286) (-527 "INBCON.spad" 866349 866357 868051 868056) (-526 "INBCON.spad" 864635 864645 866339 866344) (-525 "INAST.spad" 864296 864304 864625 864630) (-524 "IMPTAST.spad" 864004 864012 864286 864291) (-523 "IMATRIX.spad" 862949 862975 863461 863488) (-522 "IMATQF.spad" 862043 862087 862905 862910) (-521 "IMATLIN.spad" 860648 860672 861999 862004) (-520 "ILIST.spad" 859304 859319 859831 859858) (-519 "IIARRAY2.spad" 858692 858730 858911 858938) (-518 "IFF.spad" 858102 858118 858373 858466) (-517 "IFAST.spad" 857716 857724 858092 858097) (-516 "IFARRAY.spad" 855203 855218 856899 856926) (-515 "IFAMON.spad" 855065 855082 855159 855164) (-514 "IEVALAB.spad" 854454 854466 855055 855060) (-513 "IEVALAB.spad" 853841 853855 854444 854449) (-512 "IDPO.spad" 853639 853651 853831 853836) (-511 "IDPOAMS.spad" 853395 853407 853629 853634) (-510 "IDPOAM.spad" 853115 853127 853385 853390) (-509 "IDPC.spad" 852049 852061 853105 853110) (-508 "IDPAM.spad" 851794 851806 852039 852044) (-507 "IDPAG.spad" 851541 851553 851784 851789) (-506 "IDENT.spad" 851191 851199 851531 851536) (-505 "IDECOMP.spad" 848428 848446 851181 851186) (-504 "IDEAL.spad" 843351 843390 848363 848368) (-503 "ICDEN.spad" 842502 842518 843341 843346) (-502 "ICARD.spad" 841691 841699 842492 842497) (-501 "IBPTOOLS.spad" 840284 840301 841681 841686) (-500 "IBITS.spad" 839483 839496 839920 839947) (-499 "IBATOOL.spad" 836358 836377 839473 839478) (-498 "IBACHIN.spad" 834845 834860 836348 836353) (-497 "IARRAY2.spad" 833833 833859 834452 834479) (-496 "IARRAY1.spad" 832878 832893 833016 833043) (-495 "IAN.spad" 831091 831099 832694 832787) (-494 "IALGFACT.spad" 830692 830725 831081 831086) (-493 "HYPCAT.spad" 830116 830124 830682 830687) (-492 "HYPCAT.spad" 829538 829548 830106 830111) (-491 "HOSTNAME.spad" 829346 829354 829528 829533) (-490 "HOMOTOP.spad" 829089 829099 829336 829341) (-489 "HOAGG.spad" 826357 826367 829079 829084) (-488 "HOAGG.spad" 823400 823412 826124 826129) (-487 "HEXADEC.spad" 821502 821510 821867 821960) (-486 "HEUGCD.spad" 820517 820528 821492 821497) (-485 "HELLFDIV.spad" 820107 820131 820507 820512) (-484 "HEAP.spad" 819499 819509 819714 819741) (-483 "HEADAST.spad" 819030 819038 819489 819494) (-482 "HDP.spad" 808873 808889 809250 809381) (-481 "HDMP.spad" 806085 806100 806703 806830) (-480 "HB.spad" 804322 804330 806075 806080) (-479 "HASHTBL.spad" 802792 802823 803003 803030) (-478 "HASAST.spad" 802508 802516 802782 802787) (-477 "HACKPI.spad" 801991 801999 802410 802503) (-476 "GTSET.spad" 800930 800946 801637 801664) (-475 "GSTBL.spad" 799449 799484 799623 799638) (-474 "GSERIES.spad" 796616 796643 797581 797730) (-473 "GROUP.spad" 795885 795893 796596 796611) (-472 "GROUP.spad" 795162 795172 795875 795880) (-471 "GROEBSOL.spad" 793650 793671 795152 795157) (-470 "GRMOD.spad" 792221 792233 793640 793645) (-469 "GRMOD.spad" 790790 790804 792211 792216) (-468 "GRIMAGE.spad" 783395 783403 790780 790785) (-467 "GRDEF.spad" 781774 781782 783385 783390) (-466 "GRAY.spad" 780233 780241 781764 781769) (-465 "GRALG.spad" 779280 779292 780223 780228) (-464 "GRALG.spad" 778325 778339 779270 779275) (-463 "GPOLSET.spad" 777779 777802 778007 778034) (-462 "GOSPER.spad" 777044 777062 777769 777774) (-461 "GMODPOL.spad" 776182 776209 777012 777039) (-460 "GHENSEL.spad" 775251 775265 776172 776177) (-459 "GENUPS.spad" 771352 771365 775241 775246) (-458 "GENUFACT.spad" 770929 770939 771342 771347) (-457 "GENPGCD.spad" 770513 770530 770919 770924) (-456 "GENMFACT.spad" 769965 769984 770503 770508) (-455 "GENEEZ.spad" 767904 767917 769955 769960) (-454 "GDMP.spad" 764958 764975 765734 765861) (-453 "GCNAALG.spad" 758853 758880 764752 764819) (-452 "GCDDOM.spad" 758025 758033 758779 758848) (-451 "GCDDOM.spad" 757259 757269 758015 758020) (-450 "GB.spad" 754777 754815 757215 757220) (-449 "GBINTERN.spad" 750797 750835 754767 754772) (-448 "GBF.spad" 746554 746592 750787 750792) (-447 "GBEUCLID.spad" 744428 744466 746544 746549) (-446 "GAUSSFAC.spad" 743725 743733 744418 744423) (-445 "GALUTIL.spad" 742047 742057 743681 743686) (-444 "GALPOLYU.spad" 740493 740506 742037 742042) (-443 "GALFACTU.spad" 738658 738677 740483 740488) (-442 "GALFACT.spad" 728791 728802 738648 738653) (-441 "FVFUN.spad" 725814 725822 728781 728786) (-440 "FVC.spad" 724866 724874 725804 725809) (-439 "FUNDESC.spad" 724544 724552 724856 724861) (-438 "FUNCTION.spad" 724393 724405 724534 724539) (-437 "FT.spad" 722686 722694 724383 724388) (-436 "FTEM.spad" 721849 721857 722676 722681) (-435 "FSUPFACT.spad" 720749 720768 721785 721790) (-434 "FST.spad" 718835 718843 720739 720744) (-433 "FSRED.spad" 718313 718329 718825 718830) (-432 "FSPRMELT.spad" 717137 717153 718270 718275) (-431 "FSPECF.spad" 715214 715230 717127 717132) (-430 "FS.spad" 709276 709286 714989 715209) (-429 "FS.spad" 703116 703128 708831 708836) (-428 "FSINT.spad" 702774 702790 703106 703111) (-427 "FSERIES.spad" 701961 701973 702594 702693) (-426 "FSCINT.spad" 701274 701290 701951 701956) (-425 "FSAGG.spad" 700391 700401 701230 701269) (-424 "FSAGG.spad" 699470 699482 700311 700316) (-423 "FSAGG2.spad" 698169 698185 699460 699465) (-422 "FS2UPS.spad" 692652 692686 698159 698164) (-421 "FS2.spad" 692297 692313 692642 692647) (-420 "FS2EXPXP.spad" 691420 691443 692287 692292) (-419 "FRUTIL.spad" 690362 690372 691410 691415) (-418 "FR.spad" 684056 684066 689386 689455) (-417 "FRNAALG.spad" 679143 679153 683998 684051) (-416 "FRNAALG.spad" 674242 674254 679099 679104) (-415 "FRNAAF2.spad" 673696 673714 674232 674237) (-414 "FRMOD.spad" 673090 673120 673627 673632) (-413 "FRIDEAL.spad" 672285 672306 673070 673085) (-412 "FRIDEAL2.spad" 671887 671919 672275 672280) (-411 "FRETRCT.spad" 671398 671408 671877 671882) (-410 "FRETRCT.spad" 670775 670787 671256 671261) (-409 "FRAMALG.spad" 669103 669116 670731 670770) (-408 "FRAMALG.spad" 667463 667478 669093 669098) (-407 "FRAC.spad" 664562 664572 664965 665138) (-406 "FRAC2.spad" 664165 664177 664552 664557) (-405 "FR2.spad" 663499 663511 664155 664160) (-404 "FPS.spad" 660308 660316 663389 663494) (-403 "FPS.spad" 657145 657155 660228 660233) (-402 "FPC.spad" 656187 656195 657047 657140) (-401 "FPC.spad" 655315 655325 656177 656182) (-400 "FPATMAB.spad" 655077 655087 655305 655310) (-399 "FPARFRAC.spad" 653550 653567 655067 655072) (-398 "FORTRAN.spad" 652056 652099 653540 653545) (-397 "FORT.spad" 650985 650993 652046 652051) (-396 "FORTFN.spad" 648155 648163 650975 650980) (-395 "FORTCAT.spad" 647839 647847 648145 648150) (-394 "FORMULA.spad" 645303 645311 647829 647834) (-393 "FORMULA1.spad" 644782 644792 645293 645298) (-392 "FORDER.spad" 644473 644497 644772 644777) (-391 "FOP.spad" 643674 643682 644463 644468) (-390 "FNLA.spad" 643098 643120 643642 643669) (-389 "FNCAT.spad" 641685 641693 643088 643093) (-388 "FNAME.spad" 641577 641585 641675 641680) (-387 "FMTC.spad" 641375 641383 641503 641572) (-386 "FMONOID.spad" 638430 638440 641331 641336) (-385 "FM.spad" 638125 638137 638364 638391) (-384 "FMFUN.spad" 635155 635163 638115 638120) (-383 "FMC.spad" 634207 634215 635145 635150) (-382 "FMCAT.spad" 631861 631879 634175 634202) (-381 "FM1.spad" 631218 631230 631795 631822) (-380 "FLOATRP.spad" 628939 628953 631208 631213) (-379 "FLOAT.spad" 622227 622235 628805 628934) (-378 "FLOATCP.spad" 619644 619658 622217 622222) (-377 "FLINEXP.spad" 619356 619366 619624 619639) (-376 "FLINEXP.spad" 619022 619034 619292 619297) (-375 "FLASORT.spad" 618342 618354 619012 619017) (-374 "FLALG.spad" 615988 616007 618268 618337) (-373 "FLAGG.spad" 613006 613016 615968 615983) (-372 "FLAGG.spad" 609925 609937 612889 612894) (-371 "FLAGG2.spad" 608606 608622 609915 609920) (-370 "FINRALG.spad" 606635 606648 608562 608601) (-369 "FINRALG.spad" 604590 604605 606519 606524) (-368 "FINITE.spad" 603742 603750 604580 604585) (-367 "FINAALG.spad" 592723 592733 603684 603737) (-366 "FINAALG.spad" 581716 581728 592679 592684) (-365 "FILE.spad" 581299 581309 581706 581711) (-364 "FILECAT.spad" 579817 579834 581289 581294) (-363 "FIELD.spad" 579223 579231 579719 579812) (-362 "FIELD.spad" 578715 578725 579213 579218) (-361 "FGROUP.spad" 577324 577334 578695 578710) (-360 "FGLMICPK.spad" 576111 576126 577314 577319) (-359 "FFX.spad" 575486 575501 575827 575920) (-358 "FFSLPE.spad" 574975 574996 575476 575481) (-357 "FFPOLY.spad" 566227 566238 574965 574970) (-356 "FFPOLY2.spad" 565287 565304 566217 566222) (-355 "FFP.spad" 564684 564704 565003 565096) (-354 "FF.spad" 564132 564148 564365 564458) (-353 "FFNBX.spad" 562644 562664 563848 563941) (-352 "FFNBP.spad" 561157 561174 562360 562453) (-351 "FFNB.spad" 559622 559643 560838 560931) (-350 "FFINTBAS.spad" 557036 557055 559612 559617) (-349 "FFIELDC.spad" 554611 554619 556938 557031) (-348 "FFIELDC.spad" 552272 552282 554601 554606) (-347 "FFHOM.spad" 551020 551037 552262 552267) (-346 "FFF.spad" 548455 548466 551010 551015) (-345 "FFCGX.spad" 547302 547322 548171 548264) (-344 "FFCGP.spad" 546191 546211 547018 547111) (-343 "FFCG.spad" 544983 545004 545872 545965) (-342 "FFCAT.spad" 538010 538032 544822 544978) (-341 "FFCAT.spad" 531116 531140 537930 537935) (-340 "FFCAT2.spad" 530861 530901 531106 531111) (-339 "FEXPR.spad" 522570 522616 530617 530656) (-338 "FEVALAB.spad" 522276 522286 522560 522565) (-337 "FEVALAB.spad" 521767 521779 522053 522058) (-336 "FDIV.spad" 521209 521233 521757 521762) (-335 "FDIVCAT.spad" 519251 519275 521199 521204) (-334 "FDIVCAT.spad" 517291 517317 519241 519246) (-333 "FDIV2.spad" 516945 516985 517281 517286) (-332 "FCPAK1.spad" 515498 515506 516935 516940) (-331 "FCOMP.spad" 514877 514887 515488 515493) (-330 "FC.spad" 504792 504800 514867 514872) (-329 "FAXF.spad" 497727 497741 504694 504787) (-328 "FAXF.spad" 490714 490730 497683 497688) (-327 "FARRAY.spad" 488860 488870 489897 489924) (-326 "FAMR.spad" 486980 486992 488758 488855) (-325 "FAMR.spad" 485084 485098 486864 486869) (-324 "FAMONOID.spad" 484734 484744 485038 485043) (-323 "FAMONC.spad" 482956 482968 484724 484729) (-322 "FAGROUP.spad" 482562 482572 482852 482879) (-321 "FACUTIL.spad" 480758 480775 482552 482557) (-320 "FACTFUNC.spad" 479934 479944 480748 480753) (-319 "EXPUPXS.spad" 476767 476790 478066 478215) (-318 "EXPRTUBE.spad" 473995 474003 476757 476762) (-317 "EXPRODE.spad" 470867 470883 473985 473990) (-316 "EXPR.spad" 466142 466152 466856 467263) (-315 "EXPR2UPS.spad" 462234 462247 466132 466137) (-314 "EXPR2.spad" 461937 461949 462224 462229) (-313 "EXPEXPAN.spad" 458875 458900 459509 459602) (-312 "EXIT.spad" 458546 458554 458865 458870) (-311 "EXITAST.spad" 458282 458290 458536 458541) (-310 "EVALCYC.spad" 457740 457754 458272 458277) (-309 "EVALAB.spad" 457304 457314 457730 457735) (-308 "EVALAB.spad" 456866 456878 457294 457299) (-307 "EUCDOM.spad" 454408 454416 456792 456861) (-306 "EUCDOM.spad" 452012 452022 454398 454403) (-305 "ESTOOLS.spad" 443852 443860 452002 452007) (-304 "ESTOOLS2.spad" 443453 443467 443842 443847) (-303 "ESTOOLS1.spad" 443138 443149 443443 443448) (-302 "ES.spad" 435685 435693 443128 443133) (-301 "ES.spad" 428138 428148 435583 435588) (-300 "ESCONT.spad" 424911 424919 428128 428133) (-299 "ESCONT1.spad" 424660 424672 424901 424906) (-298 "ES2.spad" 424155 424171 424650 424655) (-297 "ES1.spad" 423721 423737 424145 424150) (-296 "ERROR.spad" 421042 421050 423711 423716) (-295 "EQTBL.spad" 419514 419536 419723 419750) (-294 "EQ.spad" 414307 414317 417106 417218) (-293 "EQ2.spad" 414023 414035 414297 414302) (-292 "EP.spad" 410337 410347 414013 414018) (-291 "ENV.spad" 408989 408997 410327 410332) (-290 "ENTIRER.spad" 408657 408665 408933 408984) (-289 "EMR.spad" 407858 407899 408583 408652) (-288 "ELTAGG.spad" 406098 406117 407848 407853) (-287 "ELTAGG.spad" 404302 404323 406054 406059) (-286 "ELTAB.spad" 403749 403767 404292 404297) (-285 "ELFUTS.spad" 403128 403147 403739 403744) (-284 "ELEMFUN.spad" 402817 402825 403118 403123) (-283 "ELEMFUN.spad" 402504 402514 402807 402812) (-282 "ELAGG.spad" 400447 400457 402484 402499) (-281 "ELAGG.spad" 398327 398339 400366 400371) (-280 "ELABEXPR.spad" 397250 397258 398317 398322) (-279 "EFUPXS.spad" 394026 394056 397206 397211) (-278 "EFULS.spad" 390862 390885 393982 393987) (-277 "EFSTRUC.spad" 388817 388833 390852 390857) (-276 "EF.spad" 383583 383599 388807 388812) (-275 "EAB.spad" 381859 381867 383573 383578) (-274 "E04UCFA.spad" 381395 381403 381849 381854) (-273 "E04NAFA.spad" 380972 380980 381385 381390) (-272 "E04MBFA.spad" 380552 380560 380962 380967) (-271 "E04JAFA.spad" 380088 380096 380542 380547) (-270 "E04GCFA.spad" 379624 379632 380078 380083) (-269 "E04FDFA.spad" 379160 379168 379614 379619) (-268 "E04DGFA.spad" 378696 378704 379150 379155) (-267 "E04AGNT.spad" 374538 374546 378686 378691) (-266 "DVARCAT.spad" 371223 371233 374528 374533) (-265 "DVARCAT.spad" 367906 367918 371213 371218) (-264 "DSMP.spad" 365373 365387 365678 365805) (-263 "DROPT.spad" 359318 359326 365363 365368) (-262 "DROPT1.spad" 358981 358991 359308 359313) (-261 "DROPT0.spad" 353808 353816 358971 358976) (-260 "DRAWPT.spad" 351963 351971 353798 353803) (-259 "DRAW.spad" 344563 344576 351953 351958) (-258 "DRAWHACK.spad" 343871 343881 344553 344558) (-257 "DRAWCX.spad" 341313 341321 343861 343866) (-256 "DRAWCURV.spad" 340850 340865 341303 341308) (-255 "DRAWCFUN.spad" 330022 330030 340840 340845) (-254 "DQAGG.spad" 328190 328200 329990 330017) (-253 "DPOLCAT.spad" 323531 323547 328058 328185) (-252 "DPOLCAT.spad" 318958 318976 323487 323492) (-251 "DPMO.spad" 311184 311200 311322 311623) (-250 "DPMM.spad" 303423 303441 303548 303849) (-249 "DOMCTOR.spad" 303315 303323 303413 303418) (-248 "DOMAIN.spad" 302446 302454 303305 303310) (-247 "DMP.spad" 299704 299719 300276 300403) (-246 "DLP.spad" 299052 299062 299694 299699) (-245 "DLIST.spad" 297631 297641 298235 298262) (-244 "DLAGG.spad" 296042 296052 297621 297626) (-243 "DIVRING.spad" 295584 295592 295986 296037) (-242 "DIVRING.spad" 295170 295180 295574 295579) (-241 "DISPLAY.spad" 293350 293358 295160 295165) (-240 "DIRPROD.spad" 282930 282946 283570 283701) (-239 "DIRPROD2.spad" 281738 281756 282920 282925) (-238 "DIRPCAT.spad" 280680 280696 281602 281733) (-237 "DIRPCAT.spad" 279351 279369 280275 280280) (-236 "DIOSP.spad" 278176 278184 279341 279346) (-235 "DIOPS.spad" 277160 277170 278156 278171) (-234 "DIOPS.spad" 276118 276130 277116 277121) (-233 "DIFRING.spad" 275410 275418 276098 276113) (-232 "DIFRING.spad" 274710 274720 275400 275405) (-231 "DIFEXT.spad" 273869 273879 274690 274705) (-230 "DIFEXT.spad" 272945 272957 273768 273773) (-229 "DIAGG.spad" 272575 272585 272925 272940) (-228 "DIAGG.spad" 272213 272225 272565 272570) (-227 "DHMATRIX.spad" 270517 270527 271670 271697) (-226 "DFSFUN.spad" 263925 263933 270507 270512) (-225 "DFLOAT.spad" 260646 260654 263815 263920) (-224 "DFINTTLS.spad" 258855 258871 260636 260641) (-223 "DERHAM.spad" 256765 256797 258835 258850) (-222 "DEQUEUE.spad" 256083 256093 256372 256399) (-221 "DEGRED.spad" 255698 255712 256073 256078) (-220 "DEFINTRF.spad" 253223 253233 255688 255693) (-219 "DEFINTEF.spad" 251719 251735 253213 253218) (-218 "DEFAST.spad" 251087 251095 251709 251714) (-217 "DECIMAL.spad" 249193 249201 249554 249647) (-216 "DDFACT.spad" 246992 247009 249183 249188) (-215 "DBLRESP.spad" 246590 246614 246982 246987) (-214 "DBASE.spad" 245244 245254 246580 246585) (-213 "DATAARY.spad" 244706 244719 245234 245239) (-212 "D03FAFA.spad" 244534 244542 244696 244701) (-211 "D03EEFA.spad" 244354 244362 244524 244529) (-210 "D03AGNT.spad" 243434 243442 244344 244349) (-209 "D02EJFA.spad" 242896 242904 243424 243429) (-208 "D02CJFA.spad" 242374 242382 242886 242891) (-207 "D02BHFA.spad" 241864 241872 242364 242369) (-206 "D02BBFA.spad" 241354 241362 241854 241859) (-205 "D02AGNT.spad" 236158 236166 241344 241349) (-204 "D01WGTS.spad" 234477 234485 236148 236153) (-203 "D01TRNS.spad" 234454 234462 234467 234472) (-202 "D01GBFA.spad" 233976 233984 234444 234449) (-201 "D01FCFA.spad" 233498 233506 233966 233971) (-200 "D01ASFA.spad" 232966 232974 233488 233493) (-199 "D01AQFA.spad" 232412 232420 232956 232961) (-198 "D01APFA.spad" 231836 231844 232402 232407) (-197 "D01ANFA.spad" 231330 231338 231826 231831) (-196 "D01AMFA.spad" 230840 230848 231320 231325) (-195 "D01ALFA.spad" 230380 230388 230830 230835) (-194 "D01AKFA.spad" 229906 229914 230370 230375) (-193 "D01AJFA.spad" 229429 229437 229896 229901) (-192 "D01AGNT.spad" 225488 225496 229419 229424) (-191 "CYCLOTOM.spad" 224994 225002 225478 225483) (-190 "CYCLES.spad" 221826 221834 224984 224989) (-189 "CVMP.spad" 221243 221253 221816 221821) (-188 "CTRIGMNP.spad" 219733 219749 221233 221238) (-187 "CTOR.spad" 219424 219432 219723 219728) (-186 "CTORKIND.spad" 219027 219035 219414 219419) (-185 "CTORCAT.spad" 218276 218284 219017 219022) (-184 "CTORCAT.spad" 217523 217533 218266 218271) (-183 "CTORCALL.spad" 217103 217111 217513 217518) (-182 "CSTTOOLS.spad" 216346 216359 217093 217098) (-181 "CRFP.spad" 210050 210063 216336 216341) (-180 "CRCEAST.spad" 209770 209778 210040 210045) (-179 "CRAPACK.spad" 208813 208823 209760 209765) (-178 "CPMATCH.spad" 208313 208328 208738 208743) (-177 "CPIMA.spad" 208018 208037 208303 208308) (-176 "COORDSYS.spad" 202911 202921 208008 208013) (-175 "CONTOUR.spad" 202318 202326 202901 202906) (-174 "CONTFRAC.spad" 197930 197940 202220 202313) (-173 "CONDUIT.spad" 197688 197696 197920 197925) (-172 "COMRING.spad" 197362 197370 197626 197683) (-171 "COMPPROP.spad" 196876 196884 197352 197357) (-170 "COMPLPAT.spad" 196643 196658 196866 196871) (-169 "COMPLEX.spad" 190780 190790 191024 191285) (-168 "COMPLEX2.spad" 190493 190505 190770 190775) (-167 "COMPFACT.spad" 190095 190109 190483 190488) (-166 "COMPCAT.spad" 188163 188173 189829 190090) (-165 "COMPCAT.spad" 185959 185971 187627 187632) (-164 "COMMUPC.spad" 185705 185723 185949 185954) (-163 "COMMONOP.spad" 185238 185246 185695 185700) (-162 "COMM.spad" 185047 185055 185228 185233) (-161 "COMMAAST.spad" 184810 184818 185037 185042) (-160 "COMBOPC.spad" 183715 183723 184800 184805) (-159 "COMBINAT.spad" 182460 182470 183705 183710) (-158 "COMBF.spad" 179828 179844 182450 182455) (-157 "COLOR.spad" 178665 178673 179818 179823) (-156 "COLONAST.spad" 178331 178339 178655 178660) (-155 "CMPLXRT.spad" 178040 178057 178321 178326) (-154 "CLLCTAST.spad" 177702 177710 178030 178035) (-153 "CLIP.spad" 173794 173802 177692 177697) (-152 "CLIF.spad" 172433 172449 173750 173789) (-151 "CLAGG.spad" 168918 168928 172423 172428) (-150 "CLAGG.spad" 165274 165286 168781 168786) (-149 "CINTSLPE.spad" 164599 164612 165264 165269) (-148 "CHVAR.spad" 162677 162699 164589 164594) (-147 "CHARZ.spad" 162592 162600 162657 162672) (-146 "CHARPOL.spad" 162100 162110 162582 162587) (-145 "CHARNZ.spad" 161853 161861 162080 162095) (-144 "CHAR.spad" 159721 159729 161843 161848) (-143 "CFCAT.spad" 159037 159045 159711 159716) (-142 "CDEN.spad" 158195 158209 159027 159032) (-141 "CCLASS.spad" 156344 156352 157606 157645) (-140 "CATEGORY.spad" 155434 155442 156334 156339) (-139 "CATCTOR.spad" 155325 155333 155424 155429) (-138 "CATAST.spad" 154943 154951 155315 155320) (-137 "CASEAST.spad" 154657 154665 154933 154938) (-136 "CARTEN.spad" 149760 149784 154647 154652) (-135 "CARTEN2.spad" 149146 149173 149750 149755) (-134 "CARD.spad" 146435 146443 149120 149141) (-133 "CAPSLAST.spad" 146209 146217 146425 146430) (-132 "CACHSET.spad" 145831 145839 146199 146204) (-131 "CABMON.spad" 145384 145392 145821 145826) (-130 "BYTEORD.spad" 145059 145067 145374 145379) (-129 "BYTE.spad" 144484 144492 145049 145054) (-128 "BYTEBUF.spad" 142341 142349 143653 143680) (-127 "BTREE.spad" 141410 141420 141948 141975) (-126 "BTOURN.spad" 140413 140423 141017 141044) (-125 "BTCAT.spad" 139801 139811 140381 140408) (-124 "BTCAT.spad" 139209 139221 139791 139796) (-123 "BTAGG.spad" 138331 138339 139177 139204) (-122 "BTAGG.spad" 137473 137483 138321 138326) (-121 "BSTREE.spad" 136208 136218 137080 137107) (-120 "BRILL.spad" 134403 134414 136198 136203) (-119 "BRAGG.spad" 133327 133337 134393 134398) (-118 "BRAGG.spad" 132215 132227 133283 133288) (-117 "BPADICRT.spad" 130196 130208 130451 130544) (-116 "BPADIC.spad" 129860 129872 130122 130191) (-115 "BOUNDZRO.spad" 129516 129533 129850 129855) (-114 "BOP.spad" 124640 124648 129506 129511) (-113 "BOP1.spad" 122060 122070 124630 124635) (-112 "BOOLEAN.spad" 121492 121500 122050 122055) (-111 "BMODULE.spad" 121204 121216 121460 121487) (-110 "BITS.spad" 120623 120631 120840 120867) (-109 "BINDING.spad" 120034 120042 120613 120618) (-108 "BINARY.spad" 118145 118153 118501 118594) (-107 "BGAGG.spad" 117342 117352 118125 118140) (-106 "BGAGG.spad" 116547 116559 117332 117337) (-105 "BFUNCT.spad" 116111 116119 116527 116542) (-104 "BEZOUT.spad" 115245 115272 116061 116066) (-103 "BBTREE.spad" 112064 112074 114852 114879) (-102 "BASTYPE.spad" 111736 111744 112054 112059) (-101 "BASTYPE.spad" 111406 111416 111726 111731) (-100 "BALFACT.spad" 110845 110858 111396 111401) (-99 "AUTOMOR.spad" 110292 110301 110825 110840) (-98 "ATTREG.spad" 107011 107018 110044 110287) (-97 "ATTRBUT.spad" 103034 103041 106991 107006) (-96 "ATTRAST.spad" 102751 102758 103024 103029) (-95 "ATRIG.spad" 102221 102228 102741 102746) (-94 "ATRIG.spad" 101689 101698 102211 102216) (-93 "ASTCAT.spad" 101593 101600 101679 101684) (-92 "ASTCAT.spad" 101495 101504 101583 101588) (-91 "ASTACK.spad" 100828 100837 101102 101129) (-90 "ASSOCEQ.spad" 99628 99639 100784 100789) (-89 "ASP9.spad" 98709 98722 99618 99623) (-88 "ASP8.spad" 97752 97765 98699 98704) (-87 "ASP80.spad" 97074 97087 97742 97747) (-86 "ASP7.spad" 96234 96247 97064 97069) (-85 "ASP78.spad" 95685 95698 96224 96229) (-84 "ASP77.spad" 95054 95067 95675 95680) (-83 "ASP74.spad" 94146 94159 95044 95049) (-82 "ASP73.spad" 93417 93430 94136 94141) (-81 "ASP6.spad" 92284 92297 93407 93412) (-80 "ASP55.spad" 90793 90806 92274 92279) (-79 "ASP50.spad" 88610 88623 90783 90788) (-78 "ASP4.spad" 87905 87918 88600 88605) (-77 "ASP49.spad" 86904 86917 87895 87900) (-76 "ASP42.spad" 85311 85350 86894 86899) (-75 "ASP41.spad" 83890 83929 85301 85306) (-74 "ASP35.spad" 82878 82891 83880 83885) (-73 "ASP34.spad" 82179 82192 82868 82873) (-72 "ASP33.spad" 81739 81752 82169 82174) (-71 "ASP31.spad" 80879 80892 81729 81734) (-70 "ASP30.spad" 79771 79784 80869 80874) (-69 "ASP29.spad" 79237 79250 79761 79766) (-68 "ASP28.spad" 70510 70523 79227 79232) (-67 "ASP27.spad" 69407 69420 70500 70505) (-66 "ASP24.spad" 68494 68507 69397 69402) (-65 "ASP20.spad" 67958 67971 68484 68489) (-64 "ASP1.spad" 67339 67352 67948 67953) (-63 "ASP19.spad" 62025 62038 67329 67334) (-62 "ASP12.spad" 61439 61452 62015 62020) (-61 "ASP10.spad" 60710 60723 61429 61434) (-60 "ARRAY2.spad" 60070 60079 60317 60344) (-59 "ARRAY1.spad" 58905 58914 59253 59280) (-58 "ARRAY12.spad" 57574 57585 58895 58900) (-57 "ARR2CAT.spad" 53236 53257 57542 57569) (-56 "ARR2CAT.spad" 48918 48941 53226 53231) (-55 "ARITY.spad" 48290 48297 48908 48913) (-54 "APPRULE.spad" 47534 47556 48280 48285) (-53 "APPLYORE.spad" 47149 47162 47524 47529) (-52 "ANY.spad" 45491 45498 47139 47144) (-51 "ANY1.spad" 44562 44571 45481 45486) (-50 "ANTISYM.spad" 43001 43017 44542 44557) (-49 "ANON.spad" 42694 42701 42991 42996) (-48 "AN.spad" 40995 41002 42510 42603) (-47 "AMR.spad" 39174 39185 40893 40990) (-46 "AMR.spad" 37190 37203 38911 38916) (-45 "ALIST.spad" 34602 34623 34952 34979) (-44 "ALGSC.spad" 33725 33751 34474 34527) (-43 "ALGPKG.spad" 29434 29445 33681 33686) (-42 "ALGMFACT.spad" 28623 28637 29424 29429) (-41 "ALGMANIP.spad" 26079 26094 28456 28461) (-40 "ALGFF.spad" 24394 24421 24611 24767) (-39 "ALGFACT.spad" 23515 23525 24384 24389) (-38 "ALGEBRA.spad" 23348 23357 23471 23510) (-37 "ALGEBRA.spad" 23213 23224 23338 23343) (-36 "ALAGG.spad" 22723 22744 23181 23208) (-35 "AHYP.spad" 22104 22111 22713 22718) (-34 "AGG.spad" 20413 20420 22094 22099) (-33 "AGG.spad" 18686 18695 20369 20374) (-32 "AF.spad" 17111 17126 18621 18626) (-31 "ADDAST.spad" 16789 16796 17101 17106) (-30 "ACPLOT.spad" 15360 15367 16779 16784) (-29 "ACFS.spad" 13111 13120 15262 15355) (-28 "ACFS.spad" 10948 10959 13101 13106) (-27 "ACF.spad" 7550 7557 10850 10943) (-26 "ACF.spad" 4238 4247 7540 7545) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 28532714..392259cf 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,599 +1,669 @@
-(161804 . 3452645038)
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) #0#) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
-((((-564)) . T) (($) -2807 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1034 (-407 (-564))))) ((|#1|) . T))
+(187993 . 3452782375)
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) #0#) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
+((((-564)) . T) (($) -2706 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1036 (-407 (-564))))) ((|#1|) . T))
(((|#2| |#2|) . T))
((((-564)) . T))
-((($ $) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) ((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))))
+((($ $) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#2|) . T))
-((($) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
-(|has| |#1| (-905))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
+((($) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
+(|has| |#1| (-907))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
((($) . T) (((-407 (-564))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-144)) . T))
-((((-536)) . T) (((-1152)) . T) (((-225)) . T) (((-379)) . T) (((-888 (-379))) . T))
-(((|#1|) . T))
-((((-225)) . T) (((-858)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1|) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-844)))
-((($ $) . T) ((#0=(-407 (-564)) #0#) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
-(-2807 (|has| |#1| (-816)) (|has| |#1| (-846)))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(|has| |#1| (-844))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-536)) . T) (((-1155)) . T) (((-225)) . T) (((-379)) . T) (((-890 (-379))) . T))
+(((|#1|) . T))
+((((-225)) . T) (((-860)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) . T))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-846)))
+((($ $) . T) ((#0=(-407 (-564)) #0#) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
+(-2706 (|has| |#1| (-818)) (|has| |#1| (-848)))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T))
+((((-860)) . T))
+((((-860)) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-846))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-316 |#1|)) . T) (((-564)) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
-((((-1175)) . T))
-((((-564)) . T) (((-866 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
-((($) . T) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-((((-858)) . T))
-((((-1175)) . T))
+((((-564)) . T) (((-868 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+((($) . T) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-407 (-564))) . T) (((-697)) . T) (($) . T))
+((((-860)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
(((|#4|) . T))
-((((-858)) . T))
-((((-858)) |has| |#1| (-1094)))
-((((-858)) . T) (((-1175)) . T))
+((((-407 (-564))) . T) (((-697)) . T) (($) . T))
+((((-860)) . T))
+((((-860)) |has| |#1| (-1097)))
+((((-860)) . T) (((-1178)) . T))
(((|#1|) . T) ((|#2|) . T))
-((((-1175)) . T))
-(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(((|#2| (-482 (-2181 |#1|) (-767))) . T))
-(((|#1| (-531 (-1170))) . T))
-(((#0=(-866 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
-((((-1152)) . T) (((-954 (-129))) . T) (((-858)) . T))
-((((-858)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-1178)) . T))
+(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(((|#2| (-482 (-2127 |#1|) (-769))) . T))
+(((|#1| (-531 (-1173))) . T))
+(((#0=(-868 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
+((((-1155)) . T) (((-956 (-129))) . T) (((-860)) . T))
+((((-860)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(|has| |#4| (-368))
(|has| |#3| (-368))
(((|#1|) . T))
-((((-1170)) . T))
+((((-1173)) . T))
((((-506)) . T))
-((((-866 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-868 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+((((-860)) . T))
+((((-860)) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-556))
-((((-564)) . T) (((-407 (-564))) -2807 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))) ((|#2|) . T) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((-860 |#1|)) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-((((-2 (|:| -2083 |#1|) (|:| -1838 |#2|))) . T))
+((((-564)) . T) (((-407 (-564))) -2706 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))) ((|#2|) . T) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) (((-862 |#1|)) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+((((-2 (|:| -2047 |#1|) (|:| -2700 |#2|))) . T))
((($) . T))
-((((-564)) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) ((|#1|) . T) (($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((-1170)) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+((((-564)) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) ((|#1|) . T) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) (((-1173)) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
((((-536)) |has| |#1| (-612 (-536))))
-((((-1170)) . T))
+((((-1173)) . T))
((((-564)) . T) (($) . T))
+((((-581 |#1|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) . T))
((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-858)) . T))
-((((-858)) . T))
-((((-407 (-564))) . T) (($) . T))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
-((((-858)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) . T) (((-564)) . T) (($) . T))
+((((-860)) . T))
+((((-860)) . T))
(((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
+((((-407 (-564))) . T) (($) . T))
+((((-860)) . T))
+((((-860)) . T))
(((|#1| |#2|) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1|) . T))
-(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
+(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
(((|#1|) . T))
-(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
-((($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+((((-860)) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
+((((-116 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T) (((-564)) . T))
-(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))))
+((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
+(((|#2|) . T) (((-564)) . T) ((|#6|) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((($) . T))
(((|#2|) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
+((($) . T))
+(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T) (($) . T))
+((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
((($ $) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))))
((($) . T))
+((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-368))
(((|#1|) . T))
+(((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
+(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
(((|#1|) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-858)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-564)) . T))
+((((-860)) . T))
(((|#1| |#2|) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)))
-(((|#1| |#1|) . T))
-((((-858)) . T))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) . T) (((-564)) . T) (($) . T))
(|has| |#1| (-556))
-(((|#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) (((-1170) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1170) |#2|))))
+(((|#1| |#1|) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-844)))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-846)))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-(|has| |#1| (-1094))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-(|has| |#1| (-1094))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-(|has| |#1| (-844))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+(|has| |#1| (-1097))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+(|has| |#1| (-1097))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+(|has| |#1| (-846))
((($) . T) (((-407 (-564))) . T))
+((((-860)) . T))
(((|#1|) . T))
+((((-407 (-564))) . T) (($) . T))
((((-564) (-129)) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-349)))
+((($) . T) (((-407 (-564))) . T))
((((-129)) . T))
-((((-1175)) . T))
-(-2807 (|has| |#4| (-789)) (|has| |#4| (-844)))
-(-2807 (|has| |#4| (-789)) (|has| |#4| (-844)))
-(-2807 (|has| |#3| (-789)) (|has| |#3| (-844)))
-(-2807 (|has| |#3| (-789)) (|has| |#3| (-844)))
+(-2706 (|has| |#4| (-791)) (|has| |#4| (-846)))
+(-2706 (|has| |#4| (-791)) (|has| |#4| (-846)))
+(-2706 (|has| |#3| (-791)) (|has| |#3| (-846)))
+(-2706 (|has| |#3| (-791)) (|has| |#3| (-846)))
(((|#1| |#2|) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-349)))
+((((-1178)) . T))
+(((|#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) (((-1173) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1173) |#2|))))
(((|#1| |#2|) . T))
-(|has| |#1| (-1094))
-(|has| |#1| (-1094))
-(((|#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) . T))
+(|has| |#1| (-1097))
+(|has| |#1| (-1097))
+((((-564)) . T) (((-407 (-564))) . T))
+(((|#1| (-1173) (-1085 (-1173)) (-531 (-1085 (-1173)))) . T))
((((-564) |#1|) . T))
((((-564)) . T))
((((-564)) . T))
-((((-906 |#1|)) . T))
+((((-908 |#1|)) . T))
(((|#1| (-531 |#2|)) . T))
((((-564)) . T))
((((-564)) . T))
(((|#1|) . T))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(((|#1| (-767)) . T))
-(|has| |#2| (-789))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(|has| |#2| (-844))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+(((|#1| (-769)) . T))
+(|has| |#2| (-791))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
+(|has| |#2| (-846))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1152) |#1|) . T))
+((((-1155) |#1|) . T))
((((-564) (-129)) . T))
(((|#1|) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-(((|#3| (-767)) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+(((|#3| (-769)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(|has| |#1| (-1094))
+((($) . T) (((-407 (-564))) . T))
+((($) . T))
+((($) . T))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+((((-407 (-564))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-1097))
((((-407 (-564))) . T) (((-564)) . T))
-((((-564)) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
-((((-564)) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) ((|#1|) . T) (($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#2|) . T))
-((((-1170) |#2|) |has| |#2| (-514 (-1170) |#2|)) ((|#2| |#2|) |has| |#2| (-309 |#2|)))
+((((-564)) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
+((((-564)) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) ((|#1|) . T) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#2|) . T))
+((((-1173) |#2|) |has| |#2| (-514 (-1173) |#2|)) ((|#2| |#2|) |has| |#2| (-309 |#2|)))
((((-407 (-564))) . T) (((-564)) . T))
-((((-564)) . T) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))
+((((-564)) . T) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) (((-1079)) . T) ((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))
(((|#1|) . T) (($) . T))
((((-564)) . T))
((((-564)) . T))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
((((-564)) . T))
((((-564)) . T))
-(((#0=(-695) (-1166 #0#)) . T))
((((-407 (-564))) . T) (($) . T))
+(((#0=(-697) (-1169 #0#)) . T))
+((((-407 (-564))) . T) (((-564)) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
-((((-564) |#1|) . T))
(((|#1|) . T))
(|has| |#2| (-363))
+((((-564) |#1|) . T))
((($) . T) (((-564)) . T) (((-407 (-564))) . T))
(((|#1|) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-858)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-1152) |#1|) . T))
+((((-860)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-1155) |#1|) . T))
(((|#3| |#3|) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
(((|#1| |#1|) . T))
-(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((($) -2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
+(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
((((-564) |#1|) . T))
-((((-858)) . T))
-((((-169 (-225))) |has| |#1| (-1018)) (((-169 (-379))) |has| |#1| (-1018)) (((-536)) |has| |#1| (-612 (-536))) (((-1166 |#1|)) . T) (((-888 (-564))) |has| |#1| (-612 (-888 (-564)))) (((-888 (-379))) |has| |#1| (-612 (-888 (-379)))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1|) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-844)))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-844)))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-860)) . T))
+((((-169 (-225))) |has| |#1| (-1020)) (((-169 (-379))) |has| |#1| (-1020)) (((-536)) |has| |#1| (-612 (-536))) (((-1169 |#1|)) . T) (((-890 (-564))) |has| |#1| (-612 (-890 (-564)))) (((-890 (-379))) |has| |#1| (-612 (-890 (-379)))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) . T))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-846)))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-846)))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
(|has| |#1| (-363))
-((((-858)) . T))
+((((-860)) . T))
+((($) . T))
+((($) . T))
((((-129)) . T))
-(-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))
-(-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))
-(-2807 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
-(-2807 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-858)) . T) (((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-858)) . T))
-(((|#1|) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T))
+(-12 (|has| |#4| (-233)) (|has| |#4| (-1047)))
+(-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))
+(-2706 (|has| |#4| (-172)) (|has| |#4| (-846)) (|has| |#4| (-1047)))
+(-2706 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+((((-860)) . T) (((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-860)) . T))
+(((|#1|) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T))
(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564))))
-(((|#2|) . T) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
(|has| |#1| (-556))
-((((-564)) -2807 (|has| |#4| (-172)) (|has| |#4| (-844)) (-12 (|has| |#4| (-1034 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1045))) ((|#4|) -2807 (|has| |#4| (-172)) (|has| |#4| (-1094))) (((-407 (-564))) -12 (|has| |#4| (-1034 (-407 (-564)))) (|has| |#4| (-1094))))
-((((-564)) -2807 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1045))) ((|#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-564)) -2706 (|has| |#4| (-172)) (|has| |#4| (-846)) (-12 (|has| |#4| (-1036 (-564))) (|has| |#4| (-1097))) (|has| |#4| (-1047))) ((|#4|) -2706 (|has| |#4| (-172)) (|has| |#4| (-1097))) (((-407 (-564))) -12 (|has| |#4| (-1036 (-407 (-564)))) (|has| |#4| (-1097))))
+((((-564)) -2706 (|has| |#3| (-172)) (|has| |#3| (-846)) (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (|has| |#3| (-1047))) ((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-1097))) (((-407 (-564))) -12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(|has| |#1| (-556))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
(((|#1|) . T))
(|has| |#1| (-556))
(|has| |#1| (-556))
(|has| |#1| (-556))
-((((-695)) . T))
+((((-697)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-998)) (|has| |#1| (-1194)))
+(-12 (|has| |#1| (-1000)) (|has| |#1| (-1197)))
+((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
(((|#2|) . T) (($) . T) (((-407 (-564))) . T))
-(-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))
+((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
+(-12 (|has| |#1| (-1097)) (|has| |#2| (-1097)))
((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T))
-(((|#4| |#4|) -2807 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($ $) |has| |#4| (-172)))
-(((|#3| |#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172)))
-(((|#1|) . T))
+(((|#4| |#4|) -2706 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1047))) (($ $) |has| |#4| (-172)))
+(((|#3| |#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($ $) |has| |#3| (-172)))
(((|#2|) . T))
-((((-536)) |has| |#2| (-612 (-536))) (((-888 (-379))) |has| |#2| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#2| (-612 (-888 (-564)))))
-((((-858)) . T))
+(((|#1|) . T))
+((((-536)) |has| |#2| (-612 (-536))) (((-890 (-379))) |has| |#2| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#2| (-612 (-890 (-564)))))
+((((-860)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -2083 |#1|) (|:| -1838 |#2|))) . T) (((-858)) . T))
-((((-536)) |has| |#1| (-612 (-536))) (((-888 (-379))) |has| |#1| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#1| (-612 (-888 (-564)))))
-(((|#4|) -2807 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($) |has| |#4| (-172)))
-(((|#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172)))
-((((-2 (|:| -2083 |#1|) (|:| -1838 |#2|))) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) . T) (((-564)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T))
-((((-641 |#1|)) . T))
-(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
+((((-2 (|:| -2047 |#1|) (|:| -2700 |#2|))) . T) (((-860)) . T))
+((((-536)) |has| |#1| (-612 (-536))) (((-890 (-379))) |has| |#1| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#1| (-612 (-890 (-564)))))
+(((|#4|) -2706 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1047))) (($) |has| |#4| (-172)))
+(((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($) |has| |#3| (-172)))
+((((-2 (|:| -2047 |#1|) (|:| -2700 |#2|))) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-536)) . T) (((-564)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T))
+((((-642 |#1|)) . T))
+(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
((((-407 $) (-407 $)) |has| |#2| (-556)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) . T))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) . T))
(((|#1|) . T))
-(|has| |#2| (-905))
-((((-1152) (-52)) . T))
+(|has| |#2| (-907))
+((((-1155) (-52)) . T))
((((-564)) |has| #0=(-407 |#2|) (-637 (-564))) ((#0#) . T))
-((((-536)) . T) (((-225)) . T) (((-379)) . T) (((-888 (-379))) . T))
-((((-858)) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)))
+((((-536)) . T) (((-225)) . T) (((-379)) . T) (((-890 (-379))) . T))
+((((-860)) . T))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)))
(((|#1|) |has| |#1| (-172)))
(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
((((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T))
-((((-858)) . T))
-(|has| |#1| (-846))
-(((|#2|) . T) (((-564)) . T) (((-815 |#1|)) . T))
-(|has| |#1| (-1094))
-(((|#1|) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+((((-860)) . T))
+(|has| |#1| (-848))
+(((|#2|) . T) (((-564)) . T) (((-817 |#1|)) . T))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+(|has| |#1| (-1097))
+((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+(((|#1|) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
((((-536)) |has| |#1| (-612 (-536))))
-((((-858)) . T) (((-1175)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
-((((-1175)) . T))
-((($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-860)) . T) (((-1178)) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((((-1178)) . T))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(|has| |#1| (-233))
-((($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(((|#1| (-531 (-814 (-1170)))) . T))
-(((|#1| (-967)) . T))
-(((#0=(-866 |#1|) $) |has| #0# (-286 #0# #0#)))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((|#1| (-531 (-816 (-1173)))) . T))
+(((|#1| (-969)) . T))
+((((-564)) . T) ((|#2|) . T))
+(((#0=(-868 |#1|) $) |has| #0# (-286 #0# #0#)))
((((-564) |#4|) . T))
((((-564) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1145))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
-(|has| (-1245 |#1| |#2| |#3| |#4|) (-145))
-(|has| (-1245 |#1| |#2| |#3| |#4|) (-147))
+(|has| |#1| (-1148))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
+(|has| (-1248 |#1| |#2| |#3| |#4|) (-145))
+(|has| (-1248 |#1| |#2| |#3| |#4|) (-147))
(|has| |#1| (-145))
(|has| |#1| (-147))
(((|#1|) |has| |#1| (-172)))
-((((-1170)) -12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045))))
-(|has| |#1| (-1094))
-((((-1152) |#1|) . T))
+((((-1173)) -12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047))))
+(|has| |#1| (-1097))
+((((-1155) |#1|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
-((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-814 (-1170))) . T) (($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-1170)) . T))
+((((-1122 |#1| (-1173))) . T) (((-564)) . T) (((-816 (-1173))) . T) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-1173)) . T))
(|has| |#2| (-368))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1045)))
-((((-858)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) #0#) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
+(((|#2|) |has| |#2| (-1047)))
+((((-860)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) #0#) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
(((|#1|) . T))
-((((-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) #0#) |has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))))
-((((-858)) . T))
+((((-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((#0=(-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) #0#) |has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))))
+((((-860)) . T))
((((-564) |#1|) . T))
-((((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))) (((-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379))))) (((-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564))))))
+((((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))) (((-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379))))) (((-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564))))))
((($) . T))
-((((-858)) . T))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-((((-858)) . T))
+((((-860)) . T))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((((-860)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-858)) . T))
-((((-858)) . T))
-(|has| (-1244 |#2| |#3| |#4|) (-147))
-(|has| (-1244 |#2| |#3| |#4|) (-145))
-(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-860)) . T))
+((((-860)) . T))
+(|has| (-1247 |#2| |#3| |#4|) (-147))
+(|has| (-1247 |#2| |#3| |#4|) (-145))
+(((|#2|) |has| |#2| (-1097)) (((-564)) -12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097))))
(((|#1|) . T))
-(|has| |#1| (-1094))
-((((-858)) . T))
+(|has| |#1| (-1097))
+((((-860)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)))
(((|#1|) . T))
((((-564) |#1|) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-844)))
-((((-858)) |has| |#1| (-1094)))
-(-2807 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)) (|has| |#1| (-1106)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-906 |#1|)) . T))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-846)))
+((((-860)) |has| |#1| (-1097)))
+(-2706 (|has| |#1| (-473)) (|has| |#1| (-724)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)) (|has| |#1| (-1109)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-349)))
+((((-908 |#1|)) . T))
((((-407 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-564) |#1|)))
((((-407 (-564))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((((-407 (-564))) . T) (($) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
(|has| |#1| (-363))
-(-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))
+(-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))
(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))
(|has| |#1| (-363))
-(|has| |#1| (-15 * (|#1| (-767) |#1|)))
+(|has| |#1| (-15 * (|#1| (-769) |#1|)))
+((((-564)) . T))
((((-564)) . T))
-((((-1136 |#2| (-407 (-948 |#1|)))) . T) (((-407 (-948 |#1|))) . T))
+((((-1139 |#2| (-407 (-950 |#1|)))) . T) (((-407 (-950 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-172)) (($) . T))
(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T))
(((|#1|) . T))
((((-564) |#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#2|) . T))
-(-2807 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
+(-2706 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
((($) |has| |#1| (-556)) (((-564)) . T))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
-((((-1251 |#1| |#2| |#3|)) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
-((((-1255 |#2|)) . T) (((-1251 |#1| |#2| |#3|)) . T) (((-1223 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
+((((-1254 |#1| |#2| |#3|)) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
+((((-1258 |#2|)) . T) (((-1254 |#1| |#2| |#3|)) . T) (((-1226 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T))
(((|#1|) . T))
-((((-1170)) -12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-(-2807 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556)))
-(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((((-1173)) -12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-818)))
+(-2706 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556)))
+(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))))
((($ $) |has| |#1| (-556)))
-(((#0=(-695) (-1166 #0#)) . T))
-((((-858)) . T) (((-1259 |#4|)) . T))
-((((-858)) . T) (((-1259 |#3|)) . T))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))))
+(((#0=(-697) (-1169 #0#)) . T))
+((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+((((-407 (-564))) . T) (($) . T))
+((((-860)) . T) (((-1262 |#4|)) . T))
+((((-860)) . T) (((-1262 |#3|)) . T))
+((((-581 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+((($) . T) (((-407 (-564))) . T))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)))
-((((-858)) . T))
-((($) . T))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1251 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
-(((|#1|) . T) (($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
-(((|#3|) |has| |#3| (-1045)))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(|has| |#1| (-1094))
-(((|#2| (-815 |#1|)) . T))
-(((|#1|) . T))
+((((-860)) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) . T))
+((($) . T))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1254 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
+(((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+(((|#3|) |has| |#3| (-1047)))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+(|has| |#1| (-1097))
+(((|#2| (-817 |#1|)) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
+((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+(((|#2|) . T) ((|#6|) . T))
(|has| |#1| (-363))
+((((-564)) . T) ((|#2|) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+(((|#2|) . T) ((|#6|) . T))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((|#1|) . T))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-1076) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-858)) . T))
-((((-906 |#1|)) . T))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((#0=(-1079) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-860)) . T))
+((((-908 |#1|)) . T))
((((-144)) . T))
((((-144)) . T))
-(((|#3|) |has| |#3| (-1094)) (((-564)) -12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094))))
-((((-858)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+(((|#3|) |has| |#3| (-1097)) (((-564)) -12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (((-407 (-564))) -12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097))))
+((((-860)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(((|#1|) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
((((-536)) |has| |#1| (-612 (-536))))
-((((-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) . T))
+(((|#1|) |has| |#1| (-172)))
+((((-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) . T))
(|has| |#1| (-363))
-((((-1175)) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-844)))
-((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-(|has| |#2| (-816))
-(|has| |#1| (-38 (-407 (-564))))
-(|has| |#1| (-844))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-((((-858)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-1178)) . T))
+(((|#1|) . T))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-846)))
+((((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
+(|has| |#2| (-818))
+(|has| |#1| (-38 (-407 (-564))))
+(|has| |#1| (-846))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+((((-860)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
((((-536)) |has| |#1| (-612 (-536))))
(((|#1| |#2|) . T))
-((((-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170)))))
-((((-1152) |#1|) . T))
+((((-1173)) -12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173)))))
+((((-1155) |#1|) . T))
(((|#1| |#2| |#3| (-531 |#3|)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
-((((-858)) . T))
+((((-860)) . T))
+((((-407 (-564))) . T))
(((|#1|) . T))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
+((((-407 (-564))) . T))
(|has| |#1| (-368))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
((((-564)) . T))
((((-564)) . T))
(((|#1|) . T) (((-564)) . T))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
-((((-858)) . T))
-((((-858)) . T))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
+((((-860)) . T))
+((((-860)) . T))
(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
-(-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))
-((((-1170) #0=(-866 |#1|)) |has| #0# (-514 (-1170) #0#)) ((#0# #0#) |has| #0# (-309 #0#)))
+(-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))
+((((-1173) #0=(-868 |#1|)) |has| #0# (-514 (-1173) #0#)) ((#0# #0#) |has| #0# (-309 #0#)))
(((|#1|) . T))
((((-564) |#4|) . T))
((((-564) |#3|) . T))
(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564))))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-1245 |#1| |#2| |#3| |#4|)) . T))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+((((-1248 |#1| |#2| |#3| |#4|)) . T))
((((-407 (-564))) . T) (((-564)) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-564)) . T) (((-407 (-564))) . T))
((((-564)) . T))
((((-564)) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T))
((($) . T) (((-564)) . T) (((-407 (-564))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
-((((-564)) -2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045))) ((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094))))
+((((-564)) -2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047))) ((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097))))
(((|#1|) . T))
(((|#1|) . T))
+((((-407 (-564))) . T) (($) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
+((($) . T) (((-407 (-564))) . T))
(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
+(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
(((|#1|) |has| |#1| (-556)))
((((-564) |#4|) . T))
((((-564) |#3|) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-564)) . T) (((-407 (-564))) . T) (($) . T))
-((((-858)) . T))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((((-860)) . T))
((((-564) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-862 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1170) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1173) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-172)))
-((($) -2807 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
-(((|#2| |#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172)))
+((($) -2706 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
+(((|#2| |#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($ $) |has| |#2| (-172)))
((((-144)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-368)) (|has| |#2| (-368)))
-((((-858)) . T))
-(((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172)))
+((((-860)) . T))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172)))
(((|#1|) . T))
-((((-858)) . T))
-(|has| |#1| (-1094))
+((((-860)) . T))
+(|has| |#1| (-1097))
(|has| $ (-147))
-((((-1175)) . T))
+((((-1178)) . T))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (((-564)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) . T))
((((-564) |#1|) . T))
-((($) -2807 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170)))))
+((($) -2706 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173)))))
(|has| |#1| (-363))
-(-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))
+(-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))
(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))
(|has| |#1| (-363))
-(|has| |#1| (-15 * (|#1| (-767) |#1|)))
-(((|#1|) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-((((-858)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
-(((|#2| (-531 (-860 |#1|))) . T))
-((((-858)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1|) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
+(|has| |#1| (-15 * (|#1| (-769) |#1|)))
+(((|#1|) . T))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+((((-860)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
+(((|#2| (-531 (-862 |#1|))) . T))
+((((-860)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) . T))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
((((-581 |#1|)) . T))
((($) . T))
((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
(((|#1|) . T) (($) . T))
((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T))
-((((-1168 |#1| |#2| |#3|)) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
-((((-1255 |#2|)) . T) (((-1168 |#1| |#2| |#3|)) . T) (((-1161 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-1171 |#1| |#2| |#3|)) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
+((((-1258 |#2|)) . T) (((-1171 |#1| |#2| |#3|)) . T) (((-1164 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
(((|#4|) . T))
(((|#3|) . T))
-((((-866 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+((((-868 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T))
-((((-1170)) -12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045))))
+((((-1173)) -12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047))))
(((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-564)) . T) (((-407 (-564))) -2807 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))) ((|#2|) . T) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((-860 |#1|)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-564)) . T) (((-407 (-564))) -2706 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))) ((|#2|) . T) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) (((-862 |#1|)) . T))
((((-564) |#2|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((($) . T) (((-564)) . T) ((|#2|) . T) (((-407 (-564))) . T))
+((((-860)) . T))
+((((-860)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1168 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-((((-858)) . T))
-(((|#2|) |has| |#2| (-1045)))
-(|has| |#1| (-1094))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
-(((|#1|) . T) (($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1171 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((((-860)) . T))
+(((|#2|) |has| |#2| (-1047)))
+(|has| |#1| (-1097))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
+(((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) |has| |#1| (-172)) (($) . T))
(((|#1|) . T))
-(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
-((((-858)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
+(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((((-860)) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))))
-(((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
+(((#0=(-1079) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
((($) . T))
(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094))))
+(((|#2|) |has| |#2| (-1097)) (((-564)) -12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097))))
(((|#2|) |has| |#1| (-363)))
((((-564) |#1|) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-858)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T) (((-564)) . T))
+((((-1178)) . T))
+((((-860)) . T))
((((-407 |#2|) |#3|) . T))
(((|#1| (-407 (-564))) . T))
((((-407 (-564))) . T) (($) . T))
@@ -601,152 +671,173 @@
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-((((-858)) . T) (((-1175)) . T))
+((((-860)) . T) (((-1178)) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
-((((-1175)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
-((($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-1178)) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T))
-(((|#2| |#3| (-860 |#1|)) . T))
-((((-1170)) |has| |#2| (-896 (-1170))))
+(((|#2| |#3| (-862 |#1|)) . T))
+((((-1173)) |has| |#2| (-898 (-1173))))
(((|#1|) . T))
(((|#1| (-531 |#2|) |#2|) . T))
-(((|#1| (-767) (-1076)) . T))
+(((|#1| (-769) (-1079)) . T))
((((-407 (-564))) |has| |#2| (-363)) (($) . T))
-(((|#1| (-531 (-1082 (-1170))) (-1082 (-1170))) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(((|#1|) . T))
-((((-995 |#1|)) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) -2807 (|has| (-995 |#1|) (-1034 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(|has| |#2| (-789))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(((|#1| (-531 (-1085 (-1173))) (-1085 (-1173))) . T))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-997 |#1|)) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) -2706 (|has| (-997 |#1|) (-1036 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+(|has| |#2| (-791))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
-(|has| |#2| (-844))
-((((-889 |#1|)) . T) (((-815 |#1|)) . T))
-((((-815 (-1170))) . T))
+(|has| |#2| (-846))
+((((-891 |#1|)) . T) (((-817 |#1|)) . T))
+((((-817 (-1173))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-641 (-564))) . T))
-((((-641 (-564))) . T) (((-858)) . T))
-((((-407 (-564))) . T) (((-858)) . T))
-((((-536)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-642 (-564))) . T))
+((((-642 (-564))) . T) (((-860)) . T))
+((((-407 (-564))) . T) (((-860)) . T))
+((((-536)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T))
(|has| |#1| (-233))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-1251 |#1| |#2| |#3|) $) -12 (|has| (-1251 |#1| |#2| |#3|) (-286 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-1254 |#1| |#2| |#3|) $) -12 (|has| (-1254 |#1| |#2| |#3|) (-286 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1134 |#1| |#2|)) |has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
-(((|#2|) . T) (((-564)) |has| |#2| (-1034 (-564))) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))))
-(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
+((((-1137 |#1| |#2|)) |has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
+(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
+(((|#2|) . T) (((-564)) |has| |#2| (-1036 (-564))) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
(((|#2|) . T))
-((((-858)) -2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#1|) . T) (((-564)) . T) (($) . T))
+((((-860)) -2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-860))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) (((-1262 |#2|)) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#1|) . T) (((-564)) . T) (($) . T))
(((|#1|) |has| |#1| (-172)))
((((-564)) . T))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-564) (-144)) . T))
-((($) -2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))))
+((($) -2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))))
((((-564)) . T))
(((|#1|) . T) ((|#2|) . T) (((-564)) . T))
-((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-564)) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-564)) . T))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047)))
(((|#1|) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047)))
+((($) . T) (((-564)) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T) (((-564)) . T))
(((|#2|) |has| |#1| (-363)))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-1175)) . T))
-(((|#1| (-531 #0=(-1170)) #0#) . T))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-1178)) . T))
+((((-407 (-564))) . T) (((-564)) . T) (($) . T))
+(((|#1| (-531 #0=(-1173)) #0#) . T))
(((|#1|) . T) (($) . T))
+((((-564)) . T))
(|has| |#4| (-172))
(|has| |#3| (-172))
-(((#0=(-407 (-948 |#1|)) #0#) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-(|has| |#1| (-1094))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-(|has| |#1| (-1094))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((#0=(-407 (-950 |#1|)) #0#) . T))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+(|has| |#1| (-1097))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+(|has| |#1| (-1097))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
((((-536)) |has| |#1| (-612 (-536))))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
(((|#1| |#1|) |has| |#1| (-172)))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#1|) . T))
-((((-407 (-948 |#1|))) . T))
+((((-407 (-950 |#1|))) . T))
+(((|#1|) . T) (((-564)) . T) (($) . T))
(((|#1|) |has| |#1| (-172)))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-((((-858)) . T))
-((((-1245 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1045)) (((-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+((((-860)) . T))
+((((-1248 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1047)) (((-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))
(((|#1| |#2|) . T))
-(-2807 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-(|has| |#3| (-789))
-(-2807 (|has| |#3| (-789)) (|has| |#3| (-844)))
-(|has| |#3| (-844))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))))
-(((|#2|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| (-1150 |#1|)) |has| |#1| (-844)))
+(-2706 (|has| |#3| (-172)) (|has| |#3| (-724)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+(|has| |#3| (-791))
+(-2706 (|has| |#3| (-791)) (|has| |#3| (-846)))
+(|has| |#3| (-846))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(((|#2|) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+(((|#1| (-1153 |#1|)) |has| |#1| (-846)))
((((-564) |#2|) . T))
-(|has| |#1| (-1094))
-(((|#1|) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-1145)))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(|has| |#1| (-1094))
-(((|#2|) . T))
-((((-536)) |has| |#2| (-612 (-536))) (((-888 (-379))) |has| |#2| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#2| (-612 (-888 (-564)))))
-(((|#4|) -2807 (|has| |#4| (-172)) (|has| |#4| (-363))))
-(((|#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-363))))
-((((-858)) . T))
-(((|#1|) . T))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-905)))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-905)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905)))
-((($ $) . T) ((#0=(-1170) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-814 (-1170)) |#1|) . T) ((#1# $) . T))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-905)))
+(|has| |#1| (-1097))
+(((|#1|) . T))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-1148)))
+((((-407 (-564))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((($) . T) (((-407 (-564))) . T))
+(|has| |#1| (-1097))
+(((|#2|) . T))
+((((-536)) |has| |#2| (-612 (-536))) (((-890 (-379))) |has| |#2| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#2| (-612 (-890 (-564)))))
+(((|#4|) -2706 (|has| |#4| (-172)) (|has| |#4| (-363))))
+(((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363))))
+((((-860)) . T))
+(((|#1|) . T))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-907)))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-907)))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
+(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
+(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
+(((|#2|) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-907)))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-1173) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-816 (-1173)) |#1|) . T) ((#1# $) . T))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-907)))
((((-564) |#2|) . T))
-((((-858)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((($) -2807 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))))
+((((-860)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((($) -2706 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) ((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))))
((((-564) |#1|) . T))
(|has| (-407 |#2|) (-147))
(|has| (-407 |#2|) (-145))
@@ -754,240 +845,259 @@
(|has| |#1| (-38 (-407 (-564))))
(((|#1|) . T))
(((|#2|) . T) (($) . T) (((-407 (-564))) . T))
-((((-858)) . T))
+((((-860)) . T))
(|has| |#1| (-556))
(|has| |#1| (-556))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-858)) . T))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
-(|has| |#1| (-38 (-407 (-564))))
-((((-388) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
-(|has| |#1| (-38 (-407 (-564))))
-(|has| |#2| (-1145))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-((((-858)) . T) (((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-1208)) . T) (((-858)) . T) (((-1175)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-860)) . T))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
+(|has| |#1| (-38 (-407 (-564))))
+((((-388) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
+(|has| |#1| (-38 (-407 (-564))))
+(|has| |#2| (-1148))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+((((-860)) . T) (((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-1211)) . T) (((-860)) . T) (((-1178)) . T))
((((-116 |#1|)) . T))
-((((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
+((((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
(((|#1|) . T))
-((((-388) (-1152)) . T))
+((((-388) (-1155)) . T))
(|has| |#1| (-556))
((((-564) |#1|) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
(((|#2|) . T))
-((((-858)) . T))
-((((-815 |#1|)) . T))
+((((-860)) . T))
+((((-817 |#1|)) . T))
(((|#2|) |has| |#2| (-172)))
-((((-1170) (-52)) . T))
+((((-1173) (-52)) . T))
(((|#1|) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-556))
(((|#1|) |has| |#1| (-172)))
-((((-641 |#1|)) . T))
-((((-858)) . T))
+((((-642 |#1|)) . T))
+((((-860)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
(((|#2|) |has| |#2| (-309 |#2|)))
(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1166 |#1|)) . T))
+(((|#1| (-1169 |#1|)) . T))
(|has| $ (-147))
(((|#2|) . T))
(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
((($) . T) (((-564)) . T) (((-407 (-564))) . T))
(|has| |#2| (-368))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
((((-564)) . T) (((-407 (-564))) . T) (($) . T))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
((((-564)) . T) (((-407 (-564))) . T) (($) . T))
-((((-1168 |#1| |#2| |#3|) $) -12 (|has| (-1168 |#1| |#2| |#3|) (-286 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
+(((|#1| |#2|) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-((($) . T) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+((($) . T) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-860)) . T))
+((((-1171 |#1| |#2| |#3|) $) -12 (|has| (-1171 |#1| |#2| |#3|) (-286 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T))
((($ $) . T))
-((((-858)) . T))
((($ $) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((#0=(-1251 |#1| |#2| |#3|) #0#) -12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1170) #0#) -12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))
-(-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((#0=(-1254 |#1| |#2| |#3|) #0#) -12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1173) #0#) -12 (|has| (-1254 |#1| |#2| |#3|) (-514 (-1173) (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363))))
+(-12 (|has| |#1| (-1097)) (|has| |#2| (-1097)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-564)) . T) (($) . T))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) . T) (((-564)) . T) ((|#2|) . T))
+((((-564)) . T) (($) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
((((-407 (-564))) . T) (((-564)) . T))
((((-564) (-144)) . T))
((((-144)) . T))
(((|#1|) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047)))
((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
((((-112)) . T))
(((|#1|) . T))
-((((-536)) |has| |#1| (-612 (-536))) (((-225)) . #0=(|has| |#1| (-1018))) (((-379)) . #0#))
-((((-858)) . T))
-((((-1175)) . T))
-(|has| |#1| (-816))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(|has| |#1| (-846))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-556)))
+((((-536)) |has| |#1| (-612 (-536))) (((-225)) . #0=(|has| |#1| (-1020))) (((-379)) . #0#))
+((((-860)) . T))
+((((-1178)) . T))
+(|has| |#1| (-818))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-556)))
(|has| |#1| (-556))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#1|) . T) (((-564)) . T))
-(|has| |#1| (-905))
-(((|#1|) . T))
-(|has| |#1| (-1094))
-((((-858)) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-556)))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| (-1259 |#1|) (-1259 |#1|)) . T))
+(|has| |#1| (-848))
+((($) . T) (((-564)) . T) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#1|) . T) (((-564)) . T))
+(|has| |#1| (-907))
+(((|#1|) . T))
+(|has| |#1| (-1097))
+((((-860)) . T))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-556)))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+(((|#1| (-1262 |#1|) (-1262 |#1|)) . T))
((((-564) (-144)) . T))
((($) . T))
-(-2807 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
-(-2807 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-1175)) . T) (((-858)) . T))
-((((-1175)) . T))
-((((-858)) . T))
-(|has| |#1| (-1094))
-(((|#1| (-967)) . T))
+(-2706 (|has| |#4| (-172)) (|has| |#4| (-846)) (|has| |#4| (-1047)))
+(-2706 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+((((-1178)) . T) (((-860)) . T))
+((((-1178)) . T))
+((((-860)) . T))
+(|has| |#1| (-1097))
+(((|#1| (-969)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
(-12 (|has| |#1| (-473)) (|has| |#2| (-473)))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-2807 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+((($) . T) (((-564)) . T) (((-868 |#1|)) . T) (((-407 (-564))) . T))
(((|#1|) . T))
-(|has| |#2| (-789))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(|has| |#2| (-791))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(|has| |#2| (-844))
-(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
-(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(|has| |#2| (-846))
+(-12 (|has| |#1| (-791)) (|has| |#2| (-791)))
+(-12 (|has| |#1| (-791)) (|has| |#2| (-791)))
+(-2706 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724))))
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-564)) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
-((((-858)) . T))
+((((-860)) . T))
(|has| |#1| (-349))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-407 (-564))) . T) (($) . T))
-((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-564)) . T))
-((($) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T))
-(|has| |#1| (-824))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T))
-(|has| |#1| (-1094))
+(((|#2|) . T) (($) . T) (((-407 (-564))) . T))
+((($) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T))
+(|has| |#1| (-826))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T))
+(|has| |#1| (-1097))
(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
((($) |has| |#1| (-556)))
-(((|#4|) |has| |#4| (-1094)))
-(((|#3|) |has| |#3| (-1094)))
+(((|#2|) . T) (((-407 (-564))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1097)))
+(((|#3|) |has| |#3| (-1097)))
(|has| |#3| (-368))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-((((-858)) . T))
-((((-858)) . T))
+((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-564)) . T))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+((((-860)) . T))
+((((-860)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1| |#1|) |has| |#1| (-172)))
(|has| |#2| (-363))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
((((-407 (-564))) . T) (((-564)) . T))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
+((($) . T) (((-564)) . T))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
((((-144)) . T))
(((|#1|) . T))
-((($) -2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))))
+((($) -2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))))
((((-144)) . T))
((((-144)) . T))
((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#) ((|#2|) . T) (((-564)) . T))
(((|#1| |#2| |#3|) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047)))
+(((|#1|) |has| |#1| (-172)))
(|has| $ (-147))
(|has| $ (-147))
-((((-1175)) . T))
-(|has| |#1| (-1094))
-((((-858)) . T))
+((((-1178)) . T))
+(((|#1|) |has| |#1| (-172)))
+(|has| |#1| (-1097))
+((((-860)) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1045)) (|has| |#1| (-1106)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1047)) (|has| |#1| (-1109)))
((($ $) |has| |#1| (-286 $ $)) ((|#1| $) |has| |#1| (-286 |#1| |#1|)))
(((|#1| (-407 (-564))) . T))
(((|#1|) . T))
-((((-1170)) . T))
+((((-407 (-564))) . T) (((-564)) . T) (($) . T))
+((((-1173)) . T))
(|has| |#1| (-556))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
(|has| |#1| (-556))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-((((-858)) . T))
+((((-860)) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
(((|#2|) . T) (($) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(|has| |#4| (-844))
-(((|#2| (-240 (-2181 |#1|) (-767)) (-860 |#1|)) . T))
-(|has| |#3| (-844))
+(|has| |#4| (-846))
+(((|#2| (-240 (-2127 |#1|) (-769)) (-862 |#1|)) . T))
+(|has| |#3| (-846))
(((|#1| (-531 |#3|) |#3|) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
(((#0=(-407 (-564)) #0#) |has| |#2| (-363)) (($ $) . T))
-((((-866 |#1|)) . T))
+((((-868 |#1|)) . T))
(|has| |#1| (-147))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
-((((-858)) . T))
+((((-860)) . T))
(|has| |#1| (-145))
((((-407 (-564))) |has| |#2| (-363)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
-(-2807 (|has| |#1| (-349)) (|has| |#1| (-368)))
-((((-1136 |#2| |#1|)) . T) ((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
+(-2706 (|has| |#1| (-349)) (|has| |#1| (-368)))
+((((-1139 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-172))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))
-(((|#2|) . T) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-(-2807 (|has| |#3| (-789)) (|has| |#3| (-844)))
-(-2807 (|has| |#3| (-789)) (|has| |#3| (-844)))
-((((-858)) . T))
+(-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))
+(((|#2|) . T) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+(-2706 (|has| |#3| (-791)) (|has| |#3| (-846)))
+(-2706 (|has| |#3| (-791)) (|has| |#3| (-846)))
+((((-860)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
-((((-695)) . T))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+((((-697)) . T))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
(|has| |#1| (-556))
(((|#1|) . T))
(((|#1|) . T))
@@ -996,150 +1106,166 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1170) (-52)) . T))
+((((-1173) (-52)) . T))
(((|#1|) . T) (($) . T))
-((((-1000 10)) . T) (((-407 (-564))) . T) (((-858)) . T))
-((((-536)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T))
+((((-1002 10)) . T) (((-407 (-564))) . T) (((-860)) . T))
+((((-536)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T))
(((|#1|) . T))
-((((-1000 16)) . T) (((-407 (-564))) . T) (((-858)) . T))
-((((-536)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T))
+((((-1002 16)) . T) (((-407 (-564))) . T) (((-860)) . T))
+((((-536)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T))
(((|#1| (-564)) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1| (-407 (-564))) . T))
(((|#3|) . T) (((-610 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-564)) -2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045))) ((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-564)) -2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047))) ((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097))))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
-(((#0=(-1168 |#1| |#2| |#3|) #0#) -12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1170) #0#) -12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))
-((((-858)) . T))
-((((-858)) . T))
+(((#0=(-1171 |#1| |#2| |#3|) #0#) -12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1173) #0#) -12 (|has| (-1171 |#1| |#2| |#3|) (-514 (-1173) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363))))
+((((-860)) . T))
+((((-860)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) |has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))))
-((((-858)) . T))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) |has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))))
+((((-860)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1170) (-52)) . T))
+((((-1173) (-52)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-824))
-(|has| |#1| (-1094))
-(((|#2| |#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172)))
-(((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363))))
-((((-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172)))
-((((-1175)) . T))
-((((-767)) . T))
+((($ $) . T) ((#0=(-862 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-826))
+((($) . T) (((-564)) . T) ((|#1|) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
+((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(|has| |#1| (-1097))
+(((|#2| |#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($ $) |has| |#2| (-172)))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363))))
+((((-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172)))
+((((-564)) . T))
+((((-1178)) . T))
+((((-769)) . T))
+(((|#2|) |has| |#2| (-172)))
+(((|#1|) |has| |#1| (-172)))
(|has| |#1| (-556))
((((-564)) . T))
-((((-858)) . T))
-(((|#1| (-407 (-564)) (-1076)) . T))
-(|has| |#1| (-145))
+(((|#2|) . T))
+((((-860)) . T))
+(((|#1| (-407 (-564)) (-1079)) . T))
+(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(|has| |#1| (-556))
((((-564)) . T))
((((-116 |#1|)) . T))
(((|#1|) . T))
+((((-407 (-564))) . T) (($) . T))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+((($) . T) (((-407 (-564))) . T))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(|has| |#1| (-145))
(|has| |#1| (-147))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-556)))
-((((-888 (-564))) . T) (((-888 (-379))) . T) (((-536)) . T) (((-1170)) . T))
-((((-858)) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((($) . T))
-((((-858)) . T))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
+((((-564)) . T))
+((((-564)) . T))
+((((-890 (-564))) . T) (((-890 (-379))) . T) (((-536)) . T) (((-1173)) . T))
+((((-860)) . T))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((($) . T))
+(((|#1|) . T))
+((((-860)) . T))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
+(((|#1|) . T) (($) . T))
(((|#2|) |has| |#2| (-172)))
-((($) -2807 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
-((((-866 |#1|)) . T))
-(-2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
-(-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))
-(|has| |#2| (-1145))
-(((#0=(-52)) . T) (((-2 (|:| -1901 (-1170)) (|:| -3813 #0#))) . T))
+((($) -2706 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
+((((-868 |#1|)) . T))
+(-2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097)))
+(-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))
+(|has| |#2| (-1148))
+(((#0=(-52)) . T) (((-2 (|:| -1907 (-1173)) (|:| -3778 #0#))) . T))
(((|#1| |#2|) . T))
-(-2807 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-(((|#1| (-564) (-1076)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1| (-407 (-564)) (-1076)) . T))
-((($) -2807 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+(-2706 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+(((|#1| (-564) (-1079)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1| (-407 (-564)) (-1079)) . T))
+((($) -2706 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
((((-564) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-368))
(-12 (|has| |#1| (-368)) (|has| |#2| (-368)))
-((((-858)) . T))
-((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
+((((-860)) . T))
+((((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
(((|#1|) . T))
((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#4|) . T))
(|has| |#1| (-349))
-((((-564)) -2807 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1045))) ((|#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094))))
+((((-564)) -2706 (|has| |#3| (-172)) (|has| |#3| (-846)) (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (|has| |#3| (-1047))) ((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-1097))) (((-407 (-564))) -12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097))))
(((|#1|) . T))
-(((|#4|) . T) (((-858)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) #0#) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
+(((|#4|) . T) (((-860)) . T))
+(((|#3|) . T) ((|#2|) . T) (($) -2706 (|has| |#4| (-172)) (|has| |#4| (-846)) (|has| |#4| (-1047))) (((-564)) . T) ((|#4|) -2706 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1047))))
+(((|#2|) . T) (($) -2706 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) (((-564)) . T) ((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) #0#) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
(|has| |#1| (-556))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-858)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-860)) . T))
(((|#1| |#2|) . T))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-905)))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-905)))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-907)))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-907)))
((((-407 (-564))) . T) (((-564)) . T))
((((-564)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
((($) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1|) . T))
-((((-866 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
-((((-858)) . T))
-(((|#3| |#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172)))
-(|has| |#1| (-1018))
-((((-858)) . T))
-(((|#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172)))
+((((-868 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+((((-860)) . T))
+(((|#3| |#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($ $) |has| |#3| (-172)))
+(|has| |#1| (-1020))
+((((-860)) . T))
+(((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($) |has| |#3| (-172)))
((((-564) (-112)) . T))
-((((-1175)) . T))
+((((-1178)) . T))
(((|#1|) |has| |#1| (-309 |#1|)))
-((((-1175)) . T))
+((((-1178)) . T))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
-((((-1170) $) |has| |#1| (-514 (-1170) $)) (($ $) |has| |#1| (-309 $)) ((|#1| |#1|) |has| |#1| (-309 |#1|)) (((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)))
-((((-1170)) |has| |#1| (-896 (-1170))))
-(-2807 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))
+((((-1173) $) |has| |#1| (-514 (-1173) $)) (($ $) |has| |#1| (-309 $)) ((|#1| |#1|) |has| |#1| (-309 |#1|)) (((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)))
+((((-1173)) |has| |#1| (-898 (-1173))))
+(-2706 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-388) |#1|) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-349)))
-(|has| |#1| (-1094))
-(((|#2|) . T) (((-858)) . T))
-((((-858)) . T))
-(((|#2|) . T))
-((((-906 |#1|)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(|has| |#1| (-1097))
+(((|#2|) . T) (((-860)) . T))
+((((-860)) . T))
+(((|#2|) . T))
+((((-908 |#1|)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
(((|#1| |#2|) . T))
((($) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
@@ -1147,180 +1273,204 @@
(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
(((|#1| |#1|) . T))
-(((#0=(-866 |#1|)) |has| #0# (-309 #0#)))
-((((-564)) . T) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1034 (-407 (-564))))) ((|#1|) . T))
+(((#0=(-868 |#1|)) |has| #0# (-309 #0#)))
+((((-564)) . T) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1036 (-407 (-564))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(((|#1|) . T))
-(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
-(-12 (|has| |#1| (-789)) (|has| |#2| (-789)))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
+(((|#1|) . T))
+(-12 (|has| |#1| (-791)) (|has| |#2| (-791)))
+(-12 (|has| |#1| (-791)) (|has| |#2| (-791)))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+((($) . T) (((-564)) . T) ((|#2|) . T))
+(((|#2|) . T) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-(|has| |#1| (-1194))
+(|has| |#1| (-1197))
(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
((((-407 (-564))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1045)))
-(((|#3|) |has| |#3| (-1045)))
+(((|#4|) |has| |#4| (-1047)))
+(((|#3|) |has| |#3| (-1047)))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(|has| |#1| (-363))
((((-564)) . T) (((-407 (-564))) . T) (($) . T))
-((($ $) . T) ((#0=(-407 (-564)) #0#) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
+((($ $) . T) ((#0=(-407 (-564)) #0#) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-564) |#3|) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-536)) |has| |#3| (-612 (-536))))
-((((-685 |#3|)) . T) (((-858)) . T))
+((((-687 |#3|)) . T) (((-860)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-((($) . T) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(|has| |#1| (-846))
+(|has| |#1| (-846))
+((($) . T) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-556)))
+((($) . T))
+(((#0=(-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) #0#) |has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))))
+((($) . T))
((($) . T))
-(((#0=(-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) #0#) |has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))))
+(((|#2|) |has| |#2| (-1097)))
+((((-860)) -2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-860))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) (((-1262 |#2|)) . T))
((($) . T))
-(((|#2|) |has| |#2| (-1094)))
-((((-858)) -2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T))
-((((-1152) (-52)) . T))
-((((-858)) . T))
+((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-1155) (-52)) . T))
+(((|#2|) |has| |#2| (-172)))
+((($) -2706 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
+((((-860)) . T))
+(((|#2|) . T))
+((($) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
((((-564)) |has| #0=(-407 |#2|) (-637 (-564))) ((#0#) . T))
((($) . T) (((-564)) . T))
((((-564) (-144)) . T))
-((((-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T) ((|#1| |#2|) . T))
+((((-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T) ((|#1| |#2|) . T))
((((-407 (-564))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-858)) . T))
-((((-906 |#1|)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-860)) . T))
+((((-908 |#1|)) . T))
(|has| |#1| (-363))
(|has| |#1| (-363))
(|has| |#1| (-363))
(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))
-(|has| |#1| (-844))
+(|has| |#1| (-846))
+((($) -2706 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
(|has| |#1| (-363))
-(|has| |#1| (-844))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-844))
-((((-1170)) |has| |#1| (-896 (-1170))))
+(|has| |#1| (-846))
+((($) . T) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-1173)) |has| |#1| (-898 (-1173))))
+(|has| |#1| (-846))
((((-506)) . T))
-(((|#1| (-1170)) . T))
-(((|#1| (-1259 |#1|) (-1259 |#1|)) . T))
-((((-858)) . T) (((-1175)) . T))
+(((|#1| (-1173)) . T))
+(((|#1| (-1262 |#1|) (-1262 |#1|)) . T))
+((((-860)) . T) (((-1178)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-((((-1175)) . T))
-(|has| |#1| (-1094))
-(((|#1| (-1170) (-814 (-1170)) (-531 (-814 (-1170)))) . T))
-((((-407 (-948 |#1|))) . T))
+((((-1178)) . T))
+(|has| |#1| (-1097))
+(((|#1| (-1173) (-816 (-1173)) (-531 (-816 (-1173)))) . T))
+((((-407 (-950 |#1|))) . T))
((((-536)) . T))
-((((-858)) . T))
+((((-860)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T) ((|#1| |#2|) . T))
+((((-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-172)))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(((|#1|) . T))
-((((-536)) |has| |#1| (-612 (-536))) (((-888 (-379))) |has| |#1| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#1| (-612 (-888 (-564)))))
-((((-858)) . T))
-(((|#2|) . T) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-536)) |has| |#1| (-612 (-536))) (((-890 (-379))) |has| |#1| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#1| (-612 (-890 (-564)))))
+((((-860)) . T))
+((((-868 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+(((|#2|) . T) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
((((-506)) . T))
-(|has| |#2| (-844))
+(|has| |#2| (-846))
((((-506)) . T))
-(-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))
+(-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))
(|has| |#1| (-556))
-((((-1152) |#1|) . T))
-(|has| |#1| (-1145))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-954 |#1|)) . T))
-(((#0=(-407 (-564)) #0#) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-564))) (((-564)) |has| |#1| (-1034 (-564))) (((-1170)) |has| |#1| (-1034 (-1170))) ((|#1|) . T))
+((((-868 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+((((-1155) |#1|) . T))
+(|has| |#1| (-1148))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+((((-956 |#1|)) . T))
+(((#0=(-407 (-564)) #0#) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-564))) (((-564)) |has| |#1| (-1036 (-564))) (((-1173)) |has| |#1| (-1036 (-1173))) ((|#1|) . T))
((((-564) |#2|) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T))
-((((-564)) |has| |#1| (-882 (-564))) (((-379)) |has| |#1| (-882 (-379))))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
+((((-564)) |has| |#1| (-884 (-564))) (((-379)) |has| |#1| (-884 (-379))))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
(((|#1|) . T))
-((((-641 |#4|)) . T) (((-858)) . T))
+((($) . T) (((-564)) . T))
+((((-642 |#4|)) . T) (((-860)) . T))
((((-536)) |has| |#4| (-612 (-536))))
((((-536)) |has| |#4| (-612 (-536))))
-((((-858)) . T) (((-641 |#4|)) . T))
-((($) |has| |#1| (-844)))
-((((-564)) -2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045))) ((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094))))
+((((-860)) . T) (((-642 |#4|)) . T))
+((($) |has| |#1| (-846)))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) (((-564)) . T) (($) . T) ((|#1|) . T))
+((((-564)) -2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047))) ((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097))))
(((|#1|) . T))
-((((-641 |#4|)) . T) (((-858)) . T))
+(((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) . T))
+((((-642 |#4|)) . T) (((-860)) . T))
((((-536)) |has| |#4| (-612 (-536))))
+(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T) (($) . T))
(((|#1|) . T))
-((((-1170)) |has| (-407 |#2|) (-896 (-1170))))
+((((-1173)) |has| (-407 |#2|) (-898 (-1173))))
(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) #0#) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) #0#) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
+((($) . T))
+((($) . T))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
((($) . T))
((($) . T))
(((|#2|) . T))
-((((-858)) -2807 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-611 (-858))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1094))) (((-1259 |#3|)) . T))
+((((-860)) -2706 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-611 (-860))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-724)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047)) (|has| |#3| (-1097))) (((-1262 |#3|)) . T))
((((-564) |#2|) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-(((|#2| |#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172)))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+(((|#2| |#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($ $) |has| |#2| (-172)))
(((|#2|) . T) (((-564)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T) ((|#2|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-1152) (-1170) (-564) (-225) (-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(|has| |#1| (-38 (-407 (-564))))
-(|has| |#1| (-38 (-407 (-564))))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T) ((|#2|) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-1155) (-1173) (-564) (-225) (-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+(|has| |#1| (-38 (-407 (-564))))
+(|has| |#1| (-38 (-407 (-564))))
+((((-860)) . T))
((((-564) (-112)) . T))
(((|#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-112)) . T))
((((-112)) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
((((-112)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-((((-858)) . T))
+((((-407 (-564))) . T) (($) . T))
+((((-860)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-(((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172)))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+((($) . T) (((-407 (-564))) . T))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172)))
(|has| $ (-147))
((((-407 |#2|)) . T))
-((((-889 |#1|)) . T) ((|#2|) . T) (((-564)) . T) (((-815 |#1|)) . T))
-((((-407 (-564))) |has| #0=(-407 |#2|) (-1034 (-407 (-564)))) (((-564)) |has| #0# (-1034 (-564))) ((#0#) . T))
+((((-407 (-564))) |has| #0=(-407 |#2|) (-1036 (-407 (-564)))) (((-564)) |has| #0# (-1036 (-564))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-172)))
(|has| |#2| (-145))
@@ -1328,29 +1478,30 @@
(((|#3|) |has| |#3| (-172)))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
(|has| |#1| (-147))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
(|has| |#1| (-147))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
(|has| |#1| (-147))
(((|#1|) . T))
(|has| |#2| (-233))
(((|#2|) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-1170) (-52)) . T))
-((((-858)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-1173) (-52)) . T))
+((((-860)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
(((|#1| |#1|) . T))
-((((-1170)) |has| |#2| (-896 (-1170))))
+((((-1173)) |has| |#2| (-898 (-1173))))
((((-129)) . T))
-(((|#1|) . T) (((-564)) . T) (((-815 (-1170))) . T))
+((((-891 |#1|)) . T) ((|#2|) . T) (((-564)) . T) (((-817 |#1|)) . T))
((((-564) (-112)) . T))
(|has| |#1| (-556))
(((|#2|) . T))
(((|#2|) . T))
+(((|#1|) . T) (((-564)) . T) (((-817 (-1173))) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
@@ -1359,54 +1510,64 @@
(|has| |#1| (-38 (-407 (-564))))
(((|#3|) . T))
(|has| |#1| (-38 (-407 (-564))))
-((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))))
-(((|#1|) . T))
-((((-1000 2)) . T) (((-407 (-564))) . T) (((-858)) . T))
-((((-536)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-995 |#1|)) . T) ((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))))
+(((|#1|) . T))
+((((-1002 2)) . T) (((-407 (-564))) . T) (((-860)) . T))
+((((-536)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-997 |#1|)) . T) ((|#1|) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
((((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1166 |#1|)) . T))
+(((|#1| (-1169 |#1|)) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-846))
+(|has| |#1| (-848))
+(((|#1|) . T) (((-564)) . T) (($) . T))
(((|#2|) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
((((-564) |#2|) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
+(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) . T))
(((|#2|) . T))
((((-564) |#3|) . T))
(((|#2|) . T))
+((((-860)) . T))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
+(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-((((-858)) . T))
-((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
-(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
-(|has| |#1| (-1094))
+((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) #0#) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
+(((|#2| |#2|) . T))
+(|has| |#1| (-1097))
(|has| |#1| (-38 (-407 (-564))))
+(|has| |#2| (-363))
+(((|#2|) . T) (((-564)) |has| |#2| (-1036 (-564))) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))))
(|has| |#1| (-38 (-407 (-564))))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) #0#) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
-(((|#2| |#2|) . T))
(|has| |#1| (-38 (-407 (-564))))
(((|#2|) . T))
-(|has| |#2| (-363))
-(((|#2|) . T) (((-564)) |has| |#2| (-1034 (-564))) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))))
-(((|#1|) . T))
(((|#2|) . T))
-((((-1152) (-52)) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-172)))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-1155) (-52)) . T))
+(((|#1|) . T))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#2|) |has| |#2| (-172)))
+((($) -2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) (((-564)) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))))
((((-564) |#3|) . T))
((((-564) (-144)) . T))
((((-144)) . T))
-((((-858)) . T))
-((((-1175)) . T))
+((((-860)) . T))
+((((-1178)) . T))
((((-112)) . T))
(|has| |#1| (-147))
(((|#1|) . T))
@@ -1414,99 +1575,109 @@
((($) . T))
(|has| |#1| (-556))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#1|) . T))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
((((-144)) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T))
((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T))
((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T))
-((((-1152) (-52)) . T))
+((((-1155) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#1| |#2|) . T))
((((-564) (-144)) . T))
-(((#0=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) #0#) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
-((($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(|has| |#1| (-846))
-(((|#2| (-767) (-1076)) . T))
+(((#0=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) #0#) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(|has| |#1| (-848))
+(((|#2| (-769) (-1079)) . T))
(((|#1| |#2|) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-556)))
-(|has| |#1| (-787))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(|has| |#1| (-789))
(((|#1|) |has| |#1| (-172)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-2807 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147))))
-(-2807 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145))))
+(-2706 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147))))
+(-2706 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145))))
(((|#4|) . T))
(|has| |#1| (-145))
-((((-1152) |#1|) . T))
+((((-1155) |#1|) . T))
(|has| |#1| (-147))
(((|#1|) . T))
((((-564)) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1| |#2|) . T))
-((((-858)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-860)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#3|) . T))
-((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-858)) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-(((|#1|) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))) (((-954 |#1|)) . T))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-954 |#1|)) . T))
+((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) (((-564)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) . T))
+((((-860)) . T))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+(((|#1|) . T))
+(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T) (($) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))) (((-956 |#1|)) . T))
+(|has| |#1| (-846))
+(|has| |#1| (-846))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-956 |#1|)) . T))
+(((|#4|) -2706 (|has| |#4| (-172)) (|has| |#4| (-363))))
+(((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363))))
(|has| |#2| (-363))
(((|#1|) |has| |#1| (-172)))
-(((|#2|) |has| |#2| (-1045)))
-((((-1152) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
-(((|#2| (-889 |#1|)) . T))
-((($) . T))
-((((-388) (-1152)) . T))
+(((|#4|) -2706 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1047))) (($) |has| |#4| (-172)))
+(((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($) |has| |#3| (-172)))
+(((|#2|) |has| |#2| (-1047)))
+((((-1155) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))
+(((|#2| (-891 |#1|)) . T))
+((($) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
+((((-388) (-1155)) . T))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-858)) -2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -1901 (-1152)) (|:| -3813 #0#))) . T))
+((((-860)) -2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-860))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097))) (((-1262 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1907 (-1155)) (|:| -3778 #0#))) . T))
(((|#1|) . T))
-((((-858)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+((((-860)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
((((-144)) . T))
(|has| |#2| (-145))
+((((-564)) . T))
(|has| |#2| (-147))
(|has| |#1| (-473))
-(-2807 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)))
+(-2706 (|has| |#1| (-473)) (|has| |#1| (-724)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)))
(|has| |#1| (-363))
-((((-858)) . T))
+((((-860)) . T))
(|has| |#1| (-38 (-407 (-564))))
((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
((($) |has| |#1| (-556)))
-((((-1175)) . T))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-((((-858)) . T))
+((((-1178)) . T))
+(|has| |#1| (-846))
+(|has| |#1| (-846))
+((((-860)) . T))
(((|#2|) . T))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(((|#2|) . T) (((-564)) . T) (((-815 |#1|)) . T))
+(((|#2|) . T) (((-564)) . T) (((-817 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1170)) |has| |#1| (-896 (-1170))))
-((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
-((((-858)) . T))
-((((-858)) . T))
-(|has| |#1| (-1094))
-(((|#2| (-482 (-2181 |#1|) (-767)) (-860 |#1|)) . T))
+((((-1173)) |has| |#1| (-898 (-1173))))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+((((-860)) . T))
+((((-860)) . T))
+(|has| |#1| (-1097))
+(((|#2| (-482 (-2127 |#1|) (-769)) (-862 |#1|)) . T))
((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#))
-(((|#1| (-531 (-1170)) (-1170)) . T))
+(((|#1| (-531 (-1173)) (-1173)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1518,86 +1689,96 @@
(((|#1|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
+(((|#2|) |has| |#2| (-172)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) . T))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-1170) (-52)) . T))
+(((|#1|) . T) (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) . T))
+((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-1173) (-52)) . T))
((($ $) . T))
(((|#1| (-564)) . T))
-((((-906 |#1|)) . T))
-(((|#1|) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))) (($) -2807 (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045))))
-(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
-(|has| |#1| (-846))
-(|has| |#1| (-846))
+((((-908 |#1|)) . T))
+(((|#1|) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1047))) (($) -2706 (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))))
+(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
+(|has| |#1| (-848))
+(|has| |#1| (-848))
((((-564) |#2|) . T))
+((($) . T) (((-564)) . T) ((|#1|) . T))
+((((-860)) . T))
((((-564)) . T))
-((((-858)) . T))
-((((-1251 |#1| |#2| |#3|)) -12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))
-(|has| |#1| (-846))
-((((-685 |#2|)) . T) (((-858)) . T))
+(|has| |#1| (-848))
+((((-687 |#2|)) . T) (((-860)) . T))
+((((-1254 |#1| |#2| |#3|)) -12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363))))
((((-407 (-564))) . T) (((-564)) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-407 (-948 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+((((-407 (-950 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
(((|#1|) |has| |#1| (-172)))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
-(((|#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-363))))
-(-2807 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-905)))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
+(((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363))))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(-2706 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-907)))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
((((-564) |#2|) . T))
-(((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363))))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363))))
(|has| |#1| (-349))
-(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
+(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))
(((|#2|) . T) (((-564)) . T))
((($) . T) (((-407 (-564))) . T))
((((-564) (-112)) . T))
-(|has| |#1| (-816))
-(|has| |#1| (-816))
+(|has| |#1| (-818))
+(|has| |#1| (-818))
(((|#1|) . T))
-(-2807 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
+(-2706 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
+(|has| |#1| (-846))
+(|has| |#1| (-846))
+(|has| |#1| (-846))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
-(|has| |#1| (-38 (-407 (-564))))
+(((|#1|) . T) (((-564)) . T) (($) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-1170)) |has| |#1| (-896 (-1170))) (((-1076)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-1173)) |has| |#1| (-898 (-1173))) (((-1079)) . T))
(((|#1|) . T))
-(|has| |#1| (-844))
-(((#0=(-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) #0#) |has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(|has| |#1| (-1094))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
+(|has| |#1| (-846))
+(((#0=(-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) #0#) |has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(|has| |#1| (-1097))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
+((((-1139 |#2| (-407 (-950 |#1|)))) . T) (((-407 (-950 |#1|))) . T) (((-564)) . T))
(((|#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
+((($) . T) (((-564)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T) (((-564)) . T))
+(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T) (($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1| (-531 |#2|) |#2|) . T))
-((((-858)) . T))
-((((-144)) . T) (((-858)) . T))
-(((|#1| (-767) (-1076)) . T))
+((((-860)) . T))
+((((-144)) . T) (((-860)) . T))
+(((|#1| (-769) (-1079)) . T))
(((|#3|) . T))
((((-144)) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) -2807 (|has| |#1| (-844)) (|has| |#1| (-1034 (-564)))) ((|#1|) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) -2706 (|has| |#1| (-846)) (|has| |#1| (-1036 (-564)))) ((|#1|) . T))
(((|#1|) . T))
((((-144)) . T))
(((|#2|) |has| |#2| (-172)))
-(-2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
+(-2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097)))
(((|#1|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
@@ -1606,121 +1787,141 @@
(((|#3|) |has| |#3| (-363)))
(((|#1|) . T))
(((|#2|) |has| |#1| (-363)))
-((((-858)) . T))
+((((-860)) . T))
(((|#2|) . T))
-(((|#1| (-1166 |#1|)) . T))
-((((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
+(((|#1| (-1169 |#1|)) . T))
+((((-1079)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
((($) . T) ((|#1|) . T) (((-407 (-564))) . T))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
+((($) |has| |#1| (-556)))
(((|#2|) . T))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((($) |has| |#1| (-844)))
-(|has| |#1| (-905))
-((((-1170)) . T))
-((((-858)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((($) |has| |#1| (-556)))
+((($) |has| |#1| (-846)))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(|has| |#1| (-907))
+((((-1173)) . T))
+((((-860)) . T))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
+(((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) #0#) |has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-905)))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-905)))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((#0=(-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) #0#) |has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-907)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-907)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-363))))
-(|has| |#1| (-846))
+(((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363))))
+(|has| |#1| (-848))
(|has| |#1| (-556))
((((-581 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-2807 (-12 (|has| |#1| (-363)) (|has| |#2| (-816))) (-12 (|has| |#1| (-363)) (|has| |#2| (-846))))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-((((-906 |#1|)) . T))
+(-2706 (-12 (|has| |#1| (-363)) (|has| |#2| (-818))) (-12 (|has| |#1| (-363)) (|has| |#2| (-848))))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+((((-908 |#1|)) . T))
(((|#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-767)) . T))
+(((|#1| (-769)) . T))
((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) . T))
+((((-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
-((((-668 |#1|)) . T))
+((((-670 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-858)) . T) (((-1175)) . T))
+((((-860)) . T) (((-1178)) . T))
((((-536)) . T))
-((((-858)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-858)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
-((((-1175)) . T))
+((((-860)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-860)) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((((-1178)) . T))
((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-564)) . T))
(((|#3|) . T) (((-564)) . T) (((-610 $)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#2|) . T))
-(-2807 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1094)))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T))
-(|has| |#1| (-1194))
-(|has| |#1| (-1194))
-(-2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
-(|has| |#1| (-1194))
-(|has| |#1| (-1194))
-(((|#3| |#3|) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+(((|#2|) . T))
+(-2706 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-724)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047)) (|has| |#3| (-1097)))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T))
+(|has| |#1| (-1197))
+(|has| |#1| (-1197))
+(-2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097)))
+(|has| |#1| (-1197))
+(|has| |#1| (-1197))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T) ((#1=(-407 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) . T))
((($) . T) (((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T))
-(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
+(((|#3| |#3|) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#3|) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
-((((-1152) (-52)) . T))
-(|has| |#1| (-1094))
-(-2807 (|has| |#2| (-816)) (|has| |#2| (-846)))
+(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
+(((|#1|) . T))
(((|#1|) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) . T))
+((((-1155) (-52)) . T))
+(|has| |#1| (-1097))
(((|#1|) |has| |#1| (-172)) (($) . T))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-((($) . T))
-((((-1168 |#1| |#2| |#3|)) -12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))
-((((-858)) . T))
+(-2706 (|has| |#2| (-818)) (|has| |#2| (-848)))
+(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
+(((|#1|) . T))
+((((-564)) . T) (($) . T) (((-407 (-564))) . T))
+((((-564)) . T) (((-407 (-564))) . T) (($) . T))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
((((-564)) . T) (($) . T))
-((((-767)) . T))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-858)) . T))
+((((-769)) . T))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-860)) . T))
((($) . T) (((-564)) . T))
((($) . T))
-(|has| |#2| (-905))
+(|has| |#2| (-907))
(|has| |#1| (-363))
-(((|#2|) |has| |#2| (-1094)))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-((((-536)) . T) (((-407 (-1166 (-564)))) . T) (((-225)) . T) (((-379)) . T))
-((((-379)) . T) (((-225)) . T) (((-858)) . T))
-(|has| |#1| (-905))
-(|has| |#1| (-905))
-(|has| |#1| (-905))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-905)))
+(((|#2|) |has| |#2| (-1097)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+((((-536)) . T) (((-407 (-1169 (-564)))) . T) (((-225)) . T) (((-379)) . T))
+((((-379)) . T) (((-225)) . T) (((-860)) . T))
+(|has| |#1| (-907))
+(|has| |#1| (-907))
+(|has| |#1| (-907))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-907)))
+((($) . T))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
((($) . T) ((|#2|) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905)))
-((((-858)) . T))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363))))
+((((-1171 |#1| |#2| |#3|)) -12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363))))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-907)))
+(((|#1|) . T))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172)))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
+((((-860)) . T))
+((((-860)) . T))
((($ $) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
((($ $) . T))
((((-564) (-112)) . T))
((($) . T))
(((|#1|) . T))
((((-564)) . T))
((((-112)) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
(|has| |#1| (-38 (-407 (-564))))
(((|#1| (-564)) . T))
((($) . T))
@@ -1729,191 +1930,219 @@
(((|#1|) . T))
((((-564)) . T))
(((|#1| |#2|) . T))
-((((-1170)) |has| |#1| (-1045)))
+((((-1173)) |has| |#1| (-1047)))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(((|#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1| (-564)) . T))
-(((|#1| (-1251 |#1| |#2| |#3|)) . T))
+(((|#1| (-1254 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1| (-407 (-564))) . T))
-(((|#1| (-1223 |#1| |#2| |#3|)) . T))
-(((|#1| (-767)) . T))
+(((|#1| (-1226 |#1| |#2| |#3|)) . T))
+(((|#1| (-769)) . T))
(((|#1|) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-858)) . T))
-(|has| |#1| (-1094))
-((((-1152) |#1|) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-860)) . T))
+(|has| |#1| (-1097))
+((((-1155) |#1|) . T))
((($) . T))
(|has| |#2| (-147))
(|has| |#2| (-145))
-(((|#1| (-531 (-814 (-1170))) (-814 (-1170))) . T))
-((((-858)) . T))
-((((-1245 |#1| |#2| |#3| |#4|)) . T))
-((((-1245 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1045)))
+(((|#1| (-531 (-816 (-1173))) (-816 (-1173))) . T))
+((((-860)) . T))
+((((-1248 |#1| |#2| |#3| |#4|)) . T))
+((((-1248 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1047)))
((((-564) (-112)) . T))
-((((-858)) |has| |#1| (-1094)))
+((((-860)) |has| |#1| (-1097)))
+(((|#1|) . T) (((-564)) . T) (($) . T))
(|has| |#2| (-172))
((((-564)) . T))
-(|has| |#2| (-844))
+(|has| |#2| (-846))
(((|#1|) . T))
((((-564)) . T))
-((((-858)) . T))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-349)))
+((((-860)) . T))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-349)))
+((((-860)) . T))
(|has| |#1| (-147))
-((((-858)) . T))
(((|#3|) . T))
-(-2807 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-858)) . T))
-((((-1244 |#2| |#3| |#4|)) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T))
-((((-858)) . T))
-((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564)))) (((-610 $)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) -2807 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-407 (-948 |#1|))) |has| |#1| (-556)) (((-948 |#1|)) |has| |#1| (-1045)) (((-1170)) . T))
+(-2706 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+((((-860)) . T))
+((((-1247 |#2| |#3| |#4|)) . T) (((-1248 |#1| |#2| |#3| |#4|)) . T))
+((((-860)) . T))
+((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564)))) (((-610 $)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) -2706 (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-407 (-950 |#1|))) |has| |#1| (-556)) (((-950 |#1|)) |has| |#1| (-1047)) (((-1173)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-767)) . T))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+(((|#1| (-769)) . T))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
(((|#1|) |has| |#1| (-309 |#1|)))
-((((-1245 |#1| |#2| |#3| |#4|)) . T))
-((((-564)) |has| |#1| (-882 (-564))) (((-379)) |has| |#1| (-882 (-379))))
+((((-1248 |#1| |#2| |#3| |#4|)) . T))
+((((-564)) |has| |#1| (-884 (-564))) (((-379)) |has| |#1| (-884 (-379))))
(((|#1|) . T))
(|has| |#1| (-556))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
(((|#1|) . T))
-((((-858)) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
+(((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
(((|#1|) |has| |#1| (-172)))
+((((-860)) . T))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
-(((|#1|) . T))
-(((|#3|) |has| |#3| (-1094)))
-((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
-(((|#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-363))))
-((((-1244 |#2| |#3| |#4|)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) |has| |#1| (-172)) (($) . T) (((-564)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
+(((|#1|) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T) (($) . T))
+(((|#3|) |has| |#3| (-1097)))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363))))
+((((-1247 |#2| |#3| |#4|)) . T))
((((-112)) . T))
-(|has| |#1| (-816))
-(|has| |#1| (-816))
-(((|#1| (-564) (-1076)) . T))
+(|has| |#1| (-818))
+(|has| |#1| (-818))
+(((|#1| (-564) (-1079)) . T))
((($) |has| |#1| (-309 $)) ((|#1|) |has| |#1| (-309 |#1|)))
-(|has| |#1| (-844))
-(|has| |#1| (-844))
-(((|#1| (-564) (-1076)) . T))
-(-2807 (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-(((|#1| (-407 (-564)) (-1076)) . T))
-(((|#1| (-767) (-1076)) . T))
(|has| |#1| (-846))
-(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T))
+(|has| |#1| (-846))
+(((|#1| (-564) (-1079)) . T))
+(-2706 (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+(((|#1| (-407 (-564)) (-1079)) . T))
+(((|#1| (-769) (-1079)) . T))
+(|has| |#1| (-848))
+(((#0=(-908 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
(((|#2|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(|has| |#1| (-1094))
-((((-906 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
-(|has| |#1| (-1094))
-((((-564)) -2807 (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045))))
+(|has| |#1| (-1097))
+((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+(|has| |#1| (-1097))
+((((-407 (-564))) |has| |#2| (-363)) (($) . T) (((-564)) . T))
+((((-564)) -2706 (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))))
(((|#1|) . T))
-(|has| |#1| (-1094))
+(|has| |#1| (-1097))
((((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((|#2|) |has| |#1| (-363)))
-(-2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
-((((-685 (-339 (-2435) (-2435 (QUOTE X) (QUOTE HESS)) (-695)))) . T))
+(-2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097)))
+((((-687 (-339 (-2337) (-2337 (QUOTE X) (QUOTE HESS)) (-697)))) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
-((((-858)) . T))
-(|has| |#3| (-844))
-((((-858)) . T))
-((((-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T))
-((((-858)) . T))
-(((|#1| |#1|) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
+((((-860)) . T))
+(|has| |#3| (-846))
+((((-860)) . T))
+((((-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T))
+((((-860)) . T))
+(((|#1| |#1|) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1047))))
(((|#1|) . T))
((((-564)) . T))
((((-564)) . T))
-(((|#1|) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))))
+(((|#1|) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1047))))
(((|#2|) |has| |#2| (-363)))
+(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-363)))
-(|has| |#1| (-846))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+(|has| |#1| (-848))
+(((|#1|) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+(((|#1|) . T) (((-564)) . T))
(((|#2|) . T))
-((((-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) |has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-905)))
+((((-564)) . T) ((|#3|) . T))
+((((-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) |has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-907)))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) . T) (((-564)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((($) -2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) (((-564)) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))))
+((((-536)) . T) (((-564)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T))
+((((-860)) . T))
(|has| |#1| (-38 (-407 (-564))))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
(|has| |#1| (-233))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T) (($) . T))
(((|#1|) . T))
+(|has| |#1| (-846))
(((|#1| (-564)) . T))
-(|has| |#1| (-844))
-(((|#1| (-1168 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
+(((|#1| (-1171 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1| (-407 (-564))) . T))
-(((|#1| (-1161 |#1| |#2| |#3|)) . T))
-(((|#1| (-767)) . T))
+(((|#1| (-1164 |#1| |#2| |#3|)) . T))
(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
+(((|#1| (-769)) . T))
(((|#1|) . T))
+((((-407 (-950 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
+((((-407 (-950 |#1|))) . T))
+(((|#1|) |has| |#1| (-172)))
(|has| |#1| (-145))
-((((-564)) . T) ((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-1170)) |has| |#1| (-1034 (-1170))))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((|#1|) |has| |#1| (-172)))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-564)) . T) ((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-1173)) |has| |#1| (-1036 (-1173))))
(((|#1| |#2|) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) -2807 (|has| |#1| (-844)) (|has| |#1| (-1034 (-564)))) ((|#1|) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) -2706 (|has| |#1| (-846)) (|has| |#1| (-1036 (-564)))) ((|#1|) . T))
((((-144)) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(((|#1|) . T))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
(((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) . T) (($ $) . T))
(((|#2|) . T) ((|#1|) . T) (((-564)) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
(|has| |#1| (-363))
(|has| |#1| (-363))
(|has| (-407 |#2|) (-233))
-((((-641 |#1|)) . T))
-(|has| |#1| (-905))
-(((|#2|) |has| |#2| (-1045)))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
+((((-642 |#1|)) . T))
+(|has| |#1| (-907))
+(((|#2|) |has| |#2| (-1047)))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
(|has| |#1| (-363))
(((|#1|) |has| |#1| (-172)))
(((|#1| |#1|) . T))
-((((-866 |#1|)) . T))
-((((-858)) . T))
+((((-868 |#1|)) . T))
+((((-860)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1094)))
+(((|#2|) |has| |#2| (-1097)))
(((|#1|) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
-((((-641 $)) . T) (((-1152)) . T) (((-1170)) . T) (((-564)) . T) (((-225)) . T) (((-858)) . T))
+((((-642 $)) . T) (((-1155)) . T) (((-1173)) . T) (((-564)) . T) (((-225)) . T) (((-860)) . T))
+((($) -2706 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) (((-564)) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-846)) (|has| |#3| (-1047))) ((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))))
((((-407 (-564))) . T) (((-564)) . T) (((-610 $)) . T))
(((|#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
((($) . T))
(((|#1| (-531 |#2|) |#2|) . T))
-((((-858)) . T))
-(((|#1| (-564) (-1076)) . T))
-(((|#1| (-407 (-564)) (-1076)) . T))
-((((-906 |#1|)) . T))
-((((-858)) . T))
+((((-860)) . T))
+(((|#1| (-564) (-1079)) . T))
+(((|#1| (-407 (-564)) (-1079)) . T))
+((((-908 |#1|)) . T))
+((((-860)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-767) (-1076)) . T))
+(((|#1| (-769) (-1079)) . T))
(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-564)) -2807 (|has| (-407 (-564)) (-1034 (-564))) (|has| |#1| (-1034 (-564)))) (((-407 (-564))) . T))
+(((|#1|) . T) (((-564)) -2706 (|has| (-407 (-564)) (-1036 (-564))) (|has| |#1| (-1036 (-564)))) (((-407 (-564))) . T))
(((|#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
@@ -1921,54 +2150,63 @@
(((|#1|) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
(|has| |#2| (-233))
-(((|#2| (-531 (-860 |#1|)) (-860 |#1|)) . T))
-((((-858)) . T))
+(((|#2| (-531 (-862 |#1|)) (-862 |#1|)) . T))
+((((-860)) . T))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-858)) . T))
+((((-860)) . T))
(((|#1| |#3|) . T))
-((((-858)) . T))
-(((|#1|) |has| |#1| (-172)) (((-948 |#1|)) . T) (((-564)) . T))
+((((-860)) . T))
+(((|#1|) |has| |#1| (-172)) (((-950 |#1|)) . T) (((-564)) . T))
(((|#1|) |has| |#1| (-172)))
-((((-695)) . T))
-((((-695)) . T))
+((((-697)) . T))
+((((-697)) . T))
(((|#2|) |has| |#2| (-172)))
-(|has| |#2| (-844))
-((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))))
-((((-112)) |has| |#1| (-1094)) (((-858)) -2807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)) (|has| |#1| (-1106)) (|has| |#1| (-1094))))
+(|has| |#2| (-846))
+((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))))
+((((-112)) |has| |#1| (-1097)) (((-860)) -2706 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-724)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)) (|has| |#1| (-1109)) (|has| |#1| (-1097))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) . T))
-((((-858)) . T))
-((((-564) |#1|) . T))
-((((-858)) . T))
-((((-695)) . T) (((-407 (-564))) . T) (((-564)) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) . T))
+((((-564)) . T) (($) . T) (((-407 (-564))) . T))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+((((-564)) . T) (($) . T) (((-407 (-564))) . T))
+((((-564)) . T) (((-407 (-564))) . T) (($) . T))
+((((-860)) . T))
+((((-564)) . T) (((-407 (-564))) . T) (($) . T))
+((((-860)) . T))
+((((-697)) . T) (((-407 (-564))) . T) (((-564)) . T))
(((|#1| |#1|) |has| |#1| (-172)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
+((($) . T) (((-564)) . T) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-564) |#1|) . T))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
((((-379)) . T))
-((((-695)) . T))
+((((-697)) . T))
((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#))
(((|#1|) |has| |#1| (-172)))
-((((-407 (-948 |#1|))) . T))
+((((-407 (-950 |#1|))) . T))
(((|#2| |#2|) . T))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#3|) |has| |#3| (-1045)))
-(|has| |#2| (-905))
-(|has| |#1| (-905))
+(((|#3|) |has| |#3| (-1047)))
+(|has| |#2| (-907))
+(|has| |#1| (-907))
(|has| |#1| (-363))
-((((-1170)) |has| |#2| (-896 (-1170))))
-((((-858)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-1173)) |has| |#2| (-898 (-1173))))
+((((-860)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
((((-407 (-564))) . T) (($) . T))
(|has| |#1| (-473))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-363))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1045)) (|has| |#1| (-1106)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1047)) (|has| |#1| (-1109)))
(|has| |#1| (-38 (-407 (-564))))
((((-116 |#1|)) . T))
((((-116 |#1|)) . T))
@@ -1978,8 +2216,8 @@
((($) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(((|#2|) . T) (((-858)) . T))
-(((|#2|) . T) (((-858)) . T))
+(((|#2|) . T) (((-860)) . T))
+(((|#2|) . T) (((-860)) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
@@ -1988,64 +2226,74 @@
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(|has| |#1| (-846))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
+(|has| |#1| (-848))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
(((|#1| |#2|) . T))
+((($) . T) (((-564)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
(((|#2|) . T))
(((|#3|) . T))
((((-116 |#1|)) . T))
(|has| |#1| (-368))
-(|has| |#1| (-846))
-(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T))
+(|has| |#1| (-848))
+(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T))
((((-116 |#1|)) . T))
+(((|#1|) |has| |#1| (-172)))
(((|#2|) |has| |#2| (-172)))
(((|#1|) . T))
+(((|#1|) . T))
((((-564)) . T))
(|has| |#1| (-363))
(|has| |#1| (-363))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) |has| |#1| (-612 (-536))) (((-888 (-564))) |has| |#1| (-612 (-888 (-564)))) (((-888 (-379))) |has| |#1| (-612 (-888 (-379)))) (((-379)) . #0=(|has| |#1| (-1018))) (((-225)) . #0#))
+((((-860)) . T))
+((((-860)) . T))
+((((-536)) |has| |#1| (-612 (-536))) (((-890 (-564))) |has| |#1| (-612 (-890 (-564)))) (((-890 (-379))) |has| |#1| (-612 (-890 (-379)))) (((-379)) . #0=(|has| |#1| (-1020))) (((-225)) . #0#))
(((|#1|) |has| |#1| (-363)))
-((((-858)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-860)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
((($ $) . T) (((-610 $) $) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-((($) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T))
-((($) -2807 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+((($) . T) (((-1248 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T))
+((($) -2706 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556)))
+((($) . T) (((-564)) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T))
(|has| |#1| (-363))
(|has| |#1| (-363))
(|has| |#1| (-363))
((((-379)) . T) (((-564)) . T) (((-407 (-564))) . T))
-((((-641 (-776 |#1| (-860 |#2|)))) . T) (((-858)) . T))
-((((-536)) |has| (-776 |#1| (-860 |#2|)) (-612 (-536))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-642 (-778 |#1| (-862 |#2|)))) . T) (((-860)) . T))
+((((-536)) |has| (-778 |#1| (-862 |#2|)) (-612 (-536))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
((((-379)) . T))
-(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
-((((-858)) . T))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-905)))
+(((|#1|) |has| |#1| (-172)))
+(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))
+(((|#1|) |has| |#1| (-172)))
+((((-860)) . T))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-907)))
(((|#1|) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
+((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
((((-536)) |has| |#1| (-612 (-536))))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
-((((-767)) . T))
-(|has| |#1| (-1094))
-((((-858)) . T))
-((((-1170)) . T) (((-858)) . T))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
+((((-769)) . T))
+(|has| |#1| (-1097))
+((($) -2706 (|has| |#2| (-172)) (|has| |#2| (-846)) (|has| |#2| (-1047))) (((-564)) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047))) ((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))))
+((((-860)) . T))
+((((-1173)) . T) (((-860)) . T))
+((((-564)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
((((-407 (-564))) . T) (((-564)) . T) (((-610 $)) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
((((-564)) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(((#0=(-1244 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))) (($) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(((#0=(-1247 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))) (($) . T))
((((-564)) . T))
(|has| |#1| (-363))
-(-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147)))
-(-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145)))
+(-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147)))
+(-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145)))
(|has| |#1| (-363))
(|has| |#1| (-145))
(|has| |#1| (-147))
@@ -2054,46 +2302,59 @@
(|has| |#1| (-233))
(|has| |#1| (-363))
(((|#3|) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
((((-564)) |has| |#2| (-637 (-564))) ((|#2|) . T))
+(((|#2|) . T) (($) . T) (((-564)) . T))
(((|#2|) . T))
-(|has| |#1| (-1094))
+((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#))
+((((-407 (-564))) |has| |#2| (-363)) (($) . T))
+(|has| |#1| (-1097))
+((((-1139 |#2| |#1|)) . T) ((|#1|) . T) (((-564)) . T))
(((|#1| |#2|) . T))
-((((-564)) . T) ((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564))))))
+((((-564)) . T) ((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564))))))
(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564))))
(((|#3|) |has| |#3| (-172)))
-(-2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
-((((-858)) . T))
+(((|#2|) . T) (($) . T) (((-564)) . T))
+(((|#1|) . T) (($) . T) (((-564)) . T))
+(-2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097)))
+((((-860)) . T))
((((-564)) . T))
(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T))
-((((-948 |#1|)) . T) (((-858)) . T))
+((((-950 |#1|)) . T) (((-860)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -2807 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-564)) #0#) |has| |#1| (-363)))
-((((-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) . T))
-((((-948 |#1|)) . T))
+(((|#1| |#1|) . T) (($ $) -2706 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-564)) #0#) |has| |#1| (-363)))
+((((-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) . T))
+((((-950 |#1|)) . T))
((($) . T))
((((-564) |#1|) . T))
-((((-1170)) |has| (-407 |#2|) (-896 (-1170))))
-(((|#1|) . T) (($) -2807 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-564))) |has| |#1| (-363)))
+((((-1173)) |has| (-407 |#2|) (-898 (-1173))))
+(((|#1|) . T) (($) -2706 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-564))) |has| |#1| (-363)))
((((-536)) |has| |#2| (-612 (-536))))
-((((-685 |#2|)) . T) (((-858)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
-((((-866 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(-2807 (|has| |#4| (-789)) (|has| |#4| (-844)))
-(-2807 (|has| |#3| (-789)) (|has| |#3| (-844)))
-((((-858)) . T))
-((((-858)) . T))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
-(((|#2|) |has| |#2| (-1045)))
+((((-687 |#2|)) . T) (((-860)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
+((((-868 |#1|)) . T))
+(((|#1|) |has| |#1| (-172)))
+(-2706 (|has| |#4| (-791)) (|has| |#4| (-846)))
+(-2706 (|has| |#3| (-791)) (|has| |#3| (-846)))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-860)) . T))
+((((-860)) . T))
+(((|#1|) . T))
+((($) . T) (((-564)) . T) ((|#2|) . T))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
+(((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363))))
+(((|#2|) |has| |#2| (-1047)))
+(((|#3|) . T))
(((|#1|) . T))
((((-407 |#2|)) . T))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363))))
(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172)))
+(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))
((((-564) |#1|) . T))
(((|#1|) . T))
((($) . T))
@@ -2101,19 +2362,19 @@
((((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-1213)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-1216)))
((($) . T))
-((((-407 (-564))) |has| #0=(-407 |#2|) (-1034 (-407 (-564)))) (((-564)) |has| #0# (-1034 (-564))) ((#0#) . T))
+((((-407 (-564))) |has| #0=(-407 |#2|) (-1036 (-407 (-564)))) (((-564)) |has| #0# (-1036 (-564))) ((#0#) . T))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
-(((|#1| (-767)) . T))
-(|has| |#1| (-846))
+(((|#1| (-769)) . T))
+(|has| |#1| (-848))
(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564))))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
((((-564)) . T))
(|has| |#1| (-38 (-407 (-564))))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) |has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(|has| |#1| (-844))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) |has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(|has| |#1| (-846))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
@@ -2133,357 +2394,403 @@
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-((((-1152)) . T) (((-506)) . T) (((-225)) . T) (((-564)) . T))
-((((-858)) . T))
-(((|#2|) . T) (((-564)) . T) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))
+((((-1155)) . T) (((-506)) . T) (((-225)) . T) (((-564)) . T))
+((((-860)) . T))
+(((|#2|) . T) (((-564)) . T) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) (((-1079)) . T) ((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))
(((|#1| |#2|) . T))
((((-144)) . T))
-((((-776 |#1| (-860 |#2|))) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-(|has| |#1| (-1194))
-((((-858)) . T))
+((((-778 |#1| (-862 |#2|))) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+(|has| |#1| (-1197))
+((((-860)) . T))
(((|#1|) . T))
-(-2807 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1094)))
-((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)))
+(-2706 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-724)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047)) (|has| |#3| (-1097)))
+((((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)))
(((|#2|) . T))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-((((-906 |#1|)) . T))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((((-908 |#1|)) . T))
((($) . T))
-((((-407 (-948 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-407 (-950 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-536)) |has| |#4| (-612 (-536))))
-((((-858)) . T) (((-641 |#4|)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-860)) . T) (((-642 |#4|)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(((|#1|) . T))
-(|has| |#1| (-844))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) |has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))))
-(|has| |#1| (-1094))
+(|has| |#1| (-846))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) |has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))))
+(|has| |#1| (-1097))
(|has| |#1| (-363))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-668 |#1|)) . T))
+(((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363))))
+((((-670 |#1|)) . T))
+(((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))) (($) |has| |#3| (-172)))
((($) . T) (((-407 (-564))) . T))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147)))
-(-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145)))
+(-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147)))
+(-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145)))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(|has| |#1| (-844))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)))
+(|has| |#1| (-846))
(((|#1| |#2|) . T))
(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564))))
((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T))
-((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
-(|has| |#1| (-1094))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+(|has| |#1| (-1097))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-564)) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#1|) . T) (((-564)) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#1|) . T) (((-564)) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
-((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
-(|has| |#1| (-1094))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+(|has| |#1| (-1097))
(((|#2|) |has| |#2| (-172)))
+((((-564)) . T) ((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-564)) . T))
(((|#2|) . T))
(((|#1| |#1|) . T))
(((|#3|) |has| |#3| (-363)))
((((-407 |#2|)) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-(((|#1|) -2807 (|has| |#1| (-172)) (|has| |#1| (-363))))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-564)) . T) (($) . T) (((-407 (-564))) . T))
+((((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
+(((|#1|) -2706 (|has| |#1| (-172)) (|has| |#1| (-363))))
+(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
+((((-564)) . T) (((-407 (-564))) . T) (($) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
((((-316 |#1|)) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
+(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
+(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
+(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(((|#2|) |has| |#2| (-363)))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
(((|#2|) . T))
-((((-407 (-564))) . T) (((-695)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((#0=(-776 |#1| (-860 |#2|)) #0#) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))))
+((((-407 (-564))) . T) (((-697)) . T) (($) . T))
+((($) . T) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((#0=(-778 |#1| (-862 |#2|)) #0#) |has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|)))))
((((-564)) . T) (($) . T))
-((((-860 |#1|)) . T))
+((((-862 |#1|)) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
(((|#2|) . T))
-((((-1170)) |has| |#1| (-896 (-1170))) (((-1076)) . T))
-((((-1170)) |has| |#1| (-896 (-1170))) (((-1082 (-1170))) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-1173)) |has| |#1| (-898 (-1173))) (((-1079)) . T))
+((((-1173)) |has| |#1| (-898 (-1173))) (((-1085 (-1173))) . T))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
+((((-407 (-564))) . T) (((-564)) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(|has| |#1| (-38 (-407 (-564))))
-(((|#4|) |has| |#4| (-1045)) (((-564)) -12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))))
-(((|#3|) |has| |#3| (-1045)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))))
+(((|#4|) |has| |#4| (-1047)) (((-564)) -12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))))
+(((|#3|) |has| |#3| (-1047)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))))
(|has| |#1| (-145))
(|has| |#1| (-147))
((($ $) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)) (|has| |#1| (-1106)) (|has| |#1| (-1094)))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-724)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)) (|has| |#1| (-1109)) (|has| |#1| (-1097)))
(|has| |#1| (-556))
(((|#2|) . T))
((((-564)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(((|#1|) . T))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047)))
+(((|#1| (-59 |#1|) (-59 |#1|)) . T))
((((-581 |#1|)) . T))
((($) . T))
-(((|#1| (-59 |#1|) (-59 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-858)) . T))
-(((|#2|) |has| |#2| (-6 (-4409 "*"))))
+((((-860)) . T))
+(((|#2|) |has| |#2| (-6 (-4412 "*"))))
(((|#1|) . T))
(((|#1|) . T))
+((($) . T))
(((|#3|) . T))
+((($) . T))
+(((|#2|) . T) (((-564)) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1244 |#2| |#3| |#4|)) . T) (((-564)) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T))
-((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564)))) (((-564)) -2807 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))) (|has| |#1| (-1045))) ((|#1|) . T) (((-610 $)) . T) (($) |has| |#1| (-556)) (((-407 (-564))) -2807 (|has| |#1| (-556)) (|has| |#1| (-1034 (-407 (-564))))) (((-407 (-948 |#1|))) |has| |#1| (-556)) (((-948 |#1|)) |has| |#1| (-1045)) (((-1170)) . T))
-((((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))) (((-564)) |has| |#2| (-1034 (-564))) ((|#2|) . T) (((-860 |#1|)) . T))
+(((|#3|) . T) (((-564)) . T))
+((((-1247 |#2| |#3| |#4|)) . T) (((-564)) . T) (((-1248 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T))
+((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564)))) (((-564)) -2706 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))) (|has| |#1| (-1047))) ((|#1|) . T) (((-610 $)) . T) (($) |has| |#1| (-556)) (((-407 (-564))) -2706 (|has| |#1| (-556)) (|has| |#1| (-1036 (-407 (-564))))) (((-407 (-950 |#1|))) |has| |#1| (-556)) (((-950 |#1|)) |has| |#1| (-1047)) (((-1173)) . T))
+((((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))) (((-564)) |has| |#2| (-1036 (-564))) ((|#2|) . T) (((-862 |#1|)) . T))
((($) . T) (((-116 |#1|)) . T) (((-407 (-564))) . T))
-((((-1119 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
-((((-1166 |#1|)) . T) (((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
-((((-1119 |#1| (-1170))) . T) (((-1082 (-1170))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-1170)) . T))
-(|has| |#1| (-1094))
+((((-1122 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
+((((-1169 |#1|)) . T) (((-1079)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
+((((-1122 |#1| (-1173))) . T) (((-1085 (-1173))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-1173)) . T))
+(|has| |#1| (-1097))
((($) . T))
-(|has| |#1| (-1094))
-((((-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#2| (-882 (-564)))) (((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379)))))
+(|has| |#1| (-1097))
+((((-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#2| (-884 (-564)))) (((-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#2| (-884 (-379)))))
(((|#1| |#2|) . T))
-((((-1170) |#1|) . T))
+((((-1173) |#1|) . T))
(((|#4|) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-1170) (-52)) . T))
-((((-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T))
-((((-858)) . T))
-(-2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1094)))
-(((#0=(-1245 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-349)))
+((((-1173) (-52)) . T))
+((((-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T))
+((((-860)) . T))
+(-2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-724)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)) (|has| |#2| (-1097)))
+(((#0=(-1248 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-407 (-564)) #0#) |has| |#1| (-556)) (($ $) |has| |#1| (-556)))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
-((((-1245 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T) (($) . T))
+((((-1248 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556)) (($) |has| |#1| (-556)))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
(|has| |#1| (-363))
+((($) |has| |#1| (-846)) (((-564)) -2706 (|has| |#1| (-21)) (|has| |#1| (-846))))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
(|has| |#1| (-145))
((((-407 (-564))) . T) (($) . T))
(((|#3|) |has| |#3| (-363)))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
-((((-1170)) . T))
-((($) . T) (((-1244 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))) (((-564)) . T))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
+((((-1173)) . T))
+((($) . T) (((-1247 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| (-1247 |#2| |#3| |#4|) (-38 (-407 (-564)))) (((-564)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
(((|#2| |#3|) . T))
-(-2807 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
+(-2706 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
(((|#1| (-531 |#2|)) . T))
-(((|#1| (-767)) . T))
-(((|#1| (-531 (-1082 (-1170)))) . T))
+(((|#1| (-769)) . T))
+(((|#1| (-531 (-1085 (-1173)))) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(|has| |#2| (-905))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
-((((-858)) . T))
-((($ $) . T) ((#0=(-1244 |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) |has| #0# (-38 (-407 (-564)))))
-((((-906 |#1|)) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
+(|has| |#2| (-907))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
+((((-860)) . T))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363))))
+(((|#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1047))) (($) |has| |#2| (-172)))
+((($ $) . T) ((#0=(-1247 |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) |has| #0# (-38 (-407 (-564)))))
+((((-908 |#1|)) . T))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-818)))
((($) . T) (((-407 (-564))) . T))
-((((-858)) . T))
+((((-860)) . T))
((($) . T))
((($) . T))
-(-2807 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556)))
(|has| |#1| (-363))
(|has| |#1| (-363))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1244 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363)) (|has| |#1| (-349)))
-(-2807 (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)))
+((($) . T) ((#0=(-1247 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))))
+((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)))
+(-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-2706 (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)))
((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
((((-112)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
+(((|#2|) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T))
+(((|#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|))) . T))
+(((|#2|) . T))
(|has| |#2| (-363))
-(|has| |#1| (-846))
+(|has| |#1| (-848))
+(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-564)) . T))
-((((-858)) . T))
-(|has| |#1| (-1094))
+(((|#1|) . T))
+((((-860)) . T))
+(((|#2|) |has| |#2| (-172)))
+(|has| |#1| (-1097))
+(((|#1|) |has| |#1| (-172)))
+(((|#2|) . T))
+(((|#1|) . T))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-564)) . T) (($) . T))
+(((|#3|) . T) (((-564)) . T) (($) . T))
((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-816))
+(|has| |#2| (-818))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-858)) . T))
-(((|#1| (-531 (-1170))) . T))
+((((-860)) . T))
+(((|#1| (-531 (-1173))) . T))
(((|#1|) |has| |#1| (-172)))
-((((-858)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
-(((|#2|) -2807 (|has| |#2| (-6 (-4409 "*"))) (|has| |#2| (-172))))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(|has| |#2| (-905))
-(|has| |#1| (-905))
+((((-860)) . T))
+(((|#2|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
+(((|#2|) . T))
+(((|#2|) -2706 (|has| |#2| (-6 (-4412 "*"))) (|has| |#2| (-172))))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(|has| |#2| (-907))
+(|has| |#1| (-907))
(((|#2|) |has| |#2| (-172)))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) . T) (((-564)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-860)) . T))
+((((-860)) . T))
+((((-536)) . T) (((-564)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) . T))
+((($) . T) (((-564)) . T))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) . T))
(((|#1|) . T))
-((((-858)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-860)) . T))
(((|#1| |#2|) . T))
+((($) . T) (((-564)) . T))
(((|#1| (-407 (-564))) . T))
(((|#1|) . T))
-(-2807 (|has| |#1| (-290)) (|has| |#1| (-363)))
+(-2706 (|has| |#1| (-290)) (|has| |#1| (-363)))
((((-144)) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
-(|has| |#1| (-844))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(|has| |#1| (-846))
+((((-860)) . T))
+((((-860)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
((((-407 (-564))) . T) (($) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-187)) . T) (((-858)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-187)) . T) (((-860)) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-536)) |has| |#1| (-612 (-536))) (((-888 (-564))) |has| |#1| (-612 (-888 (-564)))) (((-888 (-379))) |has| |#1| (-612 (-888 (-379)))))
-((((-1170) (-52)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-536)) |has| |#1| (-612 (-536))) (((-890 (-564))) |has| |#1| (-612 (-890 (-564)))) (((-890 (-379))) |has| |#1| (-612 (-890 (-379)))))
+((((-1173) (-52)) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-641 (-144))) . T) (((-1152)) . T))
-((((-858)) . T))
-((((-1152)) . T))
-((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
-(|has| |#1| (-846))
-((((-858)) . T))
+((((-642 (-144))) . T) (((-1155)) . T))
+((((-860)) . T))
+((((-1155)) . T))
+((((-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
+(|has| |#1| (-848))
+((((-860)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-858)) . T))
+((((-860)) . T))
(((|#2|) |has| |#2| (-363)))
-((((-858)) . T))
+((((-860)) . T))
((((-536)) |has| |#4| (-612 (-536))))
-((((-858)) . T) (((-641 |#4|)) . T))
+((((-860)) . T) (((-642 |#4|)) . T))
(((|#2|) . T))
-((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
((($) . T) (((-564)) . T) (((-407 (-564))) . T) (((-610 $)) . T))
-(-2807 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
-(-2807 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-1170) (-52)) . T))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
+(-2706 (|has| |#4| (-172)) (|has| |#4| (-724)) (|has| |#4| (-846)) (|has| |#4| (-1047)))
+(-2706 (|has| |#3| (-172)) (|has| |#3| (-724)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+((((-1173) (-52)) . T))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(|has| |#1| (-905))
-((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
-(|has| |#1| (-905))
+(-2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+(|has| |#1| (-907))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
+(|has| |#1| (-907))
(((|#1|) . T) (((-564)) . T) (((-407 (-564))) . T) (($) . T))
(((|#2|) . T))
(((|#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-564)) . T))
(((#0=(-407 (-564)) #0#) . T) (($ $) . T))
((((-407 (-564))) . T) (($) . T))
-(((|#1| (-407 (-564)) (-1076)) . T))
-(|has| |#1| (-1094))
+(((|#1| (-407 (-564)) (-1079)) . T))
+(|has| |#1| (-1097))
(|has| |#1| (-556))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(|has| |#1| (-816))
-(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(|has| |#1| (-818))
+(((#0=(-908 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T))
((((-407 |#2|)) . T))
-(|has| |#1| (-844))
-((((-1195 |#1|)) . T) (((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
+(|has| |#1| (-846))
+((((-1198 |#1|)) . T) (((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
(((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) . T) ((#1=(-564) #1#) . T) (($ $) . T))
-((((-906 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
-(((|#2|) |has| |#2| (-1045)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045))))
+((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+(((|#2|) |has| |#2| (-1047)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047))))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
(((|#2|) . T))
-((((-858)) . T))
-((((-407 (-564))) . T) (((-695)) . T) (($) . T) (((-564)) . T))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
-((((-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -1901 (-1170)) (|:| -3813 #0#))) . T))
+((((-860)) . T))
+((((-407 (-564))) . T) (((-697)) . T) (($) . T) (((-564)) . T))
+(((|#1|) |has| |#1| (-172)))
+(((|#2|) |has| |#2| (-172)))
+(((|#1|) . T))
+(((|#2|) . T))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
+((((-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1907 (-1173)) (|:| -3778 #0#))) . T))
(|has| |#1| (-349))
((((-564)) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1|) . T))
-(((#0=(-1245 |#1| |#2| |#3| |#4|) $) |has| #0# (-286 #0# #0#)))
+(((#0=(-1248 |#1| |#2| |#3| |#4|) $) |has| #0# (-286 #0# #0#)))
(|has| |#1| (-363))
-(((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-349)))
-(((#0=(-407 (-564)) #0#) . T) ((#1=(-695) #1#) . T) (($ $) . T))
+(((|#1|) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1047))) (($) -2706 (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))) (((-564)) -2706 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047))))
+(((#0=(-1079) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(((#0=(-407 (-564)) #0#) . T) ((#1=(-697) #1#) . T) (($ $) . T))
((((-316 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) |has| |#1| (-363)))
-((((-858)) . T))
-(|has| |#1| (-1094))
+((((-860)) . T))
+(|has| |#1| (-1097))
(((|#1|) . T))
-(((|#1|) -2807 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|))))
-(((|#1|) -2807 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|))))
+(((|#1|) -2706 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|))))
+(((|#1|) -2706 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|))))
(((|#2|) . T))
-((((-407 (-564))) . T) (((-695)) . T) (($) . T))
+((((-407 (-564))) . T) (((-697)) . T) (($) . T))
((((-579)) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-233))
-((((-860 |#1|)) . T))
-((((-1170)) |has| |#1| (-896 (-1170))) ((|#3|) . T))
-((((-641 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-1018)))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-858)) . T))
+((((-862 |#1|)) . T))
+((((-1173)) |has| |#1| (-898 (-1173))) ((|#3|) . T))
+((((-642 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-1020)))
+((((-407 (-564))) . T) (($) . T))
+((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((($) . T) (((-407 (-564))) . T))
+((((-860)) . T))
(|has| |#1| (-363))
(|has| |#1| (-363))
((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T))
((((-564)) . T) (((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
((((-564)) . T))
(((|#3|) . T))
-(|has| |#1| (-1094))
+(|has| |#1| (-1097))
(((|#2|) . T))
(((|#1|) . T))
((((-564)) . T))
-(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#1|) . T) (($) . T) (((-564)) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
+(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#1|) . T) (($) . T) (((-564)) . T))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
(((|#1| |#2|) . T))
((($) . T))
@@ -2491,21 +2798,27 @@
((($) . T) (((-407 (-564))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1259 |#1|) (-1259 |#1|)) . T))
+(((|#1|) . T) (((-564)) . T))
+(((|#1|) . T) (((-564)) . T))
+(((|#1| (-1262 |#1|) (-1262 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-858)) . T))
-((((-858)) . T))
+(((|#2|) . T))
+((((-860)) . T))
+((((-860)) . T))
+(((|#2|) . T))
+(((|#3|) . T))
(((#0=(-116 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
-((((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))) (((-564)) |has| |#2| (-1034 (-564))) ((|#2|) . T) (((-860 |#1|)) . T))
-((((-1119 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#2|) . T))
+((((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))) (((-564)) |has| |#2| (-1036 (-564))) ((|#2|) . T) (((-862 |#1|)) . T))
+((((-1122 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
+(((|#3|) . T))
((($ $) . T))
-((((-668 |#1|)) . T))
+((((-670 |#1|)) . T))
((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
((((-116 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
-((((-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#3| (-882 (-564)))) (((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))))
+((((-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#3| (-884 (-564)))) (((-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#3| (-884 (-379)))))
(((|#2|) . T) ((|#6|) . T))
(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T))
((((-144)) . T))
@@ -2514,53 +2827,56 @@
((((-379)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) . T))
-(|has| |#2| (-905))
-(|has| |#1| (-905))
-(|has| |#1| (-905))
+(|has| |#2| (-907))
+(|has| |#1| (-907))
+(|has| |#1| (-907))
(((|#4|) . T))
-(|has| |#2| (-1018))
+(|has| |#2| (-1020))
((($) . T))
-(|has| |#1| (-905))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+(|has| |#1| (-907))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
(|has| |#1| (-363))
-((((-906 |#1|)) . T))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-908 |#1|)) . T))
+((($) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) . T))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) |has| |#1| (-846)) (((-564)) -2706 (|has| |#1| (-21)) (|has| |#1| (-846))))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
-(-2807 (|has| |#1| (-368)) (|has| |#1| (-846)))
+(-2706 (|has| |#1| (-368)) (|has| |#1| (-848)))
(((|#1|) . T))
-((((-767)) . T))
-((((-858)) . T))
-((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170)))))
+((((-769)) . T))
+((((-860)) . T))
+((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173)))))
((((-407 |#2|) |#3|) . T))
((($) . T) (((-407 (-564))) . T))
((($) . T) (((-564)) . T) (((-407 (-564))) . T) (((-610 $)) . T))
((((-564)) . T) (($) . T))
((((-564)) . T) (($) . T))
-((((-767) |#1|) . T))
-(((|#2| (-240 (-2181 |#1|) (-767))) . T))
+((((-769) |#1|) . T))
+(((|#2| (-240 (-2127 |#1|) (-769))) . T))
(((|#1| (-531 |#3|)) . T))
((((-407 (-564))) . T))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-((((-1152)) . T) (((-858)) . T))
-(((#0=(-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) #0#) |has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))))
-((((-1152)) . T))
-(|has| |#1| (-905))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+((((-1155)) . T) (((-860)) . T))
+(((#0=(-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) #0#) |has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))))
+((((-1155)) . T))
+(|has| |#1| (-907))
(|has| |#2| (-363))
-(-2807 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(((|#1|) . T) (($) . T) (((-564)) . T))
+(-2706 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1|) . T))
((((-379)) . T) (((-564)) . T))
(((#0=(-407 (-564)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
(|has| |#1| (-556))
((((-407 (-564))) . T) (($) . T))
((($) . T))
@@ -2568,223 +2884,243 @@
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(-2807 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-2706 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
(|has| |#1| (-38 (-407 (-564))))
-(-12 (|has| |#1| (-545)) (|has| |#1| (-824)))
-((((-858)) . T))
-((((-1170)) -2807 (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1170))))))
+(-12 (|has| |#1| (-545)) (|has| |#1| (-826)))
+((((-860)) . T))
+((((-1173)) -2706 (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-898 (-1173))))))
(|has| |#1| (-363))
-((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170)))))
+((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173)))))
(|has| |#1| (-363))
((((-407 (-564))) . T) (($) . T))
+((((-407 |#2|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
((((-564) |#1|) . T))
(((|#1|) . T))
(((|#2|) |has| |#1| (-363)))
(((|#2|) |has| |#1| (-363)))
((((-564)) . T) (($) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(((|#2|) . T) (((-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1170)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-564)))) (((-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-564)))))
+(((|#2|) . T) (((-1173)) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-1173)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-564)))) (((-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-564)))))
(((|#2|) . T))
-((((-1170) #0=(-1245 |#1| |#2| |#3| |#4|)) |has| #0# (-514 (-1170) #0#)) ((#0# #0#) |has| #0# (-309 #0#)))
+((((-1173) #0=(-1248 |#1| |#2| |#3| |#4|)) |has| #0# (-514 (-1173) #0#)) ((#0# #0#) |has| #0# (-309 #0#)))
+((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T))
((((-610 $) $) . T) (($ $) . T))
-((((-169 (-225))) . T) (((-169 (-379))) . T) (((-1166 (-695))) . T) (((-888 (-379))) . T))
-((((-858)) . T))
-(|has| |#1| (-556))
+((((-169 (-225))) . T) (((-169 (-379))) . T) (((-1169 (-697))) . T) (((-890 (-379))) . T))
+(((|#3|) . T))
(|has| |#1| (-556))
(|has| (-407 |#2|) (-233))
(((|#1| (-407 (-564))) . T))
+((($) . T) (((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T))
+(((|#3|) . T))
+(|has| |#1| (-556))
+((((-860)) . T))
((($ $) . T))
-((((-1170)) |has| |#2| (-896 (-1170))))
((($) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-1173)) |has| |#2| (-898 (-1173))))
((((-407 (-564))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-858)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T) (((-564)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-860)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#2|) |has| |#1| (-363)))
-((((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-379)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-564)))))
+((((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-884 (-379)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-884 (-564)))))
(|has| |#1| (-363))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
(|has| |#1| (-363))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(|has| |#1| (-363))
-(|has| |#1| (-556))
(((|#1|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+((($) . T) (((-564)) . T) ((|#2|) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(|has| |#1| (-363))
(((|#3|) . T))
-((((-1152)) . T) (((-506)) . T) (((-225)) . T) (((-564)) . T))
+((((-1155)) . T) (((-506)) . T) (((-225)) . T) (((-564)) . T))
(((|#1|) . T))
+(|has| |#1| (-556))
+(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
-(-2807 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-2706 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
(((|#2|) . T))
(((|#2|) . T))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(|has| |#1| (-38 (-407 (-564))))
(((|#1| |#2|) . T))
(|has| |#1| (-38 (-407 (-564))))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
+((($) . T))
+((((-1155) |#1|) . T))
(|has| |#1| (-147))
-((((-1152) |#1|) . T))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
(|has| |#1| (-147))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))
+((($) . T))
(|has| |#1| (-147))
((((-581 |#1|)) . T))
((($) . T))
-((((-407 |#2|)) . T))
(|has| |#1| (-556))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-349)))
-(|has| |#1| (-147))
-((((-858)) . T))
((($) . T))
-((((-407 (-564))) |has| |#2| (-1034 (-564))) (((-564)) |has| |#2| (-1034 (-564))) (((-1170)) |has| |#2| (-1034 (-1170))) ((|#2|) . T))
+((($) . T))
+((((-407 |#2|)) . T))
+((((-407 (-564))) |has| |#2| (-1036 (-564))) (((-564)) |has| |#2| (-1036 (-564))) (((-1173)) |has| |#2| (-1036 (-1173))) ((|#2|) . T))
(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-((((-1134 |#1| |#2|)) . T))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-349)))
+(|has| |#1| (-147))
+((((-860)) . T))
+((($) . T))
+((((-1137 |#1| |#2|)) . T))
(((|#1| (-564)) . T))
(((|#1| (-407 (-564))) . T))
-((((-564)) |has| |#2| (-882 (-564))) (((-379)) |has| |#2| (-882 (-379))))
+((((-564)) |has| |#2| (-884 (-564))) (((-379)) |has| |#2| (-884 (-379))))
(((|#2|) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
((((-112)) . T))
(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
(((|#2|) . T))
-((((-858)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-1170) (-52)) . T))
+((((-860)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-1173) (-52)) . T))
((((-407 |#2|)) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1|) . T))
-(|has| |#1| (-1094))
-(|has| |#1| (-787))
-(|has| |#1| (-787))
-((((-858)) . T))
-((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
+(|has| |#1| (-1097))
+(|has| |#1| (-789))
+(|has| |#1| (-789))
+((((-860)) . T))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
((((-114)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-225)) . T) (((-379)) . T) (((-888 (-379))) . T))
-((((-858)) . T))
-((((-1245 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T))
+((((-225)) . T) (((-379)) . T) (((-890 (-379))) . T))
+((((-860)) . T))
+((((-1248 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T))
(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556)))
-((((-858)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
(((|#2|) . T))
-((((-858)) . T))
-(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T))
+((((-860)) . T))
+(((#0=(-908 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-906 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
(|has| |#1| (-363))
-((((-858)) . T))
+((((-860)) . T))
(((|#2|) . T))
((((-564)) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-564)) . T))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-1152)) . T) (((-536)) . T) (((-564)) . T) (((-888 (-564))) . T) (((-379)) . T) (((-225)) . T))
-((((-858)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-1155)) . T) (((-536)) . T) (((-564)) . T) (((-890 (-564))) . T) (((-379)) . T) (((-225)) . T))
+((((-860)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((($) . T) ((#0=(-1244 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))))
+((($) . T) ((#0=(-1247 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(|has| |#1| (-363))
(|has| |#1| (-363))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1170))) (|has| |#1| (-1045)) (|has| |#1| (-1106)) (|has| |#1| (-1094)))
-(|has| |#1| (-1145))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-724)) (|has| |#1| (-898 (-1173))) (|has| |#1| (-1047)) (|has| |#1| (-1109)) (|has| |#1| (-1097)))
+(|has| |#1| (-1148))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
((((-564) |#1|) . T))
(((|#1|) . T))
(((#0=(-116 |#1|) $) |has| #0# (-286 #0# #0#)))
(((|#1|) |has| |#1| (-172)))
((((-316 |#1|)) . T) (((-564)) . T))
(((|#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-114)) . T) ((|#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-309 |#1|)))
((((-564) |#1|) . T))
-((((-1170) |#1|) . T))
+((((-1173) |#1|) . T))
+(((|#1|) -2706 (|has| |#1| (-172)) (|has| |#1| (-363))))
(((|#1|) . T))
+(((|#1|) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1047))))
((((-564)) . T) (((-407 (-564))) . T))
(((|#1|) . T))
(|has| |#1| (-556))
+((($) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-363)))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
((((-379)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-363))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
(|has| |#1| (-363))
(|has| |#1| (-556))
-(|has| |#1| (-1094))
-((((-776 |#1| (-860 |#2|))) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
+(|has| |#1| (-1097))
+((((-778 |#1| (-862 |#2|))) |has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|)))))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-905))
+(|has| |#2| (-907))
(((|#1| (-531 |#2|)) . T))
-(((|#1| (-767)) . T))
+(((|#1| (-769)) . T))
(|has| |#1| (-233))
-(((|#1| (-531 (-1082 (-1170)))) . T))
+(((|#1| (-531 (-1085 (-1173)))) . T))
(|has| |#2| (-363))
((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
((((-564)) . T) (((-407 (-564))) . T) (($) . T))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) . T))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) . T))
(((|#1|) . T))
(((|#1|) . T) (((-564)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-858)) . T))
-((((-858)) . T))
-(-2807 (|has| |#3| (-789)) (|has| |#3| (-844)))
-((((-858)) . T))
-((((-1114)) . T) (((-858)) . T))
-((((-536)) . T) (((-858)) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-860)) . T))
+((((-860)) . T))
+(-2706 (|has| |#3| (-791)) (|has| |#3| (-846)))
+((((-860)) . T))
+((((-1117)) . T) (((-860)) . T))
+((((-536)) . T) (((-860)) . T))
(((|#1|) . T))
((($ $) . T) (((-610 $) $) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-564)) . T))
(((|#3|) . T))
-((((-858)) . T))
-(-2807 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-564)) . T) (((-407 (-564))) -2807 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))) ((|#2|) . T) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((-860 |#1|)) . T))
-((((-1119 |#1| |#2|)) . T) ((|#2|) . T) (($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-564)) . T))
-((((-1166 |#1|)) . T) (((-564)) . T) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))
-(-2807 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1045)))
-((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-1082 (-1170))) . T) (($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) (((-1170)) . T))
+((((-860)) . T))
+(-2706 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
+((((-564)) . T) (((-407 (-564))) -2706 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))) ((|#2|) . T) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) (((-862 |#1|)) . T))
+((((-1122 |#1| |#2|)) . T) ((|#2|) . T) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-564)) . T))
+((((-1169 |#1|)) . T) (((-564)) . T) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) (((-1079)) . T) ((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))
+(-2706 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047)))
+((((-1122 |#1| (-1173))) . T) (((-564)) . T) (((-1085 (-1173))) . T) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) (((-1173)) . T))
(((#0=(-581 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(((|#1|) |has| |#1| (-172)))
-(((|#1| (-1259 |#1|) (-1259 |#1|)) . T))
+(((|#1| (-1262 |#1|) (-1262 |#1|)) . T))
((((-581 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
((($) . T) (((-407 (-564))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
((($) . T) (((-407 (-564))) . T))
-(((|#2|) |has| |#2| (-6 (-4409 "*"))))
+(((|#2|) |has| |#2| (-6 (-4412 "*"))))
(((|#1|) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((|#1|) . T) (((-564)) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((|#1|) . T) (((-564)) . T))
(((|#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-294 |#3|)) . T))
-(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
+(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
@@ -2792,657 +3128,701 @@
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
(((|#2|) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-((((-858)) . T))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(|has| |#2| (-905))
-(|has| |#1| (-905))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-858)) . T))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((((-860)) . T))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(|has| |#2| (-907))
+(|has| |#1| (-907))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-860)) . T))
(((|#1|) . T))
-((((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) . T))
+((((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1094))
+(|has| |#1| (-1097))
(((|#1|) . T))
-((((-1170)) . T) ((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
+((((-1173)) . T) ((|#1|) . T))
+((((-860)) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
+((((-860)) . T))
+((((-564)) . T) (($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))
(((#0=(-407 (-564)) #0#) . T))
((((-407 (-564))) . T))
-(-2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(((|#1|) |has| |#1| (-172)))
+(-2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
(((|#1|) . T))
(((|#1|) . T))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+(((|#1|) . T))
((((-407 (-564))) . T) (((-564)) . T) (($) . T))
((((-536)) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
-((((-1170)) |has| |#2| (-896 (-1170))) (((-1076)) . T))
-((((-1244 |#2| |#3| |#4|)) . T))
-((((-906 |#1|)) . T))
+((((-1173)) |has| |#2| (-898 (-1173))) (((-1079)) . T))
+((((-1247 |#2| |#3| |#4|)) . T))
+((((-908 |#1|)) . T))
((($) . T) (((-407 (-564))) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-((((-858)) . T))
-(|has| |#1| (-1213))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-818)))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-818)))
+((((-860)) . T))
+(|has| |#1| (-1216))
(((|#2|) . T))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
-((((-1170)) |has| |#1| (-896 (-1170))))
-((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
-((($) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T))
-(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((((-1173)) |has| |#1| (-898 (-1173))))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+((($) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T))
+(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
((($) . T) (((-407 (-564))) . T))
(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1045)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045))))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2807 (|has| |#1| (-172)) (|has| |#1| (-556))))
+(((|#2|) |has| |#2| (-1047)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047))))
+((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-556))))
(|has| |#1| (-556))
(((|#1|) |has| |#1| (-363)))
((((-564)) . T))
-(|has| |#1| (-787))
-(|has| |#1| (-787))
-((((-1170) #0=(-116 |#1|)) |has| #0# (-514 (-1170) #0#)) ((#0# #0#) |has| #0# (-309 #0#)))
-(((|#2|) . T) (((-564)) |has| |#2| (-1034 (-564))) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))))
-((((-1076)) . T) ((|#2|) . T) (((-564)) |has| |#2| (-1034 (-564))) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))))
+(|has| |#1| (-789))
+(|has| |#1| (-789))
+((((-1173) #0=(-116 |#1|)) |has| #0# (-514 (-1173) #0#)) ((#0# #0#) |has| #0# (-309 #0#)))
+(((|#2|) . T) (((-564)) |has| |#2| (-1036 (-564))) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))))
+((((-1079)) . T) ((|#2|) . T) (((-564)) |has| |#2| (-1036 (-564))) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-564) (-767)) . T) ((|#3| (-767)) . T))
+(((|#1|) . T) (((-564)) . T) (($) . T))
+((((-564) (-769)) . T) ((|#3| (-769)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-858)) . T))
-(|has| |#2| (-816))
-(|has| |#2| (-816))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
-((((-564)) |has| |#1| (-882 (-564))) (((-379)) |has| |#1| (-882 (-379))))
-(((|#1|) . T))
-((((-866 |#1|)) . T))
-((((-866 |#1|)) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-905)))
-((((-407 (-564))) . T) (((-695)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-860)) . T))
+(|has| |#2| (-818))
+(|has| |#2| (-818))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
+((((-564)) |has| |#1| (-884 (-564))) (((-379)) |has| |#1| (-884 (-379))))
+(((|#1|) . T))
+((((-868 |#1|)) . T))
+((((-868 |#1|)) . T))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-907)))
+((((-407 (-564))) . T) (((-697)) . T) (($) . T))
+(((|#1|) |has| |#1| (-172)))
(|has| |#1| (-363))
(|has| |#1| (-363))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+(((|#1|) |has| |#1| (-172)))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
+(((|#2|) -2706 (|has| |#2| (-6 (-4412 "*"))) (|has| |#2| (-172))))
+(((|#2|) . T))
(|has| |#1| (-363))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-860 |#1|)) . T))
+((((-862 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-767)) . T))
-((((-1170)) . T))
-((((-866 |#1|)) . T))
-(-2807 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-(-2807 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-858)) . T))
+(((|#2| (-769)) . T))
+((((-1173)) . T))
+((((-868 |#1|)) . T))
+(-2706 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+(-2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+((((-860)) . T))
(((|#1|) . T))
-(-2807 (|has| |#2| (-789)) (|has| |#2| (-844)))
-(-2807 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846))))
-((((-866 |#1|)) . T))
+(-2706 (|has| |#2| (-791)) (|has| |#2| (-846)))
+(-2706 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848))))
+((((-868 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
((($ $) . T) (((-610 $) $) . T))
((($) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-564)) . T))
(((|#2|) . T))
-((((-858)) . T))
+((((-860)) . T))
+((($) . T) (((-564)) . T))
(((|#1|) . T) (((-407 (-564))) |has| |#1| (-363)))
-((((-858)) . T))
+((((-860)) . T))
(((|#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
((($) . T) ((|#2|) . T) (((-407 (-564))) . T))
-(|has| |#1| (-1094))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-858)) . T))
-(|has| |#2| (-905))
-((((-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) . T))
-((((-536)) |has| |#2| (-612 (-536))) (((-888 (-379))) |has| |#2| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#2| (-612 (-888 (-564)))))
-((((-858)) . T))
-((((-858)) . T))
-(((|#3|) |has| |#3| (-1045)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))))
-((((-1119 |#1| |#2|)) . T) (((-948 |#1|)) |has| |#2| (-612 (-1170))) (((-858)) . T))
-((((-948 |#1|)) |has| |#2| (-612 (-1170))) (((-1152)) -12 (|has| |#1| (-1034 (-564))) (|has| |#2| (-612 (-1170)))) (((-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564))))) (((-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))))
-((((-1166 |#1|)) . T) (((-858)) . T))
-((((-858)) . T))
-((((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))) (((-564)) |has| |#2| (-1034 (-564))) ((|#2|) . T) (((-860 |#1|)) . T))
+(|has| |#1| (-1097))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-860)) . T))
+(|has| |#2| (-907))
+((((-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) . T))
+((((-536)) |has| |#2| (-612 (-536))) (((-890 (-379))) |has| |#2| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#2| (-612 (-890 (-564)))))
+((((-860)) . T))
+((((-860)) . T))
+(((|#3|) |has| |#3| (-1047)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))))
+((((-1122 |#1| |#2|)) . T) (((-950 |#1|)) |has| |#2| (-612 (-1173))) (((-860)) . T))
+((((-950 |#1|)) |has| |#2| (-612 (-1173))) (((-1155)) -12 (|has| |#1| (-1036 (-564))) (|has| |#2| (-612 (-1173)))) (((-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564))))) (((-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))))
+((((-1169 |#1|)) . T) (((-860)) . T))
+((((-860)) . T))
+((((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))) (((-564)) |has| |#2| (-1036 (-564))) ((|#2|) . T) (((-862 |#1|)) . T))
((((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T) (((-1170)) . T))
-((((-858)) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T) (((-1173)) . T))
+((((-860)) . T))
((((-564)) . T))
(((|#1|) . T))
((($) . T))
-((((-379)) |has| |#1| (-882 (-379))) (((-564)) |has| |#1| (-882 (-564))))
+((((-379)) |has| |#1| (-884 (-379))) (((-564)) |has| |#1| (-884 (-564))))
((((-564)) . T))
(((|#1|) . T))
-((((-858)) . T))
-(((|#1|) . T))
-((((-858)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-641 |#1|)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-(((|#1|) |has| |#1| (-172)) (($) . T))
+((((-860)) . T))
+(((|#1|) . T))
+((((-860)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-642 |#1|)) . T))
+((($) . T) (((-564)) . T) (((-1248 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T))
+((((-564)) -2706 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) (($) -2706 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1047))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556)))
+((((-1178)) . T))
+((((-1178)) . T))
((((-564)) . T) (((-407 (-564))) . T))
+((((-1178)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T))
(((|#1|) |has| |#1| (-309 |#1|)))
-((((-858)) . T))
((((-379)) . T))
+((((-860)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-407 (-564))) . T) (($) . T))
((((-407 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1094))
-(((|#2| (-482 (-2181 |#1|) (-767))) . T))
+(|has| |#1| (-1097))
+(((|#2| (-482 (-2127 |#1|) (-769))) . T))
((((-564) |#1|) . T))
-((((-1152)) . T) (((-858)) . T))
+((((-1155)) . T) (((-860)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-531 (-1170))) . T))
-(-2807 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(((|#1| (-531 (-1173))) . T))
+(-2706 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
((((-564)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1170)) |has| |#1| (-896 (-1170))) (((-1076)) . T))
+((((-1173)) |has| |#1| (-898 (-1173))) (((-1079)) . T))
(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564))))
(|has| |#1| (-556))
+(((#0=(-1247 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))) (((-564)) . T) (($) . T))
((($) . T) (((-407 (-564))) . T))
((($) . T))
((($) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
(((|#1|) . T))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-858)) . T))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-860)) . T))
((((-144)) . T))
(((|#1|) . T) (((-407 (-564))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-858)) . T))
+((((-860)) . T))
(((|#1|) . T))
-(|has| |#1| (-1145))
-(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T))
+(|has| |#1| (-1148))
+(((|#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|))) . T))
(((|#1|) . T))
((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
-((((-858)) . T))
-((((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-564)) |has| |#1| (-1034 (-564))) ((|#1|) . T) ((|#2|) . T))
-((((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))))
-((((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379)))) (((-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#2| (-882 (-564)))))
-((((-1245 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
+((((-860)) . T))
+((((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-564)) |has| |#1| (-1036 (-564))) ((|#1|) . T) ((|#2|) . T))
+((((-1079)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))))
+((((-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#2| (-884 (-379)))) (((-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#2| (-884 (-564)))))
+((((-1248 |#1| |#2| |#3| |#4|)) . T))
((((-564) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-172)) (($) . T))
((($) . T))
-((((-695)) . T))
-((((-776 |#1| (-860 |#2|))) . T))
+((((-697)) . T))
+((((-778 |#1| (-862 |#2|))) . T))
+((((-564)) . T) (($) . T))
((($) . T))
+(((|#1|) . T) (((-407 (-564))) |has| |#1| (-363)))
((((-407 (-564))) . T) (($) . T))
-(|has| |#1| (-1094))
-(|has| |#1| (-1094))
+(|has| |#1| (-1097))
+(|has| |#1| (-1097))
(|has| |#2| (-363))
+(((|#1|) . T) (($) -2706 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-564))) |has| |#1| (-363)))
(|has| |#1| (-363))
(|has| |#1| (-363))
(|has| |#1| (-38 (-407 (-564))))
((((-564)) . T))
-((((-1170)) -12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045))))
-((((-1170)) -12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045))))
+((((-1173)) -12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047))))
+((((-1173)) -12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047))))
(((|#1|) . T))
(|has| |#1| (-233))
+(((|#2| (-240 (-2127 |#1|) (-769))) . T))
(((|#1| (-531 |#3|)) . T))
-(((|#2| (-240 (-2181 |#1|) (-767))) . T))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
(((|#1|) . T) (($) . T))
(((|#1| (-531 |#2|)) . T))
-(-2807 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(((|#1| (-767)) . T))
+(-2706 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+(((|#1| (-769)) . T))
(|has| |#1| (-556))
-(-2807 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-2706 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-858)) . T))
+((((-860)) . T))
((((-564)) . T) (((-407 (-564))) . T) (($) . T))
-(-2807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
-(-2807 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
+(-2706 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791))))
+(-2706 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
(((|#1|) |has| |#1| (-172)))
-(((|#4|) |has| |#4| (-1045)))
-(((|#3|) |has| |#3| (-1045)))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-816)))
-((((-564)) . T) (((-407 (-564))) -2807 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))) ((|#2|) . T) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((-860 |#1|)) . T))
-((((-1119 |#1| |#2|)) . T) (((-564)) . T) ((|#3|) . T) (($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))) ((|#2|) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(((|#4|) |has| |#4| (-1047)))
+(((|#3|) |has| |#3| (-1047)))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-818)))
+(-12 (|has| |#1| (-363)) (|has| |#2| (-818)))
+((((-564)) . T) (((-407 (-564))) -2706 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))) ((|#2|) . T) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) (((-862 |#1|)) . T))
+((((-1122 |#1| |#2|)) . T) (((-564)) . T) ((|#3|) . T) (($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))) ((|#2|) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
((((-536)) |has| |#1| (-612 (-536))))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
-((((-1175)) . T))
-((((-668 |#1|)) . T))
+((((-1178)) . T))
+((((-670 |#1|)) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
-((((-858)) . T))
-((((-641 $)) . T) (((-1152)) . T) (((-1170)) . T) (((-564)) . T) (((-225)) . T) (((-858)) . T))
+((((-860)) . T))
+((((-642 $)) . T) (((-1155)) . T) (((-1173)) . T) (((-564)) . T) (((-225)) . T) (((-860)) . T))
((($) . T) (((-407 (-564))) . T))
(((|#1|) . T))
-(((|#4|) |has| |#4| (-1094)) (((-564)) -12 (|has| |#4| (-1034 (-564))) (|has| |#4| (-1094))) (((-407 (-564))) -12 (|has| |#4| (-1034 (-407 (-564)))) (|has| |#4| (-1094))))
-(((|#3|) |has| |#3| (-1094)) (((-564)) -12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094))))
+(((|#4|) |has| |#4| (-1097)) (((-564)) -12 (|has| |#4| (-1036 (-564))) (|has| |#4| (-1097))) (((-407 (-564))) -12 (|has| |#4| (-1036 (-407 (-564)))) (|has| |#4| (-1097))))
+(((|#3|) |has| |#3| (-1097)) (((-564)) -12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (((-407 (-564))) -12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097))))
(|has| |#2| (-363))
-(((|#2|) |has| |#2| (-1045)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045))))
+(((|#2|) |has| |#2| (-1047)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047))))
(((|#1|) . T))
(|has| |#2| (-363))
-(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(((|#2| |#2|) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(((|#2|) . T))
-((((-858)) |has| |#1| (-1094)))
+((((-860)) |has| |#1| (-1097)))
((($) . T))
-((((-1245 |#1| |#2| |#3| |#4|)) . T))
+((((-1248 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#2| (-816))
-(|has| |#2| (-816))
+(|has| |#2| (-818))
+(|has| |#2| (-818))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(|has| |#1| (-363))
(|has| |#1| (-363))
(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))
(|has| |#1| (-363))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) |has| |#2| (-417 |#1|)))
(((|#1|) |has| |#2| (-417 |#1|)))
-((((-1152)) . T))
-((((-906 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-641 |#1|)) . T) (((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-641 |#1|)) . T))
+((((-1155)) . T))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-642 |#1|)) . T) (((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-642 |#1|)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-858)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1208)) . T) (((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) |has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-860)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1211)) . T) (((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) |has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
((((-564) |#1|) . T))
((((-564) |#1|) . T))
((((-564) |#1|) . T))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
((((-564) |#1|) . T))
(((|#1|) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
-((((-1170)) |has| |#1| (-896 (-1170))) (((-814 (-1170))) . T))
-(-2807 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-815 |#1|)) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((((-1173)) |has| |#1| (-898 (-1173))) (((-816 (-1173))) . T))
+(-2706 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-791)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+((((-817 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-858)) . T))
-(-2807 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
+((((-860)) . T))
+(-2706 (|has| |#3| (-172)) (|has| |#3| (-724)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
(((|#1| |#2|) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) . T))
(|has| |#1| (-38 (-407 (-564))))
-((((-858)) . T))
-((((-1245 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T))
+((((-860)) . T))
+((((-1248 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T))
(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556)))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
(|has| |#1| (-363))
-(-2807 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233))))
+(-2706 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233))))
(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))
(|has| |#1| (-363))
(((|#1|) . T))
-(((#0=(-407 (-564)) #0#) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T))
+(((#0=(-407 (-564)) #0#) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T))
((((-564) |#1|) . T))
((((-316 |#1|)) . T))
-(((#0=(-695) (-1166 #0#)) . T))
-((((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+(((#0=(-697) (-1169 #0#)) . T))
+((((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-564)) . T) (((-407 (-564))) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-844))
-(((|#2|) . T) (((-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1170)))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2807 (|has| |#1| (-363)) (|has| |#1| (-556))))
-((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1119 |#1| (-1170))) . T) (((-814 (-1170))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1034 (-564))) (((-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) (((-1170)) . T))
+(|has| |#1| (-846))
+(((|#2|) . T) (((-1173)) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-1173)))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -2706 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((($ $) . T) ((#0=(-862 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1122 |#1| (-1173))) . T) (((-816 (-1173))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1036 (-564))) (((-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) (((-1173)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1170) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1082 (-1170)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1079) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1173) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1085 (-1173)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
-(|has| |#2| (-905))
-((($) . T) ((#0=(-1244 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))))
+(|has| |#2| (-907))
+((($) . T) ((#0=(-1247 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))))
+(((|#1|) |has| |#1| (-172)))
((((-564) |#1|) . T))
-((((-1175)) . T))
-(((#0=(-1245 |#1| |#2| |#3| |#4|)) |has| #0# (-309 #0#)))
+(((|#1|) . T))
+((((-1178)) . T))
+(((#0=(-1248 |#1| |#2| |#3| |#4|)) |has| #0# (-309 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
(|has| |#2| (-233))
(|has| $ (-147))
-((((-858)) . T))
-((($) . T) (((-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-((((-858)) . T))
-(|has| |#1| (-844))
+((((-860)) . T))
+((($) . T) (((-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-860)) . T))
+(|has| |#1| (-846))
((((-129)) . T))
-((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))
-((((-407 |#2|) |#3|) . T))
+((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))
+((((-407 (-564))) . T) (((-697)) . T) (($) . T) (((-564)) . T))
(((|#1|) . T))
((((-129)) . T))
-((((-858)) . T))
-(((|#2| (-668 |#1|)) . T))
-(-12 (|has| |#1| (-307)) (|has| |#1| (-905)))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-407 |#2|) |#3|) . T))
+((((-860)) . T))
+(((|#2| (-670 |#1|)) . T))
+(-12 (|has| |#1| (-307)) (|has| |#1| (-907)))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#4|) . T))
(|has| |#1| (-556))
-((($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T))
-((((-1170)) -2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))
-(((|#1|) . T) (($) -2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
-((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170)))))
-((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170)))))
-(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
+((($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T))
+((((-1173)) -2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))
+(((|#1|) . T) (($) -2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173)))))
+((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173)))))
+(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))
((((-564) |#1|) . T))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
(((|#1|) . T))
-(((|#1| (-531 (-814 (-1170)))) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-((((-564)) . T) ((|#2|) . T) (($) . T) (((-407 (-564))) . T) (((-1170)) |has| |#2| (-1034 (-1170))))
+(((|#1| (-531 (-816 (-1173)))) . T))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+((((-564)) . T) ((|#2|) . T) (($) . T) (((-407 (-564))) . T) (((-1173)) |has| |#2| (-1036 (-1173))))
(((|#1|) . T))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
(((|#1|) . T))
-(-2807 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-2807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
-((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((($) . T) (((-866 |#1|)) . T) (((-407 (-564))) . T))
-((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
+(-2706 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+(-2706 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791))))
+((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((($) . T) (((-868 |#1|)) . T) (((-407 (-564))) . T))
+((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)))
(|has| |#1| (-556))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-407 |#2|)) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-349)))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
((((-536)) |has| |#1| (-612 (-536))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
((((-536)) |has| |#1| (-612 (-536))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
((((-536)) |has| |#1| (-612 (-536))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
(((|#1|) . T))
(((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) . T) (($ $) . T))
((((-564)) . T))
(((|#2|) . T) (((-407 (-564))) . T) (($) . T))
-((((-858)) . T))
+((((-860)) . T))
+((($) . T))
((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
-((((-858)) . T))
+((((-860)) . T))
((((-407 (-564))) . T) (($) . T))
((((-564) |#1|) . T))
-((((-858)) . T))
-((($ $) . T) (((-1170) $) . T))
-((((-1251 |#1| |#2| |#3|)) . T))
-((((-536)) |has| |#2| (-612 (-536))) (((-888 (-379))) |has| |#2| (-612 (-888 (-379)))) (((-888 (-564))) |has| |#2| (-612 (-888 (-564)))))
-((((-858)) . T))
-((((-858)) . T))
-((((-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#3| (-612 (-888 (-564))))) (((-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#3| (-612 (-888 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-(((|#1|) . T) (((-858)) . T) (((-1175)) . T))
-((((-858)) . T))
-((((-1175)) . T))
+((($) . T))
+((((-860)) . T))
+((($ $) . T) (((-1173) $) . T))
+((((-536)) |has| |#2| (-612 (-536))) (((-890 (-379))) |has| |#2| (-612 (-890 (-379)))) (((-890 (-564))) |has| |#2| (-612 (-890 (-564)))))
+((((-860)) . T))
+((((-860)) . T))
+((((-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#3| (-612 (-890 (-564))))) (((-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#3| (-612 (-890 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+(((|#1|) . T) (((-860)) . T) (((-1178)) . T))
+((((-860)) . T))
+((((-1178)) . T))
((((-114)) . T) ((|#1|) . T) (((-564)) . T))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|))) . T))
(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
((((-129)) . T))
-((((-858)) . T))
-((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))))
+((($) . T) (((-564)) . T) (((-116 |#1|)) . T) (((-407 (-564))) . T))
+((((-860)) . T))
+((((-1254 |#1| |#2| |#3|)) . T))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
-(|has| |#1| (-363))
-((($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-1098)) . T))
-((((-858)) . T))
-((($) -2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) . T) (((-564)) . T))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-1101)) . T))
+((((-860)) . T))
+((($) -2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
((($) . T))
-((($) -2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-1251 |#1| |#2| |#3|)) . T) (((-1223 |#1| |#2| |#3|)) . T))
-((((-1170)) . T) (((-858)) . T))
-(|has| |#2| (-905))
+((($) -2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-1254 |#1| |#2| |#3|)) |has| |#1| (-363)))
+(|has| |#1| (-363))
+((((-1254 |#1| |#2| |#3|)) . T) (((-1226 |#1| |#2| |#3|)) . T))
+((((-1173)) . T) (((-860)) . T))
+(|has| |#2| (-907))
(((|#1|) . T))
-(|has| |#1| (-905))
+(|has| |#1| (-907))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-172)))
-((((-695)) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-((((-1175)) . T))
+((((-697)) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+((((-1178)) . T))
(((|#1|) |has| |#1| (-172)))
-((((-1175)) . T))
-((((-1175)) . T))
-(((|#1|) |has| |#1| (-172)))
-((((-1175)) . T))
+((((-1178)) . T))
+((((-1248 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T))
+(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556)))
+((((-1178)) . T))
+((((-1248 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T) (($) . T))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556)) (($) |has| |#1| (-556)))
((((-407 (-564))) . T) (($) . T))
(((|#1| (-564)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-((((-1175)) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-349)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-1175)) . T))
-((((-1175)) . T))
+(((|#1|) |has| |#1| (-172)))
+((((-407 (-564))) . T) (((-564)) . T) (($) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+((((-1178)) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-349)))
+((((-1178)) . T))
+((((-1178)) . T))
(|has| |#1| (-363))
(|has| |#1| (-363))
-(-2807 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-172)) (|has| |#1| (-556)))
(((|#1| (-564)) . T))
(((|#1| (-407 (-564))) . T))
-(((|#1| (-767)) . T))
+(((|#1| (-769)) . T))
((((-407 (-564))) . T))
(((|#1| (-531 |#2|) |#2|) . T))
((((-564) |#1|) . T))
((((-564) |#1|) . T))
-(|has| |#1| (-1094))
+(|has| |#1| (-1097))
((((-564) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-888 (-379))) . T) (((-888 (-564))) . T) (((-1170)) . T) (((-536)) . T))
+((((-890 (-379))) . T) (((-890 (-564))) . T) (((-1173)) . T) (((-536)) . T))
(((|#1|) . T))
-((((-858)) . T))
-(-2807 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-(-2807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
+((((-860)) . T))
+(-2706 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-791)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+(-2706 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791))))
((((-564)) . T))
((((-564)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-2807 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045)))
-((((-1170)) -12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045))))
-(-2807 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))
+(-2706 (|has| |#2| (-172)) (|has| |#2| (-724)) (|has| |#2| (-846)) (|has| |#2| (-1047)))
+((((-1173)) -12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047))))
+(-2706 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724))))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-363))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
+((($) . T) ((#0=(-1247 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))))
(|has| |#1| (-233))
-((((-858)) . T))
-(((|#1| (-767) (-1076)) . T))
+((($) . T) (((-564)) . T) (((-407 (-564))) . T))
+((($) . T) (((-564)) . T))
+((($) . T) (((-564)) . T))
+((($) . T) ((#0=(-1247 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))))
+((((-860)) . T))
+(((|#1| (-769) (-1079)) . T))
((((-564) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
((((-564) |#1|) . T))
((((-564) |#1|) . T))
((((-116 |#1|)) . T))
((((-407 (-564))) . T) (((-564)) . T))
-(((|#2|) |has| |#2| (-1045)))
+(((|#2|) |has| |#2| (-1047)))
((((-407 (-564))) . T) (($) . T))
(((|#2|) . T))
((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
((((-564)) . T))
((((-564)) . T))
-((((-1152) (-1170) (-564) (-225) (-858)) . T))
+((((-1155) (-1173) (-564) (-225) (-860)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
((((-564)) . T) ((|#2|) |has| |#2| (-172)))
((((-114)) . T) ((|#1|) . T) (((-564)) . T))
-(-2807 (|has| |#1| (-349)) (|has| |#1| (-368)))
+(-2706 (|has| |#1| (-349)) (|has| |#1| (-368)))
(((|#1| |#2|) . T))
((((-225)) . T))
((((-407 (-564))) . T) (($) . T) (((-564)) . T))
-((((-858)) . T))
+((((-860)) . T))
((($) . T) ((|#1|) . T))
((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094))))
+(((|#2|) |has| |#2| (-1097)) (((-564)) -12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (((-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097))))
(((|#1|) . T))
(((|#1|) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1094))))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-848)) (|has| |#1| (-1097))))
((($) . T) (((-407 (-564))) . T))
-(|has| |#1| (-905))
-(|has| |#1| (-905))
-((((-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) (((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) (((-888 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-888 (-379))))) (((-888 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-888 (-564))))) (((-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536)))))
-((((-858)) . T))
-((((-858)) . T))
+(|has| |#1| (-907))
+(|has| |#1| (-907))
+((((-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1020))) (((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1020))) (((-890 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-890 (-379))))) (((-890 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-890 (-564))))) (((-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536)))))
+((((-860)) . T))
+((((-860)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-172)))
(((|#1|) . T) (((-564)) . T))
-((((-1175)) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-844)))
+((((-1178)) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-846)))
(((|#2|) . T))
-(-2807 (|has| |#1| (-21)) (|has| |#1| (-844)))
+(-2706 (|has| |#1| (-21)) (|has| |#1| (-846)))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(((|#1|) . T))
-((((-858)) -2807 (-12 (|has| |#1| (-611 (-858))) (|has| |#2| (-611 (-858)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))
+((((-860)) -2706 (-12 (|has| |#1| (-611 (-860))) (|has| |#2| (-611 (-860)))) (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097)))))
((((-407 |#2|) |#3|) . T))
((((-407 (-564))) . T) (($) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-363))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
+((($) . T) (((-564)) . T))
(|has| (-407 |#2|) (-147))
(|has| (-407 |#2|) (-145))
-((((-695)) . T))
+((($) . T))
+((((-697)) . T))
(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
(((#0=(-564) #0#) . T))
((($) . T) (((-407 (-564))) . T))
-(-2807 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045)))
-(-2807 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045)))
-((((-858)) . T) (((-1175)) . T))
-(|has| |#4| (-789))
-(-2807 (|has| |#4| (-789)) (|has| |#4| (-844)))
-(|has| |#4| (-844))
-(|has| |#3| (-789))
-((((-1175)) . T))
-(-2807 (|has| |#3| (-789)) (|has| |#3| (-844)))
-(|has| |#3| (-844))
+(-2706 (|has| |#4| (-172)) (|has| |#4| (-724)) (|has| |#4| (-846)) (|has| |#4| (-1047)))
+(-2706 (|has| |#3| (-172)) (|has| |#3| (-724)) (|has| |#3| (-846)) (|has| |#3| (-1047)))
+((((-860)) . T) (((-1178)) . T))
+(|has| |#4| (-791))
+(-2706 (|has| |#4| (-791)) (|has| |#4| (-846)))
+(|has| |#4| (-846))
+(|has| |#3| (-791))
+((((-1178)) . T))
+(-2706 (|has| |#3| (-791)) (|has| |#3| (-846)))
+(|has| |#3| (-846))
((((-564)) . T))
(((|#2|) . T))
-((((-1170)) -2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))
-((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170)))))
-((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170)))))
+((((-1173)) -2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))
+((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173)))))
+((((-1173)) -12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-860 |#1|)) . T))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-1134 |#1| |#2|)) . T))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(((|#2|) . T) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) . T))
-((($) . T))
-(|has| |#1| (-1018))
-(((|#2|) . T) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
-((((-858)) . T))
-((((-536)) |has| |#2| (-612 (-536))) (((-888 (-564))) |has| |#2| (-612 (-888 (-564)))) (((-888 (-379))) |has| |#2| (-612 (-888 (-379)))) (((-379)) . #0=(|has| |#2| (-1018))) (((-225)) . #0#))
+((((-862 |#1|)) . T))
+((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-1137 |#1| |#2|)) . T))
+((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)))
+(((|#2|) . T) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) . T))
+((($) . T))
+(|has| |#1| (-1020))
+(((|#2|) . T) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
+((((-860)) . T))
+((((-536)) |has| |#2| (-612 (-536))) (((-890 (-564))) |has| |#2| (-612 (-890 (-564)))) (((-890 (-379))) |has| |#2| (-612 (-890 (-379)))) (((-379)) . #0=(|has| |#2| (-1020))) (((-225)) . #0#))
((((-294 |#3|)) . T))
-((((-1170) (-52)) . T))
+((((-1173) (-52)) . T))
(((|#1|) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-((((-858)) . T))
+((((-860)) . T))
(((|#2|) . T))
-((((-858)) . T))
+((((-860)) . T))
((($ $) . T))
-((((-407 (-564))) . T) (((-695)) . T) (($) . T))
-((((-1168 |#1| |#2| |#3|)) . T))
-((((-1168 |#1| |#2| |#3|)) . T) (((-1161 |#1| |#2| |#3|)) . T))
-((((-858)) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
+((((-407 |#2|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+((((-407 (-564))) . T) (((-697)) . T) (($) . T))
+((((-1171 |#1| |#2| |#3|)) . T))
+((((-1171 |#1| |#2| |#3|)) . T) (((-1164 |#1| |#2| |#3|)) . T))
+((((-860)) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
((((-564) |#1|) . T))
-((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
+((((-1171 |#1| |#2| |#3|)) |has| |#1| (-363)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-363))
-(((|#3|) . T) ((|#2|) . T) (($) -2807 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) ((|#4|) -2807 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))))
-(((|#2|) . T) (($) -2807 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -2807 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))))
+(((|#3|) . T) ((|#2|) . T) (($) -2706 (|has| |#4| (-172)) (|has| |#4| (-846)) (|has| |#4| (-1047))) ((|#4|) -2706 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1047))))
+(((|#2|) . T) (($) -2706 (|has| |#3| (-172)) (|has| |#3| (-846)) (|has| |#3| (-1047))) ((|#3|) -2706 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1047))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-363))
((((-116 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))) (((-564)) |has| |#2| (-1034 (-564))) ((|#2|) . T) (((-860 |#1|)) . T))
-((((-1170)) . T) ((|#1|) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
-((((-187)) . T) (((-858)) . T))
-((((-858)) . T))
+((((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))) (((-564)) |has| |#2| (-1036 (-564))) ((|#2|) . T) (((-862 |#1|)) . T))
+((((-1173)) . T) ((|#1|) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
+((((-187)) . T) (((-860)) . T))
+((((-860)) . T))
(((|#1|) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-((((-129)) . T) (((-858)) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+((((-129)) . T) (((-860)) . T))
((((-564) |#1|) . T))
((((-129)) . T))
(((|#1|) . T))
@@ -3450,80 +3830,87 @@
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905)))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-((((-858)) . T))
-((((-858)) . T))
-((((-858)) . T))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-907)))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+((((-860)) . T))
+((((-860)) . T))
+((((-860)) . T))
(((|#1| (-531 |#2|)) . T))
-((((-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) . T))
+((((-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) . T))
((((-564) (-129)) . T))
(((|#1| (-564)) . T))
(((|#1| (-407 (-564))) . T))
-(((|#1| (-767)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
+(((|#1| (-769)) . T))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
((((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
-((((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-(-2807 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905)))
-(-2807 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-905)))
-((($) . T))
-(((|#2| (-531 (-860 |#1|))) . T))
-((((-1175)) . T))
-((((-1175)) . T))
+((((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+(-2706 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907)))
+(-2706 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-907)))
+((($) . T))
+(((|#2| (-531 (-862 |#1|))) . T))
+((((-1178)) . T))
+((((-1178)) . T))
((((-564) |#1|) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-(((|#2|) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-858)) . T) (((-1175)) . T))
-((((-1175)) . T))
-((((-858)) -2807 (|has| |#1| (-611 (-858))) (|has| |#1| (-1094))))
-(((|#1|) . T))
-(((|#2| (-767)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+(((|#2|) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-860)) . T) (((-1178)) . T))
+((((-1178)) . T))
+((((-860)) -2706 (|has| |#1| (-611 (-860))) (|has| |#1| (-1097))))
+(((|#1|) . T))
+(((|#2| (-769)) . T))
(((|#1| |#2|) . T))
-((((-1152) |#1|) . T))
+((((-1155) |#1|) . T))
((((-407 |#2|)) . T))
-((((-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T))
+((((-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T))
(|has| |#1| (-556))
(|has| |#1| (-556))
((($) . T) ((|#2|) . T))
+((($) . T) (((-407 (-564))) . T))
+((((-407 (-564))) . T) (($) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
((((-564)) . T) (($) . T))
(((|#2| $) |has| |#2| (-286 |#2| |#2|)))
-(((|#1| (-641 |#1|)) |has| |#1| (-844)))
-(-2807 (|has| |#1| (-233)) (|has| |#1| (-349)))
-(-2807 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-1255 |#1|)) . T) (((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1034 (-407 (-564)))))
-(|has| |#1| (-1094))
+(((|#1| (-642 |#1|)) |has| |#1| (-846)))
+(-2706 (|has| |#1| (-233)) (|has| |#1| (-349)))
+(-2706 (|has| |#1| (-363)) (|has| |#1| (-349)))
+((((-1258 |#1|)) . T) (((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1036 (-407 (-564)))))
+(|has| |#1| (-1097))
(((|#1|) . T))
-((((-1255 |#1|)) . T) (((-564)) . T) (($) -2807 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-905))) (((-1076)) . T) ((|#2|) . T) (((-407 (-564))) -2807 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))))
+((((-1258 |#1|)) . T) (((-564)) . T) (($) -2706 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-907))) (((-1079)) . T) ((|#2|) . T) (((-407 (-564))) -2706 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))))
((((-407 (-564))) . T) (($) . T))
-((((-995 |#1|)) . T) ((|#1|) . T) (((-564)) -2807 (|has| (-995 |#1|) (-1034 (-564))) (|has| |#1| (-1034 (-564)))) (((-407 (-564))) -2807 (|has| (-995 |#1|) (-1034 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-1170)) |has| |#1| (-896 (-1170))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
+((((-997 |#1|)) . T) ((|#1|) . T) (((-564)) -2706 (|has| (-997 |#1|) (-1036 (-564))) (|has| |#1| (-1036 (-564)))) (((-407 (-564))) -2706 (|has| (-997 |#1|) (-1036 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))
+((((-908 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-1173)) |has| |#1| (-898 (-1173))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
+((((-908 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))
(((|#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
(((|#1|) . T))
+(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1134 |#1| |#2|) #0#) |has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))))
+(((#0=(-1137 |#1| |#2|) #0#) |has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) #0#) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((#0=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) #0#) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))))
(((#0=(-116 |#1|)) |has| #0# (-309 #0#)))
((($ $) . T))
-(-2807 (|has| |#1| (-846)) (|has| |#1| (-1094)))
-((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T))
+(-2706 (|has| |#1| (-848)) (|has| |#1| (-1097)))
+((($ $) . T) ((#0=(-862 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-478 . -1094) T) ((-264 . -514) 161695) ((-247 . -514) 161638) ((-245 . -1094) 161588) ((-571 . -111) 161573) ((-531 . -23) T) ((-138 . -1094) T) ((-137 . -1094) T) ((-117 . -309) 161530) ((-133 . -1094) T) ((-479 . -514) 161322) ((-673 . -614) 161306) ((-690 . -102) T) ((-1135 . -514) 161225) ((-390 . -131) T) ((-1272 . -972) 161194) ((-31 . -93) T) ((-600 . -489) 161178) ((-619 . -131) T) ((-815 . -842) T) ((-523 . -57) 161128) ((-59 . -514) 161061) ((-519 . -514) 160994) ((-418 . -896) 160953) ((-169 . -1045) T) ((-516 . -514) 160886) ((-497 . -514) 160819) ((-496 . -514) 160752) ((-795 . -1034) 160535) ((-695 . -38) 160500) ((-1232 . -614) 160248) ((-343 . -349) T) ((-1088 . -1087) 160232) ((-1088 . -1094) 160210) ((-851 . -614) 160107) ((-169 . -243) 160058) ((-169 . -233) 160009) ((-1088 . -1089) 159967) ((-868 . -286) 159925) ((-225 . -791) T) ((-225 . -788) T) ((-690 . -284) NIL) ((-571 . -614) 159897) ((-1144 . -1185) 159876) ((-407 . -988) 159860) ((-697 . -21) T) ((-697 . -25) T) ((-1274 . -644) 159834) ((-316 . -160) 159813) ((-316 . -143) 159792) ((-1144 . -107) 159742) ((-134 . -25) T) ((-40 . -231) 159719) ((-116 . -21) T) ((-116 . -25) T) ((-606 . -288) 159695) ((-475 . -288) 159674) ((-1232 . -326) 159651) ((-1232 . -1045) T) ((-851 . -1045) T) ((-795 . -338) 159635) ((-139 . -185) T) ((-117 . -1145) NIL) ((-91 . -611) 159567) ((-477 . -131) T) ((-1232 . -233) T) ((-1090 . -490) 159548) ((-1090 . -611) 159514) ((-1084 . -490) 159495) ((-1084 . -611) 159461) ((-592 . -1209) T) ((-1067 . -490) 159442) ((-571 . -1045) T) ((-1067 . -611) 159408) ((-658 . -713) 159392) ((-1060 . -490) 159373) ((-1060 . -611) 159339) ((-954 . -288) 159316) ((-60 . -34) T) ((-1056 . -791) T) ((-1056 . -788) T) ((-1032 . -490) 159297) ((-1015 . -490) 159278) ((-812 . -722) T) ((-727 . -47) 159243) ((-621 . -38) 159230) ((-355 . -290) T) ((-352 . -290) T) ((-344 . -290) T) ((-264 . -290) 159161) ((-247 . -290) 159092) ((-1032 . -611) 159058) ((-1020 . -102) T) ((-1015 . -611) 159024) ((-624 . -490) 159005) ((-413 . -722) T) ((-117 . -38) 158950) ((-483 . -490) 158931) ((-624 . -611) 158897) ((-413 . -473) T) ((-218 . -490) 158878) ((-483 . -611) 158844) ((-354 . -102) T) ((-218 . -611) 158810) ((-1203 . -1052) T) ((-707 . -1052) T) ((-1168 . -47) 158787) ((-1167 . -47) 158757) ((-1161 . -47) 158734) ((-128 . -288) 158709) ((-1031 . -151) 158655) ((-906 . -290) T) ((-1120 . -47) 158627) ((-690 . -309) NIL) ((-515 . -611) 158609) ((-510 . -611) 158591) ((-508 . -611) 158573) ((-327 . -1094) 158523) ((-708 . -452) 158454) ((-48 . -102) T) ((-1243 . -286) 158439) ((-1222 . -286) 158359) ((-641 . -662) 158343) ((-641 . -647) 158327) ((-339 . -21) T) ((-339 . -25) T) ((-40 . -349) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-641 . -373) 158311) ((-603 . -490) 158293) ((-600 . -286) 158270) ((-603 . -611) 158237) ((-388 . -102) T) ((-1114 . -143) T) ((-126 . -611) 158169) ((-870 . -1094) T) ((-654 . -411) 158153) ((-710 . -611) 158135) ((-249 . -611) 158102) ((-187 . -611) 158084) ((-162 . -611) 158066) ((-157 . -611) 158048) ((-1274 . -722) T) ((-1096 . -34) T) ((-867 . -791) NIL) ((-867 . -788) NIL) ((-854 . -846) T) ((-727 . -882) NIL) ((-1283 . -131) T) ((-381 . -131) T) ((-888 . -614) 158016) ((-900 . -102) T) ((-727 . -1034) 157892) ((-531 . -131) T) ((-1081 . -411) 157876) ((-996 . -489) 157860) ((-117 . -400) 157837) ((-1161 . -1209) 157816) ((-778 . -411) 157800) ((-776 . -411) 157784) ((-939 . -34) T) ((-690 . -1145) NIL) ((-251 . -644) 157619) ((-250 . -644) 157441) ((-813 . -916) 157420) ((-454 . -411) 157404) ((-600 . -19) 157388) ((-1140 . -1202) 157357) ((-1161 . -882) NIL) ((-1161 . -880) 157309) ((-600 . -602) 157286) ((-1195 . -611) 157218) ((-1169 . -611) 157200) ((-62 . -395) T) ((-1167 . -1034) 157135) ((-1161 . -1034) 157101) ((-690 . -38) 157051) ((-474 . -286) 157036) ((-1215 . -611) 157018) ((-727 . -377) 157002) ((-834 . -611) 156984) ((-654 . -1052) T) ((-1243 . -998) 156950) ((-1222 . -998) 156916) ((-1082 . -614) 156900) ((-1057 . -1185) 156875) ((-1070 . -614) 156852) ((-868 . -612) 156659) ((-868 . -611) 156641) ((-1182 . -489) 156578) ((-418 . -1018) 156556) ((-48 . -309) 156543) ((-1057 . -107) 156489) ((-479 . -489) 156426) ((-520 . -1209) T) ((-1161 . -338) 156378) ((-1135 . -489) 156349) ((-1161 . -377) 156301) ((-1081 . -1052) T) ((-437 . -102) T) ((-183 . -1094) T) ((-251 . -34) T) ((-250 . -34) T) ((-778 . -1052) T) ((-776 . -1052) T) ((-727 . -896) 156278) ((-454 . -1052) T) ((-59 . -489) 156262) ((-1030 . -1051) 156236) ((-519 . -489) 156220) ((-516 . -489) 156204) ((-497 . -489) 156188) ((-496 . -489) 156172) ((-245 . -514) 156105) ((-1030 . -111) 156072) ((-1168 . -896) 155985) ((-1167 . -896) 155891) ((-1161 . -896) 155724) ((-1120 . -896) 155708) ((-666 . -1106) T) ((-354 . -1145) T) ((-642 . -93) T) ((-322 . -1051) 155690) ((-251 . -787) 155669) ((-251 . -790) 155620) ((-31 . -490) 155601) ((-251 . -789) 155580) ((-250 . -787) 155559) ((-250 . -790) 155510) ((-250 . -789) 155489) ((-31 . -611) 155455) ((-50 . -1052) T) ((-251 . -722) 155365) ((-250 . -722) 155275) ((-1203 . -1094) T) ((-666 . -23) T) ((-581 . -1052) T) ((-518 . -1052) T) ((-379 . -1051) 155240) ((-322 . -111) 155215) ((-73 . -383) T) ((-73 . -395) T) ((-1020 . -38) 155152) ((-690 . -400) 155134) ((-99 . -102) T) ((-707 . -1094) T) ((-999 . -145) 155106) ((-999 . -147) 155078) ((-379 . -111) 155034) ((-319 . -1213) 155013) ((-474 . -998) 154979) ((-354 . -38) 154944) ((-40 . -370) 154916) ((-869 . -611) 154788) ((-127 . -125) 154772) ((-121 . -125) 154756) ((-832 . -1051) 154726) ((-829 . -21) 154678) ((-823 . -1051) 154662) ((-829 . -25) 154614) ((-319 . -556) 154565) ((-517 . -614) 154546) ((-564 . -824) T) ((-240 . -1209) T) ((-1030 . -614) 154515) ((-832 . -111) 154480) ((-823 . -111) 154459) ((-1243 . -611) 154441) ((-1222 . -611) 154423) ((-1222 . -612) 154094) ((-1166 . -905) 154073) ((-1119 . -905) 154052) ((-48 . -38) 154017) ((-1281 . -1106) T) ((-600 . -611) 153929) ((-600 . -612) 153890) ((-1279 . -1106) T) ((-361 . -614) 153874) ((-322 . -614) 153858) ((-240 . -1034) 153685) ((-1166 . -644) 153610) ((-1119 . -644) 153535) ((-850 . -644) 153509) ((-714 . -611) 153491) ((-546 . -368) T) ((-1281 . -23) T) ((-1279 . -23) T) ((-491 . -1094) T) ((-379 . -614) 153441) ((-379 . -616) 153423) ((-1030 . -1045) T) ((-861 . -102) T) ((-1182 . -286) 153402) ((-169 . -368) 153353) ((-1000 . -1209) T) ((-832 . -614) 153307) ((-823 . -614) 153262) ((-44 . -23) T) ((-479 . -286) 153241) ((-585 . -1094) T) ((-1140 . -1103) 153210) ((-1098 . -1097) 153162) ((-390 . -21) T) ((-390 . -25) T) ((-152 . -1106) T) ((-1287 . -102) T) ((-1000 . -880) 153144) ((-1000 . -882) 153126) ((-1203 . -713) 153023) ((-621 . -231) 153007) ((-619 . -21) T) ((-289 . -556) T) ((-619 . -25) T) ((-1189 . -1094) T) ((-707 . -713) 152972) ((-240 . -377) 152941) ((-1000 . -1034) 152901) ((-379 . -1045) T) ((-223 . -1052) T) ((-117 . -231) 152878) ((-59 . -286) 152855) ((-152 . -23) T) ((-516 . -286) 152832) ((-327 . -514) 152765) ((-496 . -286) 152742) ((-379 . -243) T) ((-379 . -233) T) ((-832 . -1045) T) ((-823 . -1045) T) ((-708 . -945) 152711) ((-697 . -846) T) ((-474 . -611) 152693) ((-823 . -233) 152672) ((-134 . -846) T) ((-654 . -1094) T) ((-1182 . -602) 152651) ((-550 . -1185) 152630) ((-336 . -1094) T) ((-319 . -363) 152609) ((-407 . -147) 152588) ((-407 . -145) 152567) ((-960 . -1106) 152466) ((-240 . -896) 152398) ((-811 . -1106) 152308) ((-650 . -848) 152292) ((-479 . -602) 152271) ((-550 . -107) 152221) ((-1000 . -377) 152203) ((-1000 . -338) 152185) ((-97 . -1094) T) ((-960 . -23) 151996) ((-477 . -21) T) ((-477 . -25) T) ((-811 . -23) 151866) ((-1170 . -611) 151848) ((-59 . -19) 151832) ((-1170 . -612) 151754) ((-1166 . -722) T) ((-1119 . -722) T) ((-516 . -19) 151738) ((-496 . -19) 151722) ((-59 . -602) 151699) ((-1081 . -1094) T) ((-897 . -102) 151677) ((-850 . -722) T) ((-778 . -1094) T) ((-516 . -602) 151654) ((-496 . -602) 151631) ((-776 . -1094) T) ((-776 . -1059) 151598) ((-461 . -1094) T) ((-454 . -1094) T) ((-585 . -713) 151573) ((-645 . -1094) T) ((-1251 . -47) 151550) ((-1245 . -102) T) ((-1244 . -47) 151520) ((-1223 . -47) 151497) ((-1203 . -172) 151448) ((-1000 . -896) NIL) ((-1167 . -307) 151427) ((-625 . -1106) T) ((-666 . -131) T) ((-1161 . -307) 151406) ((-1090 . -614) 151387) ((-1084 . -614) 151368) ((-1074 . -556) 151319) ((-1074 . -1213) 151270) ((-275 . -1094) T) ((-85 . -441) T) ((-85 . -395) T) ((-1067 . -614) 151251) ((-1060 . -614) 151232) ((-50 . -1094) T) ((-1032 . -614) 151213) ((-707 . -172) T) ((-594 . -47) 151190) ((-225 . -644) 151155) ((-581 . -1094) T) ((-518 . -1094) T) ((-359 . -1213) T) ((-353 . -1213) T) ((-345 . -1213) T) ((-487 . -816) T) ((-487 . -916) T) ((-319 . -1106) T) ((-108 . -1213) T) ((-1015 . -614) 151136) ((-710 . -1051) 151106) ((-217 . -916) T) ((-217 . -816) T) ((-624 . -614) 151087) ((-359 . -556) T) ((-353 . -556) T) ((-345 . -556) T) ((-483 . -614) 151068) ((-108 . -556) T) ((-654 . -713) 151038) ((-1161 . -1018) NIL) ((-218 . -614) 151019) ((-319 . -23) T) ((-67 . -1209) T) ((-996 . -611) 150951) ((-690 . -231) 150933) ((-710 . -111) 150898) ((-641 . -34) T) ((-245 . -489) 150882) ((-1096 . -1092) 150866) ((-171 . -1094) T) ((-948 . -905) 150845) ((-515 . -614) 150829) ((-1287 . -1145) T) ((-1283 . -21) T) ((-481 . -905) 150808) ((-1283 . -25) T) ((-1281 . -131) T) ((-1279 . -131) T) ((-1272 . -102) T) ((-1255 . -611) 150774) ((-1244 . -1034) 150709) ((-1081 . -713) 150558) ((-1056 . -644) 150545) ((-948 . -644) 150470) ((-778 . -713) 150299) ((-536 . -611) 150281) ((-536 . -612) 150262) ((-776 . -713) 150111) ((-1223 . -1209) 150090) ((-1071 . -102) T) ((-381 . -25) T) ((-381 . -21) T) ((-481 . -644) 150015) ((-461 . -713) 149986) ((-454 . -713) 149835) ((-983 . -102) T) ((-1223 . -882) NIL) ((-1223 . -880) 149787) ((-1182 . -612) NIL) ((-733 . -102) T) ((-1182 . -611) 149769) ((-603 . -614) 149751) ((-1136 . -1117) 149696) ((-1042 . -1202) 149625) ((-531 . -25) T) ((-897 . -309) 149563) ((-710 . -614) 149517) ((-343 . -1052) T) ((-642 . -490) 149498) ((-141 . -102) T) ((-44 . -131) T) ((-289 . -1106) T) ((-677 . -93) T) ((-672 . -93) T) ((-660 . -611) 149480) ((-642 . -611) 149433) ((-478 . -93) T) ((-355 . -611) 149415) ((-352 . -611) 149397) ((-344 . -611) 149379) ((-264 . -612) 149127) ((-264 . -611) 149109) ((-247 . -611) 149091) ((-247 . -612) 148952) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1223 . -1034) 148918) ((-1203 . -514) 148885) ((-1135 . -611) 148867) ((-815 . -853) T) ((-815 . -722) T) ((-600 . -288) 148844) ((-581 . -713) 148809) ((-479 . -612) NIL) ((-479 . -611) 148791) ((-518 . -713) 148736) ((-316 . -102) T) ((-313 . -102) T) ((-289 . -23) T) ((-152 . -131) T) ((-906 . -611) 148718) ((-386 . -722) T) ((-868 . -1051) 148670) ((-906 . -612) 148652) ((-868 . -111) 148590) ((-710 . -1045) T) ((-708 . -1235) 148574) ((-139 . -102) T) ((-136 . -102) T) ((-114 . -102) T) ((-690 . -349) NIL) ((-519 . -611) 148506) ((-379 . -791) T) ((-223 . -1094) T) ((-379 . -788) T) ((-225 . -790) T) ((-225 . -787) T) ((-59 . -612) 148467) ((-59 . -611) 148379) ((-225 . -722) T) ((-516 . -612) 148340) ((-516 . -611) 148252) ((-497 . -611) 148184) ((-496 . -612) 148145) ((-496 . -611) 148057) ((-1074 . -363) 148008) ((-40 . -411) 147985) ((-77 . -1209) T) ((-867 . -905) NIL) ((-359 . -329) 147969) ((-359 . -363) T) ((-353 . -329) 147953) ((-353 . -363) T) ((-345 . -329) 147937) ((-345 . -363) T) ((-316 . -284) 147916) ((-108 . -363) T) ((-70 . -1209) T) ((-1223 . -338) 147868) ((-867 . -644) 147813) ((-1223 . -377) 147765) ((-960 . -131) 147620) ((-811 . -131) 147490) ((-954 . -647) 147474) ((-1081 . -172) 147385) ((-954 . -373) 147369) ((-1056 . -790) T) ((-1056 . -787) T) ((-868 . -614) 147267) ((-778 . -172) 147158) ((-776 . -172) 147069) ((-812 . -47) 147031) ((-1056 . -722) T) ((-327 . -489) 147015) ((-948 . -722) T) ((-454 . -172) 146926) ((-245 . -286) 146903) ((-1272 . -309) 146841) ((-1251 . -896) 146754) ((-481 . -722) T) ((-1244 . -896) 146660) ((-1243 . -1051) 146495) ((-1223 . -896) 146328) ((-1222 . -1051) 146136) ((-1203 . -290) 146115) ((-1179 . -1209) T) ((-1177 . -368) T) ((-1176 . -368) T) ((-1140 . -151) 146099) ((-1114 . -102) T) ((-1112 . -1094) T) ((-1074 . -23) T) ((-1069 . -102) T) ((-923 . -951) T) ((-733 . -309) 146037) ((-75 . -1209) T) ((-30 . -951) T) ((-169 . -905) 145990) ((-660 . -382) 145962) ((-112 . -840) T) ((-1 . -611) 145944) ((-1074 . -1106) T) ((-128 . -647) 145926) ((-50 . -618) 145910) ((-999 . -409) 145882) ((-594 . -896) 145795) ((-438 . -102) T) ((-141 . -309) NIL) ((-128 . -373) 145777) ((-868 . -1045) T) ((-829 . -846) 145756) ((-81 . -1209) T) ((-707 . -290) T) ((-40 . -1052) T) ((-581 . -172) T) ((-518 . -172) T) ((-511 . -611) 145738) ((-169 . -644) 145648) ((-507 . -611) 145630) ((-351 . -147) 145612) ((-351 . -145) T) ((-359 . -1106) T) ((-353 . -1106) T) ((-345 . -1106) T) ((-1000 . -307) T) ((-910 . -307) T) ((-868 . -243) T) ((-108 . -1106) T) ((-868 . -233) 145591) ((-1243 . -111) 145412) ((-1222 . -111) 145201) ((-245 . -1247) 145185) ((-564 . -844) T) ((-359 . -23) T) ((-354 . -349) T) ((-316 . -309) 145172) ((-313 . -309) 145113) ((-353 . -23) T) ((-319 . -131) T) ((-345 . -23) T) ((-1000 . -1018) T) ((-31 . -614) 145094) ((-108 . -23) T) ((-245 . -602) 145071) ((-1245 . -38) 144963) ((-1232 . -905) 144942) ((-112 . -1094) T) ((-1031 . -102) T) ((-1232 . -644) 144867) ((-867 . -790) NIL) ((-851 . -644) 144841) ((-867 . -787) NIL) ((-812 . -882) NIL) ((-867 . -722) T) ((-1081 . -514) 144714) ((-778 . -514) 144661) ((-776 . -514) 144613) ((-571 . -644) 144600) ((-812 . -1034) 144428) ((-454 . -514) 144371) ((-388 . -389) T) ((-1243 . -614) 144184) ((-1222 . -614) 143932) ((-60 . -1209) T) ((-619 . -846) 143911) ((-500 . -657) T) ((-1140 . -972) 143880) ((-999 . -452) T) ((-695 . -844) T) ((-510 . -788) T) ((-474 . -1051) 143715) ((-343 . -1094) T) ((-313 . -1145) NIL) ((-289 . -131) T) ((-394 . -1094) T) ((-690 . -370) 143682) ((-866 . -1052) T) ((-223 . -618) 143659) ((-327 . -286) 143636) ((-474 . -111) 143457) ((-1243 . -1045) T) ((-1222 . -1045) T) ((-812 . -377) 143441) ((-169 . -722) T) ((-650 . -102) T) ((-1243 . -243) 143420) ((-1243 . -233) 143372) ((-1222 . -233) 143277) ((-1222 . -243) 143256) ((-999 . -402) NIL) ((-666 . -637) 143204) ((-316 . -38) 143114) ((-313 . -38) 143043) ((-69 . -611) 143025) ((-319 . -493) 142991) ((-1182 . -288) 142970) ((-1217 . -846) T) ((-1107 . -1106) 142880) ((-83 . -1209) T) ((-61 . -611) 142862) ((-479 . -288) 142841) ((-1274 . -1034) 142818) ((-1158 . -1094) T) ((-1107 . -23) 142688) ((-812 . -896) 142624) ((-1232 . -722) T) ((-1096 . -1209) T) ((-474 . -614) 142450) ((-1081 . -290) 142381) ((-962 . -1094) T) ((-889 . -102) T) ((-778 . -290) 142292) ((-327 . -19) 142276) ((-59 . -288) 142253) ((-776 . -290) 142184) ((-851 . -722) T) ((-117 . -844) NIL) ((-516 . -288) 142161) ((-327 . -602) 142138) ((-496 . -288) 142115) ((-454 . -290) 142046) ((-1031 . -309) 141897) ((-677 . -490) 141878) ((-571 . -722) T) ((-672 . -490) 141859) ((-677 . -611) 141809) ((-672 . -611) 141775) ((-658 . -611) 141757) ((-478 . -490) 141738) ((-478 . -611) 141704) ((-245 . -612) 141665) ((-245 . -490) 141642) ((-138 . -490) 141623) ((-137 . -490) 141604) ((-133 . -490) 141585) ((-245 . -611) 141477) ((-213 . -102) T) ((-138 . -611) 141443) ((-137 . -611) 141409) ((-133 . -611) 141375) ((-1141 . -34) T) ((-939 . -1209) T) ((-343 . -713) 141320) ((-666 . -25) T) ((-666 . -21) T) ((-1170 . -614) 141301) ((-474 . -1045) T) ((-633 . -417) 141266) ((-605 . -417) 141231) ((-1114 . -1145) T) ((-581 . -290) T) ((-518 . -290) T) ((-1244 . -307) 141210) ((-474 . -233) 141162) ((-474 . -243) 141141) ((-1223 . -307) 141120) ((-1223 . -1018) NIL) ((-1074 . -131) T) ((-868 . -791) 141099) ((-144 . -102) T) ((-40 . -1094) T) ((-868 . -788) 141078) ((-641 . -1006) 141062) ((-580 . -1052) T) ((-564 . -1052) T) ((-495 . -1052) T) ((-407 . -452) T) ((-359 . -131) T) ((-316 . -400) 141046) ((-313 . -400) 141007) ((-353 . -131) T) ((-345 . -131) T) ((-1175 . -1094) T) ((-1114 . -38) 140994) ((-1088 . -611) 140961) ((-108 . -131) T) ((-950 . -1094) T) ((-917 . -1094) T) ((-767 . -1094) T) ((-668 . -1094) T) ((-697 . -147) T) ((-116 . -147) T) ((-1281 . -21) T) ((-1281 . -25) T) ((-1279 . -21) T) ((-1279 . -25) T) ((-660 . -1051) 140945) ((-531 . -846) T) ((-500 . -846) T) ((-355 . -1051) 140897) ((-352 . -1051) 140849) ((-344 . -1051) 140801) ((-251 . -1209) T) ((-250 . -1209) T) ((-264 . -1051) 140644) ((-247 . -1051) 140487) ((-660 . -111) 140466) ((-547 . -840) T) ((-355 . -111) 140404) ((-352 . -111) 140342) ((-344 . -111) 140280) ((-264 . -111) 140109) ((-247 . -111) 139938) ((-813 . -1213) 139917) ((-621 . -411) 139901) ((-44 . -21) T) ((-44 . -25) T) ((-811 . -637) 139807) ((-813 . -556) 139786) ((-251 . -1034) 139613) ((-250 . -1034) 139440) ((-126 . -119) 139424) ((-906 . -1051) 139389) ((-708 . -102) T) ((-695 . -1052) T) ((-536 . -616) 139292) ((-343 . -172) T) ((-152 . -25) T) ((-88 . -611) 139274) ((-152 . -21) T) ((-906 . -111) 139230) ((-40 . -713) 139175) ((-866 . -1094) T) ((-660 . -614) 139152) ((-642 . -614) 139133) ((-355 . -614) 139070) ((-352 . -614) 139007) ((-547 . -1094) T) ((-344 . -614) 138944) ((-327 . -612) 138905) ((-327 . -611) 138817) ((-264 . -614) 138570) ((-247 . -614) 138355) ((-1222 . -788) 138308) ((-1222 . -791) 138261) ((-251 . -377) 138230) ((-250 . -377) 138199) ((-650 . -38) 138169) ((-606 . -34) T) ((-482 . -1106) 138079) ((-475 . -34) T) ((-1107 . -131) 137949) ((-960 . -25) 137760) ((-906 . -614) 137710) ((-870 . -611) 137692) ((-960 . -21) 137647) ((-811 . -21) 137557) ((-811 . -25) 137408) ((-1215 . -368) T) ((-621 . -1052) T) ((-1172 . -556) 137387) ((-1166 . -47) 137364) ((-355 . -1045) T) ((-352 . -1045) T) ((-482 . -23) 137234) ((-344 . -1045) T) ((-247 . -1045) T) ((-264 . -1045) T) ((-1119 . -47) 137206) ((-117 . -1052) T) ((-1030 . -644) 137180) ((-954 . -34) T) ((-355 . -233) 137159) ((-355 . -243) T) ((-352 . -233) 137138) ((-352 . -243) T) ((-344 . -233) 137117) ((-344 . -243) T) ((-247 . -326) 137074) ((-264 . -326) 137046) ((-264 . -233) 137025) ((-1150 . -151) 137009) ((-251 . -896) 136941) ((-250 . -896) 136873) ((-1076 . -846) T) ((-414 . -1106) T) ((-1049 . -23) T) ((-906 . -1045) T) ((-322 . -644) 136855) ((-1020 . -844) T) ((-1203 . -998) 136821) ((-1167 . -916) 136800) ((-1161 . -916) 136779) ((-1161 . -816) NIL) ((-906 . -243) T) ((-813 . -363) 136758) ((-385 . -23) T) ((-127 . -1094) 136736) ((-121 . -1094) 136714) ((-906 . -233) T) ((-128 . -34) T) ((-379 . -644) 136679) ((-866 . -713) 136666) ((-1042 . -151) 136631) ((-40 . -172) T) ((-690 . -411) 136613) ((-708 . -309) 136600) ((-832 . -644) 136560) ((-823 . -644) 136534) ((-319 . -25) T) ((-319 . -21) T) ((-654 . -286) 136513) ((-580 . -1094) T) ((-564 . -1094) T) ((-495 . -1094) T) ((-245 . -288) 136490) ((-313 . -231) 136451) ((-1166 . -882) NIL) ((-55 . -1094) T) ((-1119 . -882) 136310) ((-129 . -846) T) ((-1166 . -1034) 136190) ((-1119 . -1034) 136073) ((-183 . -611) 136055) ((-850 . -1034) 135951) ((-778 . -286) 135878) ((-813 . -1106) T) ((-1030 . -722) T) ((-600 . -647) 135862) ((-1042 . -972) 135791) ((-995 . -102) T) ((-813 . -23) T) ((-708 . -1145) 135769) ((-690 . -1052) T) ((-600 . -373) 135753) ((-351 . -452) T) ((-343 . -290) T) ((-1260 . -1094) T) ((-248 . -1094) T) ((-399 . -102) T) ((-289 . -21) T) ((-289 . -25) T) ((-361 . -722) T) ((-706 . -1094) T) ((-695 . -1094) T) ((-361 . -473) T) ((-1203 . -611) 135735) ((-1166 . -377) 135719) ((-1119 . -377) 135703) ((-1020 . -411) 135665) ((-141 . -229) 135647) ((-379 . -790) T) ((-379 . -787) T) ((-866 . -172) T) ((-379 . -722) T) ((-707 . -611) 135629) ((-708 . -38) 135458) ((-1259 . -1257) 135442) ((-351 . -402) T) ((-1259 . -1094) 135392) ((-580 . -713) 135379) ((-564 . -713) 135366) ((-495 . -713) 135331) ((-316 . -627) 135310) ((-832 . -722) T) ((-823 . -722) T) ((-641 . -1209) T) ((-1074 . -637) 135258) ((-1166 . -896) 135201) ((-1119 . -896) 135185) ((-658 . -1051) 135169) ((-108 . -637) 135151) ((-482 . -131) 135021) ((-1172 . -1106) T) ((-948 . -47) 134990) ((-621 . -1094) T) ((-658 . -111) 134969) ((-491 . -611) 134935) ((-327 . -288) 134912) ((-481 . -47) 134869) ((-1172 . -23) T) ((-117 . -1094) T) ((-103 . -102) 134847) ((-1271 . -1106) T) ((-548 . -846) T) ((-1049 . -131) T) ((-1020 . -1052) T) ((-815 . -1034) 134831) ((-999 . -720) 134803) ((-1271 . -23) T) ((-695 . -713) 134768) ((-585 . -611) 134750) ((-386 . -1034) 134734) ((-354 . -1052) T) ((-385 . -131) T) ((-324 . -1034) 134718) ((-225 . -882) 134700) ((-1000 . -916) T) ((-91 . -34) T) ((-1000 . -816) T) ((-910 . -916) T) ((-1189 . -611) 134682) ((-1114 . -824) T) ((-487 . -1213) T) ((-1099 . -1094) T) ((-1074 . -21) T) ((-1074 . -25) T) ((-217 . -1213) T) ((-995 . -309) 134647) ((-225 . -1034) 134607) ((-40 . -290) T) ((-710 . -644) 134567) ((-677 . -614) 134548) ((-672 . -614) 134529) ((-487 . -556) T) ((-478 . -614) 134510) ((-359 . -25) T) ((-359 . -21) T) ((-353 . -25) T) ((-217 . -556) T) ((-353 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-245 . -614) 134487) ((-138 . -614) 134468) ((-137 . -614) 134449) ((-133 . -614) 134430) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1052) T) ((-580 . -172) T) ((-564 . -172) T) ((-495 . -172) T) ((-654 . -611) 134412) ((-733 . -732) 134396) ((-336 . -611) 134378) ((-68 . -383) T) ((-68 . -395) T) ((-1096 . -107) 134362) ((-1056 . -882) 134344) ((-948 . -882) 134269) ((-649 . -1106) T) ((-621 . -713) 134256) ((-481 . -882) NIL) ((-1140 . -102) T) ((-1088 . -616) 134240) ((-1056 . -1034) 134222) ((-97 . -611) 134204) ((-477 . -147) T) ((-948 . -1034) 134084) ((-117 . -713) 134029) ((-649 . -23) T) ((-481 . -1034) 133905) ((-1081 . -612) NIL) ((-1081 . -611) 133887) ((-778 . -612) NIL) ((-778 . -611) 133848) ((-776 . -612) 133482) ((-776 . -611) 133396) ((-1107 . -637) 133302) ((-461 . -611) 133284) ((-454 . -611) 133266) ((-454 . -612) 133127) ((-1031 . -229) 133073) ((-868 . -905) 133052) ((-126 . -34) T) ((-813 . -131) T) ((-645 . -611) 133034) ((-578 . -102) T) ((-355 . -1278) 133018) ((-352 . -1278) 133002) ((-344 . -1278) 132986) ((-127 . -514) 132919) ((-121 . -514) 132852) ((-511 . -788) T) ((-511 . -791) T) ((-510 . -790) T) ((-103 . -309) 132790) ((-222 . -102) 132768) ((-690 . -1094) T) ((-695 . -172) T) ((-868 . -644) 132720) ((-65 . -384) T) ((-275 . -611) 132702) ((-65 . -395) T) ((-948 . -377) 132686) ((-866 . -290) T) ((-50 . -611) 132668) ((-995 . -38) 132616) ((-581 . -611) 132598) ((-481 . -377) 132582) ((-581 . -612) 132564) ((-518 . -611) 132546) ((-906 . -1278) 132533) ((-867 . -1209) T) ((-697 . -452) T) ((-495 . -514) 132499) ((-487 . -363) T) ((-355 . -368) 132478) ((-352 . -368) 132457) ((-344 . -368) 132436) ((-710 . -722) T) ((-217 . -363) T) ((-116 . -452) T) ((-1282 . -1273) 132420) ((-867 . -880) 132397) ((-867 . -882) NIL) ((-960 . -846) 132296) ((-811 . -846) 132247) ((-1216 . -102) T) ((-650 . -652) 132231) ((-1195 . -34) T) ((-171 . -611) 132213) ((-1107 . -21) 132123) ((-1107 . -25) 131974) ((-867 . -1034) 131951) ((-948 . -896) 131932) ((-1232 . -47) 131909) ((-906 . -368) T) ((-59 . -647) 131893) ((-516 . -647) 131877) ((-481 . -896) 131854) ((-71 . -441) T) ((-71 . -395) T) ((-496 . -647) 131838) ((-59 . -373) 131822) ((-621 . -172) T) ((-516 . -373) 131806) ((-496 . -373) 131790) ((-823 . -704) 131774) ((-1166 . -307) 131753) ((-1172 . -131) T) ((-117 . -172) T) ((-1140 . -309) 131691) ((-169 . -1209) T) ((-633 . -740) 131675) ((-605 . -740) 131659) ((-1271 . -131) T) ((-1244 . -916) 131638) ((-1223 . -916) 131617) ((-1223 . -816) NIL) ((-690 . -713) 131567) ((-1222 . -905) 131520) ((-1020 . -1094) T) ((-867 . -377) 131497) ((-867 . -338) 131474) ((-901 . -1106) T) ((-169 . -880) 131458) ((-169 . -882) 131383) ((-487 . -1106) T) ((-354 . -1094) T) ((-217 . -1106) T) ((-76 . -441) T) ((-76 . -395) T) ((-169 . -1034) 131279) ((-319 . -846) T) ((-1259 . -514) 131212) ((-1243 . -644) 131109) ((-1222 . -644) 130979) ((-868 . -790) 130958) ((-868 . -787) 130937) ((-868 . -722) T) ((-487 . -23) T) ((-223 . -611) 130919) ((-174 . -452) T) ((-222 . -309) 130857) ((-86 . -441) T) ((-86 . -395) T) ((-217 . -23) T) ((-1283 . -1276) 130836) ((-580 . -290) T) ((-564 . -290) T) ((-673 . -1034) 130820) ((-495 . -290) T) ((-136 . -470) 130775) ((-48 . -1094) T) ((-708 . -231) 130759) ((-867 . -896) NIL) ((-1232 . -882) NIL) ((-885 . -102) T) ((-881 . -102) T) ((-388 . -1094) T) ((-169 . -377) 130743) ((-169 . -338) 130727) ((-1232 . -1034) 130607) ((-851 . -1034) 130503) ((-1136 . -102) T) ((-649 . -131) T) ((-117 . -514) 130411) ((-658 . -788) 130390) ((-658 . -791) 130369) ((-571 . -1034) 130351) ((-294 . -1266) 130321) ((-862 . -102) T) ((-959 . -556) 130300) ((-1203 . -1051) 130183) ((-482 . -637) 130089) ((-900 . -1094) T) ((-1020 . -713) 130026) ((-707 . -1051) 129991) ((-615 . -102) T) ((-600 . -34) T) ((-1141 . -1209) T) ((-1203 . -111) 129860) ((-474 . -644) 129757) ((-354 . -713) 129702) ((-169 . -896) 129661) ((-695 . -290) T) ((-690 . -172) T) ((-707 . -111) 129617) ((-1287 . -1052) T) ((-1232 . -377) 129601) ((-418 . -1213) 129579) ((-1112 . -611) 129561) ((-313 . -844) NIL) ((-418 . -556) T) ((-225 . -307) T) ((-1222 . -787) 129514) ((-1222 . -790) 129467) ((-1243 . -722) T) ((-1222 . -722) T) ((-48 . -713) 129432) ((-225 . -1018) T) ((-351 . -1266) 129409) ((-1245 . -411) 129375) ((-714 . -722) T) ((-1232 . -896) 129318) ((-1203 . -614) 129200) ((-112 . -611) 129182) ((-112 . -612) 129164) ((-714 . -473) T) ((-707 . -614) 129114) ((-482 . -21) 129024) ((-127 . -489) 129008) ((-121 . -489) 128992) ((-482 . -25) 128843) ((-621 . -290) T) ((-585 . -1051) 128818) ((-437 . -1094) T) ((-1056 . -307) T) ((-117 . -290) T) ((-1098 . -102) T) ((-999 . -102) T) ((-585 . -111) 128786) ((-1136 . -309) 128724) ((-1203 . -1045) T) ((-1056 . -1018) T) ((-66 . -1209) T) ((-1049 . -25) T) ((-1049 . -21) T) ((-707 . -1045) T) ((-385 . -21) T) ((-385 . -25) T) ((-690 . -514) NIL) ((-1020 . -172) T) ((-707 . -243) T) ((-1056 . -545) T) ((-506 . -102) T) ((-502 . -102) T) ((-354 . -172) T) ((-343 . -611) 128706) ((-394 . -611) 128688) ((-474 . -722) T) ((-1114 . -844) T) ((-888 . -1034) 128656) ((-108 . -846) T) ((-654 . -1051) 128640) ((-487 . -131) T) ((-1245 . -1052) T) ((-217 . -131) T) ((-1150 . -102) 128618) ((-99 . -1094) T) ((-245 . -662) 128602) ((-245 . -647) 128586) ((-654 . -111) 128565) ((-585 . -614) 128549) ((-316 . -411) 128533) ((-245 . -373) 128517) ((-1153 . -235) 128464) ((-995 . -231) 128448) ((-74 . -1209) T) ((-48 . -172) T) ((-697 . -387) T) ((-697 . -143) T) ((-1282 . -102) T) ((-1189 . -614) 128430) ((-1081 . -1051) 128273) ((-264 . -905) 128252) ((-247 . -905) 128231) ((-778 . -1051) 128054) ((-776 . -1051) 127897) ((-606 . -1209) T) ((-1158 . -611) 127879) ((-1081 . -111) 127708) ((-1042 . -102) T) ((-475 . -1209) T) ((-461 . -1051) 127679) ((-454 . -1051) 127522) ((-660 . -644) 127506) ((-867 . -307) T) ((-778 . -111) 127315) ((-776 . -111) 127144) ((-355 . -644) 127096) ((-352 . -644) 127048) ((-344 . -644) 127000) ((-264 . -644) 126925) ((-247 . -644) 126850) ((-1152 . -846) T) ((-1082 . -1034) 126834) ((-461 . -111) 126795) ((-454 . -111) 126624) ((-1070 . -1034) 126601) ((-996 . -34) T) ((-962 . -611) 126583) ((-954 . -1209) T) ((-126 . -1006) 126567) ((-959 . -1106) T) ((-867 . -1018) NIL) ((-731 . -1106) T) ((-711 . -1106) T) ((-654 . -614) 126485) ((-1259 . -489) 126469) ((-1136 . -38) 126429) ((-959 . -23) T) ((-861 . -1094) T) ((-839 . -102) T) ((-813 . -21) T) ((-813 . -25) T) ((-731 . -23) T) ((-711 . -23) T) ((-110 . -657) T) ((-906 . -644) 126394) ((-581 . -1051) 126359) ((-518 . -1051) 126304) ((-227 . -57) 126262) ((-453 . -23) T) ((-407 . -102) T) ((-263 . -102) T) ((-690 . -290) T) ((-862 . -38) 126232) ((-581 . -111) 126188) ((-518 . -111) 126117) ((-1081 . -614) 125853) ((-418 . -1106) T) ((-316 . -1052) 125743) ((-313 . -1052) T) ((-128 . -1209) T) ((-778 . -614) 125491) ((-776 . -614) 125257) ((-654 . -1045) T) ((-1287 . -1094) T) ((-454 . -614) 125042) ((-169 . -307) 124973) ((-418 . -23) T) ((-40 . -611) 124955) ((-40 . -612) 124939) ((-108 . -988) 124921) ((-116 . -865) 124905) ((-645 . -614) 124889) ((-48 . -514) 124855) ((-1195 . -1006) 124839) ((-1175 . -611) 124806) ((-1182 . -34) T) ((-950 . -611) 124772) ((-917 . -611) 124754) ((-1107 . -846) 124705) ((-767 . -611) 124687) ((-668 . -611) 124669) ((-1150 . -309) 124607) ((-479 . -34) T) ((-1086 . -1209) T) ((-477 . -452) T) ((-1135 . -34) T) ((-1081 . -1045) T) ((-50 . -614) 124576) ((-778 . -1045) T) ((-776 . -1045) T) ((-643 . -235) 124560) ((-630 . -235) 124506) ((-581 . -614) 124456) ((-518 . -614) 124386) ((-1232 . -307) 124365) ((-1081 . -326) 124326) ((-454 . -1045) T) ((-1172 . -21) T) ((-1081 . -233) 124305) ((-778 . -326) 124282) ((-778 . -233) T) ((-776 . -326) 124254) ((-727 . -1213) 124233) ((-327 . -647) 124217) ((-1172 . -25) T) ((-59 . -34) T) ((-519 . -34) T) ((-516 . -34) T) ((-454 . -326) 124196) ((-327 . -373) 124180) ((-497 . -34) T) ((-496 . -34) T) ((-999 . -1145) NIL) ((-727 . -556) 124111) ((-633 . -102) T) ((-605 . -102) T) ((-355 . -722) T) ((-352 . -722) T) ((-344 . -722) T) ((-264 . -722) T) ((-247 . -722) T) ((-1042 . -309) 124019) ((-897 . -1094) 123997) ((-50 . -1045) T) ((-1271 . -21) T) ((-1271 . -25) T) ((-1168 . -556) 123976) ((-1167 . -1213) 123955) ((-581 . -1045) T) ((-518 . -1045) T) ((-1161 . -1213) 123934) ((-361 . -1034) 123918) ((-322 . -1034) 123902) ((-1020 . -290) T) ((-379 . -882) 123884) ((-1167 . -556) 123835) ((-1161 . -556) 123786) ((-999 . -38) 123731) ((-795 . -1106) T) ((-906 . -722) T) ((-581 . -243) T) ((-581 . -233) T) ((-518 . -233) T) ((-518 . -243) T) ((-1120 . -556) 123710) ((-354 . -290) T) ((-643 . -691) 123694) ((-379 . -1034) 123654) ((-1114 . -1052) T) ((-103 . -125) 123638) ((-795 . -23) T) ((-1281 . -1276) 123614) ((-1259 . -286) 123591) ((-407 . -309) 123556) ((-1279 . -1276) 123535) ((-1245 . -1094) T) ((-866 . -611) 123517) ((-832 . -1034) 123486) ((-203 . -783) T) ((-202 . -783) T) ((-201 . -783) T) ((-200 . -783) T) ((-199 . -783) T) ((-198 . -783) T) ((-197 . -783) T) ((-196 . -783) T) ((-195 . -783) T) ((-194 . -783) T) ((-547 . -611) 123468) ((-495 . -998) T) ((-274 . -835) T) ((-273 . -835) T) ((-272 . -835) T) ((-271 . -835) T) ((-48 . -290) T) ((-270 . -835) T) ((-269 . -835) T) ((-268 . -835) T) ((-193 . -783) T) ((-610 . -846) T) ((-650 . -411) 123452) ((-223 . -614) 123414) ((-110 . -846) T) ((-649 . -21) T) ((-649 . -25) T) ((-1282 . -38) 123384) ((-117 . -286) 123335) ((-1259 . -19) 123319) ((-1259 . -602) 123296) ((-1272 . -1094) T) ((-1071 . -1094) T) ((-983 . -1094) T) ((-959 . -131) T) ((-733 . -1094) T) ((-731 . -131) T) ((-711 . -131) T) ((-511 . -789) T) ((-407 . -1145) 123274) ((-453 . -131) T) ((-511 . -790) T) ((-223 . -1045) T) ((-294 . -102) 123056) ((-141 . -1094) T) ((-695 . -998) T) ((-91 . -1209) T) ((-127 . -611) 122988) ((-121 . -611) 122920) ((-1287 . -172) T) ((-1167 . -363) 122899) ((-1161 . -363) 122878) ((-316 . -1094) T) ((-418 . -131) T) ((-313 . -1094) T) ((-407 . -38) 122830) ((-1127 . -102) T) ((-1245 . -713) 122722) ((-650 . -1052) T) ((-1129 . -1254) T) ((-319 . -145) 122701) ((-319 . -147) 122680) ((-139 . -1094) T) ((-136 . -1094) T) ((-114 . -1094) T) ((-854 . -102) T) ((-580 . -611) 122662) ((-564 . -612) 122561) ((-564 . -611) 122543) ((-495 . -611) 122525) ((-495 . -612) 122470) ((-485 . -23) T) ((-482 . -846) 122421) ((-487 . -637) 122403) ((-961 . -611) 122385) ((-217 . -637) 122367) ((-225 . -404) T) ((-658 . -644) 122351) ((-55 . -611) 122333) ((-1166 . -916) 122312) ((-727 . -1106) T) ((-351 . -102) T) ((-1208 . -1077) T) ((-1114 . -840) T) ((-814 . -846) T) ((-727 . -23) T) ((-343 . -1051) 122257) ((-1152 . -1151) T) ((-1141 . -107) 122241) ((-1168 . -1106) T) ((-1167 . -1106) T) ((-515 . -1034) 122225) ((-1161 . -1106) T) ((-1120 . -1106) T) ((-343 . -111) 122154) ((-1000 . -1213) T) ((-126 . -1209) T) ((-910 . -1213) T) ((-690 . -286) NIL) ((-1260 . -611) 122136) ((-1168 . -23) T) ((-1167 . -23) T) ((-1161 . -23) T) ((-1000 . -556) T) ((-1136 . -231) 122120) ((-910 . -556) T) ((-1120 . -23) T) ((-248 . -611) 122102) ((-1069 . -1094) T) ((-795 . -131) T) ((-706 . -611) 122084) ((-316 . -713) 121994) ((-313 . -713) 121923) ((-695 . -611) 121905) ((-695 . -612) 121850) ((-407 . -400) 121834) ((-438 . -1094) T) ((-487 . -25) T) ((-487 . -21) T) ((-1114 . -1094) T) ((-217 . -25) T) ((-217 . -21) T) ((-708 . -411) 121818) ((-710 . -1034) 121787) ((-1259 . -611) 121699) ((-1259 . -612) 121660) ((-1245 . -172) T) ((-245 . -34) T) ((-343 . -614) 121590) ((-394 . -614) 121572) ((-922 . -970) T) ((-1195 . -1209) T) ((-658 . -787) 121551) ((-658 . -790) 121530) ((-398 . -395) T) ((-523 . -102) 121508) ((-1031 . -1094) T) ((-222 . -991) 121492) ((-504 . -102) T) ((-621 . -611) 121474) ((-45 . -846) NIL) ((-621 . -612) 121451) ((-1031 . -608) 121426) ((-897 . -514) 121359) ((-343 . -1045) T) ((-117 . -612) NIL) ((-117 . -611) 121341) ((-868 . -1209) T) ((-666 . -417) 121325) ((-666 . -1117) 121270) ((-500 . -151) 121252) ((-343 . -233) T) ((-343 . -243) T) ((-40 . -1051) 121197) ((-868 . -880) 121181) ((-868 . -882) 121106) ((-708 . -1052) T) ((-690 . -998) NIL) ((-3 . |UnionCategory|) T) ((-1243 . -47) 121076) ((-1222 . -47) 121053) ((-1135 . -1006) 121024) ((-962 . -614) 121008) ((-225 . -916) T) ((-40 . -111) 120937) ((-868 . -1034) 120801) ((-1114 . -713) 120788) ((-1099 . -611) 120770) ((-1074 . -147) 120749) ((-1074 . -145) 120700) ((-1000 . -363) T) ((-319 . -1197) 120666) ((-379 . -307) T) ((-319 . -1194) 120632) ((-316 . -172) 120611) ((-313 . -172) T) ((-999 . -231) 120588) ((-910 . -363) T) ((-581 . -1278) 120575) ((-518 . -1278) 120552) ((-359 . -147) 120531) ((-359 . -145) 120482) ((-353 . -147) 120461) ((-353 . -145) 120412) ((-606 . -1185) 120388) ((-345 . -147) 120367) ((-345 . -145) 120318) ((-319 . -35) 120284) ((-475 . -1185) 120263) ((0 . |EnumerationCategory|) T) ((-319 . -95) 120229) ((-379 . -1018) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 120179) ((-650 . -1094) T) ((-606 . -107) 120126) ((-485 . -131) T) ((-475 . -107) 120076) ((-240 . -1106) 119986) ((-868 . -377) 119970) ((-868 . -338) 119954) ((-240 . -23) 119824) ((-40 . -614) 119754) ((-1056 . -916) T) ((-1056 . -816) T) ((-581 . -368) T) ((-518 . -368) T) ((-351 . -1145) T) ((-327 . -34) T) ((-44 . -417) 119738) ((-1175 . -614) 119674) ((-869 . -1209) T) ((-390 . -740) 119658) ((-1272 . -514) 119591) ((-727 . -131) T) ((-668 . -614) 119575) ((-1251 . -556) 119554) ((-1244 . -1213) 119533) ((-1244 . -556) 119484) ((-1223 . -1213) 119463) ((-311 . -1077) T) ((-1223 . -556) 119414) ((-733 . -514) 119347) ((-1222 . -1209) 119326) ((-1222 . -882) 119199) ((-889 . -1094) T) ((-144 . -840) T) ((-1222 . -880) 119169) ((-687 . -611) 119151) ((-1168 . -131) T) ((-523 . -309) 119089) ((-1167 . -131) T) ((-141 . -514) NIL) ((-1161 . -131) T) ((-1120 . -131) T) ((-1020 . -998) T) ((-1000 . -23) T) ((-351 . -38) 119054) ((-1000 . -1106) T) ((-910 . -1106) T) ((-82 . -611) 119036) ((-40 . -1045) T) ((-866 . -1051) 119023) ((-999 . -349) NIL) ((-868 . -896) 118982) ((-697 . -102) T) ((-967 . -23) T) ((-600 . -1209) T) ((-910 . -23) T) ((-866 . -111) 118967) ((-427 . -1106) T) ((-213 . -1094) T) ((-474 . -47) 118937) ((-134 . -102) T) ((-40 . -233) 118909) ((-40 . -243) T) ((-116 . -102) T) ((-595 . -556) 118888) ((-594 . -556) 118867) ((-690 . -611) 118849) ((-690 . -612) 118757) ((-316 . -514) 118723) ((-313 . -514) 118615) ((-1243 . -1034) 118599) ((-1222 . -1034) 118385) ((-995 . -411) 118369) ((-427 . -23) T) ((-1114 . -172) T) ((-1245 . -290) T) ((-650 . -713) 118339) ((-144 . -1094) T) ((-48 . -998) T) ((-407 . -231) 118323) ((-295 . -235) 118273) ((-867 . -916) T) ((-867 . -816) NIL) ((-866 . -614) 118245) ((-860 . -846) T) ((-1222 . -338) 118215) ((-1222 . -377) 118185) ((-222 . -1115) 118169) ((-1259 . -288) 118146) ((-1203 . -644) 118071) ((-959 . -21) T) ((-959 . -25) T) ((-731 . -21) T) ((-731 . -25) T) ((-711 . -21) T) ((-711 . -25) T) ((-707 . -644) 118036) ((-453 . -21) T) ((-453 . -25) T) ((-339 . -102) T) ((-174 . -102) T) ((-995 . -1052) T) ((-866 . -1045) T) ((-770 . -102) T) ((-1244 . -363) 118015) ((-1243 . -896) 117921) ((-1223 . -363) 117900) ((-1222 . -896) 117751) ((-1020 . -611) 117733) ((-407 . -824) 117686) ((-1168 . -493) 117652) ((-169 . -916) 117583) ((-1167 . -493) 117549) ((-1161 . -493) 117515) ((-708 . -1094) T) ((-1120 . -493) 117481) ((-580 . -1051) 117468) ((-564 . -1051) 117455) ((-495 . -1051) 117420) ((-316 . -290) 117399) ((-313 . -290) T) ((-354 . -611) 117381) ((-418 . -25) T) ((-418 . -21) T) ((-99 . -286) 117360) ((-580 . -111) 117345) ((-564 . -111) 117330) ((-495 . -111) 117286) ((-1170 . -882) 117253) ((-897 . -489) 117237) ((-48 . -611) 117219) ((-48 . -612) 117164) ((-240 . -131) 117034) ((-1232 . -916) 117013) ((-812 . -1213) 116992) ((-388 . -490) 116973) ((-1031 . -514) 116817) ((-388 . -611) 116783) ((-812 . -556) 116714) ((-585 . -644) 116689) ((-264 . -47) 116661) ((-247 . -47) 116618) ((-531 . -509) 116595) ((-580 . -614) 116567) ((-564 . -614) 116539) ((-495 . -614) 116472) ((-1068 . -1209) T) ((-996 . -1209) T) ((-695 . -1051) 116437) ((-1251 . -23) T) ((-1251 . -1106) T) ((-1244 . -1106) T) ((-1223 . -1106) T) ((-999 . -370) 116409) ((-112 . -368) T) ((-474 . -896) 116315) ((-1244 . -23) T) ((-900 . -611) 116297) ((-55 . -614) 116279) ((-91 . -107) 116263) ((-1203 . -722) T) ((-901 . -846) 116214) ((-697 . -1145) T) ((-695 . -111) 116170) ((-1223 . -23) T) ((-595 . -1106) T) ((-594 . -1106) T) ((-708 . -713) 115999) ((-707 . -722) T) ((-1114 . -290) T) ((-1000 . -131) T) ((-487 . -846) T) ((-967 . -131) T) ((-910 . -131) T) ((-795 . -25) T) ((-217 . -846) T) ((-795 . -21) T) ((-580 . -1045) T) ((-564 . -1045) T) ((-495 . -1045) T) ((-595 . -23) T) ((-343 . -1278) 115976) ((-319 . -452) 115955) ((-339 . -309) 115942) ((-594 . -23) T) ((-427 . -131) T) ((-654 . -644) 115916) ((-245 . -1006) 115900) ((-868 . -307) T) ((-1283 . -1273) 115884) ((-767 . -788) T) ((-767 . -791) T) ((-697 . -38) 115871) ((-564 . -233) T) ((-495 . -243) T) ((-495 . -233) T) ((-1144 . -235) 115821) ((-1081 . -905) 115800) ((-116 . -38) 115787) ((-209 . -796) T) ((-208 . -796) T) ((-207 . -796) T) ((-206 . -796) T) ((-868 . -1018) 115765) ((-1272 . -489) 115749) ((-778 . -905) 115728) ((-776 . -905) 115707) ((-1182 . -1209) T) ((-454 . -905) 115686) ((-733 . -489) 115670) ((-1081 . -644) 115595) ((-695 . -614) 115530) ((-778 . -644) 115455) ((-621 . -1051) 115442) ((-479 . -1209) T) ((-343 . -368) T) ((-141 . -489) 115424) ((-776 . -644) 115349) ((-1135 . -1209) T) ((-549 . -846) T) ((-461 . -644) 115320) ((-264 . -882) 115179) ((-247 . -882) NIL) ((-117 . -1051) 115124) ((-454 . -644) 115049) ((-660 . -1034) 115026) ((-621 . -111) 115011) ((-355 . -1034) 114995) ((-352 . -1034) 114979) ((-344 . -1034) 114963) ((-264 . -1034) 114807) ((-247 . -1034) 114683) ((-117 . -111) 114612) ((-59 . -1209) T) ((-519 . -1209) T) ((-516 . -1209) T) ((-497 . -1209) T) ((-496 . -1209) T) ((-437 . -611) 114594) ((-434 . -611) 114576) ((-3 . -102) T) ((-1023 . -1202) 114545) ((-829 . -102) T) ((-685 . -57) 114503) ((-695 . -1045) T) ((-50 . -644) 114477) ((-289 . -452) T) ((-476 . -1202) 114446) ((0 . -102) T) ((-581 . -644) 114411) ((-518 . -644) 114356) ((-49 . -102) T) ((-906 . -1034) 114343) ((-695 . -243) T) ((-1074 . -409) 114322) ((-727 . -637) 114270) ((-995 . -1094) T) ((-708 . -172) 114161) ((-621 . -614) 114056) ((-487 . -988) 114038) ((-264 . -377) 114022) ((-247 . -377) 114006) ((-399 . -1094) T) ((-1022 . -102) 113984) ((-339 . -38) 113968) ((-217 . -988) 113950) ((-117 . -614) 113880) ((-174 . -38) 113812) ((-1243 . -307) 113791) ((-1222 . -307) 113770) ((-654 . -722) T) ((-99 . -611) 113752) ((-1161 . -637) 113704) ((-485 . -25) T) ((-485 . -21) T) ((-1222 . -1018) 113656) ((-621 . -1045) T) ((-379 . -404) T) ((-390 . -102) T) ((-1099 . -616) 113571) ((-264 . -896) 113517) ((-247 . -896) 113494) ((-117 . -1045) T) ((-812 . -1106) T) ((-1081 . -722) T) ((-621 . -233) 113473) ((-619 . -102) T) ((-778 . -722) T) ((-776 . -722) T) ((-413 . -1106) T) ((-117 . -243) T) ((-40 . -368) NIL) ((-117 . -233) NIL) ((-1214 . -846) T) ((-454 . -722) T) ((-812 . -23) T) ((-727 . -25) T) ((-727 . -21) T) ((-1071 . -286) 113452) ((-78 . -396) T) ((-78 . -395) T) ((-533 . -763) 113434) ((-690 . -1051) 113384) ((-1251 . -131) T) ((-1244 . -131) T) ((-1223 . -131) T) ((-1168 . -25) T) ((-1136 . -411) 113368) ((-633 . -367) 113300) ((-605 . -367) 113232) ((-1150 . -1143) 113216) ((-103 . -1094) 113194) ((-1168 . -21) T) ((-1167 . -21) T) ((-861 . -611) 113176) ((-995 . -713) 113124) ((-223 . -644) 113091) ((-690 . -111) 113025) ((-50 . -722) T) ((-1167 . -25) T) ((-351 . -349) T) ((-1161 . -21) T) ((-1074 . -452) 112976) ((-1161 . -25) T) ((-708 . -514) 112923) ((-581 . -722) T) ((-518 . -722) T) ((-1120 . -21) T) ((-1120 . -25) T) ((-595 . -131) T) ((-594 . -131) T) ((-359 . -452) T) ((-353 . -452) T) ((-345 . -452) T) ((-474 . -307) 112902) ((-1217 . -102) T) ((-313 . -286) 112837) ((-108 . -452) T) ((-79 . -441) T) ((-79 . -395) T) ((-477 . -102) T) ((-687 . -614) 112821) ((-1287 . -611) 112803) ((-1287 . -612) 112785) ((-1074 . -402) 112764) ((-1031 . -489) 112695) ((-564 . -791) T) ((-564 . -788) T) ((-1057 . -235) 112641) ((-359 . -402) 112592) ((-353 . -402) 112543) ((-345 . -402) 112494) ((-1274 . -1106) T) ((-690 . -614) 112429) ((-1274 . -23) T) ((-1261 . -102) T) ((-175 . -611) 112411) ((-1136 . -1052) T) ((-547 . -368) T) ((-666 . -740) 112395) ((-1172 . -145) 112374) ((-1172 . -147) 112353) ((-1140 . -1094) T) ((-1140 . -1065) 112322) ((-69 . -1209) T) ((-1020 . -1051) 112259) ((-862 . -1052) T) ((-240 . -637) 112165) ((-690 . -1045) T) ((-354 . -1051) 112110) ((-61 . -1209) T) ((-1020 . -111) 112026) ((-897 . -611) 111937) ((-690 . -243) T) ((-690 . -233) NIL) ((-839 . -844) 111916) ((-695 . -791) T) ((-695 . -788) T) ((-999 . -411) 111893) ((-354 . -111) 111822) ((-379 . -916) T) ((-407 . -844) 111801) ((-708 . -290) 111712) ((-223 . -722) T) ((-1251 . -493) 111678) ((-1244 . -493) 111644) ((-1223 . -493) 111610) ((-578 . -1094) T) ((-316 . -998) 111589) ((-222 . -1094) 111567) ((-1216 . -840) T) ((-319 . -969) 111529) ((-105 . -102) T) ((-48 . -1051) 111494) ((-1283 . -102) T) ((-381 . -102) T) ((-48 . -111) 111450) ((-1000 . -637) 111432) ((-1245 . -611) 111414) ((-531 . -102) T) ((-500 . -102) T) ((-1127 . -1128) 111398) ((-152 . -1266) 111382) ((-245 . -1209) T) ((-1208 . -102) T) ((-1020 . -614) 111319) ((-1166 . -1213) 111298) ((-354 . -614) 111228) ((-1119 . -1213) 111207) ((-240 . -21) 111117) ((-240 . -25) 110968) ((-127 . -119) 110952) ((-121 . -119) 110936) ((-44 . -740) 110920) ((-1166 . -556) 110831) ((-1119 . -556) 110762) ((-1216 . -1094) T) ((-1031 . -286) 110737) ((-1160 . -1077) T) ((-990 . -1077) T) ((-812 . -131) T) ((-117 . -791) NIL) ((-117 . -788) NIL) ((-355 . -307) T) ((-352 . -307) T) ((-344 . -307) T) ((-251 . -1106) 110647) ((-250 . -1106) 110557) ((-1020 . -1045) T) ((-999 . -1052) T) ((-48 . -614) 110490) ((-343 . -644) 110435) ((-619 . -38) 110419) ((-1272 . -611) 110381) ((-1272 . -612) 110342) ((-1071 . -611) 110324) ((-1020 . -243) T) ((-354 . -1045) T) ((-811 . -1266) 110294) ((-251 . -23) T) ((-250 . -23) T) ((-983 . -611) 110276) ((-733 . -612) 110237) ((-733 . -611) 110219) ((-795 . -846) 110198) ((-1153 . -151) 110145) ((-995 . -514) 110057) ((-354 . -233) T) ((-354 . -243) T) ((-388 . -614) 110038) ((-1000 . -25) T) ((-141 . -611) 110020) ((-141 . -612) 109979) ((-906 . -307) T) ((-1000 . -21) T) ((-967 . -25) T) ((-910 . -21) T) ((-910 . -25) T) ((-427 . -21) T) ((-427 . -25) T) ((-839 . -411) 109963) ((-48 . -1045) T) ((-1281 . -1273) 109947) ((-1279 . -1273) 109931) ((-1031 . -602) 109906) ((-316 . -612) 109767) ((-316 . -611) 109749) ((-313 . -612) NIL) ((-313 . -611) 109731) ((-48 . -243) T) ((-48 . -233) T) ((-650 . -286) 109692) ((-550 . -235) 109642) ((-139 . -611) 109609) ((-136 . -611) 109591) ((-114 . -611) 109573) ((-477 . -38) 109538) ((-1283 . -1280) 109517) ((-1274 . -131) T) ((-1282 . -1052) T) ((-1076 . -102) T) ((-88 . -1209) T) ((-500 . -309) NIL) ((-996 . -107) 109501) ((-885 . -1094) T) ((-881 . -1094) T) ((-1259 . -647) 109485) ((-1259 . -373) 109469) ((-327 . -1209) T) ((-592 . -846) T) ((-1136 . -1094) T) ((-1136 . -1048) 109409) ((-103 . -514) 109342) ((-923 . -611) 109324) ((-343 . -722) T) ((-30 . -611) 109306) ((-862 . -1094) T) ((-839 . -1052) 109285) ((-40 . -644) 109230) ((-225 . -1213) T) ((-407 . -1052) T) ((-1152 . -151) 109212) ((-995 . -290) 109163) ((-615 . -1094) T) ((-225 . -556) T) ((-319 . -1240) 109147) ((-319 . -1237) 109117) ((-1182 . -1185) 109096) ((-1069 . -611) 109078) ((-643 . -151) 109062) ((-630 . -151) 109008) ((-1182 . -107) 108958) ((-479 . -1185) 108937) ((-487 . -147) T) ((-487 . -145) NIL) ((-1114 . -612) 108852) ((-438 . -611) 108834) ((-217 . -147) T) ((-217 . -145) NIL) ((-1114 . -611) 108816) ((-129 . -102) T) ((-52 . -102) T) ((-1223 . -637) 108768) ((-479 . -107) 108718) ((-989 . -23) T) ((-1283 . -38) 108688) ((-1166 . -1106) T) ((-1119 . -1106) T) ((-1056 . -1213) T) ((-311 . -102) T) ((-850 . -1106) T) ((-948 . -1213) 108667) ((-481 . -1213) 108646) ((-1056 . -556) T) ((-948 . -556) 108577) ((-1166 . -23) T) ((-1119 . -23) T) ((-850 . -23) T) ((-481 . -556) 108508) ((-1136 . -713) 108440) ((-1140 . -514) 108373) ((-1031 . -612) NIL) ((-1031 . -611) 108355) ((-96 . -1077) T) ((-862 . -713) 108325) ((-1203 . -47) 108294) ((-251 . -131) T) ((-250 . -131) T) ((-1098 . -1094) T) ((-999 . -1094) T) ((-62 . -611) 108276) ((-1161 . -846) NIL) ((-1020 . -788) T) ((-1020 . -791) T) ((-1287 . -1051) 108263) ((-1287 . -111) 108248) ((-866 . -644) 108235) ((-1251 . -25) T) ((-1251 . -21) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-1223 . -21) T) ((-1223 . -25) T) ((-1023 . -151) 108219) ((-868 . -816) 108198) ((-868 . -916) T) ((-708 . -286) 108125) ((-595 . -21) T) ((-595 . -25) T) ((-594 . -21) T) ((-40 . -722) T) ((-222 . -514) 108058) ((-594 . -25) T) ((-476 . -151) 108042) ((-463 . -151) 108026) ((-917 . -790) T) ((-917 . -722) T) ((-767 . -789) T) ((-767 . -790) T) ((-506 . -1094) T) ((-502 . -1094) T) ((-767 . -722) T) ((-225 . -363) T) ((-1150 . -1094) 108004) ((-867 . -1213) T) ((-650 . -611) 107986) ((-867 . -556) T) ((-690 . -368) NIL) ((-1287 . -614) 107968) ((-1282 . -1094) T) ((-359 . -1266) 107952) ((-666 . -102) T) ((-353 . -1266) 107936) ((-345 . -1266) 107920) ((-548 . -102) T) ((-520 . -846) 107899) ((-813 . -452) 107878) ((-1042 . -1094) T) ((-1042 . -1065) 107807) ((-1023 . -972) 107776) ((-815 . -1106) T) ((-999 . -713) 107721) ((-386 . -1106) T) ((-476 . -972) 107690) ((-463 . -972) 107659) ((-110 . -151) 107641) ((-73 . -611) 107623) ((-889 . -611) 107605) ((-1074 . -720) 107584) ((-1287 . -1045) T) ((-812 . -637) 107532) ((-294 . -1052) 107474) ((-169 . -1213) 107379) ((-225 . -1106) T) ((-324 . -23) T) ((-1161 . -988) 107331) ((-839 . -1094) T) ((-1245 . -1051) 107236) ((-1120 . -736) 107215) ((-1243 . -916) 107194) ((-1222 . -916) 107173) ((-866 . -722) T) ((-169 . -556) 107084) ((-580 . -644) 107071) ((-564 . -644) 107058) ((-407 . -1094) T) ((-263 . -1094) T) ((-213 . -611) 107040) ((-495 . -644) 107005) ((-225 . -23) T) ((-1222 . -816) 106958) ((-1281 . -102) T) ((-354 . -1278) 106935) ((-1279 . -102) T) ((-1245 . -111) 106827) ((-144 . -611) 106809) ((-989 . -131) T) ((-44 . -102) T) ((-240 . -846) 106760) ((-1232 . -1213) 106739) ((-103 . -489) 106723) ((-1282 . -713) 106693) ((-1081 . -47) 106654) ((-1056 . -1106) T) ((-948 . -1106) T) ((-127 . -34) T) ((-121 . -34) T) ((-778 . -47) 106631) ((-776 . -47) 106603) ((-1232 . -556) 106514) ((-354 . -368) T) ((-481 . -1106) T) ((-1166 . -131) T) ((-1119 . -131) T) ((-454 . -47) 106493) ((-867 . -363) T) ((-850 . -131) T) ((-152 . -102) T) ((-1056 . -23) T) ((-948 . -23) T) ((-571 . -556) T) ((-812 . -25) T) ((-812 . -21) T) ((-1136 . -514) 106426) ((-591 . -1077) T) ((-585 . -1034) 106410) ((-1245 . -614) 106284) ((-481 . -23) T) ((-351 . -1052) T) ((-1203 . -896) 106265) ((-666 . -309) 106203) ((-1107 . -1266) 106173) ((-695 . -644) 106138) ((-999 . -172) T) ((-959 . -145) 106117) ((-633 . -1094) T) ((-605 . -1094) T) ((-959 . -147) 106096) ((-1000 . -846) T) ((-731 . -147) 106075) ((-731 . -145) 106054) ((-967 . -846) T) ((-474 . -916) 106033) ((-316 . -1051) 105943) ((-313 . -1051) 105872) ((-995 . -286) 105830) ((-407 . -713) 105782) ((-697 . -844) T) ((-1245 . -1045) T) ((-316 . -111) 105678) ((-313 . -111) 105591) ((-960 . -102) T) ((-811 . -102) 105381) ((-708 . -612) NIL) ((-708 . -611) 105363) ((-654 . -1034) 105259) ((-1245 . -326) 105203) ((-1031 . -288) 105178) ((-580 . -722) T) ((-564 . -790) T) ((-169 . -363) 105129) ((-564 . -787) T) ((-564 . -722) T) ((-495 . -722) T) ((-1140 . -489) 105113) ((-1081 . -882) NIL) ((-867 . -1106) T) ((-117 . -905) NIL) ((-1281 . -1280) 105089) ((-1279 . -1280) 105068) ((-778 . -882) NIL) ((-776 . -882) 104927) ((-1274 . -25) T) ((-1274 . -21) T) ((-1206 . -102) 104905) ((-1100 . -395) T) ((-621 . -644) 104892) ((-454 . -882) NIL) ((-671 . -102) 104870) ((-1081 . -1034) 104697) ((-867 . -23) T) ((-778 . -1034) 104556) ((-776 . -1034) 104413) ((-117 . -644) 104358) ((-454 . -1034) 104234) ((-316 . -614) 103798) ((-313 . -614) 103681) ((-645 . -1034) 103665) ((-625 . -102) T) ((-222 . -489) 103649) ((-1259 . -34) T) ((-136 . -614) 103633) ((-633 . -713) 103617) ((-605 . -713) 103601) ((-666 . -38) 103561) ((-319 . -102) T) ((-85 . -611) 103543) ((-50 . -1034) 103527) ((-1114 . -1051) 103514) ((-1081 . -377) 103498) ((-778 . -377) 103482) ((-60 . -57) 103444) ((-695 . -790) T) ((-695 . -787) T) ((-581 . -1034) 103431) ((-518 . -1034) 103408) ((-695 . -722) T) ((-324 . -131) T) ((-316 . -1045) 103298) ((-313 . -1045) T) ((-169 . -1106) T) ((-776 . -377) 103282) ((-45 . -151) 103232) ((-1000 . -988) 103214) ((-454 . -377) 103198) ((-407 . -172) T) ((-316 . -243) 103177) ((-313 . -243) T) ((-313 . -233) NIL) ((-294 . -1094) 102959) ((-225 . -131) T) ((-1114 . -111) 102944) ((-169 . -23) T) ((-795 . -147) 102923) ((-795 . -145) 102902) ((-251 . -637) 102808) ((-250 . -637) 102714) ((-319 . -284) 102680) ((-1150 . -514) 102613) ((-1127 . -1094) T) ((-225 . -1054) T) ((-811 . -309) 102551) ((-1081 . -896) 102486) ((-778 . -896) 102429) ((-776 . -896) 102413) ((-1281 . -38) 102383) ((-1279 . -38) 102353) ((-1232 . -1106) T) ((-851 . -1106) T) ((-454 . -896) 102330) ((-854 . -1094) T) ((-1232 . -23) T) ((-1114 . -614) 102302) ((-571 . -1106) T) ((-851 . -23) T) ((-621 . -722) T) ((-355 . -916) T) ((-352 . -916) T) ((-289 . -102) T) ((-344 . -916) T) ((-1056 . -131) T) ((-966 . -1077) T) ((-948 . -131) T) ((-117 . -790) NIL) ((-117 . -787) NIL) ((-117 . -722) T) ((-690 . -905) NIL) ((-1042 . -514) 102203) ((-481 . -131) T) ((-571 . -23) T) ((-671 . -309) 102141) ((-633 . -757) T) ((-605 . -757) T) ((-1223 . -846) NIL) ((-999 . -290) T) ((-251 . -21) T) ((-690 . -644) 102091) ((-351 . -1094) T) ((-251 . -25) T) ((-250 . -21) T) ((-250 . -25) T) ((-152 . -38) 102075) ((-2 . -102) T) ((-906 . -916) T) ((-482 . -1266) 102045) ((-223 . -1034) 102022) ((-1114 . -1045) T) ((-707 . -307) T) ((-294 . -713) 101964) ((-697 . -1052) T) ((-487 . -452) T) ((-407 . -514) 101876) ((-217 . -452) T) ((-1114 . -233) T) ((-295 . -151) 101826) ((-995 . -612) 101787) ((-995 . -611) 101769) ((-985 . -611) 101751) ((-116 . -1052) T) ((-650 . -1051) 101735) ((-225 . -493) T) ((-399 . -611) 101717) ((-399 . -612) 101694) ((-1049 . -1266) 101664) ((-650 . -111) 101643) ((-1136 . -489) 101627) ((-811 . -38) 101597) ((-63 . -441) T) ((-63 . -395) T) ((-1153 . -102) T) ((-867 . -131) T) ((-484 . -102) 101575) ((-1287 . -368) T) ((-1074 . -102) T) ((-1055 . -102) T) ((-351 . -713) 101520) ((-727 . -147) 101499) ((-727 . -145) 101478) ((-650 . -614) 101396) ((-1020 . -644) 101333) ((-523 . -1094) 101311) ((-359 . -102) T) ((-353 . -102) T) ((-345 . -102) T) ((-108 . -102) T) ((-504 . -1094) T) ((-354 . -644) 101256) ((-1166 . -637) 101204) ((-1119 . -637) 101152) ((-385 . -509) 101131) ((-829 . -844) 101110) ((-379 . -1213) T) ((-690 . -722) T) ((-339 . -1052) T) ((-1223 . -988) 101062) ((-174 . -1052) T) ((-103 . -611) 100994) ((-1168 . -145) 100973) ((-1168 . -147) 100952) ((-379 . -556) T) ((-1167 . -147) 100931) ((-1167 . -145) 100910) ((-1161 . -145) 100817) ((-407 . -290) T) ((-1161 . -147) 100724) ((-1120 . -147) 100703) ((-1120 . -145) 100682) ((-319 . -38) 100523) ((-169 . -131) T) ((-313 . -791) NIL) ((-313 . -788) NIL) ((-650 . -1045) T) ((-48 . -644) 100488) ((-889 . -614) 100465) ((-1160 . -102) T) ((-990 . -102) T) ((-989 . -21) T) ((-127 . -1006) 100449) ((-121 . -1006) 100433) ((-989 . -25) T) ((-897 . -119) 100417) ((-1152 . -102) T) ((-1232 . -131) T) ((-1166 . -25) T) ((-1166 . -21) T) ((-851 . -131) T) ((-1119 . -25) T) ((-1119 . -21) T) ((-850 . -25) T) ((-850 . -21) T) ((-778 . -307) 100396) ((-643 . -102) 100374) ((-630 . -102) T) ((-1153 . -309) 100169) ((-571 . -131) T) ((-619 . -844) 100148) ((-1150 . -489) 100132) ((-1144 . -151) 100082) ((-1140 . -611) 100044) ((-1140 . -612) 100005) ((-1020 . -787) T) ((-1020 . -790) T) ((-1020 . -722) T) ((-708 . -1051) 99828) ((-484 . -309) 99766) ((-453 . -417) 99736) ((-351 . -172) T) ((-289 . -38) 99723) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-343 . -1034) 99700) ((-268 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-354 . -722) T) ((-708 . -111) 99509) ((-666 . -231) 99493) ((-581 . -307) T) ((-518 . -307) T) ((-294 . -514) 99442) ((-108 . -309) NIL) ((-72 . -395) T) ((-1107 . -102) 99232) ((-829 . -411) 99216) ((-1114 . -791) T) ((-1114 . -788) T) ((-697 . -1094) T) ((-578 . -611) 99198) ((-379 . -363) T) ((-169 . -493) 99176) ((-222 . -611) 99108) ((-134 . -1094) T) ((-116 . -1094) T) ((-48 . -722) T) ((-1042 . -489) 99073) ((-141 . -425) 99055) ((-141 . -368) T) ((-1023 . -102) T) ((-512 . -509) 99034) ((-708 . -614) 98790) ((-476 . -102) T) ((-463 . -102) T) ((-1030 . -1106) T) ((-1216 . -611) 98772) ((-1175 . -1034) 98708) ((-1168 . -35) 98674) ((-1168 . -95) 98640) ((-1168 . -1197) 98606) ((-1168 . -1194) 98572) ((-1152 . -309) NIL) ((-89 . -396) T) ((-89 . -395) T) ((-1074 . -1145) 98551) ((-1167 . -1194) 98517) ((-1167 . -1197) 98483) ((-1030 . -23) T) ((-1167 . -95) 98449) ((-571 . -493) T) ((-1167 . -35) 98415) ((-1161 . -1194) 98381) ((-1161 . -1197) 98347) ((-1161 . -95) 98313) ((-361 . -1106) T) ((-359 . -1145) 98292) ((-353 . -1145) 98271) ((-345 . -1145) 98250) ((-1161 . -35) 98216) ((-1120 . -35) 98182) ((-1120 . -95) 98148) ((-108 . -1145) T) ((-1120 . -1197) 98114) ((-829 . -1052) 98093) ((-643 . -309) 98031) ((-630 . -309) 97882) ((-1120 . -1194) 97848) ((-708 . -1045) T) ((-1056 . -637) 97830) ((-1074 . -38) 97698) ((-948 . -637) 97646) ((-1000 . -147) T) ((-1000 . -145) NIL) ((-379 . -1106) T) ((-324 . -25) T) ((-322 . -23) T) ((-939 . -846) 97625) ((-708 . -326) 97602) ((-481 . -637) 97550) ((-40 . -1034) 97438) ((-708 . -233) T) ((-697 . -713) 97425) ((-339 . -1094) T) ((-174 . -1094) T) ((-331 . -846) T) ((-418 . -452) 97375) ((-379 . -23) T) ((-359 . -38) 97340) ((-353 . -38) 97305) ((-345 . -38) 97270) ((-80 . -441) T) ((-80 . -395) T) ((-225 . -25) T) ((-225 . -21) T) ((-832 . -1106) T) ((-108 . -38) 97220) ((-823 . -1106) T) ((-770 . -1094) T) ((-116 . -713) 97207) ((-668 . -1034) 97191) ((-610 . -102) T) ((-832 . -23) T) ((-823 . -23) T) ((-1150 . -286) 97168) ((-1107 . -309) 97106) ((-1096 . -235) 97090) ((-64 . -396) T) ((-64 . -395) T) ((-110 . -102) T) ((-40 . -377) 97067) ((-96 . -102) T) ((-649 . -848) 97051) ((-1129 . -1077) T) ((-1056 . -21) T) ((-1056 . -25) T) ((-811 . -231) 97020) ((-948 . -25) T) ((-948 . -21) T) ((-619 . -1052) T) ((-1114 . -368) T) ((-481 . -25) T) ((-481 . -21) T) ((-1023 . -309) 96958) ((-885 . -611) 96940) ((-881 . -611) 96922) ((-251 . -846) 96873) ((-250 . -846) 96824) ((-523 . -514) 96757) ((-867 . -637) 96734) ((-476 . -309) 96672) ((-463 . -309) 96610) ((-351 . -290) T) ((-1150 . -1247) 96594) ((-1136 . -611) 96556) ((-1136 . -612) 96517) ((-1134 . -102) T) ((-995 . -1051) 96413) ((-40 . -896) 96365) ((-1150 . -602) 96342) ((-1287 . -644) 96329) ((-862 . -490) 96306) ((-1057 . -151) 96252) ((-868 . -1213) T) ((-995 . -111) 96134) ((-339 . -713) 96118) ((-862 . -611) 96080) ((-174 . -713) 96012) ((-407 . -286) 95970) ((-868 . -556) T) ((-108 . -400) 95952) ((-84 . -384) T) ((-84 . -395) T) ((-697 . -172) T) ((-615 . -611) 95934) ((-99 . -722) T) ((-482 . -102) 95724) ((-99 . -473) T) ((-116 . -172) T) ((-1107 . -38) 95694) ((-169 . -637) 95642) ((-1049 . -102) T) ((-995 . -614) 95532) ((-867 . -25) T) ((-811 . -238) 95511) ((-867 . -21) T) ((-814 . -102) T) ((-414 . -102) T) ((-385 . -102) T) ((-110 . -309) NIL) ((-227 . -102) 95489) ((-127 . -1209) T) ((-121 . -1209) T) ((-1030 . -131) T) ((-666 . -367) 95473) ((-995 . -1045) T) ((-1232 . -637) 95421) ((-1098 . -611) 95403) ((-999 . -611) 95385) ((-515 . -23) T) ((-510 . -23) T) ((-343 . -307) T) ((-508 . -23) T) ((-322 . -131) T) ((-3 . -1094) T) ((-999 . -612) 95369) ((-995 . -243) 95348) ((-995 . -233) 95327) ((-1287 . -722) T) ((-1251 . -145) 95306) ((-829 . -1094) T) ((-1251 . -147) 95285) ((-1244 . -147) 95264) ((-1244 . -145) 95243) ((-1243 . -1213) 95222) ((-1223 . -145) 95129) ((-1223 . -147) 95036) ((-1222 . -1213) 95015) ((-379 . -131) T) ((-564 . -882) 94997) ((0 . -1094) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1094) T) ((-1245 . -644) 94902) ((-1243 . -556) 94853) ((-710 . -1106) T) ((-1222 . -556) 94804) ((-564 . -1034) 94786) ((-594 . -147) 94765) ((-594 . -145) 94744) ((-495 . -1034) 94687) ((-1129 . -1131) T) ((-87 . -384) T) ((-87 . -395) T) ((-868 . -363) T) ((-832 . -131) T) ((-823 . -131) T) ((-710 . -23) T) ((-506 . -611) 94653) ((-502 . -611) 94635) ((-1283 . -1052) T) ((-379 . -1054) T) ((-1022 . -1094) 94613) ((-55 . -1034) 94595) ((-897 . -34) T) ((-482 . -309) 94533) ((-591 . -102) T) ((-1150 . -612) 94494) ((-1150 . -611) 94426) ((-45 . -102) T) ((-813 . -102) T) ((-1232 . -25) T) ((-1232 . -21) T) ((-851 . -25) T) ((-44 . -367) 94410) ((-851 . -21) T) ((-727 . -452) 94361) ((-1282 . -611) 94343) ((-1049 . -309) 94281) ((-667 . -1077) T) ((-604 . -1077) T) ((-390 . -1094) T) ((-571 . -25) T) ((-571 . -21) T) ((-180 . -1077) T) ((-161 . -1077) T) ((-156 . -1077) T) ((-154 . -1077) T) ((-619 . -1094) T) ((-695 . -882) 94263) ((-1259 . -1209) T) ((-227 . -309) 94201) ((-144 . -368) T) ((-1042 . -612) 94143) ((-1042 . -611) 94086) ((-313 . -905) NIL) ((-1217 . -840) T) ((-695 . -1034) 94031) ((-707 . -916) T) ((-474 . -1213) 94010) ((-1167 . -452) 93989) ((-1161 . -452) 93968) ((-330 . -102) T) ((-868 . -1106) T) ((-316 . -644) 93789) ((-313 . -644) 93718) ((-474 . -556) 93669) ((-339 . -514) 93635) ((-550 . -151) 93585) ((-40 . -307) T) ((-839 . -611) 93567) ((-697 . -290) T) ((-868 . -23) T) ((-379 . -493) T) ((-1074 . -231) 93537) ((-512 . -102) T) ((-407 . -612) 93344) ((-407 . -611) 93326) ((-263 . -611) 93308) ((-116 . -290) T) ((-1245 . -722) T) ((-1243 . -363) 93287) ((-1222 . -363) 93266) ((-1272 . -34) T) ((-1217 . -1094) T) ((-117 . -1209) T) ((-108 . -231) 93248) ((-1172 . -102) T) ((-477 . -1094) T) ((-523 . -489) 93232) ((-733 . -34) T) ((-482 . -38) 93202) ((-141 . -34) T) ((-117 . -880) 93179) ((-117 . -882) NIL) ((-621 . -1034) 93062) ((-641 . -846) 93041) ((-1271 . -102) T) ((-295 . -102) T) ((-708 . -368) 93020) ((-117 . -1034) 92997) ((-390 . -713) 92981) ((-619 . -713) 92965) ((-45 . -309) 92769) ((-812 . -145) 92748) ((-812 . -147) 92727) ((-1282 . -382) 92706) ((-815 . -846) T) ((-1261 . -1094) T) ((-1153 . -229) 92653) ((-386 . -846) 92632) ((-1251 . -1197) 92598) ((-1251 . -1194) 92564) ((-1244 . -1194) 92530) ((-515 . -131) T) ((-1244 . -1197) 92496) ((-1223 . -1194) 92462) ((-1223 . -1197) 92428) ((-1251 . -35) 92394) ((-1251 . -95) 92360) ((-633 . -611) 92329) ((-605 . -611) 92298) ((-225 . -846) T) ((-1244 . -95) 92264) ((-1244 . -35) 92230) ((-1243 . -1106) T) ((-1114 . -644) 92217) ((-1223 . -95) 92183) ((-1222 . -1106) T) ((-592 . -151) 92165) ((-1074 . -349) 92144) ((-174 . -290) T) ((-117 . -377) 92121) ((-117 . -338) 92098) ((-1223 . -35) 92064) ((-866 . -307) T) ((-313 . -790) NIL) ((-313 . -787) NIL) ((-316 . -722) 91913) ((-313 . -722) T) ((-474 . -363) 91892) ((-359 . -349) 91871) ((-353 . -349) 91850) ((-345 . -349) 91829) ((-316 . -473) 91808) ((-1243 . -23) T) ((-1222 . -23) T) ((-714 . -1106) T) ((-710 . -131) T) ((-649 . -102) T) ((-477 . -713) 91773) ((-45 . -282) 91723) ((-105 . -1094) T) ((-68 . -611) 91705) ((-966 . -102) T) ((-860 . -102) T) ((-621 . -896) 91664) ((-1283 . -1094) T) ((-381 . -1094) T) ((-82 . -1209) T) ((-1208 . -1094) T) ((-1056 . -846) T) ((-117 . -896) NIL) ((-778 . -916) 91643) ((-709 . -846) T) ((-531 . -1094) T) ((-500 . -1094) T) ((-355 . -1213) T) ((-352 . -1213) T) ((-344 . -1213) T) ((-264 . -1213) 91622) ((-247 . -1213) 91601) ((-533 . -856) T) ((-1107 . -231) 91570) ((-1152 . -824) T) ((-1136 . -1051) 91554) ((-390 . -757) T) ((-690 . -1209) T) ((-687 . -1034) 91538) ((-355 . -556) T) ((-352 . -556) T) ((-344 . -556) T) ((-264 . -556) 91469) ((-247 . -556) 91400) ((-525 . -1077) T) ((-1136 . -111) 91379) ((-453 . -740) 91349) ((-862 . -1051) 91319) ((-813 . -38) 91261) ((-690 . -880) 91243) ((-690 . -882) 91225) ((-295 . -309) 91029) ((-906 . -1213) T) ((-666 . -411) 91013) ((-862 . -111) 90978) ((-690 . -1034) 90923) ((-1000 . -452) T) ((-906 . -556) T) ((-533 . -611) 90905) ((-581 . -916) T) ((-474 . -1106) T) ((-518 . -916) T) ((-1150 . -288) 90882) ((-910 . -452) T) ((-65 . -611) 90864) ((-630 . -229) 90810) ((-474 . -23) T) ((-1114 . -790) T) ((-868 . -131) T) ((-1114 . -787) T) ((-1274 . -1276) 90789) ((-1114 . -722) T) ((-650 . -644) 90763) ((-294 . -611) 90504) ((-1136 . -614) 90422) ((-1031 . -34) T) ((-811 . -844) 90401) ((-580 . -307) T) ((-564 . -307) T) ((-495 . -307) T) ((-1283 . -713) 90371) ((-690 . -377) 90353) ((-690 . -338) 90335) ((-477 . -172) T) ((-381 . -713) 90305) ((-862 . -614) 90240) ((-867 . -846) NIL) ((-564 . -1018) T) ((-495 . -1018) T) ((-1127 . -611) 90222) ((-1107 . -238) 90201) ((-214 . -102) T) ((-1144 . -102) T) ((-71 . -611) 90183) ((-1136 . -1045) T) ((-1172 . -38) 90080) ((-854 . -611) 90062) ((-564 . -545) T) ((-666 . -1052) T) ((-727 . -945) 90015) ((-1136 . -233) 89994) ((-1076 . -1094) T) ((-1030 . -25) T) ((-1030 . -21) T) ((-999 . -1051) 89939) ((-901 . -102) T) ((-862 . -1045) T) ((-690 . -896) NIL) ((-355 . -329) 89923) ((-355 . -363) T) ((-352 . -329) 89907) ((-352 . -363) T) ((-344 . -329) 89891) ((-344 . -363) T) ((-487 . -102) T) ((-1271 . -38) 89861) ((-546 . -846) T) ((-523 . -683) 89811) ((-217 . -102) T) ((-1020 . -1034) 89691) ((-999 . -111) 89620) ((-1168 . -969) 89589) ((-520 . -151) 89573) ((-1074 . -370) 89552) ((-351 . -611) 89534) ((-322 . -21) T) ((-354 . -1034) 89511) ((-322 . -25) T) ((-1167 . -969) 89473) ((-1161 . -969) 89442) ((-76 . -611) 89424) ((-1120 . -969) 89391) ((-695 . -307) T) ((-129 . -840) T) ((-906 . -363) T) ((-379 . -25) T) ((-379 . -21) T) ((-906 . -329) 89378) ((-86 . -611) 89360) ((-695 . -1018) T) ((-673 . -846) T) ((-1243 . -131) T) ((-1222 . -131) T) ((-897 . -1006) 89344) ((-832 . -21) T) ((-48 . -1034) 89287) ((-832 . -25) T) ((-823 . -25) T) ((-823 . -21) T) ((-1281 . -1052) T) ((-549 . -102) T) ((-1279 . -1052) T) ((-650 . -722) T) ((-1098 . -616) 89190) ((-999 . -614) 89120) ((-1282 . -1051) 89104) ((-811 . -411) 89073) ((-103 . -119) 89057) ((-129 . -1094) T) ((-52 . -1094) T) ((-922 . -611) 89039) ((-867 . -988) 89016) ((-819 . -102) T) ((-1282 . -111) 88995) ((-649 . -38) 88965) ((-571 . -846) T) ((-355 . -1106) T) ((-352 . -1106) T) ((-344 . -1106) T) ((-264 . -1106) T) ((-247 . -1106) T) ((-621 . -307) 88944) ((-1144 . -309) 88748) ((-524 . -1077) T) ((-311 . -1094) T) ((-660 . -23) T) ((-482 . -231) 88717) ((-152 . -1052) T) ((-355 . -23) T) ((-352 . -23) T) ((-344 . -23) T) ((-117 . -307) T) ((-264 . -23) T) ((-247 . -23) T) ((-999 . -1045) T) ((-708 . -905) 88696) ((-1150 . -614) 88673) ((-999 . -233) 88645) ((-999 . -243) T) ((-117 . -1018) NIL) ((-906 . -1106) T) ((-1244 . -452) 88624) ((-1223 . -452) 88603) ((-523 . -611) 88535) ((-708 . -644) 88460) ((-407 . -1051) 88412) ((-504 . -611) 88394) ((-906 . -23) T) ((-487 . -309) NIL) ((-1282 . -614) 88350) ((-474 . -131) T) ((-217 . -309) NIL) ((-407 . -111) 88288) ((-811 . -1052) 88218) ((-733 . -1092) 88202) ((-1243 . -493) 88168) ((-1222 . -493) 88134) ((-548 . -840) T) ((-141 . -1092) 88116) ((-477 . -290) T) ((-1282 . -1045) T) ((-1214 . -102) T) ((-1057 . -102) T) ((-839 . -614) 87984) ((-500 . -514) NIL) ((-482 . -238) 87963) ((-407 . -614) 87861) ((-1166 . -145) 87840) ((-1166 . -147) 87819) ((-1119 . -147) 87798) ((-1119 . -145) 87777) ((-633 . -1051) 87761) ((-605 . -1051) 87745) ((-1168 . -1250) 87729) ((-666 . -1094) T) ((-666 . -1048) 87669) ((-1168 . -1237) 87646) ((-548 . -1094) T) ((-487 . -1145) T) ((-1167 . -1242) 87607) ((-1167 . -1237) 87577) ((-1167 . -1240) 87561) ((-217 . -1145) T) ((-343 . -916) T) ((-814 . -266) 87545) ((-633 . -111) 87524) ((-605 . -111) 87503) ((-1161 . -1221) 87464) ((-839 . -1045) 87443) ((-1161 . -1237) 87420) ((-515 . -25) T) ((-495 . -302) T) ((-511 . -23) T) ((-510 . -25) T) ((-508 . -25) T) ((-507 . -23) T) ((-1161 . -1219) 87404) ((-407 . -1045) T) ((-319 . -1052) T) ((-690 . -307) T) ((-108 . -844) T) ((-708 . -722) T) ((-407 . -243) T) ((-407 . -233) 87383) ((-487 . -38) 87333) ((-217 . -38) 87283) ((-474 . -493) 87249) ((-1216 . -368) T) ((-1152 . -1138) T) ((-1095 . -102) T) ((-697 . -611) 87231) ((-697 . -612) 87146) ((-710 . -21) T) ((-710 . -25) T) ((-1129 . -102) T) ((-134 . -611) 87128) ((-116 . -611) 87110) ((-157 . -25) T) ((-1281 . -1094) T) ((-868 . -637) 87058) ((-1279 . -1094) T) ((-959 . -102) T) ((-731 . -102) T) ((-711 . -102) T) ((-453 . -102) T) ((-812 . -452) 87009) ((-44 . -1094) T) ((-1082 . -846) T) ((-660 . -131) T) ((-1057 . -309) 86860) ((-666 . -713) 86844) ((-289 . -1052) T) ((-355 . -131) T) ((-352 . -131) T) ((-344 . -131) T) ((-264 . -131) T) ((-247 . -131) T) ((-418 . -102) T) ((-152 . -1094) T) ((-45 . -229) 86794) ((-954 . -846) 86773) ((-995 . -644) 86711) ((-240 . -1266) 86681) ((-1020 . -307) T) ((-294 . -1051) 86602) ((-906 . -131) T) ((-40 . -916) T) ((-487 . -400) 86584) ((-354 . -307) T) ((-217 . -400) 86566) ((-1074 . -411) 86550) ((-294 . -111) 86466) ((-1177 . -846) T) ((-1176 . -846) T) ((-868 . -25) T) ((-868 . -21) T) ((-339 . -611) 86448) ((-1245 . -47) 86392) ((-225 . -147) T) ((-174 . -611) 86374) ((-1107 . -844) 86353) ((-770 . -611) 86335) ((-128 . -846) T) ((-606 . -235) 86282) ((-475 . -235) 86232) ((-1281 . -713) 86202) ((-48 . -307) T) ((-1279 . -713) 86172) ((-65 . -614) 86101) ((-960 . -1094) T) ((-811 . -1094) 85891) ((-312 . -102) T) ((-897 . -1209) T) ((-48 . -1018) T) ((-1222 . -637) 85799) ((-685 . -102) 85777) ((-44 . -713) 85761) ((-550 . -102) T) ((-294 . -614) 85692) ((-67 . -383) T) ((-67 . -395) T) ((-658 . -23) T) ((-666 . -757) T) ((-1206 . -1094) 85670) ((-351 . -1051) 85615) ((-671 . -1094) 85593) ((-1056 . -147) T) ((-948 . -147) 85572) ((-948 . -145) 85551) ((-795 . -102) T) ((-152 . -713) 85535) ((-481 . -147) 85514) ((-481 . -145) 85493) ((-351 . -111) 85422) ((-1074 . -1052) T) ((-322 . -846) 85401) ((-1251 . -969) 85370) ((-625 . -1094) T) ((-1244 . -969) 85332) ((-511 . -131) T) ((-507 . -131) T) ((-295 . -229) 85282) ((-359 . -1052) T) ((-353 . -1052) T) ((-345 . -1052) T) ((-294 . -1045) 85224) ((-1223 . -969) 85193) ((-379 . -846) T) ((-108 . -1052) T) ((-995 . -722) T) ((-866 . -916) T) ((-839 . -791) 85172) ((-839 . -788) 85151) ((-418 . -309) 85090) ((-468 . -102) T) ((-594 . -969) 85059) ((-319 . -1094) T) ((-407 . -791) 85038) ((-407 . -788) 85017) ((-500 . -489) 84999) ((-1245 . -1034) 84965) ((-1243 . -21) T) ((-1243 . -25) T) ((-1222 . -21) T) ((-1222 . -25) T) ((-811 . -713) 84907) ((-351 . -614) 84837) ((-695 . -404) T) ((-1272 . -1209) T) ((-604 . -102) T) ((-1107 . -411) 84806) ((-999 . -368) NIL) ((-667 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-733 . -1209) T) ((-44 . -757) T) ((-592 . -102) T) ((-77 . -396) T) ((-77 . -395) T) ((-649 . -652) 84790) ((-141 . -1209) T) ((-867 . -147) T) ((-867 . -145) NIL) ((-1208 . -93) T) ((-351 . -1045) T) ((-70 . -383) T) ((-70 . -395) T) ((-1159 . -102) T) ((-666 . -514) 84723) ((-685 . -309) 84661) ((-959 . -38) 84558) ((-731 . -38) 84528) ((-550 . -309) 84332) ((-316 . -1209) T) ((-351 . -233) T) ((-351 . -243) T) ((-313 . -1209) T) ((-289 . -1094) T) ((-1174 . -611) 84314) ((-707 . -1213) T) ((-1150 . -647) 84298) ((-1203 . -556) 84277) ((-707 . -556) T) ((-316 . -880) 84261) ((-316 . -882) 84186) ((-313 . -880) 84147) ((-313 . -882) NIL) ((-795 . -309) 84112) ((-319 . -713) 83953) ((-324 . -323) 83930) ((-485 . -102) T) ((-474 . -25) T) ((-474 . -21) T) ((-418 . -38) 83904) ((-316 . -1034) 83567) ((-225 . -1194) T) ((-225 . -1197) T) ((-3 . -611) 83549) ((-313 . -1034) 83479) ((-2 . -1094) T) ((-2 . |RecordCategory|) T) ((-829 . -611) 83461) ((-1107 . -1052) 83391) ((-580 . -916) T) ((-564 . -816) T) ((-564 . -916) T) ((-495 . -916) T) ((-136 . -1034) 83375) ((-225 . -95) T) ((-75 . -441) T) ((-75 . -395) T) ((0 . -611) 83357) ((-169 . -147) 83336) ((-169 . -145) 83287) ((-225 . -35) T) ((-49 . -611) 83269) ((-477 . -1052) T) ((-487 . -231) 83251) ((-484 . -964) 83235) ((-482 . -844) 83214) ((-217 . -231) 83196) ((-81 . -441) T) ((-81 . -395) T) ((-1140 . -34) T) ((-811 . -172) 83175) ((-727 . -102) T) ((-1022 . -611) 83142) ((-500 . -286) 83117) ((-316 . -377) 83086) ((-313 . -377) 83047) ((-313 . -338) 83008) ((-1079 . -611) 82990) ((-812 . -945) 82937) ((-658 . -131) T) ((-1232 . -145) 82916) ((-1232 . -147) 82895) ((-1168 . -102) T) ((-1167 . -102) T) ((-1161 . -102) T) ((-1153 . -1094) T) ((-1120 . -102) T) ((-222 . -34) T) ((-289 . -713) 82882) ((-1153 . -608) 82858) ((-592 . -309) NIL) ((-484 . -1094) 82836) ((-390 . -611) 82818) ((-510 . -846) T) ((-1144 . -229) 82768) ((-1251 . -1250) 82752) ((-1251 . -1237) 82729) ((-1244 . -1242) 82690) ((-1244 . -1237) 82660) ((-1244 . -1240) 82644) ((-1223 . -1221) 82605) ((-1223 . -1237) 82582) ((-619 . -611) 82564) ((-1223 . -1219) 82548) ((-695 . -916) T) ((-1168 . -284) 82514) ((-1167 . -284) 82480) ((-1161 . -284) 82446) ((-1074 . -1094) T) ((-1055 . -1094) T) ((-48 . -302) T) ((-316 . -896) 82412) ((-313 . -896) NIL) ((-1055 . -1062) 82391) ((-1114 . -882) 82373) ((-795 . -38) 82357) ((-264 . -637) 82305) ((-247 . -637) 82253) ((-697 . -1051) 82240) ((-594 . -1237) 82217) ((-1120 . -284) 82183) ((-319 . -172) 82114) ((-359 . -1094) T) ((-353 . -1094) T) ((-345 . -1094) T) ((-500 . -19) 82096) ((-1114 . -1034) 82078) ((-1096 . -151) 82062) ((-108 . -1094) T) ((-116 . -1051) 82049) ((-707 . -363) T) ((-500 . -602) 82024) ((-697 . -111) 82009) ((-436 . -102) T) ((-45 . -1143) 81959) ((-116 . -111) 81944) ((-633 . -716) T) ((-605 . -716) T) ((-811 . -514) 81877) ((-1031 . -1209) T) ((-939 . -151) 81861) ((-1217 . -611) 81843) ((-1166 . -452) 81774) ((-1160 . -1094) T) ((-1152 . -1094) T) ((-525 . -102) T) ((-520 . -102) 81724) ((-1136 . -644) 81698) ((-1119 . -452) 81649) ((-1081 . -1213) 81628) ((-778 . -1213) 81607) ((-776 . -1213) 81586) ((-62 . -1209) T) ((-477 . -611) 81538) ((-477 . -612) 81460) ((-1081 . -556) 81391) ((-990 . -1094) T) ((-778 . -556) 81302) ((-776 . -556) 81233) ((-482 . -411) 81202) ((-621 . -916) 81181) ((-454 . -1213) 81160) ((-727 . -309) 81147) ((-697 . -614) 81119) ((-398 . -611) 81101) ((-671 . -514) 81034) ((-660 . -25) T) ((-660 . -21) T) ((-454 . -556) 80965) ((-355 . -25) T) ((-355 . -21) T) ((-117 . -916) T) ((-117 . -816) NIL) ((-352 . -25) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-264 . -25) T) ((-264 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -384) T) ((-83 . -395) T) ((-134 . -614) 80947) ((-116 . -614) 80919) ((-1261 . -611) 80901) ((-1215 . -846) T) ((-1203 . -1106) T) ((-1203 . -23) T) ((-1161 . -309) 80786) ((-1120 . -309) 80773) ((-1074 . -713) 80641) ((-862 . -644) 80601) ((-939 . -976) 80585) ((-906 . -21) T) ((-289 . -172) T) ((-906 . -25) T) ((-311 . -93) T) ((-868 . -846) 80536) ((-707 . -1106) T) ((-707 . -23) T) ((-697 . -1045) T) ((-643 . -1094) 80514) ((-630 . -1094) T) ((-581 . -1213) T) ((-518 . -1213) T) ((-697 . -233) T) ((-630 . -608) 80489) ((-581 . -556) T) ((-518 . -556) T) ((-359 . -713) 80441) ((-339 . -1051) 80425) ((-353 . -713) 80377) ((-345 . -713) 80329) ((-174 . -1051) 80261) ((-174 . -111) 80172) ((-108 . -713) 80122) ((-339 . -111) 80101) ((-274 . -1094) T) ((-273 . -1094) T) ((-272 . -1094) T) ((-271 . -1094) T) ((-270 . -1094) T) ((-269 . -1094) T) ((-268 . -1094) T) ((-212 . -1094) T) ((-211 . -1094) T) ((-169 . -1197) 80079) ((-169 . -1194) 80057) ((-209 . -1094) T) ((-208 . -1094) T) ((-116 . -1045) T) ((-207 . -1094) T) ((-206 . -1094) T) ((-203 . -1094) T) ((-202 . -1094) T) ((-201 . -1094) T) ((-200 . -1094) T) ((-199 . -1094) T) ((-198 . -1094) T) ((-197 . -1094) T) ((-196 . -1094) T) ((-195 . -1094) T) ((-194 . -1094) T) ((-193 . -1094) T) ((-240 . -102) 79847) ((-169 . -35) 79825) ((-169 . -95) 79803) ((-650 . -1034) 79699) ((-482 . -1052) 79629) ((-1107 . -1094) 79419) ((-1136 . -34) T) ((-666 . -489) 79403) ((-73 . -1209) T) ((-105 . -611) 79385) ((-1283 . -611) 79367) ((-381 . -611) 79349) ((-339 . -614) 79301) ((-174 . -614) 79218) ((-1208 . -490) 79199) ((-727 . -38) 79048) ((-571 . -1197) T) ((-571 . -1194) T) ((-531 . -611) 79030) ((-520 . -309) 78968) ((-500 . -611) 78950) ((-500 . -612) 78932) ((-1208 . -611) 78898) ((-1161 . -1145) NIL) ((-1023 . -1065) 78867) ((-1023 . -1094) T) ((-1000 . -102) T) ((-967 . -102) T) ((-910 . -102) T) ((-889 . -1034) 78844) ((-1136 . -722) T) ((-999 . -644) 78789) ((-476 . -1094) T) ((-463 . -1094) T) ((-585 . -23) T) ((-571 . -35) T) ((-571 . -95) T) ((-427 . -102) T) ((-1057 . -229) 78735) ((-1168 . -38) 78632) ((-862 . -722) T) ((-690 . -916) T) ((-511 . -25) T) ((-507 . -21) T) ((-507 . -25) T) ((-1167 . -38) 78473) ((-339 . -1045) T) ((-1161 . -38) 78269) ((-1074 . -172) T) ((-174 . -1045) T) ((-1120 . -38) 78166) ((-708 . -47) 78143) ((-359 . -172) T) ((-353 . -172) T) ((-519 . -57) 78117) ((-497 . -57) 78067) ((-351 . -1278) 78044) ((-225 . -452) T) ((-319 . -290) 77995) ((-345 . -172) T) ((-174 . -243) T) ((-1222 . -846) 77894) ((-108 . -172) T) ((-868 . -988) 77878) ((-654 . -1106) T) ((-581 . -363) T) ((-581 . -329) 77865) ((-518 . -329) 77842) ((-518 . -363) T) ((-316 . -307) 77821) ((-313 . -307) T) ((-600 . -846) 77800) ((-1107 . -713) 77742) ((-520 . -282) 77726) ((-654 . -23) T) ((-418 . -231) 77710) ((-313 . -1018) NIL) ((-336 . -23) T) ((-103 . -1006) 77694) ((-45 . -36) 77673) ((-610 . -1094) T) ((-351 . -368) T) ((-524 . -102) T) ((-495 . -27) T) ((-240 . -309) 77611) ((-1081 . -1106) T) ((-1282 . -644) 77585) ((-778 . -1106) T) ((-776 . -1106) T) ((-454 . -1106) T) ((-1056 . -452) T) ((-948 . -452) 77536) ((-1109 . -1077) T) ((-110 . -1094) T) ((-1081 . -23) T) ((-813 . -1052) T) ((-778 . -23) T) ((-776 . -23) T) ((-481 . -452) 77487) ((-1153 . -514) 77270) ((-381 . -382) 77249) ((-1172 . -411) 77233) ((-461 . -23) T) ((-454 . -23) T) ((-96 . -1094) T) ((-484 . -514) 77166) ((-289 . -290) T) ((-1076 . -611) 77148) ((-1076 . -612) 77129) ((-407 . -905) 77108) ((-50 . -1106) T) ((-1020 . -916) T) ((-999 . -722) T) ((-708 . -882) NIL) ((-581 . -1106) T) ((-518 . -1106) T) ((-839 . -644) 77081) ((-1203 . -131) T) ((-1161 . -400) 77033) ((-1000 . -309) NIL) ((-811 . -489) 77017) ((-354 . -916) T) ((-1150 . -34) T) ((-407 . -644) 76969) ((-50 . -23) T) ((-707 . -131) T) ((-708 . -1034) 76849) ((-581 . -23) T) ((-108 . -514) NIL) ((-518 . -23) T) ((-169 . -409) 76820) ((-1134 . -1094) T) ((-1274 . -1273) 76804) ((-697 . -791) T) ((-697 . -788) T) ((-1114 . -307) T) ((-379 . -147) T) ((-280 . -611) 76786) ((-1222 . -988) 76756) ((-48 . -916) T) ((-671 . -489) 76740) ((-251 . -1266) 76710) ((-250 . -1266) 76680) ((-1170 . -846) T) ((-1107 . -172) 76659) ((-1114 . -1018) T) ((-1042 . -34) T) ((-832 . -147) 76638) ((-832 . -145) 76617) ((-733 . -107) 76601) ((-610 . -132) T) ((-482 . -1094) 76391) ((-1172 . -1052) T) ((-867 . -452) T) ((-85 . -1209) T) ((-240 . -38) 76361) ((-141 . -107) 76343) ((-708 . -377) 76327) ((-829 . -614) 76195) ((-1114 . -545) T) ((-579 . -102) T) ((-129 . -490) 76177) ((-390 . -1051) 76161) ((-1282 . -722) T) ((-1166 . -945) 76130) ((-129 . -611) 76097) ((-52 . -611) 76079) ((-1119 . -945) 76046) ((-649 . -411) 76030) ((-1271 . -1052) T) ((-619 . -1051) 76014) ((-658 . -25) T) ((-658 . -21) T) ((-1152 . -514) NIL) ((-1251 . -102) T) ((-1244 . -102) T) ((-390 . -111) 75993) ((-222 . -254) 75977) ((-1223 . -102) T) ((-1049 . -1094) T) ((-1000 . -1145) T) ((-1049 . -1048) 75917) ((-814 . -1094) T) ((-343 . -1213) T) ((-633 . -644) 75901) ((-619 . -111) 75880) ((-605 . -644) 75864) ((-595 . -102) T) ((-311 . -490) 75845) ((-585 . -131) T) ((-594 . -102) T) ((-414 . -1094) T) ((-385 . -1094) T) ((-311 . -611) 75811) ((-227 . -1094) 75789) ((-643 . -514) 75722) ((-630 . -514) 75566) ((-829 . -1045) 75545) ((-641 . -151) 75529) ((-343 . -556) T) ((-708 . -896) 75472) ((-550 . -229) 75422) ((-1251 . -284) 75388) ((-1074 . -290) 75339) ((-487 . -844) T) ((-223 . -1106) T) ((-1244 . -284) 75305) ((-1223 . -284) 75271) ((-1000 . -38) 75221) ((-217 . -844) T) ((-1203 . -493) 75187) ((-910 . -38) 75139) ((-839 . -790) 75118) ((-839 . -787) 75097) ((-839 . -722) 75076) ((-359 . -290) T) ((-353 . -290) T) ((-345 . -290) T) ((-169 . -452) 75007) ((-427 . -38) 74991) ((-108 . -290) T) ((-223 . -23) T) ((-407 . -790) 74970) ((-407 . -787) 74949) ((-407 . -722) T) ((-500 . -288) 74924) ((-477 . -1051) 74889) ((-654 . -131) T) ((-619 . -614) 74858) ((-1107 . -514) 74791) ((-336 . -131) T) ((-169 . -402) 74770) ((-482 . -713) 74712) ((-811 . -286) 74689) ((-477 . -111) 74645) ((-649 . -1052) T) ((-1232 . -452) 74576) ((-1270 . -1077) T) ((-1269 . -1077) T) ((-1081 . -131) T) ((-1049 . -713) 74518) ((-778 . -131) T) ((-776 . -131) T) ((-571 . -452) T) ((-1023 . -514) 74451) ((-619 . -1045) T) ((-591 . -1094) T) ((-533 . -173) T) ((-461 . -131) T) ((-454 . -131) T) ((-45 . -1094) T) ((-385 . -713) 74421) ((-813 . -1094) T) ((-476 . -514) 74354) ((-463 . -514) 74287) ((-453 . -367) 74257) ((-45 . -608) 74236) ((-316 . -302) T) ((-477 . -614) 74186) ((-666 . -611) 74148) ((-59 . -846) 74127) ((-1223 . -309) 74012) ((-548 . -611) 73994) ((-1000 . -400) 73976) ((-811 . -602) 73953) ((-516 . -846) 73932) ((-496 . -846) 73911) ((-40 . -1213) T) ((-995 . -1034) 73807) ((-50 . -131) T) ((-581 . -131) T) ((-518 . -131) T) ((-294 . -644) 73667) ((-343 . -329) 73644) ((-343 . -363) T) ((-322 . -323) 73621) ((-319 . -286) 73606) ((-40 . -556) T) ((-379 . -1194) T) ((-379 . -1197) T) ((-1031 . -1185) 73581) ((-1182 . -235) 73531) ((-1161 . -231) 73483) ((-330 . -1094) T) ((-379 . -95) T) ((-379 . -35) T) ((-1031 . -107) 73429) ((-477 . -1045) T) ((-479 . -235) 73379) ((-1153 . -489) 73313) ((-1283 . -1051) 73297) ((-381 . -1051) 73281) ((-477 . -243) T) ((-812 . -102) T) ((-710 . -147) 73260) ((-710 . -145) 73239) ((-484 . -489) 73223) ((-485 . -335) 73192) ((-1283 . -111) 73171) ((-512 . -1094) T) ((-482 . -172) 73150) ((-995 . -377) 73134) ((-413 . -102) T) ((-381 . -111) 73113) ((-995 . -338) 73097) ((-279 . -979) 73081) ((-278 . -979) 73065) ((-1281 . -611) 73047) ((-1279 . -611) 73029) ((-110 . -514) NIL) ((-1166 . -1235) 73013) ((-850 . -848) 72997) ((-1172 . -1094) T) ((-103 . -1209) T) ((-948 . -945) 72958) ((-813 . -713) 72900) ((-1223 . -1145) NIL) ((-481 . -945) 72845) ((-1056 . -143) T) ((-60 . -102) 72823) ((-44 . -611) 72805) ((-78 . -611) 72787) ((-351 . -644) 72732) ((-1271 . -1094) T) ((-511 . -846) T) ((-343 . -1106) T) ((-295 . -1094) T) ((-995 . -896) 72691) ((-295 . -608) 72670) ((-1283 . -614) 72619) ((-1251 . -38) 72516) ((-1244 . -38) 72357) ((-1223 . -38) 72153) ((-487 . -1052) T) ((-381 . -614) 72137) ((-217 . -1052) T) ((-343 . -23) T) ((-152 . -611) 72119) ((-829 . -791) 72098) ((-829 . -788) 72077) ((-1208 . -614) 72058) ((-595 . -38) 72031) ((-594 . -38) 71928) ((-866 . -556) T) ((-223 . -131) T) ((-319 . -998) 71894) ((-79 . -611) 71876) ((-708 . -307) 71855) ((-294 . -722) 71757) ((-820 . -102) T) ((-860 . -840) T) ((-294 . -473) 71736) ((-1274 . -102) T) ((-40 . -363) T) ((-868 . -147) 71715) ((-868 . -145) 71694) ((-1152 . -489) 71676) ((-1283 . -1045) T) ((-482 . -514) 71609) ((-1140 . -1209) T) ((-960 . -611) 71591) ((-643 . -489) 71575) ((-630 . -489) 71506) ((-811 . -611) 71237) ((-48 . -27) T) ((-1172 . -713) 71134) ((-649 . -1094) T) ((-857 . -856) T) ((-436 . -364) 71108) ((-1096 . -102) T) ((-966 . -1094) T) ((-860 . -1094) T) ((-812 . -309) 71095) ((-533 . -527) T) ((-533 . -576) T) ((-1279 . -382) 71067) ((-1049 . -514) 71000) ((-1153 . -286) 70976) ((-240 . -231) 70945) ((-1271 . -713) 70915) ((-1160 . -93) T) ((-990 . -93) T) ((-813 . -172) 70894) ((-1206 . -490) 70871) ((-227 . -514) 70804) ((-619 . -791) 70783) ((-619 . -788) 70762) ((-1206 . -611) 70674) ((-222 . -1209) T) ((-671 . -611) 70606) ((-1150 . -1006) 70590) ((-939 . -102) 70540) ((-351 . -722) T) ((-857 . -611) 70522) ((-1223 . -400) 70474) ((-1107 . -489) 70458) ((-60 . -309) 70396) ((-331 . -102) T) ((-1203 . -21) T) ((-1203 . -25) T) ((-40 . -1106) T) ((-707 . -21) T) ((-625 . -611) 70378) ((-515 . -323) 70357) ((-707 . -25) T) ((-439 . -102) T) ((-108 . -286) NIL) ((-917 . -1106) T) ((-40 . -23) T) ((-767 . -1106) T) ((-564 . -1213) T) ((-495 . -1213) T) ((-319 . -611) 70339) ((-1000 . -231) 70321) ((-169 . -166) 70305) ((-580 . -556) T) ((-564 . -556) T) ((-495 . -556) T) ((-767 . -23) T) ((-1243 . -147) 70284) ((-1153 . -602) 70260) ((-1243 . -145) 70239) ((-1023 . -489) 70223) ((-1222 . -145) 70148) ((-1222 . -147) 70073) ((-1274 . -1280) 70052) ((-476 . -489) 70036) ((-463 . -489) 70020) ((-523 . -34) T) ((-649 . -713) 69990) ((-112 . -963) T) ((-658 . -846) 69969) ((-1172 . -172) 69920) ((-365 . -102) T) ((-240 . -238) 69899) ((-251 . -102) T) ((-250 . -102) T) ((-1232 . -945) 69868) ((-245 . -846) 69847) ((-812 . -38) 69696) ((-45 . -514) 69488) ((-1152 . -286) 69463) ((-214 . -1094) T) ((-1144 . -1094) T) ((-1144 . -608) 69442) ((-585 . -25) T) ((-585 . -21) T) ((-1096 . -309) 69380) ((-959 . -411) 69364) ((-695 . -1213) T) ((-630 . -286) 69339) ((-1081 . -637) 69287) ((-778 . -637) 69235) ((-776 . -637) 69183) ((-343 . -131) T) ((-289 . -611) 69165) ((-901 . -1094) T) ((-695 . -556) T) ((-129 . -614) 69147) ((-866 . -1106) T) ((-454 . -637) 69095) ((-901 . -899) 69079) ((-379 . -452) T) ((-487 . -1094) T) ((-939 . -309) 69017) ((-697 . -644) 69004) ((-549 . -840) T) ((-217 . -1094) T) ((-316 . -916) 68983) ((-313 . -916) T) ((-313 . -816) NIL) ((-390 . -716) T) ((-866 . -23) T) ((-116 . -644) 68970) ((-474 . -145) 68949) ((-418 . -411) 68933) ((-474 . -147) 68912) ((-110 . -489) 68894) ((-311 . -614) 68875) ((-2 . -611) 68857) ((-186 . -102) T) ((-1152 . -19) 68839) ((-1152 . -602) 68814) ((-654 . -21) T) ((-654 . -25) T) ((-592 . -1138) T) ((-1107 . -286) 68791) ((-336 . -25) T) ((-336 . -21) T) ((-495 . -363) T) ((-1274 . -38) 68761) ((-1136 . -1209) T) ((-630 . -602) 68736) ((-549 . -1094) T) ((-1081 . -25) T) ((-1081 . -21) T) ((-531 . -788) T) ((-531 . -791) T) ((-117 . -1213) T) ((-959 . -1052) T) ((-621 . -556) T) ((-778 . -25) T) ((-778 . -21) T) ((-776 . -21) T) ((-776 . -25) T) ((-731 . -1052) T) ((-711 . -1052) T) ((-666 . -1051) 68720) ((-517 . -1077) T) ((-461 . -25) T) ((-117 . -556) T) ((-461 . -21) T) ((-454 . -25) T) ((-454 . -21) T) ((-1281 . -1051) 68704) ((-1136 . -1034) 68600) ((-813 . -290) 68579) ((-1279 . -1051) 68563) ((-819 . -1094) T) ((-1243 . -1194) 68529) ((-962 . -963) T) ((-666 . -111) 68508) ((-295 . -514) 68300) ((-1243 . -1197) 68266) ((-1243 . -95) 68232) ((-1226 . -102) 68210) ((-251 . -309) 68148) ((-250 . -309) 68086) ((-1223 . -231) 68038) ((-1153 . -612) NIL) ((-1153 . -611) 68020) ((-1222 . -1194) 67986) ((-1222 . -1197) 67952) ((-1217 . -368) T) ((-96 . -93) T) ((-1214 . -840) T) ((-1136 . -377) 67936) ((-1114 . -816) T) ((-1114 . -916) T) ((-1107 . -602) 67913) ((-1074 . -612) 67897) ((-484 . -611) 67829) ((-811 . -288) 67806) ((-606 . -151) 67753) ((-418 . -1052) T) ((-487 . -713) 67703) ((-482 . -489) 67687) ((-327 . -846) 67666) ((-339 . -644) 67640) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -713) 67590) ((-169 . -720) 67561) ((-174 . -644) 67493) ((-581 . -21) T) ((-581 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-475 . -151) 67443) ((-1074 . -611) 67425) ((-1055 . -611) 67407) ((-989 . -102) T) ((-858 . -102) T) ((-795 . -411) 67371) ((-40 . -131) T) ((-695 . -363) T) ((-697 . -722) T) ((-697 . -790) T) ((-697 . -787) T) ((-212 . -891) T) ((-580 . -1106) T) ((-564 . -1106) T) ((-495 . -1106) T) ((-359 . -611) 67353) ((-353 . -611) 67335) ((-345 . -611) 67317) ((-66 . -396) T) ((-66 . -395) T) ((-108 . -612) 67247) ((-108 . -611) 67189) ((-211 . -891) T) ((-954 . -151) 67173) ((-767 . -131) T) ((-666 . -614) 67091) ((-134 . -722) T) ((-116 . -722) T) ((-1243 . -35) 67057) ((-1049 . -489) 67041) ((-580 . -23) T) ((-564 . -23) T) ((-495 . -23) T) ((-1222 . -95) 67007) ((-1222 . -35) 66973) ((-1166 . -102) T) ((-1119 . -102) T) ((-850 . -102) T) ((-227 . -489) 66957) ((-1281 . -111) 66936) ((-1279 . -111) 66915) ((-44 . -1051) 66899) ((-1232 . -1235) 66883) ((-851 . -848) 66867) ((-1172 . -290) 66846) ((-110 . -286) 66821) ((-1281 . -614) 66767) ((-128 . -151) 66749) ((-1136 . -896) 66708) ((-44 . -111) 66687) ((-1214 . -1094) T) ((-1175 . -1254) T) ((-1160 . -490) 66668) ((-1160 . -611) 66634) ((-666 . -1045) T) ((-1152 . -612) NIL) ((-1152 . -611) 66616) ((-1057 . -608) 66591) ((-1057 . -1094) T) ((-990 . -490) 66572) ((-74 . -441) T) ((-74 . -395) T) ((-990 . -611) 66538) ((-152 . -1051) 66522) ((-666 . -233) 66501) ((-571 . -554) 66485) ((-355 . -147) 66464) ((-355 . -145) 66415) ((-352 . -147) 66394) ((-352 . -145) 66345) ((-344 . -147) 66324) ((-344 . -145) 66275) ((-264 . -145) 66254) ((-264 . -147) 66233) ((-251 . -38) 66203) ((-247 . -147) 66182) ((-117 . -363) T) ((-247 . -145) 66161) ((-250 . -38) 66131) ((-152 . -111) 66110) ((-999 . -1034) 65998) ((-1161 . -844) NIL) ((-690 . -1213) T) ((-795 . -1052) T) ((-695 . -1106) T) ((-1281 . -1045) T) ((-1279 . -614) 65927) ((-1279 . -1045) T) ((-1150 . -1209) T) ((-999 . -377) 65904) ((-906 . -145) T) ((-906 . -147) 65886) ((-866 . -131) T) ((-811 . -1051) 65783) ((-690 . -556) T) ((-695 . -23) T) ((-643 . -611) 65715) ((-643 . -612) 65676) ((-630 . -612) NIL) ((-630 . -611) 65658) ((-487 . -172) T) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-474 . -1197) 65624) ((-474 . -1194) 65590) ((-274 . -611) 65572) ((-273 . -611) 65554) ((-272 . -611) 65536) ((-271 . -611) 65518) ((-270 . -611) 65500) ((-500 . -647) 65482) ((-269 . -611) 65464) ((-339 . -722) T) ((-268 . -611) 65446) ((-110 . -19) 65428) ((-174 . -722) T) ((-500 . -373) 65410) ((-212 . -611) 65392) ((-520 . -1143) 65376) ((-500 . -123) T) ((-110 . -602) 65351) ((-211 . -611) 65333) ((-474 . -35) 65299) ((-474 . -95) 65265) ((-209 . -611) 65247) ((-208 . -611) 65229) ((-207 . -611) 65211) ((-206 . -611) 65193) ((-203 . -611) 65175) ((-202 . -611) 65157) ((-201 . -611) 65139) ((-200 . -611) 65121) ((-199 . -611) 65103) ((-198 . -611) 65085) ((-197 . -611) 65067) ((-536 . -1097) 65019) ((-196 . -611) 65001) ((-195 . -611) 64983) ((-45 . -489) 64920) ((-194 . -611) 64902) ((-193 . -611) 64884) ((-152 . -614) 64853) ((-1109 . -102) T) ((-811 . -111) 64743) ((-641 . -102) 64693) ((-482 . -286) 64670) ((-1107 . -611) 64401) ((-1095 . -1094) T) ((-1042 . -1209) T) ((-1282 . -1034) 64385) ((-621 . -1106) T) ((-1166 . -309) 64372) ((-1129 . -1094) T) ((-1119 . -309) 64359) ((-1090 . -1077) T) ((-1084 . -1077) T) ((-1067 . -1077) T) ((-1060 . -1077) T) ((-1032 . -1077) T) ((-1015 . -1077) T) ((-117 . -1106) T) ((-815 . -102) T) ((-624 . -1077) T) ((-621 . -23) T) ((-1144 . -514) 64151) ((-483 . -1077) T) ((-386 . -102) T) ((-324 . -102) T) ((-218 . -1077) T) ((-959 . -1094) T) ((-152 . -1045) T) ((-727 . -411) 64135) ((-117 . -23) T) ((-999 . -896) 64087) ((-731 . -1094) T) ((-711 . -1094) T) ((-453 . -1094) T) ((-407 . -1209) T) ((-316 . -430) 64071) ((-591 . -93) T) ((-1023 . -612) 64032) ((-1020 . -1213) T) ((-225 . -102) T) ((-1023 . -611) 63994) ((-812 . -231) 63978) ((-811 . -614) 63708) ((-1020 . -556) T) ((-829 . -644) 63681) ((-354 . -1213) T) ((-476 . -611) 63643) ((-476 . -612) 63604) ((-463 . -612) 63565) ((-463 . -611) 63527) ((-407 . -880) 63511) ((-319 . -1051) 63346) ((-407 . -882) 63271) ((-839 . -1034) 63167) ((-487 . -514) NIL) ((-482 . -602) 63144) ((-354 . -556) T) ((-217 . -514) NIL) ((-868 . -452) T) ((-418 . -1094) T) ((-407 . -1034) 63008) ((-319 . -111) 62829) ((-690 . -363) T) ((-225 . -284) T) ((-1206 . -614) 62806) ((-48 . -1213) T) ((-811 . -1045) 62736) ((-580 . -131) T) ((-564 . -131) T) ((-495 . -131) T) ((-1166 . -1145) 62714) ((-48 . -556) T) ((-1153 . -288) 62690) ((-1056 . -102) T) ((-948 . -102) T) ((-316 . -27) 62669) ((-811 . -233) 62621) ((-249 . -831) 62603) ((-240 . -844) 62582) ((-187 . -831) 62564) ((-709 . -102) T) ((-295 . -489) 62501) ((-481 . -102) T) ((-727 . -1052) T) ((-610 . -611) 62483) ((-610 . -612) 62344) ((-407 . -377) 62328) ((-407 . -338) 62312) ((-319 . -614) 62138) ((-1166 . -38) 61967) ((-1119 . -38) 61816) ((-850 . -38) 61786) ((-390 . -644) 61770) ((-641 . -309) 61708) ((-959 . -713) 61605) ((-731 . -713) 61575) ((-222 . -107) 61559) ((-45 . -286) 61484) ((-619 . -644) 61458) ((-312 . -1094) T) ((-289 . -1051) 61445) ((-110 . -611) 61427) ((-110 . -612) 61409) ((-453 . -713) 61379) ((-812 . -253) 61318) ((-685 . -1094) 61296) ((-550 . -1094) T) ((-1168 . -1052) T) ((-1167 . -1052) T) ((-96 . -490) 61277) ((-1161 . -1052) T) ((-289 . -111) 61262) ((-1120 . -1052) T) ((-550 . -608) 61241) ((-96 . -611) 61207) ((-1000 . -844) T) ((-227 . -683) 61165) ((-690 . -1106) T) ((-1203 . -736) 61141) ((-1020 . -363) T) ((-834 . -831) 61123) ((-319 . -1045) T) ((-343 . -25) T) ((-343 . -21) T) ((-407 . -896) 61082) ((-68 . -1209) T) ((-829 . -790) 61061) ((-418 . -713) 61035) ((-795 . -1094) T) ((-829 . -787) 61014) ((-695 . -131) T) ((-708 . -916) 60993) ((-690 . -23) T) ((-487 . -290) T) ((-829 . -722) 60972) ((-319 . -233) 60924) ((-319 . -243) 60903) ((-217 . -290) T) ((-129 . -368) T) ((-1243 . -452) 60882) ((-1222 . -452) 60861) ((-354 . -329) 60838) ((-354 . -363) T) ((-1134 . -611) 60820) ((-45 . -1247) 60770) ((-867 . -102) T) ((-641 . -282) 60754) ((-695 . -1054) T) ((-1270 . -102) T) ((-1269 . -102) T) ((-477 . -644) 60719) ((-468 . -1094) T) ((-45 . -602) 60644) ((-1152 . -288) 60619) ((-289 . -614) 60591) ((-40 . -637) 60530) ((-48 . -363) T) ((-1100 . -611) 60512) ((-630 . -288) 60487) ((-482 . -611) 60218) ((-240 . -411) 60187) ((-948 . -309) 60174) ((-65 . -1209) T) ((-1057 . -514) 60018) ((-621 . -131) T) ((-546 . -102) T) ((-481 . -309) 60005) ((-604 . -1094) T) ((-117 . -131) T) ((-667 . -1094) T) ((-289 . -1045) T) ((-180 . -1094) T) ((-161 . -1094) T) ((-156 . -1094) T) ((-154 . -1094) T) ((-453 . -757) T) ((-31 . -1077) T) ((-959 . -172) 59956) ((-966 . -93) T) ((-1074 . -1051) 59866) ((-619 . -790) 59845) ((-592 . -1094) T) ((-619 . -787) 59824) ((-619 . -722) T) ((-295 . -286) 59803) ((-294 . -1209) T) ((-1049 . -611) 59765) ((-1049 . -612) 59726) ((-1020 . -1106) T) ((-169 . -102) T) ((-275 . -846) T) ((-1159 . -1094) T) ((-814 . -611) 59708) ((-1107 . -288) 59685) ((-1096 . -229) 59669) ((-999 . -307) T) ((-795 . -713) 59653) ((-359 . -1051) 59605) ((-354 . -1106) T) ((-353 . -1051) 59557) ((-414 . -611) 59539) ((-385 . -611) 59521) ((-345 . -1051) 59473) ((-227 . -611) 59405) ((-1074 . -111) 59301) ((-1020 . -23) T) ((-108 . -1051) 59251) ((-894 . -102) T) ((-837 . -102) T) ((-804 . -102) T) ((-765 . -102) T) ((-673 . -102) T) ((-474 . -452) 59230) ((-418 . -172) T) ((-359 . -111) 59168) ((-353 . -111) 59106) ((-345 . -111) 59044) ((-251 . -231) 59013) ((-250 . -231) 58982) ((-354 . -23) T) ((-71 . -1209) T) ((-225 . -38) 58947) ((-108 . -111) 58881) ((-40 . -25) T) ((-40 . -21) T) ((-666 . -716) T) ((-169 . -284) 58859) ((-48 . -1106) T) ((-917 . -25) T) ((-767 . -25) T) ((-1144 . -489) 58796) ((-485 . -1094) T) ((-1283 . -644) 58770) ((-1232 . -102) T) ((-1056 . -1145) T) ((-851 . -102) T) ((-240 . -1052) 58700) ((-960 . -788) 58653) ((-960 . -791) 58606) ((-381 . -644) 58590) ((-48 . -23) T) ((-811 . -791) 58541) ((-811 . -788) 58492) ((-548 . -368) T) ((-295 . -602) 58471) ((-477 . -722) T) ((-571 . -102) T) ((-1074 . -614) 58289) ((-249 . -185) T) ((-187 . -185) T) ((-867 . -309) 58246) ((-649 . -286) 58225) ((-112 . -657) T) ((-359 . -614) 58162) ((-353 . -614) 58099) ((-345 . -614) 58036) ((-76 . -1209) T) ((-108 . -614) 57986) ((-1056 . -38) 57973) ((-660 . -374) 57952) ((-948 . -38) 57801) ((-727 . -1094) T) ((-481 . -38) 57650) ((-86 . -1209) T) ((-591 . -490) 57631) ((-571 . -284) T) ((-1223 . -844) NIL) ((-591 . -611) 57597) ((-1168 . -1094) T) ((-1167 . -1094) T) ((-1074 . -1045) T) ((-351 . -1034) 57574) ((-813 . -490) 57558) ((-1000 . -1052) T) ((-45 . -611) 57540) ((-45 . -612) NIL) ((-910 . -1052) T) ((-813 . -611) 57509) ((-1161 . -1094) T) ((-1141 . -102) 57487) ((-1074 . -243) 57438) ((-427 . -1052) T) ((-359 . -1045) T) ((-365 . -364) 57415) ((-353 . -1045) T) ((-345 . -1045) T) ((-251 . -238) 57394) ((-250 . -238) 57373) ((-1074 . -233) 57298) ((-1120 . -1094) T) ((-294 . -896) 57257) ((-108 . -1045) T) ((-690 . -131) T) ((-418 . -514) 57099) ((-359 . -233) 57078) ((-359 . -243) T) ((-44 . -716) T) ((-353 . -233) 57057) ((-353 . -243) T) ((-345 . -233) 57036) ((-345 . -243) T) ((-1160 . -614) 57017) ((-169 . -309) 56982) ((-108 . -243) T) ((-108 . -233) T) ((-990 . -614) 56963) ((-319 . -788) T) ((-866 . -21) T) ((-866 . -25) T) ((-407 . -307) T) ((-500 . -34) T) ((-110 . -288) 56938) ((-1107 . -1051) 56835) ((-867 . -1145) NIL) ((-330 . -611) 56817) ((-407 . -1018) 56795) ((-1107 . -111) 56685) ((-687 . -1254) T) ((-436 . -1094) T) ((-1283 . -722) T) ((-63 . -611) 56667) ((-867 . -38) 56612) ((-523 . -1209) T) ((-600 . -151) 56596) ((-512 . -611) 56578) ((-1232 . -309) 56565) ((-727 . -713) 56414) ((-531 . -789) T) ((-531 . -790) T) ((-564 . -637) 56396) ((-495 . -637) 56356) ((-355 . -452) T) ((-352 . -452) T) ((-344 . -452) T) ((-264 . -452) 56307) ((-525 . -1094) T) ((-520 . -1094) 56257) ((-247 . -452) 56208) ((-1144 . -286) 56187) ((-1172 . -611) 56169) ((-685 . -514) 56102) ((-959 . -290) 56081) ((-550 . -514) 55873) ((-1271 . -611) 55842) ((-1166 . -231) 55826) ((-1107 . -614) 55556) ((-169 . -1145) 55535) ((-1271 . -490) 55519) ((-1168 . -713) 55416) ((-1167 . -713) 55257) ((-888 . -102) T) ((-1161 . -713) 55053) ((-1120 . -713) 54950) ((-1150 . -670) 54934) ((-355 . -402) 54885) ((-352 . -402) 54836) ((-344 . -402) 54787) ((-1020 . -131) T) ((-795 . -514) 54699) ((-295 . -612) NIL) ((-295 . -611) 54681) ((-906 . -452) T) ((-960 . -368) 54634) ((-811 . -368) 54613) ((-510 . -509) 54592) ((-508 . -509) 54571) ((-487 . -286) NIL) ((-482 . -288) 54548) ((-418 . -290) T) ((-354 . -131) T) ((-217 . -286) NIL) ((-690 . -493) NIL) ((-99 . -1106) T) ((-169 . -38) 54376) ((-1243 . -969) 54338) ((-1141 . -309) 54276) ((-1222 . -969) 54245) ((-906 . -402) T) ((-1107 . -1045) 54175) ((-1245 . -556) T) ((-1144 . -602) 54154) ((-112 . -846) T) ((-1057 . -489) 54085) ((-580 . -21) T) ((-580 . -25) T) ((-564 . -21) T) ((-564 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-1232 . -1145) 54063) ((-1107 . -233) 54015) ((-48 . -131) T) ((-1190 . -102) T) ((-240 . -1094) 53805) ((-867 . -400) 53782) ((-1082 . -102) T) ((-1070 . -102) T) ((-606 . -102) T) ((-475 . -102) T) ((-1232 . -38) 53611) ((-851 . -38) 53581) ((-727 . -172) 53492) ((-649 . -611) 53474) ((-642 . -1077) T) ((-571 . -38) 53461) ((-966 . -490) 53442) ((-966 . -611) 53408) ((-954 . -102) 53358) ((-860 . -611) 53340) ((-860 . -612) 53262) ((-592 . -514) NIL) ((-1251 . -1052) T) ((-1244 . -1052) T) ((-1223 . -1052) T) ((-1287 . -1106) T) ((-1177 . -102) T) ((-595 . -1052) T) ((-594 . -1052) T) ((-1176 . -102) T) ((-1168 . -172) 53213) ((-1167 . -172) 53144) ((-1161 . -172) 53075) ((-1120 . -172) 53026) ((-1000 . -1094) T) ((-967 . -1094) T) ((-910 . -1094) T) ((-1203 . -147) 53005) ((-795 . -793) 52989) ((-695 . -25) T) ((-695 . -21) T) ((-117 . -637) 52966) ((-697 . -882) 52948) ((-427 . -1094) T) ((-316 . -1213) 52927) ((-313 . -1213) T) ((-169 . -400) 52911) ((-1203 . -145) 52890) ((-474 . -969) 52852) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -611) 52834) ((-108 . -791) T) ((-108 . -788) T) ((-697 . -1034) 52816) ((-316 . -556) 52795) ((-313 . -556) T) ((-1287 . -23) T) ((-134 . -1034) 52777) ((-96 . -614) 52758) ((-482 . -1051) 52655) ((-45 . -288) 52580) ((-240 . -713) 52522) ((-517 . -102) T) ((-482 . -111) 52412) ((-1086 . -102) 52390) ((-1030 . -102) T) ((-641 . -824) 52369) ((-727 . -514) 52312) ((-1049 . -1051) 52296) ((-1129 . -93) T) ((-1057 . -286) 52271) ((-621 . -21) T) ((-621 . -25) T) ((-524 . -1094) T) ((-361 . -102) T) ((-322 . -102) T) ((-666 . -644) 52245) ((-385 . -1051) 52229) ((-1049 . -111) 52208) ((-812 . -411) 52192) ((-117 . -25) T) ((-89 . -611) 52174) ((-117 . -21) T) ((-606 . -309) 51969) ((-475 . -309) 51773) ((-1144 . -612) NIL) ((-385 . -111) 51752) ((-379 . -102) T) ((-214 . -611) 51734) ((-1144 . -611) 51716) ((-1161 . -514) 51485) ((-1000 . -713) 51435) ((-1120 . -514) 51405) ((-910 . -713) 51357) ((-482 . -614) 51087) ((-351 . -307) T) ((-1182 . -151) 51037) ((-954 . -309) 50975) ((-832 . -102) T) ((-427 . -713) 50959) ((-225 . -824) T) ((-823 . -102) T) ((-821 . -102) T) ((-479 . -151) 50909) ((-1243 . -1242) 50888) ((-1114 . -1213) T) ((-339 . -1034) 50855) ((-1243 . -1237) 50825) ((-1243 . -1240) 50809) ((-1222 . -1221) 50788) ((-80 . -611) 50770) ((-901 . -611) 50752) ((-1222 . -1237) 50729) ((-1114 . -556) T) ((-917 . -846) T) ((-767 . -846) T) ((-487 . -612) 50659) ((-487 . -611) 50600) ((-379 . -284) T) ((-668 . -846) T) ((-1222 . -1219) 50584) ((-1245 . -1106) T) ((-217 . -612) 50514) ((-217 . -611) 50455) ((-1281 . -644) 50429) ((-1057 . -602) 50404) ((-814 . -614) 50388) ((-59 . -151) 50372) ((-516 . -151) 50356) ((-496 . -151) 50340) ((-359 . -1278) 50324) ((-353 . -1278) 50308) ((-345 . -1278) 50292) ((-316 . -363) 50271) ((-313 . -363) T) ((-482 . -1045) 50201) ((-690 . -637) 50183) ((-1279 . -644) 50157) ((-128 . -309) NIL) ((-1245 . -23) T) ((-685 . -489) 50141) ((-64 . -611) 50123) ((-1107 . -791) 50074) ((-1107 . -788) 50025) ((-550 . -489) 49962) ((-666 . -34) T) ((-482 . -233) 49914) ((-295 . -288) 49893) ((-240 . -172) 49872) ((-812 . -1052) T) ((-44 . -644) 49830) ((-1074 . -368) 49781) ((-727 . -290) 49712) ((-520 . -514) 49645) ((-813 . -1051) 49596) ((-1081 . -145) 49575) ((-549 . -611) 49557) ((-359 . -368) 49536) ((-353 . -368) 49515) ((-345 . -368) 49494) ((-1081 . -147) 49473) ((-867 . -231) 49450) ((-813 . -111) 49392) ((-778 . -145) 49371) ((-778 . -147) 49350) ((-264 . -945) 49317) ((-251 . -844) 49296) ((-247 . -945) 49241) ((-250 . -844) 49220) ((-776 . -145) 49199) ((-776 . -147) 49178) ((-152 . -644) 49152) ((-579 . -1094) T) ((-454 . -147) 49131) ((-454 . -145) 49110) ((-666 . -722) T) ((-819 . -611) 49092) ((-1251 . -1094) T) ((-1244 . -1094) T) ((-1223 . -1094) T) ((-1203 . -1197) 49058) ((-1203 . -1194) 49024) ((-1168 . -290) 49003) ((-1167 . -290) 48954) ((-1161 . -290) 48905) ((-1120 . -290) 48884) ((-339 . -896) 48865) ((-1000 . -172) T) ((-910 . -172) T) ((-595 . -1094) T) ((-594 . -1094) T) ((-690 . -21) T) ((-690 . -25) T) ((-474 . -1240) 48849) ((-474 . -1237) 48819) ((-418 . -286) 48747) ((-547 . -846) T) ((-316 . -1106) 48596) ((-313 . -1106) T) ((-1203 . -35) 48562) ((-1203 . -95) 48528) ((-84 . -611) 48510) ((-91 . -102) 48488) ((-1287 . -131) T) ((-591 . -614) 48469) ((-581 . -145) T) ((-581 . -147) 48451) ((-518 . -147) 48433) ((-518 . -145) T) ((-316 . -23) 48285) ((-40 . -342) 48259) ((-313 . -23) T) ((-813 . -614) 48173) ((-1152 . -647) 48155) ((-1274 . -1052) T) ((-1152 . -373) 48137) ((-811 . -644) 47985) ((-1090 . -102) T) ((-1084 . -102) T) ((-1067 . -102) T) ((-169 . -231) 47969) ((-1060 . -102) T) ((-1032 . -102) T) ((-1015 . -102) T) ((-592 . -489) 47951) ((-624 . -102) T) ((-240 . -514) 47884) ((-483 . -102) T) ((-1281 . -722) T) ((-1279 . -722) T) ((-218 . -102) T) ((-1172 . -1051) 47767) ((-1172 . -111) 47636) ((-857 . -173) T) ((-813 . -1045) T) ((-677 . -1077) T) ((-672 . -1077) T) ((-515 . -102) T) ((-510 . -102) T) ((-48 . -637) 47596) ((-508 . -102) T) ((-478 . -1077) T) ((-1271 . -1051) 47566) ((-138 . -1077) T) ((-137 . -1077) T) ((-133 . -1077) T) ((-1030 . -38) 47550) ((-813 . -233) T) ((-813 . -243) 47529) ((-1271 . -111) 47494) ((-1251 . -713) 47391) ((-1244 . -713) 47232) ((-550 . -286) 47211) ((-1232 . -231) 47195) ((-1214 . -611) 47177) ((-604 . -93) T) ((-1057 . -612) NIL) ((-1057 . -611) 47159) ((-667 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1223 . -713) 46955) ((-999 . -916) T) ((-152 . -722) T) ((-1107 . -368) 46934) ((-1000 . -514) NIL) ((-251 . -411) 46903) ((-250 . -411) 46872) ((-1020 . -25) T) ((-1020 . -21) T) ((-595 . -713) 46845) ((-594 . -713) 46742) ((-795 . -286) 46700) ((-126 . -102) 46678) ((-829 . -1034) 46574) ((-169 . -824) 46553) ((-319 . -644) 46450) ((-811 . -34) T) ((-710 . -102) T) ((-1172 . -614) 46303) ((-1114 . -1106) T) ((-1022 . -1209) T) ((-379 . -38) 46268) ((-354 . -25) T) ((-354 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-355 . -1266) 46252) ((-352 . -1266) 46236) ((-344 . -1266) 46220) ((-169 . -349) 46199) ((-564 . -846) T) ((-1114 . -23) T) ((-87 . -611) 46181) ((-697 . -307) T) ((-832 . -38) 46151) ((-823 . -38) 46121) ((-1271 . -614) 46063) ((-1245 . -131) T) ((-1144 . -288) 46042) ((-960 . -789) 45995) ((-960 . -790) 45948) ((-811 . -787) 45927) ((-116 . -307) T) ((-91 . -309) 45865) ((-671 . -34) T) ((-550 . -602) 45844) ((-48 . -25) T) ((-48 . -21) T) ((-811 . -790) 45795) ((-811 . -789) 45774) ((-697 . -1018) T) ((-649 . -1051) 45758) ((-960 . -722) 45657) ((-811 . -722) 45567) ((-960 . -473) 45520) ((-482 . -791) 45471) ((-482 . -788) 45422) ((-906 . -1266) 45409) ((-1172 . -1045) T) ((-649 . -111) 45388) ((-1172 . -326) 45365) ((-1195 . -102) 45343) ((-1095 . -611) 45325) ((-697 . -545) T) ((-812 . -1094) T) ((-1271 . -1045) T) ((-1129 . -490) 45306) ((-1215 . -102) T) ((-413 . -1094) T) ((-1129 . -611) 45272) ((-251 . -1052) 45202) ((-250 . -1052) 45132) ((-834 . -102) T) ((-289 . -644) 45119) ((-592 . -286) 45094) ((-685 . -683) 45052) ((-959 . -611) 45034) ((-868 . -102) T) ((-731 . -611) 45016) ((-711 . -611) 44998) ((-1251 . -172) 44949) ((-1244 . -172) 44880) ((-1223 . -172) 44811) ((-695 . -846) T) ((-1000 . -290) T) ((-453 . -611) 44793) ((-625 . -722) T) ((-60 . -1094) 44771) ((-245 . -151) 44755) ((-910 . -290) T) ((-1020 . -1008) T) ((-625 . -473) T) ((-708 . -1213) 44734) ((-649 . -614) 44652) ((-595 . -172) 44631) ((-594 . -172) 44582) ((-1259 . -846) 44561) ((-708 . -556) 44472) ((-407 . -916) T) ((-407 . -816) 44451) ((-319 . -790) T) ((-966 . -614) 44432) ((-319 . -722) T) ((-418 . -611) 44414) ((-418 . -612) 44321) ((-641 . -1143) 44305) ((-110 . -647) 44287) ((-174 . -307) T) ((-126 . -309) 44225) ((-110 . -373) 44207) ((-398 . -1209) T) ((-316 . -131) 44078) ((-313 . -131) T) ((-69 . -395) T) ((-110 . -123) T) ((-520 . -489) 44062) ((-650 . -1106) T) ((-592 . -19) 44044) ((-61 . -441) T) ((-61 . -395) T) ((-820 . -1094) T) ((-592 . -602) 44019) ((-477 . -1034) 43979) ((-649 . -1045) T) ((-650 . -23) T) ((-1274 . -1094) T) ((-31 . -102) T) ((-812 . -713) 43828) ((-577 . -856) T) ((-117 . -846) NIL) ((-1166 . -411) 43812) ((-1119 . -411) 43796) ((-850 . -411) 43780) ((-869 . -102) 43731) ((-1243 . -102) T) ((-1223 . -514) 43500) ((-1222 . -102) T) ((-1195 . -309) 43438) ((-525 . -93) T) ((-1168 . -286) 43423) ((-312 . -611) 43405) ((-1167 . -286) 43390) ((-1096 . -1094) T) ((-1074 . -644) 43300) ((-685 . -611) 43232) ((-289 . -722) T) ((-108 . -905) NIL) ((-685 . -612) 43193) ((-599 . -611) 43175) ((-577 . -611) 43157) ((-550 . -612) NIL) ((-550 . -611) 43139) ((-529 . -611) 43121) ((-1161 . -286) 42969) ((-487 . -1051) 42919) ((-707 . -452) T) ((-511 . -509) 42898) ((-507 . -509) 42877) ((-217 . -1051) 42827) ((-359 . -644) 42779) ((-353 . -644) 42731) ((-225 . -844) T) ((-345 . -644) 42683) ((-600 . -102) 42633) ((-482 . -368) 42612) ((-108 . -644) 42562) ((-487 . -111) 42496) ((-240 . -489) 42480) ((-343 . -147) 42462) ((-343 . -145) T) ((-169 . -370) 42433) ((-939 . -1257) 42417) ((-217 . -111) 42351) ((-868 . -309) 42316) ((-939 . -1094) 42266) ((-795 . -612) 42227) ((-795 . -611) 42209) ((-714 . -102) T) ((-331 . -1094) T) ((-214 . -614) 42186) ((-1114 . -131) T) ((-710 . -38) 42156) ((-316 . -493) 42135) ((-500 . -1209) T) ((-1243 . -284) 42101) ((-1222 . -284) 42067) ((-327 . -151) 42051) ((-439 . -1094) T) ((-1057 . -288) 42026) ((-1274 . -713) 41996) ((-1153 . -34) T) ((-1283 . -1034) 41973) ((-468 . -611) 41955) ((-484 . -34) T) ((-381 . -1034) 41939) ((-1166 . -1052) T) ((-1119 . -1052) T) ((-850 . -1052) T) ((-1056 . -844) T) ((-487 . -614) 41889) ((-217 . -614) 41839) ((-812 . -172) 41750) ((-520 . -286) 41727) ((-1251 . -290) 41706) ((-1190 . -364) 41680) ((-1082 . -266) 41664) ((-667 . -490) 41645) ((-667 . -611) 41611) ((-604 . -490) 41592) ((-117 . -988) 41569) ((-604 . -611) 41519) ((-474 . -102) T) ((-180 . -490) 41500) ((-180 . -611) 41466) ((-161 . -490) 41447) ((-156 . -490) 41428) ((-154 . -490) 41409) ((-161 . -611) 41375) ((-156 . -611) 41341) ((-365 . -1094) T) ((-251 . -1094) T) ((-250 . -1094) T) ((-154 . -611) 41307) ((-1244 . -290) 41258) ((-1223 . -290) 41209) ((-868 . -1145) 41187) ((-1168 . -998) 41153) ((-606 . -364) 41093) ((-1167 . -998) 41059) ((-606 . -229) 41006) ((-592 . -611) 40988) ((-592 . -612) NIL) ((-690 . -846) T) ((-475 . -229) 40938) ((-487 . -1045) T) ((-1161 . -998) 40904) ((-88 . -440) T) ((-88 . -395) T) ((-217 . -1045) T) ((-1120 . -998) 40870) ((-1074 . -722) T) ((-708 . -1106) T) ((-595 . -290) 40849) ((-594 . -290) 40828) ((-487 . -243) T) ((-487 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1159 . -611) 40810) ((-868 . -38) 40762) ((-359 . -722) T) ((-353 . -722) T) ((-345 . -722) T) ((-108 . -790) T) ((-108 . -787) T) ((-708 . -23) T) ((-108 . -722) T) ((-520 . -1247) 40746) ((-1287 . -25) T) ((-474 . -284) 40712) ((-1287 . -21) T) ((-1222 . -309) 40651) ((-1170 . -102) T) ((-40 . -145) 40623) ((-40 . -147) 40595) ((-520 . -602) 40572) ((-1107 . -644) 40420) ((-600 . -309) 40358) ((-45 . -647) 40308) ((-45 . -662) 40258) ((-45 . -373) 40208) ((-1152 . -34) T) ((-867 . -844) NIL) ((-650 . -131) T) ((-485 . -611) 40190) ((-240 . -286) 40167) ((-186 . -1094) T) ((-643 . -34) T) ((-630 . -34) T) ((-1081 . -452) 40118) ((-812 . -514) 39992) ((-778 . -452) 39923) ((-776 . -452) 39874) ((-454 . -452) 39825) ((-948 . -411) 39809) ((-727 . -611) 39791) ((-251 . -713) 39733) ((-250 . -713) 39675) ((-727 . -612) 39536) ((-481 . -411) 39520) ((-339 . -302) T) ((-524 . -93) T) ((-351 . -916) T) ((-996 . -102) 39498) ((-1020 . -846) T) ((-60 . -514) 39431) ((-1222 . -1145) 39383) ((-1000 . -286) NIL) ((-225 . -1052) T) ((-379 . -824) T) ((-1107 . -34) T) ((-581 . -452) T) ((-518 . -452) T) ((-1226 . -1087) 39367) ((-1226 . -1094) 39345) ((-240 . -602) 39322) ((-1226 . -1089) 39279) ((-1168 . -611) 39261) ((-1167 . -611) 39243) ((-1161 . -611) 39225) ((-1161 . -612) NIL) ((-1120 . -611) 39207) ((-868 . -400) 39191) ((-536 . -102) T) ((-1243 . -38) 39032) ((-1222 . -38) 38846) ((-866 . -147) T) ((-581 . -402) T) ((-518 . -402) T) ((-1255 . -102) T) ((-1245 . -21) T) ((-1245 . -25) T) ((-1107 . -787) 38825) ((-1107 . -790) 38776) ((-1107 . -789) 38755) ((-989 . -1094) T) ((-1023 . -34) T) ((-858 . -1094) T) ((-1107 . -722) 38665) ((-660 . -102) T) ((-642 . -102) T) ((-550 . -288) 38644) ((-1182 . -102) T) ((-476 . -34) T) ((-463 . -34) T) ((-355 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-264 . -102) T) ((-247 . -102) T) ((-477 . -307) T) ((-1056 . -1052) T) ((-948 . -1052) T) ((-316 . -637) 38550) ((-313 . -637) 38511) ((-481 . -1052) T) ((-479 . -102) T) ((-436 . -611) 38493) ((-1166 . -1094) T) ((-1119 . -1094) T) ((-850 . -1094) T) ((-1135 . -102) T) ((-812 . -290) 38424) ((-959 . -1051) 38307) ((-477 . -1018) T) ((-731 . -1051) 38277) ((-453 . -1051) 38247) ((-1141 . -1115) 38231) ((-1096 . -514) 38164) ((-959 . -111) 38033) ((-906 . -102) T) ((-731 . -111) 37998) ((-525 . -490) 37979) ((-525 . -611) 37945) ((-59 . -102) 37895) ((-520 . -612) 37856) ((-520 . -611) 37768) ((-519 . -102) 37746) ((-516 . -102) 37696) ((-497 . -102) 37674) ((-496 . -102) 37624) ((-453 . -111) 37587) ((-251 . -172) 37566) ((-250 . -172) 37545) ((-418 . -1051) 37519) ((-1203 . -969) 37481) ((-995 . -1106) T) ((-1129 . -614) 37462) ((-939 . -514) 37395) ((-487 . -791) T) ((-474 . -38) 37236) ((-418 . -111) 37203) ((-487 . -788) T) ((-996 . -309) 37141) ((-217 . -791) T) ((-217 . -788) T) ((-995 . -23) T) ((-708 . -131) T) ((-1222 . -400) 37111) ((-316 . -25) 36963) ((-169 . -411) 36947) ((-316 . -21) 36818) ((-313 . -25) T) ((-313 . -21) T) ((-860 . -368) T) ((-959 . -614) 36671) ((-110 . -34) T) ((-731 . -614) 36627) ((-711 . -614) 36609) ((-482 . -644) 36457) ((-867 . -1052) T) ((-592 . -288) 36432) ((-580 . -147) T) ((-564 . -147) T) ((-495 . -147) T) ((-1166 . -713) 36261) ((-1119 . -713) 36110) ((-1114 . -637) 36092) ((-850 . -713) 36062) ((-666 . -1209) T) ((-1 . -102) T) ((-418 . -614) 35970) ((-240 . -611) 35701) ((-1109 . -1094) T) ((-1232 . -411) 35685) ((-1182 . -309) 35489) ((-959 . -1045) T) ((-731 . -1045) T) ((-711 . -1045) T) ((-641 . -1094) 35439) ((-1049 . -644) 35423) ((-851 . -411) 35407) ((-511 . -102) T) ((-507 . -102) T) ((-247 . -309) 35394) ((-264 . -309) 35381) ((-959 . -326) 35360) ((-385 . -644) 35344) ((-479 . -309) 35148) ((-251 . -514) 35081) ((-666 . -1034) 34977) ((-250 . -514) 34910) ((-1135 . -309) 34836) ((-815 . -1094) T) ((-795 . -1051) 34820) ((-1251 . -286) 34805) ((-1244 . -286) 34790) ((-1223 . -286) 34638) ((-386 . -1094) T) ((-324 . -1094) T) ((-418 . -1045) T) ((-169 . -1052) T) ((-59 . -309) 34576) ((-795 . -111) 34555) ((-594 . -286) 34540) ((-519 . -309) 34478) ((-516 . -309) 34416) ((-497 . -309) 34354) ((-496 . -309) 34292) ((-418 . -233) 34271) ((-482 . -34) T) ((-1000 . -612) 34201) ((-225 . -1094) T) ((-1000 . -611) 34161) ((-967 . -611) 34121) ((-967 . -612) 34096) ((-910 . -611) 34078) ((-695 . -147) T) ((-697 . -916) T) ((-697 . -816) T) ((-427 . -611) 34060) ((-1114 . -21) T) ((-1114 . -25) T) ((-666 . -377) 34044) ((-116 . -916) T) ((-868 . -231) 34028) ((-78 . -1209) T) ((-126 . -125) 34012) ((-1049 . -34) T) ((-1281 . -1034) 33986) ((-1279 . -1034) 33943) ((-1232 . -1052) T) ((-851 . -1052) T) ((-482 . -787) 33922) ((-355 . -1145) 33901) ((-352 . -1145) 33880) ((-344 . -1145) 33859) ((-482 . -790) 33810) ((-482 . -789) 33789) ((-227 . -34) T) ((-482 . -722) 33699) ((-795 . -614) 33547) ((-60 . -489) 33531) ((-571 . -1052) T) ((-1166 . -172) 33422) ((-1119 . -172) 33333) ((-1056 . -1094) T) ((-1081 . -945) 33278) ((-948 . -1094) T) ((-813 . -644) 33229) ((-778 . -945) 33198) ((-709 . -1094) T) ((-776 . -945) 33165) ((-516 . -282) 33149) ((-666 . -896) 33108) ((-481 . -1094) T) ((-454 . -945) 33075) ((-79 . -1209) T) ((-355 . -38) 33040) ((-352 . -38) 33005) ((-344 . -38) 32970) ((-264 . -38) 32819) ((-247 . -38) 32668) ((-906 . -1145) T) ((-524 . -490) 32649) ((-621 . -147) 32628) ((-621 . -145) 32607) ((-524 . -611) 32573) ((-117 . -147) T) ((-117 . -145) NIL) ((-414 . -722) T) ((-795 . -1045) T) ((-343 . -452) T) ((-1251 . -998) 32539) ((-1244 . -998) 32505) ((-1223 . -998) 32471) ((-906 . -38) 32436) ((-225 . -713) 32401) ((-319 . -47) 32371) ((-40 . -409) 32343) ((-140 . -611) 32325) ((-995 . -131) T) ((-811 . -1209) T) ((-174 . -916) T) ((-549 . -368) T) ((-604 . -614) 32306) ((-343 . -402) T) ((-667 . -614) 32287) ((-180 . -614) 32268) ((-161 . -614) 32249) ((-156 . -614) 32230) ((-154 . -614) 32211) ((-520 . -288) 32188) ((-1222 . -231) 32158) ((-811 . -1034) 31985) ((-45 . -34) T) ((-677 . -102) T) ((-672 . -102) T) ((-658 . -102) T) ((-650 . -21) T) ((-650 . -25) T) ((-1096 . -489) 31969) ((-671 . -1209) T) ((-478 . -102) T) ((-245 . -102) 31919) ((-546 . -840) T) ((-138 . -102) T) ((-137 . -102) T) ((-133 . -102) T) ((-867 . -1094) T) ((-1172 . -644) 31844) ((-1056 . -713) 31831) ((-727 . -1051) 31674) ((-1166 . -514) 31621) ((-948 . -713) 31470) ((-1119 . -514) 31422) ((-1270 . -1094) T) ((-1269 . -1094) T) ((-481 . -713) 31271) ((-67 . -611) 31253) ((-727 . -111) 31082) ((-939 . -489) 31066) ((-1271 . -644) 31026) ((-813 . -722) T) ((-1168 . -1051) 30909) ((-1167 . -1051) 30744) ((-1161 . -1051) 30534) ((-1120 . -1051) 30417) ((-999 . -1213) T) ((-1088 . -102) 30395) ((-811 . -377) 30364) ((-579 . -611) 30346) ((-546 . -1094) T) ((-999 . -556) T) ((-1168 . -111) 30215) ((-1167 . -111) 30036) ((-1161 . -111) 29805) ((-1120 . -111) 29674) ((-1099 . -1097) 29638) ((-379 . -844) T) ((-1251 . -611) 29620) ((-1244 . -611) 29602) ((-1223 . -611) 29584) ((-1223 . -612) NIL) ((-240 . -288) 29561) ((-40 . -452) T) ((-225 . -172) T) ((-169 . -1094) T) ((-727 . -614) 29346) ((-690 . -147) T) ((-690 . -145) NIL) ((-595 . -611) 29328) ((-594 . -611) 29310) ((-894 . -1094) T) ((-837 . -1094) T) ((-804 . -1094) T) ((-765 . -1094) T) ((-654 . -848) 29294) ((-673 . -1094) T) ((-811 . -896) 29226) ((-1214 . -368) T) ((-40 . -402) NIL) ((-1168 . -614) 29108) ((-1114 . -657) T) ((-867 . -713) 29053) ((-251 . -489) 29037) ((-250 . -489) 29021) ((-1167 . -614) 28764) ((-1161 . -614) 28559) ((-708 . -637) 28507) ((-649 . -644) 28481) ((-1120 . -614) 28363) ((-295 . -34) T) ((-727 . -1045) T) ((-581 . -1266) 28350) ((-518 . -1266) 28327) ((-1232 . -1094) T) ((-1166 . -290) 28238) ((-1119 . -290) 28169) ((-1056 . -172) T) ((-851 . -1094) T) ((-948 . -172) 28080) ((-778 . -1235) 28064) ((-641 . -514) 27997) ((-77 . -611) 27979) ((-727 . -326) 27944) ((-1172 . -722) T) ((-571 . -1094) T) ((-481 . -172) 27855) ((-245 . -309) 27793) ((-1136 . -1106) T) ((-70 . -611) 27775) ((-1271 . -722) T) ((-1168 . -1045) T) ((-1167 . -1045) T) ((-327 . -102) 27725) ((-1161 . -1045) T) ((-1136 . -23) T) ((-1120 . -1045) T) ((-91 . -1115) 27709) ((-862 . -1106) T) ((-1168 . -233) 27668) ((-1167 . -243) 27647) ((-1167 . -233) 27599) ((-1161 . -233) 27486) ((-1161 . -243) 27465) ((-319 . -896) 27371) ((-862 . -23) T) ((-169 . -713) 27199) ((-407 . -1213) T) ((-1095 . -368) T) ((-999 . -363) T) ((-866 . -452) T) ((-1020 . -147) T) ((-939 . -286) 27176) ((-313 . -846) NIL) ((-870 . -102) T) ((-708 . -25) T) ((-407 . -556) T) ((-708 . -21) T) ((-525 . -614) 27157) ((-354 . -147) 27139) ((-354 . -145) T) ((-1141 . -1094) 27117) ((-453 . -716) T) ((-75 . -611) 27099) ((-114 . -846) T) ((-245 . -282) 27083) ((-240 . -1051) 26980) ((-81 . -611) 26962) ((-731 . -368) 26915) ((-1170 . -824) T) ((-733 . -235) 26899) ((-1153 . -1209) T) ((-141 . -235) 26881) ((-240 . -111) 26771) ((-1232 . -713) 26600) ((-48 . -147) T) ((-867 . -172) T) ((-851 . -713) 26570) ((-484 . -1209) T) ((-948 . -514) 26517) ((-649 . -722) T) ((-571 . -713) 26504) ((-1030 . -1052) T) ((-481 . -514) 26447) ((-939 . -19) 26431) ((-939 . -602) 26408) ((-812 . -612) NIL) ((-812 . -611) 26390) ((-1000 . -1051) 26340) ((-413 . -611) 26322) ((-251 . -286) 26299) ((-250 . -286) 26276) ((-487 . -905) NIL) ((-316 . -29) 26246) ((-108 . -1209) T) ((-999 . -1106) T) ((-217 . -905) NIL) ((-910 . -1051) 26198) ((-1074 . -1034) 26094) ((-1000 . -111) 26028) ((-999 . -23) T) ((-733 . -691) 26012) ((-264 . -231) 25996) ((-427 . -1051) 25980) ((-379 . -1052) T) ((-240 . -614) 25710) ((-910 . -111) 25648) ((-690 . -1197) NIL) ((-487 . -644) 25598) ((-108 . -880) 25580) ((-108 . -882) 25562) ((-690 . -1194) NIL) ((-217 . -644) 25512) ((-359 . -1034) 25496) ((-353 . -1034) 25480) ((-327 . -309) 25418) ((-345 . -1034) 25402) ((-225 . -290) T) ((-427 . -111) 25381) ((-60 . -611) 25313) ((-169 . -172) T) ((-1114 . -846) T) ((-108 . -1034) 25273) ((-888 . -1094) T) ((-832 . -1052) T) ((-823 . -1052) T) ((-690 . -35) NIL) ((-690 . -95) NIL) ((-313 . -988) 25234) ((-183 . -102) T) ((-580 . -452) T) ((-564 . -452) T) ((-495 . -452) T) ((-407 . -363) T) ((-240 . -1045) 25164) ((-1144 . -34) T) ((-477 . -916) T) ((-995 . -637) 25112) ((-251 . -602) 25089) ((-250 . -602) 25066) ((-1074 . -377) 25050) ((-867 . -514) 24958) ((-240 . -233) 24910) ((-1152 . -1209) T) ((-1000 . -614) 24860) ((-910 . -614) 24797) ((-820 . -611) 24779) ((-1282 . -1106) T) ((-1274 . -611) 24761) ((-1232 . -172) 24652) ((-427 . -614) 24621) ((-108 . -377) 24603) ((-108 . -338) 24585) ((-1056 . -290) T) ((-948 . -290) 24516) ((-795 . -368) 24495) ((-643 . -1209) T) ((-630 . -1209) T) ((-481 . -290) 24426) ((-571 . -172) T) ((-327 . -282) 24410) ((-1282 . -23) T) ((-1203 . -102) T) ((-1190 . -1094) T) ((-1082 . -1094) T) ((-1070 . -1094) T) ((-83 . -611) 24392) ((-1177 . -840) T) ((-1176 . -840) T) ((-707 . -102) T) ((-355 . -349) 24371) ((-606 . -1094) T) ((-352 . -349) 24350) ((-344 . -349) 24329) ((-475 . -1094) T) ((-1182 . -229) 24279) ((-264 . -253) 24241) ((-1136 . -131) T) ((-606 . -608) 24217) ((-1074 . -896) 24150) ((-1000 . -1045) T) ((-910 . -1045) T) ((-475 . -608) 24129) ((-1161 . -788) NIL) ((-1161 . -791) NIL) ((-1096 . -612) 24090) ((-479 . -229) 24040) ((-1096 . -611) 24022) ((-1000 . -243) T) ((-1000 . -233) T) ((-427 . -1045) T) ((-954 . -1094) 23972) ((-910 . -243) T) ((-862 . -131) T) ((-695 . -452) T) ((-839 . -1106) 23951) ((-108 . -896) NIL) ((-1203 . -284) 23917) ((-868 . -844) 23896) ((-1107 . -1209) T) ((-901 . -722) T) ((-169 . -514) 23808) ((-995 . -25) T) ((-901 . -473) T) ((-407 . -1106) T) ((-487 . -790) T) ((-487 . -787) T) ((-906 . -349) T) ((-487 . -722) T) ((-217 . -790) T) ((-217 . -787) T) ((-995 . -21) T) ((-217 . -722) T) ((-839 . -23) 23760) ((-524 . -614) 23741) ((-1177 . -1094) T) ((-319 . -307) 23720) ((-1176 . -1094) T) ((-1031 . -235) 23666) ((-407 . -23) T) ((-939 . -612) 23627) ((-939 . -611) 23539) ((-641 . -489) 23523) ((-45 . -1006) 23473) ((-615 . -963) T) ((-491 . -102) T) ((-331 . -611) 23455) ((-1107 . -1034) 23282) ((-592 . -647) 23264) ((-130 . -1094) T) ((-128 . -1094) T) ((-592 . -373) 23246) ((-343 . -1266) 23223) ((-439 . -611) 23205) ((-1023 . -1209) T) ((-867 . -290) T) ((-1232 . -514) 23152) ((-476 . -1209) T) ((-463 . -1209) T) ((-585 . -102) T) ((-1166 . -286) 23079) ((-621 . -452) 23058) ((-996 . -991) 23042) ((-1274 . -382) 23014) ((-517 . -1094) T) ((-117 . -452) T) ((-1189 . -102) T) ((-1086 . -1094) 22992) ((-1030 . -1094) T) ((-1109 . -93) T) ((-889 . -846) T) ((-351 . -1213) T) ((-1251 . -1051) 22875) ((-1107 . -377) 22844) ((-1244 . -1051) 22679) ((-1223 . -1051) 22469) ((-1251 . -111) 22338) ((-1244 . -111) 22159) ((-1223 . -111) 21928) ((-1203 . -309) 21915) ((-351 . -556) T) ((-365 . -611) 21897) ((-289 . -307) T) ((-595 . -1051) 21870) ((-594 . -1051) 21753) ((-361 . -1094) T) ((-322 . -1094) T) ((-251 . -611) 21714) ((-250 . -611) 21675) ((-999 . -131) T) ((-633 . -23) T) ((-690 . -409) 21642) ((-605 . -23) T) ((-654 . -102) T) ((-595 . -111) 21613) ((-594 . -111) 21482) ((-379 . -1094) T) ((-336 . -102) T) ((-169 . -290) 21393) ((-1222 . -844) 21346) ((-710 . -1052) T) ((-1141 . -514) 21279) ((-1107 . -896) 21211) ((-832 . -1094) T) ((-823 . -1094) T) ((-821 . -1094) T) ((-97 . -102) T) ((-144 . -846) T) ((-610 . -880) 21195) ((-110 . -1209) T) ((-1081 . -102) T) ((-1057 . -34) T) ((-778 . -102) T) ((-776 . -102) T) ((-1251 . -614) 21077) ((-1244 . -614) 20820) ((-461 . -102) T) ((-454 . -102) T) ((-1223 . -614) 20615) ((-240 . -791) 20566) ((-240 . -788) 20517) ((-645 . -102) T) ((-595 . -614) 20475) ((-594 . -614) 20357) ((-1232 . -290) 20268) ((-660 . -632) 20252) ((-186 . -611) 20234) ((-641 . -286) 20211) ((-1030 . -713) 20195) ((-571 . -290) T) ((-959 . -644) 20120) ((-1282 . -131) T) ((-731 . -644) 20080) ((-711 . -644) 20067) ((-275 . -102) T) ((-453 . -644) 19997) ((-50 . -102) T) ((-581 . -102) T) ((-518 . -102) T) ((-1251 . -1045) T) ((-1244 . -1045) T) ((-1223 . -1045) T) ((-322 . -713) 19979) ((-1251 . -233) 19938) ((-1244 . -243) 19917) ((-1244 . -233) 19869) ((-1223 . -233) 19756) ((-1223 . -243) 19735) ((-1203 . -38) 19632) ((-595 . -1045) T) ((-594 . -1045) T) ((-1000 . -791) T) ((-1000 . -788) T) ((-967 . -791) T) ((-967 . -788) T) ((-868 . -1052) T) ((-109 . -611) 19614) ((-690 . -452) T) ((-379 . -713) 19579) ((-418 . -644) 19553) ((-866 . -865) 19537) ((-707 . -38) 19502) ((-594 . -233) 19461) ((-40 . -720) 19433) ((-351 . -329) 19410) ((-351 . -363) T) ((-1074 . -307) 19361) ((-294 . -1106) 19242) ((-1100 . -1209) T) ((-171 . -102) T) ((-1226 . -611) 19209) ((-839 . -131) 19161) ((-641 . -1247) 19145) ((-832 . -713) 19115) ((-823 . -713) 19085) ((-482 . -1209) T) ((-359 . -307) T) ((-353 . -307) T) ((-345 . -307) T) ((-641 . -602) 19062) ((-407 . -131) T) ((-520 . -662) 19046) ((-108 . -307) T) ((-294 . -23) 18929) ((-520 . -647) 18913) ((-690 . -402) NIL) ((-520 . -373) 18897) ((-291 . -611) 18879) ((-91 . -1094) 18857) ((-108 . -1018) T) ((-564 . -143) T) ((-1259 . -151) 18841) ((-482 . -1034) 18668) ((-1245 . -145) 18629) ((-1245 . -147) 18590) ((-1049 . -1209) T) ((-989 . -611) 18572) ((-858 . -611) 18554) ((-812 . -1051) 18397) ((-1270 . -93) T) ((-1269 . -93) T) ((-1166 . -612) NIL) ((-1090 . -1094) T) ((-1084 . -1094) T) ((-1081 . -309) 18384) ((-1067 . -1094) T) ((-227 . -1209) T) ((-1060 . -1094) T) ((-1032 . -1094) T) ((-1015 . -1094) T) ((-778 . -309) 18371) ((-776 . -309) 18358) ((-1166 . -611) 18340) ((-812 . -111) 18169) ((-1119 . -611) 18151) ((-624 . -1094) T) ((-577 . -173) T) ((-529 . -173) T) ((-454 . -309) 18138) ((-483 . -1094) T) ((-1119 . -612) 17886) ((-1030 . -172) T) ((-939 . -288) 17863) ((-218 . -1094) T) ((-850 . -611) 17845) ((-606 . -514) 17628) ((-81 . -614) 17569) ((-814 . -1034) 17553) ((-475 . -514) 17345) ((-959 . -722) T) ((-731 . -722) T) ((-711 . -722) T) ((-351 . -1106) T) ((-1173 . -611) 17327) ((-223 . -102) T) ((-482 . -377) 17296) ((-515 . -1094) T) ((-510 . -1094) T) ((-508 . -1094) T) ((-795 . -644) 17270) ((-1020 . -452) T) ((-954 . -514) 17203) ((-351 . -23) T) ((-633 . -131) T) ((-605 . -131) T) ((-354 . -452) T) ((-240 . -368) 17182) ((-379 . -172) T) ((-1243 . -1052) T) ((-1222 . -1052) T) ((-225 . -998) T) ((-812 . -614) 16919) ((-695 . -387) T) ((-418 . -722) T) ((-697 . -1213) T) ((-1136 . -637) 16867) ((-580 . -865) 16851) ((-1274 . -1051) 16835) ((-1153 . -1185) 16811) ((-697 . -556) T) ((-126 . -1094) 16789) ((-710 . -1094) T) ((-482 . -896) 16721) ((-249 . -1094) T) ((-187 . -1094) T) ((-654 . -38) 16691) ((-354 . -402) T) ((-316 . -147) 16670) ((-316 . -145) 16649) ((-128 . -514) NIL) ((-116 . -556) T) ((-313 . -147) 16605) ((-313 . -145) 16561) ((-48 . -452) T) ((-162 . -1094) T) ((-157 . -1094) T) ((-1153 . -107) 16508) ((-778 . -1145) 16486) ((-685 . -34) T) ((-1274 . -111) 16465) ((-550 . -34) T) ((-484 . -107) 16449) ((-251 . -288) 16426) ((-250 . -288) 16403) ((-867 . -286) 16354) ((-45 . -1209) T) ((-1215 . -840) T) ((-812 . -1045) T) ((-1172 . -47) 16331) ((-812 . -326) 16293) ((-1081 . -38) 16142) ((-812 . -233) 16121) ((-778 . -38) 15950) ((-776 . -38) 15799) ((-1109 . -490) 15780) ((-454 . -38) 15629) ((-1109 . -611) 15595) ((-1112 . -102) T) ((-641 . -612) 15556) ((-641 . -611) 15468) ((-581 . -1145) T) ((-518 . -1145) T) ((-1141 . -489) 15452) ((-1195 . -1094) 15430) ((-1136 . -25) T) ((-1136 . -21) T) ((-1274 . -614) 15379) ((-474 . -1052) T) ((-1215 . -1094) T) ((-1223 . -788) NIL) ((-1223 . -791) NIL) ((-995 . -846) 15358) ((-834 . -1094) T) ((-815 . -611) 15340) ((-862 . -21) T) ((-862 . -25) T) ((-795 . -722) T) ((-174 . -1213) T) ((-581 . -38) 15305) ((-518 . -38) 15270) ((-386 . -611) 15252) ((-324 . -611) 15234) ((-169 . -286) 15192) ((-63 . -1209) T) ((-112 . -102) T) ((-868 . -1094) T) ((-174 . -556) T) ((-710 . -713) 15162) ((-294 . -131) 15045) ((-225 . -611) 15027) ((-225 . -612) 14957) ((-999 . -637) 14896) ((-1274 . -1045) T) ((-1114 . -147) T) ((-630 . -1185) 14871) ((-727 . -905) 14850) ((-592 . -34) T) ((-643 . -107) 14834) ((-630 . -107) 14780) ((-1232 . -286) 14707) ((-727 . -644) 14632) ((-295 . -1209) T) ((-1172 . -1034) 14528) ((-939 . -616) 14505) ((-577 . -576) T) ((-577 . -527) T) ((-529 . -527) T) ((-1161 . -905) NIL) ((-1056 . -612) 14420) ((-1056 . -611) 14402) ((-948 . -611) 14384) ((-709 . -490) 14334) ((-343 . -102) T) ((-251 . -1051) 14231) ((-250 . -1051) 14128) ((-394 . -102) T) ((-31 . -1094) T) ((-948 . -612) 13989) ((-709 . -611) 13924) ((-1272 . -1202) 13893) ((-481 . -611) 13875) ((-481 . -612) 13736) ((-247 . -411) 13720) ((-264 . -411) 13704) ((-251 . -111) 13594) ((-250 . -111) 13484) ((-1168 . -644) 13409) ((-1167 . -644) 13306) ((-1161 . -644) 13158) ((-1120 . -644) 13083) ((-351 . -131) T) ((-82 . -441) T) ((-82 . -395) T) ((-999 . -25) T) ((-999 . -21) T) ((-869 . -1094) 13034) ((-868 . -713) 12986) ((-379 . -290) T) ((-169 . -998) 12938) ((-690 . -387) T) ((-995 . -993) 12922) ((-697 . -1106) T) ((-690 . -166) 12904) ((-1243 . -1094) T) ((-1222 . -1094) T) ((-316 . -1194) 12883) ((-316 . -1197) 12862) ((-1158 . -102) T) ((-316 . -955) 12841) ((-134 . -1106) T) ((-116 . -1106) T) ((-600 . -1257) 12825) ((-697 . -23) T) ((-600 . -1094) 12775) ((-316 . -95) 12754) ((-91 . -514) 12687) ((-174 . -363) T) ((-251 . -614) 12417) ((-250 . -614) 12147) ((-316 . -35) 12126) ((-606 . -489) 12060) ((-134 . -23) T) ((-116 . -23) T) ((-962 . -102) T) ((-714 . -1094) T) ((-475 . -489) 11997) ((-407 . -637) 11945) ((-649 . -1034) 11841) ((-954 . -489) 11825) ((-355 . -1052) T) ((-352 . -1052) T) ((-344 . -1052) T) ((-264 . -1052) T) ((-247 . -1052) T) ((-867 . -612) NIL) ((-867 . -611) 11807) ((-1270 . -490) 11788) ((-1269 . -490) 11769) ((-1282 . -21) T) ((-1270 . -611) 11735) ((-1269 . -611) 11701) ((-571 . -998) T) ((-727 . -722) T) ((-1282 . -25) T) ((-251 . -1045) 11631) ((-250 . -1045) 11561) ((-72 . -1209) T) ((-251 . -233) 11513) ((-250 . -233) 11465) ((-40 . -102) T) ((-906 . -1052) T) ((-128 . -489) 11447) ((-1175 . -102) T) ((-1168 . -722) T) ((-1167 . -722) T) ((-1161 . -722) T) ((-1161 . -787) NIL) ((-1161 . -790) NIL) ((-950 . -102) T) ((-917 . -102) T) ((-1120 . -722) T) ((-767 . -102) T) ((-668 . -102) T) ((-546 . -611) 11429) ((-474 . -1094) T) ((-339 . -1106) T) ((-174 . -1106) T) ((-319 . -916) 11408) ((-1243 . -713) 11249) ((-868 . -172) T) ((-1222 . -713) 11063) ((-839 . -21) 11015) ((-839 . -25) 10967) ((-245 . -1143) 10951) ((-126 . -514) 10884) ((-407 . -25) T) ((-407 . -21) T) ((-339 . -23) T) ((-169 . -612) 10650) ((-169 . -611) 10632) ((-174 . -23) T) ((-641 . -288) 10609) ((-520 . -34) T) ((-894 . -611) 10591) ((-89 . -1209) T) ((-837 . -611) 10573) ((-804 . -611) 10555) ((-765 . -611) 10537) ((-673 . -611) 10519) ((-240 . -644) 10367) ((-1170 . -1094) T) ((-1166 . -1051) 10190) ((-1144 . -1209) T) ((-1119 . -1051) 10033) ((-850 . -1051) 10017) ((-1226 . -616) 10001) ((-1166 . -111) 9810) ((-1119 . -111) 9639) ((-850 . -111) 9618) ((-1216 . -846) T) ((-1232 . -612) NIL) ((-1232 . -611) 9600) ((-343 . -1145) T) ((-851 . -611) 9582) ((-1070 . -286) 9561) ((-80 . -1209) T) ((-1000 . -905) NIL) ((-606 . -286) 9537) ((-1195 . -514) 9470) ((-487 . -1209) T) ((-571 . -611) 9452) ((-475 . -286) 9431) ((-517 . -93) T) ((-217 . -1209) T) ((-1081 . -231) 9415) ((-1000 . -644) 9365) ((-289 . -916) T) ((-813 . -307) 9344) ((-866 . -102) T) ((-778 . -231) 9328) ((-954 . -286) 9305) ((-910 . -644) 9257) ((-633 . -21) T) ((-633 . -25) T) ((-605 . -21) T) ((-547 . -102) T) ((-343 . -38) 9222) ((-690 . -720) 9189) ((-487 . -880) 9171) ((-487 . -882) 9153) ((-474 . -713) 8994) ((-217 . -880) 8976) ((-64 . -1209) T) ((-217 . -882) 8958) ((-605 . -25) T) ((-427 . -644) 8932) ((-1166 . -614) 8701) ((-487 . -1034) 8661) ((-868 . -514) 8573) ((-1119 . -614) 8365) ((-850 . -614) 8283) ((-217 . -1034) 8243) ((-240 . -34) T) ((-996 . -1094) 8221) ((-1243 . -172) 8152) ((-1222 . -172) 8083) ((-708 . -145) 8062) ((-708 . -147) 8041) ((-697 . -131) T) ((-136 . -465) 8018) ((-1141 . -611) 7950) ((-654 . -652) 7934) ((-128 . -286) 7909) ((-116 . -131) T) ((-477 . -1213) T) ((-606 . -602) 7885) ((-475 . -602) 7864) ((-336 . -335) 7833) ((-536 . -1094) T) ((-477 . -556) T) ((-1166 . -1045) T) ((-1119 . -1045) T) ((-850 . -1045) T) ((-240 . -787) 7812) ((-240 . -790) 7763) ((-240 . -789) 7742) ((-1166 . -326) 7719) ((-240 . -722) 7629) ((-954 . -19) 7613) ((-487 . -377) 7595) ((-487 . -338) 7577) ((-1119 . -326) 7549) ((-354 . -1266) 7526) ((-217 . -377) 7508) ((-217 . -338) 7490) ((-954 . -602) 7467) ((-1166 . -233) T) ((-660 . -1094) T) ((-642 . -1094) T) ((-1255 . -1094) T) ((-1182 . -1094) T) ((-1081 . -253) 7404) ((-355 . -1094) T) ((-352 . -1094) T) ((-344 . -1094) T) ((-264 . -1094) T) ((-247 . -1094) T) ((-84 . -1209) T) ((-127 . -102) 7382) ((-121 . -102) 7360) ((-1182 . -608) 7339) ((-479 . -1094) T) ((-1135 . -1094) T) ((-479 . -608) 7318) ((-251 . -791) 7269) ((-251 . -788) 7220) ((-250 . -791) 7171) ((-40 . -1145) NIL) ((-250 . -788) 7122) ((-1109 . -614) 7103) ((-128 . -19) 7085) ((-1074 . -916) 7036) ((-1000 . -790) T) ((-1000 . -787) T) ((-1000 . -722) T) ((-967 . -790) T) ((-128 . -602) 7011) ((-910 . -722) T) ((-91 . -489) 6995) ((-487 . -896) NIL) ((-906 . -1094) T) ((-225 . -1051) 6960) ((-868 . -290) T) ((-217 . -896) NIL) ((-829 . -1106) 6939) ((-59 . -1094) 6889) ((-519 . -1094) 6867) ((-516 . -1094) 6817) ((-497 . -1094) 6795) ((-496 . -1094) 6745) ((-580 . -102) T) ((-564 . -102) T) ((-495 . -102) T) ((-474 . -172) 6676) ((-359 . -916) T) ((-353 . -916) T) ((-345 . -916) T) ((-225 . -111) 6632) ((-829 . -23) 6584) ((-427 . -722) T) ((-108 . -916) T) ((-40 . -38) 6529) ((-108 . -816) T) ((-581 . -349) T) ((-518 . -349) T) ((-1222 . -514) 6389) ((-316 . -452) 6368) ((-313 . -452) T) ((-888 . -611) 6350) ((-832 . -286) 6329) ((-339 . -131) T) ((-174 . -131) T) ((-294 . -25) 6193) ((-294 . -21) 6076) ((-45 . -1185) 6055) ((-66 . -611) 6037) ((-55 . -102) T) ((-600 . -514) 5970) ((-45 . -107) 5920) ((-815 . -614) 5904) ((-1096 . -425) 5888) ((-1096 . -368) 5867) ((-386 . -614) 5851) ((-324 . -614) 5835) ((-1057 . -1209) T) ((-1056 . -1051) 5822) ((-948 . -1051) 5665) ((-1260 . -102) T) ((-1259 . -102) 5615) ((-1056 . -111) 5600) ((-481 . -1051) 5443) ((-660 . -713) 5427) ((-948 . -111) 5256) ((-225 . -614) 5206) ((-477 . -363) T) ((-355 . -713) 5158) ((-352 . -713) 5110) ((-344 . -713) 5062) ((-264 . -713) 4911) ((-247 . -713) 4760) ((-1251 . -644) 4685) ((-1223 . -905) NIL) ((-1090 . -93) T) ((-1084 . -93) T) ((-939 . -647) 4669) ((-1067 . -93) T) ((-481 . -111) 4498) ((-1060 . -93) T) ((-1032 . -93) T) ((-939 . -373) 4482) ((-248 . -102) T) ((-1015 . -93) T) ((-74 . -611) 4464) ((-959 . -47) 4443) ((-706 . -102) T) ((-695 . -102) T) ((-1 . -1094) T) ((-619 . -1106) T) ((-1244 . -644) 4340) ((-624 . -93) T) ((-1190 . -611) 4322) ((-1082 . -611) 4304) ((-126 . -489) 4288) ((-483 . -93) T) ((-1070 . -611) 4270) ((-390 . -23) T) ((-87 . -1209) T) ((-218 . -93) T) ((-1223 . -644) 4122) ((-906 . -713) 4087) ((-619 . -23) T) ((-606 . -611) 4069) ((-606 . -612) NIL) ((-475 . -612) NIL) ((-475 . -611) 4051) ((-511 . -1094) T) ((-507 . -1094) T) ((-351 . -25) T) ((-351 . -21) T) ((-127 . -309) 3989) ((-121 . -309) 3927) ((-595 . -644) 3914) ((-225 . -1045) T) ((-594 . -644) 3839) ((-379 . -998) T) ((-225 . -243) T) ((-225 . -233) T) ((-1056 . -614) 3811) ((-1056 . -616) 3792) ((-954 . -612) 3753) ((-954 . -611) 3665) ((-948 . -614) 3454) ((-866 . -38) 3441) ((-709 . -614) 3391) ((-1243 . -290) 3342) ((-1222 . -290) 3293) ((-481 . -614) 3078) ((-1114 . -452) T) ((-502 . -846) T) ((-316 . -1133) 3057) ((-995 . -147) 3036) ((-995 . -145) 3015) ((-495 . -309) 3002) ((-295 . -1185) 2981) ((-1177 . -611) 2963) ((-1176 . -611) 2945) ((-867 . -1051) 2890) ((-477 . -1106) T) ((-139 . -831) 2872) ((-114 . -831) 2853) ((-621 . -102) T) ((-1195 . -489) 2837) ((-251 . -368) 2816) ((-250 . -368) 2795) ((-1056 . -1045) T) ((-295 . -107) 2745) ((-130 . -611) 2727) ((-128 . -612) NIL) ((-128 . -611) 2671) ((-117 . -102) T) ((-948 . -1045) T) ((-867 . -111) 2600) ((-477 . -23) T) ((-481 . -1045) T) ((-1056 . -233) T) ((-948 . -326) 2569) ((-481 . -326) 2526) ((-355 . -172) T) ((-352 . -172) T) ((-344 . -172) T) ((-264 . -172) 2437) ((-247 . -172) 2348) ((-959 . -1034) 2244) ((-517 . -490) 2225) ((-731 . -1034) 2196) ((-517 . -611) 2162) ((-1099 . -102) T) ((-1086 . -611) 2129) ((-1030 . -611) 2111) ((-1272 . -151) 2095) ((-1270 . -614) 2076) ((-1264 . -611) 2058) ((-1251 . -722) T) ((-1244 . -722) T) ((-1223 . -787) NIL) ((-1223 . -790) NIL) ((-169 . -1051) 1968) ((-906 . -172) T) ((-867 . -614) 1898) ((-1223 . -722) T) ((-1269 . -614) 1879) ((-999 . -342) 1853) ((-996 . -514) 1786) ((-839 . -846) 1765) ((-564 . -1145) T) ((-474 . -290) 1716) ((-595 . -722) T) ((-361 . -611) 1698) ((-322 . -611) 1680) ((-418 . -1034) 1576) ((-594 . -722) T) ((-407 . -846) 1527) ((-169 . -111) 1423) ((-829 . -131) 1375) ((-733 . -151) 1359) ((-1259 . -309) 1297) ((-487 . -307) T) ((-379 . -611) 1264) ((-520 . -1006) 1248) ((-379 . -612) 1162) ((-217 . -307) T) ((-141 . -151) 1144) ((-710 . -286) 1123) ((-487 . -1018) T) ((-580 . -38) 1110) ((-564 . -38) 1097) ((-495 . -38) 1062) ((-217 . -1018) T) ((-867 . -1045) T) ((-832 . -611) 1044) ((-823 . -611) 1026) ((-821 . -611) 1008) ((-812 . -905) 987) ((-1283 . -1106) T) ((-1232 . -1051) 810) ((-851 . -1051) 794) ((-867 . -243) T) ((-867 . -233) NIL) ((-685 . -1209) T) ((-1283 . -23) T) ((-812 . -644) 719) ((-550 . -1209) T) ((-418 . -338) 703) ((-571 . -1051) 690) ((-1232 . -111) 499) ((-697 . -637) 481) ((-851 . -111) 460) ((-381 . -23) T) ((-169 . -614) 238) ((-1182 . -514) 30) ((-658 . -1094) T) ((-677 . -1094) T) ((-672 . -1094) T)) \ No newline at end of file
+(((-478 . -1097) T) ((-264 . -514) 187884) ((-247 . -514) 187827) ((-245 . -1097) 187777) ((-571 . -111) 187762) ((-531 . -23) T) ((-137 . -1097) T) ((-133 . -1097) T) ((-117 . -309) 187719) ((-138 . -1097) T) ((-479 . -514) 187511) ((-675 . -614) 187495) ((-692 . -102) T) ((-1138 . -514) 187414) ((-390 . -131) T) ((-1275 . -974) 187383) ((-1022 . -1049) 187320) ((-31 . -93) T) ((-600 . -489) 187304) ((-1022 . -638) 187241) ((-619 . -131) T) ((-817 . -844) T) ((-523 . -57) 187191) ((-519 . -514) 187124) ((-354 . -1049) 187069) ((-59 . -514) 187002) ((-516 . -514) 186935) ((-418 . -898) 186894) ((-169 . -1047) T) ((-497 . -514) 186827) ((-496 . -514) 186760) ((-354 . -638) 186705) ((-797 . -1036) 186488) ((-697 . -38) 186453) ((-1235 . -614) 186201) ((-343 . -349) T) ((-1091 . -1090) 186185) ((-1091 . -1097) 186163) ((-853 . -614) 186060) ((-169 . -243) 186011) ((-169 . -233) 185962) ((-1091 . -1092) 185920) ((-870 . -286) 185878) ((-225 . -793) T) ((-225 . -790) T) ((-692 . -284) NIL) ((-571 . -614) 185850) ((-1147 . -1188) 185829) ((-407 . -990) 185813) ((-48 . -1049) 185778) ((-699 . -21) T) ((-699 . -25) T) ((-48 . -638) 185743) ((-1277 . -646) 185717) ((-316 . -160) 185696) ((-316 . -143) 185675) ((-1147 . -107) 185625) ((-116 . -21) T) ((-40 . -231) 185602) ((-134 . -25) T) ((-116 . -25) T) ((-606 . -288) 185578) ((-475 . -288) 185557) ((-1235 . -326) 185534) ((-1235 . -1047) T) ((-853 . -1047) T) ((-797 . -338) 185518) ((-139 . -185) T) ((-117 . -1148) NIL) ((-91 . -611) 185450) ((-477 . -131) T) ((-1235 . -233) T) ((-1093 . -490) 185431) ((-1093 . -611) 185397) ((-1087 . -490) 185378) ((-1087 . -611) 185344) ((-592 . -1212) T) ((-1070 . -490) 185325) ((-571 . -1047) T) ((-1070 . -611) 185291) ((-660 . -715) 185275) ((-1063 . -490) 185256) ((-1063 . -611) 185222) ((-956 . -288) 185199) ((-60 . -34) T) ((-1059 . -793) T) ((-1059 . -790) T) ((-1034 . -490) 185180) ((-1017 . -490) 185161) ((-814 . -724) T) ((-729 . -47) 185126) ((-621 . -38) 185113) ((-355 . -290) T) ((-352 . -290) T) ((-344 . -290) T) ((-264 . -290) 185044) ((-247 . -290) 184975) ((-1034 . -611) 184941) ((-1022 . -102) T) ((-1017 . -611) 184907) ((-624 . -490) 184888) ((-413 . -724) T) ((-117 . -38) 184833) ((-483 . -490) 184814) ((-624 . -611) 184780) ((-413 . -473) T) ((-218 . -490) 184761) ((-483 . -611) 184727) ((-354 . -102) T) ((-218 . -611) 184693) ((-1206 . -1055) T) ((-343 . -644) 184623) ((-709 . -1055) T) ((-1171 . -47) 184600) ((-1170 . -47) 184570) ((-1164 . -47) 184547) ((-128 . -288) 184522) ((-1033 . -151) 184468) ((-908 . -290) T) ((-1123 . -47) 184440) ((-692 . -309) NIL) ((-515 . -611) 184422) ((-510 . -611) 184404) ((-508 . -611) 184386) ((-327 . -1097) 184336) ((-710 . -452) 184267) ((-48 . -102) T) ((-1246 . -286) 184252) ((-1225 . -286) 184172) ((-642 . -664) 184156) ((-642 . -649) 184140) ((-339 . -21) T) ((-339 . -25) T) ((-40 . -349) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-642 . -373) 184124) ((-603 . -490) 184106) ((-600 . -286) 184083) ((-603 . -611) 184050) ((-388 . -102) T) ((-1117 . -143) T) ((-126 . -611) 183982) ((-872 . -1097) T) ((-656 . -411) 183966) ((-712 . -611) 183948) ((-249 . -611) 183915) ((-187 . -611) 183897) ((-162 . -611) 183879) ((-157 . -611) 183861) ((-1277 . -724) T) ((-1099 . -34) T) ((-869 . -793) NIL) ((-869 . -790) NIL) ((-856 . -848) T) ((-729 . -884) NIL) ((-1286 . -131) T) ((-381 . -131) T) ((-890 . -614) 183829) ((-902 . -102) T) ((-729 . -1036) 183705) ((-531 . -131) T) ((-1084 . -411) 183689) ((-998 . -489) 183673) ((-117 . -400) 183650) ((-1164 . -1212) 183629) ((-780 . -411) 183613) ((-778 . -411) 183597) ((-941 . -34) T) ((-692 . -1148) NIL) ((-251 . -646) 183432) ((-250 . -646) 183254) ((-815 . -918) 183233) ((-454 . -411) 183217) ((-600 . -19) 183201) ((-1143 . -1205) 183170) ((-1164 . -884) NIL) ((-1164 . -882) 183122) ((-600 . -602) 183099) ((-1198 . -611) 183031) ((-1172 . -611) 183013) ((-62 . -395) T) ((-1170 . -1036) 182948) ((-1164 . -1036) 182914) ((-692 . -38) 182864) ((-40 . -644) 182794) ((-474 . -286) 182779) ((-1218 . -611) 182761) ((-729 . -377) 182745) ((-836 . -611) 182727) ((-656 . -1055) T) ((-1246 . -1000) 182693) ((-1225 . -1000) 182659) ((-1085 . -614) 182643) ((-1060 . -1188) 182618) ((-1073 . -614) 182595) ((-870 . -612) 182402) ((-870 . -611) 182384) ((-1185 . -489) 182321) ((-418 . -1020) 182299) ((-48 . -309) 182286) ((-1060 . -107) 182232) ((-479 . -489) 182169) ((-520 . -1212) T) ((-1164 . -338) 182121) ((-1138 . -489) 182092) ((-1164 . -377) 182044) ((-1084 . -1055) T) ((-437 . -102) T) ((-183 . -1097) T) ((-251 . -34) T) ((-250 . -34) T) ((-780 . -1055) T) ((-778 . -1055) T) ((-729 . -898) 182021) ((-454 . -1055) T) ((-59 . -489) 182005) ((-1032 . -1054) 181979) ((-519 . -489) 181963) ((-516 . -489) 181947) ((-497 . -489) 181931) ((-496 . -489) 181915) ((-245 . -514) 181848) ((-1032 . -111) 181815) ((-1171 . -898) 181728) ((-1170 . -898) 181634) ((-1164 . -898) 181467) ((-1123 . -898) 181451) ((-668 . -1109) T) ((-354 . -1148) T) ((-643 . -93) T) ((-322 . -1054) 181433) ((-251 . -789) 181412) ((-251 . -792) 181363) ((-31 . -490) 181344) ((-251 . -791) 181323) ((-250 . -789) 181302) ((-250 . -792) 181253) ((-250 . -791) 181232) ((-31 . -611) 181198) ((-50 . -1055) T) ((-251 . -724) 181108) ((-250 . -724) 181018) ((-1206 . -1097) T) ((-668 . -23) T) ((-581 . -1055) T) ((-518 . -1055) T) ((-379 . -1054) 180983) ((-322 . -111) 180958) ((-73 . -383) T) ((-73 . -395) T) ((-1022 . -38) 180895) ((-692 . -400) 180877) ((-99 . -102) T) ((-709 . -1097) T) ((-1290 . -1049) 180864) ((-1001 . -145) 180836) ((-1001 . -147) 180808) ((-868 . -644) 180780) ((-379 . -111) 180736) ((-319 . -1216) 180715) ((-474 . -1000) 180681) ((-354 . -38) 180646) ((-40 . -370) 180618) ((-871 . -611) 180490) ((-127 . -125) 180474) ((-121 . -125) 180458) ((-834 . -1054) 180428) ((-831 . -21) 180380) ((-825 . -1054) 180364) ((-831 . -25) 180316) ((-319 . -556) 180267) ((-517 . -614) 180248) ((-564 . -826) T) ((-240 . -1212) T) ((-1032 . -614) 180217) ((-834 . -111) 180182) ((-825 . -111) 180161) ((-1246 . -611) 180143) ((-1225 . -611) 180125) ((-1225 . -612) 179796) ((-1169 . -907) 179775) ((-1122 . -907) 179754) ((-48 . -38) 179719) ((-1284 . -1109) T) ((-600 . -611) 179631) ((-600 . -612) 179592) ((-1282 . -1109) T) ((-361 . -614) 179576) ((-322 . -614) 179560) ((-240 . -1036) 179387) ((-1169 . -646) 179312) ((-1122 . -646) 179237) ((-852 . -646) 179211) ((-716 . -611) 179193) ((-546 . -368) T) ((-1284 . -23) T) ((-1282 . -23) T) ((-491 . -1097) T) ((-379 . -614) 179143) ((-379 . -616) 179125) ((-1032 . -1047) T) ((-863 . -102) T) ((-1185 . -286) 179104) ((-169 . -368) 179055) ((-1002 . -1212) T) ((-834 . -614) 179009) ((-825 . -614) 178964) ((-44 . -23) T) ((-479 . -286) 178943) ((-585 . -1097) T) ((-1143 . -1106) 178912) ((-1101 . -1100) 178864) ((-390 . -21) T) ((-390 . -25) T) ((-152 . -1109) T) ((-1290 . -102) T) ((-1002 . -882) 178846) ((-1002 . -884) 178828) ((-1206 . -715) 178725) ((-621 . -231) 178709) ((-619 . -21) T) ((-289 . -556) T) ((-619 . -25) T) ((-1192 . -1097) T) ((-709 . -715) 178674) ((-240 . -377) 178643) ((-1002 . -1036) 178603) ((-379 . -1047) T) ((-223 . -1055) T) ((-117 . -231) 178580) ((-59 . -286) 178557) ((-152 . -23) T) ((-516 . -286) 178534) ((-327 . -514) 178467) ((-496 . -286) 178444) ((-379 . -243) T) ((-379 . -233) T) ((-834 . -1047) T) ((-825 . -1047) T) ((-710 . -947) 178413) ((-699 . -848) T) ((-474 . -611) 178395) ((-1248 . -1049) 178300) ((-580 . -644) 178272) ((-564 . -644) 178244) ((-495 . -644) 178194) ((-825 . -233) 178173) ((-134 . -848) T) ((-1248 . -638) 178065) ((-656 . -1097) T) ((-1185 . -602) 178044) ((-550 . -1188) 178023) ((-336 . -1097) T) ((-319 . -363) 178002) ((-407 . -147) 177981) ((-407 . -145) 177960) ((-962 . -1109) 177859) ((-240 . -898) 177791) ((-813 . -1109) 177701) ((-652 . -850) 177685) ((-479 . -602) 177664) ((-550 . -107) 177614) ((-1002 . -377) 177596) ((-1002 . -338) 177578) ((-97 . -1097) T) ((-962 . -23) 177389) ((-477 . -21) T) ((-477 . -25) T) ((-813 . -23) 177259) ((-1173 . -611) 177241) ((-59 . -19) 177225) ((-1173 . -612) 177147) ((-1169 . -724) T) ((-1122 . -724) T) ((-516 . -19) 177131) ((-496 . -19) 177115) ((-59 . -602) 177092) ((-1084 . -1097) T) ((-899 . -102) 177070) ((-852 . -724) T) ((-780 . -1097) T) ((-516 . -602) 177047) ((-496 . -602) 177024) ((-778 . -1097) T) ((-778 . -1062) 176991) ((-461 . -1097) T) ((-454 . -1097) T) ((-585 . -715) 176966) ((-647 . -1097) T) ((-1254 . -47) 176943) ((-1248 . -102) T) ((-1247 . -47) 176913) ((-1226 . -47) 176890) ((-1206 . -172) 176841) ((-1170 . -307) 176820) ((-1164 . -307) 176799) ((-1093 . -614) 176780) ((-1087 . -614) 176761) ((-1077 . -556) 176712) ((-1002 . -898) NIL) ((-1077 . -1216) 176663) ((-668 . -131) T) ((-625 . -1109) T) ((-1070 . -614) 176644) ((-1063 . -614) 176625) ((-1034 . -614) 176606) ((-1017 . -614) 176587) ((-697 . -644) 176537) ((-275 . -1097) T) ((-85 . -441) T) ((-85 . -395) T) ((-712 . -1054) 176507) ((-709 . -172) T) ((-50 . -1097) T) ((-594 . -47) 176484) ((-225 . -646) 176449) ((-581 . -1097) T) ((-518 . -1097) T) ((-487 . -818) T) ((-487 . -918) T) ((-359 . -1216) T) ((-353 . -1216) T) ((-345 . -1216) T) ((-319 . -1109) T) ((-316 . -1049) 176359) ((-313 . -1049) 176288) ((-108 . -1216) T) ((-624 . -614) 176269) ((-359 . -556) T) ((-217 . -918) T) ((-217 . -818) T) ((-316 . -638) 176179) ((-313 . -638) 176108) ((-353 . -556) T) ((-345 . -556) T) ((-483 . -614) 176089) ((-108 . -556) T) ((-656 . -715) 176059) ((-1164 . -1020) NIL) ((-218 . -614) 176040) ((-319 . -23) T) ((-67 . -1212) T) ((-998 . -611) 175972) ((-692 . -231) 175954) ((-712 . -111) 175919) ((-642 . -34) T) ((-245 . -489) 175903) ((-1099 . -1095) 175887) ((-171 . -1097) T) ((-950 . -907) 175866) ((-1290 . -1148) T) ((-1286 . -21) T) ((-515 . -614) 175850) ((-1286 . -25) T) ((-1284 . -131) T) ((-1282 . -131) T) ((-481 . -907) 175829) ((-1275 . -102) T) ((-1258 . -611) 175795) ((-1247 . -1036) 175730) ((-1226 . -1212) 175709) ((-1226 . -884) NIL) ((-1226 . -882) 175661) ((-1084 . -715) 175510) ((-1059 . -646) 175497) ((-950 . -646) 175422) ((-780 . -715) 175251) ((-536 . -611) 175233) ((-536 . -612) 175214) ((-778 . -715) 175063) ((-1074 . -102) T) ((-381 . -25) T) ((-621 . -644) 175035) ((-381 . -21) T) ((-481 . -646) 174960) ((-461 . -715) 174931) ((-454 . -715) 174780) ((-985 . -102) T) ((-1226 . -1036) 174746) ((-1185 . -612) NIL) ((-1185 . -611) 174728) ((-735 . -102) T) ((-117 . -644) 174658) ((-603 . -614) 174640) ((-1139 . -1120) 174585) ((-1044 . -1205) 174514) ((-531 . -25) T) ((-899 . -309) 174452) ((-712 . -614) 174406) ((-679 . -93) T) ((-643 . -490) 174387) ((-141 . -102) T) ((-44 . -131) T) ((-674 . -93) T) ((-662 . -611) 174369) ((-343 . -1055) T) ((-289 . -1109) T) ((-643 . -611) 174322) ((-478 . -93) T) ((-355 . -611) 174304) ((-352 . -611) 174286) ((-344 . -611) 174268) ((-264 . -612) 174016) ((-264 . -611) 173998) ((-247 . -611) 173980) ((-247 . -612) 173841) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1206 . -514) 173808) ((-1138 . -611) 173790) ((-1117 . -638) 173777) ((-817 . -855) T) ((-817 . -724) T) ((-600 . -288) 173754) ((-581 . -715) 173719) ((-479 . -612) NIL) ((-479 . -611) 173701) ((-518 . -715) 173646) ((-316 . -102) T) ((-313 . -102) T) ((-289 . -23) T) ((-152 . -131) T) ((-1117 . -1049) 173633) ((-908 . -611) 173615) ((-386 . -724) T) ((-870 . -1054) 173567) ((-908 . -612) 173549) ((-870 . -111) 173487) ((-712 . -1047) T) ((-710 . -1238) 173471) ((-692 . -349) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-519 . -611) 173403) ((-379 . -793) T) ((-223 . -1097) T) ((-379 . -790) T) ((-225 . -792) T) ((-225 . -789) T) ((-59 . -612) 173364) ((-59 . -611) 173276) ((-225 . -724) T) ((-516 . -612) 173237) ((-516 . -611) 173149) ((-497 . -611) 173081) ((-496 . -612) 173042) ((-496 . -611) 172954) ((-1077 . -363) 172905) ((-40 . -411) 172882) ((-77 . -1212) T) ((-869 . -907) NIL) ((-359 . -329) 172866) ((-359 . -363) T) ((-353 . -329) 172850) ((-353 . -363) T) ((-345 . -329) 172834) ((-345 . -363) T) ((-316 . -284) 172813) ((-108 . -363) T) ((-70 . -1212) T) ((-1226 . -338) 172765) ((-869 . -646) 172710) ((-1226 . -377) 172662) ((-962 . -131) 172517) ((-813 . -131) 172387) ((-956 . -649) 172371) ((-1084 . -172) 172282) ((-956 . -373) 172266) ((-1059 . -792) T) ((-1059 . -789) T) ((-870 . -614) 172164) ((-780 . -172) 172055) ((-778 . -172) 171966) ((-814 . -47) 171928) ((-1059 . -724) T) ((-327 . -489) 171912) ((-950 . -724) T) ((-454 . -172) 171823) ((-245 . -286) 171800) ((-1275 . -309) 171738) ((-1254 . -898) 171651) ((-1247 . -898) 171557) ((-481 . -724) T) ((-1246 . -1054) 171392) ((-1226 . -898) 171225) ((-1225 . -1054) 171033) ((-1206 . -290) 171012) ((-1182 . -1212) T) ((-1180 . -368) T) ((-1179 . -368) T) ((-1143 . -151) 170996) ((-1117 . -102) T) ((-1115 . -1097) T) ((-1077 . -23) T) ((-1077 . -1109) T) ((-1072 . -102) T) ((-925 . -953) T) ((-735 . -309) 170934) ((-75 . -1212) T) ((-30 . -953) T) ((-169 . -907) 170887) ((-662 . -382) 170859) ((-112 . -842) T) ((-1 . -611) 170841) ((-1001 . -409) 170813) ((-128 . -649) 170795) ((-50 . -618) 170779) ((-692 . -644) 170714) ((-594 . -898) 170627) ((-438 . -102) T) ((-128 . -373) 170609) ((-141 . -309) NIL) ((-870 . -1047) T) ((-831 . -848) 170588) ((-81 . -1212) T) ((-709 . -290) T) ((-40 . -1055) T) ((-581 . -172) T) ((-518 . -172) T) ((-511 . -611) 170570) ((-169 . -646) 170480) ((-507 . -611) 170462) ((-351 . -147) 170444) ((-351 . -145) T) ((-359 . -1109) T) ((-353 . -1109) T) ((-345 . -1109) T) ((-1002 . -307) T) ((-912 . -307) T) ((-870 . -243) T) ((-108 . -1109) T) ((-870 . -233) 170423) ((-1246 . -111) 170244) ((-1225 . -111) 170033) ((-245 . -1250) 170017) ((-564 . -846) T) ((-359 . -23) T) ((-354 . -349) T) ((-316 . -309) 170004) ((-313 . -309) 169945) ((-353 . -23) T) ((-319 . -131) T) ((-345 . -23) T) ((-1002 . -1020) T) ((-31 . -614) 169926) ((-108 . -23) T) ((-652 . -1049) 169910) ((-245 . -602) 169887) ((-652 . -638) 169857) ((-1248 . -38) 169749) ((-1235 . -907) 169728) ((-112 . -1097) T) ((-1033 . -102) T) ((-1235 . -646) 169653) ((-869 . -792) NIL) ((-853 . -646) 169627) ((-869 . -789) NIL) ((-814 . -884) NIL) ((-869 . -724) T) ((-1084 . -514) 169500) ((-780 . -514) 169447) ((-778 . -514) 169399) ((-571 . -646) 169386) ((-814 . -1036) 169214) ((-454 . -514) 169157) ((-388 . -389) T) ((-1246 . -614) 168970) ((-1225 . -614) 168718) ((-60 . -1212) T) ((-619 . -848) 168697) ((-500 . -659) T) ((-1143 . -974) 168666) ((-1022 . -644) 168603) ((-1001 . -452) T) ((-697 . -846) T) ((-510 . -790) T) ((-474 . -1054) 168438) ((-343 . -1097) T) ((-313 . -1148) NIL) ((-289 . -131) T) ((-394 . -1097) T) ((-868 . -1055) T) ((-692 . -370) 168405) ((-354 . -644) 168335) ((-223 . -618) 168312) ((-327 . -286) 168289) ((-474 . -111) 168110) ((-1246 . -1047) T) ((-1225 . -1047) T) ((-814 . -377) 168094) ((-169 . -724) T) ((-652 . -102) T) ((-1246 . -243) 168073) ((-1246 . -233) 168025) ((-1225 . -233) 167930) ((-1225 . -243) 167909) ((-1001 . -402) NIL) ((-668 . -637) 167857) ((-316 . -38) 167767) ((-313 . -38) 167696) ((-69 . -611) 167678) ((-319 . -493) 167644) ((-48 . -644) 167594) ((-1185 . -288) 167573) ((-1220 . -848) T) ((-1110 . -1109) 167483) ((-83 . -1212) T) ((-61 . -611) 167465) ((-479 . -288) 167444) ((-1277 . -1036) 167421) ((-1161 . -1097) T) ((-1110 . -23) 167291) ((-814 . -898) 167227) ((-1235 . -724) T) ((-1099 . -1212) T) ((-474 . -614) 167053) ((-1084 . -290) 166984) ((-964 . -1097) T) ((-891 . -102) T) ((-780 . -290) 166895) ((-327 . -19) 166879) ((-59 . -288) 166856) ((-778 . -290) 166787) ((-853 . -724) T) ((-117 . -846) NIL) ((-516 . -288) 166764) ((-327 . -602) 166741) ((-496 . -288) 166718) ((-454 . -290) 166649) ((-1033 . -309) 166500) ((-679 . -490) 166481) ((-571 . -724) T) ((-674 . -490) 166462) ((-679 . -611) 166412) ((-674 . -611) 166378) ((-660 . -611) 166360) ((-478 . -490) 166341) ((-478 . -611) 166307) ((-245 . -612) 166268) ((-245 . -490) 166245) ((-138 . -490) 166226) ((-137 . -490) 166207) ((-133 . -490) 166188) ((-245 . -611) 166080) ((-213 . -102) T) ((-138 . -611) 166046) ((-137 . -611) 166012) ((-133 . -611) 165978) ((-1144 . -34) T) ((-941 . -1212) T) ((-343 . -715) 165923) ((-668 . -25) T) ((-668 . -21) T) ((-1173 . -614) 165904) ((-474 . -1047) T) ((-633 . -417) 165869) ((-605 . -417) 165834) ((-1117 . -1148) T) ((-710 . -1049) 165657) ((-581 . -290) T) ((-518 . -290) T) ((-1247 . -307) 165636) ((-474 . -233) 165588) ((-474 . -243) 165567) ((-1226 . -307) 165546) ((-710 . -638) 165375) ((-1226 . -1020) NIL) ((-1077 . -131) T) ((-870 . -793) 165354) ((-144 . -102) T) ((-40 . -1097) T) ((-870 . -790) 165333) ((-642 . -1008) 165317) ((-580 . -1055) T) ((-564 . -1055) T) ((-495 . -1055) T) ((-407 . -452) T) ((-359 . -131) T) ((-316 . -400) 165301) ((-313 . -400) 165262) ((-353 . -131) T) ((-345 . -131) T) ((-1178 . -1097) T) ((-1117 . -38) 165249) ((-1091 . -611) 165216) ((-108 . -131) T) ((-952 . -1097) T) ((-919 . -1097) T) ((-769 . -1097) T) ((-670 . -1097) T) ((-699 . -147) T) ((-116 . -147) T) ((-1284 . -21) T) ((-1284 . -25) T) ((-1282 . -21) T) ((-1282 . -25) T) ((-662 . -1054) 165200) ((-531 . -848) T) ((-500 . -848) T) ((-355 . -1054) 165152) ((-352 . -1054) 165104) ((-344 . -1054) 165056) ((-251 . -1212) T) ((-250 . -1212) T) ((-264 . -1054) 164899) ((-247 . -1054) 164742) ((-662 . -111) 164721) ((-547 . -842) T) ((-355 . -111) 164659) ((-352 . -111) 164597) ((-344 . -111) 164535) ((-264 . -111) 164364) ((-247 . -111) 164193) ((-815 . -1216) 164172) ((-621 . -411) 164156) ((-44 . -21) T) ((-44 . -25) T) ((-813 . -637) 164062) ((-815 . -556) 164041) ((-251 . -1036) 163868) ((-250 . -1036) 163695) ((-126 . -119) 163679) ((-908 . -1054) 163644) ((-710 . -102) T) ((-697 . -1055) T) ((-536 . -616) 163547) ((-343 . -172) T) ((-88 . -611) 163529) ((-152 . -21) T) ((-152 . -25) T) ((-908 . -111) 163485) ((-40 . -715) 163430) ((-868 . -1097) T) ((-662 . -614) 163407) ((-643 . -614) 163388) ((-355 . -614) 163325) ((-352 . -614) 163262) ((-547 . -1097) T) ((-344 . -614) 163199) ((-327 . -612) 163160) ((-327 . -611) 163072) ((-264 . -614) 162825) ((-247 . -614) 162610) ((-1225 . -790) 162563) ((-1225 . -793) 162516) ((-251 . -377) 162485) ((-250 . -377) 162454) ((-652 . -38) 162424) ((-606 . -34) T) ((-482 . -1109) 162334) ((-475 . -34) T) ((-1110 . -131) 162204) ((-962 . -25) 162015) ((-908 . -614) 161965) ((-872 . -611) 161947) ((-962 . -21) 161902) ((-813 . -21) 161812) ((-813 . -25) 161663) ((-1218 . -368) T) ((-621 . -1055) T) ((-1175 . -556) 161642) ((-1169 . -47) 161619) ((-355 . -1047) T) ((-352 . -1047) T) ((-482 . -23) 161489) ((-344 . -1047) T) ((-264 . -1047) T) ((-247 . -1047) T) ((-1122 . -47) 161461) ((-117 . -1055) T) ((-1032 . -646) 161435) ((-956 . -34) T) ((-355 . -233) 161414) ((-355 . -243) T) ((-352 . -233) 161393) ((-352 . -243) T) ((-344 . -233) 161372) ((-344 . -243) T) ((-264 . -326) 161344) ((-247 . -326) 161301) ((-264 . -233) 161280) ((-1153 . -151) 161264) ((-251 . -898) 161196) ((-250 . -898) 161128) ((-1079 . -848) T) ((-414 . -1109) T) ((-1052 . -23) T) ((-908 . -1047) T) ((-322 . -646) 161110) ((-1022 . -846) T) ((-1206 . -1000) 161076) ((-1170 . -918) 161055) ((-1164 . -918) 161034) ((-1164 . -818) NIL) ((-997 . -1049) 160930) ((-908 . -243) T) ((-815 . -363) 160909) ((-385 . -23) T) ((-127 . -1097) 160887) ((-121 . -1097) 160865) ((-908 . -233) T) ((-128 . -34) T) ((-379 . -646) 160830) ((-997 . -638) 160778) ((-868 . -715) 160765) ((-1290 . -644) 160737) ((-1044 . -151) 160702) ((-40 . -172) T) ((-692 . -411) 160684) ((-710 . -309) 160671) ((-834 . -646) 160631) ((-825 . -646) 160605) ((-319 . -25) T) ((-319 . -21) T) ((-656 . -286) 160584) ((-580 . -1097) T) ((-564 . -1097) T) ((-495 . -1097) T) ((-245 . -288) 160561) ((-313 . -231) 160522) ((-1169 . -884) NIL) ((-55 . -1097) T) ((-1122 . -884) 160381) ((-129 . -848) T) ((-1169 . -1036) 160261) ((-1122 . -1036) 160144) ((-183 . -611) 160126) ((-852 . -1036) 160022) ((-780 . -286) 159949) ((-815 . -1109) T) ((-1032 . -724) T) ((-600 . -649) 159933) ((-1044 . -974) 159862) ((-997 . -102) T) ((-815 . -23) T) ((-710 . -1148) 159840) ((-692 . -1055) T) ((-600 . -373) 159824) ((-351 . -452) T) ((-343 . -290) T) ((-1263 . -1097) T) ((-248 . -1097) T) ((-399 . -102) T) ((-289 . -21) T) ((-289 . -25) T) ((-361 . -724) T) ((-708 . -1097) T) ((-697 . -1097) T) ((-361 . -473) T) ((-1206 . -611) 159806) ((-1169 . -377) 159790) ((-1122 . -377) 159774) ((-1022 . -411) 159736) ((-141 . -229) 159718) ((-379 . -792) T) ((-379 . -789) T) ((-868 . -172) T) ((-379 . -724) T) ((-709 . -611) 159700) ((-710 . -38) 159529) ((-1262 . -1260) 159513) ((-351 . -402) T) ((-1262 . -1097) 159463) ((-580 . -715) 159450) ((-564 . -715) 159437) ((-495 . -715) 159402) ((-1248 . -644) 159292) ((-316 . -627) 159271) ((-834 . -724) T) ((-825 . -724) T) ((-642 . -1212) T) ((-1077 . -637) 159219) ((-1169 . -898) 159162) ((-1122 . -898) 159146) ((-660 . -1054) 159130) ((-108 . -637) 159112) ((-482 . -131) 158982) ((-1175 . -1109) T) ((-950 . -47) 158951) ((-621 . -1097) T) ((-660 . -111) 158930) ((-491 . -611) 158896) ((-327 . -288) 158873) ((-481 . -47) 158830) ((-1175 . -23) T) ((-117 . -1097) T) ((-103 . -102) 158808) ((-1274 . -1109) T) ((-548 . -848) T) ((-1052 . -131) T) ((-1022 . -1055) T) ((-817 . -1036) 158792) ((-1001 . -722) 158764) ((-1274 . -23) T) ((-697 . -715) 158729) ((-585 . -611) 158711) ((-386 . -1036) 158695) ((-354 . -1055) T) ((-385 . -131) T) ((-324 . -1036) 158679) ((-1192 . -611) 158661) ((-1117 . -826) T) ((-225 . -884) 158643) ((-1002 . -918) T) ((-91 . -34) T) ((-1002 . -818) T) ((-912 . -918) T) ((-1102 . -1097) T) ((-1077 . -21) T) ((-487 . -1216) T) ((-1077 . -25) T) ((-997 . -309) 158608) ((-712 . -646) 158568) ((-217 . -1216) T) ((-679 . -614) 158549) ((-225 . -1036) 158509) ((-40 . -290) T) ((-674 . -614) 158490) ((-487 . -556) T) ((-478 . -614) 158471) ((-316 . -644) 158155) ((-313 . -644) 158069) ((-359 . -25) T) ((-359 . -21) T) ((-353 . -25) T) ((-217 . -556) T) ((-353 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-245 . -614) 158046) ((-138 . -614) 158027) ((-137 . -614) 158008) ((-133 . -614) 157989) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1055) T) ((-580 . -172) T) ((-564 . -172) T) ((-495 . -172) T) ((-656 . -611) 157971) ((-735 . -734) 157955) ((-336 . -611) 157937) ((-68 . -383) T) ((-68 . -395) T) ((-1099 . -107) 157921) ((-1059 . -884) 157903) ((-950 . -884) 157828) ((-651 . -1109) T) ((-621 . -715) 157815) ((-481 . -884) NIL) ((-1143 . -102) T) ((-1091 . -616) 157799) ((-1059 . -1036) 157781) ((-97 . -611) 157763) ((-477 . -147) T) ((-950 . -1036) 157643) ((-117 . -715) 157588) ((-651 . -23) T) ((-481 . -1036) 157464) ((-1084 . -612) NIL) ((-1084 . -611) 157446) ((-780 . -612) NIL) ((-780 . -611) 157407) ((-778 . -612) 157041) ((-778 . -611) 156955) ((-1110 . -637) 156861) ((-461 . -611) 156843) ((-454 . -611) 156825) ((-454 . -612) 156686) ((-1033 . -229) 156632) ((-870 . -907) 156611) ((-126 . -34) T) ((-815 . -131) T) ((-647 . -611) 156593) ((-578 . -102) T) ((-355 . -1281) 156577) ((-352 . -1281) 156561) ((-344 . -1281) 156545) ((-127 . -514) 156478) ((-121 . -514) 156411) ((-511 . -790) T) ((-511 . -793) T) ((-510 . -792) T) ((-103 . -309) 156349) ((-222 . -102) 156327) ((-697 . -172) T) ((-692 . -1097) T) ((-870 . -646) 156279) ((-65 . -384) T) ((-275 . -611) 156261) ((-65 . -395) T) ((-950 . -377) 156245) ((-868 . -290) T) ((-50 . -611) 156227) ((-997 . -38) 156175) ((-1117 . -644) 156147) ((-581 . -611) 156129) ((-481 . -377) 156113) ((-581 . -612) 156095) ((-518 . -611) 156077) ((-908 . -1281) 156064) ((-869 . -1212) T) ((-699 . -452) T) ((-495 . -514) 156030) ((-487 . -363) T) ((-355 . -368) 156009) ((-352 . -368) 155988) ((-344 . -368) 155967) ((-712 . -724) T) ((-217 . -363) T) ((-116 . -452) T) ((-1285 . -1276) 155951) ((-869 . -882) 155928) ((-869 . -884) NIL) ((-962 . -848) 155827) ((-813 . -848) 155778) ((-1219 . -102) T) ((-652 . -654) 155762) ((-1198 . -34) T) ((-171 . -611) 155744) ((-1110 . -21) 155654) ((-1110 . -25) 155505) ((-869 . -1036) 155482) ((-950 . -898) 155463) ((-1235 . -47) 155440) ((-908 . -368) T) ((-59 . -649) 155424) ((-516 . -649) 155408) ((-481 . -898) 155385) ((-71 . -441) T) ((-71 . -395) T) ((-496 . -649) 155369) ((-59 . -373) 155353) ((-621 . -172) T) ((-516 . -373) 155337) ((-496 . -373) 155321) ((-825 . -706) 155305) ((-1169 . -307) 155284) ((-1175 . -131) T) ((-1139 . -1049) 155268) ((-117 . -172) T) ((-1139 . -638) 155200) ((-1143 . -309) 155138) ((-169 . -1212) T) ((-1274 . -131) T) ((-864 . -1049) 155108) ((-633 . -742) 155092) ((-605 . -742) 155076) ((-1247 . -918) 155055) ((-1226 . -918) 155034) ((-1226 . -818) NIL) ((-864 . -638) 155004) ((-692 . -715) 154954) ((-1225 . -907) 154907) ((-1022 . -1097) T) ((-869 . -377) 154884) ((-869 . -338) 154861) ((-903 . -1109) T) ((-169 . -882) 154845) ((-169 . -884) 154770) ((-487 . -1109) T) ((-354 . -1097) T) ((-217 . -1109) T) ((-76 . -441) T) ((-76 . -395) T) ((-169 . -1036) 154666) ((-319 . -848) T) ((-1262 . -514) 154599) ((-1246 . -646) 154496) ((-1225 . -646) 154366) ((-870 . -792) 154345) ((-870 . -789) 154324) ((-870 . -724) T) ((-487 . -23) T) ((-223 . -611) 154306) ((-174 . -452) T) ((-222 . -309) 154244) ((-86 . -441) T) ((-86 . -395) T) ((-217 . -23) T) ((-1286 . -1279) 154223) ((-675 . -1036) 154207) ((-580 . -290) T) ((-564 . -290) T) ((-495 . -290) T) ((-136 . -470) 154162) ((-652 . -644) 154121) ((-48 . -1097) T) ((-710 . -231) 154105) ((-869 . -898) NIL) ((-1235 . -884) NIL) ((-887 . -102) T) ((-883 . -102) T) ((-388 . -1097) T) ((-169 . -377) 154089) ((-169 . -338) 154073) ((-1235 . -1036) 153953) ((-853 . -1036) 153849) ((-1139 . -102) T) ((-651 . -131) T) ((-117 . -514) 153757) ((-660 . -790) 153736) ((-660 . -793) 153715) ((-571 . -1036) 153697) ((-294 . -1269) 153667) ((-864 . -102) T) ((-961 . -556) 153646) ((-1206 . -1054) 153529) ((-1001 . -1049) 153474) ((-482 . -637) 153380) ((-902 . -1097) T) ((-1022 . -715) 153317) ((-709 . -1054) 153282) ((-1001 . -638) 153227) ((-615 . -102) T) ((-600 . -34) T) ((-1144 . -1212) T) ((-1206 . -111) 153096) ((-474 . -646) 152993) ((-354 . -715) 152938) ((-169 . -898) 152897) ((-697 . -290) T) ((-692 . -172) T) ((-709 . -111) 152853) ((-1290 . -1055) T) ((-1235 . -377) 152837) ((-418 . -1216) 152815) ((-1115 . -611) 152797) ((-313 . -846) NIL) ((-418 . -556) T) ((-225 . -307) T) ((-1225 . -789) 152750) ((-1225 . -792) 152703) ((-1246 . -724) T) ((-1225 . -724) T) ((-48 . -715) 152668) ((-225 . -1020) T) ((-351 . -1269) 152645) ((-1248 . -411) 152611) ((-716 . -724) T) ((-1235 . -898) 152554) ((-1206 . -614) 152436) ((-112 . -611) 152418) ((-112 . -612) 152400) ((-716 . -473) T) ((-709 . -614) 152350) ((-1285 . -1049) 152334) ((-482 . -21) 152244) ((-127 . -489) 152228) ((-121 . -489) 152212) ((-482 . -25) 152063) ((-1285 . -638) 152033) ((-621 . -290) T) ((-585 . -1054) 152008) ((-437 . -1097) T) ((-1059 . -307) T) ((-117 . -290) T) ((-1101 . -102) T) ((-1001 . -102) T) ((-585 . -111) 151976) ((-1139 . -309) 151914) ((-1206 . -1047) T) ((-1059 . -1020) T) ((-66 . -1212) T) ((-1052 . -25) T) ((-1052 . -21) T) ((-709 . -1047) T) ((-385 . -21) T) ((-385 . -25) T) ((-692 . -514) NIL) ((-1022 . -172) T) ((-709 . -243) T) ((-1059 . -545) T) ((-710 . -644) 151824) ((-506 . -102) T) ((-502 . -102) T) ((-354 . -172) T) ((-343 . -611) 151806) ((-407 . -1049) 151758) ((-394 . -611) 151740) ((-1117 . -846) T) ((-474 . -724) T) ((-890 . -1036) 151708) ((-407 . -638) 151660) ((-108 . -848) T) ((-656 . -1054) 151644) ((-487 . -131) T) ((-1248 . -1055) T) ((-217 . -131) T) ((-1153 . -102) 151622) ((-99 . -1097) T) ((-245 . -664) 151606) ((-245 . -649) 151590) ((-656 . -111) 151569) ((-585 . -614) 151553) ((-316 . -411) 151537) ((-245 . -373) 151521) ((-1156 . -235) 151468) ((-997 . -231) 151452) ((-74 . -1212) T) ((-48 . -172) T) ((-699 . -387) T) ((-699 . -143) T) ((-1285 . -102) T) ((-1192 . -614) 151434) ((-1084 . -1054) 151277) ((-264 . -907) 151256) ((-247 . -907) 151235) ((-780 . -1054) 151058) ((-778 . -1054) 150901) ((-606 . -1212) T) ((-1161 . -611) 150883) ((-1084 . -111) 150712) ((-1044 . -102) T) ((-475 . -1212) T) ((-461 . -1054) 150683) ((-454 . -1054) 150526) ((-662 . -646) 150510) ((-869 . -307) T) ((-780 . -111) 150319) ((-778 . -111) 150148) ((-355 . -646) 150100) ((-352 . -646) 150052) ((-344 . -646) 150004) ((-264 . -646) 149929) ((-247 . -646) 149854) ((-1155 . -848) T) ((-1085 . -1036) 149838) ((-461 . -111) 149799) ((-454 . -111) 149628) ((-1073 . -1036) 149605) ((-998 . -34) T) ((-964 . -611) 149587) ((-956 . -1212) T) ((-126 . -1008) 149571) ((-961 . -1109) T) ((-869 . -1020) NIL) ((-733 . -1109) T) ((-713 . -1109) T) ((-656 . -614) 149489) ((-1262 . -489) 149473) ((-1139 . -38) 149433) ((-961 . -23) T) ((-908 . -646) 149398) ((-863 . -1097) T) ((-841 . -102) T) ((-815 . -21) T) ((-633 . -1049) 149382) ((-605 . -1049) 149366) ((-815 . -25) T) ((-733 . -23) T) ((-713 . -23) T) ((-633 . -638) 149350) ((-110 . -659) T) ((-605 . -638) 149334) ((-581 . -1054) 149299) ((-518 . -1054) 149244) ((-227 . -57) 149202) ((-453 . -23) T) ((-407 . -102) T) ((-263 . -102) T) ((-692 . -290) T) ((-864 . -38) 149172) ((-581 . -111) 149128) ((-518 . -111) 149057) ((-1084 . -614) 148793) ((-418 . -1109) T) ((-316 . -1055) 148683) ((-313 . -1055) T) ((-128 . -1212) T) ((-780 . -614) 148431) ((-778 . -614) 148197) ((-656 . -1047) T) ((-1290 . -1097) T) ((-454 . -614) 147982) ((-169 . -307) 147913) ((-418 . -23) T) ((-40 . -611) 147895) ((-40 . -612) 147879) ((-108 . -990) 147861) ((-116 . -867) 147845) ((-647 . -614) 147829) ((-48 . -514) 147795) ((-1198 . -1008) 147779) ((-1178 . -611) 147746) ((-1185 . -34) T) ((-952 . -611) 147712) ((-919 . -611) 147694) ((-1110 . -848) 147645) ((-769 . -611) 147627) ((-670 . -611) 147609) ((-1153 . -309) 147547) ((-479 . -34) T) ((-1089 . -1212) T) ((-477 . -452) T) ((-1138 . -34) T) ((-1084 . -1047) T) ((-50 . -614) 147516) ((-780 . -1047) T) ((-778 . -1047) T) ((-645 . -235) 147500) ((-630 . -235) 147446) ((-581 . -614) 147396) ((-518 . -614) 147326) ((-1235 . -307) 147305) ((-1084 . -326) 147266) ((-454 . -1047) T) ((-1175 . -21) T) ((-1084 . -233) 147245) ((-780 . -326) 147222) ((-780 . -233) T) ((-778 . -326) 147194) ((-729 . -1216) 147173) ((-327 . -649) 147157) ((-1175 . -25) T) ((-59 . -34) T) ((-519 . -34) T) ((-516 . -34) T) ((-454 . -326) 147136) ((-327 . -373) 147120) ((-497 . -34) T) ((-496 . -34) T) ((-1001 . -1148) NIL) ((-729 . -556) 147051) ((-633 . -102) T) ((-605 . -102) T) ((-355 . -724) T) ((-352 . -724) T) ((-344 . -724) T) ((-264 . -724) T) ((-247 . -724) T) ((-1044 . -309) 146959) ((-899 . -1097) 146937) ((-50 . -1047) T) ((-1274 . -21) T) ((-1274 . -25) T) ((-1171 . -556) 146916) ((-1170 . -1216) 146895) ((-1170 . -556) 146846) ((-581 . -1047) T) ((-518 . -1047) T) ((-1164 . -1216) 146825) ((-361 . -1036) 146809) ((-322 . -1036) 146793) ((-1022 . -290) T) ((-379 . -884) 146775) ((-1164 . -556) 146726) ((-1001 . -38) 146671) ((-997 . -644) 146594) ((-797 . -1109) T) ((-908 . -724) T) ((-581 . -243) T) ((-581 . -233) T) ((-518 . -233) T) ((-518 . -243) T) ((-1123 . -556) 146573) ((-354 . -290) T) ((-645 . -693) 146557) ((-379 . -1036) 146517) ((-294 . -1049) 146438) ((-1117 . -1055) T) ((-103 . -125) 146422) ((-294 . -638) 146364) ((-797 . -23) T) ((-1284 . -1279) 146340) ((-1262 . -286) 146317) ((-407 . -309) 146282) ((-1282 . -1279) 146261) ((-1248 . -1097) T) ((-868 . -611) 146243) ((-834 . -1036) 146212) ((-203 . -785) T) ((-202 . -785) T) ((-201 . -785) T) ((-200 . -785) T) ((-199 . -785) T) ((-198 . -785) T) ((-197 . -785) T) ((-196 . -785) T) ((-195 . -785) T) ((-194 . -785) T) ((-547 . -611) 146194) ((-495 . -1000) T) ((-274 . -837) T) ((-273 . -837) T) ((-272 . -837) T) ((-271 . -837) T) ((-48 . -290) T) ((-270 . -837) T) ((-269 . -837) T) ((-268 . -837) T) ((-193 . -785) T) ((-610 . -848) T) ((-652 . -411) 146178) ((-223 . -614) 146140) ((-110 . -848) T) ((-651 . -21) T) ((-651 . -25) T) ((-1285 . -38) 146110) ((-117 . -286) 146061) ((-1262 . -19) 146045) ((-1262 . -602) 146022) ((-1275 . -1097) T) ((-351 . -1049) 145967) ((-1074 . -1097) T) ((-985 . -1097) T) ((-961 . -131) T) ((-735 . -1097) T) ((-351 . -638) 145912) ((-733 . -131) T) ((-713 . -131) T) ((-511 . -791) T) ((-511 . -792) T) ((-453 . -131) T) ((-407 . -1148) 145890) ((-223 . -1047) T) ((-294 . -102) 145672) ((-141 . -1097) T) ((-697 . -1000) T) ((-91 . -1212) T) ((-127 . -611) 145604) ((-121 . -611) 145536) ((-1290 . -172) T) ((-1170 . -363) 145515) ((-1164 . -363) 145494) ((-316 . -1097) T) ((-418 . -131) T) ((-313 . -1097) T) ((-407 . -38) 145446) ((-1130 . -102) T) ((-1248 . -715) 145338) ((-652 . -1055) T) ((-1132 . -1257) T) ((-319 . -145) 145317) ((-319 . -147) 145296) ((-136 . -1097) T) ((-139 . -1097) T) ((-114 . -1097) T) ((-856 . -102) T) ((-580 . -611) 145278) ((-564 . -612) 145177) ((-564 . -611) 145159) ((-495 . -611) 145141) ((-495 . -612) 145086) ((-485 . -23) T) ((-482 . -848) 145037) ((-487 . -637) 145019) ((-963 . -611) 145001) ((-217 . -637) 144983) ((-225 . -404) T) ((-660 . -646) 144967) ((-55 . -611) 144949) ((-1169 . -918) 144928) ((-729 . -1109) T) ((-351 . -102) T) ((-1211 . -1080) T) ((-1117 . -842) T) ((-816 . -848) T) ((-729 . -23) T) ((-343 . -1054) 144873) ((-1155 . -1154) T) ((-1144 . -107) 144857) ((-1171 . -1109) T) ((-1170 . -1109) T) ((-515 . -1036) 144841) ((-1164 . -1109) T) ((-1123 . -1109) T) ((-343 . -111) 144770) ((-1002 . -1216) T) ((-126 . -1212) T) ((-912 . -1216) T) ((-692 . -286) NIL) ((-1263 . -611) 144752) ((-1171 . -23) T) ((-1170 . -23) T) ((-1164 . -23) T) ((-1002 . -556) T) ((-1139 . -231) 144736) ((-912 . -556) T) ((-1123 . -23) T) ((-248 . -611) 144718) ((-1072 . -1097) T) ((-797 . -131) T) ((-708 . -611) 144700) ((-316 . -715) 144610) ((-313 . -715) 144539) ((-697 . -611) 144521) ((-697 . -612) 144466) ((-407 . -400) 144450) ((-438 . -1097) T) ((-487 . -25) T) ((-487 . -21) T) ((-1117 . -1097) T) ((-217 . -25) T) ((-217 . -21) T) ((-710 . -411) 144434) ((-712 . -1036) 144403) ((-1262 . -611) 144315) ((-1262 . -612) 144276) ((-1248 . -172) T) ((-245 . -34) T) ((-343 . -614) 144206) ((-394 . -614) 144188) ((-924 . -972) T) ((-1198 . -1212) T) ((-660 . -789) 144167) ((-660 . -792) 144146) ((-398 . -395) T) ((-523 . -102) 144124) ((-1033 . -1097) T) ((-222 . -993) 144108) ((-504 . -102) T) ((-621 . -611) 144090) ((-45 . -848) NIL) ((-621 . -612) 144067) ((-1033 . -608) 144042) ((-899 . -514) 143975) ((-343 . -1047) T) ((-117 . -612) NIL) ((-117 . -611) 143957) ((-870 . -1212) T) ((-668 . -417) 143941) ((-668 . -1120) 143886) ((-500 . -151) 143868) ((-343 . -233) T) ((-343 . -243) T) ((-40 . -1054) 143813) ((-870 . -882) 143797) ((-870 . -884) 143722) ((-710 . -1055) T) ((-692 . -1000) NIL) ((-1246 . -47) 143692) ((-1225 . -47) 143669) ((-1138 . -1008) 143640) ((-3 . |UnionCategory|) T) ((-1117 . -715) 143627) ((-1102 . -611) 143609) ((-1077 . -147) 143588) ((-1077 . -145) 143539) ((-964 . -614) 143523) ((-225 . -918) T) ((-40 . -111) 143452) ((-870 . -1036) 143316) ((-1002 . -363) T) ((-1001 . -231) 143293) ((-699 . -1049) 143280) ((-912 . -363) T) ((-699 . -638) 143267) ((-319 . -1200) 143233) ((-379 . -307) T) ((-319 . -1197) 143199) ((-316 . -172) 143178) ((-313 . -172) T) ((-581 . -1281) 143165) ((-518 . -1281) 143142) ((-359 . -147) 143121) ((-116 . -1049) 143108) ((-359 . -145) 143059) ((-353 . -147) 143038) ((-353 . -145) 142989) ((-345 . -147) 142968) ((-606 . -1188) 142944) ((-116 . -638) 142931) ((-345 . -145) 142882) ((-319 . -35) 142848) ((-475 . -1188) 142827) ((0 . |EnumerationCategory|) T) ((-319 . -95) 142793) ((-379 . -1020) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 142743) ((-652 . -1097) T) ((-606 . -107) 142690) ((-485 . -131) T) ((-475 . -107) 142640) ((-240 . -1109) 142550) ((-870 . -377) 142534) ((-870 . -338) 142518) ((-240 . -23) 142388) ((-40 . -614) 142318) ((-1059 . -918) T) ((-1059 . -818) T) ((-581 . -368) T) ((-518 . -368) T) ((-1275 . -514) 142251) ((-1254 . -556) 142230) ((-351 . -1148) T) ((-327 . -34) T) ((-44 . -417) 142214) ((-1178 . -614) 142150) ((-871 . -1212) T) ((-390 . -742) 142134) ((-1247 . -1216) 142113) ((-1247 . -556) 142064) ((-1139 . -644) 142023) ((-729 . -131) T) ((-670 . -614) 142007) ((-1226 . -1216) 141986) ((-1226 . -556) 141937) ((-1225 . -1212) 141916) ((-1225 . -884) 141789) ((-1225 . -882) 141759) ((-1171 . -131) T) ((-311 . -1080) T) ((-1170 . -131) T) ((-735 . -514) 141692) ((-1164 . -131) T) ((-1123 . -131) T) ((-891 . -1097) T) ((-144 . -842) T) ((-1022 . -1000) T) ((-689 . -611) 141674) ((-1002 . -23) T) ((-523 . -309) 141612) ((-1002 . -1109) T) ((-141 . -514) NIL) ((-864 . -644) 141557) ((-1001 . -349) NIL) ((-969 . -23) T) ((-912 . -1109) T) ((-351 . -38) 141522) ((-912 . -23) T) ((-870 . -898) 141481) ((-82 . -611) 141463) ((-40 . -1047) T) ((-868 . -1054) 141450) ((-868 . -111) 141435) ((-699 . -102) T) ((-692 . -611) 141417) ((-600 . -1212) T) ((-595 . -556) 141396) ((-427 . -1109) T) ((-339 . -1049) 141380) ((-213 . -1097) T) ((-174 . -1049) 141312) ((-474 . -47) 141282) ((-134 . -102) T) ((-40 . -233) 141254) ((-40 . -243) T) ((-116 . -102) T) ((-594 . -556) 141233) ((-339 . -638) 141217) ((-692 . -612) 141125) ((-316 . -514) 141091) ((-174 . -638) 141023) ((-313 . -514) 140915) ((-1246 . -1036) 140899) ((-1225 . -1036) 140685) ((-997 . -411) 140669) ((-427 . -23) T) ((-1117 . -172) T) ((-1248 . -290) T) ((-652 . -715) 140639) ((-144 . -1097) T) ((-48 . -1000) T) ((-407 . -231) 140623) ((-295 . -235) 140573) ((-869 . -918) T) ((-869 . -818) NIL) ((-868 . -614) 140545) ((-862 . -848) T) ((-1225 . -338) 140515) ((-1225 . -377) 140485) ((-222 . -1118) 140469) ((-1262 . -288) 140446) ((-1206 . -646) 140371) ((-1001 . -644) 140301) ((-961 . -21) T) ((-961 . -25) T) ((-733 . -21) T) ((-733 . -25) T) ((-713 . -21) T) ((-713 . -25) T) ((-709 . -646) 140266) ((-453 . -21) T) ((-453 . -25) T) ((-339 . -102) T) ((-174 . -102) T) ((-997 . -1055) T) ((-868 . -1047) T) ((-772 . -102) T) ((-1247 . -363) 140245) ((-1246 . -898) 140151) ((-1226 . -363) 140130) ((-1225 . -898) 139981) ((-1022 . -611) 139963) ((-407 . -826) 139916) ((-1171 . -493) 139882) ((-169 . -918) 139813) ((-1170 . -493) 139779) ((-1164 . -493) 139745) ((-710 . -1097) T) ((-1123 . -493) 139711) ((-580 . -1054) 139698) ((-564 . -1054) 139685) ((-495 . -1054) 139650) ((-316 . -290) 139629) ((-313 . -290) T) ((-354 . -611) 139611) ((-418 . -25) T) ((-418 . -21) T) ((-99 . -286) 139590) ((-580 . -111) 139575) ((-564 . -111) 139560) ((-495 . -111) 139516) ((-1173 . -884) 139483) ((-899 . -489) 139467) ((-48 . -611) 139449) ((-48 . -612) 139394) ((-240 . -131) 139264) ((-1285 . -644) 139223) ((-1235 . -918) 139202) ((-814 . -1216) 139181) ((-388 . -490) 139162) ((-1033 . -514) 139006) ((-388 . -611) 138972) ((-814 . -556) 138903) ((-585 . -646) 138878) ((-264 . -47) 138850) ((-247 . -47) 138807) ((-531 . -509) 138784) ((-580 . -614) 138756) ((-564 . -614) 138728) ((-495 . -614) 138661) ((-1071 . -1212) T) ((-998 . -1212) T) ((-1254 . -23) T) ((-697 . -1054) 138626) ((-1254 . -1109) T) ((-1247 . -1109) T) ((-1247 . -23) T) ((-1226 . -1109) T) ((-1226 . -23) T) ((-1001 . -370) 138598) ((-112 . -368) T) ((-474 . -898) 138504) ((-1206 . -724) T) ((-902 . -611) 138486) ((-55 . -614) 138468) ((-91 . -107) 138452) ((-1117 . -290) T) ((-903 . -848) 138403) ((-699 . -1148) T) ((-697 . -111) 138359) ((-841 . -644) 138276) ((-595 . -1109) T) ((-594 . -1109) T) ((-710 . -715) 138105) ((-709 . -724) T) ((-1002 . -131) T) ((-969 . -131) T) ((-487 . -848) T) ((-912 . -131) T) ((-797 . -25) T) ((-797 . -21) T) ((-217 . -848) T) ((-407 . -644) 138042) ((-580 . -1047) T) ((-564 . -1047) T) ((-495 . -1047) T) ((-595 . -23) T) ((-343 . -1281) 138019) ((-319 . -452) 137998) ((-339 . -309) 137985) ((-594 . -23) T) ((-427 . -131) T) ((-656 . -646) 137959) ((-245 . -1008) 137943) ((-870 . -307) T) ((-1286 . -1276) 137927) ((-769 . -790) T) ((-769 . -793) T) ((-699 . -38) 137914) ((-564 . -233) T) ((-495 . -243) T) ((-495 . -233) T) ((-1147 . -235) 137864) ((-1084 . -907) 137843) ((-116 . -38) 137830) ((-209 . -798) T) ((-208 . -798) T) ((-207 . -798) T) ((-206 . -798) T) ((-870 . -1020) 137808) ((-1275 . -489) 137792) ((-780 . -907) 137771) ((-778 . -907) 137750) ((-1185 . -1212) T) ((-454 . -907) 137729) ((-735 . -489) 137713) ((-1084 . -646) 137638) ((-697 . -614) 137573) ((-780 . -646) 137498) ((-621 . -1054) 137485) ((-479 . -1212) T) ((-343 . -368) T) ((-141 . -489) 137467) ((-778 . -646) 137392) ((-1138 . -1212) T) ((-549 . -848) T) ((-461 . -646) 137363) ((-264 . -884) 137222) ((-247 . -884) NIL) ((-117 . -1054) 137167) ((-454 . -646) 137092) ((-662 . -1036) 137069) ((-621 . -111) 137054) ((-390 . -1049) 137038) ((-355 . -1036) 137022) ((-352 . -1036) 137006) ((-344 . -1036) 136990) ((-264 . -1036) 136834) ((-247 . -1036) 136710) ((-117 . -111) 136639) ((-59 . -1212) T) ((-390 . -638) 136623) ((-619 . -1049) 136607) ((-519 . -1212) T) ((-516 . -1212) T) ((-497 . -1212) T) ((-496 . -1212) T) ((-437 . -611) 136589) ((-434 . -611) 136571) ((-619 . -638) 136555) ((-3 . -102) T) ((-1025 . -1205) 136524) ((-831 . -102) T) ((-687 . -57) 136482) ((-697 . -1047) T) ((-633 . -644) 136451) ((-605 . -644) 136420) ((-50 . -646) 136394) ((-289 . -452) T) ((-476 . -1205) 136363) ((0 . -102) T) ((-581 . -646) 136328) ((-518 . -646) 136273) ((-49 . -102) T) ((-908 . -1036) 136260) ((-697 . -243) T) ((-1077 . -409) 136239) ((-729 . -637) 136187) ((-997 . -1097) T) ((-710 . -172) 136078) ((-621 . -614) 135973) ((-487 . -990) 135955) ((-264 . -377) 135939) ((-247 . -377) 135923) ((-399 . -1097) T) ((-1024 . -102) 135901) ((-339 . -38) 135885) ((-217 . -990) 135867) ((-117 . -614) 135797) ((-174 . -38) 135729) ((-1246 . -307) 135708) ((-1225 . -307) 135687) ((-656 . -724) T) ((-99 . -611) 135669) ((-477 . -1049) 135634) ((-1164 . -637) 135586) ((-477 . -638) 135551) ((-485 . -25) T) ((-485 . -21) T) ((-1225 . -1020) 135503) ((-621 . -1047) T) ((-379 . -404) T) ((-390 . -102) T) ((-1102 . -616) 135418) ((-264 . -898) 135364) ((-247 . -898) 135341) ((-117 . -1047) T) ((-814 . -1109) T) ((-1084 . -724) T) ((-621 . -233) 135320) ((-619 . -102) T) ((-780 . -724) T) ((-778 . -724) T) ((-413 . -1109) T) ((-117 . -243) T) ((-40 . -368) NIL) ((-117 . -233) NIL) ((-1217 . -848) T) ((-454 . -724) T) ((-814 . -23) T) ((-729 . -25) T) ((-729 . -21) T) ((-1074 . -286) 135299) ((-78 . -396) T) ((-78 . -395) T) ((-533 . -765) 135281) ((-692 . -1054) 135231) ((-1254 . -131) T) ((-1247 . -131) T) ((-1226 . -131) T) ((-1171 . -25) T) ((-1139 . -411) 135215) ((-633 . -367) 135147) ((-605 . -367) 135079) ((-1153 . -1146) 135063) ((-103 . -1097) 135041) ((-1171 . -21) T) ((-1170 . -21) T) ((-863 . -611) 135023) ((-997 . -715) 134971) ((-223 . -646) 134938) ((-692 . -111) 134872) ((-50 . -724) T) ((-1170 . -25) T) ((-351 . -349) T) ((-1164 . -21) T) ((-1077 . -452) 134823) ((-1164 . -25) T) ((-710 . -514) 134770) ((-581 . -724) T) ((-518 . -724) T) ((-1123 . -21) T) ((-1123 . -25) T) ((-595 . -131) T) ((-294 . -644) 134505) ((-594 . -131) T) ((-359 . -452) T) ((-353 . -452) T) ((-345 . -452) T) ((-474 . -307) 134484) ((-1220 . -102) T) ((-313 . -286) 134419) ((-108 . -452) T) ((-79 . -441) T) ((-79 . -395) T) ((-477 . -102) T) ((-689 . -614) 134403) ((-1290 . -611) 134385) ((-1290 . -612) 134367) ((-1077 . -402) 134346) ((-1033 . -489) 134277) ((-564 . -793) T) ((-564 . -790) T) ((-1060 . -235) 134223) ((-359 . -402) 134174) ((-353 . -402) 134125) ((-345 . -402) 134076) ((-1277 . -1109) T) ((-1286 . -1049) 134060) ((-381 . -1049) 134044) ((-1286 . -638) 134014) ((-381 . -638) 133984) ((-692 . -614) 133919) ((-1277 . -23) T) ((-1264 . -102) T) ((-175 . -611) 133901) ((-1139 . -1055) T) ((-547 . -368) T) ((-668 . -742) 133885) ((-1175 . -145) 133864) ((-1175 . -147) 133843) ((-1143 . -1097) T) ((-1143 . -1068) 133812) ((-69 . -1212) T) ((-1022 . -1054) 133749) ((-351 . -644) 133679) ((-864 . -1055) T) ((-240 . -637) 133585) ((-692 . -1047) T) ((-354 . -1054) 133530) ((-61 . -1212) T) ((-1022 . -111) 133446) ((-899 . -611) 133357) ((-692 . -243) T) ((-692 . -233) NIL) ((-841 . -846) 133336) ((-697 . -793) T) ((-697 . -790) T) ((-1001 . -411) 133313) ((-354 . -111) 133242) ((-379 . -918) T) ((-407 . -846) 133221) ((-710 . -290) 133132) ((-223 . -724) T) ((-1254 . -493) 133098) ((-1247 . -493) 133064) ((-1226 . -493) 133030) ((-578 . -1097) T) ((-316 . -1000) 133009) ((-222 . -1097) 132987) ((-1219 . -842) T) ((-319 . -971) 132949) ((-105 . -102) T) ((-48 . -1054) 132914) ((-1286 . -102) T) ((-381 . -102) T) ((-48 . -111) 132870) ((-1002 . -637) 132852) ((-1248 . -611) 132834) ((-531 . -102) T) ((-500 . -102) T) ((-1130 . -1131) 132818) ((-152 . -1269) 132802) ((-245 . -1212) T) ((-1211 . -102) T) ((-1022 . -614) 132739) ((-1169 . -1216) 132718) ((-354 . -614) 132648) ((-1122 . -1216) 132627) ((-240 . -21) 132537) ((-240 . -25) 132388) ((-127 . -119) 132372) ((-121 . -119) 132356) ((-44 . -742) 132340) ((-1169 . -556) 132251) ((-1122 . -556) 132182) ((-1219 . -1097) T) ((-1033 . -286) 132157) ((-1163 . -1080) T) ((-992 . -1080) T) ((-814 . -131) T) ((-117 . -793) NIL) ((-117 . -790) NIL) ((-355 . -307) T) ((-352 . -307) T) ((-344 . -307) T) ((-251 . -1109) 132067) ((-250 . -1109) 131977) ((-1022 . -1047) T) ((-1001 . -1055) T) ((-48 . -614) 131910) ((-343 . -646) 131855) ((-619 . -38) 131839) ((-1275 . -611) 131801) ((-1275 . -612) 131762) ((-1074 . -611) 131744) ((-1022 . -243) T) ((-354 . -1047) T) ((-813 . -1269) 131714) ((-251 . -23) T) ((-250 . -23) T) ((-985 . -611) 131696) ((-735 . -612) 131657) ((-735 . -611) 131639) ((-797 . -848) 131618) ((-1156 . -151) 131565) ((-997 . -514) 131477) ((-354 . -233) T) ((-354 . -243) T) ((-388 . -614) 131458) ((-1002 . -25) T) ((-141 . -611) 131440) ((-141 . -612) 131399) ((-908 . -307) T) ((-1002 . -21) T) ((-969 . -25) T) ((-912 . -21) T) ((-912 . -25) T) ((-427 . -21) T) ((-427 . -25) T) ((-841 . -411) 131383) ((-48 . -1047) T) ((-1284 . -1276) 131367) ((-1282 . -1276) 131351) ((-1033 . -602) 131326) ((-316 . -612) 131187) ((-316 . -611) 131169) ((-313 . -612) NIL) ((-313 . -611) 131151) ((-48 . -243) T) ((-48 . -233) T) ((-652 . -286) 131112) ((-550 . -235) 131062) ((-139 . -611) 131029) ((-136 . -611) 131011) ((-114 . -611) 130993) ((-477 . -38) 130958) ((-1286 . -1283) 130937) ((-1277 . -131) T) ((-1285 . -1055) T) ((-1079 . -102) T) ((-88 . -1212) T) ((-500 . -309) NIL) ((-998 . -107) 130921) ((-887 . -1097) T) ((-883 . -1097) T) ((-1262 . -649) 130905) ((-1262 . -373) 130889) ((-327 . -1212) T) ((-592 . -848) T) ((-1139 . -1097) T) ((-1139 . -1051) 130829) ((-103 . -514) 130762) ((-925 . -611) 130744) ((-343 . -724) T) ((-30 . -611) 130726) ((-864 . -1097) T) ((-841 . -1055) 130705) ((-40 . -646) 130650) ((-225 . -1216) T) ((-407 . -1055) T) ((-1155 . -151) 130632) ((-997 . -290) 130583) ((-615 . -1097) T) ((-225 . -556) T) ((-319 . -1243) 130567) ((-319 . -1240) 130537) ((-699 . -644) 130509) ((-1185 . -1188) 130488) ((-1072 . -611) 130470) ((-1185 . -107) 130420) ((-645 . -151) 130404) ((-630 . -151) 130350) ((-116 . -644) 130322) ((-479 . -1188) 130301) ((-487 . -147) T) ((-487 . -145) NIL) ((-1117 . -612) 130216) ((-438 . -611) 130198) ((-217 . -147) T) ((-217 . -145) NIL) ((-1117 . -611) 130180) ((-129 . -102) T) ((-52 . -102) T) ((-1226 . -637) 130132) ((-479 . -107) 130082) ((-991 . -23) T) ((-1286 . -38) 130052) ((-1169 . -1109) T) ((-1122 . -1109) T) ((-1059 . -1216) T) ((-311 . -102) T) ((-852 . -1109) T) ((-950 . -1216) 130031) ((-481 . -1216) 130010) ((-1059 . -556) T) ((-950 . -556) 129941) ((-1169 . -23) T) ((-1122 . -23) T) ((-852 . -23) T) ((-481 . -556) 129872) ((-1139 . -715) 129804) ((-668 . -1049) 129788) ((-1143 . -514) 129721) ((-668 . -638) 129705) ((-1033 . -612) NIL) ((-1033 . -611) 129687) ((-96 . -1080) T) ((-864 . -715) 129657) ((-1206 . -47) 129626) ((-251 . -131) T) ((-250 . -131) T) ((-1101 . -1097) T) ((-1001 . -1097) T) ((-62 . -611) 129608) ((-1164 . -848) NIL) ((-1022 . -790) T) ((-1022 . -793) T) ((-1290 . -1054) 129595) ((-1290 . -111) 129580) ((-1254 . -25) T) ((-1254 . -21) T) ((-868 . -646) 129567) ((-1247 . -21) T) ((-1247 . -25) T) ((-1226 . -21) T) ((-1226 . -25) T) ((-1025 . -151) 129551) ((-870 . -818) 129530) ((-870 . -918) T) ((-710 . -286) 129457) ((-595 . -21) T) ((-339 . -644) 129416) ((-595 . -25) T) ((-594 . -21) T) ((-174 . -644) 129333) ((-40 . -724) T) ((-222 . -514) 129266) ((-594 . -25) T) ((-476 . -151) 129250) ((-463 . -151) 129234) ((-919 . -792) T) ((-919 . -724) T) ((-769 . -791) T) ((-769 . -792) T) ((-506 . -1097) T) ((-502 . -1097) T) ((-769 . -724) T) ((-225 . -363) T) ((-1284 . -1049) 129218) ((-1282 . -1049) 129202) ((-1284 . -638) 129172) ((-1153 . -1097) 129150) ((-869 . -1216) T) ((-1282 . -638) 129120) ((-652 . -611) 129102) ((-869 . -556) T) ((-692 . -368) NIL) ((-44 . -1049) 129086) ((-1290 . -614) 129068) ((-1285 . -1097) T) ((-668 . -102) T) ((-359 . -1269) 129052) ((-353 . -1269) 129036) ((-44 . -638) 129020) ((-345 . -1269) 129004) ((-548 . -102) T) ((-520 . -848) 128983) ((-1044 . -1097) T) ((-815 . -452) 128962) ((-152 . -1049) 128946) ((-1044 . -1068) 128875) ((-1025 . -974) 128844) ((-817 . -1109) T) ((-1001 . -715) 128789) ((-152 . -638) 128773) ((-386 . -1109) T) ((-476 . -974) 128742) ((-463 . -974) 128711) ((-110 . -151) 128693) ((-73 . -611) 128675) ((-891 . -611) 128657) ((-1077 . -722) 128636) ((-1290 . -1047) T) ((-814 . -637) 128584) ((-294 . -1055) 128526) ((-169 . -1216) 128431) ((-225 . -1109) T) ((-324 . -23) T) ((-1164 . -990) 128383) ((-841 . -1097) T) ((-1248 . -1054) 128288) ((-1123 . -738) 128267) ((-1246 . -918) 128246) ((-1225 . -918) 128225) ((-868 . -724) T) ((-169 . -556) 128136) ((-580 . -646) 128123) ((-564 . -646) 128110) ((-407 . -1097) T) ((-263 . -1097) T) ((-213 . -611) 128092) ((-495 . -646) 128057) ((-225 . -23) T) ((-1225 . -818) 128010) ((-1284 . -102) T) ((-354 . -1281) 127987) ((-1282 . -102) T) ((-1248 . -111) 127879) ((-813 . -1049) 127776) ((-813 . -638) 127718) ((-144 . -611) 127700) ((-991 . -131) T) ((-44 . -102) T) ((-240 . -848) 127651) ((-1235 . -1216) 127630) ((-103 . -489) 127614) ((-1285 . -715) 127584) ((-1084 . -47) 127545) ((-1059 . -1109) T) ((-950 . -1109) T) ((-127 . -34) T) ((-121 . -34) T) ((-780 . -47) 127522) ((-778 . -47) 127494) ((-1235 . -556) 127405) ((-354 . -368) T) ((-481 . -1109) T) ((-1169 . -131) T) ((-1122 . -131) T) ((-454 . -47) 127384) ((-869 . -363) T) ((-852 . -131) T) ((-152 . -102) T) ((-1059 . -23) T) ((-950 . -23) T) ((-571 . -556) T) ((-814 . -25) T) ((-814 . -21) T) ((-1139 . -514) 127317) ((-591 . -1080) T) ((-585 . -1036) 127301) ((-1248 . -614) 127175) ((-481 . -23) T) ((-351 . -1055) T) ((-1206 . -898) 127156) ((-668 . -309) 127094) ((-1110 . -1269) 127064) ((-697 . -646) 127029) ((-1001 . -172) T) ((-961 . -145) 127008) ((-633 . -1097) T) ((-605 . -1097) T) ((-961 . -147) 126987) ((-1002 . -848) T) ((-733 . -147) 126966) ((-733 . -145) 126945) ((-969 . -848) T) ((-831 . -644) 126862) ((-474 . -918) 126841) ((-319 . -1049) 126676) ((-316 . -1054) 126586) ((-313 . -1054) 126515) ((-997 . -286) 126473) ((-407 . -715) 126425) ((-319 . -638) 126266) ((-699 . -846) T) ((-1248 . -1047) T) ((-316 . -111) 126162) ((-313 . -111) 126075) ((-962 . -102) T) ((-813 . -102) 125865) ((-710 . -612) NIL) ((-710 . -611) 125847) ((-656 . -1036) 125743) ((-1248 . -326) 125687) ((-1033 . -288) 125662) ((-580 . -724) T) ((-564 . -792) T) ((-169 . -363) 125613) ((-564 . -789) T) ((-564 . -724) T) ((-495 . -724) T) ((-1143 . -489) 125597) ((-1084 . -884) NIL) ((-869 . -1109) T) ((-117 . -907) NIL) ((-1284 . -1283) 125573) ((-1282 . -1283) 125552) ((-780 . -884) NIL) ((-778 . -884) 125411) ((-1277 . -25) T) ((-1277 . -21) T) ((-1209 . -102) 125389) ((-1103 . -395) T) ((-621 . -646) 125376) ((-454 . -884) NIL) ((-673 . -102) 125354) ((-1084 . -1036) 125181) ((-869 . -23) T) ((-780 . -1036) 125040) ((-778 . -1036) 124897) ((-117 . -646) 124842) ((-454 . -1036) 124718) ((-316 . -614) 124282) ((-313 . -614) 124165) ((-390 . -644) 124134) ((-647 . -1036) 124118) ((-625 . -102) T) ((-222 . -489) 124102) ((-1262 . -34) T) ((-619 . -644) 124061) ((-289 . -1049) 124048) ((-136 . -614) 124032) ((-289 . -638) 124019) ((-633 . -715) 124003) ((-605 . -715) 123987) ((-668 . -38) 123947) ((-319 . -102) T) ((-85 . -611) 123929) ((-50 . -1036) 123913) ((-1117 . -1054) 123900) ((-1084 . -377) 123884) ((-780 . -377) 123868) ((-697 . -724) T) ((-697 . -792) T) ((-697 . -789) T) ((-581 . -1036) 123855) ((-518 . -1036) 123832) ((-60 . -57) 123794) ((-324 . -131) T) ((-316 . -1047) 123684) ((-313 . -1047) T) ((-169 . -1109) T) ((-778 . -377) 123668) ((-45 . -151) 123618) ((-1002 . -990) 123600) ((-454 . -377) 123584) ((-407 . -172) T) ((-316 . -243) 123563) ((-313 . -243) T) ((-313 . -233) NIL) ((-294 . -1097) 123345) ((-225 . -131) T) ((-1117 . -111) 123330) ((-169 . -23) T) ((-797 . -147) 123309) ((-797 . -145) 123288) ((-251 . -637) 123194) ((-250 . -637) 123100) ((-319 . -284) 123066) ((-1153 . -514) 122999) ((-477 . -644) 122949) ((-1130 . -1097) T) ((-225 . -1057) T) ((-813 . -309) 122887) ((-1084 . -898) 122822) ((-780 . -898) 122765) ((-778 . -898) 122749) ((-1284 . -38) 122719) ((-1282 . -38) 122689) ((-1235 . -1109) T) ((-853 . -1109) T) ((-454 . -898) 122666) ((-856 . -1097) T) ((-1235 . -23) T) ((-1117 . -614) 122638) ((-571 . -1109) T) ((-853 . -23) T) ((-621 . -724) T) ((-355 . -918) T) ((-352 . -918) T) ((-289 . -102) T) ((-344 . -918) T) ((-1059 . -131) T) ((-968 . -1080) T) ((-950 . -131) T) ((-117 . -792) NIL) ((-117 . -789) NIL) ((-117 . -724) T) ((-692 . -907) NIL) ((-1044 . -514) 122539) ((-481 . -131) T) ((-571 . -23) T) ((-673 . -309) 122477) ((-633 . -759) T) ((-605 . -759) T) ((-1226 . -848) NIL) ((-1077 . -1049) 122387) ((-1001 . -290) T) ((-692 . -646) 122337) ((-251 . -21) T) ((-351 . -1097) T) ((-251 . -25) T) ((-250 . -21) T) ((-250 . -25) T) ((-152 . -38) 122321) ((-2 . -102) T) ((-908 . -918) T) ((-1077 . -638) 122189) ((-482 . -1269) 122159) ((-1117 . -1047) T) ((-709 . -307) T) ((-359 . -1049) 122111) ((-353 . -1049) 122063) ((-345 . -1049) 122015) ((-359 . -638) 121967) ((-223 . -1036) 121944) ((-353 . -638) 121896) ((-108 . -1049) 121846) ((-345 . -638) 121798) ((-294 . -715) 121740) ((-699 . -1055) T) ((-487 . -452) T) ((-407 . -514) 121652) ((-108 . -638) 121602) ((-217 . -452) T) ((-1117 . -233) T) ((-295 . -151) 121552) ((-997 . -612) 121513) ((-997 . -611) 121495) ((-987 . -611) 121477) ((-116 . -1055) T) ((-652 . -1054) 121461) ((-225 . -493) T) ((-399 . -611) 121443) ((-399 . -612) 121420) ((-1052 . -1269) 121390) ((-652 . -111) 121369) ((-1139 . -489) 121353) ((-1286 . -644) 121312) ((-381 . -644) 121281) ((-813 . -38) 121251) ((-63 . -441) T) ((-63 . -395) T) ((-1156 . -102) T) ((-869 . -131) T) ((-484 . -102) 121229) ((-1290 . -368) T) ((-1077 . -102) T) ((-1058 . -102) T) ((-351 . -715) 121174) ((-729 . -147) 121153) ((-729 . -145) 121132) ((-652 . -614) 121050) ((-1022 . -646) 120987) ((-523 . -1097) 120965) ((-359 . -102) T) ((-353 . -102) T) ((-345 . -102) T) ((-108 . -102) T) ((-504 . -1097) T) ((-354 . -646) 120910) ((-1169 . -637) 120858) ((-1122 . -637) 120806) ((-385 . -509) 120785) ((-831 . -846) 120764) ((-379 . -1216) T) ((-692 . -724) T) ((-339 . -1055) T) ((-1226 . -990) 120716) ((-174 . -1055) T) ((-103 . -611) 120648) ((-1171 . -145) 120627) ((-1171 . -147) 120606) ((-379 . -556) T) ((-1170 . -147) 120585) ((-1170 . -145) 120564) ((-1164 . -145) 120471) ((-407 . -290) T) ((-1164 . -147) 120378) ((-1123 . -147) 120357) ((-1123 . -145) 120336) ((-319 . -38) 120177) ((-169 . -131) T) ((-313 . -793) NIL) ((-313 . -790) NIL) ((-652 . -1047) T) ((-48 . -646) 120142) ((-1110 . -1049) 120039) ((-891 . -614) 120016) ((-1110 . -638) 119958) ((-1163 . -102) T) ((-992 . -102) T) ((-991 . -21) T) ((-127 . -1008) 119942) ((-121 . -1008) 119926) ((-991 . -25) T) ((-899 . -119) 119910) ((-1155 . -102) T) ((-1235 . -131) T) ((-1169 . -25) T) ((-1169 . -21) T) ((-853 . -131) T) ((-1122 . -25) T) ((-1122 . -21) T) ((-852 . -25) T) ((-852 . -21) T) ((-780 . -307) 119889) ((-645 . -102) 119867) ((-630 . -102) T) ((-1156 . -309) 119662) ((-571 . -131) T) ((-619 . -846) 119641) ((-1153 . -489) 119625) ((-1147 . -151) 119575) ((-1143 . -611) 119537) ((-1143 . -612) 119498) ((-1022 . -789) T) ((-1022 . -792) T) ((-1022 . -724) T) ((-710 . -1054) 119321) ((-484 . -309) 119259) ((-453 . -417) 119229) ((-351 . -172) T) ((-289 . -38) 119216) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-343 . -1036) 119193) ((-268 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-354 . -724) T) ((-710 . -111) 119002) ((-668 . -231) 118986) ((-581 . -307) T) ((-518 . -307) T) ((-294 . -514) 118935) ((-108 . -309) NIL) ((-72 . -395) T) ((-1110 . -102) 118725) ((-831 . -411) 118709) ((-1117 . -793) T) ((-1117 . -790) T) ((-699 . -1097) T) ((-578 . -611) 118691) ((-379 . -363) T) ((-169 . -493) 118669) ((-222 . -611) 118601) ((-134 . -1097) T) ((-116 . -1097) T) ((-48 . -724) T) ((-1044 . -489) 118566) ((-141 . -425) 118548) ((-141 . -368) T) ((-1025 . -102) T) ((-512 . -509) 118527) ((-710 . -614) 118283) ((-476 . -102) T) ((-463 . -102) T) ((-1032 . -1109) T) ((-1219 . -611) 118265) ((-1178 . -1036) 118201) ((-1171 . -35) 118167) ((-1171 . -95) 118133) ((-1171 . -1200) 118099) ((-1171 . -1197) 118065) ((-1155 . -309) NIL) ((-89 . -396) T) ((-89 . -395) T) ((-1077 . -1148) 118044) ((-1170 . -1197) 118010) ((-1170 . -1200) 117976) ((-1032 . -23) T) ((-1170 . -95) 117942) ((-571 . -493) T) ((-1170 . -35) 117908) ((-1164 . -1197) 117874) ((-1164 . -1200) 117840) ((-1164 . -95) 117806) ((-361 . -1109) T) ((-359 . -1148) 117785) ((-353 . -1148) 117764) ((-345 . -1148) 117743) ((-1164 . -35) 117709) ((-1123 . -35) 117675) ((-1123 . -95) 117641) ((-108 . -1148) T) ((-1123 . -1200) 117607) ((-831 . -1055) 117586) ((-645 . -309) 117524) ((-630 . -309) 117375) ((-1123 . -1197) 117341) ((-710 . -1047) T) ((-1059 . -637) 117323) ((-1077 . -38) 117191) ((-950 . -637) 117139) ((-1002 . -147) T) ((-1002 . -145) NIL) ((-379 . -1109) T) ((-324 . -25) T) ((-322 . -23) T) ((-941 . -848) 117118) ((-710 . -326) 117095) ((-481 . -637) 117043) ((-40 . -1036) 116931) ((-710 . -233) T) ((-699 . -715) 116918) ((-339 . -1097) T) ((-174 . -1097) T) ((-331 . -848) T) ((-418 . -452) 116868) ((-379 . -23) T) ((-359 . -38) 116833) ((-353 . -38) 116798) ((-345 . -38) 116763) ((-80 . -441) T) ((-80 . -395) T) ((-225 . -25) T) ((-225 . -21) T) ((-834 . -1109) T) ((-108 . -38) 116713) ((-825 . -1109) T) ((-772 . -1097) T) ((-116 . -715) 116700) ((-670 . -1036) 116684) ((-610 . -102) T) ((-834 . -23) T) ((-825 . -23) T) ((-1153 . -286) 116661) ((-1110 . -309) 116599) ((-482 . -1049) 116496) ((-1099 . -235) 116480) ((-64 . -396) T) ((-64 . -395) T) ((-110 . -102) T) ((-482 . -638) 116422) ((-40 . -377) 116399) ((-96 . -102) T) ((-651 . -850) 116383) ((-1132 . -1080) T) ((-1059 . -21) T) ((-1059 . -25) T) ((-1052 . -1049) 116367) ((-813 . -231) 116336) ((-950 . -25) T) ((-950 . -21) T) ((-1052 . -638) 116278) ((-619 . -1055) T) ((-1117 . -368) T) ((-1025 . -309) 116216) ((-668 . -644) 116175) ((-481 . -25) T) ((-481 . -21) T) ((-385 . -1049) 116159) ((-887 . -611) 116141) ((-883 . -611) 116123) ((-523 . -514) 116056) ((-251 . -848) 116007) ((-250 . -848) 115958) ((-385 . -638) 115928) ((-869 . -637) 115905) ((-476 . -309) 115843) ((-463 . -309) 115781) ((-351 . -290) T) ((-1153 . -1250) 115765) ((-1139 . -611) 115727) ((-1139 . -612) 115688) ((-1137 . -102) T) ((-997 . -1054) 115584) ((-40 . -898) 115536) ((-1153 . -602) 115513) ((-1290 . -646) 115500) ((-864 . -490) 115477) ((-1060 . -151) 115423) ((-870 . -1216) T) ((-997 . -111) 115305) ((-339 . -715) 115289) ((-864 . -611) 115251) ((-174 . -715) 115183) ((-407 . -286) 115141) ((-870 . -556) T) ((-108 . -400) 115123) ((-84 . -384) T) ((-84 . -395) T) ((-699 . -172) T) ((-615 . -611) 115105) ((-99 . -724) T) ((-482 . -102) 114895) ((-99 . -473) T) ((-116 . -172) T) ((-1284 . -644) 114854) ((-1282 . -644) 114813) ((-1110 . -38) 114783) ((-169 . -637) 114731) ((-1052 . -102) T) ((-997 . -614) 114621) ((-869 . -25) T) ((-813 . -238) 114600) ((-869 . -21) T) ((-816 . -102) T) ((-44 . -644) 114543) ((-414 . -102) T) ((-385 . -102) T) ((-110 . -309) NIL) ((-227 . -102) 114521) ((-127 . -1212) T) ((-121 . -1212) T) ((-815 . -1049) 114472) ((-815 . -638) 114414) ((-1032 . -131) T) ((-668 . -367) 114398) ((-152 . -644) 114357) ((-997 . -1047) T) ((-1235 . -637) 114305) ((-1101 . -611) 114287) ((-1001 . -611) 114269) ((-515 . -23) T) ((-510 . -23) T) ((-343 . -307) T) ((-508 . -23) T) ((-322 . -131) T) ((-3 . -1097) T) ((-1001 . -612) 114253) ((-997 . -243) 114232) ((-997 . -233) 114211) ((-1290 . -724) T) ((-1254 . -145) 114190) ((-831 . -1097) T) ((-1254 . -147) 114169) ((-1247 . -147) 114148) ((-1247 . -145) 114127) ((-1246 . -1216) 114106) ((-1226 . -145) 114013) ((-1226 . -147) 113920) ((-1225 . -1216) 113899) ((-379 . -131) T) ((-564 . -884) 113881) ((0 . -1097) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1097) T) ((-1248 . -646) 113786) ((-1246 . -556) 113737) ((-712 . -1109) T) ((-1225 . -556) 113688) ((-564 . -1036) 113670) ((-594 . -147) 113649) ((-594 . -145) 113628) ((-495 . -1036) 113571) ((-1132 . -1134) T) ((-87 . -384) T) ((-87 . -395) T) ((-870 . -363) T) ((-834 . -131) T) ((-825 . -131) T) ((-962 . -644) 113515) ((-712 . -23) T) ((-506 . -611) 113481) ((-502 . -611) 113463) ((-813 . -644) 113213) ((-1286 . -1055) T) ((-379 . -1057) T) ((-1024 . -1097) 113191) ((-55 . -1036) 113173) ((-899 . -34) T) ((-482 . -309) 113111) ((-591 . -102) T) ((-1153 . -612) 113072) ((-1153 . -611) 113004) ((-1175 . -1049) 112887) ((-45 . -102) T) ((-815 . -102) T) ((-1175 . -638) 112784) ((-1235 . -25) T) ((-1235 . -21) T) ((-853 . -25) T) ((-44 . -367) 112768) ((-853 . -21) T) ((-729 . -452) 112719) ((-1285 . -611) 112701) ((-1274 . -1049) 112671) ((-1052 . -309) 112609) ((-669 . -1080) T) ((-604 . -1080) T) ((-390 . -1097) T) ((-571 . -25) T) ((-571 . -21) T) ((-180 . -1080) T) ((-161 . -1080) T) ((-156 . -1080) T) ((-154 . -1080) T) ((-1274 . -638) 112579) ((-619 . -1097) T) ((-697 . -884) 112561) ((-1262 . -1212) T) ((-227 . -309) 112499) ((-144 . -368) T) ((-1044 . -612) 112441) ((-1044 . -611) 112384) ((-313 . -907) NIL) ((-1220 . -842) T) ((-697 . -1036) 112329) ((-709 . -918) T) ((-474 . -1216) 112308) ((-1170 . -452) 112287) ((-1164 . -452) 112266) ((-330 . -102) T) ((-870 . -1109) T) ((-319 . -644) 112148) ((-316 . -646) 111969) ((-313 . -646) 111898) ((-474 . -556) 111849) ((-339 . -514) 111815) ((-550 . -151) 111765) ((-40 . -307) T) ((-841 . -611) 111747) ((-699 . -290) T) ((-870 . -23) T) ((-379 . -493) T) ((-1077 . -231) 111717) ((-512 . -102) T) ((-407 . -612) 111524) ((-407 . -611) 111506) ((-263 . -611) 111488) ((-116 . -290) T) ((-1248 . -724) T) ((-1246 . -363) 111467) ((-1225 . -363) 111446) ((-1275 . -34) T) ((-1220 . -1097) T) ((-117 . -1212) T) ((-108 . -231) 111428) ((-1175 . -102) T) ((-477 . -1097) T) ((-523 . -489) 111412) ((-735 . -34) T) ((-651 . -1049) 111396) ((-482 . -38) 111366) ((-651 . -638) 111336) ((-141 . -34) T) ((-117 . -882) 111313) ((-117 . -884) NIL) ((-621 . -1036) 111196) ((-642 . -848) 111175) ((-1274 . -102) T) ((-295 . -102) T) ((-710 . -368) 111154) ((-117 . -1036) 111131) ((-390 . -715) 111115) ((-619 . -715) 111099) ((-45 . -309) 110903) ((-814 . -145) 110882) ((-814 . -147) 110861) ((-289 . -644) 110833) ((-1285 . -382) 110812) ((-817 . -848) T) ((-1264 . -1097) T) ((-1156 . -229) 110759) ((-386 . -848) 110738) ((-1254 . -1200) 110704) ((-1254 . -1197) 110670) ((-1247 . -1197) 110636) ((-515 . -131) T) ((-1247 . -1200) 110602) ((-1226 . -1197) 110568) ((-1226 . -1200) 110534) ((-1254 . -35) 110500) ((-1254 . -95) 110466) ((-633 . -611) 110435) ((-605 . -611) 110404) ((-225 . -848) T) ((-1247 . -95) 110370) ((-1247 . -35) 110336) ((-1246 . -1109) T) ((-1117 . -646) 110323) ((-1226 . -95) 110289) ((-1225 . -1109) T) ((-592 . -151) 110271) ((-1077 . -349) 110250) ((-174 . -290) T) ((-117 . -377) 110227) ((-117 . -338) 110204) ((-1226 . -35) 110170) ((-868 . -307) T) ((-313 . -792) NIL) ((-313 . -789) NIL) ((-316 . -724) 110019) ((-313 . -724) T) ((-474 . -363) 109998) ((-359 . -349) 109977) ((-353 . -349) 109956) ((-345 . -349) 109935) ((-316 . -473) 109914) ((-1246 . -23) T) ((-1225 . -23) T) ((-716 . -1109) T) ((-712 . -131) T) ((-651 . -102) T) ((-477 . -715) 109879) ((-45 . -282) 109829) ((-105 . -1097) T) ((-68 . -611) 109811) ((-968 . -102) T) ((-862 . -102) T) ((-621 . -898) 109770) ((-1286 . -1097) T) ((-381 . -1097) T) ((-82 . -1212) T) ((-1211 . -1097) T) ((-1059 . -848) T) ((-117 . -898) NIL) ((-780 . -918) 109749) ((-711 . -848) T) ((-531 . -1097) T) ((-500 . -1097) T) ((-355 . -1216) T) ((-352 . -1216) T) ((-344 . -1216) T) ((-264 . -1216) 109728) ((-247 . -1216) 109707) ((-533 . -858) T) ((-1110 . -231) 109676) ((-1155 . -826) T) ((-1139 . -1054) 109660) ((-390 . -759) T) ((-692 . -1212) T) ((-689 . -1036) 109644) ((-355 . -556) T) ((-352 . -556) T) ((-344 . -556) T) ((-264 . -556) 109575) ((-247 . -556) 109506) ((-525 . -1080) T) ((-1139 . -111) 109485) ((-453 . -742) 109455) ((-864 . -1054) 109425) ((-815 . -38) 109367) ((-692 . -882) 109349) ((-692 . -884) 109331) ((-295 . -309) 109135) ((-908 . -1216) T) ((-1153 . -288) 109112) ((-1077 . -644) 109007) ((-668 . -411) 108991) ((-864 . -111) 108956) ((-1002 . -452) T) ((-692 . -1036) 108901) ((-908 . -556) T) ((-533 . -611) 108883) ((-581 . -918) T) ((-487 . -1049) 108833) ((-474 . -1109) T) ((-518 . -918) T) ((-912 . -452) T) ((-65 . -611) 108815) ((-217 . -1049) 108765) ((-487 . -638) 108715) ((-359 . -644) 108652) ((-353 . -644) 108589) ((-345 . -644) 108526) ((-630 . -229) 108472) ((-217 . -638) 108422) ((-108 . -644) 108372) ((-474 . -23) T) ((-1117 . -792) T) ((-870 . -131) T) ((-1117 . -789) T) ((-1277 . -1279) 108351) ((-1117 . -724) T) ((-652 . -646) 108325) ((-294 . -611) 108066) ((-1139 . -614) 107984) ((-1033 . -34) T) ((-813 . -846) 107963) ((-580 . -307) T) ((-564 . -307) T) ((-495 . -307) T) ((-1286 . -715) 107933) ((-692 . -377) 107915) ((-692 . -338) 107897) ((-477 . -172) T) ((-381 . -715) 107867) ((-864 . -614) 107802) ((-869 . -848) NIL) ((-564 . -1020) T) ((-495 . -1020) T) ((-1130 . -611) 107784) ((-1110 . -238) 107763) ((-214 . -102) T) ((-1147 . -102) T) ((-71 . -611) 107745) ((-1139 . -1047) T) ((-1175 . -38) 107642) ((-856 . -611) 107624) ((-564 . -545) T) ((-668 . -1055) T) ((-729 . -947) 107577) ((-1139 . -233) 107556) ((-1079 . -1097) T) ((-1032 . -25) T) ((-1032 . -21) T) ((-1001 . -1054) 107501) ((-903 . -102) T) ((-864 . -1047) T) ((-692 . -898) NIL) ((-355 . -329) 107485) ((-355 . -363) T) ((-352 . -329) 107469) ((-352 . -363) T) ((-344 . -329) 107453) ((-344 . -363) T) ((-487 . -102) T) ((-1274 . -38) 107423) ((-546 . -848) T) ((-523 . -685) 107373) ((-217 . -102) T) ((-1022 . -1036) 107253) ((-1001 . -111) 107182) ((-1171 . -971) 107151) ((-520 . -151) 107135) ((-1077 . -370) 107114) ((-351 . -611) 107096) ((-322 . -21) T) ((-354 . -1036) 107073) ((-322 . -25) T) ((-1170 . -971) 107035) ((-1164 . -971) 107004) ((-76 . -611) 106986) ((-1123 . -971) 106953) ((-697 . -307) T) ((-129 . -842) T) ((-908 . -363) T) ((-379 . -25) T) ((-379 . -21) T) ((-908 . -329) 106940) ((-86 . -611) 106922) ((-697 . -1020) T) ((-675 . -848) T) ((-1246 . -131) T) ((-1225 . -131) T) ((-899 . -1008) 106906) ((-834 . -21) T) ((-48 . -1036) 106849) ((-834 . -25) T) ((-825 . -25) T) ((-825 . -21) T) ((-1110 . -644) 106599) ((-1284 . -1055) T) ((-549 . -102) T) ((-1282 . -1055) T) ((-652 . -724) T) ((-1101 . -616) 106502) ((-1001 . -614) 106432) ((-1285 . -1054) 106416) ((-813 . -411) 106385) ((-103 . -119) 106369) ((-129 . -1097) T) ((-52 . -1097) T) ((-924 . -611) 106351) ((-869 . -990) 106328) ((-821 . -102) T) ((-1285 . -111) 106307) ((-651 . -38) 106277) ((-571 . -848) T) ((-355 . -1109) T) ((-352 . -1109) T) ((-344 . -1109) T) ((-264 . -1109) T) ((-247 . -1109) T) ((-621 . -307) 106256) ((-1147 . -309) 106060) ((-662 . -23) T) ((-524 . -1080) T) ((-311 . -1097) T) ((-482 . -231) 106029) ((-152 . -1055) T) ((-355 . -23) T) ((-352 . -23) T) ((-344 . -23) T) ((-117 . -307) T) ((-264 . -23) T) ((-247 . -23) T) ((-1001 . -1047) T) ((-710 . -907) 106008) ((-1153 . -614) 105985) ((-1001 . -233) 105957) ((-1001 . -243) T) ((-117 . -1020) NIL) ((-908 . -1109) T) ((-1247 . -452) 105936) ((-1226 . -452) 105915) ((-523 . -611) 105847) ((-710 . -646) 105772) ((-407 . -1054) 105724) ((-504 . -611) 105706) ((-908 . -23) T) ((-487 . -309) NIL) ((-1285 . -614) 105662) ((-474 . -131) T) ((-217 . -309) NIL) ((-407 . -111) 105600) ((-813 . -1055) 105530) ((-735 . -1095) 105514) ((-1246 . -493) 105480) ((-1225 . -493) 105446) ((-548 . -842) T) ((-141 . -1095) 105428) ((-477 . -290) T) ((-1285 . -1047) T) ((-1217 . -102) T) ((-1060 . -102) T) ((-841 . -614) 105296) ((-500 . -514) NIL) ((-482 . -238) 105275) ((-407 . -614) 105173) ((-961 . -1049) 105056) ((-733 . -1049) 105026) ((-961 . -638) 104923) ((-1169 . -145) 104902) ((-733 . -638) 104872) ((-453 . -1049) 104842) ((-1169 . -147) 104821) ((-1122 . -147) 104800) ((-1122 . -145) 104779) ((-633 . -1054) 104763) ((-605 . -1054) 104747) ((-453 . -638) 104717) ((-1171 . -1253) 104701) ((-1171 . -1240) 104678) ((-668 . -1097) T) ((-668 . -1051) 104618) ((-1170 . -1245) 104579) ((-548 . -1097) T) ((-487 . -1148) T) ((-1170 . -1240) 104549) ((-1170 . -1243) 104533) ((-1164 . -1224) 104494) ((-217 . -1148) T) ((-343 . -918) T) ((-816 . -266) 104478) ((-633 . -111) 104457) ((-605 . -111) 104436) ((-1164 . -1240) 104413) ((-841 . -1047) 104392) ((-1164 . -1222) 104376) ((-515 . -25) T) ((-495 . -302) T) ((-511 . -23) T) ((-510 . -25) T) ((-508 . -25) T) ((-507 . -23) T) ((-418 . -1049) 104350) ((-407 . -1047) T) ((-319 . -1055) T) ((-692 . -307) T) ((-418 . -638) 104324) ((-108 . -846) T) ((-710 . -724) T) ((-407 . -243) T) ((-407 . -233) 104303) ((-487 . -38) 104253) ((-217 . -38) 104203) ((-474 . -493) 104169) ((-1219 . -368) T) ((-1155 . -1141) T) ((-1098 . -102) T) ((-699 . -611) 104151) ((-699 . -612) 104066) ((-712 . -21) T) ((-712 . -25) T) ((-1132 . -102) T) ((-482 . -644) 103816) ((-134 . -611) 103798) ((-116 . -611) 103780) ((-157 . -25) T) ((-1284 . -1097) T) ((-870 . -637) 103728) ((-1282 . -1097) T) ((-961 . -102) T) ((-733 . -102) T) ((-713 . -102) T) ((-453 . -102) T) ((-814 . -452) 103679) ((-44 . -1097) T) ((-1085 . -848) T) ((-1060 . -309) 103530) ((-662 . -131) T) ((-1052 . -644) 103499) ((-668 . -715) 103483) ((-289 . -1055) T) ((-355 . -131) T) ((-352 . -131) T) ((-344 . -131) T) ((-264 . -131) T) ((-247 . -131) T) ((-385 . -644) 103452) ((-418 . -102) T) ((-152 . -1097) T) ((-45 . -229) 103402) ((-797 . -1049) 103386) ((-956 . -848) 103365) ((-997 . -646) 103303) ((-797 . -638) 103287) ((-240 . -1269) 103257) ((-1022 . -307) T) ((-294 . -1054) 103178) ((-908 . -131) T) ((-40 . -918) T) ((-487 . -400) 103160) ((-354 . -307) T) ((-217 . -400) 103142) ((-1077 . -411) 103126) ((-294 . -111) 103042) ((-1180 . -848) T) ((-1179 . -848) T) ((-870 . -25) T) ((-870 . -21) T) ((-339 . -611) 103024) ((-1248 . -47) 102968) ((-225 . -147) T) ((-174 . -611) 102950) ((-1110 . -846) 102929) ((-772 . -611) 102911) ((-128 . -848) T) ((-606 . -235) 102858) ((-475 . -235) 102808) ((-1284 . -715) 102778) ((-48 . -307) T) ((-1282 . -715) 102748) ((-65 . -614) 102677) ((-962 . -1097) T) ((-813 . -1097) 102467) ((-312 . -102) T) ((-899 . -1212) T) ((-48 . -1020) T) ((-1225 . -637) 102375) ((-687 . -102) 102353) ((-44 . -715) 102337) ((-550 . -102) T) ((-294 . -614) 102268) ((-67 . -383) T) ((-67 . -395) T) ((-660 . -23) T) ((-815 . -644) 102204) ((-668 . -759) T) ((-1209 . -1097) 102182) ((-351 . -1054) 102127) ((-673 . -1097) 102105) ((-1059 . -147) T) ((-950 . -147) 102084) ((-950 . -145) 102063) ((-797 . -102) T) ((-152 . -715) 102047) ((-481 . -147) 102026) ((-481 . -145) 102005) ((-351 . -111) 101934) ((-1077 . -1055) T) ((-322 . -848) 101913) ((-1254 . -971) 101882) ((-625 . -1097) T) ((-1247 . -971) 101844) ((-511 . -131) T) ((-507 . -131) T) ((-295 . -229) 101794) ((-359 . -1055) T) ((-353 . -1055) T) ((-345 . -1055) T) ((-294 . -1047) 101736) ((-1226 . -971) 101705) ((-379 . -848) T) ((-108 . -1055) T) ((-997 . -724) T) ((-868 . -918) T) ((-841 . -793) 101684) ((-841 . -790) 101663) ((-418 . -309) 101602) ((-468 . -102) T) ((-594 . -971) 101571) ((-319 . -1097) T) ((-407 . -793) 101550) ((-407 . -790) 101529) ((-500 . -489) 101511) ((-1248 . -1036) 101477) ((-1246 . -21) T) ((-1246 . -25) T) ((-1225 . -21) T) ((-1225 . -25) T) ((-813 . -715) 101419) ((-351 . -614) 101349) ((-697 . -404) T) ((-1275 . -1212) T) ((-604 . -102) T) ((-1110 . -411) 101318) ((-1001 . -368) NIL) ((-669 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1175 . -644) 101228) ((-735 . -1212) T) ((-729 . -1049) 101071) ((-44 . -759) T) ((-729 . -638) 100920) ((-592 . -102) T) ((-77 . -396) T) ((-77 . -395) T) ((-651 . -654) 100904) ((-141 . -1212) T) ((-869 . -147) T) ((-869 . -145) NIL) ((-1211 . -93) T) ((-351 . -1047) T) ((-70 . -383) T) ((-70 . -395) T) ((-1162 . -102) T) ((-668 . -514) 100837) ((-1274 . -644) 100782) ((-687 . -309) 100720) ((-961 . -38) 100617) ((-1177 . -611) 100599) ((-733 . -38) 100569) ((-550 . -309) 100373) ((-1171 . -1049) 100256) ((-316 . -1212) T) ((-351 . -233) T) ((-351 . -243) T) ((-313 . -1212) T) ((-289 . -1097) T) ((-1170 . -1049) 100091) ((-1164 . -1049) 99881) ((-1123 . -1049) 99764) ((-1171 . -638) 99661) ((-1170 . -638) 99502) ((-709 . -1216) T) ((-1164 . -638) 99298) ((-1153 . -649) 99282) ((-1123 . -638) 99179) ((-1206 . -556) 99158) ((-709 . -556) T) ((-316 . -882) 99142) ((-316 . -884) 99067) ((-313 . -882) 99028) ((-313 . -884) NIL) ((-797 . -309) 98993) ((-319 . -715) 98834) ((-324 . -323) 98811) ((-485 . -102) T) ((-474 . -25) T) ((-474 . -21) T) ((-418 . -38) 98785) ((-316 . -1036) 98448) ((-225 . -1197) T) ((-225 . -1200) T) ((-3 . -611) 98430) ((-313 . -1036) 98360) ((-2 . -1097) T) ((-2 . |RecordCategory|) T) ((-831 . -611) 98342) ((-1110 . -1055) 98272) ((-580 . -918) T) ((-564 . -818) T) ((-564 . -918) T) ((-495 . -918) T) ((-136 . -1036) 98256) ((-225 . -95) T) ((-169 . -147) 98235) ((-75 . -441) T) ((0 . -611) 98217) ((-75 . -395) T) ((-169 . -145) 98168) ((-225 . -35) T) ((-49 . -611) 98150) ((-477 . -1055) T) ((-487 . -231) 98132) ((-484 . -966) 98116) ((-482 . -846) 98095) ((-217 . -231) 98077) ((-81 . -441) T) ((-81 . -395) T) ((-1143 . -34) T) ((-813 . -172) 98056) ((-729 . -102) T) ((-651 . -644) 98015) ((-1024 . -611) 97982) ((-500 . -286) 97957) ((-316 . -377) 97926) ((-313 . -377) 97887) ((-313 . -338) 97848) ((-1082 . -611) 97830) ((-814 . -947) 97777) ((-660 . -131) T) ((-1235 . -145) 97756) ((-1235 . -147) 97735) ((-1171 . -102) T) ((-1170 . -102) T) ((-1164 . -102) T) ((-1156 . -1097) T) ((-1123 . -102) T) ((-222 . -34) T) ((-289 . -715) 97722) ((-1156 . -608) 97698) ((-592 . -309) NIL) ((-484 . -1097) 97676) ((-390 . -611) 97658) ((-510 . -848) T) ((-1147 . -229) 97608) ((-1254 . -1253) 97592) ((-1254 . -1240) 97569) ((-1247 . -1245) 97530) ((-1247 . -1240) 97500) ((-1247 . -1243) 97484) ((-1226 . -1224) 97445) ((-1226 . -1240) 97422) ((-619 . -611) 97404) ((-1226 . -1222) 97388) ((-697 . -918) T) ((-1171 . -284) 97354) ((-1170 . -284) 97320) ((-1164 . -284) 97286) ((-1077 . -1097) T) ((-1058 . -1097) T) ((-48 . -302) T) ((-316 . -898) 97252) ((-313 . -898) NIL) ((-1058 . -1065) 97231) ((-1117 . -884) 97213) ((-797 . -38) 97197) ((-264 . -637) 97145) ((-247 . -637) 97093) ((-699 . -1054) 97080) ((-594 . -1240) 97057) ((-1123 . -284) 97023) ((-319 . -172) 96954) ((-359 . -1097) T) ((-353 . -1097) T) ((-345 . -1097) T) ((-500 . -19) 96936) ((-1117 . -1036) 96918) ((-1099 . -151) 96902) ((-108 . -1097) T) ((-116 . -1054) 96889) ((-709 . -363) T) ((-500 . -602) 96864) ((-699 . -111) 96849) ((-436 . -102) T) ((-45 . -1146) 96799) ((-116 . -111) 96784) ((-633 . -718) T) ((-605 . -718) T) ((-1264 . -611) 96766) ((-1220 . -611) 96748) ((-1218 . -848) T) ((-813 . -514) 96681) ((-1033 . -1212) T) ((-240 . -1049) 96578) ((-1206 . -1109) T) ((-1206 . -23) T) ((-941 . -151) 96562) ((-1169 . -452) 96493) ((-1164 . -309) 96378) ((-240 . -638) 96320) ((-1163 . -1097) T) ((-1155 . -1097) T) ((-1139 . -646) 96294) ((-525 . -102) T) ((-520 . -102) 96244) ((-1123 . -309) 96231) ((-1122 . -452) 96182) ((-1084 . -1216) 96161) ((-780 . -1216) 96140) ((-778 . -1216) 96119) ((-62 . -1212) T) ((-477 . -611) 96071) ((-477 . -612) 95993) ((-1084 . -556) 95924) ((-992 . -1097) T) ((-780 . -556) 95835) ((-778 . -556) 95766) ((-482 . -411) 95735) ((-621 . -918) 95714) ((-454 . -1216) 95693) ((-729 . -309) 95680) ((-699 . -614) 95652) ((-398 . -611) 95634) ((-673 . -514) 95567) ((-662 . -25) T) ((-662 . -21) T) ((-454 . -556) 95498) ((-355 . -25) T) ((-355 . -21) T) ((-117 . -918) T) ((-117 . -818) NIL) ((-352 . -25) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-264 . -25) T) ((-264 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -384) T) ((-83 . -395) T) ((-134 . -614) 95480) ((-116 . -614) 95452) ((-1077 . -715) 95320) ((-1002 . -1049) 95270) ((-1002 . -638) 95220) ((-941 . -978) 95204) ((-912 . -638) 95156) ((-912 . -1049) 95108) ((-908 . -21) T) ((-908 . -25) T) ((-870 . -848) 95059) ((-864 . -646) 95019) ((-709 . -1109) T) ((-709 . -23) T) ((-289 . -172) T) ((-699 . -1047) T) ((-311 . -93) T) ((-699 . -233) T) ((-645 . -1097) 94997) ((-630 . -608) 94972) ((-630 . -1097) T) ((-581 . -1216) T) ((-581 . -556) T) ((-518 . -1216) T) ((-518 . -556) T) ((-487 . -644) 94922) ((-427 . -1049) 94906) ((-427 . -638) 94890) ((-359 . -715) 94842) ((-353 . -715) 94794) ((-339 . -1054) 94778) ((-345 . -715) 94730) ((-339 . -111) 94709) ((-174 . -1054) 94641) ((-217 . -644) 94591) ((-174 . -111) 94502) ((-108 . -715) 94452) ((-274 . -1097) T) ((-273 . -1097) T) ((-272 . -1097) T) ((-271 . -1097) T) ((-270 . -1097) T) ((-269 . -1097) T) ((-268 . -1097) T) ((-212 . -1097) T) ((-211 . -1097) T) ((-169 . -1200) 94430) ((-169 . -1197) 94408) ((-209 . -1097) T) ((-208 . -1097) T) ((-116 . -1047) T) ((-207 . -1097) T) ((-206 . -1097) T) ((-203 . -1097) T) ((-202 . -1097) T) ((-201 . -1097) T) ((-200 . -1097) T) ((-199 . -1097) T) ((-198 . -1097) T) ((-197 . -1097) T) ((-196 . -1097) T) ((-195 . -1097) T) ((-194 . -1097) T) ((-193 . -1097) T) ((-240 . -102) 94198) ((-169 . -35) 94176) ((-169 . -95) 94154) ((-652 . -1036) 94050) ((-482 . -1055) 93980) ((-1110 . -1097) 93770) ((-1139 . -34) T) ((-668 . -489) 93754) ((-73 . -1212) T) ((-105 . -611) 93736) ((-1286 . -611) 93718) ((-381 . -611) 93700) ((-339 . -614) 93652) ((-174 . -614) 93569) ((-1211 . -490) 93550) ((-729 . -38) 93399) ((-571 . -1200) T) ((-571 . -1197) T) ((-531 . -611) 93381) ((-520 . -309) 93319) ((-500 . -611) 93301) ((-500 . -612) 93283) ((-1211 . -611) 93249) ((-1164 . -1148) NIL) ((-1025 . -1068) 93218) ((-1025 . -1097) T) ((-1002 . -102) T) ((-969 . -102) T) ((-912 . -102) T) ((-891 . -1036) 93195) ((-1139 . -724) T) ((-1001 . -646) 93140) ((-476 . -1097) T) ((-463 . -1097) T) ((-585 . -23) T) ((-571 . -35) T) ((-571 . -95) T) ((-427 . -102) T) ((-1060 . -229) 93086) ((-1171 . -38) 92983) ((-864 . -724) T) ((-692 . -918) T) ((-511 . -25) T) ((-507 . -21) T) ((-507 . -25) T) ((-1170 . -38) 92824) ((-339 . -1047) T) ((-1164 . -38) 92620) ((-1077 . -172) T) ((-174 . -1047) T) ((-1123 . -38) 92517) ((-710 . -47) 92494) ((-359 . -172) T) ((-353 . -172) T) ((-519 . -57) 92468) ((-497 . -57) 92418) ((-351 . -1281) 92395) ((-225 . -452) T) ((-319 . -290) 92346) ((-345 . -172) T) ((-174 . -243) T) ((-1225 . -848) 92245) ((-108 . -172) T) ((-870 . -990) 92229) ((-656 . -1109) T) ((-581 . -363) T) ((-581 . -329) 92216) ((-518 . -329) 92193) ((-518 . -363) T) ((-316 . -307) 92172) ((-313 . -307) T) ((-600 . -848) 92151) ((-1110 . -715) 92093) ((-520 . -282) 92077) ((-656 . -23) T) ((-418 . -231) 92061) ((-313 . -1020) NIL) ((-336 . -23) T) ((-103 . -1008) 92045) ((-45 . -36) 92024) ((-610 . -1097) T) ((-351 . -368) T) ((-524 . -102) T) ((-495 . -27) T) ((-240 . -309) 91962) ((-1084 . -1109) T) ((-1285 . -646) 91936) ((-780 . -1109) T) ((-778 . -1109) T) ((-454 . -1109) T) ((-1059 . -452) T) ((-950 . -452) 91887) ((-1112 . -1080) T) ((-110 . -1097) T) ((-1084 . -23) T) ((-815 . -1055) T) ((-780 . -23) T) ((-778 . -23) T) ((-481 . -452) 91838) ((-1156 . -514) 91621) ((-381 . -382) 91600) ((-1175 . -411) 91584) ((-461 . -23) T) ((-454 . -23) T) ((-96 . -1097) T) ((-484 . -514) 91517) ((-1254 . -1049) 91400) ((-1254 . -638) 91297) ((-1247 . -638) 91138) ((-1247 . -1049) 90973) ((-289 . -290) T) ((-1226 . -1049) 90763) ((-1079 . -611) 90745) ((-1079 . -612) 90726) ((-407 . -907) 90705) ((-1226 . -638) 90501) ((-50 . -1109) T) ((-1206 . -131) T) ((-1022 . -918) T) ((-1001 . -724) T) ((-841 . -646) 90474) ((-710 . -884) NIL) ((-595 . -1049) 90447) ((-581 . -1109) T) ((-518 . -1109) T) ((-594 . -1049) 90330) ((-1164 . -400) 90282) ((-1002 . -309) NIL) ((-813 . -489) 90266) ((-595 . -638) 90239) ((-354 . -918) T) ((-594 . -638) 90136) ((-1153 . -34) T) ((-407 . -646) 90088) ((-50 . -23) T) ((-709 . -131) T) ((-710 . -1036) 89968) ((-581 . -23) T) ((-108 . -514) NIL) ((-518 . -23) T) ((-169 . -409) 89939) ((-1137 . -1097) T) ((-1277 . -1276) 89923) ((-699 . -793) T) ((-699 . -790) T) ((-1117 . -307) T) ((-379 . -147) T) ((-280 . -611) 89905) ((-1225 . -990) 89875) ((-48 . -918) T) ((-673 . -489) 89859) ((-251 . -1269) 89829) ((-250 . -1269) 89799) ((-1173 . -848) T) ((-1110 . -172) 89778) ((-1117 . -1020) T) ((-1044 . -34) T) ((-834 . -147) 89757) ((-834 . -145) 89736) ((-735 . -107) 89720) ((-610 . -132) T) ((-482 . -1097) 89510) ((-1175 . -1055) T) ((-869 . -452) T) ((-85 . -1212) T) ((-240 . -38) 89480) ((-141 . -107) 89462) ((-710 . -377) 89446) ((-831 . -614) 89314) ((-1285 . -724) T) ((-1274 . -1055) T) ((-1117 . -545) T) ((-579 . -102) T) ((-129 . -490) 89296) ((-1254 . -102) T) ((-390 . -1054) 89280) ((-1247 . -102) T) ((-1169 . -947) 89249) ((-129 . -611) 89216) ((-52 . -611) 89198) ((-1122 . -947) 89165) ((-651 . -411) 89149) ((-1226 . -102) T) ((-1155 . -514) NIL) ((-619 . -1054) 89133) ((-660 . -25) T) ((-660 . -21) T) ((-961 . -644) 89043) ((-733 . -644) 88988) ((-713 . -644) 88960) ((-390 . -111) 88939) ((-222 . -254) 88923) ((-1052 . -1051) 88863) ((-1052 . -1097) T) ((-1002 . -1148) T) ((-816 . -1097) T) ((-453 . -644) 88778) ((-343 . -1216) T) ((-633 . -646) 88762) ((-619 . -111) 88741) ((-605 . -646) 88725) ((-595 . -102) T) ((-311 . -490) 88706) ((-585 . -131) T) ((-594 . -102) T) ((-414 . -1097) T) ((-385 . -1097) T) ((-311 . -611) 88672) ((-227 . -1097) 88650) ((-645 . -514) 88583) ((-630 . -514) 88427) ((-831 . -1047) 88406) ((-642 . -151) 88390) ((-343 . -556) T) ((-710 . -898) 88333) ((-550 . -229) 88283) ((-1254 . -284) 88249) ((-1247 . -284) 88215) ((-1077 . -290) 88166) ((-487 . -846) T) ((-223 . -1109) T) ((-1226 . -284) 88132) ((-1206 . -493) 88098) ((-1002 . -38) 88048) ((-217 . -846) T) ((-418 . -644) 88007) ((-912 . -38) 87959) ((-841 . -792) 87938) ((-841 . -789) 87917) ((-841 . -724) 87896) ((-359 . -290) T) ((-353 . -290) T) ((-345 . -290) T) ((-169 . -452) 87827) ((-427 . -38) 87811) ((-108 . -290) T) ((-223 . -23) T) ((-407 . -792) 87790) ((-407 . -789) 87769) ((-407 . -724) T) ((-500 . -288) 87744) ((-477 . -1054) 87709) ((-656 . -131) T) ((-619 . -614) 87678) ((-1110 . -514) 87611) ((-336 . -131) T) ((-169 . -402) 87590) ((-482 . -715) 87532) ((-813 . -286) 87509) ((-477 . -111) 87465) ((-651 . -1055) T) ((-814 . -1049) 87308) ((-1273 . -1080) T) ((-1235 . -452) 87239) ((-814 . -638) 87088) ((-1272 . -1080) T) ((-1084 . -131) T) ((-1052 . -715) 87030) ((-780 . -131) T) ((-778 . -131) T) ((-571 . -452) T) ((-1025 . -514) 86963) ((-619 . -1047) T) ((-591 . -1097) T) ((-533 . -173) T) ((-461 . -131) T) ((-454 . -131) T) ((-45 . -1097) T) ((-385 . -715) 86933) ((-815 . -1097) T) ((-476 . -514) 86866) ((-463 . -514) 86799) ((-453 . -367) 86769) ((-45 . -608) 86748) ((-316 . -302) T) ((-477 . -614) 86698) ((-1226 . -309) 86583) ((-668 . -611) 86545) ((-59 . -848) 86524) ((-1002 . -400) 86506) ((-548 . -611) 86488) ((-797 . -644) 86447) ((-813 . -602) 86424) ((-516 . -848) 86403) ((-496 . -848) 86382) ((-40 . -1216) T) ((-997 . -1036) 86278) ((-50 . -131) T) ((-581 . -131) T) ((-518 . -131) T) ((-294 . -646) 86138) ((-343 . -329) 86115) ((-343 . -363) T) ((-322 . -323) 86092) ((-319 . -286) 86077) ((-40 . -556) T) ((-379 . -1197) T) ((-379 . -1200) T) ((-1033 . -1188) 86052) ((-1185 . -235) 86002) ((-1164 . -231) 85954) ((-330 . -1097) T) ((-379 . -95) T) ((-379 . -35) T) ((-1033 . -107) 85900) ((-477 . -1047) T) ((-1286 . -1054) 85884) ((-479 . -235) 85834) ((-1156 . -489) 85768) ((-1277 . -1049) 85752) ((-381 . -1054) 85736) ((-1277 . -638) 85706) ((-477 . -243) T) ((-814 . -102) T) ((-712 . -147) 85685) ((-712 . -145) 85664) ((-484 . -489) 85648) ((-485 . -335) 85617) ((-1286 . -111) 85596) ((-512 . -1097) T) ((-482 . -172) 85575) ((-997 . -377) 85559) ((-413 . -102) T) ((-381 . -111) 85538) ((-997 . -338) 85522) ((-279 . -981) 85506) ((-278 . -981) 85490) ((-1284 . -611) 85472) ((-1282 . -611) 85454) ((-110 . -514) NIL) ((-1169 . -1238) 85438) ((-852 . -850) 85422) ((-1175 . -1097) T) ((-103 . -1212) T) ((-950 . -947) 85383) ((-815 . -715) 85325) ((-1226 . -1148) NIL) ((-481 . -947) 85270) ((-1059 . -143) T) ((-60 . -102) 85248) ((-44 . -611) 85230) ((-78 . -611) 85212) ((-351 . -646) 85157) ((-1274 . -1097) T) ((-511 . -848) T) ((-343 . -1109) T) ((-295 . -1097) T) ((-997 . -898) 85116) ((-295 . -608) 85095) ((-1286 . -614) 85044) ((-1254 . -38) 84941) ((-1247 . -38) 84782) ((-1226 . -38) 84578) ((-487 . -1055) T) ((-381 . -614) 84562) ((-217 . -1055) T) ((-343 . -23) T) ((-152 . -611) 84544) ((-831 . -793) 84523) ((-831 . -790) 84502) ((-1211 . -614) 84483) ((-595 . -38) 84456) ((-594 . -38) 84353) ((-868 . -556) T) ((-223 . -131) T) ((-319 . -1000) 84319) ((-79 . -611) 84301) ((-710 . -307) 84280) ((-294 . -724) 84182) ((-822 . -102) T) ((-862 . -842) T) ((-294 . -473) 84161) ((-1277 . -102) T) ((-40 . -363) T) ((-870 . -147) 84140) ((-485 . -644) 84122) ((-870 . -145) 84101) ((-1155 . -489) 84083) ((-1286 . -1047) T) ((-482 . -514) 84016) ((-1143 . -1212) T) ((-962 . -611) 83998) ((-645 . -489) 83982) ((-630 . -489) 83913) ((-813 . -611) 83644) ((-48 . -27) T) ((-1175 . -715) 83541) ((-651 . -1097) T) ((-859 . -858) T) ((-436 . -364) 83515) ((-729 . -644) 83425) ((-1099 . -102) T) ((-968 . -1097) T) ((-862 . -1097) T) ((-814 . -309) 83412) ((-533 . -527) T) ((-533 . -576) T) ((-1282 . -382) 83384) ((-1052 . -514) 83317) ((-1156 . -286) 83293) ((-240 . -231) 83262) ((-251 . -1049) 83159) ((-250 . -1049) 83056) ((-1274 . -715) 83026) ((-1163 . -93) T) ((-992 . -93) T) ((-815 . -172) 83005) ((-251 . -638) 82947) ((-250 . -638) 82889) ((-1209 . -490) 82866) ((-227 . -514) 82799) ((-619 . -793) 82778) ((-619 . -790) 82757) ((-1209 . -611) 82669) ((-222 . -1212) T) ((-673 . -611) 82601) ((-1171 . -644) 82511) ((-1153 . -1008) 82495) ((-941 . -102) 82445) ((-351 . -724) T) ((-859 . -611) 82427) ((-1170 . -644) 82309) ((-1164 . -644) 82146) ((-1123 . -644) 82056) ((-1226 . -400) 82008) ((-1110 . -489) 81992) ((-60 . -309) 81930) ((-331 . -102) T) ((-1206 . -21) T) ((-1206 . -25) T) ((-40 . -1109) T) ((-709 . -21) T) ((-625 . -611) 81912) ((-515 . -323) 81891) ((-709 . -25) T) ((-439 . -102) T) ((-108 . -286) NIL) ((-919 . -1109) T) ((-40 . -23) T) ((-769 . -1109) T) ((-564 . -1216) T) ((-495 . -1216) T) ((-319 . -611) 81873) ((-1002 . -231) 81855) ((-169 . -166) 81839) ((-580 . -556) T) ((-564 . -556) T) ((-495 . -556) T) ((-769 . -23) T) ((-1246 . -147) 81818) ((-1156 . -602) 81794) ((-1246 . -145) 81773) ((-1025 . -489) 81757) ((-1225 . -145) 81682) ((-1225 . -147) 81607) ((-1277 . -1283) 81586) ((-476 . -489) 81570) ((-463 . -489) 81554) ((-523 . -34) T) ((-651 . -715) 81524) ((-112 . -965) T) ((-660 . -848) 81503) ((-1175 . -172) 81454) ((-365 . -102) T) ((-240 . -238) 81433) ((-251 . -102) T) ((-250 . -102) T) ((-1235 . -947) 81402) ((-245 . -848) 81381) ((-814 . -38) 81230) ((-45 . -514) 81022) ((-1155 . -286) 80997) ((-214 . -1097) T) ((-1147 . -1097) T) ((-1147 . -608) 80976) ((-585 . -25) T) ((-585 . -21) T) ((-1099 . -309) 80914) ((-961 . -411) 80898) ((-697 . -1216) T) ((-630 . -286) 80873) ((-1084 . -637) 80821) ((-780 . -637) 80769) ((-778 . -637) 80717) ((-343 . -131) T) ((-289 . -611) 80699) ((-903 . -1097) T) ((-697 . -556) T) ((-129 . -614) 80681) ((-868 . -1109) T) ((-454 . -637) 80629) ((-903 . -901) 80613) ((-379 . -452) T) ((-487 . -1097) T) ((-941 . -309) 80551) ((-699 . -646) 80538) ((-549 . -842) T) ((-217 . -1097) T) ((-316 . -918) 80517) ((-313 . -918) T) ((-313 . -818) NIL) ((-390 . -718) T) ((-868 . -23) T) ((-116 . -646) 80504) ((-474 . -145) 80483) ((-418 . -411) 80467) ((-474 . -147) 80446) ((-110 . -489) 80428) ((-311 . -614) 80409) ((-2 . -611) 80391) ((-186 . -102) T) ((-1155 . -19) 80373) ((-1155 . -602) 80348) ((-656 . -21) T) ((-656 . -25) T) ((-592 . -1141) T) ((-1110 . -286) 80325) ((-336 . -25) T) ((-336 . -21) T) ((-240 . -644) 80075) ((-495 . -363) T) ((-1277 . -38) 80045) ((-1169 . -1049) 79868) ((-1139 . -1212) T) ((-1122 . -1049) 79711) ((-852 . -1049) 79695) ((-630 . -602) 79670) ((-1169 . -638) 79499) ((-1122 . -638) 79348) ((-852 . -638) 79318) ((-1284 . -1054) 79302) ((-1282 . -1054) 79286) ((-549 . -1097) T) ((-1084 . -25) T) ((-1084 . -21) T) ((-531 . -790) T) ((-531 . -793) T) ((-117 . -1216) T) ((-961 . -1055) T) ((-621 . -556) T) ((-780 . -25) T) ((-780 . -21) T) ((-778 . -21) T) ((-778 . -25) T) ((-733 . -1055) T) ((-713 . -1055) T) ((-668 . -1054) 79270) ((-517 . -1080) T) ((-461 . -25) T) ((-117 . -556) T) ((-461 . -21) T) ((-454 . -25) T) ((-454 . -21) T) ((-1246 . -1197) 79236) ((-1246 . -1200) 79202) ((-1139 . -1036) 79098) ((-815 . -290) 79077) ((-1246 . -95) 79043) ((-821 . -1097) T) ((-1229 . -102) 79021) ((-964 . -965) T) ((-668 . -111) 79000) ((-295 . -514) 78792) ((-1226 . -231) 78744) ((-1225 . -1197) 78710) ((-1225 . -1200) 78676) ((-251 . -309) 78614) ((-250 . -309) 78552) ((-1220 . -368) T) ((-1156 . -612) NIL) ((-1156 . -611) 78534) ((-1217 . -842) T) ((-1139 . -377) 78518) ((-1117 . -818) T) ((-96 . -93) T) ((-1117 . -918) T) ((-1110 . -602) 78495) ((-1077 . -612) 78479) ((-1002 . -644) 78429) ((-912 . -644) 78366) ((-813 . -288) 78343) ((-484 . -611) 78275) ((-606 . -151) 78222) ((-487 . -715) 78172) ((-418 . -1055) T) ((-482 . -489) 78156) ((-427 . -644) 78115) ((-327 . -848) 78094) ((-339 . -646) 78068) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -715) 78018) ((-169 . -722) 77989) ((-174 . -646) 77921) ((-581 . -21) T) ((-581 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-475 . -151) 77871) ((-1077 . -611) 77853) ((-1058 . -611) 77835) ((-991 . -102) T) ((-860 . -102) T) ((-797 . -411) 77799) ((-40 . -131) T) ((-697 . -363) T) ((-699 . -724) T) ((-699 . -792) T) ((-699 . -789) T) ((-212 . -893) T) ((-580 . -1109) T) ((-564 . -1109) T) ((-495 . -1109) T) ((-359 . -611) 77781) ((-353 . -611) 77763) ((-345 . -611) 77745) ((-66 . -396) T) ((-66 . -395) T) ((-108 . -612) 77675) ((-108 . -611) 77617) ((-211 . -893) T) ((-956 . -151) 77601) ((-769 . -131) T) ((-668 . -614) 77519) ((-134 . -724) T) ((-116 . -724) T) ((-1246 . -35) 77485) ((-1052 . -489) 77469) ((-580 . -23) T) ((-564 . -23) T) ((-495 . -23) T) ((-1225 . -95) 77435) ((-1225 . -35) 77401) ((-1169 . -102) T) ((-1122 . -102) T) ((-852 . -102) T) ((-227 . -489) 77385) ((-1284 . -111) 77364) ((-1282 . -111) 77343) ((-44 . -1054) 77327) ((-1284 . -614) 77273) ((-1235 . -1238) 77257) ((-853 . -850) 77241) ((-1284 . -1047) T) ((-1175 . -290) 77220) ((-110 . -286) 77195) ((-1282 . -614) 77124) ((-128 . -151) 77106) ((-1139 . -898) 77065) ((-44 . -111) 77044) ((-1217 . -1097) T) ((-1178 . -1257) T) ((-1163 . -490) 77025) ((-1163 . -611) 76991) ((-668 . -1047) T) ((-1155 . -612) NIL) ((-1155 . -611) 76973) ((-1060 . -608) 76948) ((-1060 . -1097) T) ((-992 . -490) 76929) ((-74 . -441) T) ((-74 . -395) T) ((-992 . -611) 76895) ((-152 . -1054) 76879) ((-668 . -233) 76858) ((-571 . -554) 76842) ((-355 . -147) 76821) ((-355 . -145) 76772) ((-352 . -147) 76751) ((-352 . -145) 76702) ((-344 . -147) 76681) ((-344 . -145) 76632) ((-264 . -145) 76611) ((-264 . -147) 76590) ((-251 . -38) 76560) ((-247 . -147) 76539) ((-117 . -363) T) ((-247 . -145) 76518) ((-250 . -38) 76488) ((-152 . -111) 76467) ((-1001 . -1036) 76355) ((-1164 . -846) NIL) ((-692 . -1216) T) ((-797 . -1055) T) ((-697 . -1109) T) ((-1282 . -1047) T) ((-1153 . -1212) T) ((-1001 . -377) 76332) ((-908 . -145) T) ((-908 . -147) 76314) ((-868 . -131) T) ((-813 . -1054) 76211) ((-697 . -23) T) ((-692 . -556) T) ((-225 . -1049) 76176) ((-645 . -611) 76108) ((-645 . -612) 76069) ((-630 . -612) NIL) ((-630 . -611) 76051) ((-487 . -172) T) ((-225 . -638) 76016) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-474 . -1200) 75982) ((-474 . -1197) 75948) ((-274 . -611) 75930) ((-273 . -611) 75912) ((-272 . -611) 75894) ((-271 . -611) 75876) ((-270 . -611) 75858) ((-500 . -649) 75840) ((-269 . -611) 75822) ((-339 . -724) T) ((-268 . -611) 75804) ((-110 . -19) 75786) ((-174 . -724) T) ((-500 . -373) 75768) ((-212 . -611) 75750) ((-520 . -1146) 75734) ((-500 . -123) T) ((-110 . -602) 75709) ((-211 . -611) 75691) ((-474 . -35) 75657) ((-474 . -95) 75623) ((-209 . -611) 75605) ((-208 . -611) 75587) ((-207 . -611) 75569) ((-206 . -611) 75551) ((-203 . -611) 75533) ((-202 . -611) 75515) ((-201 . -611) 75497) ((-200 . -611) 75479) ((-199 . -611) 75461) ((-198 . -611) 75443) ((-197 . -611) 75425) ((-536 . -1100) 75377) ((-196 . -611) 75359) ((-195 . -611) 75341) ((-45 . -489) 75278) ((-194 . -611) 75260) ((-193 . -611) 75242) ((-152 . -614) 75211) ((-1112 . -102) T) ((-813 . -111) 75101) ((-642 . -102) 75051) ((-482 . -286) 75028) ((-1110 . -611) 74759) ((-1098 . -1097) T) ((-1044 . -1212) T) ((-1285 . -1036) 74743) ((-1059 . -1049) 74730) ((-1169 . -309) 74717) ((-950 . -1049) 74560) ((-1132 . -1097) T) ((-1122 . -309) 74547) ((-621 . -1109) T) ((-1059 . -638) 74534) ((-1093 . -1080) T) ((-950 . -638) 74383) ((-1087 . -1080) T) ((-481 . -1049) 74226) ((-1070 . -1080) T) ((-1063 . -1080) T) ((-1034 . -1080) T) ((-1017 . -1080) T) ((-117 . -1109) T) ((-481 . -638) 74075) ((-817 . -102) T) ((-624 . -1080) T) ((-621 . -23) T) ((-1147 . -514) 73867) ((-483 . -1080) T) ((-386 . -102) T) ((-324 . -102) T) ((-218 . -1080) T) ((-961 . -1097) T) ((-152 . -1047) T) ((-729 . -411) 73851) ((-117 . -23) T) ((-1001 . -898) 73803) ((-733 . -1097) T) ((-713 . -1097) T) ((-453 . -1097) T) ((-407 . -1212) T) ((-316 . -430) 73787) ((-591 . -93) T) ((-1254 . -644) 73697) ((-1025 . -612) 73658) ((-1022 . -1216) T) ((-225 . -102) T) ((-1025 . -611) 73620) ((-1247 . -644) 73502) ((-814 . -231) 73486) ((-813 . -614) 73216) ((-1226 . -644) 73053) ((-1022 . -556) T) ((-831 . -646) 73026) ((-354 . -1216) T) ((-476 . -611) 72988) ((-476 . -612) 72949) ((-463 . -612) 72910) ((-463 . -611) 72872) ((-595 . -644) 72844) ((-407 . -882) 72828) ((-319 . -1054) 72663) ((-407 . -884) 72588) ((-594 . -644) 72498) ((-841 . -1036) 72394) ((-487 . -514) NIL) ((-482 . -602) 72371) ((-354 . -556) T) ((-217 . -514) NIL) ((-870 . -452) T) ((-418 . -1097) T) ((-407 . -1036) 72235) ((-319 . -111) 72056) ((-692 . -363) T) ((-225 . -284) T) ((-1209 . -614) 72033) ((-48 . -1216) T) ((-813 . -1047) 71963) ((-1169 . -1148) 71941) ((-580 . -131) T) ((-564 . -131) T) ((-495 . -131) T) ((-1156 . -288) 71917) ((-48 . -556) T) ((-1059 . -102) T) ((-950 . -102) T) ((-869 . -1049) 71862) ((-316 . -27) 71841) ((-813 . -233) 71793) ((-249 . -833) 71775) ((-240 . -846) 71754) ((-187 . -833) 71736) ((-711 . -102) T) ((-295 . -489) 71673) ((-869 . -638) 71618) ((-481 . -102) T) ((-729 . -1055) T) ((-610 . -611) 71600) ((-610 . -612) 71461) ((-407 . -377) 71445) ((-407 . -338) 71429) ((-319 . -614) 71255) ((-1169 . -38) 71084) ((-1122 . -38) 70933) ((-852 . -38) 70903) ((-390 . -646) 70887) ((-642 . -309) 70825) ((-961 . -715) 70722) ((-733 . -715) 70692) ((-222 . -107) 70676) ((-45 . -286) 70601) ((-619 . -646) 70575) ((-312 . -1097) T) ((-289 . -1054) 70562) ((-110 . -611) 70544) ((-110 . -612) 70526) ((-453 . -715) 70496) ((-814 . -253) 70435) ((-687 . -1097) 70413) ((-550 . -1097) T) ((-1171 . -1055) T) ((-1170 . -1055) T) ((-96 . -490) 70394) ((-1164 . -1055) T) ((-289 . -111) 70379) ((-1123 . -1055) T) ((-550 . -608) 70358) ((-96 . -611) 70324) ((-1002 . -846) T) ((-227 . -685) 70282) ((-692 . -1109) T) ((-1206 . -738) 70258) ((-1022 . -363) T) ((-836 . -833) 70240) ((-831 . -792) 70219) ((-407 . -898) 70178) ((-319 . -1047) T) ((-343 . -25) T) ((-343 . -21) T) ((-169 . -1049) 70088) ((-68 . -1212) T) ((-831 . -789) 70067) ((-418 . -715) 70041) ((-797 . -1097) T) ((-710 . -918) 70020) ((-697 . -131) T) ((-169 . -638) 69848) ((-692 . -23) T) ((-487 . -290) T) ((-831 . -724) 69827) ((-319 . -233) 69779) ((-319 . -243) 69758) ((-217 . -290) T) ((-129 . -368) T) ((-1246 . -452) 69737) ((-1225 . -452) 69716) ((-354 . -329) 69693) ((-354 . -363) T) ((-1137 . -611) 69675) ((-45 . -1250) 69625) ((-869 . -102) T) ((-642 . -282) 69609) ((-697 . -1057) T) ((-1273 . -102) T) ((-1272 . -102) T) ((-477 . -646) 69574) ((-468 . -1097) T) ((-45 . -602) 69499) ((-1155 . -288) 69474) ((-289 . -614) 69446) ((-40 . -637) 69385) ((-1235 . -1049) 69208) ((-853 . -1049) 69192) ((-48 . -363) T) ((-1103 . -611) 69174) ((-1235 . -638) 69003) ((-853 . -638) 68973) ((-630 . -288) 68948) ((-814 . -644) 68858) ((-571 . -1049) 68845) ((-482 . -611) 68576) ((-240 . -411) 68545) ((-950 . -309) 68532) ((-571 . -638) 68519) ((-65 . -1212) T) ((-1060 . -514) 68363) ((-669 . -1097) T) ((-621 . -131) T) ((-481 . -309) 68350) ((-604 . -1097) T) ((-546 . -102) T) ((-117 . -131) T) ((-289 . -1047) T) ((-180 . -1097) T) ((-161 . -1097) T) ((-156 . -1097) T) ((-154 . -1097) T) ((-453 . -759) T) ((-31 . -1080) T) ((-961 . -172) 68301) ((-968 . -93) T) ((-1077 . -1054) 68211) ((-619 . -792) 68190) ((-592 . -1097) T) ((-619 . -789) 68169) ((-619 . -724) T) ((-295 . -286) 68148) ((-294 . -1212) T) ((-1052 . -611) 68110) ((-1052 . -612) 68071) ((-1022 . -1109) T) ((-169 . -102) T) ((-275 . -848) T) ((-1162 . -1097) T) ((-816 . -611) 68053) ((-1110 . -288) 68030) ((-1099 . -229) 68014) ((-1001 . -307) T) ((-797 . -715) 67998) ((-359 . -1054) 67950) ((-354 . -1109) T) ((-353 . -1054) 67902) ((-414 . -611) 67884) ((-385 . -611) 67866) ((-345 . -1054) 67818) ((-227 . -611) 67750) ((-1077 . -111) 67646) ((-1022 . -23) T) ((-108 . -1054) 67596) ((-896 . -102) T) ((-839 . -102) T) ((-806 . -102) T) ((-767 . -102) T) ((-675 . -102) T) ((-474 . -452) 67575) ((-418 . -172) T) ((-359 . -111) 67513) ((-353 . -111) 67451) ((-345 . -111) 67389) ((-251 . -231) 67358) ((-250 . -231) 67327) ((-354 . -23) T) ((-71 . -1212) T) ((-225 . -38) 67292) ((-108 . -111) 67226) ((-40 . -25) T) ((-40 . -21) T) ((-668 . -718) T) ((-169 . -284) 67204) ((-48 . -1109) T) ((-919 . -25) T) ((-769 . -25) T) ((-1286 . -646) 67178) ((-1147 . -489) 67115) ((-485 . -1097) T) ((-1277 . -644) 67074) ((-1235 . -102) T) ((-1059 . -1148) T) ((-853 . -102) T) ((-240 . -1055) 67004) ((-962 . -790) 66957) ((-962 . -793) 66910) ((-381 . -646) 66894) ((-48 . -23) T) ((-813 . -793) 66845) ((-813 . -790) 66796) ((-548 . -368) T) ((-295 . -602) 66775) ((-477 . -724) T) ((-571 . -102) T) ((-1077 . -614) 66593) ((-249 . -185) T) ((-187 . -185) T) ((-869 . -309) 66550) ((-651 . -286) 66529) ((-112 . -659) T) ((-359 . -614) 66466) ((-353 . -614) 66403) ((-345 . -614) 66340) ((-76 . -1212) T) ((-108 . -614) 66290) ((-1059 . -38) 66277) ((-662 . -374) 66256) ((-950 . -38) 66105) ((-729 . -1097) T) ((-481 . -38) 65954) ((-86 . -1212) T) ((-591 . -490) 65935) ((-571 . -284) T) ((-1226 . -846) NIL) ((-591 . -611) 65901) ((-1171 . -1097) T) ((-1170 . -1097) T) ((-1077 . -1047) T) ((-351 . -1036) 65878) ((-815 . -490) 65862) ((-1002 . -1055) T) ((-45 . -611) 65844) ((-45 . -612) NIL) ((-912 . -1055) T) ((-815 . -611) 65813) ((-1164 . -1097) T) ((-1144 . -102) 65791) ((-1077 . -243) 65742) ((-427 . -1055) T) ((-359 . -1047) T) ((-365 . -364) 65719) ((-353 . -1047) T) ((-345 . -1047) T) ((-251 . -238) 65698) ((-250 . -238) 65677) ((-1077 . -233) 65602) ((-1123 . -1097) T) ((-294 . -898) 65561) ((-108 . -1047) T) ((-692 . -131) T) ((-418 . -514) 65403) ((-359 . -233) 65382) ((-359 . -243) T) ((-44 . -718) T) ((-353 . -233) 65361) ((-353 . -243) T) ((-345 . -233) 65340) ((-345 . -243) T) ((-1163 . -614) 65321) ((-169 . -309) 65286) ((-108 . -243) T) ((-108 . -233) T) ((-992 . -614) 65267) ((-319 . -790) T) ((-868 . -21) T) ((-868 . -25) T) ((-407 . -307) T) ((-500 . -34) T) ((-110 . -288) 65242) ((-1110 . -1054) 65139) ((-869 . -1148) NIL) ((-330 . -611) 65121) ((-407 . -1020) 65099) ((-1110 . -111) 64989) ((-689 . -1257) T) ((-436 . -1097) T) ((-1286 . -724) T) ((-63 . -611) 64971) ((-869 . -38) 64916) ((-523 . -1212) T) ((-600 . -151) 64900) ((-512 . -611) 64882) ((-1235 . -309) 64869) ((-729 . -715) 64718) ((-531 . -791) T) ((-531 . -792) T) ((-564 . -637) 64700) ((-495 . -637) 64660) ((-355 . -452) T) ((-352 . -452) T) ((-344 . -452) T) ((-264 . -452) 64611) ((-525 . -1097) T) ((-520 . -1097) 64561) ((-247 . -452) 64512) ((-1147 . -286) 64491) ((-1175 . -611) 64473) ((-687 . -514) 64406) ((-961 . -290) 64385) ((-550 . -514) 64177) ((-251 . -644) 63997) ((-250 . -644) 63804) ((-1274 . -611) 63773) ((-1169 . -231) 63757) ((-1110 . -614) 63487) ((-169 . -1148) 63466) ((-1274 . -490) 63450) ((-1171 . -715) 63347) ((-1170 . -715) 63188) ((-890 . -102) T) ((-1164 . -715) 62984) ((-1123 . -715) 62881) ((-1153 . -672) 62865) ((-355 . -402) 62816) ((-352 . -402) 62767) ((-344 . -402) 62718) ((-1022 . -131) T) ((-797 . -514) 62630) ((-295 . -612) NIL) ((-295 . -611) 62612) ((-908 . -452) T) ((-962 . -368) 62565) ((-813 . -368) 62544) ((-510 . -509) 62523) ((-508 . -509) 62502) ((-487 . -286) NIL) ((-482 . -288) 62479) ((-418 . -290) T) ((-354 . -131) T) ((-217 . -286) NIL) ((-692 . -493) NIL) ((-99 . -1109) T) ((-169 . -38) 62307) ((-1246 . -971) 62269) ((-1144 . -309) 62207) ((-1225 . -971) 62176) ((-908 . -402) T) ((-1110 . -1047) 62106) ((-1248 . -556) T) ((-1147 . -602) 62085) ((-112 . -848) T) ((-1060 . -489) 62016) ((-580 . -21) T) ((-580 . -25) T) ((-564 . -21) T) ((-564 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-1235 . -1148) 61994) ((-1110 . -233) 61946) ((-48 . -131) T) ((-1193 . -102) T) ((-240 . -1097) 61736) ((-869 . -400) 61713) ((-1085 . -102) T) ((-1073 . -102) T) ((-606 . -102) T) ((-475 . -102) T) ((-1235 . -38) 61542) ((-853 . -38) 61512) ((-1032 . -1049) 61486) ((-729 . -172) 61397) ((-651 . -611) 61379) ((-643 . -1080) T) ((-1032 . -638) 61363) ((-571 . -38) 61350) ((-968 . -490) 61331) ((-968 . -611) 61297) ((-956 . -102) 61247) ((-862 . -611) 61229) ((-862 . -612) 61151) ((-592 . -514) NIL) ((-1254 . -1055) T) ((-1247 . -1055) T) ((-322 . -1049) 61133) ((-1226 . -1055) T) ((-322 . -638) 61115) ((-1290 . -1109) T) ((-1206 . -147) 61094) ((-1206 . -145) 61073) ((-1180 . -102) T) ((-1179 . -102) T) ((-595 . -1055) T) ((-594 . -1055) T) ((-1171 . -172) 61024) ((-1170 . -172) 60955) ((-379 . -1049) 60920) ((-1164 . -172) 60851) ((-1123 . -172) 60802) ((-1002 . -1097) T) ((-969 . -1097) T) ((-912 . -1097) T) ((-379 . -638) 60767) ((-797 . -795) 60751) ((-697 . -25) T) ((-697 . -21) T) ((-117 . -637) 60728) ((-699 . -884) 60710) ((-427 . -1097) T) ((-316 . -1216) 60689) ((-313 . -1216) T) ((-169 . -400) 60673) ((-834 . -1049) 60643) ((-474 . -971) 60605) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -611) 60587) ((-825 . -1049) 60571) ((-108 . -793) T) ((-108 . -790) T) ((-699 . -1036) 60553) ((-316 . -556) 60532) ((-313 . -556) T) ((-834 . -638) 60502) ((-825 . -638) 60472) ((-1290 . -23) T) ((-134 . -1036) 60454) ((-96 . -614) 60435) ((-991 . -644) 60417) ((-482 . -1054) 60314) ((-45 . -288) 60239) ((-240 . -715) 60181) ((-517 . -102) T) ((-482 . -111) 60071) ((-1089 . -102) 60049) ((-1032 . -102) T) ((-1169 . -644) 59959) ((-1122 . -644) 59869) ((-852 . -644) 59828) ((-642 . -826) 59807) ((-729 . -514) 59750) ((-1052 . -1054) 59734) ((-1132 . -93) T) ((-1060 . -286) 59709) ((-621 . -21) T) ((-621 . -25) T) ((-524 . -1097) T) ((-668 . -646) 59683) ((-361 . -102) T) ((-322 . -102) T) ((-385 . -1054) 59667) ((-1052 . -111) 59646) ((-814 . -411) 59630) ((-117 . -25) T) ((-89 . -611) 59612) ((-117 . -21) T) ((-606 . -309) 59407) ((-475 . -309) 59211) ((-1147 . -612) NIL) ((-385 . -111) 59190) ((-379 . -102) T) ((-214 . -611) 59172) ((-1147 . -611) 59154) ((-1164 . -514) 58923) ((-1002 . -715) 58873) ((-1123 . -514) 58843) ((-912 . -715) 58795) ((-482 . -614) 58525) ((-351 . -307) T) ((-1185 . -151) 58475) ((-956 . -309) 58413) ((-834 . -102) T) ((-427 . -715) 58397) ((-225 . -826) T) ((-825 . -102) T) ((-823 . -102) T) ((-479 . -151) 58347) ((-1246 . -1245) 58326) ((-1117 . -1216) T) ((-339 . -1036) 58293) ((-1246 . -1240) 58263) ((-1246 . -1243) 58247) ((-1225 . -1224) 58226) ((-80 . -611) 58208) ((-903 . -611) 58190) ((-1225 . -1240) 58167) ((-1117 . -556) T) ((-919 . -848) T) ((-769 . -848) T) ((-670 . -848) T) ((-487 . -612) 58097) ((-487 . -611) 58038) ((-379 . -284) T) ((-1225 . -1222) 58022) ((-1248 . -1109) T) ((-217 . -612) 57952) ((-217 . -611) 57893) ((-1284 . -646) 57867) ((-1060 . -602) 57842) ((-816 . -614) 57826) ((-59 . -151) 57810) ((-516 . -151) 57794) ((-496 . -151) 57778) ((-359 . -1281) 57762) ((-353 . -1281) 57746) ((-345 . -1281) 57730) ((-316 . -363) 57709) ((-313 . -363) T) ((-482 . -1047) 57639) ((-692 . -637) 57621) ((-1282 . -646) 57595) ((-128 . -309) NIL) ((-1248 . -23) T) ((-687 . -489) 57579) ((-64 . -611) 57561) ((-1110 . -793) 57512) ((-1110 . -790) 57463) ((-550 . -489) 57400) ((-668 . -34) T) ((-482 . -233) 57352) ((-295 . -288) 57331) ((-240 . -172) 57310) ((-814 . -1055) T) ((-44 . -646) 57268) ((-1077 . -368) 57219) ((-729 . -290) 57150) ((-520 . -514) 57083) ((-815 . -1054) 57034) ((-1084 . -145) 57013) ((-549 . -611) 56995) ((-359 . -368) 56974) ((-353 . -368) 56953) ((-345 . -368) 56932) ((-1084 . -147) 56911) ((-869 . -231) 56888) ((-815 . -111) 56830) ((-780 . -145) 56809) ((-780 . -147) 56788) ((-264 . -947) 56755) ((-251 . -846) 56734) ((-247 . -947) 56679) ((-250 . -846) 56658) ((-778 . -145) 56637) ((-778 . -147) 56616) ((-152 . -646) 56590) ((-579 . -1097) T) ((-454 . -147) 56569) ((-454 . -145) 56548) ((-668 . -724) T) ((-821 . -611) 56530) ((-1254 . -1097) T) ((-1247 . -1097) T) ((-1226 . -1097) T) ((-1206 . -1200) 56496) ((-1206 . -1197) 56462) ((-1171 . -290) 56441) ((-1170 . -290) 56392) ((-1164 . -290) 56343) ((-1123 . -290) 56322) ((-339 . -898) 56303) ((-1002 . -172) T) ((-912 . -172) T) ((-692 . -21) T) ((-692 . -25) T) ((-225 . -644) 56253) ((-595 . -1097) T) ((-594 . -1097) T) ((-474 . -1243) 56237) ((-474 . -1240) 56207) ((-418 . -286) 56135) ((-547 . -848) T) ((-316 . -1109) 55984) ((-313 . -1109) T) ((-1206 . -35) 55950) ((-1206 . -95) 55916) ((-84 . -611) 55898) ((-91 . -102) 55876) ((-1290 . -131) T) ((-712 . -1049) 55846) ((-591 . -614) 55827) ((-581 . -145) T) ((-581 . -147) 55809) ((-518 . -147) 55791) ((-518 . -145) T) ((-712 . -638) 55761) ((-316 . -23) 55613) ((-40 . -342) 55587) ((-313 . -23) T) ((-815 . -614) 55501) ((-1155 . -649) 55483) ((-1277 . -1055) T) ((-1155 . -373) 55465) ((-813 . -646) 55313) ((-1093 . -102) T) ((-1087 . -102) T) ((-1070 . -102) T) ((-169 . -231) 55297) ((-1063 . -102) T) ((-1034 . -102) T) ((-1017 . -102) T) ((-592 . -489) 55279) ((-624 . -102) T) ((-240 . -514) 55212) ((-483 . -102) T) ((-1284 . -724) T) ((-1282 . -724) T) ((-218 . -102) T) ((-1175 . -1054) 55095) ((-1059 . -644) 55067) ((-950 . -644) 54977) ((-1175 . -111) 54846) ((-481 . -644) 54756) ((-859 . -173) T) ((-815 . -1047) T) ((-679 . -1080) T) ((-674 . -1080) T) ((-515 . -102) T) ((-510 . -102) T) ((-48 . -637) 54716) ((-508 . -102) T) ((-478 . -1080) T) ((-1274 . -1054) 54686) ((-138 . -1080) T) ((-137 . -1080) T) ((-133 . -1080) T) ((-1032 . -38) 54670) ((-815 . -233) T) ((-815 . -243) 54649) ((-1274 . -111) 54614) ((-1254 . -715) 54511) ((-1247 . -715) 54352) ((-550 . -286) 54331) ((-1235 . -231) 54315) ((-1217 . -611) 54297) ((-604 . -93) T) ((-1060 . -612) NIL) ((-1060 . -611) 54279) ((-669 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1226 . -715) 54075) ((-1001 . -918) T) ((-152 . -724) T) ((-1175 . -614) 53928) ((-1110 . -368) 53907) ((-1022 . -25) T) ((-1002 . -514) NIL) ((-251 . -411) 53876) ((-250 . -411) 53845) ((-1022 . -21) T) ((-870 . -1049) 53797) ((-595 . -715) 53770) ((-594 . -715) 53667) ((-797 . -286) 53625) ((-126 . -102) 53603) ((-831 . -1036) 53499) ((-169 . -826) 53478) ((-319 . -646) 53375) ((-813 . -34) T) ((-712 . -102) T) ((-1117 . -1109) T) ((-1024 . -1212) T) ((-870 . -638) 53327) ((-379 . -38) 53292) ((-354 . -25) T) ((-354 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-355 . -1269) 53276) ((-352 . -1269) 53260) ((-344 . -1269) 53244) ((-169 . -349) 53223) ((-564 . -848) T) ((-1117 . -23) T) ((-87 . -611) 53205) ((-699 . -307) T) ((-834 . -38) 53175) ((-825 . -38) 53145) ((-1274 . -614) 53087) ((-1248 . -131) T) ((-1147 . -288) 53066) ((-962 . -724) 52965) ((-962 . -791) 52918) ((-962 . -792) 52871) ((-813 . -789) 52850) ((-116 . -307) T) ((-91 . -309) 52788) ((-673 . -34) T) ((-550 . -602) 52767) ((-48 . -25) T) ((-48 . -21) T) ((-813 . -792) 52718) ((-813 . -791) 52697) ((-699 . -1020) T) ((-651 . -1054) 52681) ((-869 . -644) 52611) ((-813 . -724) 52521) ((-962 . -473) 52474) ((-482 . -793) 52425) ((-482 . -790) 52376) ((-908 . -1269) 52363) ((-1175 . -1047) T) ((-651 . -111) 52342) ((-1175 . -326) 52319) ((-1198 . -102) 52297) ((-1098 . -611) 52279) ((-699 . -545) T) ((-814 . -1097) T) ((-1274 . -1047) T) ((-1132 . -490) 52260) ((-1218 . -102) T) ((-413 . -1097) T) ((-1132 . -611) 52226) ((-251 . -1055) 52156) ((-250 . -1055) 52086) ((-836 . -102) T) ((-289 . -646) 52073) ((-592 . -286) 52048) ((-687 . -685) 52006) ((-961 . -611) 51988) ((-870 . -102) T) ((-733 . -611) 51970) ((-713 . -611) 51952) ((-1254 . -172) 51903) ((-1247 . -172) 51834) ((-1226 . -172) 51765) ((-697 . -848) T) ((-1002 . -290) T) ((-453 . -611) 51747) ((-625 . -724) T) ((-60 . -1097) 51725) ((-245 . -151) 51709) ((-912 . -290) T) ((-1022 . -1010) T) ((-625 . -473) T) ((-710 . -1216) 51688) ((-651 . -614) 51606) ((-169 . -644) 51501) ((-1262 . -848) 51480) ((-595 . -172) 51459) ((-594 . -172) 51410) ((-1246 . -638) 51251) ((-1246 . -1049) 51086) ((-1225 . -638) 50900) ((-1225 . -1049) 50708) ((-710 . -556) 50619) ((-407 . -918) T) ((-407 . -818) 50598) ((-319 . -792) T) ((-968 . -614) 50579) ((-319 . -724) T) ((-418 . -611) 50561) ((-418 . -612) 50468) ((-642 . -1146) 50452) ((-110 . -649) 50434) ((-174 . -307) T) ((-126 . -309) 50372) ((-110 . -373) 50354) ((-398 . -1212) T) ((-316 . -131) 50225) ((-313 . -131) T) ((-69 . -395) T) ((-110 . -123) T) ((-520 . -489) 50209) ((-652 . -1109) T) ((-592 . -19) 50191) ((-61 . -441) T) ((-61 . -395) T) ((-822 . -1097) T) ((-592 . -602) 50166) ((-477 . -1036) 50126) ((-651 . -1047) T) ((-652 . -23) T) ((-1277 . -1097) T) ((-31 . -102) T) ((-1235 . -644) 50036) ((-853 . -644) 49995) ((-814 . -715) 49844) ((-577 . -858) T) ((-571 . -644) 49816) ((-117 . -848) NIL) ((-1169 . -411) 49800) ((-1122 . -411) 49784) ((-852 . -411) 49768) ((-871 . -102) 49719) ((-1246 . -102) T) ((-1226 . -514) 49488) ((-1225 . -102) T) ((-1198 . -309) 49426) ((-1171 . -286) 49411) ((-1170 . -286) 49396) ((-525 . -93) T) ((-1164 . -286) 49244) ((-312 . -611) 49226) ((-1099 . -1097) T) ((-1077 . -646) 49136) ((-709 . -452) T) ((-687 . -611) 49068) ((-289 . -724) T) ((-108 . -907) NIL) ((-687 . -612) 49029) ((-599 . -611) 49011) ((-577 . -611) 48993) ((-550 . -612) NIL) ((-550 . -611) 48975) ((-529 . -611) 48957) ((-511 . -509) 48936) ((-487 . -1054) 48886) ((-474 . -1049) 48721) ((-507 . -509) 48700) ((-474 . -638) 48541) ((-217 . -1054) 48491) ((-359 . -646) 48443) ((-353 . -646) 48395) ((-225 . -846) T) ((-345 . -646) 48347) ((-600 . -102) 48297) ((-482 . -368) 48276) ((-108 . -646) 48226) ((-487 . -111) 48160) ((-240 . -489) 48144) ((-343 . -147) 48126) ((-343 . -145) T) ((-169 . -370) 48097) ((-941 . -1260) 48081) ((-217 . -111) 48015) ((-870 . -309) 47980) ((-941 . -1097) 47930) ((-797 . -612) 47891) ((-797 . -611) 47873) ((-716 . -102) T) ((-331 . -1097) T) ((-214 . -614) 47850) ((-1117 . -131) T) ((-712 . -38) 47820) ((-316 . -493) 47799) ((-500 . -1212) T) ((-1246 . -284) 47765) ((-1225 . -284) 47731) ((-327 . -151) 47715) ((-439 . -1097) T) ((-1060 . -288) 47690) ((-1277 . -715) 47660) ((-1156 . -34) T) ((-1286 . -1036) 47637) ((-468 . -611) 47619) ((-484 . -34) T) ((-381 . -1036) 47603) ((-1169 . -1055) T) ((-1122 . -1055) T) ((-852 . -1055) T) ((-1059 . -846) T) ((-487 . -614) 47553) ((-217 . -614) 47503) ((-814 . -172) 47414) ((-520 . -286) 47391) ((-1254 . -290) 47370) ((-1193 . -364) 47344) ((-1085 . -266) 47328) ((-669 . -490) 47309) ((-669 . -611) 47275) ((-604 . -490) 47256) ((-117 . -990) 47233) ((-604 . -611) 47183) ((-474 . -102) T) ((-180 . -490) 47164) ((-180 . -611) 47130) ((-161 . -490) 47111) ((-156 . -490) 47092) ((-154 . -490) 47073) ((-161 . -611) 47039) ((-156 . -611) 47005) ((-365 . -1097) T) ((-251 . -1097) T) ((-250 . -1097) T) ((-154 . -611) 46971) ((-1247 . -290) 46922) ((-1226 . -290) 46873) ((-870 . -1148) 46851) ((-1171 . -1000) 46817) ((-606 . -364) 46757) ((-1170 . -1000) 46723) ((-606 . -229) 46670) ((-692 . -848) T) ((-592 . -611) 46652) ((-592 . -612) NIL) ((-475 . -229) 46602) ((-487 . -1047) T) ((-1164 . -1000) 46568) ((-88 . -440) T) ((-88 . -395) T) ((-217 . -1047) T) ((-1123 . -1000) 46534) ((-1077 . -724) T) ((-710 . -1109) T) ((-595 . -290) 46513) ((-594 . -290) 46492) ((-487 . -243) T) ((-487 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1162 . -611) 46474) ((-870 . -38) 46426) ((-359 . -724) T) ((-353 . -724) T) ((-345 . -724) T) ((-108 . -792) T) ((-108 . -789) T) ((-710 . -23) T) ((-108 . -724) T) ((-520 . -1250) 46410) ((-1290 . -25) T) ((-474 . -284) 46376) ((-1290 . -21) T) ((-1225 . -309) 46315) ((-1173 . -102) T) ((-40 . -145) 46287) ((-40 . -147) 46259) ((-520 . -602) 46236) ((-1110 . -646) 46084) ((-600 . -309) 46022) ((-45 . -649) 45972) ((-45 . -664) 45922) ((-45 . -373) 45872) ((-1155 . -34) T) ((-869 . -846) NIL) ((-652 . -131) T) ((-485 . -611) 45854) ((-240 . -286) 45831) ((-186 . -1097) T) ((-1084 . -452) 45782) ((-814 . -514) 45656) ((-662 . -1049) 45640) ((-645 . -34) T) ((-630 . -34) T) ((-780 . -452) 45571) ((-662 . -638) 45555) ((-355 . -1049) 45507) ((-352 . -1049) 45459) ((-344 . -1049) 45411) ((-264 . -1049) 45254) ((-247 . -1049) 45097) ((-778 . -452) 45048) ((-355 . -638) 45000) ((-352 . -638) 44952) ((-344 . -638) 44904) ((-264 . -638) 44753) ((-247 . -638) 44602) ((-454 . -452) 44553) ((-950 . -411) 44537) ((-729 . -611) 44519) ((-251 . -715) 44461) ((-250 . -715) 44403) ((-729 . -612) 44264) ((-481 . -411) 44248) ((-339 . -302) T) ((-524 . -93) T) ((-351 . -918) T) ((-998 . -102) 44226) ((-908 . -1049) 44191) ((-1022 . -848) T) ((-60 . -514) 44124) ((-908 . -638) 44089) ((-1225 . -1148) 44041) ((-1002 . -286) NIL) ((-225 . -1055) T) ((-379 . -826) T) ((-1110 . -34) T) ((-581 . -452) T) ((-518 . -452) T) ((-1229 . -1090) 44025) ((-1229 . -1097) 44003) ((-240 . -602) 43980) ((-1229 . -1092) 43937) ((-1171 . -611) 43919) ((-1170 . -611) 43901) ((-1164 . -611) 43883) ((-1164 . -612) NIL) ((-1123 . -611) 43865) ((-870 . -400) 43849) ((-536 . -102) T) ((-1246 . -38) 43690) ((-1225 . -38) 43504) ((-868 . -147) T) ((-581 . -402) T) ((-518 . -402) T) ((-1258 . -102) T) ((-1248 . -21) T) ((-1248 . -25) T) ((-1110 . -789) 43483) ((-1110 . -792) 43434) ((-1110 . -791) 43413) ((-991 . -1097) T) ((-1025 . -34) T) ((-860 . -1097) T) ((-1110 . -724) 43323) ((-662 . -102) T) ((-643 . -102) T) ((-550 . -288) 43302) ((-1185 . -102) T) ((-476 . -34) T) ((-463 . -34) T) ((-355 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-264 . -102) T) ((-247 . -102) T) ((-477 . -307) T) ((-1059 . -1055) T) ((-950 . -1055) T) ((-316 . -637) 43208) ((-313 . -637) 43169) ((-481 . -1055) T) ((-479 . -102) T) ((-436 . -611) 43151) ((-1169 . -1097) T) ((-1122 . -1097) T) ((-852 . -1097) T) ((-1138 . -102) T) ((-814 . -290) 43082) ((-961 . -1054) 42965) ((-477 . -1020) T) ((-733 . -1054) 42935) ((-1032 . -644) 42894) ((-453 . -1054) 42864) ((-1144 . -1118) 42848) ((-1099 . -514) 42781) ((-961 . -111) 42650) ((-908 . -102) T) ((-733 . -111) 42615) ((-525 . -490) 42596) ((-525 . -611) 42562) ((-59 . -102) 42512) ((-520 . -612) 42473) ((-520 . -611) 42385) ((-519 . -102) 42363) ((-516 . -102) 42313) ((-497 . -102) 42291) ((-496 . -102) 42241) ((-453 . -111) 42204) ((-251 . -172) 42183) ((-250 . -172) 42162) ((-322 . -644) 42144) ((-418 . -1054) 42118) ((-1206 . -971) 42080) ((-997 . -1109) T) ((-379 . -644) 42030) ((-1132 . -614) 42011) ((-941 . -514) 41944) ((-487 . -793) T) ((-474 . -38) 41785) ((-418 . -111) 41752) ((-487 . -790) T) ((-998 . -309) 41690) ((-217 . -793) T) ((-217 . -790) T) ((-997 . -23) T) ((-710 . -131) T) ((-1225 . -400) 41660) ((-834 . -644) 41605) ((-825 . -644) 41564) ((-316 . -25) 41416) ((-169 . -411) 41400) ((-316 . -21) 41271) ((-313 . -25) T) ((-313 . -21) T) ((-862 . -368) T) ((-961 . -614) 41124) ((-110 . -34) T) ((-733 . -614) 41080) ((-713 . -614) 41062) ((-482 . -646) 40910) ((-869 . -1055) T) ((-592 . -288) 40885) ((-580 . -147) T) ((-564 . -147) T) ((-495 . -147) T) ((-1169 . -715) 40714) ((-1122 . -715) 40563) ((-1117 . -637) 40545) ((-852 . -715) 40515) ((-668 . -1212) T) ((-1 . -102) T) ((-418 . -614) 40423) ((-240 . -611) 40154) ((-1112 . -1097) T) ((-1235 . -411) 40138) ((-1185 . -309) 39942) ((-961 . -1047) T) ((-733 . -1047) T) ((-713 . -1047) T) ((-642 . -1097) 39892) ((-1052 . -646) 39876) ((-853 . -411) 39860) ((-511 . -102) T) ((-507 . -102) T) ((-264 . -309) 39847) ((-247 . -309) 39834) ((-961 . -326) 39813) ((-385 . -646) 39797) ((-668 . -1036) 39693) ((-479 . -309) 39497) ((-251 . -514) 39430) ((-250 . -514) 39363) ((-1138 . -309) 39289) ((-817 . -1097) T) ((-797 . -1054) 39273) ((-1254 . -286) 39258) ((-1247 . -286) 39243) ((-1226 . -286) 39091) ((-386 . -1097) T) ((-324 . -1097) T) ((-418 . -1047) T) ((-169 . -1055) T) ((-59 . -309) 39029) ((-797 . -111) 39008) ((-594 . -286) 38993) ((-519 . -309) 38931) ((-516 . -309) 38869) ((-497 . -309) 38807) ((-496 . -309) 38745) ((-418 . -233) 38724) ((-482 . -34) T) ((-1002 . -612) 38654) ((-225 . -1097) T) ((-1002 . -611) 38614) ((-969 . -611) 38574) ((-969 . -612) 38549) ((-912 . -611) 38531) ((-697 . -147) T) ((-699 . -918) T) ((-699 . -818) T) ((-427 . -611) 38513) ((-1117 . -21) T) ((-1117 . -25) T) ((-668 . -377) 38497) ((-116 . -918) T) ((-870 . -231) 38481) ((-78 . -1212) T) ((-126 . -125) 38465) ((-1052 . -34) T) ((-1284 . -1036) 38439) ((-1282 . -1036) 38396) ((-1235 . -1055) T) ((-853 . -1055) T) ((-482 . -789) 38375) ((-355 . -1148) 38354) ((-352 . -1148) 38333) ((-344 . -1148) 38312) ((-482 . -792) 38263) ((-482 . -791) 38242) ((-227 . -34) T) ((-482 . -724) 38152) ((-797 . -614) 38000) ((-660 . -1049) 37984) ((-60 . -489) 37968) ((-571 . -1055) T) ((-660 . -638) 37952) ((-1169 . -172) 37843) ((-1122 . -172) 37754) ((-1059 . -1097) T) ((-1084 . -947) 37699) ((-950 . -1097) T) ((-815 . -646) 37650) ((-780 . -947) 37619) ((-711 . -1097) T) ((-778 . -947) 37586) ((-516 . -282) 37570) ((-668 . -898) 37529) ((-481 . -1097) T) ((-454 . -947) 37496) ((-79 . -1212) T) ((-355 . -38) 37461) ((-352 . -38) 37426) ((-344 . -38) 37391) ((-264 . -38) 37240) ((-247 . -38) 37089) ((-908 . -1148) T) ((-524 . -490) 37070) ((-621 . -147) 37049) ((-621 . -145) 37028) ((-524 . -611) 36994) ((-117 . -147) T) ((-117 . -145) NIL) ((-414 . -724) T) ((-797 . -1047) T) ((-343 . -452) T) ((-1254 . -1000) 36960) ((-1247 . -1000) 36926) ((-1226 . -1000) 36892) ((-908 . -38) 36857) ((-225 . -715) 36822) ((-319 . -47) 36792) ((-40 . -409) 36764) ((-140 . -611) 36746) ((-997 . -131) T) ((-813 . -1212) T) ((-174 . -918) T) ((-549 . -368) T) ((-604 . -614) 36727) ((-343 . -402) T) ((-712 . -644) 36672) ((-669 . -614) 36653) ((-180 . -614) 36634) ((-161 . -614) 36615) ((-156 . -614) 36596) ((-154 . -614) 36577) ((-520 . -288) 36554) ((-1225 . -231) 36524) ((-813 . -1036) 36351) ((-45 . -34) T) ((-679 . -102) T) ((-674 . -102) T) ((-660 . -102) T) ((-652 . -21) T) ((-652 . -25) T) ((-1099 . -489) 36335) ((-673 . -1212) T) ((-478 . -102) T) ((-245 . -102) 36285) ((-546 . -842) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-869 . -1097) T) ((-1175 . -646) 36210) ((-1059 . -715) 36197) ((-729 . -1054) 36040) ((-1169 . -514) 35987) ((-950 . -715) 35836) ((-1122 . -514) 35788) ((-1273 . -1097) T) ((-1272 . -1097) T) ((-481 . -715) 35637) ((-67 . -611) 35619) ((-729 . -111) 35448) ((-941 . -489) 35432) ((-1274 . -646) 35392) ((-815 . -724) T) ((-1171 . -1054) 35275) ((-1170 . -1054) 35110) ((-1164 . -1054) 34900) ((-1123 . -1054) 34783) ((-1001 . -1216) T) ((-1091 . -102) 34761) ((-813 . -377) 34730) ((-579 . -611) 34712) ((-546 . -1097) T) ((-1001 . -556) T) ((-1171 . -111) 34581) ((-1170 . -111) 34402) ((-1164 . -111) 34171) ((-1123 . -111) 34040) ((-1102 . -1100) 34004) ((-379 . -846) T) ((-1254 . -611) 33986) ((-1247 . -611) 33968) ((-870 . -644) 33905) ((-1226 . -611) 33887) ((-1226 . -612) NIL) ((-240 . -288) 33864) ((-40 . -452) T) ((-225 . -172) T) ((-169 . -1097) T) ((-729 . -614) 33649) ((-692 . -147) T) ((-692 . -145) NIL) ((-595 . -611) 33631) ((-594 . -611) 33613) ((-896 . -1097) T) ((-839 . -1097) T) ((-806 . -1097) T) ((-767 . -1097) T) ((-656 . -850) 33597) ((-675 . -1097) T) ((-813 . -898) 33529) ((-1217 . -368) T) ((-40 . -402) NIL) ((-1171 . -614) 33411) ((-1117 . -659) T) ((-869 . -715) 33356) ((-251 . -489) 33340) ((-250 . -489) 33324) ((-1170 . -614) 33067) ((-1164 . -614) 32862) ((-710 . -637) 32810) ((-651 . -646) 32784) ((-1123 . -614) 32666) ((-295 . -34) T) ((-729 . -1047) T) ((-581 . -1269) 32653) ((-518 . -1269) 32630) ((-1235 . -1097) T) ((-1169 . -290) 32541) ((-1122 . -290) 32472) ((-1059 . -172) T) ((-853 . -1097) T) ((-950 . -172) 32383) ((-780 . -1238) 32367) ((-642 . -514) 32300) ((-77 . -611) 32282) ((-729 . -326) 32247) ((-1175 . -724) T) ((-571 . -1097) T) ((-481 . -172) 32158) ((-245 . -309) 32096) ((-1139 . -1109) T) ((-70 . -611) 32078) ((-1274 . -724) T) ((-1171 . -1047) T) ((-1170 . -1047) T) ((-327 . -102) 32028) ((-1164 . -1047) T) ((-1139 . -23) T) ((-1123 . -1047) T) ((-91 . -1118) 32012) ((-864 . -1109) T) ((-1171 . -233) 31971) ((-1170 . -243) 31950) ((-1170 . -233) 31902) ((-1164 . -233) 31789) ((-1164 . -243) 31768) ((-319 . -898) 31674) ((-864 . -23) T) ((-169 . -715) 31502) ((-407 . -1216) T) ((-1098 . -368) T) ((-1001 . -363) T) ((-868 . -452) T) ((-1022 . -147) T) ((-941 . -286) 31479) ((-313 . -848) NIL) ((-1246 . -644) 31361) ((-872 . -102) T) ((-1225 . -644) 31216) ((-710 . -25) T) ((-407 . -556) T) ((-710 . -21) T) ((-525 . -614) 31197) ((-354 . -147) 31179) ((-354 . -145) T) ((-1144 . -1097) 31157) ((-453 . -718) T) ((-75 . -611) 31139) ((-114 . -848) T) ((-245 . -282) 31123) ((-240 . -1054) 31020) ((-81 . -611) 31002) ((-733 . -368) 30955) ((-1173 . -826) T) ((-735 . -235) 30939) ((-1156 . -1212) T) ((-141 . -235) 30921) ((-240 . -111) 30811) ((-1235 . -715) 30640) ((-48 . -147) T) ((-869 . -172) T) ((-853 . -715) 30610) ((-484 . -1212) T) ((-950 . -514) 30557) ((-651 . -724) T) ((-571 . -715) 30544) ((-1032 . -1055) T) ((-481 . -514) 30487) ((-941 . -19) 30471) ((-941 . -602) 30448) ((-814 . -612) NIL) ((-814 . -611) 30430) ((-1206 . -1049) 30313) ((-1002 . -1054) 30263) ((-413 . -611) 30245) ((-251 . -286) 30222) ((-250 . -286) 30199) ((-487 . -907) NIL) ((-316 . -29) 30169) ((-108 . -1212) T) ((-1001 . -1109) T) ((-217 . -907) NIL) ((-1206 . -638) 30066) ((-912 . -1054) 30018) ((-1077 . -1036) 29914) ((-1002 . -111) 29848) ((-709 . -1049) 29813) ((-1001 . -23) T) ((-912 . -111) 29751) ((-735 . -693) 29735) ((-709 . -638) 29700) ((-264 . -231) 29684) ((-427 . -1054) 29668) ((-379 . -1055) T) ((-240 . -614) 29398) ((-692 . -1200) NIL) ((-487 . -646) 29348) ((-474 . -644) 29230) ((-108 . -882) 29212) ((-108 . -884) 29194) ((-692 . -1197) NIL) ((-217 . -646) 29144) ((-359 . -1036) 29128) ((-353 . -1036) 29112) ((-327 . -309) 29050) ((-345 . -1036) 29034) ((-225 . -290) T) ((-427 . -111) 29013) ((-60 . -611) 28945) ((-169 . -172) T) ((-1117 . -848) T) ((-108 . -1036) 28905) ((-890 . -1097) T) ((-834 . -1055) T) ((-825 . -1055) T) ((-692 . -35) NIL) ((-692 . -95) NIL) ((-313 . -990) 28866) ((-183 . -102) T) ((-580 . -452) T) ((-564 . -452) T) ((-495 . -452) T) ((-407 . -363) T) ((-240 . -1047) 28796) ((-1147 . -34) T) ((-477 . -918) T) ((-997 . -637) 28744) ((-251 . -602) 28721) ((-250 . -602) 28698) ((-1077 . -377) 28682) ((-869 . -514) 28590) ((-240 . -233) 28542) ((-1155 . -1212) T) ((-1002 . -614) 28492) ((-912 . -614) 28429) ((-822 . -611) 28411) ((-1285 . -1109) T) ((-1277 . -611) 28393) ((-1235 . -172) 28284) ((-427 . -614) 28253) ((-108 . -377) 28235) ((-108 . -338) 28217) ((-1059 . -290) T) ((-950 . -290) 28148) ((-797 . -368) 28127) ((-645 . -1212) T) ((-630 . -1212) T) ((-585 . -1049) 28102) ((-481 . -290) 28033) ((-571 . -172) T) ((-327 . -282) 28017) ((-1285 . -23) T) ((-1206 . -102) T) ((-1193 . -1097) T) ((-1085 . -1097) T) ((-1073 . -1097) T) ((-585 . -638) 27992) ((-83 . -611) 27974) ((-1180 . -842) T) ((-1179 . -842) T) ((-709 . -102) T) ((-355 . -349) 27953) ((-606 . -1097) T) ((-352 . -349) 27932) ((-344 . -349) 27911) ((-475 . -1097) T) ((-1185 . -229) 27861) ((-264 . -253) 27823) ((-1139 . -131) T) ((-606 . -608) 27799) ((-1077 . -898) 27732) ((-1002 . -1047) T) ((-912 . -1047) T) ((-475 . -608) 27711) ((-1164 . -790) NIL) ((-1164 . -793) NIL) ((-1099 . -612) 27672) ((-479 . -229) 27622) ((-1099 . -611) 27604) ((-1002 . -243) T) ((-1002 . -233) T) ((-427 . -1047) T) ((-956 . -1097) 27554) ((-912 . -243) T) ((-864 . -131) T) ((-697 . -452) T) ((-841 . -1109) 27533) ((-108 . -898) NIL) ((-1206 . -284) 27499) ((-870 . -846) 27478) ((-1110 . -1212) T) ((-903 . -724) T) ((-169 . -514) 27390) ((-997 . -25) T) ((-903 . -473) T) ((-407 . -1109) T) ((-487 . -792) T) ((-487 . -789) T) ((-908 . -349) T) ((-487 . -724) T) ((-217 . -792) T) ((-217 . -789) T) ((-997 . -21) T) ((-217 . -724) T) ((-841 . -23) 27342) ((-656 . -1049) 27326) ((-1180 . -1097) T) ((-524 . -614) 27307) ((-1179 . -1097) T) ((-319 . -307) 27286) ((-1033 . -235) 27232) ((-656 . -638) 27202) ((-407 . -23) T) ((-941 . -612) 27163) ((-941 . -611) 27075) ((-642 . -489) 27059) ((-45 . -1008) 27009) ((-615 . -965) T) ((-491 . -102) T) ((-331 . -611) 26991) ((-1110 . -1036) 26818) ((-592 . -649) 26800) ((-130 . -1097) T) ((-128 . -1097) T) ((-592 . -373) 26782) ((-343 . -1269) 26759) ((-439 . -611) 26741) ((-1235 . -514) 26688) ((-1084 . -1049) 26531) ((-1025 . -1212) T) ((-869 . -290) T) ((-1169 . -286) 26458) ((-1084 . -638) 26307) ((-998 . -993) 26291) ((-780 . -1049) 26114) ((-778 . -1049) 25957) ((-780 . -638) 25786) ((-778 . -638) 25635) ((-476 . -1212) T) ((-463 . -1212) T) ((-585 . -102) T) ((-461 . -1049) 25606) ((-454 . -1049) 25449) ((-662 . -644) 25418) ((-621 . -452) 25397) ((-461 . -638) 25368) ((-454 . -638) 25217) ((-355 . -644) 25154) ((-352 . -644) 25091) ((-344 . -644) 25028) ((-264 . -644) 24938) ((-247 . -644) 24848) ((-1277 . -382) 24820) ((-517 . -1097) T) ((-117 . -452) T) ((-1192 . -102) T) ((-1089 . -1097) 24798) ((-1032 . -1097) T) ((-1112 . -93) T) ((-891 . -848) T) ((-1254 . -111) 24667) ((-351 . -1216) T) ((-1254 . -1054) 24550) ((-1110 . -377) 24519) ((-1247 . -1054) 24354) ((-1226 . -1054) 24144) ((-1247 . -111) 23965) ((-1226 . -111) 23734) ((-1206 . -309) 23721) ((-1001 . -131) T) ((-908 . -644) 23671) ((-365 . -611) 23653) ((-351 . -556) T) ((-289 . -307) T) ((-595 . -1054) 23626) ((-594 . -1054) 23509) ((-581 . -1049) 23474) ((-518 . -1049) 23419) ((-361 . -1097) T) ((-322 . -1097) T) ((-251 . -611) 23380) ((-250 . -611) 23341) ((-581 . -638) 23306) ((-518 . -638) 23251) ((-692 . -409) 23218) ((-633 . -23) T) ((-605 . -23) T) ((-656 . -102) T) ((-595 . -111) 23189) ((-594 . -111) 23058) ((-379 . -1097) T) ((-336 . -102) T) ((-169 . -290) 22969) ((-1225 . -846) 22922) ((-712 . -1055) T) ((-1144 . -514) 22855) ((-1110 . -898) 22787) ((-834 . -1097) T) ((-825 . -1097) T) ((-823 . -1097) T) ((-97 . -102) T) ((-144 . -848) T) ((-610 . -882) 22771) ((-110 . -1212) T) ((-1084 . -102) T) ((-1060 . -34) T) ((-780 . -102) T) ((-778 . -102) T) ((-1254 . -614) 22653) ((-1247 . -614) 22396) ((-461 . -102) T) ((-454 . -102) T) ((-1226 . -614) 22191) ((-240 . -793) 22142) ((-240 . -790) 22093) ((-647 . -102) T) ((-595 . -614) 22051) ((-594 . -614) 21933) ((-1235 . -290) 21844) ((-662 . -632) 21828) ((-186 . -611) 21810) ((-642 . -286) 21787) ((-1032 . -715) 21771) ((-571 . -290) T) ((-961 . -646) 21696) ((-1285 . -131) T) ((-733 . -646) 21656) ((-713 . -646) 21643) ((-275 . -102) T) ((-453 . -646) 21573) ((-50 . -102) T) ((-581 . -102) T) ((-518 . -102) T) ((-1254 . -1047) T) ((-1247 . -1047) T) ((-1226 . -1047) T) ((-507 . -644) 21555) ((-322 . -715) 21537) ((-1254 . -233) 21496) ((-1247 . -243) 21475) ((-1247 . -233) 21427) ((-1226 . -233) 21314) ((-1226 . -243) 21293) ((-1206 . -38) 21190) ((-595 . -1047) T) ((-594 . -1047) T) ((-1002 . -793) T) ((-1002 . -790) T) ((-969 . -793) T) ((-969 . -790) T) ((-870 . -1055) T) ((-109 . -611) 21172) ((-692 . -452) T) ((-379 . -715) 21137) ((-418 . -646) 21111) ((-868 . -867) 21095) ((-709 . -38) 21060) ((-594 . -233) 21019) ((-40 . -722) 20991) ((-351 . -329) 20968) ((-351 . -363) T) ((-1077 . -307) 20919) ((-294 . -1109) 20800) ((-1103 . -1212) T) ((-171 . -102) T) ((-1229 . -611) 20767) ((-841 . -131) 20719) ((-642 . -1250) 20703) ((-834 . -715) 20673) ((-825 . -715) 20643) ((-482 . -1212) T) ((-359 . -307) T) ((-353 . -307) T) ((-345 . -307) T) ((-642 . -602) 20620) ((-407 . -131) T) ((-520 . -664) 20604) ((-108 . -307) T) ((-294 . -23) 20487) ((-520 . -649) 20471) ((-692 . -402) NIL) ((-520 . -373) 20455) ((-291 . -611) 20437) ((-91 . -1097) 20415) ((-108 . -1020) T) ((-564 . -143) T) ((-1262 . -151) 20399) ((-482 . -1036) 20226) ((-1248 . -145) 20187) ((-1248 . -147) 20148) ((-1052 . -1212) T) ((-991 . -611) 20130) ((-860 . -611) 20112) ((-814 . -1054) 19955) ((-1273 . -93) T) ((-1272 . -93) T) ((-1169 . -612) NIL) ((-1093 . -1097) T) ((-1087 . -1097) T) ((-1084 . -309) 19942) ((-1070 . -1097) T) ((-227 . -1212) T) ((-1063 . -1097) T) ((-1034 . -1097) T) ((-1017 . -1097) T) ((-780 . -309) 19929) ((-778 . -309) 19916) ((-1169 . -611) 19898) ((-814 . -111) 19727) ((-1122 . -611) 19709) ((-624 . -1097) T) ((-577 . -173) T) ((-529 . -173) T) ((-454 . -309) 19696) ((-483 . -1097) T) ((-1122 . -612) 19444) ((-1032 . -172) T) ((-941 . -288) 19421) ((-218 . -1097) T) ((-852 . -611) 19403) ((-606 . -514) 19186) ((-81 . -614) 19127) ((-816 . -1036) 19111) ((-475 . -514) 18903) ((-961 . -724) T) ((-733 . -724) T) ((-713 . -724) T) ((-351 . -1109) T) ((-1176 . -611) 18885) ((-223 . -102) T) ((-482 . -377) 18854) ((-515 . -1097) T) ((-510 . -1097) T) ((-508 . -1097) T) ((-797 . -646) 18828) ((-1022 . -452) T) ((-956 . -514) 18761) ((-351 . -23) T) ((-633 . -131) T) ((-605 . -131) T) ((-354 . -452) T) ((-240 . -368) 18740) ((-379 . -172) T) ((-1246 . -1055) T) ((-1225 . -1055) T) ((-225 . -1000) T) ((-814 . -614) 18477) ((-697 . -387) T) ((-418 . -724) T) ((-699 . -1216) T) ((-1139 . -637) 18425) ((-580 . -867) 18409) ((-1277 . -1054) 18393) ((-1156 . -1188) 18369) ((-699 . -556) T) ((-126 . -1097) 18347) ((-712 . -1097) T) ((-482 . -898) 18279) ((-249 . -1097) T) ((-187 . -1097) T) ((-656 . -38) 18249) ((-354 . -402) T) ((-316 . -147) 18228) ((-316 . -145) 18207) ((-128 . -514) NIL) ((-116 . -556) T) ((-313 . -147) 18163) ((-313 . -145) 18119) ((-48 . -452) T) ((-162 . -1097) T) ((-157 . -1097) T) ((-1156 . -107) 18066) ((-780 . -1148) 18044) ((-687 . -34) T) ((-1277 . -111) 18023) ((-550 . -34) T) ((-484 . -107) 18007) ((-251 . -288) 17984) ((-250 . -288) 17961) ((-869 . -286) 17912) ((-45 . -1212) T) ((-1218 . -842) T) ((-814 . -1047) T) ((-660 . -644) 17881) ((-1175 . -47) 17858) ((-814 . -326) 17820) ((-1084 . -38) 17669) ((-814 . -233) 17648) ((-780 . -38) 17477) ((-778 . -38) 17326) ((-1112 . -490) 17307) ((-454 . -38) 17156) ((-1112 . -611) 17122) ((-1115 . -102) T) ((-642 . -612) 17083) ((-642 . -611) 16995) ((-581 . -1148) T) ((-518 . -1148) T) ((-1144 . -489) 16979) ((-343 . -1049) 16924) ((-1198 . -1097) 16902) ((-1139 . -25) T) ((-1139 . -21) T) ((-343 . -638) 16847) ((-1277 . -614) 16796) ((-474 . -1055) T) ((-1218 . -1097) T) ((-1226 . -790) NIL) ((-1226 . -793) NIL) ((-997 . -848) 16775) ((-836 . -1097) T) ((-817 . -611) 16757) ((-864 . -21) T) ((-864 . -25) T) ((-797 . -724) T) ((-174 . -1216) T) ((-581 . -38) 16722) ((-518 . -38) 16687) ((-386 . -611) 16669) ((-324 . -611) 16651) ((-169 . -286) 16609) ((-63 . -1212) T) ((-112 . -102) T) ((-870 . -1097) T) ((-174 . -556) T) ((-712 . -715) 16579) ((-294 . -131) 16462) ((-225 . -611) 16444) ((-225 . -612) 16374) ((-1001 . -637) 16313) ((-1277 . -1047) T) ((-1117 . -147) T) ((-630 . -1188) 16288) ((-729 . -907) 16267) ((-592 . -34) T) ((-645 . -107) 16251) ((-630 . -107) 16197) ((-1235 . -286) 16124) ((-729 . -646) 16049) ((-295 . -1212) T) ((-1175 . -1036) 15945) ((-941 . -616) 15922) ((-577 . -576) T) ((-577 . -527) T) ((-529 . -527) T) ((-1164 . -907) NIL) ((-1059 . -612) 15837) ((-1059 . -611) 15819) ((-950 . -611) 15801) ((-711 . -490) 15751) ((-343 . -102) T) ((-251 . -1054) 15648) ((-250 . -1054) 15545) ((-394 . -102) T) ((-31 . -1097) T) ((-950 . -612) 15406) ((-711 . -611) 15341) ((-1275 . -1205) 15310) ((-481 . -611) 15292) ((-481 . -612) 15153) ((-264 . -411) 15137) ((-247 . -411) 15121) ((-251 . -111) 15011) ((-250 . -111) 14901) ((-1171 . -646) 14826) ((-1170 . -646) 14723) ((-1164 . -646) 14575) ((-1123 . -646) 14500) ((-351 . -131) T) ((-82 . -441) T) ((-82 . -395) T) ((-1001 . -25) T) ((-1001 . -21) T) ((-871 . -1097) 14451) ((-40 . -1049) 14396) ((-870 . -715) 14348) ((-40 . -638) 14293) ((-379 . -290) T) ((-169 . -1000) 14244) ((-692 . -387) T) ((-997 . -995) 14228) ((-699 . -1109) T) ((-692 . -166) 14210) ((-1246 . -1097) T) ((-1225 . -1097) T) ((-316 . -1197) 14189) ((-316 . -1200) 14168) ((-1161 . -102) T) ((-316 . -957) 14147) ((-134 . -1109) T) ((-116 . -1109) T) ((-600 . -1260) 14131) ((-699 . -23) T) ((-600 . -1097) 14081) ((-316 . -95) 14060) ((-91 . -514) 13993) ((-174 . -363) T) ((-251 . -614) 13723) ((-250 . -614) 13453) ((-316 . -35) 13432) ((-606 . -489) 13366) ((-134 . -23) T) ((-116 . -23) T) ((-964 . -102) T) ((-716 . -1097) T) ((-475 . -489) 13303) ((-407 . -637) 13251) ((-651 . -1036) 13147) ((-956 . -489) 13131) ((-355 . -1055) T) ((-352 . -1055) T) ((-344 . -1055) T) ((-264 . -1055) T) ((-247 . -1055) T) ((-869 . -612) NIL) ((-869 . -611) 13113) ((-1273 . -490) 13094) ((-1272 . -490) 13075) ((-1285 . -21) T) ((-1273 . -611) 13041) ((-1272 . -611) 13007) ((-571 . -1000) T) ((-729 . -724) T) ((-1285 . -25) T) ((-251 . -1047) 12937) ((-250 . -1047) 12867) ((-72 . -1212) T) ((-251 . -233) 12819) ((-250 . -233) 12771) ((-40 . -102) T) ((-908 . -1055) T) ((-1178 . -102) T) ((-128 . -489) 12753) ((-1171 . -724) T) ((-1170 . -724) T) ((-1164 . -724) T) ((-1164 . -789) NIL) ((-1164 . -792) NIL) ((-952 . -102) T) ((-919 . -102) T) ((-868 . -1049) 12740) ((-1123 . -724) T) ((-769 . -102) T) ((-670 . -102) T) ((-868 . -638) 12727) ((-546 . -611) 12709) ((-474 . -1097) T) ((-339 . -1109) T) ((-174 . -1109) T) ((-319 . -918) 12688) ((-1246 . -715) 12529) ((-870 . -172) T) ((-1225 . -715) 12343) ((-841 . -21) 12295) ((-841 . -25) 12247) ((-245 . -1146) 12231) ((-126 . -514) 12164) ((-407 . -25) T) ((-407 . -21) T) ((-339 . -23) T) ((-169 . -612) 11930) ((-169 . -611) 11912) ((-174 . -23) T) ((-642 . -288) 11889) ((-520 . -34) T) ((-896 . -611) 11871) ((-89 . -1212) T) ((-839 . -611) 11853) ((-806 . -611) 11835) ((-767 . -611) 11817) ((-675 . -611) 11799) ((-240 . -646) 11647) ((-1173 . -1097) T) ((-1169 . -1054) 11470) ((-1147 . -1212) T) ((-1122 . -1054) 11313) ((-852 . -1054) 11297) ((-1229 . -616) 11281) ((-1169 . -111) 11090) ((-1122 . -111) 10919) ((-852 . -111) 10898) ((-1219 . -848) T) ((-1235 . -612) NIL) ((-1235 . -611) 10880) ((-343 . -1148) T) ((-853 . -611) 10862) ((-1073 . -286) 10841) ((-80 . -1212) T) ((-1002 . -907) NIL) ((-606 . -286) 10817) ((-1198 . -514) 10750) ((-487 . -1212) T) ((-571 . -611) 10732) ((-475 . -286) 10711) ((-1206 . -644) 10621) ((-517 . -93) T) ((-1084 . -231) 10605) ((-217 . -1212) T) ((-1002 . -646) 10555) ((-956 . -286) 10532) ((-289 . -918) T) ((-815 . -307) 10511) ((-868 . -102) T) ((-780 . -231) 10495) ((-912 . -646) 10447) ((-709 . -644) 10397) ((-692 . -722) 10364) ((-633 . -21) T) ((-633 . -25) T) ((-605 . -21) T) ((-547 . -102) T) ((-343 . -38) 10329) ((-487 . -882) 10311) ((-487 . -884) 10293) ((-474 . -715) 10134) ((-217 . -882) 10116) ((-64 . -1212) T) ((-217 . -884) 10098) ((-605 . -25) T) ((-427 . -646) 10072) ((-1169 . -614) 9841) ((-487 . -1036) 9801) ((-870 . -514) 9713) ((-1122 . -614) 9505) ((-852 . -614) 9423) ((-217 . -1036) 9383) ((-240 . -34) T) ((-998 . -1097) 9361) ((-580 . -1049) 9348) ((-564 . -1049) 9335) ((-495 . -1049) 9300) ((-1246 . -172) 9231) ((-1225 . -172) 9162) ((-580 . -638) 9149) ((-564 . -638) 9136) ((-495 . -638) 9101) ((-710 . -145) 9080) ((-710 . -147) 9059) ((-699 . -131) T) ((-136 . -465) 9036) ((-1144 . -611) 8968) ((-656 . -654) 8952) ((-128 . -286) 8927) ((-116 . -131) T) ((-477 . -1216) T) ((-606 . -602) 8903) ((-475 . -602) 8882) ((-336 . -335) 8851) ((-536 . -1097) T) ((-477 . -556) T) ((-1169 . -1047) T) ((-1122 . -1047) T) ((-852 . -1047) T) ((-240 . -789) 8830) ((-240 . -792) 8781) ((-240 . -791) 8760) ((-1169 . -326) 8737) ((-240 . -724) 8647) ((-956 . -19) 8631) ((-487 . -377) 8613) ((-487 . -338) 8595) ((-1122 . -326) 8567) ((-354 . -1269) 8544) ((-217 . -377) 8526) ((-217 . -338) 8508) ((-956 . -602) 8485) ((-1169 . -233) T) ((-1258 . -1097) T) ((-662 . -1097) T) ((-643 . -1097) T) ((-1185 . -1097) T) ((-1084 . -253) 8422) ((-585 . -644) 8382) ((-355 . -1097) T) ((-352 . -1097) T) ((-344 . -1097) T) ((-264 . -1097) T) ((-247 . -1097) T) ((-84 . -1212) T) ((-127 . -102) 8360) ((-121 . -102) 8338) ((-1185 . -608) 8317) ((-1225 . -514) 8177) ((-1138 . -1097) T) ((-1112 . -614) 8158) ((-479 . -1097) T) ((-1077 . -918) 8109) ((-1002 . -792) T) ((-479 . -608) 8088) ((-251 . -793) 8039) ((-251 . -790) 7990) ((-250 . -793) 7941) ((-40 . -1148) NIL) ((-250 . -790) 7892) ((-1002 . -789) T) ((-128 . -19) 7874) ((-1002 . -724) T) ((-697 . -1049) 7839) ((-969 . -792) T) ((-912 . -724) T) ((-908 . -1097) T) ((-128 . -602) 7814) ((-697 . -638) 7779) ((-91 . -489) 7763) ((-487 . -898) NIL) ((-890 . -611) 7745) ((-225 . -1054) 7710) ((-870 . -290) T) ((-217 . -898) NIL) ((-831 . -1109) 7689) ((-59 . -1097) 7639) ((-519 . -1097) 7617) ((-516 . -1097) 7567) ((-497 . -1097) 7545) ((-496 . -1097) 7495) ((-580 . -102) T) ((-564 . -102) T) ((-495 . -102) T) ((-474 . -172) 7426) ((-359 . -918) T) ((-353 . -918) T) ((-345 . -918) T) ((-225 . -111) 7382) ((-831 . -23) 7334) ((-427 . -724) T) ((-108 . -918) T) ((-40 . -38) 7279) ((-108 . -818) T) ((-581 . -349) T) ((-518 . -349) T) ((-834 . -286) 7258) ((-316 . -452) 7237) ((-313 . -452) T) ((-656 . -644) 7196) ((-600 . -514) 7129) ((-339 . -131) T) ((-174 . -131) T) ((-294 . -25) 6993) ((-294 . -21) 6876) ((-45 . -1188) 6855) ((-66 . -611) 6837) ((-55 . -102) T) ((-336 . -644) 6819) ((-45 . -107) 6769) ((-817 . -614) 6753) ((-1263 . -102) T) ((-1262 . -102) 6703) ((-1254 . -646) 6628) ((-1247 . -646) 6525) ((-1099 . -425) 6509) ((-1099 . -368) 6488) ((-386 . -614) 6472) ((-324 . -614) 6456) ((-1226 . -646) 6308) ((-1226 . -907) NIL) ((-1060 . -1212) T) ((-1084 . -644) 6218) ((-1059 . -1054) 6205) ((-1059 . -111) 6190) ((-950 . -1054) 6033) ((-950 . -111) 5862) ((-780 . -644) 5772) ((-778 . -644) 5682) ((-621 . -1049) 5669) ((-662 . -715) 5653) ((-621 . -638) 5640) ((-481 . -1054) 5483) ((-477 . -363) T) ((-461 . -644) 5439) ((-454 . -644) 5349) ((-225 . -614) 5299) ((-355 . -715) 5251) ((-352 . -715) 5203) ((-117 . -1049) 5148) ((-344 . -715) 5100) ((-264 . -715) 4949) ((-247 . -715) 4798) ((-1193 . -611) 4780) ((-1093 . -93) T) ((-117 . -638) 4725) ((-1087 . -93) T) ((-941 . -649) 4709) ((-1070 . -93) T) ((-481 . -111) 4538) ((-1063 . -93) T) ((-1034 . -93) T) ((-941 . -373) 4522) ((-248 . -102) T) ((-1017 . -93) T) ((-74 . -611) 4504) ((-961 . -47) 4483) ((-708 . -102) T) ((-697 . -102) T) ((-1 . -1097) T) ((-619 . -1109) T) ((-1085 . -611) 4465) ((-624 . -93) T) ((-1073 . -611) 4447) ((-908 . -715) 4412) ((-126 . -489) 4396) ((-483 . -93) T) ((-619 . -23) T) ((-390 . -23) T) ((-87 . -1212) T) ((-218 . -93) T) ((-606 . -611) 4378) ((-606 . -612) NIL) ((-475 . -612) NIL) ((-475 . -611) 4360) ((-351 . -25) T) ((-351 . -21) T) ((-50 . -644) 4319) ((-511 . -1097) T) ((-507 . -1097) T) ((-127 . -309) 4257) ((-121 . -309) 4195) ((-595 . -646) 4182) ((-594 . -646) 4107) ((-581 . -644) 4057) ((-225 . -1047) T) ((-518 . -644) 3987) ((-379 . -1000) T) ((-225 . -243) T) ((-225 . -233) T) ((-1059 . -614) 3959) ((-1059 . -616) 3940) ((-956 . -612) 3901) ((-956 . -611) 3813) ((-950 . -614) 3602) ((-868 . -38) 3589) ((-711 . -614) 3539) ((-1246 . -290) 3490) ((-1225 . -290) 3441) ((-481 . -614) 3226) ((-1117 . -452) T) ((-502 . -848) T) ((-316 . -1136) 3205) ((-997 . -147) 3184) ((-997 . -145) 3163) ((-495 . -309) 3150) ((-295 . -1188) 3129) ((-1180 . -611) 3111) ((-1179 . -611) 3093) ((-869 . -1054) 3038) ((-477 . -1109) T) ((-139 . -833) 3020) ((-114 . -833) 3001) ((-621 . -102) T) ((-1198 . -489) 2985) ((-251 . -368) 2964) ((-250 . -368) 2943) ((-1059 . -1047) T) ((-295 . -107) 2893) ((-130 . -611) 2875) ((-128 . -612) NIL) ((-128 . -611) 2819) ((-117 . -102) T) ((-950 . -1047) T) ((-869 . -111) 2748) ((-477 . -23) T) ((-481 . -1047) T) ((-1059 . -233) T) ((-950 . -326) 2717) ((-481 . -326) 2674) ((-355 . -172) T) ((-352 . -172) T) ((-344 . -172) T) ((-264 . -172) 2585) ((-247 . -172) 2496) ((-961 . -1036) 2392) ((-517 . -490) 2373) ((-733 . -1036) 2344) ((-517 . -611) 2310) ((-1102 . -102) T) ((-1089 . -611) 2277) ((-1032 . -611) 2259) ((-692 . -1049) 2209) ((-1275 . -151) 2193) ((-1273 . -614) 2174) ((-1272 . -614) 2155) ((-1267 . -611) 2137) ((-1254 . -724) T) ((-692 . -638) 2087) ((-1247 . -724) T) ((-1226 . -789) NIL) ((-1226 . -792) NIL) ((-169 . -1054) 1997) ((-908 . -172) T) ((-869 . -614) 1927) ((-1226 . -724) T) ((-1001 . -342) 1901) ((-223 . -644) 1853) ((-998 . -514) 1786) ((-841 . -848) 1765) ((-564 . -1148) T) ((-474 . -290) 1716) ((-595 . -724) T) ((-361 . -611) 1698) ((-322 . -611) 1680) ((-418 . -1036) 1576) ((-594 . -724) T) ((-407 . -848) 1527) ((-169 . -111) 1423) ((-831 . -131) 1375) ((-735 . -151) 1359) ((-1262 . -309) 1297) ((-487 . -307) T) ((-379 . -611) 1264) ((-520 . -1008) 1248) ((-379 . -612) 1162) ((-217 . -307) T) ((-141 . -151) 1144) ((-712 . -286) 1123) ((-487 . -1020) T) ((-580 . -38) 1110) ((-564 . -38) 1097) ((-495 . -38) 1062) ((-217 . -1020) T) ((-869 . -1047) T) ((-834 . -611) 1044) ((-825 . -611) 1026) ((-823 . -611) 1008) ((-814 . -907) 987) ((-1286 . -1109) T) ((-1235 . -1054) 810) ((-853 . -1054) 794) ((-869 . -243) T) ((-869 . -233) NIL) ((-687 . -1212) T) ((-1286 . -23) T) ((-814 . -646) 719) ((-550 . -1212) T) ((-418 . -338) 703) ((-571 . -1054) 690) ((-1235 . -111) 499) ((-699 . -637) 481) ((-853 . -111) 460) ((-381 . -23) T) ((-169 . -614) 238) ((-1185 . -514) 30) ((-679 . -1097) T) ((-674 . -1097) T) ((-660 . -1097) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 39afecb3..65327070 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3452645031)
-(4410 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3452782367)
+(4413 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -226,10 +226,11 @@
|LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&|
|LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage|
|RationalFunctionLimitPackage| |LinearDependence|
- |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2|
- |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule|
- |ListMonoidOps| |LinearAggregate&| |LinearAggregate|
- |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1|
+ |LinearlyExplicitRingOver| |LinearSet| |ListToMap| |ListFunctions2|
+ |ListFunctions3| |List| |Literal| |LeftLinearSet|
+ |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&|
+ |LinearAggregate| |ElementaryFunctionLODESolver|
+ |LinearOrdinaryDifferentialOperator1|
|LinearOrdinaryDifferentialOperator2|
|LinearOrdinaryDifferentialOperatorCategory&|
|LinearOrdinaryDifferentialOperatorCategory|
@@ -380,10 +381,10 @@
|RandomFloatDistributions| |RationalFunctionFactor|
|RationalFunctionFactorizer| |RationalFunction| |RGBColorModel|
|RGBColorSpace| |RegularChain| |RandomIntegerDistributions| |Ring&|
- |Ring| |RationalInterpolation| |RectangularMatrixCategory&|
- |RectangularMatrixCategory| |RectangularMatrix|
- |RectangularMatrixCategoryFunctions2| |RightModule| |Rng|
- |RealNumberSystem&| |RealNumberSystem|
+ |Ring| |RationalInterpolation| |RightLinearSet|
+ |RectangularMatrixCategory&| |RectangularMatrixCategory|
+ |RectangularMatrix| |RectangularMatrixCategoryFunctions2|
+ |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem|
|RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable|
|RecursivePolynomialCategory&| |RecursivePolynomialCategory|
|RepeatAst| |RealRootCharacterizationCategory&|
@@ -477,661 +478,659 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |height| |inR?| |complexLimit| |s21bdf|
- |splitConstant| |coordinate| |deleteProperty!| |quadraticForm|
- |quadratic?| |isPlus| |setCondition!| |e01sef| |front| |lift|
- |radPoly| |leftOne| |multiEuclidean| |countRealRootsMultiple| |cAtanh|
- |convert| |s15adf| |rk4| |unaryFunction| |OMread| |reduce|
- |subResultantChain| |cosIfCan| |repeatUntilLoop| |tanIfCan|
- |screenResolution| |knownInfBasis| |totalDifferential| |ScanRoman|
- |nthExpon| |symmetricPower| |fortranLiteralLine| |blankSeparate|
- |ddFact| |discriminant| |generalizedEigenvector| |definingInequation|
- |maxdeg| |OMconnInDevice| |split| |someBasis| |e02dff|
- |generalizedContinuumHypothesisAssumed| |prime?|
- |exprHasWeightCosWXorSinWX| |symbol| |printCode| |transform|
- |brillhartTrials| |sparsityIF| |matrixConcat3D| |OMUnknownSymbol?|
- |factorPolynomial| |unitsColorDefault| |expression| |graeffe|
- |testModulus| |thenBranch| |isTerm| |f04faf| |completeEval|
- |sech2cosh| |heapSort| |integer| |perfectSqrt| |cycleRagits|
- |zeroSquareMatrix| |prinpolINFO| |rational?| |numberOfPrimitivePoly|
- |getRef| |makeFloatFunction| |any?| |slash| |palgint| |vconcat|
- |getGoodPrime| |ip4Address| |cTanh| |shiftRoots| |fTable|
- |OMsetEncoding| |OMsupportsSymbol?| |deriv| |simplify| |getMeasure|
- |stopMusserTrials| |OMgetBVar| |monicDivide|
- |basisOfCommutingElements| |rk4qc| |paren| |inverseLaplace| |divide|
- |declare| |shanksDiscLogAlgorithm| |simpson| |dominantTerm| |e02baf|
- |f02wef| |acosIfCan| |noLinearFactor?| |relerror| |algSplitSimple|
- |addMatch| |randomR| |euclideanNormalForm| |tail| |resetNew| |port|
- |mathieu12| |imagK| |makeSketch| |polarCoordinates| |hyperelliptic|
- |axes| |complexSolve| |nullary| |karatsuba| ** |iidprod| |iiacosh|
- |rootKerSimp| |rdHack1| |byte| |cot2trig| |rootNormalize|
- |subResultantsChain| |lifting1| |rootPoly| |callForm?| |t|
- |outputList| |karatsubaDivide| |leftQuotient| |label| |rules| |error|
- |clearDenominator| |getCode| |primitive?| |e02bcf| |lfunc| |pdct|
- |setRow!| |rightUnits| |balancedBinaryTree| |unknown| |assert|
- |rowEchLocal| |secIfCan| |readInt8!| |linearMatrix| |readable?|
- |getOperator| |coth2tanh| |int| |leader| |hcrf| |s17aef|
- |semiResultantEuclidean2| |binarySearchTree| |sequences|
- |invmultisect| |OMgetString| |stosePrepareSubResAlgo| |beauzamyBound|
- |linSolve| |OMencodingUnknown| |shellSort| |select!| |predicates|
- |linkToFortran| |crest| |mindeg| |primitiveElement|
- |structuralConstants| |imagI| |pointPlot| |thetaCoord| |OMopenFile|
- |queue| |coerceP| |clearTheIFTable| |rectangularMatrix| |complexForm|
- |iiacsc| |pushdterm| |iterationVar| |palgLODE0| |binaryTournament|
- |reflect| |li| |roughBase?| |selectOptimizationRoutines| |constructor|
- |collectQuasiMonic| |s17dhf| |zero?| |showIntensityFunctions|
- |endOfFile?| |max| |littleEndian| |asinhIfCan| |schwerpunkt|
- |symmetricProduct| |rowEchelonLocal| |option| |OMgetVariable|
- |pushdown| |lieAlgebra?| |hconcat| |nonSingularModel| |deepExpand|
- |cscIfCan| |pointColor| |balancedFactorisation| |patternMatch|
- |tubeRadius| |genericLeftTrace| |dimensionOfIrreducibleRepresentation|
- |unitNormalize| |rangePascalTriangle| |exp1| |groebner| |taylorRep|
- |rootBound| |degreeSubResultant| |f04maf| |ellipticCylindrical|
- |pair?| |groebgen| |checkPrecision| |nthCoef| |monicCompleteDecompose|
- |rootPower| |s18aff| |dioSolve| |updatF| |atanIfCan|
- |createGenericMatrix| |rightTrim| |iiatan| |sizePascalTriangle|
- |determinant| |viewPhiDefault| |commutator| |e01sff| |bumptab1|
- |alphanumeric?| |leftTrim| |parents| |integral| |trigs| |bat1|
- |qualifier| |setMinPoints| |shallowExpand| |members|
- |explicitlyFinite?| |hessian| |PDESolve| |getButtonValue| |unary?|
- |fortranDoubleComplex| |implies| |relativeApprox| |index?| |hdmpToDmp|
- |printInfo| |splitDenominator| |binaryTree| |degree|
- |resultantReduitEuclidean| |romberg| |permanent| |factors| |test|
- |ef2edf| |column| |setRealSteps| |ldf2lst| |drawComplexVectorField|
- |OMlistSymbols| |toseSquareFreePart| |bernoulli| |lexico|
- |principalIdeal| |rationalApproximation| |dark|
- |exprHasAlgebraicWeight| |bombieriNorm| |firstNumer|
- |numberOfImproperPartitions| |safeCeiling| |perfectNthRoot| |fill!|
- |qPot| |triangular?| |binary| |modularGcd| |rightQuotient| |string?|
- |dihedralGroup| |hMonic| |generate| |stFunc1| |leftExtendedGcd|
- |close| |makeViewport3D| |eq| |laguerre| |appendPoint| |OMlistCDs|
- |interactiveEnv| |kind| |OMputBVar| |OMwrite| |mappingAst| |rarrow|
- |iter| |c06gcf| |d01akf| |prefix| |imagJ| |nextIrreduciblePoly|
- |zeroDimensional?| |digit| |incrementBy| |f01qcf| |op| |minrank|
- |cotIfCan| |pattern| |display| |flatten| |setProperties|
- |extendedResultant| |OMgetBind| |matrixDimensions| |rCoord|
- |readInt32!| |monomialIntPoly| |selectfirst| |taylorIfCan| |expand|
- |padicallyExpand| |lazyPseudoDivide| |gcdPrimitive|
- |bezoutDiscriminant| |integralAtInfinity?| |OMgetError| |collectUnder|
- |filterWhile| |f04mcf| |flexibleArray| |cyclicEqual?|
- |commutativeEquality| |exportedOperators| |dn| |semicolonSeparate|
- |curryRight| |filterUntil| |OMputEndApp| |unitNormal| |trunc| |rquo|
- |f04mbf| |message| |dmp2rfi| |null?| |select| |shiftRight| |cos2sec|
- |mapCoef| |perspective| |gradient| |input| |listRepresentation|
- |node?| |read!| |s21bcf| |symbolTable| |rowEchelon| |largest| |fi2df|
- |union| |aQuadratic| |reductum| |iibinom| |library| |fractionPart|
- |nextPrimitivePoly| |exp| |prinb| |makingStats?| |initTable!|
- |palgintegrate| |multiset| |forLoop| |semiDegreeSubResultantEuclidean|
- |infieldint| |check| |stFunc2| |euclideanSize| |f02agf| |hermite|
- |createIrreduciblePoly| |OMReadError?| |numberOfNormalPoly| |style|
- |aspFilename| |hypergeometric0F1| |truncate| |infix| |maxPoints|
- |outerProduct| |laplace| |bitTruth| |preprocess| |checkRur|
- |numerator| |cons| |lfinfieldint| |atoms| |whileLoop| |makeRecord|
- |squareFreeFactors| |set| |computeCycleEntry| |drawToScale|
- |perfectNthPower?| |postfix| |ode1| |d01anf| |Beta| |internal?|
- |rotate| |genericLeftDiscriminant| |makeCos| |midpoints| |totalDegree|
- |smith| |genericPosition| |inputBinaryFile| |crushedSet| |pmintegrate|
- |quote| |pol| |drawCurves| |showTheRoutinesTable| |multiplyExponents|
- |eigenvector| |nthExponent| |f04asf| |explogs2trigs| |f01qdf|
- |charpol| |sumOfSquares| |writable?| |generic?| |fullDisplay|
- |subNode?| |stop| |cAsec| |divisor| |quickSort|
- |ScanFloatIgnoreSpaces| |has?| |rightRegularRepresentation|
- |leadingIdeal| |solid| |inHallBasis?| |s17ahf| |prod| |red| |second|
- |diagonal| |rightTrace| |cardinality| |setlast!| |bringDown| |bsolve|
- |cyclotomicFactorization| |fortranComplex| |e02dcf|
- |prepareSubResAlgo| |third| |indiceSubResultantEuclidean| |color|
- |genericRightDiscriminant| |c05nbf| |e04dgf| |signature| |isOr|
- |pureLex| |insertRoot!| |iicsc| |euclideanGroebner| |minRowIndex|
- |horizConcat| |green| |generateIrredPoly| |s20acf| |toroidal|
- |besselJ| |factorAndSplit| |iiabs| |rightAlternative?| |boundOfCauchy|
- |outputArgs| |factorFraction| |palginfieldint| |compactFraction|
- |trace2PowMod| |e02agf| |reduction| |lhs| |resetVariableOrder| |cAcot|
- |algebraic?| |FormatRoman| |mainForm| |lowerCase?|
- |expressIdealMember| |dequeue!| |clipPointsDefault| |optimize|
- |rootOfIrreduciblePoly| |complex?| |reducedDiscriminant| |rhs|
- |explicitEntries?| |normalizedDivide| |singRicDE| |slex|
- |algintegrate| |moebius| |collectUpper| |pseudoQuotient| |void|
- |vertConcat| |exponent| |f04axf| |wordInStrongGenerators| |leaf?|
- |cycle| |pseudoRemainder| |central?| |besselI| |nextItem|
- |LyndonWordsList| |systemCommand| |tanhIfCan| |partialDenominators|
- |ignore?| |innerSolve1| |OMgetEndAttr| |euler| |e01bff| |OMreadStr|
- |lfintegrate| |copy!| |bumptab| |before?| |script| |idealiserMatrix|
- |bag| |accuracyIF| |purelyAlgebraic?| |mainCoefficients| |twoFactor|
- |tanQ| |kmax| |sequence| |minGbasis| |transcendent?| |lieAdmissible?|
- |selectAndPolynomials| |OMencodingSGML| |size?| |basisOfLeftNucloid|
- |inverseIntegralMatrixAtInfinity| |readInt16!| |readByte!| |Hausdorff|
- |Nul| |cCosh| |retractable?| |primPartElseUnitCanonical| |setrest!|
- |normal| |arrayStack| |ldf2vmf| |partialFraction| |fortranInteger|
- |mathieu22| |critB| |elRow2!| |drawComplex| |meshFun2Var| |s17acf|
- |coerceListOfPairs| |tex| |edf2fi| |key| |basisOfMiddleNucleus|
- |unravel| |redpps| |clipBoolean| |heap| |mr| UP2UTS |singularitiesOf|
- |wronskianMatrix| |leftDivide| |rischDEsys| |s17ajf| |mapBivariate|
- |shallowCopy| |primintfldpoly| |mergeDifference| |trapezoidalo|
- |subTriSet?| |octon| |leftExactQuotient| |prefixRagits|
- |lazyPremWithDefault| |delta| |setErrorBound| |filename| |numerators|
- |depth| |headReduced?| |createNormalElement| |lepol| |rationalPoints|
- |pointLists| |cond| |hspace| |repeating| |whitePoint| |cyclicEntries|
- |factorByRecursion| |minPoly| |getlo| |derivationCoordinates| |f01rcf|
- |anticoord| |remove!| |extendedSubResultantGcd|
- |algebraicCoefficients?| |mapExponents| |linearDependence|
- |getConstant| |parse| |setAttributeButtonStep| |insertBottom!|
- |clearFortranOutputStack| |rightTraceMatrix| |minIndex| |fractRadix|
- |isTimes| |pointSizeDefault| |leftDiscriminant| |makeCrit|
- |infiniteProduct| |reducedQPowers| |numberOfFactors| |writeBytes!|
- |prem| |extensionDegree| |roughUnitIdeal?| |doubleRank| |curveColor|
- |iisqrt3| |totolex| |resetBadValues| |f02awf| |numberOfComponents|
- |empty?| |cycleEntry| |evaluateInverse| |roughBasicSet| |irreducible?|
- |createNormalPrimitivePoly| |digits| |coleman| |substring?|
- |singleFactorBound| |factorial| |bits| |solve1|
- |constantCoefficientRicDE| |rur| |prevPrime| |stirling1| |d01alf|
- |semiSubResultantGcdEuclidean2| |invertibleElseSplit?| |isList|
- |alternating| |isOp| |tryFunctionalDecomposition| |e01sbf| |rightZero|
- |integralBasisAtInfinity| |setleft!| |lambda| |numFunEvals|
- |diagonalMatrix| |coefficient| |suffix?| |rotatey| |call|
- |computeBasis| |curve| |e02zaf| |monomRDE| |possiblyNewVariety?|
- |getDatabase| |getZechTable| |const| |ranges| |binomial| |e01baf|
- |super| |iitan| |internalDecompose| |expextendedint| |pop!|
- |create3Space| |moduloP| |duplicates?| |lo| UTS2UP |choosemon|
- |constantLeft| |showTheIFTable| EQ |gcdcofactprim|
- |factorSquareFreePolynomial| |constantKernel| |unmakeSUP| |supRittWu?|
- |patternMatchTimes| |groebnerIdeal| |minimumDegree|
- |numberOfFractionalTerms| |ref| |oneDimensionalArray| |basis|
- |functionIsOscillatory| |setFieldInfo| |s15aef| |aQuartic| |scale|
- |fixedPointExquo| |factorSquareFreeByRecursion| |defineProperty|
- |numberOfComputedEntries| |viewport2D| |iomode| |po| |compBound|
- |weierstrass| |mkPrim| |birth| |quartic| |eigenMatrix| |arg1|
- |alternatingGroup| |addPoint| |leftRegularRepresentation| |integrate|
- |rightRemainder| |f02bjf| |complementaryBasis| |e02ajf| |entries|
- |constantIfCan| |arg2| |OMputString| |radicalSolve| |listOfMonoms|
- |youngGroup| |leadingExponent| |index| |lcm| |difference|
- |rightExtendedGcd| |merge!| |quoted?| |selectOrPolynomials|
- |totalGroebner| |scripted?| |exprHasLogarithmicWeights| |e02adf|
- |rewriteSetByReducingWithParticularGenerators| |cyclicCopy|
- |multiEuclideanTree| |irreducibleRepresentation| |f01brf| |subPolSet?|
- |conditions| |normalizeAtInfinity| |getVariableOrder|
- |basisOfRightNucleus| |SFunction| |leftPower| |nonLinearPart| |append|
- |KrullNumber| |satisfy?| |linearPolynomials| |addmod|
- |lineColorDefault| |match| |delete| |listConjugateBases| |lighting|
- |e02gaf| |standardBasisOfCyclicSubmodule| |associates?| |pair|
- |outputSpacing| |inf| |gcd| |setPrologue!| |rightFactorIfCan|
- |toseLastSubResultant| |SturmHabichtSequence| |value| |result|
- |tracePowMod| |karatsubaOnce| |chiSquare| |lprop|
- |characteristicPolynomial| |semiResultantEuclidean1| |false|
- |palgextint| |radicalEigenvalues| |find| |rightMinimalPolynomial|
- |range| |powmod| |corrPoly| |createThreeSpace| |debug3D|
- |lastSubResultant| |extractTop!| |repeating?| |symmetricRemainder|
- |cubic| |commutative?| |limitedIntegrate| |reset| |bivariate?|
- |composites| |stoseInternalLastSubResultant| |socf2socdf|
- |parabolicCylindrical| |wrregime| |cAcos| |uniform01| |randomLC|
- |hasoln| |localReal?| |medialSet| |typeLists| |eof?| |computePowers|
- |traverse| |directSum| |quotedOperators| |innerSolve| |pow| |write|
- |setLegalFortranSourceExtensions| |transcendentalDecompose| |ratpart|
- |getIdentifier| |integral?| |box| |#| |lintgcd| |interpolate|
- |fractRagits| |tree| |save| |outputFixed| |OMgetEndError|
- |leviCivitaSymbol| |swapColumns!| |coefChoose| |round| |exponential1|
- |LiePolyIfCan| |scaleRoots| |expintfldpoly| |extension| |dec|
- |setStatus| |OMputInteger| |commonDenominator| |chainSubResultants|
- |htrigs| |principal?| |squareMatrix| |uncouplingMatrices| |cCoth|
- |showTypeInOutput| |rightGcd| |monomials| |subNodeOf?| |totalLex|
- |OMputEndObject| |zCoord| |ReduceOrder| |rischNormalize|
- |normInvertible?| |leftZero| |complexNormalize| |droot| |meatAxe|
- |interReduce| |mathieu23| |checkForZero| |pointColorDefault|
- |separateFactors| |lastSubResultantElseSplit| |factorsOfDegree|
- |factorList| |symbol?| |fortranTypeOf| |objectOf| |iisec| |precision|
- |raisePolynomial| |d02bhf| |OMserve| |roughSubIdeal?|
- |createMultiplicationTable| |f02aef| |resultantEuclideannaif|
- |legendreP| |simplifyExp| |wordsForStrongGenerators| |arbitrary|
- |tablePow| |df2ef| |reduceByQuasiMonic| |generator| |numFunEvals3D|
- |delete!| |constant?| |denomRicDE| |LazardQuotient| |setsubMatrix!|
- |escape| |tan2cot| |comment| |pack!| |elementary| |makeYoungTableau|
- |log10| |cAcosh| |sturmSequence| |unrankImproperPartitions1|
- |viewZoomDefault| |newReduc| |block| |iiasinh| |traceMatrix|
- |removeRoughlyRedundantFactorsInContents| |printInfo!| |bitand|
- |HenselLift| |sylvesterSequence| |primes| |qqq| |level| |reseed|
- |rightCharacteristicPolynomial| |abelianGroup| |identity|
- |maxRowIndex| |bitior| |mapMatrixIfCan| |roman| |maxColIndex| |tanAn|
- |var2Steps| |isMult| |midpoint| |getExplanations| |eigenvectors|
- |listBranches| |palgRDE0| |exQuo| |interval| |rightDivide| |cyclic|
- |chiSquare1| |mesh?| |stripCommentsAndBlanks| |Lazard|
- |numberOfComposites| |divisors| F |setValue!| |allRootsOf| |rename|
- |problemPoints| |nextColeman| |increment| |lastSubResultantEuclidean|
- |cPower| |intChoose| |iiasech| |unvectorise| |adaptive| |open|
- |mapExpon| |critpOrder| |matrix| |numer| |polygon?| |mapUnivariate|
- |lazyPseudoRemainder| |search| |chineseRemainder| |hasSolution?|
- |leftUnits| |characteristicSet| |regime| |morphism| |integralMatrix|
- |rightNorm| |denom| |create| |fortran| |null| |symmetricDifference|
- |startPolynomial| |part?| |constantToUnaryFunction| |saturate|
- |d01amf| |maxrow| |bipolar| |useNagFunctions| |primextendedint|
- |modTree| |not| |taylorQuoByVar| |OMputSymbol| |nthFlag|
- |normalizeIfCan| |HermiteIntegrate| |closedCurve?| |and| |Lazard2|
- |mapmult| |cap| |coth2trigh| |associatorDependence|
- |extendedIntegrate| |solveLinearlyOverQ| |operations| |realSolve|
- |exprToGenUPS| |digamma| |cyclotomicDecomposition| |e02aef| |or|
- |vark| |categories| |symmetricSquare| |log2| |cyclePartition|
- |leftRecip| |weakBiRank| |any| |setOfMinN| |controlPanel| |nullSpace|
- |positive?| |xor| |doublyTransitive?| |padecf| |colorFunction|
- |direction| |diophantineSystem| |iisin| |hexDigit?| |f04adf|
- |upperCase?| |double?| |case| |f07aef| |selectsecond| |branchPoint?|
- |subresultantSequence| |sylvesterMatrix| |exactQuotient!| |Zero|
- |ListOfTerms| |removeZero| |stirling2| |withPredicates| |singular?|
- |OMgetInteger| |shift| |changeWeightLevel| |signatureAst|
- |infinityNorm| |wordInGenerators| |leftTrace| |linearlyDependent?|
- |One| |setScreenResolution3D| |airyBi| |charthRoot| |compound?|
- |rotatez| |coerce| |bernoulliB| Y |f02akf| |adaptive3D?| |iprint|
- |newSubProgram| |mainCharacterization| |symFunc| |applyRules|
- |denominators| |quadratic| |construct| |degreePartition| |quoByVar|
- |trailingCoefficient| |viewSizeDefault| |normalDeriv| |torsion?|
- |polynomialZeros| |extractProperty| |useSingleFactorBound|
- |approximants| |minPoints3D| |iteratedInitials| |csch2sinh| |cAsech|
- |rationalIfCan| |elem?| |commaSeparate| |c06ecf| |outputForm|
- |datalist| |outputGeneral| |integralBasis| |linGenPos|
- |setMaxPoints3D| |cycleElt| |contains?| |top| |nullary?| |writeLine!|
- |f07fef| |real?| |bezoutResultant| |inc| |intcompBasis| |d01asf|
- |f07adf| |equiv| |irreducibleFactors| |e01bgf| |graphCurves|
- |inrootof| |linearDependenceOverZ| |showSummary| |packageCall|
- |putColorInfo| |parseString| |complexIntegrate| |ScanArabic| |sort|
- |fillPascalTriangle| |makeTerm| |rootSimp| |OMputEndBind|
- |removeRoughlyRedundantFactorsInPols| |obj| |OMreceive|
- |identityMatrix| |mainExpression| |decreasePrecision| |setClosed|
- |continue| |numberOfMonomials| |geometric| |norm| |completeHermite|
- |henselFact| |partialQuotients| |dualSignature|
- |createLowComplexityNormalBasis| |trim| |contract| |cache|
- |showAttributes| |squareFreeLexTriangular| |iiacos| |mat| |spherical|
- |integer?| |rank| |removeCoshSq| |functionIsFracPolynomial?| |bytes|
- |setTopPredicate| |wholeRagits| |normalize| |subset?| |list|
- |OMputApp| |arity| |B1solve| |polygon| |laplacian| |digit?| |e04fdf|
- |categoryFrame| |primeFactor| |fixedDivisor| |extendIfCan| |random|
- |car| |closedCurve| |var1StepsDefault| |changeNameToObjf|
- |measure2Result| |inverse| |maxrank| |elliptic| |asinIfCan|
- |curveColorPalette| |iisinh| |cdr| |sin?| |setStatus!|
- |rationalPoint?| |idealiser| |derivative| |stopTableInvSet!|
- |rational| |extract!| |indiceSubResultant| |tubePlot| |legendre|
- |setDifference| |subst| |localAbs| |llprop| |name| |reverse!|
- |consnewpol| |isAnd| |insert!| |leftGcd|
- |genericLeftMinimalPolynomial| |deref| |enqueue!| |primitivePart|
- |setIntersection| |convergents| |updatD| |body|
- |differentialVariables| |collect| |zeroSetSplit| |minimumExponent|
- |permutationGroup| |length| |infRittWu?| |logpart| |showAll?|
- |setUnion| |totalfract| |upperCase!| |stiffnessAndStabilityOfODEIF|
- |isNot| |lowerCase!| |remove| |PollardSmallFactor| |rootDirectory|
- |expintegrate| |scripts| |d03faf| |expandLog| |apply| |f04atf| |low|
- |rewriteIdealWithHeadRemainder| |cycleSplit!| |lists| |besselY| RF2UTS
- |oblateSpheroidal| |rightLcm| |swap| |btwFact| |f02abf|
- |viewPosDefault| |groebnerFactorize| |distFact| |iicot| |last|
- |formula| |viewWriteDefault| |subHeight| |isEquiv| |antiCommutative?|
- |makeSeries| |size| |leftMult| |pade| |nthRootIfCan| |sinh2csch|
- |bracket| |assoc| |dequeue| |iiasec| |bit?| |output| |s17dgf|
- |failed?| |bandedHessian| |findBinding| |objects| |iicos| |tanh2trigh|
- |anfactor| |stoseInvertibleSet| |upDateBranches| |possiblyInfinite?|
- |removeRedundantFactorsInContents| |csc2sin| |setProperty| |host|
- |base| |subscriptedVariables| |presuper| |f02aff| |qelt| |newLine|
- |jordanAdmissible?| |normalDenom| |fortranCharacter| |newTypeLists|
- |first| |coerceImages| |tValues| |c06fqf| |cot2tan| |even?| |qsetelt|
- |minordet| |writeUInt8!| |nrows| |parent| |lexGroebner|
- |setVariableOrder| |rest| |OMcloseConn| |idealSimplify|
- |createRandomElement| |normalized?| |createPrimitiveNormalPoly|
- |xRange| |rootSplit| |removeDuplicates!| |duplicates| |ncols|
- |quasiMonicPolynomials| |squareFreePart| |substitute| |OMgetSymbol|
- |viewport3D| |ricDsolve| |getBadValues| |randnum| |yRange| |OMputAttr|
- |parabolic| |normFactors| |internalLastSubResultant| |inGroundField?|
- |removeDuplicates| |skewSFunction| |orthonormalBasis| |localUnquote|
- |mapGen| |diagonal?| |zRange| |singularAtInfinity?| |curryLeft|
- |splitNodeOf!| |prindINFO| |unrankImproperPartitions0| |sn|
- |createPrimitivePoly| |bfKeys| |LyndonCoordinates| |readLineIfCan!|
- |unknownEndian| |map!| |next| |laurentRep| |physicalLength!|
- |inverseColeman| BY |addPointLast| |primextintfrac| |f02adf| |s17akf|
- |mainValue| |generalizedEigenvectors| |qsetelt!| |clipWithRanges|
- |neglist| |yCoordinates| |leaves| |messagePrint| |complete|
- |radicalSimplify| |recoverAfterFail| |radix| |fmecg| |stFuncN|
- |setPosition| |leftMinimalPolynomial| |leftFactorIfCan|
- |nextsubResultant2| |region| |point?| |graphs| |fortranCarriageReturn|
- |resultant| |bivariateSLPEBR| |complexZeros| |divideIfCan!|
- |applyQuote| |setPoly| |complexElementary| |squareFree| |e01bef|
- |s19adf| |iidsum| |zag| |replaceKthElement| |d02gaf|
- |LagrangeInterpolation| |currentSubProgram| |points| |splitLinear|
- |graphImage| |fprindINFO| |latex| |mathieu24| |linear?|
- |genericRightTraceForm| |point| |factorials| |setProperties!| |back|
- |makeFR| |monicLeftDivide| |normDeriv2| |cschIfCan| |previous|
- |qfactor| |f01bsf| |nsqfree| |doubleFloatFormat| |selectPolynomials|
- |acsch| |complexNumericIfCan| |stoseIntegralLastSubResultant|
- |denomLODE| |ruleset| |leadingBasisTerm| |vspace| |f02xef|
- |enterPointData| |buildSyntax| |setEpilogue!| NOT
- |linearlyDependentOverZ?| |resetAttributeButtons|
- |integralDerivationMatrix| |completeHensel| |gderiv|
- |monicDecomposeIfCan| |groebner?| |e01daf| |numberOfCycles|
- |gcdPolynomial| |makeSUP| OR |series| |ptFunc| |twist| |viewDefaults|
- |edf2efi| |mainSquareFreePart| |mainVariables| |RittWuCompare|
- |parametric?| |mightHaveRoots| |primlimitedint| AND
- |linearAssociatedOrder| |LazardQuotient2| |lagrange| |suchThat|
- |finiteBasis| |realRoots| |testDim| |denominator| |weights| |orbit|
- |clikeUniv| |OMputVariable| |OMgetObject| |subCase?| |prefix?|
- |makeprod| |curve?| |generalizedContinuumHypothesisAssumed?|
- |arguments| |algint| |var2StepsDefault| |leastAffineMultiple|
- |reduceLODE| |factor1| |makeViewport2D| |getMultiplicationMatrix|
- |associative?| |identification| |sts2stst| |monomialIntegrate|
- |perfectSquare?| |light| |incr| |shrinkable| |sinhcosh| |min| |monic?|
- |s17dcf| |c05adf| |permutationRepresentation| |hostPlatform|
- |gcdcofact| |jacobian| |cartesian| |aCubic| |xn| |makeEq|
- |printStatement| |diagonalProduct| |ridHack1| |dfRange| |yCoord|
- |ramifiedAtInfinity?| |bumprow| |pdf2df| |prinshINFO| |hi| |d02raf|
- |hue| |fracPart| |clipSurface| |lyndon| |floor| |numberOfOperations|
- |deepestInitial| |unit| |subMatrix| |setClipValue| |leastPower|
- |c06ebf| |psolve| |module| |char| |removeSuperfluousQuasiComponents|
- |cExp| |goodnessOfFit| |antiAssociative?| |product| |maxIndex|
- |separate| |cyclotomic| |symmetricTensors| |lllip| |scan| |mdeg|
- |asimpson| |reciprocalPolynomial| |nullity| |normalElement|
- |complexEigenvectors| |realEigenvectors| |infix?| |directory|
- |plusInfinity| |readUInt16!| |partition| |c02aff| |c06frf|
- |virtualDegree| |surface| |cylindrical| |critM| |OMclose|
- |movedPoints| |mask| |setvalue!| |minusInfinity| |dmpToP| |baseRDE|
- |redmat| |rootOf| |subResultantGcd| * |enterInCache| |doubleResultant|
- |exprToUPS| |ffactor| |c02agf| |print| |partitions| |condition|
- |generalInfiniteProduct| |ode2| |zeroDimPrime?| |head| |f02ajf| |rem|
- |janko2| |resolve| |f01maf| |c06gbf| |removeRedundantFactorsInPols|
- |numericIfCan| |powers| |setleaves!| |mapUnivariateIfCan| |dimensions|
- |iCompose| |isConnected?| |constant| |quo| |rewriteSetWithReduction|
- |float| |removeZeroes| |positiveSolve| |critBonD| |rationalPower|
- |f04jgf| |OMgetFloat| |ODESolve| |mainMonomials| |nilFactor|
- |sturmVariationsOf| |d01gbf| = |charClass| |infinite?|
- |fortranCompilerName| |hostByteOrder| |rootProduct| |minColIndex|
- |factorsOfCyclicGroupSize| |plot| |distdfact| |div| |nary?| |orbits|
- |space| |tanintegrate| |rightRank| |clearTheFTable|
- |basisOfRightAnnihilator| |type| |LyndonBasis| |empty| |c06gsf|
- |lazyGintegrate| |submod| |exquo| < |mix|
- |degreeSubResultantEuclidean| |oddlambert| |basisOfLeftAnnihilator|
- |cycleLength| |clip| |position!| |cAsinh| |fglmIfCan| ~= |univcase| >
- |OMgetEndBVar| |cfirst| |halfExtendedResultant1| |cross| |critMTonD1|
- |df2st| |mathieu11| |setScreenResolution| |Ei| ~ |lifting| <=
- |showTheFTable| |mainVariable| |complement| |indicialEquations|
- |torsionIfCan| |integralMatrixAtInfinity| |irreducibleFactor| |pdf2ef|
- |times!| |d01fcf| >= |parts| |internalIntegrate| |Frobenius| |d03edf|
- |removeRoughlyRedundantFactorsInPol| |getMultiplicationTable|
- |outputAsTex| |besselK| |toseInvertibleSet| |moebiusMu| |leftFactor|
- |readUInt32!| |OMputBind| |toScale| |genericLeftTraceForm| |indices|
- |/\\| |univariatePolynomial| |status| |e04ycf| |sechIfCan| |modulus|
- |removeCosSq| |varList| GE |splitSquarefree| |FormatArabic| |sqfree|
- |unitCanonical| |\\/| |f02aaf| |factorSFBRlcUnit| |s18adf| |cycleTail|
- |subSet| + |purelyAlgebraicLeadingMonomial?| GT |asechIfCan|
- |supDimElseRittWu?| |atom?| |eq?| |selectIntegrationRoutines|
- |unexpand| |quadraticNorm| |showScalarValues| |tab| - |e02akf| LE
- |build| |showTheSymbolTable| |pushFortranOutputStack| |rightMult|
- |increase| |powerSum| |solveLinearPolynomialEquationByRecursion| /
- |printingInfo?| |modifyPointData| LT |outputAsScript| |more?|
- |popFortranOutputStack| |associator| |zeroVector| |eulerPhi|
- |acoshIfCan| |pastel| |seed| |addiag| |superscript| |setFormula!|
- |generalizedInverse| |compile| |acscIfCan| |outputAsFortran| |opeval|
- |antisymmetric?| |coerceS| |maximumExponent| |s17aff|
- |powerAssociative?| |UpTriBddDenomInv| |imports| |retract| |makeop|
- |presub| |basisOfCenter| |delay| |graphState| |writeByte!|
- |selectPDERoutines| |dihedral| |decomposeFunc| |outlineRender|
- |integralRepresents| |plotPolar| |quatern| |dAndcExp| |expPot|
- |getProperty| |certainlySubVariety?| |alphabetic?| |ksec| |property|
- |algebraicOf| |fullPartialFraction| |polyRDE| |gcdprim|
- |squareFreePrim| |s18aef| |kroneckerDelta| |getOperands| |inspect|
- |tensorProduct| |setAdaptive| |swapRows!| |setPredicates| |children|
- |df2fi| |integers| |headRemainder| |evenInfiniteProduct|
- |validExponential| |intensity| |biRank| |sizeLess?| |antiCommutator|
- |normal?| |meshPar1Var| |superHeight| |initials| |optpair|
- |mainVariable?| |units| |leadingTerm| |leftAlternative?| |asecIfCan|
- |f07fdf| |limit| |OMopenString| |odd?| |zoom| |close!|
- |lazyResidueClass| |rdregime| |leftLcm| |approxSqrt| |extractIfCan|
- |conjugate| |repSq| |e04gcf| |leftNorm| |leftRankPolynomial|
- |getProperties| |coefficients| |critMonD1| |mapDown!| |alphabetic|
- |evaluate| |power| |simpleBounds?| |solveInField| |solveid| |reverse|
- |plus| |eulerE| |Is| |clearCache| |f04arf| |cyclic?| |generators|
- |innerEigenvectors| |lazyIntegrate| |harmonic| |OMgetApp|
- |autoReduced?| |resultantEuclidean| |toseInvertible?| |clearTable!|
- |rightDiscriminant| |useSingleFactorBound?| |mapUp!| |returnType!|
- |triangSolve| |prime| |topFortranOutputStack| |shade| |magnitude|
- |hitherPlane| |baseRDEsys| |contours| |code| |fortranLiteral|
- |ratPoly| |functionIsContinuousAtEndPoints| |rightPower|
- |lazyPseudoQuotient| |float?| |readBytes!| |swap!| |iifact|
- |internalInfRittWu?| |constantOpIfCan| |vector| |bright|
- |binomThmExpt| |cSinh| |innerint| |comp| |GospersMethod| |times|
- |airyAi| |sign| |summation| |leadingIndex| |initial| |palgextint0|
- |differentiate| |tryFunctionalDecomposition?| |lookup|
- |SturmHabichtMultiple| |lazy?| |brillhartIrreducible?| |df2mf|
- |var1Steps| |multiplyCoefficients| |belong?| |s21bbf| |endSubProgram|
- |cup| |sdf2lst| |leftRemainder| |function| |dot| |exponentialOrder|
- |infieldIntegrate| |numberOfVariables| |extendedEuclidean| |hdmpToP|
- |OMgetEndObject| |distance| |matrixGcd| |cAtan| |e02ddf| |prologue|
- |wreath| |sincos| |lyndon?| |failed| |rowEch| |homogeneous?|
- |approxNthRoot| |halfExtendedResultant2| |monom| |eval|
- |OMParseError?| |recip| |dom| |rroot| |divideExponents|
- |basisOfNucleus| |sumOfKthPowerDivisors| |child| |minPol|
- |interpretString| |leadingCoefficientRicDE| |rule| |shuffle|
- |isAbsolutelyIrreducible?| |e02daf| |cothIfCan| |integerBound|
- |genericRightMinimalPolynomial| |OMreadFile| |flagFactor| |multMonom|
- |closeComponent| |in?| |aromberg| |continuedFraction| |monomRDEsys|
- |numberOfIrreduciblePoly| |badValues| |hexDigit| |common| |iFTable|
- |modifyPoint| |move| |sinIfCan| |negative?| |redPol| |Aleph| |iiGamma|
- |unit?| |insertTop!| |atrapezoidal| |iipow| |cSin| |setprevious!|
- |eisensteinIrreducible?| |untab| |copies| |routines| |lllp| |open?|
- |trivialIdeal?| |inconsistent?| |iisqrt2| |restorePrecision|
- |palgLODE| |headReduce| |title| |Si| |variable?| |constDsolve|
- |removeSinSq| |flexible?| |expr|
- |solveLinearPolynomialEquationByFractions| |printTypes|
- |lexTriangular| |symbolTableOf| |multinomial| |f04qaf| |leastMonomial|
- |indicialEquationAtInfinity| |qroot| |lowerCase| |createZechTable|
- |kovacic| |solveLinear| |notelem| |member?| |rischDE| |setelt!|
- |resultantReduit| |multisect| |nil?| |primaryDecomp| |reverseLex|
- |polygamma| |mvar| |stoseLastSubResultant| |e| |cyclicSubmodule|
- |numericalIntegration| |f02axf| |decompose| |startStats!| |f01qef|
- |UnVectorise| |overlap| |internalZeroSetSplit| |cyclicParents|
- |d02gbf| |imagE| |ratDsolve| |s19aaf| |variable| |true| |simpsono|
- |palglimint0| |symmetricGroup| |nextSublist| |isExpt| |linear|
- |insertMatch| |setColumn!| |makeSin| |goto| |iterators|
- |insertionSort!| |positiveRemainder| |nthr| |changeName| |cAcoth|
- |nothing| |gethi| |linearPart| |mainContent| |entry?| |augment|
- |fractionFreeGauss!| |s18acf| |intermediateResultsIF|
- |semiResultantReduitEuclidean| |polynomial| |reduceBasisAtInfinity|
- |imagj| |mainMonomial| |e04ucf| |genericRightNorm| |cCsc|
- |removeConstantTerm| |init| |computeInt| |mkAnswer| |lex| |LiePoly|
- |rightUnit| |enumerate| |bat| |gramschmidt| |d02bbf|
- |initiallyReduced?| |rootsOf| |factorset| |primitivePart!|
- |deleteRoutine!| |rightOne| |viewThetaDefault| |ceiling|
- |explimitedint| |basisOfLeftNucleus| |imaginary| |nor|
- |quasiAlgebraicSet| |keys| |zeroDim?| |primeFrobenius| |exponential|
- |sayLength| |generalPosition| |OMencodingBinary| |getPickedPoints|
- |rotatex| |iiasin| |properties| |prolateSpheroidal| |lazyPquo|
- |simplifyLog| |squareTop| |width| |cAcsch| |tubePointsDefault|
- |acotIfCan| |tube| |represents| |inRadical?| |weight| |translate|
- |d02ejf| |high| |nand| |operation| |sumOfDivisors| |scalarMatrix|
- |padicFraction| |uniform| |capacity| |f01ref| |createNormalPoly|
- |isOpen?| |branchIfCan| |coerceL| |s17agf| |viewWriteAvailable|
- |stronglyReduce| |showRegion| |exactQuotient| |transcendenceDegree|
- |rightScalarTimes!| |ParCond| |drawStyle| |showClipRegion|
- |noncommutativeJordanAlgebra?| |stoseInvertible?| |tanNa| |separant|
- |gbasis| |firstDenom| |leadingSupport| |cLog| |ord|
- |computeCycleLength| |currentScope| |connect| |minimalPolynomial|
- |compdegd| |overlabel| |seriesSolve| |nextLatticePermutation| |cTan|
- |exptMod| |mainKernel| |loopPoints| |OMputError| |setMinPoints3D|
- |moreAlgebraic?| |element?| |adjoint| |pointData| |LyndonWordsList1|
- |c06gqf| |internalAugment| |plenaryPower| |probablyZeroDim?|
- |errorKind| |findConstructor| |seriesToOutputForm| |root| |optional|
- |ParCondList| |constantOperator| |sortConstraints| |just| |lambert|
- |redPo| |Vectorise| |argumentListOf| |fixedPoints| |bounds|
- |increasePrecision| |getSyntaxFormsFromFile| |OMputFloat| |nextPrime|
- |makeGraphImage| |interpret| |e02def| |polyred| |stack| |generic|
- |laguerreL| |complexRoots| |compiledFunction| |OMputEndError|
- |OMsupportsCD?| |d03eef| |key?| |eyeDistance| |completeEchelonBasis|
- |expandTrigProducts| |maxPoints3D| |atanhIfCan| |phiCoord|
- |areEquivalent?| |nodes| |e01bhf| |changeThreshhold| |basicSet|
- |tower| |component| |algebraicVariables| |ratDenom| |Ci| |numeric|
- |isImplies| |radicalRoots| |viewDeltaXDefault| |unitVector|
- |listOfLists| |mkcomm| |makeUnit| |fortranDouble| |expint| |radical|
- |relationsIdeal| |pquo| |deepCopy| |countable?| |expIfCan| |connectTo|
- |dim| |factorSquareFree| |factorGroebnerBasis| |sec2cos| |elseBranch|
- |setref| |zeroSetSplitIntoTriangularSystems| |linearAssociatedExp|
- |makeMulti| |iiexp| |credPol| |associatedSystem| |split!| SEGMENT
- |numberOfDivisors| |nthRoot| |nil| |weighted| |divideIfCan| |f02fjf|
- |less?| |conditionsForIdempotents| |calcRanges| |d02cjf| |dflist|
- |removeSinhSq| |adaptive?| |ScanFloatIgnoreSpacesIfCan|
- |separateDegrees| |complexNumeric| |resultantnaif| |groebSolve|
- |stronglyReduced?| |rootRadius| |cAsin| |concat!| |univariate?|
- |antisymmetricTensors| |cCos| |componentUpperBound| |center| |polCase|
- |getGraph| |jacobiIdentity?| |lfextendedint| |measure| |s13aaf|
- |approximate| |leftRank| |kernels| |musserTrials| |pile| |algDsolve|
- |monicModulo| |bubbleSort!| |complex| |startTable!| |trueEqual| |log|
- |wholeRadix| |printStats!| |univariate| |top!| |solveRetract|
- |qinterval| |imagi| |chebyshevT| |bivariatePolynomials| |node|
- |symbolIfCan| |merge| |LowTriBddDenomInv| |createMultiplicationMatrix|
- |fortranLogical| |abs| |semiIndiceSubResultantEuclidean| |tableau|
- |optAttributes| |reindex| |complexEigenvalues| |is?| |erf| |rk4a|
- |xCoord| |updateStatus!| |nextNormalPrimitivePoly|
- |bipolarCylindrical| |normal01| |readIfCan!| |factor|
- |monicRightDivide| |vectorise| |myDegree| |argumentList!|
- |physicalLength| |elColumn2!| |meshPar2Var| |concat|
- |rationalFunction| |partialNumerators| |att2Result| |sqrt|
- |setMaxPoints| |setTex!| |rewriteIdealWithRemainder|
- |prepareDecompose| |s14abf| |listLoops| |bigEndian| |multiple?|
- |removeIrreducibleRedundantFactors| |root?| |dilog| |real|
- |pleskenSplit| |semiSubResultantGcdEuclidean1| |shiftLeft| |rst|
- |setAdaptive3D| |sub| |characteristic| |reorder| |definingPolynomial|
- |sin| |imag| |branchPointAtInfinity?| |mantissa|
- |semiDiscriminantEuclidean| |Gamma| |combineFeatureCompatibility|
- |directProduct| |stopTableGcd!| |screenResolution3D|
- |removeRedundantFactors| |getCurve| |nodeOf?| |cos| |setEmpty!|
- |permutation| |cCsch| |universe| |doubleDisc| |replace|
- |startTableGcd!| |setOrder| |order| |tan| |iicosh| |badNum|
- |argscript| |pToDmp| |over| |lazyVariations| |powern|
- |rightFactorCandidate| |selectFiniteRoutines| |brace| |cot|
- |getStream| |frst| |d01bbf| |outputMeasure| |plus!| |chebyshevU|
- |rspace| |froot| |destruct| |sec| |s14aaf| |comparison| |systemSizeIF|
- |decimal| |source| |lSpaceBasis| |lazyEvaluate| |middle| |colorDef|
- |hasTopPredicate?| |csc| |OMgetAttr| |solid?| |push!| |exists?|
- |operators| |optional?| |processTemplate| |linears|
- |extractSplittingLeaf| |asin| |category| |returns|
- |absolutelyIrreducible?| |OMputObject| |chvar| |basisOfRightNucloid|
- |zeroMatrix| |invertIfCan| |equation| |externalList| |whatInfinity|
- |acos| |domain| |list?| |setnext!| |leftTraceMatrix| |setImagSteps|
- |setLabelValue| |copyInto!| |infLex?| |c06eaf| |omError| |monomial|
- |atan| |package| |entry| |showAllElements| |fortranLinkerArgs|
- |transpose| |freeOf?| |reducedContinuedFraction| |iicoth| |cSech|
- |poisson| |topPredicate| |show| |multivariate| |acot|
- |createPrimitiveElement| |genus| |UP2ifCan| |OMputEndAtp| |target|
- |conical| |expenseOfEvaluation| |sorted?| |fibonacci| |OMgetEndAtp|
- |variables| |asec| |localIntegralBasis| |cosh2sech| |coHeight|
- |compose| |mulmod| |jacobi| |bothWays| |discriminantEuclidean|
- |addMatchRestricted| |trace| |acsc| |ipow| |pomopo!|
- |integralCoordinates| |pointColorPalette| |dictionary|
- |triangularSystems| |edf2df| |sqfrFactor| |logIfCan| |sinh| |vedf2vef|
- |ran| |s19abf| |argument| |cn| |An| |f01rdf| |c06ekf| |s17def|
- |s17adf| |cosh| |reduced?| |reopen!| |fixPredicate| |s13acf| |ravel|
- |useEisensteinCriterion| |unprotectedRemoveRedundantFactors|
- |halfExtendedSubResultantGcd1| |sup| |sin2csc| |tanh| |tan2trig|
- |logGamma| |mpsode| |noKaratsuba| |associatedEquations| |reshape|
- |palgRDE| |intersect| |viewpoint| |upperCase| |coth| |taylor|
- |mainDefiningPolynomial| |OMgetEndApp| |conditionP| |listexp|
- |eigenvalues| |identitySquareMatrix| |deepestTail|
- |normalizedAssociate| |expandPower| |sech| |laurent| |setelt|
- |generalLambert| |goodPoint| |readLine!| GF2FG |simplifyPower| |hasHi|
- |OMsend| |cosSinInfo| |minPoints| |csch| |puiseux| |iroot| |external?|
- |d01ajf| |stoseInvertible?reg| |sizeMultiplication| |sinhIfCan|
- |figureUnits| |e04mbf| F2FG |asinh| |copy| |pmComplexintegrate|
- |nextSubsetGray| FG2F |character?| |scopes| |number?|
- |tubeRadiusDefault| |modularGcdPrimitive| |subResultantGcdEuclidean|
- |inv| |acosh| |lazyPrem| |critT| |bandedJacobian| |constantRight|
- |paraboloidal| |update| |ground?| |nextsousResultant2| |maxint|
- |lazyIrreducibleFactors| |incrementKthElement| |atanh| |s14baf|
- |iiatanh| |f02bbf| |s17dlf| |ground| |primlimintfrac|
- |roughEqualIdeals?| |pushup| |acothIfCan|
- |halfExtendedSubResultantGcd2| |acoth| |autoCoerce| |nextPartition|
- |sort!| |mesh| |selectSumOfSquaresRoutines| |highCommonTerms|
- |scalarTypeOf| |typeList| |OMputAtp| |normalise| |leadingMonomial|
- |asech| |distribute| |fortranReal| |e04naf| |writeInt8!| |equality|
- |polar| |quotient| |primintegrate| |realZeros| |leadingCoefficient|
- |sumSquares| |minimize| |OMbindTCP| |logical?| |divisorCascade|
- |ramified?| |cAcsc| |imagk| |initializeGroupForWordProblem| |multiple|
- |primitiveMonomials| |s18dcf| |overbar| |firstUncouplingMatrix|
- |pr2dmp| |position| |square?| |changeMeasure| |findCycle| |diagonals|
- |monomial?| |internalSubQuasiComponent?| |leftUnit| |mergeFactors|
- |say| |finite?| |f2st| |setLength!| |selectODEIVPRoutines|
- |subtractIfCan| |returnTypeOf| |purelyTranscendental?| |rightRecip|
- |extend| |match?| |tanSum| |unparse| |quasiComponent| |RemainderList|
- |invertibleSet| |axesColorDefault| |addPoint2| |ideal| |s19acf|
- |iisech| LODO2FUN |zeroOf| |radicalOfLeftTraceForm| |c06fpf| |s20adf|
- |numericalOptimization| |rightExactQuotient| |quotientByP| |s13adf|
- |invmod| |companionBlocks| |mapdiv|
- |rewriteIdealWithQuasiMonicGenerators| |parametersOf|
- |integralLastSubResultant| |bitCoef| |f01mcf| |exponents| |nlde|
- |frobenius| |univariateSolve| |BasicMethod| |hclf| |debug| |hash|
- |definingEquations| |OMputEndAttr| |outputBinaryFile| |sncndn|
- |regularRepresentation| |nextNormalPoly| |child?| |realElementary|
- |OMconnectTCP| |count| D |double| |algebraicDecompose| |f2df|
- |varselect| |generalTwoFactor| |e01saf| |errorInfo| |remainder|
- |lowerPolynomial| |hermiteH| |binding| |bezoutMatrix| |tubePoints|
- |e04jaf| |ocf2ocdf| |write!| |sample| |semiLastSubResultantEuclidean|
- |setchildren!| |createLowComplexityTable| |npcoef| |trapezoidal| |row|
- |cCot| |addBadValue| |revert| |content| |blue| |zeroDimPrimary?|
- |conjug| |tanh2coth| |rangeIsFinite| |stoseInvertibleSetreg| |headAst|
- |moduleSum| |monicRightFactorIfCan| |quasiRegular| |changeVar|
- |byteBuffer| |alternative?| |normalForm| |scanOneDimSubspaces|
- |s01eaf| |lquo| |iiperm| |edf2ef| |pushuconst| |lflimitedint| |one?|
- |mkIntegral| |graphStates| |dimensionsOf| |changeBase| |yellow|
- |e02bbf| |zerosOf| |limitPlus| |s18def| |zero| |e02bdf|
- |numberOfChildren| |oddintegers| |putGraph| |bindings| |refine|
- |declare!| |iilog| |iiacsch| |showFortranOutputStack| |cRationalPower|
- |stiffnessAndStabilityFactor| |nativeModuleExtension|
- |genericRightTrace| |readUInt8!| |predicate| |tab1| |elliptic?|
- |modularFactor| |And| |subscript| |lyndonIfCan| |principalAncestors|
- |integerIfCan| |OMmakeConn| |inverseIntegralMatrix| |lfextlimint|
- |hex| |palglimint| |primPartElseUnitCanonical!| |Or| |se2rfi|
- |expenseOfEvaluationIF| |specialTrigs| |subresultantVector|
- |internalIntegrate0| |rombergo| |outputFloating| |extendedint|
- |pascalTriangle| |Not| |rubiksGroup| |minus!| |binaryFunction|
- |indicialEquation| |palgint0| |univariatePolynomialsGcds| |bottom!|
- |decrease| |getMatch| |domainOf| |finiteBound| |completeSmith|
- |OMgetType| |radicalEigenvector| |backOldPos| |curry|
- |startTableInvSet!| |stoseSquareFreePart| |safetyMargin|
- |internalSubPolSet?| |coord| |epilogue| |conjugates| |cycles|
- |univariatePolynomials| |OMunhandledSymbol| |divergence| |supersub|
- |solveLinearPolynomialEquation| |isPower| |segment| |dmpToHdmp|
- |trigs2explogs| |printHeader| |wholePart| |squareFreePolynomial|
- |removeSuperfluousCases| |reify| |elements| |inputOutputBinaryFile|
- |semiResultantEuclideannaif| |overset?| |makeVariable| |gensym|
- |aLinear| |parameters| |recur| |listYoungTableaus|
- |variationOfParameters| |stopTable!| |useEisensteinCriterion?| |id|
- |OMputEndBVar| |closed?| |iicsch| |stoseInvertibleSetsqfreg|
- |clipParametric| |setright!| |coercePreimagesImages|
- |currentCategoryFrame| |permutations| |coordinates| |s21baf|
- |characteristicSerie| |shufflein| |fixedPoint| |viewDeltaYDefault|
- |table| |operator| |safeFloor| |diff| |hasPredicate?| |bfEntry|
- |alphanumeric| |new| |symmetric?| |diag| |initiallyReduce| |polyRicDE|
- |pole?| |composite| |basisOfCentroid| |e02bef| |loadNativeModule|
- |insert| |selectNonFiniteRoutines| |strongGenerators| |ode|
- |quasiMonic?| |algebraicSort| |leftCharacteristicPolynomial|
- |discreteLog| |solve| |bitLength| |OMUnknownCD?| |invertible?|
- |leftScalarTimes!| |selectMultiDimensionalRoutines| |SturmHabicht|
- |iExquo| |options| |setfirst!| |setButtonValue| |mapSolve|
- |OMgetEndBind| |mainPrimitivePart| |clearTheSymbolTable|
- |extractBottom!| |subQuasiComponent?| |d01apf| |pi| |mirror| |recolor|
- |reducedSystem| |iiacoth| |sPol| |sh| |rk4f| |infinity|
- |SturmHabichtCoefficients| |retractIfCan| |extractClosed| |c05pbf|
- |tRange| |assign| |terms| |pushucoef| |iitanh| |acschIfCan| |string|
- |extractPoint| |limitedint| |complexExpand| |nonQsign| |extractIndex|
- |quasiRegular?| |pseudoDivide| |firstSubsetGray| |coshIfCan|
- |userOrdered?| |mindegTerm| |sum| |ptree| |iflist2Result|
- |genericLeftNorm| |kernel| |generalSqFr| |minset| |jordanAlgebra?|
- |doubleComplex?| |nextPrimitiveNormalPoly| |elRow1!| |draw|
- |rightRankPolynomial| |d02kef| |particularSolution| |subspace|
- |power!| |patternVariable| |option?| |evenlambert| |makeResult|
- |polyPart| |dimension| |left| |exprex| |cyclicGroup| |cSec| |rotate!|
- |exprToXXP| |representationType| |triangulate| |realEigenvalues|
- |right| |isQuotient| |contractSolve| |fintegrate| |pushNewContour|
- |laurentIfCan| |pToHdmp| |factorOfDegree| |intPatternMatch|
- |setProperty!| |lp| |explicitlyEmpty?| |BumInSepFFE|
- |nthFractionalTerm| |getOrder| |reducedForm| |makeObject| |signAround|
- |removeSquaresIfCan| |stoseInvertible?sqfreg| |map|
- |radicalEigenvectors| |usingTable?| |numberOfHues| |components|
- |iiacot| |d01gaf| |csubst| |countRealRoots| |elt| |currentEnv|
- |OMconnOutDevice| |expt| |OMencodingXML| |oddInfiniteProduct|
- |linearAssociatedLog| |tableForDiscreteLogarithm| |c06fuf| |nthFactor|
- |coef| |every?| |showArrayValues| |resize| |d01aqf| |schema|
- |OMgetAtp| |e02ahf| |isobaric?| |rename!| |exteriorDifferential|
- |push| |nil| |infinite| |arbitraryExponent| |approximate| |complex|
- |shallowMutable| |canonical| |noetherian| |central|
- |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
- |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
- |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
- |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+ |Record| |Union| |height| |refine| |localAbs| |tableau|
+ |internalZeroSetSplit| |ord| |paren| |gderiv| |transform| |s20adf|
+ |list?| |leftUnit| |pseudoRemainder| |lift| |associatorDependence|
+ |components| |clip| |ScanFloatIgnoreSpacesIfCan| |parseString|
+ |convert| |principalIdeal| |singularitiesOf| |setOrder| |SFunction|
+ |iFTable| |reduce| |logGamma| |drawComplexVectorField| |euler|
+ |coth2tanh| |acotIfCan| |branchPoint?| |getZechTable| |elColumn2!|
+ |mathieu12| |move| |coshIfCan| |antisymmetric?| |connect|
+ |reducedQPowers| |lllip| |cylindrical| |submod| |flagFactor|
+ |semiIndiceSubResultantEuclidean| |predicates| |LazardQuotient|
+ |iiasin| |solve1| |moduleSum| |reverseLex| |rightScalarTimes!|
+ |symbol| |expandLog| |associative?| |OMreadStr| |sturmSequence|
+ |rischDEsys| |front| |basisOfRightAnnihilator| |f01bsf|
+ |normalizedAssociate| |expression| |tRange|
+ |tryFunctionalDecomposition| |viewpoint| |coefChoose| |algebraic?|
+ |primitiveElement| |selectIntegrationRoutines| |bumptab| |digit|
+ |integer| |patternMatchTimes| |domainOf| |iicsch| |FormatArabic|
+ |headReduce| |f02aff| |showTheRoutinesTable| |UpTriBddDenomInv|
+ |lazyPrem| |localUnquote| |constantLeft| |getMeasure| |ignore?| |abs|
+ |B1solve| |Si| |create3Space| |complexSolve| |complexRoots|
+ |unitCanonical| |outputArgs| |conjugate| |badValues| |revert|
+ |cyclic?| |rightRankPolynomial| |normal01| |middle| |doubleResultant|
+ |variable?| |minimumDegree| |rationalFunction| |nextPrimitivePoly|
+ |useSingleFactorBound| |declare| |implies| |f04atf| |addPoint|
+ |iExquo| |showAllElements| |c06eaf| |printingInfo?|
+ |differentialVariables| |s21bcf| |s17acf| |rdHack1| |split|
+ |initiallyReduce| |tail| |OMopenString| |port|
+ |removeRedundantFactorsInPols| |quotient| |aQuartic|
+ |powerAssociative?| |expandTrigProducts| |curry| |complexEigenvalues|
+ |drawToScale| |order| |push!| ** |rroot| |thenBranch| |buildSyntax|
+ |validExponential| |mightHaveRoots| |byte| |lowerCase|
+ |solveLinearPolynomialEquationByFractions| |difference| |e02def|
+ |denomLODE| |root?| |t| |outputList| |cycleTail| |label| |maxPoints|
+ |rules| |hostPlatform| |error| |completeEval| |shanksDiscLogAlgorithm|
+ |f01qef| |OMgetEndBVar| |lllp| |leftRank| |dequeue!|
+ |fortranDoubleComplex| |acscIfCan| |principalAncestors| |prindINFO|
+ |assert| |unknown| |s20acf| |rotate| |exists?| |setprevious!|
+ |totalLex| |hessian| |prime?| |int| |leader| |modulus| |makeCos|
+ |inverseColeman| |extractBottom!| |sumOfSquares|
+ |coercePreimagesImages| |oddlambert| |extractTop!| |largest| |orbit|
+ |idealiser| |innerEigenvectors| |besselI| |adaptive?| |imports|
+ |dmpToHdmp| |bezoutResultant| |wronskianMatrix| |leftTrace|
+ |permutationRepresentation| |outputAsScript| |removeZero| |OMgetApp|
+ |inHallBasis?| |roughUnitIdeal?| |bits| |makingStats?|
+ |leftTraceMatrix| |bipolar| |leastMonomial| |multiplyCoefficients|
+ |getSyntaxFormsFromFile| |determinant| |setrest!| |iiperm| |smith|
+ |generalizedContinuumHypothesisAssumed| |PollardSmallFactor|
+ |viewPhiDefault| |li| |children| |constructor| |lex| |hasPredicate?|
+ |palgextint| |rightExactQuotient| |genericRightTrace| |stFunc2| |max|
+ |gbasis| |leftPower| |is?| |extensionDegree| |repSq| |option|
+ |compdegd| |raisePolynomial| |const| |qinterval| |blue|
+ |subtractIfCan| |useSingleFactorBound?| |padicFraction|
+ |semiLastSubResultantEuclidean| |printTypes| |shiftLeft| |graphCurves|
+ |showTheFTable| UTS2UP |getMultiplicationMatrix| |expressIdealMember|
+ |cycleRagits| |sh| |clearTable!| |bfKeys| |factorByRecursion| |e04gcf|
+ |rk4qc| |doubleComplex?| |bezoutDiscriminant| |alternatingGroup|
+ |goodnessOfFit| |checkPrecision| |leftQuotient| |ParCondList|
+ |exactQuotient| |float?| |bumptab1| |balancedBinaryTree| |chvar|
+ |tValues| |constant?| |rightTrim| |minGbasis| |setFormula!|
+ |tanh2trigh| |zCoord| |coleman| |solveid| |Is| |isTimes| |realSolve|
+ |leftTrim| |parents| |quadratic| |integralDerivationMatrix|
+ |complexNormalize| |alternative?| |perfectNthPower?| |argscript|
+ |increasePrecision| |yCoord| |exprHasLogarithmicWeights| |ddFact|
+ |updateStatus!| |printHeader| |permutation| |over| |bivariate?|
+ |strongGenerators| |tan2trig| |outputFixed| |just| |OMputEndAttr|
+ |printInfo| |reduced?| |numerators| |removeConstantTerm|
+ |LagrangeInterpolation| |lifting1| |commonDenominator| |cotIfCan|
+ |test| |OMwrite| |d01gaf| |e02bcf| |rootRadius|
+ |semiDiscriminantEuclidean| |cyclotomicFactorization| |infieldint|
+ |c02aff| |nextNormalPrimitivePoly| |enterPointData| |hclf| |solve|
+ |leftDiscriminant| |minimumExponent| |fillPascalTriangle| |d01aqf|
+ |changeName| |e01sff| |generalizedInverse| |listOfLists| |fprindINFO|
+ |connectTo| |createNormalElement| |returnTypeOf| |nonLinearPart|
+ |listexp| |showTypeInOutput| |geometric| |expIfCan| |cCosh| |pack!|
+ |e02agf| |setCondition!| |generate| |close| |eq| |f2st| |eigenvector|
+ |factorSquareFreePolynomial| |primes| |kind| |pile| |real?| |before?|
+ |diagonals| |iter| |coerceP| |contains?| |setelt!| |prefix|
+ |setClipValue| |pushNewContour| |number?| |anfactor| |incrementBy|
+ |op| |cycles| |getGraph| |pattern| |display| |flatten| |option?|
+ |Lazard2| |cosSinInfo| |host| |dimensions| |clipPointsDefault|
+ |gcdcofactprim| |crest| |dmpToP| |expand| |chebyshevT| |medialSet|
+ |df2ef| |increase| |partialDenominators| |leftOne| |filterWhile|
+ |unexpand| |atrapezoidal| |hermiteH| |var1StepsDefault|
+ |infieldIntegrate| |ldf2vmf| |fglmIfCan| |cyclotomic| |filterUntil|
+ |writeLine!| |primintegrate| |checkRur| |thetaCoord|
+ |nativeModuleExtension| |factor1| |vertConcat| |message| |select|
+ |intensity| |outlineRender| |coerceL| |insertTop!| |s13acf|
+ |solveInField| |input| |coerceS| |definingEquations|
+ |numericalIntegration| |readBytes!| |compiledFunction| |symbolTable|
+ |rischDE| |noLinearFactor?| |iisin| |union| |reductum|
+ |changeNameToObjf| |outputFloating| |library| |setProperty!| |exp|
+ |divergence| |resultantReduit| |truncate| |leadingIdeal| |f04adf|
+ |algintegrate| |getExplanations| |groebSolve| |vedf2vef| |back|
+ |noncommutativeJordanAlgebra?| |zeroDimPrime?| |lfintegrate| |LiePoly|
+ |quasiComponent| |product| |isNot| |changeBase| |newTypeLists|
+ |OMconnectTCP| |pop!| |outerProduct| |modularGcdPrimitive| |f02axf|
+ |indicialEquations| |collect| |cons| |backOldPos| |cSec| |makeRecord|
+ |set| |extractSplittingLeaf| |superscript| |sorted?| |curveColor|
+ |antisymmetricTensors| |modularGcd| |multisect| |univariatePolynomial|
+ |monomials| |qualifier| |swap!| |dfRange| |rCoord| |inverseLaplace|
+ |leftCharacteristicPolynomial| |drawStyle| |digamma| |nthRoot|
+ |elements| |palgRDE0| |OMlistSymbols| |univariatePolynomials| |expPot|
+ |quote| |qPot| |mat| |csc2sin| |expextendedint| |skewSFunction|
+ |point?| |curryRight| |bsolve| |stop| |exp1| |scalarTypeOf|
+ |reduction| |copies| |position!| |rspace| |qfactor| |gramschmidt|
+ |ocf2ocdf| |f02aef| |heap| |second| |denominators| |OMgetAttr|
+ |isPlus| |primeFactor| |subResultantGcd| |btwFact| |s18aff| |third|
+ |viewSizeDefault| |escape| |f01mcf| |subPolSet?| |signature|
+ |compound?| |s17ajf| |isEquiv| |probablyZeroDim?| |OMsupportsCD?|
+ |algebraicSort| |removeIrreducibleRedundantFactors| |iicoth|
+ |reduceByQuasiMonic| |light| |queue| |superHeight| |bottom!| |maxrank|
+ |ref| |toScale| |removeSquaresIfCan| |rootPoly| |expt|
+ |functionIsOscillatory| |lhs| |nonSingularModel| |radicalRoots|
+ |goodPoint| |updatF| |lfextlimint| |toseSquareFreePart|
+ |generalPosition| |optimize| |lifting| |rhs| |scripted?| |iisech|
+ |discriminant| |node?| |relerror| |f02ajf| |OMmakeConn| |tanIfCan|
+ |void| |factorOfDegree| |multiEuclidean| |getProperties| |makeSin|
+ |reducedContinuedFraction| |tracePowMod| |makeFR| |systemCommand|
+ |toseInvertible?| |removeCoshSq| |makeop| |idealiserMatrix| |kmax|
+ |bit?| |recur| |resize| |associatedEquations| |maxPoints3D|
+ |OMgetVariable| |infLex?| |script| |iflist2Result| |brillhartTrials|
+ |inputOutputBinaryFile| |zeroDim?| |viewZoomDefault| |intcompBasis|
+ |partitions| |monomialIntegrate| |viewWriteAvailable| |extractPoint|
+ |symFunc| |nthExponent| |sumSquares| |OMputEndBVar|
+ |viewDeltaYDefault| |green| |mathieu22| |linearDependence| |f01rdf|
+ |OMgetEndError| |lexico| |normal| |lazy?| |linearMatrix| |exprToXXP|
+ |part?| |byteBuffer| |explimitedint| |SturmHabichtMultiple|
+ |monicDecomposeIfCan| |nullary| |tex| |OMsend| |key| |ode|
+ |oddInfiniteProduct| |scan| |exprToUPS| |mr| |hexDigit?| |baseRDE|
+ |weight| |numericalOptimization| |elem?| |hspace| |setColumn!|
+ |tablePow| |diagonalProduct| |integralRepresents|
+ |selectNonFiniteRoutines| |stoseInvertible?sqfreg| |diagonal| |delta|
+ |filename| |mainSquareFreePart| |sqfrFactor| |depth| |OMgetError|
+ |showTheSymbolTable| |rightDiscriminant| |decrease| |cond| |makeMulti|
+ |fullDisplay| |removeDuplicates!| |compBound| |setAttributeButtonStep|
+ |pole?| |poisson| |matrixDimensions| |getGoodPrime| |lookup|
+ |splitNodeOf!| |parse| |nullary?| |palgLODE0| |incrementKthElement|
+ |exprHasAlgebraicWeight| |factorsOfCyclicGroupSize| |commutative?|
+ |numberOfComputedEntries| |pointColorDefault| |updatD| |elliptic|
+ |legendre| |s19adf| |iCompose| |OMputVariable| |hasTopPredicate?|
+ |cothIfCan| |tableForDiscreteLogarithm| |bracket| |factorFraction|
+ |binomThmExpt| |imagj| |presub| |ParCond| |round| |substring?| |iiabs|
+ |genericRightNorm| |rewriteSetWithReduction| |sample| |d01gbf|
+ |squareFree| |LyndonWordsList| |perspective| |graphs| |prevPrime|
+ |univariate?| |regularRepresentation| |sylvesterMatrix|
+ |nextSubsetGray| |lambda| |startTableInvSet!| |trailingCoefficient|
+ |suffix?| |uncouplingMatrices| |call| |imagk| |htrigs| |ffactor|
+ |exportedOperators| |solveLinear| |pureLex| |moreAlgebraic?| |super|
+ |lepol| |generalizedContinuumHypothesisAssumed?| |Beta| |stirling1|
+ |fortranInteger| |lo| |subresultantSequence| |vspace|
+ |infiniteProduct| EQ |OMUnknownSymbol?| |mapCoef| |rightPower|
+ |edf2ef| |setright!| |moduloP| |limit| |indiceSubResultantEuclidean|
+ |removeSinhSq| |prinb| |modTree| |resultant| |lfextendedint|
+ |deleteRoutine!| |polygon?| |mapExponents| |createNormalPrimitivePoly|
+ |chiSquare1| |printInfo!| |iiasech| |cCoth| |quartic| |arg1|
+ |leftNorm| |f04axf| |redPo| |unit?| |jordanAdmissible?| |binaryTree|
+ |minIndex| |rk4a| |arg2| |aspFilename| |monicModulo| |e01bgf| |e02gaf|
+ |index| |euclideanSize| |lcm| |safetyMargin| |cCos|
+ |reciprocalPolynomial| |multinomial| |nullity| |iibinom| |polygamma|
+ |genericLeftMinimalPolynomial| |nextNormalPoly| |genericLeftNorm|
+ |algebraicOf| |conditions| |bezoutMatrix| |irreducible?|
+ |identityMatrix| |composite| |append| |coordinates| |optional?|
+ |scaleRoots| |trapezoidalo| |integralCoordinates| |match| |delete|
+ |rightUnits| |delay| |semiResultantEuclideannaif| |cfirst| |pair|
+ |s17dgf| |gcd| |oddintegers| |newSubProgram| |expandPower| |isOp|
+ |value| |result| |reverse!| |firstUncouplingMatrix| |makeVariable|
+ |nextPartition| |OMputBVar| |false| |rightUnit| |cardinality|
+ |localReal?| |rootProduct| |lastSubResultantEuclidean| |adaptive|
+ |makeSUP| |laplace| |FormatRoman| |coefficient| |associates?| |iifact|
+ |sdf2lst| |reset| |stiffnessAndStabilityFactor| |sech2cosh|
+ |extractIndex| |alphabetic?| |removeRedundantFactors| |direction|
+ |generalizedEigenvector| |multMonom| |basisOfCommutingElements|
+ |ratpart| |s17adf| |prod| |makeViewport2D| |viewPosDefault| |every?|
+ |write| |nthFactor| |mainCoefficients| |SturmHabichtCoefficients|
+ |makeEq| |#| |groebner| |maximumExponent| |setPredicates| |tree|
+ |save| |numberOfCycles| |internalDecompose| |exponents| |discreteLog|
+ |distance| |e04jaf| |cot2trig| |findBinding| |setleft!| |dec|
+ |stoseInvertibleSetsqfreg| |iiasinh| |figureUnits| |mindeg| |contract|
+ |lighting| |LowTriBddDenomInv| |rootSplit| |karatsubaOnce|
+ |jacobiIdentity?| |setlast!| |s21baf| |d02bbf| |sincos| |OMgetBVar|
+ |pushuconst| |internalSubQuasiComponent?| |xn| |wholeRadix| |colorDef|
+ |symmetricSquare| |rightRemainder| |permutations| |startPolynomial|
+ |genericPosition| |contractSolve| |rationalPower| |precision| |f04mcf|
+ |mulmod| |patternVariable| |partialNumerators| |clearTheFTable|
+ |ScanFloatIgnoreSpaces| |stoseInvertible?reg| |s18def| |addBadValue|
+ |evaluate| |box| |invmod| |mapmult| |subMatrix| |generator|
+ |polyRicDE| |clipSurface| |e02bbf| |ode2| |comment| |hostByteOrder|
+ |fortranLogical| |nlde| |OMencodingBinary| |log10| |asimpson| |imagK|
+ |socf2socdf| |unitsColorDefault| |OMgetObject| |recolor| |s19aaf|
+ |radicalSolve| |bitand| |degreeSubResultant| |taylorRep| |ip4Address|
+ |quoByVar| |level| |symmetricProduct| |stoseInvertibleSetreg|
+ |separateDegrees| |bitior| |f01rcf| |f02adf| |leviCivitaSymbol|
+ |firstDenom| |norm| |d03eef| |OMputApp| |supDimElseRittWu?|
+ |polynomialZeros| |coth2trigh| |leftMult| |currentCategoryFrame|
+ |lowerCase!| |s13adf| |laurentIfCan| |ranges| |yCoordinates|
+ |matrixGcd| |basicSet| |c06gqf| F |genericLeftDiscriminant| |separant|
+ |s14baf| |OMgetBind| |sort!| |algebraicVariables| |open| |harmonic|
+ |jacobian| |matrix| |numer| |preprocess| |particularSolution| |search|
+ |setAdaptive| |semiResultantEuclidean2| |normalizeIfCan|
+ |resetBadValues| |integralBasisAtInfinity| |s17aff| |denom| |fortran|
+ |cyclicEqual?| |divisor| |null| |drawComplex| |OMputSymbol|
+ |headReduced?| |tubePointsDefault| |rootBound| |remove!| |cot2tan|
+ |hcrf| |not| |balancedFactorisation| |e01baf| |e04ycf|
+ |coerceListOfPairs| |createMultiplicationTable| |OMputFloat| |and|
+ |clipWithRanges| |viewport3D| |iiacsch| |complexElementary|
+ |operations| |areEquivalent?| |sylvesterSequence| |airyBi| |f02bbf|
+ |or| |fracPart| |categories| |acschIfCan| |lieAdmissible?| |curryLeft|
+ |any| |eyeDistance| |rangeIsFinite| |cyclicParents|
+ |LyndonCoordinates| |xor| |diff| |reseed|
+ |functionIsContinuousAtEndPoints| |bernoulliB| |createGenericMatrix|
+ |invertIfCan| |viewport2D| |pointLists| |case| |fullPartialFraction|
+ |e02dcf| |OMbindTCP| |nor| |extendedint| |enqueue!| |Zero|
+ |bandedJacobian| |fortranLinkerArgs| |mapdiv| |monomial?| |shift|
+ |dominantTerm| |chainSubResultants| |trigs| |subHeight| |One|
+ |var1Steps| |radicalEigenvector| |sumOfDivisors| |stopTableInvSet!|
+ |coerce| |algSplitSimple| Y |conjug| |nextColeman|
+ |setScreenResolution| |complexIntegrate| |nthRootIfCan|
+ |createPrimitiveNormalPoly| |listConjugateBases| |construct|
+ |palglimint0| |toseLastSubResultant| |invertibleSet| |printStats!|
+ |getStream| |degreeSubResultantEuclidean| |normalizedDivide|
+ |rightQuotient| |nthCoef| |readByte!| |cyclicGroup| |extractIfCan|
+ |s21bdf| |gcdPolynomial| |addMatch| |tan2cot| |rk4f| |invmultisect|
+ |datalist| |belong?| |d02cjf| |primPartElseUnitCanonical!| |fibonacci|
+ |showScalarValues| |top| |computePowers| |e01sbf| |iiatan|
+ |numberOfPrimitivePoly| |inc| |OMgetAtp| |numFunEvals3D|
+ |numberOfChildren| |reopen!| |airyAi| |numericIfCan| |romberg|
+ |e02daf| |leaf?| |showSummary| |definingInequation| |critM|
+ |OMputError| |seriesSolve| |derivationCoordinates| |sort|
+ |genericLeftTraceForm| |reducedDiscriminant| |leftScalarTimes!|
+ |c05adf| |getButtonValue| |obj| |iilog| |cLog| |fixedPoints|
+ |linearAssociatedExp| |intChoose| |continue| |clipParametric|
+ |unaryFunction| |s18aef| |outputAsTex| |laguerre| |cartesian| |df2fi|
+ |double?| |cAtan| |selectAndPolynomials| |cache| |showAttributes|
+ |pmintegrate| |Ci| |limitPlus| |whileLoop| |realEigenvectors|
+ |rotatey| |rank| |rightZero| |getMatch| |satisfy?| |stFunc1|
+ |OMgetEndBind| |mathieu24| |list| |accuracyIF| |complexEigenvectors|
+ |complexNumericIfCan| |nextsousResultant2| |randomLC| |makeSketch|
+ |exprToGenUPS| |alphanumeric?| |d01alf| |Aleph| |digit?| |random|
+ |car| |sub| |completeEchelonBasis| |clearFortranOutputStack|
+ |resultantnaif| |charthRoot| |laurentRep| |setnext!| |extractClosed|
+ |jordanAlgebra?| |stoseSquareFreePart| |cdr| |iomode|
+ |monicRightFactorIfCan| |has?| |toroidal| |chebyshevU| |setEmpty!|
+ |intersect| |patternMatch| |mainForm| |kroneckerDelta| |palgextint0|
+ |setDifference| |subst| |evaluateInverse| |nthr| |name| |select!|
+ |repeating?| |dioSolve| |pmComplexintegrate| |infix| |frst|
+ |fixedDivisor| |fractRagits| |generalInfiniteProduct|
+ |setIntersection| |createZechTable| |subTriSet?| |body| |frobenius|
+ |linearDependenceOverZ| |edf2df| |nilFactor|
+ |resultantReduitEuclidean| |length| |OMreadFile| |shellSort| |f04maf|
+ |setUnion| |elseBranch| |separate| |selectODEIVPRoutines|
+ |mainContent| |overlap| |remove| |scripts| |mainMonomials| |plotPolar|
+ |tanh2coth| |radPoly| |leftFactorIfCan| |apply| |fixPredicate|
+ |endOfFile?| |cosIfCan| |showRegion| |lists| |uniform|
+ |rationalPoint?| |alphanumeric| |modifyPointData| |subSet| |qqq|
+ |finiteBound| |po| |setPosition| |integers| |integralLastSubResultant|
+ |last| |formula| |henselFact| |c06fuf| |setMaxPoints| |even?|
+ |headRemainder| |size| |splitConstant| |e02aef| |charpol| |rootOf|
+ |trunc| |assoc| |close!| |eof?| |output| |explicitlyFinite?| |csubst|
+ |nonQsign| |isOr| |setref| |objects| |explicitlyEmpty?| |positive?|
+ |freeOf?| |scalarMatrix| |showFortranOutputStack| |factorSquareFree|
+ |d01anf| |monomRDEsys| |mapUp!| |UnVectorise| |base| |newReduc|
+ |enumerate| |listBranches| |qelt| |getIdentifier| |makeUnit|
+ |rootDirectory| |cSin| |e04fdf| |first| |bipolarCylindrical| |isAnd|
+ |binary| |purelyTranscendental?| |s17dhf| |qsetelt| |rightRecip|
+ |OMgetString| |overset?| |nrows| |copyInto!| |simplifyExp| |rest|
+ |f04qaf| |crushedSet| |polarCoordinates| |finite?| |pomopo!| |xRange|
+ |iisqrt2| |leftLcm| |ncols| |countRealRoots| |writable?| |concat!|
+ |substitute| |aQuadratic| |viewWriteDefault| |isOpen?|
+ |continuedFraction| |cAcosh| |yRange| |quotientByP| |debug3D|
+ |selectsecond| |dictionary| |quasiMonicPolynomials| |removeDuplicates|
+ |OMgetEndApp| |subCase?| |nextPrimitiveNormalPoly| |drawCurves| |row|
+ |zRange| |radicalSimplify| |leftDivide| |RemainderList| |c06fpf|
+ |monic?| |edf2fi| |tab| |euclideanGroebner| |laplacian| |iisec| |next|
+ |map!| |irreducibleRepresentation| |fortranCompilerName| |generic?| BY
+ |denominator| |dot| |corrPoly| |d01apf| |nodes| |showClipRegion|
+ |cschIfCan| |qsetelt!| |makeResult| |rewriteIdealWithRemainder|
+ |leaves| |contours| |callForm?| |myDegree| |signAround|
+ |symmetricDifference| |errorInfo| |RittWuCompare| |resetVariableOrder|
+ |cyclicSubmodule| |wrregime| |taylorIfCan| |rightMinimalPolynomial|
+ |e01saf| |s17dlf| |nodeOf?| |legendreP| |divideIfCan|
+ |createLowComplexityTable| |applyQuote| |hitherPlane| |factors|
+ |bivariatePolynomials| |iiexp| |printCode| |subResultantsChain|
+ |lexGroebner| |semiSubResultantGcdEuclidean2| |pdct| |commaSeparate|
+ |cyclic| |nthExpon| |setImagSteps| |kovacic| |realElementary|
+ |replace| |pquo| |userOrdered?| |minPoly| |internalSubPolSet?|
+ |createPrimitiveElement| |point| |monicLeftDivide| |isList|
+ |retractable?| |bounds| |terms| |multiset| |defineProperty| |previous|
+ |gensym| |removeRoughlyRedundantFactorsInPols| |LyndonBasis| |linears|
+ |flexible?| |acsch| |ellipticCylindrical| |invertible?| |d01asf|
+ |ruleset| |critBonD| |factorset| |jacobi| |insertionSort!| |conical|
+ |deref| |nextsubResultant2| NOT |fill!| |clipBoolean| |c06gcf|
+ |extendedIntegrate| |exponent| |bigEndian| |HenselLift| |imagJ|
+ |OMputEndObject| |acosIfCan| OR |series| |nil?| |appendPoint| |any?|
+ |OMreceive| |toseInvertibleSet| |expintfldpoly| |pushucoef| |dark|
+ |viewDeltaXDefault| |acothIfCan| AND |computeBasis| |zeroMatrix|
+ |addMatchRestricted| |suchThat| |computeCycleEntry| |entries| |f01qdf|
+ |mathieu23| |firstNumer| |subresultantVector| |tanQ| |inspect|
+ |rightFactorCandidate| |numberOfHues| |mapExpon| |bandedHessian|
+ |prefix?| |integerBound| |arguments| |singleFactorBound| |sPol|
+ |merge| |quasiRegular?| |qroot| |initials| |setProperties!| |epilogue|
+ |birth| |points| |mkcomm| |f01qcf| |boundOfCauchy| |incr| |exQuo|
+ |PDESolve| |vark| |min| |characteristic| |readIfCan!| |OMputBind|
+ |floor| |forLoop| |companionBlocks| |tryFunctionalDecomposition?|
+ |OMconnOutDevice| |sec2cos| |karatsuba| |sin2csc| |swapColumns!|
+ |doublyTransitive?| |lSpaceBasis| |axesColorDefault| |unravel|
+ |swapRows!| |weights| |hi| |degree| |member?| |addPoint2|
+ |mainDefiningPolynomial| |times!| |c02agf| |topPredicate|
+ |chineseRemainder| |mapSolve| |element?| |mkAnswer| |intPatternMatch|
+ |semiResultantEuclidean1| |tanhIfCan| |algebraicDecompose| |unparse|
+ |setleaves!| |char| |normalDeriv| |OMencodingXML| |exponential|
+ |tanNa| |semiSubResultantGcdEuclidean1| |getPickedPoints|
+ |perfectNthRoot| |sts2stst| |sn| |argumentList!| |generalTwoFactor|
+ |f02bjf| |basisOfCentroid| |dflist| |complex?| |mesh| |headAst|
+ |infix?| |heapSort| |plusInfinity| |directory| |setClosed|
+ |conditionsForIdempotents| RF2UTS |upperCase!| |choosemon| |mask|
+ |blankSeparate| |e02zaf| |indiceSubResultant| |monomialIntPoly|
+ |OMlistCDs| |minusInfinity| |log2| |low| |graphImage|
+ |standardBasisOfCyclicSubmodule| |genericRightMinimalPolynomial| *
+ |numberOfFractionalTerms| |quadratic?| |screenResolution3D| |key?|
+ |untab| |print| |atoms| |condition| |calcRanges| |powers| |permanent|
+ |inGroundField?| |iiacot| |rem| |normalized?| |resolve| |string?|
+ |OMencodingUnknown| |roughBase?| |OMread| |fixedPointExquo|
+ |basisOfLeftNucleus| |derivative| |createNormalPoly| |cRationalPower|
+ |omError| |constant| |quo| |hypergeometric0F1| |float| |knownInfBasis|
+ |divideExponents| |lagrange| |tubeRadiusDefault| |hex| |leastPower|
+ |nextSublist| |subset?| |HermiteIntegrate| |copy!| =
+ |setVariableOrder| |arbitrary| |partialQuotients| |iitan| |diagonal?|
+ |groebnerIdeal| |hconcat| |df2mf| |rational?| |div| |mesh?|
+ |att2Result| |noKaratsuba| |pointColor| |ran| |roughEqualIdeals?|
+ |iteratedInitials| |type| |linearAssociatedLog| |cAtanh| |evenlambert|
+ |radicalEigenvalues| |fortranTypeOf| |exquo| < |closedCurve?|
+ |lastSubResultant| |d02raf| |rightLcm| |f04faf| |fractionPart| |cap|
+ |stiffnessAndStabilityOfODEIF| |f02wef| ~= > |cross|
+ |diophantineSystem| |wordsForStrongGenerators| |bat1| |stopTable!|
+ |fmecg| |iroot| |ODESolve| |integralMatrix| ~ |generators|
+ |antiCommutator| |showArrayValues| <= |factorPolynomial|
+ |tanintegrate| |d01fcf| |charClass| |s17agf| |cCot| |withPredicates|
+ |nextPrime| |returnType!| |iicot| |meshPar2Var| >= |hermite| |parts|
+ |homogeneous?| |e04ucf| |gcdPrimitive| |acoshIfCan|
+ |createIrreduciblePoly| |e01sef| |morphism| |brillhartIrreducible?|
+ |iiasec| |zeroOf| |sinh2csch| |outputMeasure| |addPointLast| |setRow!|
+ |squareFreePolynomial| |zero?| |mainKernel| |someBasis|
+ |factorGroebnerBasis| |status| |constantKernel| |/\\| |sign|
+ |cycleSplit!| |varList| GE |cExp| |zag| |spherical| |scopes|
+ |leadingBasisTerm| |symmetricRemainder| |cAsin| |OMgetEndAtp| |\\/|
+ |empty| |halfExtendedSubResultantGcd1| + |cosh2sech| GT |maxColIndex|
+ |setPrologue!| |iiacsc| |fortranCarriageReturn| |constantOpIfCan|
+ |rationalApproximation| |distFact| |factorAndSplit|
+ |numberOfOperations| |s18acf| - |transcendent?| LE |c05pbf|
+ |removeSuperfluousCases| |pushFortranOutputStack| |lyndon|
+ |removeCosSq| |f02fjf| |besselK| |axes| / |rur| |internal?| LT
+ |e01bff| |squareMatrix| |popFortranOutputStack| |s18adf| |getOperands|
+ |cCsc| |squareFreeFactors| |isConnected?| |readable?|
+ |characteristicPolynomial| |denomRicDE| |postfix| |binarySearchTree|
+ |insertMatch| |iiGamma| |readInt8!| |minPol| |outputAsFortran|
+ |compile| |cubic| |column| |symbolIfCan|
+ |halfExtendedSubResultantGcd2| |generic| |multiple?| |retract|
+ |pushup| |symbol?| |plot| |ridHack1| |leadingExponent|
+ |commutativeEquality| |cyclicEntries| |upperCase?| |groebnerFactorize|
+ |setRealSteps| |hasSolution?| |infinityNorm| |pToHdmp| |var2Steps|
+ |OMReadError?| |rightTraceMatrix| |halfExtendedResultant1| |remainder|
+ |e02adf| |shiftRight| |limitedint| |wholeRagits| |property|
+ |leftFactor| |schema| |factorSquareFreeByRecursion| |maxRowIndex|
+ |arity| |polar| |simplifyPower| |findConstructor| |lazyIntegrate|
+ |quasiMonic?| |ode1| |sin?| |roman| |exprex|
+ |initializeGroupForWordProblem| |paraboloidal| |complexZeros|
+ |printStatement| |alphabetic| |setvalue!| |numerator| |tensorProduct|
+ |palgint0| |internalIntegrate| |repeatUntilLoop| |odd?| |applyRules|
+ |mindegTerm| |permutationGroup| |SturmHabicht| |f07aef|
+ |monicRightDivide| |units| |dimensionOfIrreducibleRepresentation|
+ |semicolonSeparate| |f2df| |mapUnivariate| |associator| |setStatus|
+ |changeMeasure| |totalGroebner| |isTerm| |alternating| |groebgen|
+ |removeRedundantFactorsInContents| |iitanh| |subResultantChain|
+ |changeThreshhold| |exactQuotient!| |curve| |basisOfNucleus|
+ |squareFreeLexTriangular| |primitivePart!| |recip|
+ |functionIsFracPolynomial?| |selectPolynomials| |basisOfLeftNucloid|
+ |parabolic| |decimal| |quadraticNorm| |exteriorDifferential|
+ |processTemplate| |atanIfCan| |collectQuasiMonic| |reverse| |plus|
+ |ricDsolve| |internalInfRittWu?| |clearCache| |BumInSepFFE| |cSinh|
+ |transcendentalDecompose| |lintgcd| |meshFun2Var| |d01bbf|
+ |zeroSetSplitIntoTriangularSystems| |absolutelyIrreducible?| |c06ecf|
+ |genus| |partialFraction| |anticoord| |zoom| |sparsityIF| |cAsec|
+ |bytes| |deepestInitial| |approxNthRoot| |dimensionsOf| |subNode?|
+ |identity| |groebner?| |mapDown!| |iiacoth| |binding| |setMinPoints3D|
+ |code| GF2FG |realEigenvalues| |setsubMatrix!| |setPoly|
+ |createLowComplexityNormalBasis| |rightMult| |collectUpper| |rotatez|
+ |leftZero| |countable?| |nextItem| |linearPolynomials| |llprop|
+ |vector| |bright| |makeSeries| |startTable!| |comp| |shallowCopy|
+ |traceMatrix| |f07fef| |times| |numberOfImproperPartitions|
+ |elementary| |f02abf| |computeCycleLength| |initial| |integer?|
+ |differentiate| |unitNormalize| |s01eaf| |ldf2lst| |critMonD1|
+ |inrootof| |slex| |innerSolve1| |insert!| |delete!|
+ |sizePascalTriangle| |supersub| |se2rfi| |credPol| |iicsc|
+ |conjugates| |dn| |function| |palgLODE| |mkPrim| |safeFloor|
+ |prinshINFO| |gethi| |makeViewport3D| |closedCurve|
+ |basisOfRightNucleus| |neglist| |pointPlot| |primextintfrac|
+ |purelyAlgebraicLeadingMonomial?| |rightCharacteristicPolynomial|
+ |module| |changeWeightLevel| |rightExtendedGcd| |failed| |interval|
+ |weakBiRank| |sizeMultiplication| |read!| |monom| |eval| |cAsinh|
+ |check| |dom| |lazyPquo| |rightRank| |cycle| |intermediateResultsIF|
+ |startTableGcd!| |s15aef| |secIfCan| |OMgetSymbol| |complexForm|
+ |rule| |rischNormalize| |inRadical?| |radicalOfLeftTraceForm|
+ |divideIfCan!| |abelianGroup| |members| |upperCase| |radix|
+ |transcendenceDegree| |distribute| |lazyVariations| |palgintegrate|
+ |e04dgf| |positiveSolve| |linearlyDependent?| |sinIfCan|
+ |setScreenResolution3D| |primitivePart| |unvectorise| |common|
+ |leftExtendedGcd| |leftUnits| |mdeg| |biRank| |innerSolve| |find|
+ |bubbleSort!| |split!| |iisinh| |OMputObject| |external?| |prem|
+ |e01bef| |f02agf| |cAcsch| |ceiling| |hue| |overlabel|
+ |multiplyExponents| |semiDegreeSubResultantEuclidean| |readLineIfCan!|
+ |cyclotomicDecomposition| |notelem| |mainExpression| |fTable|
+ |linearlyDependentOverZ?| |saturate| |plus!| |title|
+ |nextIrreduciblePoly| |ideal| |definingPolynomial| |cup| |build|
+ |clearDenominator| |expr| |plenaryPower| |rightGcd| |flexibleArray|
+ |exptMod| |normalElement| |mvar| |logical?| |atom?| |interactiveEnv|
+ |getDatabase| |reflect| |overbar| |possiblyInfinite?| |mirror|
+ |quatern| |symbolTableOf| |OMserve| |usingTable?| |removeSinSq|
+ |rangePascalTriangle| |inf| |curveColorPalette| |operator|
+ |completeSmith| |addiag| |binomial| |stFuncN| |e| |coerceImages|
+ |fortranCharacter| |latex| |lyndon?| |trivialIdeal?| |f01ref|
+ |zeroVector| |readUInt32!| |LiePolyIfCan| |createRandomElement|
+ |csch2sinh| |measure2Result| |bumprow| |setProperty| |putColorInfo|
+ |f02awf| |variable| |power!| |true| |operators| |negative?|
+ |trace2PowMod| |s17def| |linear| |iterationVar| |elRow1!|
+ |eigenvalues| |pascalTriangle| |s19abf| |iterators| |writeBytes!|
+ |imagi| |head| |moebius| |d03faf| |nothing| |lazyGintegrate|
+ |initiallyReduced?| |redPol| |integerIfCan| |inverseIntegralMatrix|
+ |deepestTail| |outputGeneral| |splitDenominator| |palgRDE|
+ |prefixRagits| |polynomial| |f04arf| |startStats!| |getlo|
+ |doubleFloatFormat| |readUInt16!| |findCycle| |init| |null?|
+ |createThreeSpace| |s17ahf| |mainVariables| |mergeFactors|
+ |factorList| |OMgetInteger| |basisOfCenter| |readUInt8!| |hexDigit|
+ |d02gaf| |musserTrials| |lineColorDefault|
+ |setLegalFortranSourceExtensions| |OMencodingSGML|
+ |createPrimitivePoly| |nthFractionalTerm| |completeHermite| |d02bhf|
+ |stosePrepareSubResAlgo| |meshPar1Var| |extract!| |pdf2df| |imagI|
+ |BasicMethod| |dihedralGroup| |keys| |ratPoly| |swap| |fortranDouble|
+ |maxdeg| |powmod| |cycleLength| |distdfact| |primextendedint|
+ |constantOperator| |lazyPremWithDefault| |properties| |changeVar|
+ |scanOneDimSubspaces| |wreath| |f04asf| |c06frf| |width| |s14abf|
+ |decompose| |sqfree| |sturmVariationsOf| |deleteProperty!|
+ |complexExpand| |argument| |translate| |mainPrimitivePart| |elliptic?|
+ |maxIndex| |minordet| |operation| |primitive?| |logIfCan| |f01brf|
+ |merge!| |rename!| |isAbsolutelyIrreducible?| |setErrorBound|
+ |lazyPseudoDivide| |hMonic| |iprint| |dihedral| |dAndcExp| |badNum|
+ |pseudoDivide| |orthonormalBasis| |eigenvectors|
+ |nextLatticePermutation| |entry?| |constDsolve| |rootsOf| |expint|
+ |solveLinearlyOverQ| |rewriteIdealWithHeadRemainder| |sayLength|
+ |algDsolve| |GospersMethod| |readLine!| |restorePrecision|
+ |evenInfiniteProduct| |normalizeAtInfinity| |integralAtInfinity?|
+ |createMultiplicationMatrix| |lowerPolynomial|
+ |useEisensteinCriterion?| |exponential1| |antiCommutative?|
+ |internalLastSubResultant| |SturmHabichtSequence| |more?| |mix|
+ |twoFactor| |infinite?| |loopPoints| |iiacosh| |slash| |tubePoints|
+ |useEisensteinCriterion| |constantRight| |roughBasicSet|
+ |genericLeftTrace| |dimension| |OMputAttr| |expenseOfEvaluation|
+ |youngGroup| |triangularSystems| |primlimitedint| |rightDivide|
+ |schwerpunkt| |ReduceOrder| |simpleBounds?| |cAcot| |symmetricGroup|
+ |optional| |OMsetEncoding| |finiteBasis| |setchildren!| |writeInt8!|
+ |minRowIndex| |pr2dmp| |stoseLastSubResultant| |computeInt| |meatAxe|
+ |representationType| |autoReduced?| |oblateSpheroidal| |s13aaf|
+ |solid| |root| |interpret| |algebraicCoefficients?| |monicDivide|
+ |region| |stack| |pointData| |doubleRank| |stopMusserTrials| |twist|
+ |aromberg| |nthFlag| |removeRoughlyRedundantFactorsInContents|
+ |pdf2ef| |e02ajf| |c05nbf| |removeZeroes| |rightNorm|
+ |makeFloatFunction| |OMputEndError| |closeComponent| |safeCeiling|
+ |quotedOperators| |variationOfParameters| |assign| |s15adf| |rarrow|
+ |setLabelValue| |iiatanh| |tower| |leftExactQuotient| |sup| |surface|
+ |numeric| |cAsech| |OMgetType| |firstSubsetGray| |randomR|
+ |rightAlternative?| |setTopPredicate| |imaginary| |d02ejf| FG2F
+ |idealSimplify| |radical| |getMultiplicationTable| |messagePrint|
+ |diagonalMatrix| |KrullNumber| |removeRoughlyRedundantFactorsInPol|
+ |iicosh| |tubePlot| |normalDenom| |dim| |inR?| |numberOfComposites|
+ |fixedPoint| |constantCoefficientRicDE| |checkForZero|
+ |factorsOfDegree| |lexTriangular| |screenResolution| |normal?|
+ |d02kef| |relationsIdeal| |solveLinearPolynomialEquationByRecursion|
+ SEGMENT |fortranLiteral| |cPower| |nil| |listOfMonoms| |graphState|
+ |leftAlternative?| |s19acf| |trueEqual| |less?|
+ |numberOfIrreduciblePoly| |setButtonValue| |xCoord| |d01amf|
+ |setAdaptive3D| |palginfieldint| |complexNumeric| |curve?|
+ |factorSFBRlcUnit| |viewDefaults| |unit| |iicos| |bombieriNorm|
+ |cycleElt| |signatureAst| |cAcsc| |parametric?| |center| |principal?|
+ |lambert| |numberOfVariables| |replaceKthElement| |typeList|
+ |lyndonIfCan| |approximate| |putGraph| |kernels| |insertBottom!|
+ |Hausdorff| |testModulus| |primeFrobenius| |e02dff| |complex|
+ |endSubProgram| |isExpt| |log| |normFactors| |polygon| |univariate|
+ |ramifiedAtInfinity?| |cSech| |addmod| |subscript| |integralBasis|
+ |minPoints3D| |node| |Frobenius| |univariatePolynomialsGcds|
+ |modifyPoint| F2FG |shufflein| |simpson| |mergeDifference| |asinIfCan|
+ |reduceLODE| |generalLambert| |lfinfieldint| |weighted| |erf|
+ |rightRegularRepresentation| |conditionP| |unitVector| |c06ebf|
+ |simplify| |duplicates?| |OMgetEndObject| |factor| |failed?|
+ |clearTheSymbolTable| |sncndn| |prepareSubResAlgo| |constantIfCan|
+ |setEpilogue!| |create| |concat| |setStatus!| |readInt16!| |linGenPos|
+ |sqrt| |dmp2rfi| |besselY| |inverseIntegralMatrixAtInfinity|
+ |singRicDE| |matrixConcat3D| |trapezoidal| |symmetricPower| |dilog|
+ |viewThetaDefault| |minrank| |upDateBranches| |possiblyNewVariety?|
+ |real| |initTable!| |hasHi| |polyRDE| |pow| |transpose| |setValue!|
+ |factorials| |branchPointAtInfinity?| |rombergo|
+ |resultantEuclideannaif| |sin| |imag| |systemSizeIF| |subspace|
+ |mantissa| |controlPanel| |directProduct| |top!| |setOfMinN|
+ |lflimitedint| |limitedIntegrate| |monomRDE| |normalise| |ListOfTerms|
+ |cos| |isImplies| |quickSort| |collectUnder| |size?|
+ |seriesToOutputForm| |associatedSystem| |singular?| |setFieldInfo|
+ |elRow2!| |wholePart| |tan| |squareTop| |LyndonWordsList1|
+ |rowEchelonLocal| |hyperelliptic| |outputSpacing| |getCurve|
+ |approxSqrt| |consnewpol| |rowEchLocal| |OMsupportsSymbol?| |brace|
+ |cot| |d01akf| |besselJ| |empty?| |leftMinimalPolynomial| |varselect|
+ |logpart| |listYoungTableaus| |extendIfCan| |adaptive3D?| |destruct|
+ |sec| |explicitEntries?| |OMgetFloat| |rdregime| |getRef| |source|
+ |objectOf| |unknownEndian| |countRealRootsMultiple| |optpair|
+ |getOrder| |central?| |csc| |getConstant| |minPoints| |unmakeSUP|
+ |getCode| |combineFeatureCompatibility| |sortConstraints|
+ |useNagFunctions| |cAcoth| |opeval| |laguerreL| |asin| |category|
+ |power| |bringDown| |critT| |ptFunc| |optAttributes| |bitCoef|
+ |c06ekf| |commutator| |writeByte!| |equation| |inconsistent?| |acos|
+ |domain| |getProperty| |prinpolINFO| |characteristicSet|
+ |stoseIntegralLastSubResultant| |irreducibleFactor| |primlimintfrac|
+ |e02ddf| |generalSqFr| |compactFraction| |monomial| |prepareDecompose|
+ |atan| |mkIntegral| |entry| |mainValue| |package| |beauzamyBound|
+ |e02akf| |weierstrass| |polyred| |asinhIfCan| |tanAn| |show|
+ |selectFiniteRoutines| |coordinate| |multivariate| |acot|
+ |convergents| |Vectorise| |f07adf| |resultantEuclidean| |target|
+ |basisOfLeftAnnihilator| |cTanh| |baseRDEsys| |traverse|
+ |unrankImproperPartitions1| |variables| |asec| |extend| |increment|
+ |subscriptedVariables| |rectangularMatrix| |whatInfinity| |space|
+ |gradient| |rowEch| |univcase| |leftGcd| |localIntegralBasis| |trace|
+ |acsc| |e02bef| |sinhcosh| |infRittWu?| |child?| |rotatex|
+ |fortranReal| |degreePartition| |s14aaf| |parametersOf| |shuffle|
+ |sinh| |style| |rootNormalize| |pushdown| |stronglyReduced?|
+ |linearPart| |cn| |d02gbf| |deriv| |e01daf| |setMinPoints|
+ |rationalIfCan| |cosh| |innerint| |rename| |rquo| |bindings| |ravel|
+ |zeroDimPrimary?| |c06fqf| |OMclose| |cycleEntry| |coefficients|
+ |janko2| |tanh| |minset| |basisOfRightNucloid| |categoryFrame|
+ |binaryTournament| |ef2edf| |critMTonD1| |reshape| |mapMatrixIfCan|
+ |hdmpToDmp| |tube| |aCubic| |coth| |taylor| |minColIndex|
+ |writeUInt8!| |LazardQuotient2| |clearTheIFTable| |divisors|
+ |mappingAst| |shade| |regime| |square?| |stoseInvertibleSet| |sech|
+ |laurent| |setelt| |linkToFortran| |newLine| |complement| |e02baf|
+ |iidsum| |extendedEuclidean| |reorder| |outputBinaryFile|
+ |lazyPseudoRemainder| |showAll?| |csch| |puiseux| |univariateSolve|
+ |OMunhandledSymbol| |red| |midpoints| |range| |problemPoints|
+ |rubiksGroup| |rk4| |interpolate| |adjoint| |asinh| |copy|
+ |invertibleElseSplit?| |positiveRemainder| |linSolve| |parent|
+ |minimize| |ScanArabic| |cyclicCopy| |compose| |relativeApprox| |inv|
+ |triangulate| |acosh| |d03edf| |OMputEndApp|
+ |stoseInternalLastSubResultant| |lowerCase?| |digits| |tubeRadius|
+ |update| |ground?| |asecIfCan| |stronglyReduce| |OMputAtp| |partition|
+ |atanh| |padicallyExpand| |polCase| |makeprod|
+ |selectSumOfSquaresRoutines| |constantToUnaryFunction| |ground|
+ |pushdterm| |numberOfMonomials| |f02xef| |purelyAlgebraic?|
+ |OMputInteger| |acoth| |autoCoerce| |OMgetEndAttr| |normalize|
+ |OMputString| |droot| |equality| |dequeue| |identitySquareMatrix|
+ |minimalPolynomial| |minus!| |torsion?| |leadingMonomial| |asech|
+ |shrinkable| |one?| |errorKind| |f02aaf| |leftRankPolynomial|
+ |completeHensel| |fractRadix| |leadingSupport| LODO2FUN |c06gbf|
+ |leadingCoefficient| |trigs2explogs| |rightFactorIfCan| |quasiRegular|
+ |numberOfDivisors| |setLength!| |push| |universe| |mpsode|
+ |generateIrredPoly| |interReduce| |multiple| |primitiveMonomials|
+ |sinhIfCan| |graeffe| |binaryFunction| |measure| |position|
+ |semiResultantReduitEuclidean| |totolex| |normalForm| |dualSignature|
+ |shiftRoots| |interpretString| |recoverAfterFail| |composites| |say|
+ |showTheIFTable| |stripCommentsAndBlanks| |numberOfFactors| |padecf|
+ |euclideanNormalForm| |perfectSqrt| |e02ahf| |testDim| |indices|
+ |match?| |child| |critB| |powerSum| |cCsch| |in?| |perfectSquare?|
+ |makeCrit| |octon| |componentUpperBound| |randnum| |bernoulli|
+ |sizeLess?| |psolve| |summation| |decomposeFunc|
+ |generalizedEigenvectors| |basisOfMiddleNucleus| |e01bhf|
+ |internalIntegrate0| |bitLength| |shallowExpand| |froot| |ScanRoman|
+ |selectfirst| |sequence| |quoted?| |quasiAlgebraicSet| |asechIfCan|
+ |makeYoungTableau| |content| |setTex!| |directSum| |indicialEquation|
+ |debug| |hash| |rational| |Gamma| |pseudoQuotient| |OMParseError?|
+ |divisorCascade| |unitNormal| |Ei| |lieAlgebra?| |midpoint| |count| D
+ |double| |component| |polyPart| |Lazard| |leadingIndex| |rootSimp|
+ |vconcat| |graphStates| |Nul| |tanSum| |totalDegree| |bothWays|
+ |outputForm| |reindex| |setfirst!| |removeSuperfluousQuasiComponents|
+ |externalList| |packageCall| |palgint| |sechIfCan| |OMputEndBind|
+ |movedPoints| |hasoln| |stoseInvertible?| |approximants|
+ |leftRegularRepresentation| |solid?| |eulerPhi| |radicalEigenvectors|
+ |integral?| |c06gsf| |whitePoint| |pade| |separateFactors| |f02akf|
+ |mapBivariate| |wordInGenerators| |getVariableOrder| |moebiusMu|
+ |phiCoord| |ksec| |UP2ifCan| |f01maf| |getBadValues| |rightOne|
+ |explogs2trigs| |setProperties| |fortranComplex| |lquo|
+ |solveLinearPolynomialEquation| |mainMonomial| |multiEuclideanTree|
+ |closed?| |zerosOf| |primPartElseUnitCanonical|
+ |exprHasWeightCosWXorSinWX| |realRoots| |d01ajf| |zero|
+ |splitSquarefree| |deepExpand| |goto| |integrate| |s17dcf|
+ |showIntensityFunctions| |declare!| |inputBinaryFile| |virtualDegree|
+ |readInt32!| |certainlySubVariety?| |capacity| |subQuasiComponent?|
+ |f07fdf| |pastel| |predicate| |mainVariable?| |taylorQuoByVar|
+ |cyclePartition| |simpsono| |And| |leftRecip|
+ |subResultantGcdEuclidean| |e04mbf| |redpps| |symmetric?|
+ |lazyResidueClass| |iidprod| |currentSubProgram| |complementaryBasis|
+ |Or| |subNodeOf?| |prime| |leftRemainder| |lprop| |fractionFreeGauss!|
+ |deepCopy| |reify| |makeTerm| |write!| |Not| |index?| |argumentListOf|
+ |integralMatrixAtInfinity| |karatsubaDivide| |bitTruth|
+ |leadingCoefficientRicDE| |irreducibleFactors| |iipow|
+ |numberOfComponents| |setMaxPoints3D| |nary?| |reducedForm|
+ |linearAssociatedOrder| |complexLimit| |vectorise| |allRootsOf| |bat|
+ |lastSubResultantElseSplit| |decreasePrecision| |OMopenFile|
+ |unprotectedRemoveRedundantFactors| |rotate!| |realZeros| |inverse|
+ |highCommonTerms| |rationalPoints| |antiAssociative?| |currentScope|
+ |parabolicCylindrical| |extension| |oneDimensionalArray|
+ |pointSizeDefault| |segment| |e02bdf| |eisensteinIrreducible?|
+ |halfExtendedResultant2| |sumOfKthPowerDivisors| |colorFunction|
+ |color| |mainVariable| |primaryDecomp| |s17aef| |totalDifferential|
+ |iiacos| |extendedResultant| |returns| |parameters| |trim|
+ |internalAugment| |maxint| |coHeight| |pointColorPalette| |nsqfree|
+ |simplifyLog| |id| |normInvertible?| |specialTrigs| |npcoef| |seed|
+ |rootPower| |selectPDERoutines| |physicalLength| |OMconnInDevice|
+ |zeroSetSplit| |mathieu11| |typeLists| |imagE| |doubleDisc|
+ |stirling2| |wordInStrongGenerators| |redmat| |isMult| |clikeUniv|
+ |table| |quadraticForm| |bivariateSLPEBR| |represents| |pair?|
+ |integral| |character?| UP2UTS |zeroSquareMatrix| |new| |cscIfCan|
+ |pol| |monicCompleteDecompose| |identification| |maxrow| |high|
+ |leadingTerm| |zeroDimensional?| |loadNativeModule| |ramified?|
+ |insert| |rowEchelon| |isobaric?| |numFunEvals| |insertRoot!| |diag|
+ |littleEndian| |eq?| |lazyPseudoQuotient| |normDeriv2|
+ |indicialEquationAtInfinity| |cAcos| |extractProperty| |fintegrate|
+ |hdmpToP| |lazyIrreducibleFactors| |genericRightDiscriminant|
+ |options| |e04naf| |eigenMatrix| |ratDsolve| |atanhIfCan| |gcdprim|
+ |eulerE| |unrankImproperPartitions0| |basis| |solveRetract| |pi|
+ |listLoops| |rewriteIdealWithQuasiMonicGenerators| |yellow|
+ |pleskenSplit| |chiSquare| |resetAttributeButtons| |comparison| |ipow|
+ |palglimint| |infinity| |triangSolve| |nand| |retractIfCan|
+ |torsionIfCan| |rightTrace| |f04mbf| |modularFactor|
+ |discriminantEuclidean| |routines| |splitLinear| |nullSpace| |string|
+ |algint| |var2StepsDefault| |makeGraphImage| |repeating| |pToDmp|
+ |triangular?| |tab1| |totalfract| |unary?| |equiv|
+ |expenseOfEvaluationIF| |lfunc| |rootOfIrreduciblePoly| |sum| |ptree|
+ |factorial| |resetNew| |kernel| |supRittWu?| |prologue| |sequences|
+ |rst| |isPower| |mapUnivariateIfCan| |primintfldpoly| |draw| |s21bbf|
+ |reducedSystem| |squareFreePart| |mapGen| |complete| |ratDenom|
+ |OMputEndAtp| |physicalLength!| |coord| |expintegrate|
+ |prolateSpheroidal| |augment| |left| |topFortranOutputStack|
+ |leastAffineMultiple| |mainCharacterization| |fi2df| |s18dcf| |f04jgf|
+ |exponentialOrder| |horizConcat| |reduceBasisAtInfinity| |right|
+ |rootKerSimp| |enterInCache| |isQuotient| |listRepresentation| |cTan|
+ |OMUnknownCD?| |symmetricTensors| |bfEntry| |genericRightTraceForm|
+ |linear?| |lp| |characteristicSerie| |edf2efi| |aLinear|
+ |singularAtInfinity?| |scale| |makeObject| |orbits| |lazyEvaluate|
+ |selectOrPolynomials| |squareFreePrim| |map|
+ |selectMultiDimensionalRoutines| |s17akf| |structuralConstants|
+ |presuper| |powern| |branchIfCan| |uniform01|
+ |selectOptimizationRoutines| |cos2sec| |elt| |arrayStack| |An|
+ |rewriteSetByReducingWithParticularGenerators| |magnitude|
+ |currentEnv| |stopTableGcd!| |roughSubIdeal?| |divide| |open?| |coef|
+ |numberOfNormalPoly| |block| |duplicates| |getOperator| |critpOrder|
+ |gcdcofact| |extendedSubResultantGcd| |bag| |df2st| |iisqrt3|
+ |fortranLiteralLine| |OMcloseConn| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable|
+ |canonical| |noetherian| |central| |partiallyOrderedSet|
+ |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
+ |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
+ |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
+ |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index e2378a89..6ccb511b 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5309 +1,5324 @@
-(3205083 . 3452645053)
-((-3833 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3963 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3904 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 43)) (-2563 (($ $) 80)) (-1316 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 49) ((|#2| (-1 |#2| |#2| |#2|) $) 48)) (-3998 (((-564) (-1 (-112) |#2|) $) 27) (((-564) |#2| $) NIL) (((-564) |#2| $ (-564)) 96)) (-3035 (((-641 |#2|) $) 13)) (-3669 (($ (-1 (-112) |#2| |#2|) $ $) 63) (($ $ $) NIL)) (-2714 (($ (-1 |#2| |#2|) $) 37)) (-4357 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 59)) (-4248 (($ |#2| $ (-564)) NIL) (($ $ $ (-564)) 66)) (-2139 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-4377 (((-112) (-1 (-112) |#2|) $) 23)) (-4366 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL) (($ $ (-1226 (-564))) 65)) (-2114 (($ $ (-564)) 75) (($ $ (-1226 (-564))) 74)) (-4062 (((-767) (-1 (-112) |#2|) $) 34) (((-767) |#2| $) NIL)) (-3806 (($ $ $ (-564)) 68)) (-3926 (($ $) 67)) (-2435 (($ (-641 |#2|)) 72)) (-3696 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-641 $)) 85)) (-2423 (((-858) $) 92)) (-1368 (((-112) (-1 (-112) |#2|) $) 22)) (-2974 (((-112) $ $) 95)) (-2999 (((-112) $ $) 99)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2974 ((-112) |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2999 ((-112) |#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -3963 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2563 (|#1| |#1|)) (-15 -3806 (|#1| |#1| |#1| (-564))) (-15 -3833 ((-112) |#1|)) (-15 -3669 (|#1| |#1| |#1|)) (-15 -3998 ((-564) |#2| |#1| (-564))) (-15 -3998 ((-564) |#2| |#1|)) (-15 -3998 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3833 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3669 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3904 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -4248 (|#1| |#1| |#1| (-564))) (-15 -4248 (|#1| |#2| |#1| (-564))) (-15 -2114 (|#1| |#1| (-1226 (-564)))) (-15 -2114 (|#1| |#1| (-564))) (-15 -4366 (|#1| |#1| (-1226 (-564)))) (-15 -4357 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3696 (|#1| (-641 |#1|))) (-15 -3696 (|#1| |#1| |#1|)) (-15 -3696 (|#1| |#2| |#1|)) (-15 -3696 (|#1| |#1| |#2|)) (-15 -2435 (|#1| (-641 |#2|))) (-15 -2139 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4366 (|#2| |#1| (-564))) (-15 -4366 (|#2| |#1| (-564) |#2|)) (-15 -3904 (|#2| |#1| (-564) |#2|)) (-15 -4062 ((-767) |#2| |#1|)) (-15 -3035 ((-641 |#2|) |#1|)) (-15 -4062 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -4377 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3926 (|#1| |#1|))) (-19 |#2|) (-1209)) (T -18))
+(3219914 . 3452782389)
+((-1757 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-2239 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3877 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-1229 (-564)) |#2|) 43)) (-2087 (($ $) 80)) (-1320 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 49) ((|#2| (-1 |#2| |#2| |#2|) $) 48)) (-3979 (((-564) (-1 (-112) |#2|) $) 27) (((-564) |#2| $) NIL) (((-564) |#2| $ (-564)) 96)) (-2936 (((-642 |#2|) $) 13)) (-2740 (($ (-1 (-112) |#2| |#2|) $ $) 63) (($ $ $) NIL)) (-2613 (($ (-1 |#2| |#2|) $) 37)) (-4358 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 59)) (-4238 (($ |#2| $ (-564)) NIL) (($ $ $ (-564)) 66)) (-3254 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2121 (((-112) (-1 (-112) |#2|) $) 23)) (-4368 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL) (($ $ (-1229 (-564))) 65)) (-2073 (($ $ (-564)) 75) (($ $ (-1229 (-564))) 74)) (-4043 (((-769) (-1 (-112) |#2|) $) 34) (((-769) |#2| $) NIL)) (-2568 (($ $ $ (-564)) 68)) (-3901 (($ $) 67)) (-2337 (($ (-642 |#2|)) 72)) (-3651 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-642 $)) 85)) (-2327 (((-860) $) 92)) (-2710 (((-112) (-1 (-112) |#2|) $) 22)) (-2872 (((-112) $ $) 95)) (-2897 (((-112) $ $) 99)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2872 ((-112) |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -2239 (|#1| |#1|)) (-15 -2239 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2087 (|#1| |#1|)) (-15 -2568 (|#1| |#1| |#1| (-564))) (-15 -1757 ((-112) |#1|)) (-15 -2740 (|#1| |#1| |#1|)) (-15 -3979 ((-564) |#2| |#1| (-564))) (-15 -3979 ((-564) |#2| |#1|)) (-15 -3979 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1757 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2740 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3877 (|#2| |#1| (-1229 (-564)) |#2|)) (-15 -4238 (|#1| |#1| |#1| (-564))) (-15 -4238 (|#1| |#2| |#1| (-564))) (-15 -2073 (|#1| |#1| (-1229 (-564)))) (-15 -2073 (|#1| |#1| (-564))) (-15 -4368 (|#1| |#1| (-1229 (-564)))) (-15 -4358 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3651 (|#1| (-642 |#1|))) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#2|)) (-15 -2337 (|#1| (-642 |#2|))) (-15 -3254 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4368 (|#2| |#1| (-564))) (-15 -4368 (|#2| |#1| (-564) |#2|)) (-15 -3877 (|#2| |#1| (-564) |#2|)) (-15 -4043 ((-769) |#2| |#1|)) (-15 -2936 ((-642 |#2|) |#1|)) (-15 -4043 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -2121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2613 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3901 (|#1| |#1|))) (-19 |#2|) (-1212)) (T -18))
NIL
-(-10 -8 (-15 -2974 ((-112) |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2999 ((-112) |#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -3963 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2563 (|#1| |#1|)) (-15 -3806 (|#1| |#1| |#1| (-564))) (-15 -3833 ((-112) |#1|)) (-15 -3669 (|#1| |#1| |#1|)) (-15 -3998 ((-564) |#2| |#1| (-564))) (-15 -3998 ((-564) |#2| |#1|)) (-15 -3998 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3833 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3669 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3904 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -4248 (|#1| |#1| |#1| (-564))) (-15 -4248 (|#1| |#2| |#1| (-564))) (-15 -2114 (|#1| |#1| (-1226 (-564)))) (-15 -2114 (|#1| |#1| (-564))) (-15 -4366 (|#1| |#1| (-1226 (-564)))) (-15 -4357 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3696 (|#1| (-641 |#1|))) (-15 -3696 (|#1| |#1| |#1|)) (-15 -3696 (|#1| |#2| |#1|)) (-15 -3696 (|#1| |#1| |#2|)) (-15 -2435 (|#1| (-641 |#2|))) (-15 -2139 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4366 (|#2| |#1| (-564))) (-15 -4366 (|#2| |#1| (-564) |#2|)) (-15 -3904 (|#2| |#1| (-564) |#2|)) (-15 -4062 ((-767) |#2| |#1|)) (-15 -3035 ((-641 |#2|) |#1|)) (-15 -4062 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -4377 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3926 (|#1| |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3236 (((-1264) $ (-564) (-564)) 41 (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4408))) (($ $) 89 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4408))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) 8)) (-3904 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) 59 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2563 (($ $) 91 (|has| $ (-6 -4408)))) (-3200 (($ $) 101)) (-2696 (($ $) 79 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#1| $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 52)) (-3998 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1094)))) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-4238 (($ (-767) |#1|) 70)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 44 (|has| (-564) (-846)))) (-2855 (($ $ $) 88 (|has| |#1| (-846)))) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 45 (|has| (-564) (-846)))) (-1497 (($ $ $) 87 (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3050 (((-641 (-564)) $) 47)) (-1563 (((-112) (-564) $) 48)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2658 ((|#1| $) 43 (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1592 (($ $ |#1|) 42 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1226 (-564))) 64)) (-2114 (($ $ (-564)) 63) (($ $ (-1226 (-564))) 62)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3806 (($ $ $ (-564)) 92 (|has| $ (-6 -4408)))) (-3926 (($ $) 13)) (-1311 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 71)) (-3696 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-641 $)) 66)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) 85 (|has| |#1| (-846)))) (-3011 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3023 (((-112) $ $) 86 (|has| |#1| (-846)))) (-2999 (((-112) $ $) 83 (|has| |#1| (-846)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-19 |#1|) (-140) (-1209)) (T -19))
+(-10 -8 (-15 -2872 ((-112) |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -2239 (|#1| |#1|)) (-15 -2239 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2087 (|#1| |#1|)) (-15 -2568 (|#1| |#1| |#1| (-564))) (-15 -1757 ((-112) |#1|)) (-15 -2740 (|#1| |#1| |#1|)) (-15 -3979 ((-564) |#2| |#1| (-564))) (-15 -3979 ((-564) |#2| |#1|)) (-15 -3979 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1757 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2740 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3877 (|#2| |#1| (-1229 (-564)) |#2|)) (-15 -4238 (|#1| |#1| |#1| (-564))) (-15 -4238 (|#1| |#2| |#1| (-564))) (-15 -2073 (|#1| |#1| (-1229 (-564)))) (-15 -2073 (|#1| |#1| (-564))) (-15 -4368 (|#1| |#1| (-1229 (-564)))) (-15 -4358 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3651 (|#1| (-642 |#1|))) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#2|)) (-15 -2337 (|#1| (-642 |#2|))) (-15 -3254 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4368 (|#2| |#1| (-564))) (-15 -4368 (|#2| |#1| (-564) |#2|)) (-15 -3877 (|#2| |#1| (-564) |#2|)) (-15 -4043 ((-769) |#2| |#1|)) (-15 -2936 ((-642 |#2|) |#1|)) (-15 -4043 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -2121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2613 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3901 (|#1| |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-1765 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| |#1| (-848)) (|has| $ (-6 -4411))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) 8)) (-3877 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-2087 (($ $) 91 (|has| $ (-6 -4411)))) (-3115 (($ $) 101)) (-2595 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 52)) (-3979 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1097)))) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-4227 (($ (-769) |#1|) 70)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 44 (|has| (-564) (-848)))) (-2755 (($ $ $) 88 (|has| |#1| (-848)))) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 45 (|has| (-564) (-848)))) (-1520 (($ $ $) 87 (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3997 (((-642 (-564)) $) 47)) (-4145 (((-112) (-564) $) 48)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2557 ((|#1| $) 43 (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2696 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-2073 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2568 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3901 (($ $) 13)) (-1314 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 71)) (-3651 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) 85 (|has| |#1| (-848)))) (-2908 (((-112) $ $) 84 (|has| |#1| (-848)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2922 (((-112) $ $) 86 (|has| |#1| (-848)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-848)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-19 |#1|) (-140) (-1212)) (T -19))
NIL
-(-13 (-373 |t#1|) (-10 -7 (-6 -4408)))
-(((-34) . T) ((-102) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1209) . T))
-((-4012 (((-3 $ "failed") $ $) 12)) (-3082 (($ $) NIL) (($ $ $) 9)) (* (($ (-917) $) NIL) (($ (-767) $) 16) (($ (-564) $) 26)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 -4012 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-21)) (T -20))
+(-13 (-373 |t#1|) (-10 -7 (-6 -4411)))
+(((-34) . T) ((-102) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-848) |has| |#1| (-848)) ((-1097) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-1212) . T))
+((-1532 (((-3 $ "failed") $ $) 12)) (-2987 (($ $) NIL) (($ $ $) 9)) (* (($ (-919) $) NIL) (($ (-769) $) 16) (($ (-564) $) 26)))
+(((-20 |#1|) (-10 -8 (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1532 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 -4012 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21)))
+(-10 -8 (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1532 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24)))
(((-21) (-140)) (T -21))
-((-3082 (*1 *1 *1) (-4 *1 (-21))) (-3082 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564)))))
-(-13 (-131) (-10 -8 (-15 -3082 ($ $)) (-15 -3082 ($ $ $)) (-15 * ($ (-564) $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-1494 (((-112) $) 10)) (-4080 (($) 15)) (* (($ (-917) $) 14) (($ (-767) $) 19)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -1494 ((-112) |#1|)) (-15 -4080 (|#1|)) (-15 * (|#1| (-917) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -1494 ((-112) |#1|)) (-15 -4080 (|#1|)) (-15 * (|#1| (-917) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4080 (($) 18 T CONST)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16)))
+((-2987 (*1 *1 *1) (-4 *1 (-21))) (-2987 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-131) (-644 (-564)) (-10 -8 (-15 -2987 ($ $)) (-15 -2987 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-1097) . T))
+((-2952 (((-112) $) 10)) (-1976 (($) 15)) (* (($ (-919) $) 14) (($ (-769) $) 19)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-769) |#1|)) (-15 -2952 ((-112) |#1|)) (-15 -1976 (|#1|)) (-15 * (|#1| (-919) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-769) |#1|)) (-15 -2952 ((-112) |#1|)) (-15 -1976 (|#1|)) (-15 * (|#1| (-919) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1976 (($) 18 T CONST)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16)))
(((-23) (-140)) (T -23))
-((-2403 (*1 *1) (-4 *1 (-23))) (-4080 (*1 *1) (-4 *1 (-23))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767)))))
-(-13 (-25) (-10 -8 (-15 (-2403) ($) -2959) (-15 -4080 ($) -2959) (-15 -1494 ((-112) $)) (-15 * ($ (-767) $))))
-(((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((* (($ (-917) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-917) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-917) |#1|)))
-((-3009 (((-112) $ $) 7)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14)))
+((-2312 (*1 *1) (-4 *1 (-23))) (-1976 (*1 *1) (-4 *1 (-23))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-769)))))
+(-13 (-25) (-10 -8 (-15 (-2312) ($) -2858) (-15 -1976 ($) -2858) (-15 -2952 ((-112) $)) (-15 * ($ (-769) $))))
+(((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((* (($ (-919) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-919) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-919) |#1|)))
+((-2907 (((-112) $ $) 7)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14)))
(((-25) (-140)) (T -25))
-((-3070 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917)))))
-(-13 (-1094) (-10 -8 (-15 -3070 ($ $ $)) (-15 * ($ (-917) $))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-4119 (((-641 $) (-948 $)) 32) (((-641 $) (-1166 $)) 16) (((-641 $) (-1166 $) (-1170)) 20)) (-4029 (($ (-948 $)) 30) (($ (-1166 $)) 11) (($ (-1166 $) (-1170)) 60)) (-3442 (((-641 $) (-948 $)) 33) (((-641 $) (-1166 $)) 18) (((-641 $) (-1166 $) (-1170)) 19)) (-2930 (($ (-948 $)) 31) (($ (-1166 $)) 13) (($ (-1166 $) (-1170)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -4119 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4119 ((-641 |#1|) (-1166 |#1|))) (-15 -4119 ((-641 |#1|) (-948 |#1|))) (-15 -4029 (|#1| (-1166 |#1|) (-1170))) (-15 -4029 (|#1| (-1166 |#1|))) (-15 -4029 (|#1| (-948 |#1|))) (-15 -3442 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3442 ((-641 |#1|) (-1166 |#1|))) (-15 -3442 ((-641 |#1|) (-948 |#1|))) (-15 -2930 (|#1| (-1166 |#1|) (-1170))) (-15 -2930 (|#1| (-1166 |#1|))) (-15 -2930 (|#1| (-948 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -4119 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4119 ((-641 |#1|) (-1166 |#1|))) (-15 -4119 ((-641 |#1|) (-948 |#1|))) (-15 -4029 (|#1| (-1166 |#1|) (-1170))) (-15 -4029 (|#1| (-1166 |#1|))) (-15 -4029 (|#1| (-948 |#1|))) (-15 -3442 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3442 ((-641 |#1|) (-1166 |#1|))) (-15 -3442 ((-641 |#1|) (-948 |#1|))) (-15 -2930 (|#1| (-1166 |#1|) (-1170))) (-15 -2930 (|#1| (-1166 |#1|))) (-15 -2930 (|#1| (-948 |#1|))))
-((-3009 (((-112) $ $) 7)) (-4119 (((-641 $) (-948 $)) 82) (((-641 $) (-1166 $)) 81) (((-641 $) (-1166 $) (-1170)) 80)) (-4029 (($ (-948 $)) 85) (($ (-1166 $)) 84) (($ (-1166 $) (-1170)) 83)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 75)) (-2753 (((-418 $) $) 74)) (-3700 (($ $) 94)) (-3162 (((-112) $ $) 61)) (-4080 (($) 18 T CONST)) (-3442 (((-641 $) (-948 $)) 88) (((-641 $) (-1166 $)) 87) (((-641 $) (-1166 $) (-1170)) 86)) (-2930 (($ (-948 $)) 91) (($ (-1166 $)) 90) (($ (-1166 $) (-1170)) 89)) (-2946 (($ $ $) 57)) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-1339 (((-112) $) 73)) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 93)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 72)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-3688 (((-418 $) $) 76)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-1700 (((-767) $) 60)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-407 (-564))) 68)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 67)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71) (($ $ (-407 (-564))) 92)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 70) (($ (-407 (-564)) $) 69)))
+((-2974 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-919)))))
+(-13 (-1097) (-10 -8 (-15 -2974 ($ $ $)) (-15 * ($ (-919) $))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-4098 (((-642 $) (-950 $)) 32) (((-642 $) (-1169 $)) 16) (((-642 $) (-1169 $) (-1173)) 20)) (-2946 (($ (-950 $)) 30) (($ (-1169 $)) 11) (($ (-1169 $) (-1173)) 60)) (-3443 (((-642 $) (-950 $)) 33) (((-642 $) (-1169 $)) 18) (((-642 $) (-1169 $) (-1173)) 19)) (-2525 (($ (-950 $)) 31) (($ (-1169 $)) 13) (($ (-1169 $) (-1173)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -4098 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -4098 ((-642 |#1|) (-1169 |#1|))) (-15 -4098 ((-642 |#1|) (-950 |#1|))) (-15 -2946 (|#1| (-1169 |#1|) (-1173))) (-15 -2946 (|#1| (-1169 |#1|))) (-15 -2946 (|#1| (-950 |#1|))) (-15 -3443 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -3443 ((-642 |#1|) (-1169 |#1|))) (-15 -3443 ((-642 |#1|) (-950 |#1|))) (-15 -2525 (|#1| (-1169 |#1|) (-1173))) (-15 -2525 (|#1| (-1169 |#1|))) (-15 -2525 (|#1| (-950 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -4098 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -4098 ((-642 |#1|) (-1169 |#1|))) (-15 -4098 ((-642 |#1|) (-950 |#1|))) (-15 -2946 (|#1| (-1169 |#1|) (-1173))) (-15 -2946 (|#1| (-1169 |#1|))) (-15 -2946 (|#1| (-950 |#1|))) (-15 -3443 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -3443 ((-642 |#1|) (-1169 |#1|))) (-15 -3443 ((-642 |#1|) (-950 |#1|))) (-15 -2525 (|#1| (-1169 |#1|) (-1173))) (-15 -2525 (|#1| (-1169 |#1|))) (-15 -2525 (|#1| (-950 |#1|))))
+((-2907 (((-112) $ $) 7)) (-4098 (((-642 $) (-950 $)) 88) (((-642 $) (-1169 $)) 87) (((-642 $) (-1169 $) (-1173)) 86)) (-2946 (($ (-950 $)) 91) (($ (-1169 $)) 90) (($ (-1169 $) (-1173)) 89)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 81)) (-1978 (((-418 $) $) 80)) (-3655 (($ $) 100)) (-4010 (((-112) $ $) 65)) (-1976 (($) 18 T CONST)) (-3443 (((-642 $) (-950 $)) 94) (((-642 $) (-1169 $)) 93) (((-642 $) (-1169 $) (-1173)) 92)) (-2525 (($ (-950 $)) 97) (($ (-1169 $)) 96) (($ (-1169 $) (-1173)) 95)) (-2845 (($ $ $) 61)) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-1469 (((-112) $) 79)) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 99)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 78)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-3643 (((-418 $) $) 82)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2048 (((-769) $) 64)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 73)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77) (($ $ (-407 (-564))) 98)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75)))
(((-27) (-140)) (T -27))
-((-2930 (*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) (-2930 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-2930 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-4029 (*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) (-4029 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-4029 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-4119 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1)))))
-(-13 (-363) (-998) (-10 -8 (-15 -2930 ($ (-948 $))) (-15 -2930 ($ (-1166 $))) (-15 -2930 ($ (-1166 $) (-1170))) (-15 -3442 ((-641 $) (-948 $))) (-15 -3442 ((-641 $) (-1166 $))) (-15 -3442 ((-641 $) (-1166 $) (-1170))) (-15 -4029 ($ (-948 $))) (-15 -4029 ($ (-1166 $))) (-15 -4029 ($ (-1166 $) (-1170))) (-15 -4119 ((-641 $) (-948 $))) (-15 -4119 ((-641 $) (-1166 $))) (-15 -4119 ((-641 $) (-1166 $) (-1170)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-998) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-4119 (((-641 $) (-948 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 60) (((-641 $) $) 22) (((-641 $) $ (-1170)) 51)) (-4029 (($ (-948 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) 62) (($ $) 20) (($ $ (-1170)) 45)) (-3442 (((-641 $) (-948 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 58) (((-641 $) $) 18) (((-641 $) $ (-1170)) 53)) (-2930 (($ (-948 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) NIL) (($ $) 15) (($ $ (-1170)) 47)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -4119 ((-641 |#1|) |#1| (-1170))) (-15 -4029 (|#1| |#1| (-1170))) (-15 -4119 ((-641 |#1|) |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -3442 ((-641 |#1|) |#1| (-1170))) (-15 -2930 (|#1| |#1| (-1170))) (-15 -3442 ((-641 |#1|) |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -4119 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4119 ((-641 |#1|) (-1166 |#1|))) (-15 -4119 ((-641 |#1|) (-948 |#1|))) (-15 -4029 (|#1| (-1166 |#1|) (-1170))) (-15 -4029 (|#1| (-1166 |#1|))) (-15 -4029 (|#1| (-948 |#1|))) (-15 -3442 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3442 ((-641 |#1|) (-1166 |#1|))) (-15 -3442 ((-641 |#1|) (-948 |#1|))) (-15 -2930 (|#1| (-1166 |#1|) (-1170))) (-15 -2930 (|#1| (-1166 |#1|))) (-15 -2930 (|#1| (-948 |#1|)))) (-29 |#2|) (-556)) (T -28))
-NIL
-(-10 -8 (-15 -4119 ((-641 |#1|) |#1| (-1170))) (-15 -4029 (|#1| |#1| (-1170))) (-15 -4119 ((-641 |#1|) |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -3442 ((-641 |#1|) |#1| (-1170))) (-15 -2930 (|#1| |#1| (-1170))) (-15 -3442 ((-641 |#1|) |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -4119 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4119 ((-641 |#1|) (-1166 |#1|))) (-15 -4119 ((-641 |#1|) (-948 |#1|))) (-15 -4029 (|#1| (-1166 |#1|) (-1170))) (-15 -4029 (|#1| (-1166 |#1|))) (-15 -4029 (|#1| (-948 |#1|))) (-15 -3442 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3442 ((-641 |#1|) (-1166 |#1|))) (-15 -3442 ((-641 |#1|) (-948 |#1|))) (-15 -2930 (|#1| (-1166 |#1|) (-1170))) (-15 -2930 (|#1| (-1166 |#1|))) (-15 -2930 (|#1| (-948 |#1|))))
-((-3009 (((-112) $ $) 7)) (-4119 (((-641 $) (-948 $)) 82) (((-641 $) (-1166 $)) 81) (((-641 $) (-1166 $) (-1170)) 80) (((-641 $) $) 126) (((-641 $) $ (-1170)) 124)) (-4029 (($ (-948 $)) 85) (($ (-1166 $)) 84) (($ (-1166 $) (-1170)) 83) (($ $) 127) (($ $ (-1170)) 125)) (-1494 (((-112) $) 17)) (-3836 (((-641 (-1170)) $) 195)) (-3660 (((-407 (-1166 $)) $ (-610 $)) 227 (|has| |#1| (-556)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-3577 (((-641 (-610 $)) $) 158)) (-4012 (((-3 $ "failed") $ $) 20)) (-2559 (($ $ (-641 (-610 $)) (-641 $)) 148) (($ $ (-641 (-294 $))) 147) (($ $ (-294 $)) 146)) (-2683 (($ $) 75)) (-2753 (((-418 $) $) 74)) (-3700 (($ $) 94)) (-3162 (((-112) $ $) 61)) (-4080 (($) 18 T CONST)) (-3442 (((-641 $) (-948 $)) 88) (((-641 $) (-1166 $)) 87) (((-641 $) (-1166 $) (-1170)) 86) (((-641 $) $) 130) (((-641 $) $ (-1170)) 128)) (-2930 (($ (-948 $)) 91) (($ (-1166 $)) 90) (($ (-1166 $) (-1170)) 89) (($ $) 131) (($ $ (-1170)) 129)) (-4284 (((-3 (-948 |#1|) "failed") $) 245 (|has| |#1| (-1045))) (((-3 (-407 (-948 |#1|)) "failed") $) 229 (|has| |#1| (-556))) (((-3 |#1| "failed") $) 191) (((-3 (-564) "failed") $) 188 (|has| |#1| (-1034 (-564)))) (((-3 (-1170) "failed") $) 182) (((-3 (-610 $) "failed") $) 133) (((-3 (-407 (-564)) "failed") $) 122 (-2807 (-12 (|has| |#1| (-1034 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-564))))))) (-3120 (((-948 |#1|) $) 244 (|has| |#1| (-1045))) (((-407 (-948 |#1|)) $) 228 (|has| |#1| (-556))) ((|#1| $) 190) (((-564) $) 189 (|has| |#1| (-1034 (-564)))) (((-1170) $) 181) (((-610 $) $) 132) (((-407 (-564)) $) 123 (-2807 (-12 (|has| |#1| (-1034 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-564))))))) (-2946 (($ $ $) 57)) (-4277 (((-685 |#1|) (-685 $)) 235 (|has| |#1| (-1045))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 234 (|has| |#1| (-1045))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 121 (-2807 (-2358 (|has| |#1| (-1045)) (|has| |#1| (-637 (-564)))) (-2358 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))) (((-685 (-564)) (-685 $)) 120 (-2807 (-2358 (|has| |#1| (-1045)) (|has| |#1| (-637 (-564)))) (-2358 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-1339 (((-112) $) 73)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 187 (|has| |#1| (-882 (-379)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 186 (|has| |#1| (-882 (-564))))) (-1387 (($ (-641 $)) 152) (($ $) 151)) (-3782 (((-641 (-114)) $) 159)) (-4232 (((-114) (-114)) 160)) (-4112 (((-112) $) 32)) (-3177 (((-112) $) 180 (|has| $ (-1034 (-564))))) (-1717 (($ $) 212 (|has| |#1| (-1045)))) (-2323 (((-1119 |#1| (-610 $)) $) 211 (|has| |#1| (-1045)))) (-3614 (($ $ (-564)) 93)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-1940 (((-1166 $) (-610 $)) 177 (|has| $ (-1045)))) (-4357 (($ (-1 $ $) (-610 $)) 166)) (-3521 (((-3 (-610 $) "failed") $) 156)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-3648 (((-641 (-610 $)) $) 157)) (-4309 (($ (-114) (-641 $)) 165) (($ (-114) $) 164)) (-1958 (((-3 (-641 $) "failed") $) 206 (|has| |#1| (-1106)))) (-4193 (((-3 (-2 (|:| |val| $) (|:| -1838 (-564))) "failed") $) 215 (|has| |#1| (-1045)))) (-1301 (((-3 (-641 $) "failed") $) 208 (|has| |#1| (-25)))) (-2290 (((-3 (-2 (|:| -4376 (-564)) (|:| |var| (-610 $))) "failed") $) 209 (|has| |#1| (-25)))) (-3401 (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $ (-1170)) 214 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $ (-114)) 213 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $) 207 (|has| |#1| (-1106)))) (-3679 (((-112) $ (-1170)) 163) (((-112) $ (-114)) 162)) (-3936 (($ $) 72)) (-1292 (((-767) $) 155)) (-4052 (((-1114) $) 11)) (-3944 (((-112) $) 193)) (-3954 ((|#1| $) 194)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-3817 (((-112) $ (-1170)) 168) (((-112) $ $) 167)) (-3688 (((-418 $) $) 76)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-2663 (((-112) $) 179 (|has| $ (-1034 (-564))))) (-3291 (($ $ (-1170) (-767) (-1 $ $)) 219 (|has| |#1| (-1045))) (($ $ (-1170) (-767) (-1 $ (-641 $))) 218 (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ (-641 $)))) 217 (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ $))) 216 (|has| |#1| (-1045))) (($ $ (-641 (-114)) (-641 $) (-1170)) 205 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 204 (|has| |#1| (-612 (-536)))) (($ $) 203 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 202 (|has| |#1| (-612 (-536)))) (($ $ (-1170)) 201 (|has| |#1| (-612 (-536)))) (($ $ (-114) (-1 $ $)) 176) (($ $ (-114) (-1 $ (-641 $))) 175) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 174) (($ $ (-641 (-114)) (-641 (-1 $ $))) 173) (($ $ (-1170) (-1 $ $)) 172) (($ $ (-1170) (-1 $ (-641 $))) 171) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 170) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 169) (($ $ (-641 $) (-641 $)) 140) (($ $ $ $) 139) (($ $ (-294 $)) 138) (($ $ (-641 (-294 $))) 137) (($ $ (-641 (-610 $)) (-641 $)) 136) (($ $ (-610 $) $) 135)) (-1700 (((-767) $) 60)) (-4366 (($ (-114) (-641 $)) 145) (($ (-114) $ $ $ $) 144) (($ (-114) $ $ $) 143) (($ (-114) $ $) 142) (($ (-114) $) 141)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-3973 (($ $ $) 154) (($ $) 153)) (-3254 (($ $ (-1170)) 243 (|has| |#1| (-1045))) (($ $ (-641 (-1170))) 242 (|has| |#1| (-1045))) (($ $ (-1170) (-767)) 241 (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) 240 (|has| |#1| (-1045)))) (-2827 (($ $) 222 (|has| |#1| (-556)))) (-2336 (((-1119 |#1| (-610 $)) $) 221 (|has| |#1| (-556)))) (-3721 (($ $) 178 (|has| $ (-1045)))) (-1311 (((-536) $) 249 (|has| |#1| (-612 (-536)))) (($ (-418 $)) 220 (|has| |#1| (-556))) (((-888 (-379)) $) 185 (|has| |#1| (-612 (-888 (-379))))) (((-888 (-564)) $) 184 (|has| |#1| (-612 (-888 (-564)))))) (-3185 (($ $ $) 248 (|has| |#1| (-473)))) (-1542 (($ $ $) 247 (|has| |#1| (-473)))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-407 (-564))) 68) (($ (-948 |#1|)) 246 (|has| |#1| (-1045))) (($ (-407 (-948 |#1|))) 230 (|has| |#1| (-556))) (($ (-407 (-948 (-407 |#1|)))) 226 (|has| |#1| (-556))) (($ (-948 (-407 |#1|))) 225 (|has| |#1| (-556))) (($ (-407 |#1|)) 224 (|has| |#1| (-556))) (($ (-1119 |#1| (-610 $))) 210 (|has| |#1| (-1045))) (($ |#1|) 192) (($ (-1170)) 183) (($ (-610 $)) 134)) (-2420 (((-3 $ "failed") $) 233 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-2180 (($ (-641 $)) 150) (($ $) 149)) (-3263 (((-112) (-114)) 161)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2750 (($ (-1170) (-641 $)) 200) (($ (-1170) $ $ $ $) 199) (($ (-1170) $ $ $) 198) (($ (-1170) $ $) 197) (($ (-1170) $) 196)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-1170)) 239 (|has| |#1| (-1045))) (($ $ (-641 (-1170))) 238 (|has| |#1| (-1045))) (($ $ (-1170) (-767)) 237 (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) 236 (|has| |#1| (-1045)))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 67) (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 223 (|has| |#1| (-556)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71) (($ $ (-407 (-564))) 92)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 70) (($ (-407 (-564)) $) 69) (($ $ |#1|) 232 (|has| |#1| (-172))) (($ |#1| $) 231 (|has| |#1| (-172)))))
+((-2525 (*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27)))) (-2525 (*1 *1 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-27)))) (-2525 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *1)) (-5 *3 (-1173)) (-4 *1 (-27)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1173)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) (-2946 (*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27)))) (-2946 (*1 *1 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-27)))) (-2946 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *1)) (-5 *3 (-1173)) (-4 *1 (-27)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1)))) (-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1173)) (-4 *1 (-27)) (-5 *2 (-642 *1)))))
+(-13 (-363) (-1000) (-10 -8 (-15 -2525 ($ (-950 $))) (-15 -2525 ($ (-1169 $))) (-15 -2525 ($ (-1169 $) (-1173))) (-15 -3443 ((-642 $) (-950 $))) (-15 -3443 ((-642 $) (-1169 $))) (-15 -3443 ((-642 $) (-1169 $) (-1173))) (-15 -2946 ($ (-950 $))) (-15 -2946 ($ (-1169 $))) (-15 -2946 ($ (-1169 $) (-1173))) (-15 -4098 ((-642 $) (-950 $))) (-15 -4098 ((-642 $) (-1169 $))) (-15 -4098 ((-642 $) (-1169 $) (-1173)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1000) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T))
+((-4098 (((-642 $) (-950 $)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-1169 $) (-1173)) 60) (((-642 $) $) 22) (((-642 $) $ (-1173)) 51)) (-2946 (($ (-950 $)) NIL) (($ (-1169 $)) NIL) (($ (-1169 $) (-1173)) 62) (($ $) 20) (($ $ (-1173)) 45)) (-3443 (((-642 $) (-950 $)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-1169 $) (-1173)) 58) (((-642 $) $) 18) (((-642 $) $ (-1173)) 53)) (-2525 (($ (-950 $)) NIL) (($ (-1169 $)) NIL) (($ (-1169 $) (-1173)) NIL) (($ $) 15) (($ $ (-1173)) 47)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -4098 ((-642 |#1|) |#1| (-1173))) (-15 -2946 (|#1| |#1| (-1173))) (-15 -4098 ((-642 |#1|) |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -3443 ((-642 |#1|) |#1| (-1173))) (-15 -2525 (|#1| |#1| (-1173))) (-15 -3443 ((-642 |#1|) |#1|)) (-15 -2525 (|#1| |#1|)) (-15 -4098 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -4098 ((-642 |#1|) (-1169 |#1|))) (-15 -4098 ((-642 |#1|) (-950 |#1|))) (-15 -2946 (|#1| (-1169 |#1|) (-1173))) (-15 -2946 (|#1| (-1169 |#1|))) (-15 -2946 (|#1| (-950 |#1|))) (-15 -3443 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -3443 ((-642 |#1|) (-1169 |#1|))) (-15 -3443 ((-642 |#1|) (-950 |#1|))) (-15 -2525 (|#1| (-1169 |#1|) (-1173))) (-15 -2525 (|#1| (-1169 |#1|))) (-15 -2525 (|#1| (-950 |#1|)))) (-29 |#2|) (-556)) (T -28))
+NIL
+(-10 -8 (-15 -4098 ((-642 |#1|) |#1| (-1173))) (-15 -2946 (|#1| |#1| (-1173))) (-15 -4098 ((-642 |#1|) |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -3443 ((-642 |#1|) |#1| (-1173))) (-15 -2525 (|#1| |#1| (-1173))) (-15 -3443 ((-642 |#1|) |#1|)) (-15 -2525 (|#1| |#1|)) (-15 -4098 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -4098 ((-642 |#1|) (-1169 |#1|))) (-15 -4098 ((-642 |#1|) (-950 |#1|))) (-15 -2946 (|#1| (-1169 |#1|) (-1173))) (-15 -2946 (|#1| (-1169 |#1|))) (-15 -2946 (|#1| (-950 |#1|))) (-15 -3443 ((-642 |#1|) (-1169 |#1|) (-1173))) (-15 -3443 ((-642 |#1|) (-1169 |#1|))) (-15 -3443 ((-642 |#1|) (-950 |#1|))) (-15 -2525 (|#1| (-1169 |#1|) (-1173))) (-15 -2525 (|#1| (-1169 |#1|))) (-15 -2525 (|#1| (-950 |#1|))))
+((-2907 (((-112) $ $) 7)) (-4098 (((-642 $) (-950 $)) 88) (((-642 $) (-1169 $)) 87) (((-642 $) (-1169 $) (-1173)) 86) (((-642 $) $) 134) (((-642 $) $ (-1173)) 132)) (-2946 (($ (-950 $)) 91) (($ (-1169 $)) 90) (($ (-1169 $) (-1173)) 89) (($ $) 135) (($ $ (-1173)) 133)) (-2952 (((-112) $) 17)) (-3802 (((-642 (-1173)) $) 203)) (-3615 (((-407 (-1169 $)) $ (-610 $)) 235 (|has| |#1| (-556)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-3530 (((-642 (-610 $)) $) 166)) (-1532 (((-3 $ "failed") $ $) 20)) (-2458 (($ $ (-642 (-610 $)) (-642 $)) 156) (($ $ (-642 (-294 $))) 155) (($ $ (-294 $)) 154)) (-4316 (($ $) 81)) (-1978 (((-418 $) $) 80)) (-3655 (($ $) 100)) (-4010 (((-112) $ $) 65)) (-1976 (($) 18 T CONST)) (-3443 (((-642 $) (-950 $)) 94) (((-642 $) (-1169 $)) 93) (((-642 $) (-1169 $) (-1173)) 92) (((-642 $) $) 138) (((-642 $) $ (-1173)) 136)) (-2525 (($ (-950 $)) 97) (($ (-1169 $)) 96) (($ (-1169 $) (-1173)) 95) (($ $) 139) (($ $ (-1173)) 137)) (-4278 (((-3 (-950 |#1|) "failed") $) 253 (|has| |#1| (-1047))) (((-3 (-407 (-950 |#1|)) "failed") $) 237 (|has| |#1| (-556))) (((-3 |#1| "failed") $) 199) (((-3 (-564) "failed") $) 196 (|has| |#1| (-1036 (-564)))) (((-3 (-1173) "failed") $) 190) (((-3 (-610 $) "failed") $) 141) (((-3 (-407 (-564)) "failed") $) 130 (-2706 (-12 (|has| |#1| (-1036 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1036 (-407 (-564))))))) (-3027 (((-950 |#1|) $) 252 (|has| |#1| (-1047))) (((-407 (-950 |#1|)) $) 236 (|has| |#1| (-556))) ((|#1| $) 198) (((-564) $) 197 (|has| |#1| (-1036 (-564)))) (((-1173) $) 189) (((-610 $) $) 140) (((-407 (-564)) $) 131 (-2706 (-12 (|has| |#1| (-1036 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1036 (-407 (-564))))))) (-2845 (($ $ $) 61)) (-4315 (((-687 |#1|) (-687 $)) 243 (|has| |#1| (-1047))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 242 (|has| |#1| (-1047))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 129 (-2706 (-2275 (|has| |#1| (-1047)) (|has| |#1| (-637 (-564)))) (-2275 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))) (((-687 (-564)) (-687 $)) 128 (-2706 (-2275 (|has| |#1| (-1047)) (|has| |#1| (-637 (-564)))) (-2275 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-1469 (((-112) $) 79)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 195 (|has| |#1| (-884 (-379)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 194 (|has| |#1| (-884 (-564))))) (-1301 (($ (-642 $)) 160) (($ $) 159)) (-3332 (((-642 (-114)) $) 167)) (-3307 (((-114) (-114)) 168)) (-3953 (((-112) $) 35)) (-3076 (((-112) $) 188 (|has| $ (-1036 (-564))))) (-3071 (($ $) 220 (|has| |#1| (-1047)))) (-2245 (((-1122 |#1| (-610 $)) $) 219 (|has| |#1| (-1047)))) (-1772 (($ $ (-564)) 99)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2666 (((-1169 $) (-610 $)) 185 (|has| $ (-1047)))) (-4358 (($ (-1 $ $) (-610 $)) 174)) (-2953 (((-3 (-610 $) "failed") $) 164)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3603 (((-642 (-610 $)) $) 165)) (-4305 (($ (-114) (-642 $)) 173) (($ (-114) $) 172)) (-1572 (((-3 (-642 $) "failed") $) 214 (|has| |#1| (-1109)))) (-4310 (((-3 (-2 (|:| |val| $) (|:| -2700 (-564))) "failed") $) 223 (|has| |#1| (-1047)))) (-1802 (((-3 (-642 $) "failed") $) 216 (|has| |#1| (-25)))) (-4216 (((-3 (-2 (|:| -4378 (-564)) (|:| |var| (-610 $))) "failed") $) 217 (|has| |#1| (-25)))) (-3611 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $ (-1173)) 222 (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $ (-114)) 221 (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $) 215 (|has| |#1| (-1109)))) (-1523 (((-112) $ (-1173)) 171) (((-112) $ (-114)) 170)) (-3911 (($ $) 78)) (-1295 (((-769) $) 163)) (-4033 (((-1117) $) 11)) (-3921 (((-112) $) 201)) (-3932 ((|#1| $) 202)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-2539 (((-112) $ (-1173)) 176) (((-112) $ $) 175)) (-3643 (((-418 $) $) 82)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2519 (((-112) $) 187 (|has| $ (-1036 (-564))))) (-3215 (($ $ (-1173) (-769) (-1 $ $)) 227 (|has| |#1| (-1047))) (($ $ (-1173) (-769) (-1 $ (-642 $))) 226 (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ (-642 $)))) 225 (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ $))) 224 (|has| |#1| (-1047))) (($ $ (-642 (-114)) (-642 $) (-1173)) 213 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1173)) 212 (|has| |#1| (-612 (-536)))) (($ $) 211 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-1173))) 210 (|has| |#1| (-612 (-536)))) (($ $ (-1173)) 209 (|has| |#1| (-612 (-536)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-642 $))) 183) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) 182) (($ $ (-642 (-114)) (-642 (-1 $ $))) 181) (($ $ (-1173) (-1 $ $)) 180) (($ $ (-1173) (-1 $ (-642 $))) 179) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) 178) (($ $ (-642 (-1173)) (-642 (-1 $ $))) 177) (($ $ (-642 $) (-642 $)) 148) (($ $ $ $) 147) (($ $ (-294 $)) 146) (($ $ (-642 (-294 $))) 145) (($ $ (-642 (-610 $)) (-642 $)) 144) (($ $ (-610 $) $) 143)) (-2048 (((-769) $) 64)) (-4368 (($ (-114) (-642 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-3238 (($ $ $) 162) (($ $) 161)) (-3175 (($ $ (-1173)) 251 (|has| |#1| (-1047))) (($ $ (-642 (-1173))) 250 (|has| |#1| (-1047))) (($ $ (-1173) (-769)) 249 (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) 248 (|has| |#1| (-1047)))) (-2618 (($ $) 230 (|has| |#1| (-556)))) (-2255 (((-1122 |#1| (-610 $)) $) 229 (|has| |#1| (-556)))) (-3280 (($ $) 186 (|has| $ (-1047)))) (-1314 (((-536) $) 257 (|has| |#1| (-612 (-536)))) (($ (-418 $)) 228 (|has| |#1| (-556))) (((-890 (-379)) $) 193 (|has| |#1| (-612 (-890 (-379))))) (((-890 (-564)) $) 192 (|has| |#1| (-612 (-890 (-564)))))) (-1389 (($ $ $) 256 (|has| |#1| (-473)))) (-3759 (($ $ $) 255 (|has| |#1| (-473)))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ (-950 |#1|)) 254 (|has| |#1| (-1047))) (($ (-407 (-950 |#1|))) 238 (|has| |#1| (-556))) (($ (-407 (-950 (-407 |#1|)))) 234 (|has| |#1| (-556))) (($ (-950 (-407 |#1|))) 233 (|has| |#1| (-556))) (($ (-407 |#1|)) 232 (|has| |#1| (-556))) (($ (-1122 |#1| (-610 $))) 218 (|has| |#1| (-1047))) (($ |#1|) 200) (($ (-1173)) 191) (($ (-610 $)) 142)) (-2439 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-2181 (($ (-642 $)) 158) (($ $) 157)) (-2357 (((-112) (-114)) 169)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2647 (($ (-1173) (-642 $)) 208) (($ (-1173) $ $ $ $) 207) (($ (-1173) $ $ $) 206) (($ (-1173) $ $) 205) (($ (-1173) $) 204)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-1173)) 247 (|has| |#1| (-1047))) (($ $ (-642 (-1173))) 246 (|has| |#1| (-1047))) (($ $ (-1173) (-769)) 245 (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) 244 (|has| |#1| (-1047)))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 73) (($ (-1122 |#1| (-610 $)) (-1122 |#1| (-610 $))) 231 (|has| |#1| (-556)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77) (($ $ (-407 (-564))) 98)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172)))))
(((-29 |#1|) (-140) (-556)) (T -29))
-((-2930 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556)))) (-3442 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-2930 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-556)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *2 (-641 *1)) (-4 *1 (-29 *4)))) (-4029 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556)))) (-4119 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-556)))) (-4119 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *2 (-641 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -2930 ($ $)) (-15 -3442 ((-641 $) $)) (-15 -2930 ($ $ (-1170))) (-15 -3442 ((-641 $) $ (-1170))) (-15 -4029 ($ $)) (-15 -4119 ((-641 $) $)) (-15 -4029 ($ $ (-1170))) (-15 -4119 ((-641 $) $ (-1170)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 #1=(-407 (-948 |#1|))) |has| |#1| (-556)) ((-614 (-564)) . T) ((-614 #2=(-610 $)) . T) ((-614 #3=(-948 |#1|)) |has| |#1| (-1045)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-888 (-379))) |has| |#1| (-612 (-888 (-379)))) ((-612 (-888 (-564))) |has| |#1| (-612 (-888 (-564)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) ((-637 |#1|) |has| |#1| (-1045)) ((-713 #0#) . T) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) . T) ((-722) . T) ((-896 (-1170)) |has| |#1| (-1045)) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-564)) |has| |#1| (-882 (-564))) ((-880 |#1|) . T) ((-916) . T) ((-998) . T) ((-1034 (-407 (-564))) -2807 (|has| |#1| (-1034 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))))) ((-1034 #1#) |has| |#1| (-556)) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 #2#) . T) ((-1034 #3#) |has| |#1| (-1045)) ((-1034 #4#) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T) ((-1213) . T))
-((-2690 (((-1088 (-225)) $) NIL)) (-2677 (((-1088 (-225)) $) NIL)) (-4128 (($ $ (-225)) 168)) (-1408 (($ (-948 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564)))) 103)) (-2294 (((-641 (-641 (-939 (-225)))) $) 184)) (-2423 (((-858) $) 198)))
-(((-30) (-13 (-951) (-10 -8 (-15 -1408 ($ (-948 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -4128 ($ $ (-225)))))) (T -30))
-((-1408 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-948 (-564))) (-5 *3 (-1170)) (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))))
-(-13 (-951) (-10 -8 (-15 -1408 ($ (-948 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -4128 ($ $ (-225)))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2575 (((-1129) $) 11)) (-1860 (((-112) $ $) NIL)) (-2648 (((-1129) $) 9)) (-2974 (((-112) $ $) NIL)))
-(((-31) (-13 (-1077) (-10 -8 (-15 -2648 ((-1129) $)) (-15 -2575 ((-1129) $))))) (T -31))
-((-2648 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))))
-(-13 (-1077) (-10 -8 (-15 -2648 ((-1129) $)) (-15 -2575 ((-1129) $))))
-((-2930 ((|#2| (-1166 |#2|) (-1170)) 46)) (-4232 (((-114) (-114)) 60)) (-1940 (((-1166 |#2|) (-610 |#2|)) 151 (|has| |#1| (-1034 (-564))))) (-3916 ((|#2| |#1| (-564)) 139 (|has| |#1| (-1034 (-564))))) (-2476 ((|#2| (-1166 |#2|) |#2|) 29)) (-2220 (((-858) (-641 |#2|)) 88)) (-3721 ((|#2| |#2|) 146 (|has| |#1| (-1034 (-564))))) (-3263 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-564))) 105 (|has| |#1| (-1034 (-564))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -2930 (|#2| (-1166 |#2|) (-1170))) (-15 -4232 ((-114) (-114))) (-15 -3263 ((-112) (-114))) (-15 -2476 (|#2| (-1166 |#2|) |#2|)) (-15 -2220 ((-858) (-641 |#2|))) (IF (|has| |#1| (-1034 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -1940 ((-1166 |#2|) (-610 |#2|))) (-15 -3721 (|#2| |#2|)) (-15 -3916 (|#2| |#1| (-564)))) |%noBranch|)) (-556) (-430 |#1|)) (T -32))
-((-3916 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1034 *4)) (-4 *3 (-556)))) (-3721 (*1 *2 *2) (-12 (-4 *3 (-1034 (-564))) (-4 *3 (-556)) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1034 (-564))) (-4 *4 (-556)) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1034 (-564))) (-4 *4 (-556)) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-556)) (-5 *2 (-858)) (-5 *1 (-32 *4 *5)))) (-2476 (*1 *2 *3 *2) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) (-5 *1 (-32 *4 *2)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-4232 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-2930 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-556)))))
-(-10 -7 (-15 -2930 (|#2| (-1166 |#2|) (-1170))) (-15 -4232 ((-114) (-114))) (-15 -3263 ((-112) (-114))) (-15 -2476 (|#2| (-1166 |#2|) |#2|)) (-15 -2220 ((-858) (-641 |#2|))) (IF (|has| |#1| (-1034 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -1940 ((-1166 |#2|) (-610 |#2|))) (-15 -3721 (|#2| |#2|)) (-15 -3916 (|#2| |#1| (-564)))) |%noBranch|))
-((-1876 (((-112) $ (-767)) 19)) (-4080 (($) 10)) (-3097 (((-112) $ (-767)) 18)) (-3619 (((-112) $ (-767)) 17)) (-3076 (((-112) $ $) 8)) (-1976 (((-112) $) 15)))
-(((-33 |#1|) (-10 -8 (-15 -4080 (|#1|)) (-15 -1876 ((-112) |#1| (-767))) (-15 -3097 ((-112) |#1| (-767))) (-15 -3619 ((-112) |#1| (-767))) (-15 -1976 ((-112) |#1|)) (-15 -3076 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -4080 (|#1|)) (-15 -1876 ((-112) |#1| (-767))) (-15 -3097 ((-112) |#1| (-767))) (-15 -3619 ((-112) |#1| (-767))) (-15 -1976 ((-112) |#1|)) (-15 -3076 ((-112) |#1| |#1|)))
-((-1876 (((-112) $ (-767)) 8)) (-4080 (($) 7 T CONST)) (-3097 (((-112) $ (-767)) 9)) (-3619 (((-112) $ (-767)) 10)) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-3926 (($ $) 13)) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
+((-2525 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556)))) (-3443 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *3)))) (-2525 (*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-4 *1 (-29 *3)) (-4 *3 (-556)))) (-3443 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *4)))) (-2946 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556)))) (-4098 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *3)))) (-2946 (*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-4 *1 (-29 *3)) (-4 *3 (-556)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -2525 ($ $)) (-15 -3443 ((-642 $) $)) (-15 -2525 ($ $ (-1173))) (-15 -3443 ((-642 $) $ (-1173))) (-15 -2946 ($ $)) (-15 -4098 ((-642 $) $)) (-15 -2946 ($ $ (-1173))) (-15 -4098 ((-642 $) $ (-1173)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 #1=(-407 (-950 |#1|))) |has| |#1| (-556)) ((-614 (-564)) . T) ((-614 #2=(-610 $)) . T) ((-614 #3=(-950 |#1|)) |has| |#1| (-1047)) ((-614 #4=(-1173)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-890 (-379))) |has| |#1| (-612 (-890 (-379)))) ((-612 (-890 (-564))) |has| |#1| (-612 (-890 (-564)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1047)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) . T) ((-646 #0#) . T) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) . T) ((-638 #0#) . T) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) . T) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) ((-637 |#1|) |has| |#1| (-1047)) ((-715 #0#) . T) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) . T) ((-724) . T) ((-898 (-1173)) |has| |#1| (-1047)) ((-884 (-379)) |has| |#1| (-884 (-379))) ((-884 (-564)) |has| |#1| (-884 (-564))) ((-882 |#1|) . T) ((-918) . T) ((-1000) . T) ((-1036 (-407 (-564))) -2706 (|has| |#1| (-1036 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))))) ((-1036 #1#) |has| |#1| (-556)) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 #2#) . T) ((-1036 #3#) |has| |#1| (-1047)) ((-1036 #4#) . T) ((-1036 |#1|) . T) ((-1049 #0#) . T) ((-1049 |#1|) |has| |#1| (-172)) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 |#1|) |has| |#1| (-172)) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1212) . T) ((-1216) . T))
+((-2589 (((-1091 (-225)) $) NIL)) (-2576 (((-1091 (-225)) $) NIL)) (-1296 (($ $ (-225)) 168)) (-2427 (($ (-950 (-564)) (-1173) (-1173) (-1091 (-407 (-564))) (-1091 (-407 (-564)))) 103)) (-2550 (((-642 (-642 (-941 (-225)))) $) 184)) (-2327 (((-860) $) 198)))
+(((-30) (-13 (-953) (-10 -8 (-15 -2427 ($ (-950 (-564)) (-1173) (-1173) (-1091 (-407 (-564))) (-1091 (-407 (-564))))) (-15 -1296 ($ $ (-225)))))) (T -30))
+((-2427 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-950 (-564))) (-5 *3 (-1173)) (-5 *4 (-1091 (-407 (-564)))) (-5 *1 (-30)))) (-1296 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))))
+(-13 (-953) (-10 -8 (-15 -2427 ($ (-950 (-564)) (-1173) (-1173) (-1091 (-407 (-564))) (-1091 (-407 (-564))))) (-15 -1296 ($ $ (-225)))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2474 (((-1132) $) 11)) (-1648 (((-112) $ $) NIL)) (-2547 (((-1132) $) 9)) (-2872 (((-112) $ $) NIL)))
+(((-31) (-13 (-1080) (-10 -8 (-15 -2547 ((-1132) $)) (-15 -2474 ((-1132) $))))) (T -31))
+((-2547 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-31)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-31)))))
+(-13 (-1080) (-10 -8 (-15 -2547 ((-1132) $)) (-15 -2474 ((-1132) $))))
+((-2525 ((|#2| (-1169 |#2|) (-1173)) 46)) (-3307 (((-114) (-114)) 60)) (-2666 (((-1169 |#2|) (-610 |#2|)) 151 (|has| |#1| (-1036 (-564))))) (-2915 ((|#2| |#1| (-564)) 139 (|has| |#1| (-1036 (-564))))) (-3180 ((|#2| (-1169 |#2|) |#2|) 29)) (-3943 (((-860) (-642 |#2|)) 88)) (-3280 ((|#2| |#2|) 146 (|has| |#1| (-1036 (-564))))) (-2357 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-564))) 105 (|has| |#1| (-1036 (-564))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -2525 (|#2| (-1169 |#2|) (-1173))) (-15 -3307 ((-114) (-114))) (-15 -2357 ((-112) (-114))) (-15 -3180 (|#2| (-1169 |#2|) |#2|)) (-15 -3943 ((-860) (-642 |#2|))) (IF (|has| |#1| (-1036 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -2666 ((-1169 |#2|) (-610 |#2|))) (-15 -3280 (|#2| |#2|)) (-15 -2915 (|#2| |#1| (-564)))) |%noBranch|)) (-556) (-430 |#1|)) (T -32))
+((-2915 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1036 *4)) (-4 *3 (-556)))) (-3280 (*1 *2 *2) (-12 (-4 *3 (-1036 (-564))) (-4 *3 (-556)) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1036 (-564))) (-4 *4 (-556)) (-5 *2 (-1169 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1036 (-564))) (-4 *4 (-556)) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-642 *5)) (-4 *5 (-430 *4)) (-4 *4 (-556)) (-5 *2 (-860)) (-5 *1 (-32 *4 *5)))) (-3180 (*1 *2 *3 *2) (-12 (-5 *3 (-1169 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) (-5 *1 (-32 *4 *2)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-3307 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *2)) (-5 *4 (-1173)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-556)))))
+(-10 -7 (-15 -2525 (|#2| (-1169 |#2|) (-1173))) (-15 -3307 ((-114) (-114))) (-15 -2357 ((-112) (-114))) (-15 -3180 (|#2| (-1169 |#2|) |#2|)) (-15 -3943 ((-860) (-642 |#2|))) (IF (|has| |#1| (-1036 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -2666 ((-1169 |#2|) (-610 |#2|))) (-15 -3280 (|#2| |#2|)) (-15 -2915 (|#2| |#1| (-564)))) |%noBranch|))
+((-3697 (((-112) $ (-769)) 19)) (-1976 (($) 10)) (-3462 (((-112) $ (-769)) 18)) (-3576 (((-112) $ (-769)) 17)) (-4245 (((-112) $ $) 8)) (-3719 (((-112) $) 15)))
+(((-33 |#1|) (-10 -8 (-15 -1976 (|#1|)) (-15 -3697 ((-112) |#1| (-769))) (-15 -3462 ((-112) |#1| (-769))) (-15 -3576 ((-112) |#1| (-769))) (-15 -3719 ((-112) |#1|)) (-15 -4245 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -1976 (|#1|)) (-15 -3697 ((-112) |#1| (-769))) (-15 -3462 ((-112) |#1| (-769))) (-15 -3576 ((-112) |#1| (-769))) (-15 -3719 ((-112) |#1|)) (-15 -4245 ((-112) |#1| |#1|)))
+((-3697 (((-112) $ (-769)) 8)) (-1976 (($) 7 T CONST)) (-3462 (((-112) $ (-769)) 9)) (-3576 (((-112) $ (-769)) 10)) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-3901 (($ $) 13)) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
(((-34) (-140)) (T -34))
-((-3076 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3926 (*1 *1 *1) (-4 *1 (-34))) (-2994 (*1 *1) (-4 *1 (-34))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3619 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-3097 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-1876 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-4080 (*1 *1) (-4 *1 (-34))) (-2181 (*1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-34)) (-5 *2 (-767)))))
-(-13 (-1209) (-10 -8 (-15 -3076 ((-112) $ $)) (-15 -3926 ($ $)) (-15 -2994 ($)) (-15 -1976 ((-112) $)) (-15 -3619 ((-112) $ (-767))) (-15 -3097 ((-112) $ (-767))) (-15 -1876 ((-112) $ (-767))) (-15 -4080 ($) -2959) (IF (|has| $ (-6 -4407)) (-15 -2181 ((-767) $)) |%noBranch|)))
-(((-1209) . T))
-((-3949 (($ $) 11)) (-3925 (($ $) 10)) (-3972 (($ $) 9)) (-2784 (($ $) 8)) (-3960 (($ $) 7)) (-3937 (($ $) 6)))
+((-4245 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3901 (*1 *1 *1) (-4 *1 (-34))) (-2972 (*1 *1) (-4 *1 (-34))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3576 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112)))) (-3462 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112)))) (-3697 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112)))) (-1976 (*1 *1) (-4 *1 (-34))) (-2127 (*1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-34)) (-5 *2 (-769)))))
+(-13 (-1212) (-10 -8 (-15 -4245 ((-112) $ $)) (-15 -3901 ($ $)) (-15 -2972 ($)) (-15 -3719 ((-112) $)) (-15 -3576 ((-112) $ (-769))) (-15 -3462 ((-112) $ (-769))) (-15 -3697 ((-112) $ (-769))) (-15 -1976 ($) -2858) (IF (|has| $ (-6 -4410)) (-15 -2127 ((-769) $)) |%noBranch|)))
+(((-1212) . T))
+((-3926 (($ $) 11)) (-3900 (($ $) 10)) (-3951 (($ $) 9)) (-2683 (($ $) 8)) (-3938 (($ $) 7)) (-3913 (($ $) 6)))
(((-35) (-140)) (T -35))
-((-3949 (*1 *1 *1) (-4 *1 (-35))) (-3925 (*1 *1 *1) (-4 *1 (-35))) (-3972 (*1 *1 *1) (-4 *1 (-35))) (-2784 (*1 *1 *1) (-4 *1 (-35))) (-3960 (*1 *1 *1) (-4 *1 (-35))) (-3937 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3937 ($ $)) (-15 -3960 ($ $)) (-15 -2784 ($ $)) (-15 -3972 ($ $)) (-15 -3925 ($ $)) (-15 -3949 ($ $))))
-((-3009 (((-112) $ $) 19 (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-2128 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 126)) (-1783 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 149)) (-1403 (($ $) 147)) (-4231 (($) 73) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 72)) (-3236 (((-1264) $ |#1| |#1|) 100 (|has| $ (-6 -4408))) (((-1264) $ (-564) (-564)) 179 (|has| $ (-6 -4408)))) (-3611 (($ $ (-564)) 160 (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-3963 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 201 (|has| $ (-6 -4408))) (($ $) 200 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)) (|has| $ (-6 -4408))))) (-2484 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-1876 (((-112) $ (-767)) 8)) (-2925 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 135 (|has| $ (-6 -4408)))) (-1886 (($ $ $) 156 (|has| $ (-6 -4408)))) (-1776 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 158 (|has| $ (-6 -4408)))) (-4265 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 154 (|has| $ (-6 -4408)))) (-3904 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 190 (|has| $ (-6 -4408))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-1226 (-564)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 161 (|has| $ (-6 -4408))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "last" (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 159 (|has| $ (-6 -4408))) (($ $ "rest" $) 157 (|has| $ (-6 -4408))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "first" (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 155 (|has| $ (-6 -4408))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "value" (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 134 (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 133 (|has| $ (-6 -4408)))) (-1466 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 46 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 217)) (-1667 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 56 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 176 (|has| $ (-6 -4407)))) (-1772 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 148)) (-2327 (((-3 |#2| "failed") |#1| $) 62)) (-4080 (($) 7 T CONST)) (-2563 (($ $) 202 (|has| $ (-6 -4408)))) (-3200 (($ $) 212)) (-2671 (($ $ (-767)) 143) (($ $) 141)) (-2679 (($ $) 215 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-2696 (($ $) 59 (-2807 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407))) (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))))) (-1945 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 48 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 47 (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 221) (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 216 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-2591 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 55 (|has| $ (-6 -4407))) (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 178 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 175 (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 57 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 54 (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 53 (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 177 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 174 (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 173 (|has| $ (-6 -4407)))) (-2726 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4408))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 191 (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) 89) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564)) 189)) (-2643 (((-112) $) 193)) (-3998 (((-564) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 209) (((-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 208 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))) (((-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564)) 207 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-3035 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 31 (|has| $ (-6 -4407))) (((-641 |#2|) $) 80 (|has| $ (-6 -4407))) (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 115 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) 124)) (-1675 (((-112) $ $) 132 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-4238 (($ (-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 170)) (-3097 (((-112) $ (-767)) 9)) (-1956 ((|#1| $) 97 (|has| |#1| (-846))) (((-564) $) 181 (|has| (-564) (-846)))) (-2855 (($ $ $) 199 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-2087 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-3669 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-1554 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 30 (|has| $ (-6 -4407))) (((-641 |#2|) $) 81 (|has| $ (-6 -4407))) (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 116 (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4407)))) (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407))))) (-2898 ((|#1| $) 96 (|has| |#1| (-846))) (((-564) $) 182 (|has| (-564) (-846)))) (-1497 (($ $ $) 198 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 35 (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4408))) (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 111 (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 110)) (-2522 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 226)) (-3619 (((-112) $ (-767)) 10)) (-2730 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 129)) (-1841 (((-112) $) 125)) (-2766 (((-1152) $) 22 (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-2615 (($ $ (-767)) 146) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 144)) (-3454 (((-641 |#1|) $) 64)) (-3565 (((-112) |#1| $) 65)) (-3149 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 40)) (-2566 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 41) (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564)) 220) (($ $ $ (-564)) 219)) (-4248 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564)) 163) (($ $ $ (-564)) 162)) (-3050 (((-641 |#1|) $) 94) (((-641 (-564)) $) 184)) (-1563 (((-112) |#1| $) 93) (((-112) (-564) $) 185)) (-4052 (((-1114) $) 21 (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-2658 ((|#2| $) 98 (|has| |#1| (-846))) (($ $ (-767)) 140) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 138)) (-2139 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 52) (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 172)) (-1592 (($ $ |#2|) 99 (|has| $ (-6 -4408))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 180 (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 42)) (-1555 (((-112) $) 192)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 33 (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 113 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) 27 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 26 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 25 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 24 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 122 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 121 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 120 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) 119 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 183 (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-2075 (((-641 |#2|) $) 92) (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 186)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 188) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564)) 187) (($ $ (-1226 (-564))) 166) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "first") 139) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "value") 127)) (-3277 (((-564) $ $) 130)) (-3853 (($) 50) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 49)) (-2251 (($ $ (-564)) 223) (($ $ (-1226 (-564))) 222)) (-2114 (($ $ (-564)) 165) (($ $ (-1226 (-564))) 164)) (-3206 (((-112) $) 128)) (-3068 (($ $) 152)) (-2602 (($ $) 153 (|has| $ (-6 -4408)))) (-3004 (((-767) $) 151)) (-1977 (($ $) 150)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 32 (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (((-767) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 114 (|has| $ (-6 -4407)))) (-3806 (($ $ $ (-564)) 203 (|has| $ (-6 -4408)))) (-3926 (($ $) 13)) (-1311 (((-536) $) 60 (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536)))))) (-2435 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 51) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 171)) (-3634 (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 225) (($ $ $) 224)) (-3696 (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 169) (($ (-641 $)) 168) (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 137) (($ $ $) 136)) (-2423 (((-858) $) 18 (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858)))))) (-3154 (((-641 $) $) 123)) (-4059 (((-112) $ $) 131 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-1860 (((-112) $ $) 23 (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 43)) (-2628 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") |#1| $) 109)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 34 (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 112 (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) 196 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-3011 (((-112) $ $) 195 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-2974 (((-112) $ $) 20 (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-3023 (((-112) $ $) 197 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-2999 (((-112) $ $) 194 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-36 |#1| |#2|) (-140) (-1094) (-1094)) (T -36))
-((-2628 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| -1901 *3) (|:| -3813 *4))))))
-(-13 (-1185 |t#1| |t#2|) (-662 (-2 (|:| -1901 |t#1|) (|:| -3813 |t#2|))) (-10 -8 (-15 -2628 ((-3 (-2 (|:| -1901 |t#1|) (|:| -3813 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T) ((-102) -2807 (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846))) ((-611 (-858)) -2807 (|has| |#2| (-1094)) (|has| |#2| (-611 (-858))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858)))) ((-151 #1=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T) ((-612 (-536)) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-564) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-602 #2# #1#) . T) ((-602 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-647 #1#) . T) ((-662 #1#) . T) ((-846) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)) ((-1006 #1#) . T) ((-1094) -2807 (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846))) ((-1143 #1#) . T) ((-1185 |#1| |#2|) . T) ((-1209) . T) ((-1247 #1#) . T))
-((-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -2423 (|#1| |#2|)) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|))) (-38 |#2|) (-172)) (T -37))
-NIL
-(-10 -8 (-15 -2423 (|#1| |#2|)) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 39)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 41) (($ |#1| $) 40)))
+((-3926 (*1 *1 *1) (-4 *1 (-35))) (-3900 (*1 *1 *1) (-4 *1 (-35))) (-3951 (*1 *1 *1) (-4 *1 (-35))) (-2683 (*1 *1 *1) (-4 *1 (-35))) (-3938 (*1 *1 *1) (-4 *1 (-35))) (-3913 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -3913 ($ $)) (-15 -3938 ($ $)) (-15 -2683 ($ $)) (-15 -3951 ($ $)) (-15 -3900 ($ $)) (-15 -3926 ($ $))))
+((-2907 (((-112) $ $) 19 (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2085 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 126)) (-1807 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 149)) (-1416 (($ $) 147)) (-4218 (($) 73) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 72)) (-1765 (((-1267) $ |#1| |#1|) 100 (|has| $ (-6 -4411))) (((-1267) $ (-564) (-564)) 179 (|has| $ (-6 -4411)))) (-3256 (($ $ (-564)) 160 (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2239 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 201 (|has| $ (-6 -4411))) (($ $) 200 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)) (|has| $ (-6 -4411))))) (-2383 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-3697 (((-112) $ (-769)) 8)) (-3070 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 135 (|has| $ (-6 -4411)))) (-1505 (($ $ $) 156 (|has| $ (-6 -4411)))) (-2153 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 158 (|has| $ (-6 -4411)))) (-4059 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 154 (|has| $ (-6 -4411)))) (-3877 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 190 (|has| $ (-6 -4411))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-1229 (-564)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 161 (|has| $ (-6 -4411))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "last" (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 159 (|has| $ (-6 -4411))) (($ $ "rest" $) 157 (|has| $ (-6 -4411))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "first" (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 155 (|has| $ (-6 -4411))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "value" (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 134 (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 133 (|has| $ (-6 -4411)))) (-2462 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 46 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 217)) (-1700 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 56 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 176 (|has| $ (-6 -4410)))) (-1799 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 148)) (-2248 (((-3 |#2| "failed") |#1| $) 62)) (-1976 (($) 7 T CONST)) (-2087 (($ $) 202 (|has| $ (-6 -4411)))) (-3115 (($ $) 212)) (-2570 (($ $ (-769)) 143) (($ $) 141)) (-1938 (($ $) 215 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-2595 (($ $) 59 (-2706 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410))) (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))))) (-2265 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 47 (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 221) (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 216 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-2490 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 55 (|has| $ (-6 -4410))) (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 178 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 175 (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 57 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 54 (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 53 (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 177 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 174 (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 173 (|has| $ (-6 -4410)))) (-2625 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4411))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 191 (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) 89) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564)) 189)) (-3297 (((-112) $) 193)) (-3979 (((-564) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 209) (((-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 208 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))) (((-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564)) 207 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-2936 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 31 (|has| $ (-6 -4410))) (((-642 |#2|) $) 80 (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 115 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) 124)) (-1847 (((-112) $ $) 132 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-4227 (($ (-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 170)) (-3462 (((-112) $ (-769)) 9)) (-2040 ((|#1| $) 97 (|has| |#1| (-848))) (((-564) $) 181 (|has| (-564) (-848)))) (-2755 (($ $ $) 199 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-3427 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2740 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-3234 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 30 (|has| $ (-6 -4410))) (((-642 |#2|) $) 81 (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 116 (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410)))) (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410))))) (-3421 ((|#1| $) 96 (|has| |#1| (-848))) (((-564) $) 182 (|has| (-564) (-848)))) (-1520 (($ $ $) 198 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 35 (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4411))) (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 111 (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 110)) (-2421 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 226)) (-3576 (((-112) $ (-769)) 10)) (-2628 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 129)) (-2376 (((-112) $) 125)) (-3315 (((-1155) $) 22 (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2514 (($ $ (-769)) 146) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 144)) (-3393 (((-642 |#1|) $) 64)) (-2835 (((-112) |#1| $) 65)) (-2730 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 40)) (-3183 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 41) (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564)) 220) (($ $ $ (-564)) 219)) (-4238 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564)) 163) (($ $ $ (-564)) 162)) (-3997 (((-642 |#1|) $) 94) (((-642 (-564)) $) 184)) (-4145 (((-112) |#1| $) 93) (((-112) (-564) $) 185)) (-4033 (((-1117) $) 21 (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2557 ((|#2| $) 98 (|has| |#1| (-848))) (($ $ (-769)) 140) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 138)) (-3254 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 52) (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 172)) (-2696 (($ $ |#2|) 99 (|has| $ (-6 -4411))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 180 (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 42)) (-2531 (((-112) $) 192)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 33 (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 113 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) 27 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 26 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 25 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 24 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 122 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 121 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 120 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) 119 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 183 (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2724 (((-642 |#2|) $) 92) (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 186)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 188) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564)) 187) (($ $ (-1229 (-564))) 166) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "first") 139) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "value") 127)) (-2137 (((-564) $ $) 130)) (-2593 (($) 50) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 49)) (-3184 (($ $ (-564)) 223) (($ $ (-1229 (-564))) 222)) (-2073 (($ $ (-564)) 165) (($ $ (-1229 (-564))) 164)) (-1392 (((-112) $) 128)) (-1444 (($ $) 152)) (-2960 (($ $) 153 (|has| $ (-6 -4411)))) (-3399 (((-769) $) 151)) (-3848 (($ $) 150)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 32 (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-769) |#2| $) 82 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 114 (|has| $ (-6 -4410)))) (-2568 (($ $ $ (-564)) 203 (|has| $ (-6 -4411)))) (-3901 (($ $) 13)) (-1314 (((-536) $) 60 (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536)))))) (-2337 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 51) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 171)) (-2582 (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 225) (($ $ $) 224)) (-3651 (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 169) (($ (-642 $)) 168) (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 137) (($ $ $) 136)) (-2327 (((-860) $) 18 (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860)))))) (-1512 (((-642 $) $) 123)) (-3820 (((-112) $ $) 131 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-1648 (((-112) $ $) 23 (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 43)) (-2527 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") |#1| $) 109)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 34 (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 112 (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) 196 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2908 (((-112) $ $) 195 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2872 (((-112) $ $) 20 (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2922 (((-112) $ $) 197 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2897 (((-112) $ $) 194 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-36 |#1| |#2|) (-140) (-1097) (-1097)) (T -36))
+((-2527 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-5 *2 (-2 (|:| -1907 *3) (|:| -3778 *4))))))
+(-13 (-1188 |t#1| |t#2|) (-664 (-2 (|:| -1907 |t#1|) (|:| -3778 |t#2|))) (-10 -8 (-15 -2527 ((-3 (-2 (|:| -1907 |t#1|) (|:| -3778 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T) ((-102) -2706 (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848))) ((-611 (-860)) -2706 (|has| |#2| (-1097)) (|has| |#2| (-611 (-860))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860)))) ((-151 #1=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T) ((-612 (-536)) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-564) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-602 #2# #1#) . T) ((-602 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-608 |#1| |#2|) . T) ((-649 #1#) . T) ((-664 #1#) . T) ((-848) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)) ((-1008 #1#) . T) ((-1097) -2706 (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848))) ((-1146 #1#) . T) ((-1188 |#1| |#2|) . T) ((-1212) . T) ((-1250 #1#) . T))
+((-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -2327 (|#1| |#2|)) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|))) (-38 |#2|) (-172)) (T -37))
+NIL
+(-10 -8 (-15 -2327 (|#1| |#2|)) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-38 |#1|) (-140) (-172)) (T -38))
NIL
-(-13 (-1045) (-713 |t#1|) (-614 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-1335 (((-418 |#1|) |#1|) 41)) (-3688 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-641 (-48))) 33)) (-2386 (((-112) |#1|) 59)))
-(((-39 |#1|) (-10 -7 (-15 -3688 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -1335 ((-418 |#1|) |#1|)) (-15 -2386 ((-112) |#1|))) (-1235 (-48))) (T -39))
-((-2386 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-1335 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))))
-(-10 -7 (-15 -3688 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -1335 ((-418 |#1|) |#1|)) (-15 -2386 ((-112) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2729 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-3063 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3330 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2270 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-3847 (((-407 |#2|) $) NIL)) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2753 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3162 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2622 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-2703 (((-112)) NIL)) (-2408 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| (-407 |#2|) (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-3474 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 61) (($ (-1259 |#2|) |#2|) 135)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-2946 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4057 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-3424 (((-1259 $) (-1259 $)) NIL)) (-1316 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3293 (((-3 $ "failed") $) NIL)) (-1932 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-2549 (((-112) |#1| |#1|) NIL)) (-2514 (((-917)) NIL)) (-2534 (($) NIL (|has| (-407 |#2|) (-368)))) (-2872 (((-112)) NIL)) (-3988 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2960 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-2571 (($ $) NIL)) (-1471 (($) NIL (|has| (-407 |#2|) (-349)))) (-1436 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-3456 (($ $ (-767)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-1339 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3744 (((-917) $) NIL (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) NIL (|has| (-407 |#2|) (-349)))) (-4112 (((-112) $) NIL)) (-1975 (((-767)) NIL)) (-2101 (((-1259 $) (-1259 $)) 111)) (-2499 (((-407 |#2|) $) NIL)) (-1508 (((-641 (-948 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-1846 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3514 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-3256 (((-917) $) NIL (|has| (-407 |#2|) (-368)))) (-1305 ((|#3| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2766 (((-1152) $) NIL)) (-1322 (((-1264) (-767)) 88)) (-1878 (((-685 (-407 |#2|))) 56)) (-4148 (((-685 (-407 |#2|))) 49)) (-3936 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3131 (($ (-1259 |#2|) |#2|) 136)) (-3029 (((-685 (-407 |#2|))) 50)) (-2334 (((-685 (-407 |#2|))) 48)) (-2798 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 134)) (-3851 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 68)) (-2002 (((-1259 $)) 47)) (-2457 (((-1259 $)) 46)) (-1646 (((-112) $) NIL)) (-2179 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3431 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-2083 (($ (-917)) NIL (|has| (-407 |#2|) (-368)))) (-1410 (((-3 |#2| "failed")) NIL)) (-4052 (((-1114) $) NIL)) (-3827 (((-767)) NIL)) (-2249 (($) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-2123 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-3688 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2998 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1700 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-4366 ((|#1| $ |#1| |#1|) NIL)) (-2542 (((-3 |#2| "failed")) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1330 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 44)) (-4255 (((-767) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-3254 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 130) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-767)) NIL (-2807 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2807 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1942 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3721 ((|#3|) 55)) (-3826 (($) NIL (|has| (-407 |#2|) (-349)))) (-4225 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 62) (((-685 (-407 |#2|)) (-1259 $)) 112)) (-1311 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-2073 (((-1259 $) (-1259 $)) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-2807 (|has| (-407 |#2|) (-1034 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2420 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-2134 ((|#3| $) NIL)) (-3719 (((-767)) NIL T CONST)) (-3724 (((-112)) 42)) (-2399 (((-112) |#1|) 54) (((-112) |#2|) 142)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) 102)) (-2119 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1399 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3790 (((-112)) NIL)) (-2403 (($) 17 T CONST)) (-2417 (($) 27 T CONST)) (-4063 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-767)) NIL (-2807 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2807 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -1322 ((-1264) (-767))))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) |#3|) (T -40))
-((-1322 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6))))
-(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -1322 ((-1264) (-767)))))
-((-2678 ((|#2| |#2|) 47)) (-2487 ((|#2| |#2|) 143 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1034 (-564)))))) (-2979 ((|#2| |#2|) 100 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1034 (-564)))))) (-1531 ((|#2| |#2|) 101 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1034 (-564)))))) (-1418 ((|#2| (-114) |#2| (-767)) 139 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1034 (-564)))))) (-3230 (((-1166 |#2|) |#2|) 44)) (-3580 ((|#2| |#2| (-641 (-610 |#2|))) 18) ((|#2| |#2| (-641 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -2678 (|#2| |#2|)) (-15 -3580 (|#2| |#2|)) (-15 -3580 (|#2| |#2| |#2|)) (-15 -3580 (|#2| |#2| (-641 |#2|))) (-15 -3580 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -3230 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -1531 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -1418 (|#2| (-114) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|)) (-556) (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 |#1| (-610 $)) $)) (-15 -2336 ((-1119 |#1| (-610 $)) $)) (-15 -2423 ($ (-1119 |#1| (-610 $))))))) (T -41))
-((-1418 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-1034 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 *5 (-610 $)) $)) (-15 -2336 ((-1119 *5 (-610 $)) $)) (-15 -2423 ($ (-1119 *5 (-610 $))))))))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-1034 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $)) (-15 -2336 ((-1119 *3 (-610 $)) $)) (-15 -2423 ($ (-1119 *3 (-610 $))))))))) (-2979 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-1034 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $)) (-15 -2336 ((-1119 *3 (-610 $)) $)) (-15 -2423 ($ (-1119 *3 (-610 $))))))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-1034 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $)) (-15 -2336 ((-1119 *3 (-610 $)) $)) (-15 -2423 ($ (-1119 *3 (-610 $))))))))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 *4 (-610 $)) $)) (-15 -2336 ((-1119 *4 (-610 $)) $)) (-15 -2423 ($ (-1119 *4 (-610 $))))))))) (-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-610 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 *4 (-610 $)) $)) (-15 -2336 ((-1119 *4 (-610 $)) $)) (-15 -2423 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 *4 (-610 $)) $)) (-15 -2336 ((-1119 *4 (-610 $)) $)) (-15 -2423 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-3580 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $)) (-15 -2336 ((-1119 *3 (-610 $)) $)) (-15 -2423 ($ (-1119 *3 (-610 $))))))))) (-3580 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $)) (-15 -2336 ((-1119 *3 (-610 $)) $)) (-15 -2423 ($ (-1119 *3 (-610 $))))))))) (-2678 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $)) (-15 -2336 ((-1119 *3 (-610 $)) $)) (-15 -2423 ($ (-1119 *3 (-610 $))))))))))
-(-10 -7 (-15 -2678 (|#2| |#2|)) (-15 -3580 (|#2| |#2|)) (-15 -3580 (|#2| |#2| |#2|)) (-15 -3580 (|#2| |#2| (-641 |#2|))) (-15 -3580 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -3230 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -1531 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -1418 (|#2| (-114) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|))
-((-3688 (((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))) 23) (((-418 |#3|) |#3| (-641 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3688 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -3688 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))))) (-846) (-789) (-945 (-48) |#2| |#1|)) (T -42))
-((-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *7 (-945 (-48) *6 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-945 (-48) *6 *5)))))
-(-10 -7 (-15 -3688 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -3688 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48)))))
-((-2379 (((-767) |#2|) 72)) (-2989 (((-767) |#2|) 76)) (-4030 (((-641 |#2|)) 39)) (-3647 (((-767) |#2|) 75)) (-1969 (((-767) |#2|) 71)) (-3161 (((-767) |#2|) 74)) (-3793 (((-641 (-685 |#1|))) 67)) (-2103 (((-641 |#2|)) 62)) (-2991 (((-641 |#2|) |#2|) 50)) (-3297 (((-641 |#2|)) 64)) (-1902 (((-641 |#2|)) 63)) (-1877 (((-641 (-685 |#1|))) 55)) (-3450 (((-641 |#2|)) 61)) (-3003 (((-641 |#2|) |#2|) 49)) (-1385 (((-641 |#2|)) 57)) (-4245 (((-641 (-685 |#1|))) 68)) (-3123 (((-641 |#2|)) 66)) (-2047 (((-1259 |#2|) (-1259 |#2|)) 101 (|has| |#1| (-307)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -3647 ((-767) |#2|)) (-15 -2989 ((-767) |#2|)) (-15 -1969 ((-767) |#2|)) (-15 -2379 ((-767) |#2|)) (-15 -3161 ((-767) |#2|)) (-15 -1385 ((-641 |#2|))) (-15 -3003 ((-641 |#2|) |#2|)) (-15 -2991 ((-641 |#2|) |#2|)) (-15 -3450 ((-641 |#2|))) (-15 -2103 ((-641 |#2|))) (-15 -1902 ((-641 |#2|))) (-15 -3297 ((-641 |#2|))) (-15 -3123 ((-641 |#2|))) (-15 -1877 ((-641 (-685 |#1|)))) (-15 -3793 ((-641 (-685 |#1|)))) (-15 -4245 ((-641 (-685 |#1|)))) (-15 -4030 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -2047 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|)) (-556) (-417 |#1|)) (T -43))
-((-2047 (*1 *2 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) (-4030 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-4245 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3793 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1877 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3123 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3297 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1902 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2103 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3450 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2991 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3003 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1385 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3161 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2379 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2989 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
-(-10 -7 (-15 -3647 ((-767) |#2|)) (-15 -2989 ((-767) |#2|)) (-15 -1969 ((-767) |#2|)) (-15 -2379 ((-767) |#2|)) (-15 -3161 ((-767) |#2|)) (-15 -1385 ((-641 |#2|))) (-15 -3003 ((-641 |#2|) |#2|)) (-15 -2991 ((-641 |#2|) |#2|)) (-15 -3450 ((-641 |#2|))) (-15 -2103 ((-641 |#2|))) (-15 -1902 ((-641 |#2|))) (-15 -3297 ((-641 |#2|))) (-15 -3123 ((-641 |#2|))) (-15 -1877 ((-641 (-685 |#1|)))) (-15 -3793 ((-641 (-685 |#1|)))) (-15 -4245 ((-641 (-685 |#1|)))) (-15 -4030 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -2047 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2885 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-1259 (-685 |#1|)) (-1259 $)) NIL) (((-1259 (-685 |#1|))) 24)) (-1336 (((-1259 $)) 55)) (-4080 (($) NIL T CONST)) (-1441 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-3436 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-1955 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-1774 ((|#1| $) NIL)) (-1765 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-4015 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-4317 (((-1166 (-948 |#1|))) NIL (|has| |#1| (-363)))) (-3232 (($ $ (-917)) NIL)) (-2335 ((|#1| $) NIL)) (-2140 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-3216 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-2280 (((-1166 |#1|) $) NIL)) (-1804 (((-112)) 102)) (-3474 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-3293 (((-3 $ "failed") $) 14 (|has| |#1| (-556)))) (-2514 (((-917)) 56)) (-3117 (((-112)) NIL)) (-3532 (($ $ (-917)) NIL)) (-3502 (((-112)) NIL)) (-1506 (((-112)) NIL)) (-1873 (((-112)) 104)) (-2330 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-4005 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3803 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-2415 ((|#1| $) NIL)) (-2069 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-2378 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-3189 (((-1166 (-948 |#1|))) NIL (|has| |#1| (-363)))) (-2105 (($ $ (-917)) NIL)) (-3188 ((|#1| $) NIL)) (-2739 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-1960 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-4254 (((-1166 |#1|) $) NIL)) (-3172 (((-112)) 101)) (-2766 (((-1152) $) NIL)) (-4312 (((-112)) 109)) (-2654 (((-112)) 108)) (-3642 (((-112)) 110)) (-4052 (((-1114) $) NIL)) (-3353 (((-112)) 103)) (-4366 ((|#1| $ (-564)) 58)) (-4225 (((-1259 |#1|) $ (-1259 $)) 53) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 28) (((-685 |#1|) (-1259 $)) NIL)) (-1311 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL)) (-3620 (((-641 (-948 |#1|)) (-1259 $)) NIL) (((-641 (-948 |#1|))) NIL)) (-1542 (($ $ $) NIL)) (-2151 (((-112)) 98)) (-2423 (((-858) $) 75) (($ (-1259 |#1|)) 22)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) 49)) (-2363 (((-641 (-1259 |#1|))) NIL (|has| |#1| (-556)))) (-3099 (($ $ $ $) NIL)) (-2846 (((-112)) 94)) (-2598 (($ (-685 |#1|) $) 18)) (-3163 (($ $ $) NIL)) (-2620 (((-112)) 100)) (-2896 (((-112)) 95)) (-4103 (((-112)) 93)) (-2403 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1136 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -2423 ($ (-1259 |#1|))))) (-363) (-917) (-641 (-1170)) (-1259 (-685 |#1|))) (T -44))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))))))
-(-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -2423 ($ (-1259 |#1|)))))
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2128 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-1783 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-1403 (($ $) NIL)) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-3236 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4408))) (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3611 (($ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-3963 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846))))) (-2484 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-2925 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4408)))) (-1886 (($ $ $) 33 (|has| $ (-6 -4408)))) (-1776 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4408)))) (-4265 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 35 (|has| $ (-6 -4408)))) (-3904 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-1226 (-564)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "last" (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4408))) (($ $ "rest" $) NIL (|has| $ (-6 -4408))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "first" (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "value" (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) NIL (|has| $ (-6 -4408)))) (-1466 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL)) (-1667 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1772 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-2327 (((-3 |#2| "failed") |#1| $) 43)) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2671 (($ $ (-767)) NIL) (($ $) 29)) (-2679 (($ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-1945 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-2591 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) NIL) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564)) NIL)) (-2643 (((-112) $) NIL)) (-3998 (((-564) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (((-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))) (((-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564)) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-3035 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 20 (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407))) (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 20 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) NIL)) (-1675 (((-112) $ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-4238 (($ (-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 ((|#1| $) NIL (|has| |#1| (-846))) (((-564) $) 38 (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-2087 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-3669 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-1554 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407))) (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-2898 ((|#1| $) NIL (|has| |#1| (-846))) (((-564) $) 40 (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL)) (-2522 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2730 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL)) (-1841 (((-112) $) NIL)) (-2766 (((-1152) $) 49 (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2615 (($ $ (-767)) NIL) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-3454 (((-641 |#1|) $) 22)) (-3565 (((-112) |#1| $) NIL)) (-3149 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-2566 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL) (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4248 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 |#1|) $) NIL) (((-641 (-564)) $) NIL)) (-1563 (((-112) |#1| $) NIL) (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2658 ((|#2| $) NIL (|has| |#1| (-846))) (($ $ (-767)) NIL) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 27)) (-2139 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL)) (-1592 (($ $ |#2|) NIL (|has| $ (-6 -4408))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-1555 (((-112) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-2075 (((-641 |#2|) $) NIL) (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 19)) (-1976 (((-112) $) 18)) (-2994 (($) 14)) (-4366 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "first") NIL) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $ "value") NIL)) (-3277 (((-564) $ $) NIL)) (-3853 (($) 13) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-2251 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3206 (((-112) $) NIL)) (-3068 (($ $) NIL)) (-2602 (($ $) NIL (|has| $ (-6 -4408)))) (-3004 (((-767) $) NIL)) (-1977 (($ $) NIL)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-3634 (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL) (($ $ $) NIL)) (-3696 (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL) (($ (-641 $)) NIL) (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 31) (($ $ $) NIL)) (-2423 (((-858) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-3154 (((-641 $) $) NIL)) (-4059 (((-112) $ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-1860 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-2628 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") |#1| $) 51)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-2974 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3023 (((-112) $ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-2999 (((-112) $ $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-846)))) (-2181 (((-767) $) 25 (|has| $ (-6 -4407)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1094) (-1094)) (T -45))
+(-13 (-1047) (-715 |t#1|) (-614 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-724) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-1414 (((-418 |#1|) |#1|) 41)) (-3643 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-642 (-48))) 33)) (-2768 (((-112) |#1|) 59)))
+(((-39 |#1|) (-10 -7 (-15 -3643 ((-418 |#1|) |#1| (-642 (-48)))) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -1414 ((-418 |#1|) |#1|)) (-15 -2768 ((-112) |#1|))) (-1238 (-48))) (T -39))
+((-2768 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48))))) (-1414 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48))))) (-3643 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48))))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48))))))
+(-10 -7 (-15 -3643 ((-418 |#1|) |#1| (-642 (-48)))) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -1414 ((-418 |#1|) |#1|)) (-15 -2768 ((-112) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2230 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-1387 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2037 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3166 (((-687 (-407 |#2|)) (-1262 $)) NIL) (((-687 (-407 |#2|))) NIL)) (-3815 (((-407 |#2|) $) NIL)) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1978 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4010 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2521 (((-769)) NIL (|has| (-407 |#2|) (-368)))) (-4351 (((-112)) NIL)) (-3700 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| (-407 |#2|) (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-4221 (($ (-1262 (-407 |#2|)) (-1262 $)) NIL) (($ (-1262 (-407 |#2|))) 61) (($ (-1262 |#2|) |#2|) 135)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-2845 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1984 (((-687 (-407 |#2|)) $ (-1262 $)) NIL) (((-687 (-407 |#2|)) $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-407 |#2|))) (|:| |vec| (-1262 (-407 |#2|)))) (-687 $) (-1262 $)) NIL) (((-687 (-407 |#2|)) (-687 $)) NIL)) (-4335 (((-1262 $) (-1262 $)) NIL)) (-1320 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3104 (((-3 $ "failed") $) NIL)) (-4170 (((-642 (-642 |#1|))) NIL (|has| |#1| (-368)))) (-2504 (((-112) |#1| |#1|) NIL)) (-2414 (((-919)) NIL)) (-2433 (($) NIL (|has| (-407 |#2|) (-368)))) (-3616 (((-112)) NIL)) (-4237 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2859 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| (-407 |#2|) (-363)))) (-3246 (($ $) NIL)) (-1363 (($) NIL (|has| (-407 |#2|) (-349)))) (-3424 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-3607 (($ $ (-769)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-1469 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1427 (((-919) $) NIL (|has| (-407 |#2|) (-349))) (((-831 (-919)) $) NIL (|has| (-407 |#2|) (-349)))) (-3953 (((-112) $) NIL)) (-4153 (((-769)) NIL)) (-3453 (((-1262 $) (-1262 $)) 111)) (-2218 (((-407 |#2|) $) NIL)) (-1834 (((-642 (-950 |#1|)) (-1173)) NIL (|has| |#1| (-363)))) (-3157 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3947 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-1945 (((-919) $) NIL (|has| (-407 |#2|) (-368)))) (-1308 ((|#3| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3315 (((-1155) $) NIL)) (-2862 (((-1267) (-769)) 88)) (-3658 (((-687 (-407 |#2|))) 56)) (-3353 (((-687 (-407 |#2|))) 49)) (-3911 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1922 (($ (-1262 |#2|) |#2|) 136)) (-4147 (((-687 (-407 |#2|))) 50)) (-2917 (((-687 (-407 |#2|))) 48)) (-1577 (((-2 (|:| |num| (-687 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 134)) (-2071 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) 68)) (-2253 (((-1262 $)) 47)) (-3620 (((-1262 $)) 46)) (-3454 (((-112) $) NIL)) (-4074 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3366 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-2047 (($ (-919)) NIL (|has| (-407 |#2|) (-368)))) (-3708 (((-3 |#2| "failed")) NIL)) (-4033 (((-1117) $) NIL)) (-3129 (((-769)) NIL)) (-2185 (($) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| (-407 |#2|) (-363)))) (-2080 (($ (-642 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-3643 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2896 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2048 (((-769) $) NIL (|has| (-407 |#2|) (-363)))) (-4368 ((|#1| $ |#1| |#1|) NIL)) (-1957 (((-3 |#2| "failed")) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1846 (((-407 |#2|) (-1262 $)) NIL) (((-407 |#2|)) 44)) (-2136 (((-769) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-769) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-3175 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 130) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-769)) NIL (-2706 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2706 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2382 (((-687 (-407 |#2|)) (-1262 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3280 ((|#3|) 55)) (-2668 (($) NIL (|has| (-407 |#2|) (-349)))) (-2067 (((-1262 (-407 |#2|)) $ (-1262 $)) NIL) (((-687 (-407 |#2|)) (-1262 $) (-1262 $)) NIL) (((-1262 (-407 |#2|)) $) 62) (((-687 (-407 |#2|)) (-1262 $)) 112)) (-1314 (((-1262 (-407 |#2|)) $) NIL) (($ (-1262 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-407 |#2|) (-349)))) (-4133 (((-1262 $) (-1262 $)) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-2706 (|has| (-407 |#2|) (-1036 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2439 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-3011 ((|#3| $) NIL)) (-2756 (((-769)) NIL T CONST)) (-3676 (((-112)) 42)) (-1326 (((-112) |#1|) 54) (((-112) |#2|) 142)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) 102)) (-2103 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2328 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3127 (((-112)) NIL)) (-2312 (($) 17 T CONST)) (-2322 (($) 27 T CONST)) (-4044 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-769)) NIL (-2706 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2706 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -2862 ((-1267) (-769))))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) |#3|) (T -40))
+((-2862 (*1 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-363)) (-4 *5 (-1238 *4)) (-5 *2 (-1267)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1238 (-407 *5))) (-14 *7 *6))))
+(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -2862 ((-1267) (-769)))))
+((-2150 ((|#2| |#2|) 47)) (-4050 ((|#2| |#2|) 143 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1036 (-564)))))) (-2096 ((|#2| |#2|) 100 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1036 (-564)))))) (-4204 ((|#2| |#2|) 101 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1036 (-564)))))) (-4337 ((|#2| (-114) |#2| (-769)) 139 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-1036 (-564)))))) (-3394 (((-1169 |#2|) |#2|) 44)) (-4319 ((|#2| |#2| (-642 (-610 |#2|))) 18) ((|#2| |#2| (-642 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -2150 (|#2| |#2|)) (-15 -4319 (|#2| |#2|)) (-15 -4319 (|#2| |#2| |#2|)) (-15 -4319 (|#2| |#2| (-642 |#2|))) (-15 -4319 (|#2| |#2| (-642 (-610 |#2|)))) (-15 -3394 ((-1169 |#2|) |#2|)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1036 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -4204 (|#2| |#2|)) (-15 -2096 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -4337 (|#2| (-114) |#2| (-769)))) |%noBranch|) |%noBranch|) |%noBranch|)) (-556) (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 |#1| (-610 $)) $)) (-15 -2255 ((-1122 |#1| (-610 $)) $)) (-15 -2327 ($ (-1122 |#1| (-610 $))))))) (T -41))
+((-4337 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-769)) (-4 *5 (-452)) (-4 *5 (-1036 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 *5 (-610 $)) $)) (-15 -2255 ((-1122 *5 (-610 $)) $)) (-15 -2327 ($ (-1122 *5 (-610 $))))))))) (-4050 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $)) (-15 -2255 ((-1122 *3 (-610 $)) $)) (-15 -2327 ($ (-1122 *3 (-610 $))))))))) (-2096 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $)) (-15 -2255 ((-1122 *3 (-610 $)) $)) (-15 -2327 ($ (-1122 *3 (-610 $))))))))) (-4204 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $)) (-15 -2255 ((-1122 *3 (-610 $)) $)) (-15 -2327 ($ (-1122 *3 (-610 $))))))))) (-3394 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1169 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 *4 (-610 $)) $)) (-15 -2255 ((-1122 *4 (-610 $)) $)) (-15 -2327 ($ (-1122 *4 (-610 $))))))))) (-4319 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-610 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 *4 (-610 $)) $)) (-15 -2255 ((-1122 *4 (-610 $)) $)) (-15 -2327 ($ (-1122 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-4319 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 *4 (-610 $)) $)) (-15 -2255 ((-1122 *4 (-610 $)) $)) (-15 -2327 ($ (-1122 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-4319 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $)) (-15 -2255 ((-1122 *3 (-610 $)) $)) (-15 -2327 ($ (-1122 *3 (-610 $))))))))) (-4319 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $)) (-15 -2255 ((-1122 *3 (-610 $)) $)) (-15 -2327 ($ (-1122 *3 (-610 $))))))))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $)) (-15 -2255 ((-1122 *3 (-610 $)) $)) (-15 -2327 ($ (-1122 *3 (-610 $))))))))))
+(-10 -7 (-15 -2150 (|#2| |#2|)) (-15 -4319 (|#2| |#2|)) (-15 -4319 (|#2| |#2| |#2|)) (-15 -4319 (|#2| |#2| (-642 |#2|))) (-15 -4319 (|#2| |#2| (-642 (-610 |#2|)))) (-15 -3394 ((-1169 |#2|) |#2|)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1036 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -4204 (|#2| |#2|)) (-15 -2096 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -4337 (|#2| (-114) |#2| (-769)))) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3643 (((-418 (-1169 |#3|)) (-1169 |#3|) (-642 (-48))) 23) (((-418 |#3|) |#3| (-642 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3643 ((-418 |#3|) |#3| (-642 (-48)))) (-15 -3643 ((-418 (-1169 |#3|)) (-1169 |#3|) (-642 (-48))))) (-848) (-791) (-947 (-48) |#2| |#1|)) (T -42))
+((-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-48))) (-4 *5 (-848)) (-4 *6 (-791)) (-4 *7 (-947 (-48) *6 *5)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-48))) (-4 *5 (-848)) (-4 *6 (-791)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-947 (-48) *6 *5)))))
+(-10 -7 (-15 -3643 ((-418 |#3|) |#3| (-642 (-48)))) (-15 -3643 ((-418 (-1169 |#3|)) (-1169 |#3|) (-642 (-48)))))
+((-3211 (((-769) |#2|) 72)) (-3220 (((-769) |#2|) 76)) (-3231 (((-642 |#2|)) 39)) (-1455 (((-769) |#2|) 75)) (-3508 (((-769) |#2|) 71)) (-3252 (((-769) |#2|) 74)) (-3853 (((-642 (-687 |#1|))) 67)) (-3200 (((-642 |#2|)) 62)) (-1354 (((-642 |#2|) |#2|) 50)) (-3101 (((-642 |#2|)) 64)) (-4015 (((-642 |#2|)) 63)) (-3107 (((-642 (-687 |#1|))) 55)) (-2853 (((-642 |#2|)) 61)) (-3797 (((-642 |#2|) |#2|) 49)) (-2115 (((-642 |#2|)) 57)) (-2805 (((-642 (-687 |#1|))) 68)) (-3374 (((-642 |#2|)) 66)) (-4263 (((-1262 |#2|) (-1262 |#2|)) 101 (|has| |#1| (-307)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1455 ((-769) |#2|)) (-15 -3220 ((-769) |#2|)) (-15 -3508 ((-769) |#2|)) (-15 -3211 ((-769) |#2|)) (-15 -3252 ((-769) |#2|)) (-15 -2115 ((-642 |#2|))) (-15 -3797 ((-642 |#2|) |#2|)) (-15 -1354 ((-642 |#2|) |#2|)) (-15 -2853 ((-642 |#2|))) (-15 -3200 ((-642 |#2|))) (-15 -4015 ((-642 |#2|))) (-15 -3101 ((-642 |#2|))) (-15 -3374 ((-642 |#2|))) (-15 -3107 ((-642 (-687 |#1|)))) (-15 -3853 ((-642 (-687 |#1|)))) (-15 -2805 ((-642 (-687 |#1|)))) (-15 -3231 ((-642 |#2|))) (IF (|has| |#1| (-307)) (-15 -4263 ((-1262 |#2|) (-1262 |#2|))) |%noBranch|)) (-556) (-417 |#1|)) (T -43))
+((-4263 (*1 *2 *2) (-12 (-5 *2 (-1262 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) (-3231 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2805 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3853 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3107 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3374 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3101 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-4015 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3200 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2853 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1354 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3797 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2115 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3252 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3211 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3220 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1455 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
+(-10 -7 (-15 -1455 ((-769) |#2|)) (-15 -3220 ((-769) |#2|)) (-15 -3508 ((-769) |#2|)) (-15 -3211 ((-769) |#2|)) (-15 -3252 ((-769) |#2|)) (-15 -2115 ((-642 |#2|))) (-15 -3797 ((-642 |#2|) |#2|)) (-15 -1354 ((-642 |#2|) |#2|)) (-15 -2853 ((-642 |#2|))) (-15 -3200 ((-642 |#2|))) (-15 -4015 ((-642 |#2|))) (-15 -3101 ((-642 |#2|))) (-15 -3374 ((-642 |#2|))) (-15 -3107 ((-642 (-687 |#1|)))) (-15 -3853 ((-642 (-687 |#1|)))) (-15 -2805 ((-642 (-687 |#1|)))) (-15 -3231 ((-642 |#2|))) (IF (|has| |#1| (-307)) (-15 -4263 ((-1262 |#2|) (-1262 |#2|))) |%noBranch|))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3587 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4361 (((-1262 (-687 |#1|)) (-1262 $)) NIL) (((-1262 (-687 |#1|))) 24)) (-2954 (((-1262 $)) 55)) (-1976 (($) NIL T CONST)) (-2074 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) NIL (|has| |#1| (-556)))) (-2093 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3043 (((-687 |#1|) (-1262 $)) NIL) (((-687 |#1|)) NIL)) (-4280 ((|#1| $) NIL)) (-3636 (((-687 |#1|) $ (-1262 $)) NIL) (((-687 |#1|) $) NIL)) (-2564 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-1393 (((-1169 (-950 |#1|))) NIL (|has| |#1| (-363)))) (-2013 (($ $ (-919)) NIL)) (-3518 ((|#1| $) NIL)) (-2640 (((-1169 |#1|) $) NIL (|has| |#1| (-556)))) (-1933 ((|#1| (-1262 $)) NIL) ((|#1|) NIL)) (-3205 (((-1169 |#1|) $) NIL)) (-3539 (((-112)) 102)) (-4221 (($ (-1262 |#1|) (-1262 $)) NIL) (($ (-1262 |#1|)) NIL)) (-3104 (((-3 $ "failed") $) 14 (|has| |#1| (-556)))) (-2414 (((-919)) 56)) (-1422 (((-112)) NIL)) (-3285 (($ $ (-919)) NIL)) (-1734 (((-112)) NIL)) (-4041 (((-112)) NIL)) (-2289 (((-112)) 104)) (-3250 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) NIL (|has| |#1| (-556)))) (-1306 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-1499 (((-687 |#1|) (-1262 $)) NIL) (((-687 |#1|)) NIL)) (-1490 ((|#1| $) NIL)) (-4070 (((-687 |#1|) $ (-1262 $)) NIL) (((-687 |#1|) $) NIL)) (-4125 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-3956 (((-1169 (-950 |#1|))) NIL (|has| |#1| (-363)))) (-1522 (($ $ (-919)) NIL)) (-2034 ((|#1| $) NIL)) (-3720 (((-1169 |#1|) $) NIL (|has| |#1| (-556)))) (-1617 ((|#1| (-1262 $)) NIL) ((|#1|) NIL)) (-1769 (((-1169 |#1|) $) NIL)) (-3573 (((-112)) 101)) (-3315 (((-1155) $) NIL)) (-2443 (((-112)) 109)) (-2038 (((-112)) 108)) (-2152 (((-112)) 110)) (-4033 (((-1117) $) NIL)) (-2682 (((-112)) 103)) (-4368 ((|#1| $ (-564)) 58)) (-2067 (((-1262 |#1|) $ (-1262 $)) 53) (((-687 |#1|) (-1262 $) (-1262 $)) NIL) (((-1262 |#1|) $) 28) (((-687 |#1|) (-1262 $)) NIL)) (-1314 (((-1262 |#1|) $) NIL) (($ (-1262 |#1|)) NIL)) (-2815 (((-642 (-950 |#1|)) (-1262 $)) NIL) (((-642 (-950 |#1|))) NIL)) (-3759 (($ $ $) NIL)) (-1953 (((-112)) 98)) (-2327 (((-860) $) 75) (($ (-1262 |#1|)) 22)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) 49)) (-1309 (((-642 (-1262 |#1|))) NIL (|has| |#1| (-556)))) (-3088 (($ $ $ $) NIL)) (-1349 (((-112)) 94)) (-2497 (($ (-687 |#1|) $) 18)) (-2920 (($ $ $) NIL)) (-3459 (((-112)) 100)) (-4171 (((-112)) 95)) (-1579 (((-112)) 93)) (-2312 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1139 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-646 (-1139 |#2| |#1|)) (-10 -8 (-15 -2327 ($ (-1262 |#1|))))) (-363) (-919) (-642 (-1173)) (-1262 (-687 |#1|))) (T -44))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-363)) (-14 *6 (-1262 (-687 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))))))
+(-13 (-417 |#1|) (-646 (-1139 |#2| |#1|)) (-10 -8 (-15 -2327 ($ (-1262 |#1|)))))
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2085 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-1807 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-1416 (($ $) NIL)) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-1765 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411))) (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3256 (($ $ (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2239 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848))))) (-2383 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3070 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4411)))) (-1505 (($ $ $) 33 (|has| $ (-6 -4411)))) (-2153 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4411)))) (-4059 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 35 (|has| $ (-6 -4411)))) (-3877 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-1229 (-564)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "last" (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4411))) (($ $ "rest" $) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "first" (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "value" (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2462 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL)) (-1700 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1799 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-2248 (((-3 |#2| "failed") |#1| $) 43)) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2570 (($ $ (-769)) NIL) (($ $) 29)) (-1938 (($ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2265 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-2490 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) NIL) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564)) NIL)) (-3297 (((-112) $) NIL)) (-3979 (((-564) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (((-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))) (((-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564)) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-2936 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 20 (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 20 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) NIL)) (-1847 (((-112) $ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-4227 (($ (-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 ((|#1| $) NIL (|has| |#1| (-848))) (((-564) $) 38 (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-3427 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2740 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-3234 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-3421 ((|#1| $) NIL (|has| |#1| (-848))) (((-564) $) 40 (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL)) (-2421 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-2628 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL)) (-2376 (((-112) $) NIL)) (-3315 (((-1155) $) 49 (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2514 (($ $ (-769)) NIL) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3393 (((-642 |#1|) $) 22)) (-2835 (((-112) |#1| $) NIL)) (-2730 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3183 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL) (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-4238 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 |#1|) $) NIL) (((-642 (-564)) $) NIL)) (-4145 (((-112) |#1| $) NIL) (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2557 ((|#2| $) NIL (|has| |#1| (-848))) (($ $ (-769)) NIL) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 27)) (-3254 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL)) (-2696 (($ $ |#2|) NIL (|has| $ (-6 -4411))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-2531 (((-112) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2724 (((-642 |#2|) $) NIL) (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 19)) (-3719 (((-112) $) 18)) (-2972 (($) 14)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ (-564)) NIL) (($ $ (-1229 (-564))) NIL) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "first") NIL) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $ "value") NIL)) (-2137 (((-564) $ $) NIL)) (-2593 (($) 13) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-3184 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-1392 (((-112) $) NIL)) (-1444 (($ $) NIL)) (-2960 (($ $) NIL (|has| $ (-6 -4411)))) (-3399 (((-769) $) NIL)) (-3848 (($ $) NIL)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2582 (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL) (($ $ $) NIL)) (-3651 (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL) (($ (-642 $)) NIL) (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 31) (($ $ $) NIL)) (-2327 (((-860) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1512 (((-642 $) $) NIL)) (-3820 (((-112) $ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-1648 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2527 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") |#1| $) 51)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2872 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2922 (((-112) $ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2897 (((-112) $ $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-848)))) (-2127 (((-769) $) 25 (|has| $ (-6 -4410)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1097) (-1097)) (T -45))
NIL
(-36 |#1| |#2|)
-((-4003 (((-112) $) 12)) (-4357 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-564)) $) 25) (($ $ (-407 (-564))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -4003 ((-112) |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-47 |#2| |#3|) (-1045) (-788)) (T -46))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -4003 ((-112) |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 55 (|has| |#1| (-556)))) (-3063 (($ $) 56 (|has| |#1| (-556)))) (-3330 (((-112) $) 58 (|has| |#1| (-556)))) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-1684 (($ $) 64)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-4003 (((-112) $) 66)) (-3810 (($ |#1| |#2|) 65)) (-4357 (($ (-1 |#1| |#1|) $) 67)) (-3971 (($ $) 69)) (-3982 ((|#1| $) 70)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2998 (((-3 $ "failed") $ $) 54 (|has| |#1| (-556)))) (-1568 ((|#2| $) 68)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ (-407 (-564))) 61 (|has| |#1| (-38 (-407 (-564))))) (($ $) 53 (|has| |#1| (-556))) (($ |#1|) 51 (|has| |#1| (-172)))) (-2007 ((|#1| $ |#2|) 63)) (-2420 (((-3 $ "failed") $) 52 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 57 (|has| |#1| (-556)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 62 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 72) (($ |#1| $) 71) (($ (-407 (-564)) $) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 59 (|has| |#1| (-38 (-407 (-564)))))))
-(((-47 |#1| |#2|) (-140) (-1045) (-788)) (T -47))
-((-3982 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3971 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-3810 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-1684 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-2007 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3092 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-363)))))
-(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (-15 -3982 (|t#1| $)) (-15 -3971 ($ $)) (-15 -1568 (|t#2| $)) (-15 -4357 ($ (-1 |t#1| |t#1|) $)) (-15 -4003 ((-112) $)) (-15 -3810 ($ |t#1| |t#2|)) (-15 -1684 ($ $)) (-15 -2007 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -3092 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-556)) (-6 (-556)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-6 (-38 (-407 (-564)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-4119 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-948 $)) NIL)) (-4029 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-948 $)) NIL)) (-1494 (((-112) $) 11)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-3577 (((-641 (-610 $)) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2559 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3700 (($ $) NIL)) (-3162 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-3442 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-948 $)) NIL)) (-2930 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-948 $)) NIL)) (-4284 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-3120 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-2946 (($ $ $) NIL)) (-4277 (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2511 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-1316 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-1387 (($ $) NIL) (($ (-641 $)) NIL)) (-3782 (((-641 (-114)) $) NIL)) (-4232 (((-114) (-114)) NIL)) (-4112 (((-112) $) 14)) (-3177 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-2323 (((-1119 (-564) (-610 $)) $) NIL)) (-3614 (($ $ (-564)) NIL)) (-2499 (((-1166 $) (-1166 $) (-610 $)) NIL) (((-1166 $) (-1166 $) (-641 (-610 $))) NIL) (($ $ (-610 $)) NIL) (($ $ (-641 (-610 $))) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1940 (((-1166 $) (-610 $)) NIL (|has| $ (-1045)))) (-4357 (($ (-1 $ $) (-610 $)) NIL)) (-3521 (((-3 (-610 $) "failed") $) NIL)) (-2084 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-3648 (((-641 (-610 $)) $) NIL)) (-4309 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-3679 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-3936 (($ $) NIL)) (-1292 (((-767) $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ (-641 $)) NIL) (($ $ $) NIL)) (-3817 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-3688 (((-418 $) $) NIL)) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2663 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-3291 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1700 (((-767) $) NIL)) (-4366 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3973 (($ $) NIL) (($ $ $) NIL)) (-3254 (($ $ (-767)) NIL) (($ $) NIL)) (-2336 (((-1119 (-564) (-610 $)) $) NIL)) (-3721 (($ $) NIL (|has| $ (-1045)))) (-1311 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-2423 (((-858) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) NIL)) (-3719 (((-767)) NIL T CONST)) (-2180 (($ $) NIL) (($ (-641 $)) NIL)) (-3263 (((-112) (-114)) NIL)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-2403 (($) 7 T CONST)) (-2417 (($) 12 T CONST)) (-4063 (($ $ (-767)) NIL) (($ $) NIL)) (-2974 (((-112) $ $) 16)) (-3092 (($ $ $) NIL)) (-3082 (($ $ $) 15) (($ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) NIL) (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL)))
-(((-48) (-13 (-302) (-27) (-1034 (-564)) (-1034 (-407 (-564))) (-637 (-564)) (-1018) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2423 ($ (-1119 (-564) (-610 $)))) (-15 -2323 ((-1119 (-564) (-610 $)) $)) (-15 -2336 ((-1119 (-564) (-610 $)) $)) (-15 -1316 ($ $)) (-15 -2499 ((-1166 $) (-1166 $) (-610 $))) (-15 -2499 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2499 ($ $ (-610 $))) (-15 -2499 ($ $ (-641 (-610 $))))))) (T -48))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1316 (*1 *1 *1) (-5 *1 (-48))) (-2499 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) (-2499 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48)))) (-2499 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) (-2499 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48)))))
-(-13 (-302) (-27) (-1034 (-564)) (-1034 (-407 (-564))) (-637 (-564)) (-1018) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2423 ($ (-1119 (-564) (-610 $)))) (-15 -2323 ((-1119 (-564) (-610 $)) $)) (-15 -2336 ((-1119 (-564) (-610 $)) $)) (-15 -1316 ($ $)) (-15 -2499 ((-1166 $) (-1166 $) (-610 $))) (-15 -2499 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2499 ($ $ (-610 $))) (-15 -2499 ($ $ (-641 (-610 $))))))
-((-3009 (((-112) $ $) NIL)) (-4209 (((-641 (-506)) $) 17)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 7)) (-2575 (((-1175) $) 18)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-49) (-13 (-1094) (-10 -8 (-15 -4209 ((-641 (-506)) $)) (-15 -2575 ((-1175) $))))) (T -49))
-((-4209 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-49)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49)))))
-(-13 (-1094) (-10 -8 (-15 -4209 ((-641 (-506)) $)) (-15 -2575 ((-1175) $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 87)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1884 (((-112) $) 30)) (-4284 (((-3 |#1| "failed") $) 33)) (-3120 ((|#1| $) 34)) (-1684 (($ $) 40)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3982 ((|#1| $) 31)) (-2789 (($ $) 76)) (-2766 (((-1152) $) NIL)) (-3287 (((-112) $) 43)) (-4052 (((-1114) $) NIL)) (-2249 (($ (-767)) 74)) (-1689 (($ (-641 (-564))) 75)) (-1568 (((-767) $) 44)) (-2423 (((-858) $) 93) (($ (-564)) 71) (($ |#1|) 69)) (-2007 ((|#1| $ $) 28)) (-3719 (((-767)) 73 T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 45 T CONST)) (-2417 (($) 17 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 66)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
-(((-50 |#1| |#2|) (-13 (-618 |#1|) (-1034 |#1|) (-10 -8 (-15 -3982 (|#1| $)) (-15 -2789 ($ $)) (-15 -1684 ($ $)) (-15 -2007 (|#1| $ $)) (-15 -2249 ($ (-767))) (-15 -1689 ($ (-641 (-564)))) (-15 -3287 ((-112) $)) (-15 -1884 ((-112) $)) (-15 -1568 ((-767) $)) (-15 -4357 ($ (-1 |#1| |#1|) $)))) (-1045) (-641 (-1170))) (T -50))
-((-3982 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-2789 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-641 (-1170))))) (-1684 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-641 (-1170))))) (-2007 (*1 *2 *1 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-2249 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-641 (-1170))))) (-1689 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-641 (-1170))))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-641 (-1170))))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-641 (-1170))))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-641 (-1170))))) (-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4)) (-14 *4 (-641 (-1170))))))
-(-13 (-618 |#1|) (-1034 |#1|) (-10 -8 (-15 -3982 (|#1| $)) (-15 -2789 ($ $)) (-15 -1684 ($ $)) (-15 -2007 (|#1| $ $)) (-15 -2249 ($ (-767))) (-15 -1689 ($ (-641 (-564)))) (-15 -3287 ((-112) $)) (-15 -1884 ((-112) $)) (-15 -1568 ((-767) $)) (-15 -4357 ($ (-1 |#1| |#1|) $))))
-((-1884 (((-112) (-52)) 13)) (-4284 (((-3 |#1| "failed") (-52)) 21)) (-3120 ((|#1| (-52)) 22)) (-2423 (((-52) |#1|) 18)))
-(((-51 |#1|) (-10 -7 (-15 -2423 ((-52) |#1|)) (-15 -4284 ((-3 |#1| "failed") (-52))) (-15 -1884 ((-112) (-52))) (-15 -3120 (|#1| (-52)))) (-1209)) (T -51))
-((-3120 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209)))) (-4284 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-2423 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209)))))
-(-10 -7 (-15 -2423 ((-52) |#1|)) (-15 -4284 ((-3 |#1| "failed") (-52))) (-15 -1884 ((-112) (-52))) (-15 -3120 (|#1| (-52))))
-((-3009 (((-112) $ $) NIL)) (-2208 (((-1152) (-112)) 26)) (-2232 (((-858) $) 25)) (-2490 (((-770) $) 13)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-4173 (((-858) $) 17)) (-3294 (((-1098) $) 15)) (-2423 (((-858) $) 35)) (-1860 (((-112) $ $) NIL)) (-2380 (($ (-1098) (-770)) 36)) (-2974 (((-112) $ $) 19)))
-(((-52) (-13 (-1094) (-10 -8 (-15 -2380 ($ (-1098) (-770))) (-15 -4173 ((-858) $)) (-15 -2232 ((-858) $)) (-15 -3294 ((-1098) $)) (-15 -2490 ((-770) $)) (-15 -2208 ((-1152) (-112)))))) (T -52))
-((-2380 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-770)) (-5 *1 (-52)))) (-4173 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-52)))) (-2208 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52)))))
-(-13 (-1094) (-10 -8 (-15 -2380 ($ (-1098) (-770))) (-15 -4173 ((-858) $)) (-15 -2232 ((-858) $)) (-15 -3294 ((-1098) $)) (-15 -2490 ((-770) $)) (-15 -2208 ((-1152) (-112)))))
-((-2598 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2598 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1045) (-644 |#1|) (-848 |#1|)) (T -53))
-((-2598 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1045)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5)))))
-(-10 -7 (-15 -2598 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-2699 ((|#3| |#3| (-641 (-1170))) 46)) (-2432 ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-917)) 32) ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|) 31)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2432 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -2432 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-917))) (-15 -2699 (|#3| |#3| (-641 (-1170))))) (-1094) (-13 (-1045) (-882 |#1|) (-612 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-612 (-888 |#1|)))) (T -54))
-((-2699 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))) (-2432 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1094)) (-4 *6 (-13 (-1045) (-882 *5) (-612 (-888 *5)))) (-4 *2 (-13 (-430 *6) (-882 *5) (-612 (-888 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2432 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4)))) (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -2432 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -2432 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-917))) (-15 -2699 (|#3| |#3| (-641 (-1170)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 14)) (-4284 (((-3 (-767) "failed") $) 34)) (-3120 (((-767) $) NIL)) (-4112 (((-112) $) 16)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) 18)) (-2423 (((-858) $) 23) (($ (-767)) 29)) (-1860 (((-112) $ $) NIL)) (-2245 (($) 11 T CONST)) (-2974 (((-112) $ $) 20)))
-(((-55) (-13 (-1094) (-1034 (-767)) (-10 -8 (-15 -2245 ($) -2959) (-15 -1494 ((-112) $)) (-15 -4112 ((-112) $))))) (T -55))
-((-2245 (*1 *1) (-5 *1 (-55))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
-(-13 (-1094) (-1034 (-767)) (-10 -8 (-15 -2245 ($) -2959) (-15 -1494 ((-112) $)) (-15 -4112 ((-112) $))))
-((-1876 (((-112) $ (-767)) 27)) (-1440 (($ $ (-564) |#3|) 64)) (-3404 (($ $ (-564) |#4|) 68)) (-4086 ((|#3| $ (-564)) 77)) (-3035 (((-641 |#2|) $) 45)) (-3097 (((-112) $ (-767)) 30)) (-3369 (((-112) |#2| $) 72)) (-2714 (($ (-1 |#2| |#2|) $) 53)) (-4357 (($ (-1 |#2| |#2|) $) 52) (($ (-1 |#2| |#2| |#2|) $ $) 56) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 60)) (-3619 (((-112) $ (-767)) 29)) (-1592 (($ $ |#2|) 50)) (-4377 (((-112) (-1 (-112) |#2|) $) 21)) (-4366 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) 33)) (-4062 (((-767) (-1 (-112) |#2|) $) 39) (((-767) |#2| $) 74)) (-3926 (($ $) 49)) (-1575 ((|#4| $ (-564)) 80)) (-2423 (((-858) $) 86)) (-1368 (((-112) (-1 (-112) |#2|) $) 20)) (-2974 (((-112) $ $) 71)) (-2181 (((-767) $) 31)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2423 ((-858) |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4357 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2714 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3404 (|#1| |#1| (-564) |#4|)) (-15 -1440 (|#1| |#1| (-564) |#3|)) (-15 -3035 ((-641 |#2|) |#1|)) (-15 -1575 (|#4| |#1| (-564))) (-15 -4086 (|#3| |#1| (-564))) (-15 -4366 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564) (-564))) (-15 -1592 (|#1| |#1| |#2|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -3369 ((-112) |#2| |#1|)) (-15 -4062 ((-767) |#2| |#1|)) (-15 -4062 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -4377 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2181 ((-767) |#1|)) (-15 -1876 ((-112) |#1| (-767))) (-15 -3097 ((-112) |#1| (-767))) (-15 -3619 ((-112) |#1| (-767))) (-15 -3926 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1209) (-373 |#2|) (-373 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -2423 ((-858) |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4357 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2714 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3404 (|#1| |#1| (-564) |#4|)) (-15 -1440 (|#1| |#1| (-564) |#3|)) (-15 -3035 ((-641 |#2|) |#1|)) (-15 -1575 (|#4| |#1| (-564))) (-15 -4086 (|#3| |#1| (-564))) (-15 -4366 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564) (-564))) (-15 -1592 (|#1| |#1| |#2|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -3369 ((-112) |#2| |#1|)) (-15 -4062 ((-767) |#2| |#1|)) (-15 -4062 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -4377 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2181 ((-767) |#1|)) (-15 -1876 ((-112) |#1| (-767))) (-15 -3097 ((-112) |#1| (-767))) (-15 -3619 ((-112) |#1| (-767))) (-15 -3926 (|#1| |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) 8)) (-3904 ((|#1| $ (-564) (-564) |#1|) 45)) (-1440 (($ $ (-564) |#2|) 43)) (-3404 (($ $ (-564) |#3|) 42)) (-4080 (($) 7 T CONST)) (-4086 ((|#2| $ (-564)) 47)) (-2726 ((|#1| $ (-564) (-564) |#1|) 44)) (-2652 ((|#1| $ (-564) (-564)) 49)) (-3035 (((-641 |#1|) $) 31)) (-2667 (((-767) $) 52)) (-4238 (($ (-767) (-767) |#1|) 58)) (-2681 (((-767) $) 51)) (-3097 (((-112) $ (-767)) 9)) (-1795 (((-564) $) 56)) (-2980 (((-564) $) 54)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2283 (((-564) $) 55)) (-2287 (((-564) $) 53)) (-2714 (($ (-1 |#1| |#1|) $) 35)) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1592 (($ $ |#1|) 57)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ (-564) (-564)) 50) ((|#1| $ (-564) (-564) |#1|) 48)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1575 ((|#3| $ (-564)) 46)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-57 |#1| |#2| |#3|) (-140) (-1209) (-373 |t#1|) (-373 |t#1|)) (T -57))
-((-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4238 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1592 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2283 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2980 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-767)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-767)))) (-4366 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-2652 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-4366 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-4086 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 *3)))) (-3904 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2726 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-1440 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-2714 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4357 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4357 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(-13 (-489 |t#1|) (-10 -8 (-6 -4408) (-6 -4407) (-15 -4238 ($ (-767) (-767) |t#1|)) (-15 -1592 ($ $ |t#1|)) (-15 -1795 ((-564) $)) (-15 -2283 ((-564) $)) (-15 -2980 ((-564) $)) (-15 -2287 ((-564) $)) (-15 -2667 ((-767) $)) (-15 -2681 ((-767) $)) (-15 -4366 (|t#1| $ (-564) (-564))) (-15 -2652 (|t#1| $ (-564) (-564))) (-15 -4366 (|t#1| $ (-564) (-564) |t#1|)) (-15 -4086 (|t#2| $ (-564))) (-15 -1575 (|t#3| $ (-564))) (-15 -3035 ((-641 |t#1|) $)) (-15 -3904 (|t#1| $ (-564) (-564) |t#1|)) (-15 -2726 (|t#1| $ (-564) (-564) |t#1|)) (-15 -1440 ($ $ (-564) |t#2|)) (-15 -3404 ($ $ (-564) |t#3|)) (-15 -4357 ($ (-1 |t#1| |t#1|) $)) (-15 -2714 ($ (-1 |t#1| |t#1|) $)) (-15 -4357 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4357 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-2903 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-1316 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4357 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -2903 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1316 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4357 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1209) (-1209)) (T -58))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-1316 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-58 *5 *2)))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -2903 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1316 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4357 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) NIL)) (-3998 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2046 (($ (-641 |#1|)) 11) (($ (-767) |#1|) 14)) (-4238 (($ (-767) |#1|) 13)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2658 ((|#1| $) NIL (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 10)) (-3696 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2046 ($ (-641 |#1|))) (-15 -2046 ($ (-767) |#1|)))) (-1209)) (T -59))
-((-2046 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3)))) (-2046 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-59 *3)) (-4 *3 (-1209)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -2046 ($ (-641 |#1|))) (-15 -2046 ($ (-767) |#1|))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1440 (($ $ (-564) (-59 |#1|)) NIL)) (-3404 (($ $ (-564) (-59 |#1|)) NIL)) (-4080 (($) NIL T CONST)) (-4086 (((-59 |#1|) $ (-564)) NIL)) (-2726 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2652 ((|#1| $ (-564) (-564)) NIL)) (-3035 (((-641 |#1|) $) NIL)) (-2667 (((-767) $) NIL)) (-4238 (($ (-767) (-767) |#1|) NIL)) (-2681 (((-767) $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1795 (((-564) $) NIL)) (-2980 (((-564) $) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2283 (((-564) $) NIL)) (-2287 (((-564) $) NIL)) (-2714 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1592 (($ $ |#1|) NIL)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-1575 (((-59 |#1|) $ (-564)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4408))) (-1209)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4408)))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 74) (((-3 $ "failed") (-1259 (-316 (-564)))) 63) (((-3 $ "failed") (-1259 (-948 (-379)))) 94) (((-3 $ "failed") (-1259 (-948 (-564)))) 84) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 52) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 39)) (-3120 (($ (-1259 (-316 (-379)))) 70) (($ (-1259 (-316 (-564)))) 59) (($ (-1259 (-948 (-379)))) 90) (($ (-1259 (-948 (-564)))) 80) (($ (-1259 (-407 (-948 (-379))))) 48) (($ (-1259 (-407 (-948 (-564))))) 32)) (-3111 (((-1264) $) 127)) (-2423 (((-858) $) 121) (($ (-641 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 101) (($ (-1259 (-339 (-2435 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2435) (-695)))) 31)))
-(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2435) (-695))))))) (-1170)) (T -61))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2435) (-695)))) (-5 *1 (-61 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2435) (-695)))))))
-((-3111 (((-1264) $) 54) (((-1264)) 55)) (-2423 (((-858) $) 51)))
-(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -3111 ((-1264))))) (-1170)) (T -62))
-((-3111 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170)))))
-(-13 (-395) (-10 -7 (-15 -3111 ((-1264)))))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 154) (((-3 $ "failed") (-1259 (-316 (-564)))) 144) (((-3 $ "failed") (-1259 (-948 (-379)))) 174) (((-3 $ "failed") (-1259 (-948 (-564)))) 164) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 133) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 121)) (-3120 (($ (-1259 (-316 (-379)))) 150) (($ (-1259 (-316 (-564)))) 140) (($ (-1259 (-948 (-379)))) 170) (($ (-1259 (-948 (-564)))) 160) (($ (-1259 (-407 (-948 (-379))))) 129) (($ (-1259 (-407 (-948 (-564))))) 114)) (-3111 (((-1264) $) 107)) (-2423 (((-858) $) 101) (($ (-641 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 33) (($ (-1259 (-339 (-2435) (-2435 (QUOTE XC)) (-695)))) 99)))
-(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435) (-2435 (QUOTE XC)) (-695))))))) (-1170)) (T -63))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435) (-2435 (QUOTE XC)) (-695)))) (-5 *1 (-63 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435) (-2435 (QUOTE XC)) (-695)))))))
-((-4284 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-564))) 46) (((-3 $ "failed") (-948 (-379))) 50) (((-3 $ "failed") (-948 (-564))) 54) (((-3 $ "failed") (-407 (-948 (-379)))) 36) (((-3 $ "failed") (-407 (-948 (-564)))) 29)) (-3120 (($ (-316 (-379))) 39) (($ (-316 (-564))) 44) (($ (-948 (-379))) 48) (($ (-948 (-564))) 52) (($ (-407 (-948 (-379)))) 34) (($ (-407 (-948 (-564)))) 26)) (-3111 (((-1264) $) 76)) (-2423 (((-858) $) 69) (($ (-641 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 64) (($ (-339 (-2435 (QUOTE X)) (-2435) (-695))) 25)))
-(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -2423 ($ (-339 (-2435 (QUOTE X)) (-2435) (-695)))))) (-1170)) (T -64))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-339 (-2435 (QUOTE X)) (-2435) (-695))) (-5 *1 (-64 *3)) (-14 *3 (-1170)))))
-(-13 (-396) (-10 -8 (-15 -2423 ($ (-339 (-2435 (QUOTE X)) (-2435) (-695))))))
-((-4284 (((-3 $ "failed") (-685 (-316 (-379)))) 114) (((-3 $ "failed") (-685 (-316 (-564)))) 102) (((-3 $ "failed") (-685 (-948 (-379)))) 136) (((-3 $ "failed") (-685 (-948 (-564)))) 125) (((-3 $ "failed") (-685 (-407 (-948 (-379))))) 90) (((-3 $ "failed") (-685 (-407 (-948 (-564))))) 76)) (-3120 (($ (-685 (-316 (-379)))) 110) (($ (-685 (-316 (-564)))) 98) (($ (-685 (-948 (-379)))) 132) (($ (-685 (-948 (-564)))) 121) (($ (-685 (-407 (-948 (-379))))) 86) (($ (-685 (-407 (-948 (-564))))) 69)) (-3111 (((-1264) $) 144)) (-2423 (((-858) $) 138) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 32) (($ (-685 (-339 (-2435) (-2435 (QUOTE X) (QUOTE HESS)) (-695)))) 59)))
-(((-65 |#1|) (-13 (-384) (-614 (-685 (-339 (-2435) (-2435 (QUOTE X) (QUOTE HESS)) (-695))))) (-1170)) (T -65))
-NIL
-(-13 (-384) (-614 (-685 (-339 (-2435) (-2435 (QUOTE X) (QUOTE HESS)) (-695)))))
-((-4284 (((-3 $ "failed") (-316 (-379))) 60) (((-3 $ "failed") (-316 (-564))) 65) (((-3 $ "failed") (-948 (-379))) 69) (((-3 $ "failed") (-948 (-564))) 73) (((-3 $ "failed") (-407 (-948 (-379)))) 55) (((-3 $ "failed") (-407 (-948 (-564)))) 48)) (-3120 (($ (-316 (-379))) 58) (($ (-316 (-564))) 63) (($ (-948 (-379))) 67) (($ (-948 (-564))) 71) (($ (-407 (-948 (-379)))) 53) (($ (-407 (-948 (-564)))) 45)) (-3111 (((-1264) $) 82)) (-2423 (((-858) $) 76) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 32) (($ (-339 (-2435) (-2435 (QUOTE XC)) (-695))) 40)))
-(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -2423 ($ (-339 (-2435) (-2435 (QUOTE XC)) (-695)))))) (-1170)) (T -66))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-339 (-2435) (-2435 (QUOTE XC)) (-695))) (-5 *1 (-66 *3)) (-14 *3 (-1170)))))
-(-13 (-396) (-10 -8 (-15 -2423 ($ (-339 (-2435) (-2435 (QUOTE XC)) (-695))))))
-((-3111 (((-1264) $) 68)) (-2423 (((-858) $) 62) (($ (-685 (-695))) 54) (($ (-641 (-330))) 53) (($ (-330)) 60) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 58)))
-(((-67 |#1|) (-383) (-1170)) (T -67))
+((-2316 (((-112) $) 12)) (-4358 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-564)) $) 25) (($ $ (-407 (-564))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) (-47 |#2| |#3|) (-1047) (-790)) (T -46))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-1387 (($ $) 64 (|has| |#1| (-556)))) (-2037 (((-112) $) 66 (|has| |#1| (-556)))) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-1718 (($ $) 72)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-2316 (((-112) $) 74)) (-3774 (($ |#1| |#2|) 73)) (-4358 (($ (-1 |#1| |#1|) $) 75)) (-3950 (($ $) 77)) (-3962 ((|#1| $) 78)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2896 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-2775 ((|#2| $) 76)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2102 ((|#1| $ |#2|) 71)) (-2439 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 65 (|has| |#1| (-556)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 70 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564)))))))
+(((-47 |#1| |#2|) (-140) (-1047) (-790)) (T -47))
+((-3962 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) (-3950 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-112)))) (-3774 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) (-1718 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) (-2102 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) (-2998 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)) (-4 *2 (-363)))))
+(-13 (-1047) (-111 |t#1| |t#1|) (-10 -8 (-15 -3962 (|t#1| $)) (-15 -3950 ($ $)) (-15 -2775 (|t#2| $)) (-15 -4358 ($ (-1 |t#1| |t#1|) $)) (-15 -2316 ((-112) $)) (-15 -3774 ($ |t#1| |t#2|)) (-15 -1718 ($ $)) (-15 -2102 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -2998 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-556)) (-6 (-556)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-6 (-38 (-407 (-564)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-4098 (((-642 $) (-1169 $) (-1173)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-950 $)) NIL)) (-2946 (($ (-1169 $) (-1173)) NIL) (($ (-1169 $)) NIL) (($ (-950 $)) NIL)) (-2952 (((-112) $) 11)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-3530 (((-642 (-610 $)) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2458 (($ $ (-294 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-3655 (($ $) NIL)) (-4010 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-3443 (((-642 $) (-1169 $) (-1173)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-950 $)) NIL)) (-2525 (($ (-1169 $) (-1173)) NIL) (($ (-1169 $)) NIL) (($ (-950 $)) NIL)) (-4278 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-3027 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-2845 (($ $ $) NIL)) (-4315 (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -1780 (-687 (-407 (-564)))) (|:| |vec| (-1262 (-407 (-564))))) (-687 $) (-1262 $)) NIL) (((-687 (-407 (-564))) (-687 $)) NIL)) (-1320 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-1301 (($ $) NIL) (($ (-642 $)) NIL)) (-3332 (((-642 (-114)) $) NIL)) (-3307 (((-114) (-114)) NIL)) (-3953 (((-112) $) 14)) (-3076 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-2245 (((-1122 (-564) (-610 $)) $) NIL)) (-1772 (($ $ (-564)) NIL)) (-2218 (((-1169 $) (-1169 $) (-610 $)) NIL) (((-1169 $) (-1169 $) (-642 (-610 $))) NIL) (($ $ (-610 $)) NIL) (($ $ (-642 (-610 $))) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2666 (((-1169 $) (-610 $)) NIL (|has| $ (-1047)))) (-4358 (($ (-1 $ $) (-610 $)) NIL)) (-2953 (((-3 (-610 $) "failed") $) NIL)) (-2049 (($ (-642 $)) NIL) (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-3603 (((-642 (-610 $)) $) NIL)) (-4305 (($ (-114) $) NIL) (($ (-114) (-642 $)) NIL)) (-1523 (((-112) $ (-114)) NIL) (((-112) $ (-1173)) NIL)) (-3911 (($ $) NIL)) (-1295 (((-769) $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ (-642 $)) NIL) (($ $ $) NIL)) (-2539 (((-112) $ $) NIL) (((-112) $ (-1173)) NIL)) (-3643 (((-418 $) $) NIL)) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2519 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-3215 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-1173) (-1 $ (-642 $))) NIL) (($ $ (-1173) (-1 $ $)) NIL) (($ $ (-642 (-114)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-114) (-1 $ (-642 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2048 (((-769) $) NIL)) (-4368 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-642 $)) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3238 (($ $) NIL) (($ $ $) NIL)) (-3175 (($ $ (-769)) NIL) (($ $) NIL)) (-2255 (((-1122 (-564) (-610 $)) $) NIL)) (-3280 (($ $) NIL (|has| $ (-1047)))) (-1314 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-2327 (((-860) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1122 (-564) (-610 $))) NIL)) (-2756 (((-769)) NIL T CONST)) (-2181 (($ $) NIL) (($ (-642 $)) NIL)) (-2357 (((-112) (-114)) NIL)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-2312 (($) 7 T CONST)) (-2322 (($) 12 T CONST)) (-4044 (($ $ (-769)) NIL) (($ $) NIL)) (-2872 (((-112) $ $) 16)) (-2998 (($ $ $) NIL)) (-2987 (($ $ $) 15) (($ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) NIL) (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL)))
+(((-48) (-13 (-302) (-27) (-1036 (-564)) (-1036 (-407 (-564))) (-637 (-564)) (-1020) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2327 ($ (-1122 (-564) (-610 $)))) (-15 -2245 ((-1122 (-564) (-610 $)) $)) (-15 -2255 ((-1122 (-564) (-610 $)) $)) (-15 -1320 ($ $)) (-15 -2218 ((-1169 $) (-1169 $) (-610 $))) (-15 -2218 ((-1169 $) (-1169 $) (-642 (-610 $)))) (-15 -2218 ($ $ (-610 $))) (-15 -2218 ($ $ (-642 (-610 $))))))) (T -48))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-2255 (*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1320 (*1 *1 *1) (-5 *1 (-48))) (-2218 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) (-2218 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 (-48))) (-5 *3 (-642 (-610 (-48)))) (-5 *1 (-48)))) (-2218 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) (-2218 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-610 (-48)))) (-5 *1 (-48)))))
+(-13 (-302) (-27) (-1036 (-564)) (-1036 (-407 (-564))) (-637 (-564)) (-1020) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2327 ($ (-1122 (-564) (-610 $)))) (-15 -2245 ((-1122 (-564) (-610 $)) $)) (-15 -2255 ((-1122 (-564) (-610 $)) $)) (-15 -1320 ($ $)) (-15 -2218 ((-1169 $) (-1169 $) (-610 $))) (-15 -2218 ((-1169 $) (-1169 $) (-642 (-610 $)))) (-15 -2218 ($ $ (-610 $))) (-15 -2218 ($ $ (-642 (-610 $))))))
+((-2907 (((-112) $ $) NIL)) (-4191 (((-642 (-506)) $) 17)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 7)) (-2474 (((-1178) $) 18)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-49) (-13 (-1097) (-10 -8 (-15 -4191 ((-642 (-506)) $)) (-15 -2474 ((-1178) $))))) (T -49))
+((-4191 (*1 *2 *1) (-12 (-5 *2 (-642 (-506))) (-5 *1 (-49)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-49)))))
+(-13 (-1097) (-10 -8 (-15 -4191 ((-642 (-506)) $)) (-15 -2474 ((-1178) $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 87)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-2672 (((-112) $) 30)) (-4278 (((-3 |#1| "failed") $) 33)) (-3027 ((|#1| $) 34)) (-1718 (($ $) 40)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3962 ((|#1| $) 31)) (-2967 (($ $) 76)) (-3315 (((-1155) $) NIL)) (-2937 (((-112) $) 43)) (-4033 (((-1117) $) NIL)) (-2185 (($ (-769)) 74)) (-1723 (($ (-642 (-564))) 75)) (-2775 (((-769) $) 44)) (-2327 (((-860) $) 93) (($ (-564)) 71) (($ |#1|) 69)) (-2102 ((|#1| $ $) 28)) (-2756 (((-769)) 73 T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 45 T CONST)) (-2322 (($) 17 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 66)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
+(((-50 |#1| |#2|) (-13 (-618 |#1|) (-1036 |#1|) (-10 -8 (-15 -3962 (|#1| $)) (-15 -2967 ($ $)) (-15 -1718 ($ $)) (-15 -2102 (|#1| $ $)) (-15 -2185 ($ (-769))) (-15 -1723 ($ (-642 (-564)))) (-15 -2937 ((-112) $)) (-15 -2672 ((-112) $)) (-15 -2775 ((-769) $)) (-15 -4358 ($ (-1 |#1| |#1|) $)))) (-1047) (-642 (-1173))) (T -50))
+((-3962 (*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-50 *2 *3)) (-14 *3 (-642 (-1173))))) (-2967 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-642 (-1173))))) (-1718 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-642 (-1173))))) (-2102 (*1 *2 *1 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-50 *2 *3)) (-14 *3 (-642 (-1173))))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-642 (-1173))))) (-1723 (*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-642 (-1173))))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-642 (-1173))))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-642 (-1173))))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-642 (-1173))))) (-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-50 *3 *4)) (-14 *4 (-642 (-1173))))))
+(-13 (-618 |#1|) (-1036 |#1|) (-10 -8 (-15 -3962 (|#1| $)) (-15 -2967 ($ $)) (-15 -1718 ($ $)) (-15 -2102 (|#1| $ $)) (-15 -2185 ($ (-769))) (-15 -1723 ($ (-642 (-564)))) (-15 -2937 ((-112) $)) (-15 -2672 ((-112) $)) (-15 -2775 ((-769) $)) (-15 -4358 ($ (-1 |#1| |#1|) $))))
+((-2672 (((-112) (-52)) 13)) (-4278 (((-3 |#1| "failed") (-52)) 21)) (-3027 ((|#1| (-52)) 22)) (-2327 (((-52) |#1|) 18)))
+(((-51 |#1|) (-10 -7 (-15 -2327 ((-52) |#1|)) (-15 -4278 ((-3 |#1| "failed") (-52))) (-15 -2672 ((-112) (-52))) (-15 -3027 (|#1| (-52)))) (-1212)) (T -51))
+((-3027 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1212)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1212)))) (-4278 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1212)))) (-2327 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1212)))))
+(-10 -7 (-15 -2327 ((-52) |#1|)) (-15 -4278 ((-3 |#1| "failed") (-52))) (-15 -2672 ((-112) (-52))) (-15 -3027 (|#1| (-52))))
+((-2907 (((-112) $ $) NIL)) (-1631 (((-1155) (-112)) 26)) (-3733 (((-860) $) 25)) (-2389 (((-772) $) 13)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1369 (((-860) $) 17)) (-3218 (((-1101) $) 15)) (-2327 (((-860) $) 35)) (-1648 (((-112) $ $) NIL)) (-2291 (($ (-1101) (-772)) 36)) (-2872 (((-112) $ $) 19)))
+(((-52) (-13 (-1097) (-10 -8 (-15 -2291 ($ (-1101) (-772))) (-15 -1369 ((-860) $)) (-15 -3733 ((-860) $)) (-15 -3218 ((-1101) $)) (-15 -2389 ((-772) $)) (-15 -1631 ((-1155) (-112)))))) (T -52))
+((-2291 (*1 *1 *2 *3) (-12 (-5 *2 (-1101)) (-5 *3 (-772)) (-5 *1 (-52)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-52)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-52)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-52)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-52)))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1155)) (-5 *1 (-52)))))
+(-13 (-1097) (-10 -8 (-15 -2291 ($ (-1101) (-772))) (-15 -1369 ((-860) $)) (-15 -3733 ((-860) $)) (-15 -3218 ((-1101) $)) (-15 -2389 ((-772) $)) (-15 -1631 ((-1155) (-112)))))
+((-2497 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2497 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1047) (-646 |#1|) (-850 |#1|)) (T -53))
+((-2497 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-646 *5)) (-4 *5 (-1047)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-850 *5)))))
+(-10 -7 (-15 -2497 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1377 ((|#3| |#3| (-642 (-1173))) 46)) (-3077 ((|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3| (-919)) 32) ((|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3|) 31)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3077 (|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3|)) (-15 -3077 (|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3| (-919))) (-15 -1377 (|#3| |#3| (-642 (-1173))))) (-1097) (-13 (-1047) (-884 |#1|) (-612 (-890 |#1|))) (-13 (-430 |#2|) (-884 |#1|) (-612 (-890 |#1|)))) (T -54))
+((-1377 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))) (-3077 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-642 (-1073 *5 *6 *2))) (-5 *4 (-919)) (-4 *5 (-1097)) (-4 *6 (-13 (-1047) (-884 *5) (-612 (-890 *5)))) (-4 *2 (-13 (-430 *6) (-884 *5) (-612 (-890 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3077 (*1 *2 *3 *2) (-12 (-5 *3 (-642 (-1073 *4 *5 *2))) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -3077 (|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3|)) (-15 -3077 (|#3| (-642 (-1073 |#1| |#2| |#3|)) |#3| (-919))) (-15 -1377 (|#3| |#3| (-642 (-1173)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 14)) (-4278 (((-3 (-769) "failed") $) 34)) (-3027 (((-769) $) NIL)) (-3953 (((-112) $) 16)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) 18)) (-2327 (((-860) $) 23) (($ (-769)) 29)) (-1648 (((-112) $ $) NIL)) (-2874 (($) 11 T CONST)) (-2872 (((-112) $ $) 20)))
+(((-55) (-13 (-1097) (-1036 (-769)) (-10 -8 (-15 -2874 ($) -2858) (-15 -2952 ((-112) $)) (-15 -3953 ((-112) $))))) (T -55))
+((-2874 (*1 *1) (-5 *1 (-55))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
+(-13 (-1097) (-1036 (-769)) (-10 -8 (-15 -2874 ($) -2858) (-15 -2952 ((-112) $)) (-15 -3953 ((-112) $))))
+((-3697 (((-112) $ (-769)) 27)) (-2950 (($ $ (-564) |#3|) 64)) (-1919 (($ $ (-564) |#4|) 68)) (-2600 ((|#3| $ (-564)) 77)) (-2936 (((-642 |#2|) $) 45)) (-3462 (((-112) $ (-769)) 30)) (-2776 (((-112) |#2| $) 72)) (-2613 (($ (-1 |#2| |#2|) $) 53)) (-4358 (($ (-1 |#2| |#2|) $) 52) (($ (-1 |#2| |#2| |#2|) $ $) 56) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 60)) (-3576 (((-112) $ (-769)) 29)) (-2696 (($ $ |#2|) 50)) (-2121 (((-112) (-1 (-112) |#2|) $) 21)) (-4368 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) 33)) (-4043 (((-769) (-1 (-112) |#2|) $) 39) (((-769) |#2| $) 74)) (-3901 (($ $) 49)) (-3022 ((|#4| $ (-564)) 80)) (-2327 (((-860) $) 86)) (-2710 (((-112) (-1 (-112) |#2|) $) 20)) (-2872 (((-112) $ $) 71)) (-2127 (((-769) $) 31)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2327 ((-860) |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4358 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2613 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1919 (|#1| |#1| (-564) |#4|)) (-15 -2950 (|#1| |#1| (-564) |#3|)) (-15 -2936 ((-642 |#2|) |#1|)) (-15 -3022 (|#4| |#1| (-564))) (-15 -2600 (|#3| |#1| (-564))) (-15 -4368 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564) (-564))) (-15 -2696 (|#1| |#1| |#2|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2776 ((-112) |#2| |#1|)) (-15 -4043 ((-769) |#2| |#1|)) (-15 -4043 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -2121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2127 ((-769) |#1|)) (-15 -3697 ((-112) |#1| (-769))) (-15 -3462 ((-112) |#1| (-769))) (-15 -3576 ((-112) |#1| (-769))) (-15 -3901 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1212) (-373 |#2|) (-373 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -2327 ((-860) |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4358 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2613 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1919 (|#1| |#1| (-564) |#4|)) (-15 -2950 (|#1| |#1| (-564) |#3|)) (-15 -2936 ((-642 |#2|) |#1|)) (-15 -3022 (|#4| |#1| (-564))) (-15 -2600 (|#3| |#1| (-564))) (-15 -4368 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564) (-564))) (-15 -2696 (|#1| |#1| |#2|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2776 ((-112) |#2| |#1|)) (-15 -4043 ((-769) |#2| |#1|)) (-15 -4043 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -2121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2127 ((-769) |#1|)) (-15 -3697 ((-112) |#1| (-769))) (-15 -3462 ((-112) |#1| (-769))) (-15 -3576 ((-112) |#1| (-769))) (-15 -3901 (|#1| |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) 8)) (-3877 ((|#1| $ (-564) (-564) |#1|) 45)) (-2950 (($ $ (-564) |#2|) 43)) (-1919 (($ $ (-564) |#3|) 42)) (-1976 (($) 7 T CONST)) (-2600 ((|#2| $ (-564)) 47)) (-2625 ((|#1| $ (-564) (-564) |#1|) 44)) (-2551 ((|#1| $ (-564) (-564)) 49)) (-2936 (((-642 |#1|) $) 31)) (-2567 (((-769) $) 52)) (-4227 (($ (-769) (-769) |#1|) 58)) (-2579 (((-769) $) 51)) (-3462 (((-112) $ (-769)) 9)) (-3491 (((-564) $) 56)) (-3865 (((-564) $) 54)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3054 (((-564) $) 55)) (-2977 (((-564) $) 53)) (-2613 (($ (-1 |#1| |#1|) $) 35)) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2696 (($ $ |#1|) 57)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ (-564) (-564)) 50) ((|#1| $ (-564) (-564) |#1|) 48)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-3022 ((|#3| $ (-564)) 46)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-57 |#1| |#2| |#3|) (-140) (-1212) (-373 |t#1|) (-373 |t#1|)) (T -57))
+((-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4227 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-769)) (-4 *3 (-1212)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2696 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-769)))) (-2579 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-769)))) (-4368 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1212)))) (-2551 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1212)))) (-4368 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2600 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1212)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1212)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-642 *3)))) (-3877 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2625 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2950 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-1919 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1212)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-2613 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4358 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4358 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
+(-13 (-489 |t#1|) (-10 -8 (-6 -4411) (-6 -4410) (-15 -4227 ($ (-769) (-769) |t#1|)) (-15 -2696 ($ $ |t#1|)) (-15 -3491 ((-564) $)) (-15 -3054 ((-564) $)) (-15 -3865 ((-564) $)) (-15 -2977 ((-564) $)) (-15 -2567 ((-769) $)) (-15 -2579 ((-769) $)) (-15 -4368 (|t#1| $ (-564) (-564))) (-15 -2551 (|t#1| $ (-564) (-564))) (-15 -4368 (|t#1| $ (-564) (-564) |t#1|)) (-15 -2600 (|t#2| $ (-564))) (-15 -3022 (|t#3| $ (-564))) (-15 -2936 ((-642 |t#1|) $)) (-15 -3877 (|t#1| $ (-564) (-564) |t#1|)) (-15 -2625 (|t#1| $ (-564) (-564) |t#1|)) (-15 -2950 ($ $ (-564) |t#2|)) (-15 -1919 ($ $ (-564) |t#3|)) (-15 -4358 ($ (-1 |t#1| |t#1|) $)) (-15 -2613 ($ (-1 |t#1| |t#1|) $)) (-15 -4358 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4358 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-1910 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-1320 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4358 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -1910 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1320 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4358 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1212) (-1212)) (T -58))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-1320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-58 *5 *2)))) (-1910 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1212)) (-4 *5 (-1212)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -1910 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1320 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4358 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) NIL)) (-3979 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-4175 (($ (-642 |#1|)) 11) (($ (-769) |#1|) 14)) (-4227 (($ (-769) |#1|) 13)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2557 ((|#1| $) NIL (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 10)) (-3651 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4175 ($ (-642 |#1|))) (-15 -4175 ($ (-769) |#1|)))) (-1212)) (T -59))
+((-4175 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-59 *3)))) (-4175 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-59 *3)) (-4 *3 (-1212)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -4175 ($ (-642 |#1|))) (-15 -4175 ($ (-769) |#1|))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2950 (($ $ (-564) (-59 |#1|)) NIL)) (-1919 (($ $ (-564) (-59 |#1|)) NIL)) (-1976 (($) NIL T CONST)) (-2600 (((-59 |#1|) $ (-564)) NIL)) (-2625 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2551 ((|#1| $ (-564) (-564)) NIL)) (-2936 (((-642 |#1|) $) NIL)) (-2567 (((-769) $) NIL)) (-4227 (($ (-769) (-769) |#1|) NIL)) (-2579 (((-769) $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-3491 (((-564) $) NIL)) (-3865 (((-564) $) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3054 (((-564) $) NIL)) (-2977 (((-564) $) NIL)) (-2613 (($ (-1 |#1| |#1|) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2696 (($ $ |#1|) NIL)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-3022 (((-59 |#1|) $ (-564)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4411))) (-1212)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4411)))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 74) (((-3 $ "failed") (-1262 (-316 (-564)))) 63) (((-3 $ "failed") (-1262 (-950 (-379)))) 94) (((-3 $ "failed") (-1262 (-950 (-564)))) 84) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 52) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 39)) (-3027 (($ (-1262 (-316 (-379)))) 70) (($ (-1262 (-316 (-564)))) 59) (($ (-1262 (-950 (-379)))) 90) (($ (-1262 (-950 (-564)))) 80) (($ (-1262 (-407 (-950 (-379))))) 48) (($ (-1262 (-407 (-950 (-564))))) 32)) (-3019 (((-1267) $) 127)) (-2327 (((-860) $) 121) (($ (-642 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 101) (($ (-1262 (-339 (-2337 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2337) (-697)))) 31)))
+(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2337) (-697))))))) (-1173)) (T -61))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2337) (-697)))) (-5 *1 (-61 *3)) (-14 *3 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2337) (-697)))))))
+((-3019 (((-1267) $) 54) (((-1267)) 55)) (-2327 (((-860) $) 51)))
+(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -3019 ((-1267))))) (-1173)) (T -62))
+((-3019 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-62 *3)) (-14 *3 (-1173)))))
+(-13 (-395) (-10 -7 (-15 -3019 ((-1267)))))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 154) (((-3 $ "failed") (-1262 (-316 (-564)))) 144) (((-3 $ "failed") (-1262 (-950 (-379)))) 174) (((-3 $ "failed") (-1262 (-950 (-564)))) 164) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 133) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 121)) (-3027 (($ (-1262 (-316 (-379)))) 150) (($ (-1262 (-316 (-564)))) 140) (($ (-1262 (-950 (-379)))) 170) (($ (-1262 (-950 (-564)))) 160) (($ (-1262 (-407 (-950 (-379))))) 129) (($ (-1262 (-407 (-950 (-564))))) 114)) (-3019 (((-1267) $) 107)) (-2327 (((-860) $) 101) (($ (-642 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 33) (($ (-1262 (-339 (-2337) (-2337 (QUOTE XC)) (-697)))) 99)))
+(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337) (-2337 (QUOTE XC)) (-697))))))) (-1173)) (T -63))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337) (-2337 (QUOTE XC)) (-697)))) (-5 *1 (-63 *3)) (-14 *3 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337) (-2337 (QUOTE XC)) (-697)))))))
+((-4278 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-564))) 46) (((-3 $ "failed") (-950 (-379))) 50) (((-3 $ "failed") (-950 (-564))) 54) (((-3 $ "failed") (-407 (-950 (-379)))) 36) (((-3 $ "failed") (-407 (-950 (-564)))) 29)) (-3027 (($ (-316 (-379))) 39) (($ (-316 (-564))) 44) (($ (-950 (-379))) 48) (($ (-950 (-564))) 52) (($ (-407 (-950 (-379)))) 34) (($ (-407 (-950 (-564)))) 26)) (-3019 (((-1267) $) 76)) (-2327 (((-860) $) 69) (($ (-642 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 64) (($ (-339 (-2337 (QUOTE X)) (-2337) (-697))) 25)))
+(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -2327 ($ (-339 (-2337 (QUOTE X)) (-2337) (-697)))))) (-1173)) (T -64))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-339 (-2337 (QUOTE X)) (-2337) (-697))) (-5 *1 (-64 *3)) (-14 *3 (-1173)))))
+(-13 (-396) (-10 -8 (-15 -2327 ($ (-339 (-2337 (QUOTE X)) (-2337) (-697))))))
+((-4278 (((-3 $ "failed") (-687 (-316 (-379)))) 114) (((-3 $ "failed") (-687 (-316 (-564)))) 102) (((-3 $ "failed") (-687 (-950 (-379)))) 136) (((-3 $ "failed") (-687 (-950 (-564)))) 125) (((-3 $ "failed") (-687 (-407 (-950 (-379))))) 90) (((-3 $ "failed") (-687 (-407 (-950 (-564))))) 76)) (-3027 (($ (-687 (-316 (-379)))) 110) (($ (-687 (-316 (-564)))) 98) (($ (-687 (-950 (-379)))) 132) (($ (-687 (-950 (-564)))) 121) (($ (-687 (-407 (-950 (-379))))) 86) (($ (-687 (-407 (-950 (-564))))) 69)) (-3019 (((-1267) $) 144)) (-2327 (((-860) $) 138) (($ (-642 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 32) (($ (-687 (-339 (-2337) (-2337 (QUOTE X) (QUOTE HESS)) (-697)))) 59)))
+(((-65 |#1|) (-13 (-384) (-614 (-687 (-339 (-2337) (-2337 (QUOTE X) (QUOTE HESS)) (-697))))) (-1173)) (T -65))
+NIL
+(-13 (-384) (-614 (-687 (-339 (-2337) (-2337 (QUOTE X) (QUOTE HESS)) (-697)))))
+((-4278 (((-3 $ "failed") (-316 (-379))) 60) (((-3 $ "failed") (-316 (-564))) 65) (((-3 $ "failed") (-950 (-379))) 69) (((-3 $ "failed") (-950 (-564))) 73) (((-3 $ "failed") (-407 (-950 (-379)))) 55) (((-3 $ "failed") (-407 (-950 (-564)))) 48)) (-3027 (($ (-316 (-379))) 58) (($ (-316 (-564))) 63) (($ (-950 (-379))) 67) (($ (-950 (-564))) 71) (($ (-407 (-950 (-379)))) 53) (($ (-407 (-950 (-564)))) 45)) (-3019 (((-1267) $) 82)) (-2327 (((-860) $) 76) (($ (-642 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 32) (($ (-339 (-2337) (-2337 (QUOTE XC)) (-697))) 40)))
+(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -2327 ($ (-339 (-2337) (-2337 (QUOTE XC)) (-697)))))) (-1173)) (T -66))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-339 (-2337) (-2337 (QUOTE XC)) (-697))) (-5 *1 (-66 *3)) (-14 *3 (-1173)))))
+(-13 (-396) (-10 -8 (-15 -2327 ($ (-339 (-2337) (-2337 (QUOTE XC)) (-697))))))
+((-3019 (((-1267) $) 68)) (-2327 (((-860) $) 62) (($ (-687 (-697))) 54) (($ (-642 (-330))) 53) (($ (-330)) 60) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 58)))
+(((-67 |#1|) (-383) (-1173)) (T -67))
NIL
(-383)
-((-3111 (((-1264) $) 69)) (-2423 (((-858) $) 63) (($ (-685 (-695))) 55) (($ (-641 (-330))) 54) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 60)))
-(((-68 |#1|) (-383) (-1170)) (T -68))
+((-3019 (((-1267) $) 69)) (-2327 (((-860) $) 63) (($ (-687 (-697))) 55) (($ (-642 (-330))) 54) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 60)))
+(((-68 |#1|) (-383) (-1173)) (T -68))
NIL
(-383)
-((-3111 (((-1264) $) NIL) (((-1264)) 33)) (-2423 (((-858) $) NIL)))
-(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -3111 ((-1264))))) (-1170)) (T -69))
-((-3111 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170)))))
-(-13 (-395) (-10 -7 (-15 -3111 ((-1264)))))
-((-3111 (((-1264) $) 75)) (-2423 (((-858) $) 69) (($ (-685 (-695))) 61) (($ (-641 (-330))) 63) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 60)))
-(((-70 |#1|) (-383) (-1170)) (T -70))
+((-3019 (((-1267) $) NIL) (((-1267)) 33)) (-2327 (((-860) $) NIL)))
+(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -3019 ((-1267))))) (-1173)) (T -69))
+((-3019 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-69 *3)) (-14 *3 (-1173)))))
+(-13 (-395) (-10 -7 (-15 -3019 ((-1267)))))
+((-3019 (((-1267) $) 75)) (-2327 (((-860) $) 69) (($ (-687 (-697))) 61) (($ (-642 (-330))) 63) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 60)))
+(((-70 |#1|) (-383) (-1173)) (T -70))
NIL
(-383)
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 111) (((-3 $ "failed") (-1259 (-316 (-564)))) 100) (((-3 $ "failed") (-1259 (-948 (-379)))) 131) (((-3 $ "failed") (-1259 (-948 (-564)))) 121) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 89) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 76)) (-3120 (($ (-1259 (-316 (-379)))) 107) (($ (-1259 (-316 (-564)))) 96) (($ (-1259 (-948 (-379)))) 127) (($ (-1259 (-948 (-564)))) 117) (($ (-1259 (-407 (-948 (-379))))) 85) (($ (-1259 (-407 (-948 (-564))))) 69)) (-3111 (((-1264) $) 144)) (-2423 (((-858) $) 138) (($ (-641 (-330))) 133) (($ (-330)) 136) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 61) (($ (-1259 (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695)))) 62)))
-(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695))))))) (-1170)) (T -71))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695)))) (-5 *1 (-71 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695)))))))
-((-3111 (((-1264) $) 33) (((-1264)) 32)) (-2423 (((-858) $) 36)))
-(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -3111 ((-1264))))) (-1170)) (T -72))
-((-3111 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170)))))
-(-13 (-395) (-10 -7 (-15 -3111 ((-1264)))))
-((-3111 (((-1264) $) 65)) (-2423 (((-858) $) 59) (($ (-685 (-695))) 51) (($ (-641 (-330))) 53) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 50)))
-(((-73 |#1|) (-383) (-1170)) (T -73))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 111) (((-3 $ "failed") (-1262 (-316 (-564)))) 100) (((-3 $ "failed") (-1262 (-950 (-379)))) 131) (((-3 $ "failed") (-1262 (-950 (-564)))) 121) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 89) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 76)) (-3027 (($ (-1262 (-316 (-379)))) 107) (($ (-1262 (-316 (-564)))) 96) (($ (-1262 (-950 (-379)))) 127) (($ (-1262 (-950 (-564)))) 117) (($ (-1262 (-407 (-950 (-379))))) 85) (($ (-1262 (-407 (-950 (-564))))) 69)) (-3019 (((-1267) $) 144)) (-2327 (((-860) $) 138) (($ (-642 (-330))) 133) (($ (-330)) 136) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 61) (($ (-1262 (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697)))) 62)))
+(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697))))))) (-1173)) (T -71))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697)))) (-5 *1 (-71 *3)) (-14 *3 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697)))))))
+((-3019 (((-1267) $) 33) (((-1267)) 32)) (-2327 (((-860) $) 36)))
+(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -3019 ((-1267))))) (-1173)) (T -72))
+((-3019 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-72 *3)) (-14 *3 (-1173)))))
+(-13 (-395) (-10 -7 (-15 -3019 ((-1267)))))
+((-3019 (((-1267) $) 65)) (-2327 (((-860) $) 59) (($ (-687 (-697))) 51) (($ (-642 (-330))) 53) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 50)))
+(((-73 |#1|) (-383) (-1173)) (T -73))
NIL
(-383)
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 130) (((-3 $ "failed") (-1259 (-316 (-564)))) 120) (((-3 $ "failed") (-1259 (-948 (-379)))) 150) (((-3 $ "failed") (-1259 (-948 (-564)))) 140) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 110) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 98)) (-3120 (($ (-1259 (-316 (-379)))) 126) (($ (-1259 (-316 (-564)))) 116) (($ (-1259 (-948 (-379)))) 146) (($ (-1259 (-948 (-564)))) 136) (($ (-1259 (-407 (-948 (-379))))) 106) (($ (-1259 (-407 (-948 (-564))))) 91)) (-3111 (((-1264) $) 83)) (-2423 (((-858) $) 28) (($ (-641 (-330))) 73) (($ (-330)) 69) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 76) (($ (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695)))) 70)))
-(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695))))))) (-1170)) (T -74))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695)))) (-5 *1 (-74 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695)))))))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 135) (((-3 $ "failed") (-1259 (-316 (-564)))) 124) (((-3 $ "failed") (-1259 (-948 (-379)))) 155) (((-3 $ "failed") (-1259 (-948 (-564)))) 145) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 113) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 100)) (-3120 (($ (-1259 (-316 (-379)))) 131) (($ (-1259 (-316 (-564)))) 120) (($ (-1259 (-948 (-379)))) 151) (($ (-1259 (-948 (-564)))) 141) (($ (-1259 (-407 (-948 (-379))))) 109) (($ (-1259 (-407 (-948 (-564))))) 93)) (-3111 (((-1264) $) 85)) (-2423 (((-858) $) 77) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) NIL) (($ (-1259 (-339 (-2435 (QUOTE X) (QUOTE EPS)) (-2435 (QUOTE -2425)) (-695)))) 72)))
-(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE X) (QUOTE EPS)) (-2435 (QUOTE -2425)) (-695))))))) (-1170) (-1170) (-1170)) (T -75))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435 (QUOTE X) (QUOTE EPS)) (-2435 (QUOTE -2425)) (-695)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE X) (QUOTE EPS)) (-2435 (QUOTE -2425)) (-695)))))))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 141) (((-3 $ "failed") (-1259 (-316 (-564)))) 130) (((-3 $ "failed") (-1259 (-948 (-379)))) 161) (((-3 $ "failed") (-1259 (-948 (-564)))) 151) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 119) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 106)) (-3120 (($ (-1259 (-316 (-379)))) 137) (($ (-1259 (-316 (-564)))) 126) (($ (-1259 (-948 (-379)))) 157) (($ (-1259 (-948 (-564)))) 147) (($ (-1259 (-407 (-948 (-379))))) 115) (($ (-1259 (-407 (-948 (-564))))) 99)) (-3111 (((-1264) $) 91)) (-2423 (((-858) $) 83) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) NIL) (($ (-1259 (-339 (-2435 (QUOTE EPS)) (-2435 (QUOTE YA) (QUOTE YB)) (-695)))) 78)))
-(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE EPS)) (-2435 (QUOTE YA) (QUOTE YB)) (-695))))))) (-1170) (-1170) (-1170)) (T -76))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435 (QUOTE EPS)) (-2435 (QUOTE YA) (QUOTE YB)) (-695)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE EPS)) (-2435 (QUOTE YA) (QUOTE YB)) (-695)))))))
-((-4284 (((-3 $ "failed") (-316 (-379))) 83) (((-3 $ "failed") (-316 (-564))) 88) (((-3 $ "failed") (-948 (-379))) 92) (((-3 $ "failed") (-948 (-564))) 96) (((-3 $ "failed") (-407 (-948 (-379)))) 78) (((-3 $ "failed") (-407 (-948 (-564)))) 71)) (-3120 (($ (-316 (-379))) 81) (($ (-316 (-564))) 86) (($ (-948 (-379))) 90) (($ (-948 (-564))) 94) (($ (-407 (-948 (-379)))) 76) (($ (-407 (-948 (-564)))) 68)) (-3111 (((-1264) $) 63)) (-2423 (((-858) $) 51) (($ (-641 (-330))) 47) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 55) (($ (-339 (-2435) (-2435 (QUOTE X)) (-695))) 48)))
-(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -2423 ($ (-339 (-2435) (-2435 (QUOTE X)) (-695)))))) (-1170)) (T -77))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-339 (-2435) (-2435 (QUOTE X)) (-695))) (-5 *1 (-77 *3)) (-14 *3 (-1170)))))
-(-13 (-396) (-10 -8 (-15 -2423 ($ (-339 (-2435) (-2435 (QUOTE X)) (-695))))))
-((-4284 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-564))) 52) (((-3 $ "failed") (-948 (-379))) 56) (((-3 $ "failed") (-948 (-564))) 60) (((-3 $ "failed") (-407 (-948 (-379)))) 42) (((-3 $ "failed") (-407 (-948 (-564)))) 35)) (-3120 (($ (-316 (-379))) 45) (($ (-316 (-564))) 50) (($ (-948 (-379))) 54) (($ (-948 (-564))) 58) (($ (-407 (-948 (-379)))) 40) (($ (-407 (-948 (-564)))) 32)) (-3111 (((-1264) $) 81)) (-2423 (((-858) $) 75) (($ (-641 (-330))) 67) (($ (-330)) 72) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 70) (($ (-339 (-2435) (-2435 (QUOTE X)) (-695))) 31)))
-(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -2423 ($ (-339 (-2435) (-2435 (QUOTE X)) (-695)))))) (-1170)) (T -78))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-339 (-2435) (-2435 (QUOTE X)) (-695))) (-5 *1 (-78 *3)) (-14 *3 (-1170)))))
-(-13 (-396) (-10 -8 (-15 -2423 ($ (-339 (-2435) (-2435 (QUOTE X)) (-695))))))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 90) (((-3 $ "failed") (-1259 (-316 (-564)))) 79) (((-3 $ "failed") (-1259 (-948 (-379)))) 110) (((-3 $ "failed") (-1259 (-948 (-564)))) 100) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 68) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 55)) (-3120 (($ (-1259 (-316 (-379)))) 86) (($ (-1259 (-316 (-564)))) 75) (($ (-1259 (-948 (-379)))) 106) (($ (-1259 (-948 (-564)))) 96) (($ (-1259 (-407 (-948 (-379))))) 64) (($ (-1259 (-407 (-948 (-564))))) 48)) (-3111 (((-1264) $) 126)) (-2423 (((-858) $) 120) (($ (-641 (-330))) 113) (($ (-330)) 38) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 116) (($ (-1259 (-339 (-2435) (-2435 (QUOTE XC)) (-695)))) 39)))
-(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435) (-2435 (QUOTE XC)) (-695))))))) (-1170)) (T -79))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435) (-2435 (QUOTE XC)) (-695)))) (-5 *1 (-79 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435) (-2435 (QUOTE XC)) (-695)))))))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 158) (((-3 $ "failed") (-1259 (-316 (-564)))) 148) (((-3 $ "failed") (-1259 (-948 (-379)))) 178) (((-3 $ "failed") (-1259 (-948 (-564)))) 168) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 138) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 126)) (-3120 (($ (-1259 (-316 (-379)))) 154) (($ (-1259 (-316 (-564)))) 144) (($ (-1259 (-948 (-379)))) 174) (($ (-1259 (-948 (-564)))) 164) (($ (-1259 (-407 (-948 (-379))))) 134) (($ (-1259 (-407 (-948 (-564))))) 119)) (-3111 (((-1264) $) 112)) (-2423 (((-858) $) 106) (($ (-641 (-330))) 97) (($ (-330)) 104) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 102) (($ (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695)))) 98)))
-(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695))))))) (-1170)) (T -80))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695)))) (-5 *1 (-80 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695)))))))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 79) (((-3 $ "failed") (-1259 (-316 (-564)))) 68) (((-3 $ "failed") (-1259 (-948 (-379)))) 99) (((-3 $ "failed") (-1259 (-948 (-564)))) 89) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 57) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 44)) (-3120 (($ (-1259 (-316 (-379)))) 75) (($ (-1259 (-316 (-564)))) 64) (($ (-1259 (-948 (-379)))) 95) (($ (-1259 (-948 (-564)))) 85) (($ (-1259 (-407 (-948 (-379))))) 53) (($ (-1259 (-407 (-948 (-564))))) 37)) (-3111 (((-1264) $) 125)) (-2423 (((-858) $) 119) (($ (-641 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 114) (($ (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695)))) 36)))
-(((-81 |#1|) (-13 (-441) (-614 (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695))))) (-1170)) (T -81))
-NIL
-(-13 (-441) (-614 (-1259 (-339 (-2435) (-2435 (QUOTE X)) (-695)))))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 98) (((-3 $ "failed") (-1259 (-316 (-564)))) 87) (((-3 $ "failed") (-1259 (-948 (-379)))) 118) (((-3 $ "failed") (-1259 (-948 (-564)))) 108) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 76) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 63)) (-3120 (($ (-1259 (-316 (-379)))) 94) (($ (-1259 (-316 (-564)))) 83) (($ (-1259 (-948 (-379)))) 114) (($ (-1259 (-948 (-564)))) 104) (($ (-1259 (-407 (-948 (-379))))) 72) (($ (-1259 (-407 (-948 (-564))))) 56)) (-3111 (((-1264) $) 48)) (-2423 (((-858) $) 42) (($ (-641 (-330))) 32) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 38) (($ (-1259 (-339 (-2435 (QUOTE X) (QUOTE -2425)) (-2435) (-695)))) 33)))
-(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE X) (QUOTE -2425)) (-2435) (-695))))))) (-1170)) (T -82))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435 (QUOTE X) (QUOTE -2425)) (-2435) (-695)))) (-5 *1 (-82 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE X) (QUOTE -2425)) (-2435) (-695)))))))
-((-4284 (((-3 $ "failed") (-685 (-316 (-379)))) 118) (((-3 $ "failed") (-685 (-316 (-564)))) 107) (((-3 $ "failed") (-685 (-948 (-379)))) 140) (((-3 $ "failed") (-685 (-948 (-564)))) 129) (((-3 $ "failed") (-685 (-407 (-948 (-379))))) 96) (((-3 $ "failed") (-685 (-407 (-948 (-564))))) 83)) (-3120 (($ (-685 (-316 (-379)))) 114) (($ (-685 (-316 (-564)))) 103) (($ (-685 (-948 (-379)))) 136) (($ (-685 (-948 (-564)))) 125) (($ (-685 (-407 (-948 (-379))))) 92) (($ (-685 (-407 (-948 (-564))))) 76)) (-3111 (((-1264) $) 66)) (-2423 (((-858) $) 53) (($ (-641 (-330))) 60) (($ (-330)) 49) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 58) (($ (-685 (-339 (-2435 (QUOTE X) (QUOTE -2425)) (-2435) (-695)))) 50)))
-(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -2423 ($ (-685 (-339 (-2435 (QUOTE X) (QUOTE -2425)) (-2435) (-695))))))) (-1170)) (T -83))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-2435 (QUOTE X) (QUOTE -2425)) (-2435) (-695)))) (-5 *1 (-83 *3)) (-14 *3 (-1170)))))
-(-13 (-384) (-10 -8 (-15 -2423 ($ (-685 (-339 (-2435 (QUOTE X) (QUOTE -2425)) (-2435) (-695)))))))
-((-4284 (((-3 $ "failed") (-685 (-316 (-379)))) 113) (((-3 $ "failed") (-685 (-316 (-564)))) 101) (((-3 $ "failed") (-685 (-948 (-379)))) 135) (((-3 $ "failed") (-685 (-948 (-564)))) 124) (((-3 $ "failed") (-685 (-407 (-948 (-379))))) 89) (((-3 $ "failed") (-685 (-407 (-948 (-564))))) 75)) (-3120 (($ (-685 (-316 (-379)))) 109) (($ (-685 (-316 (-564)))) 97) (($ (-685 (-948 (-379)))) 131) (($ (-685 (-948 (-564)))) 120) (($ (-685 (-407 (-948 (-379))))) 85) (($ (-685 (-407 (-948 (-564))))) 68)) (-3111 (((-1264) $) 60)) (-2423 (((-858) $) 54) (($ (-641 (-330))) 48) (($ (-330)) 51) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 45) (($ (-685 (-339 (-2435 (QUOTE X)) (-2435) (-695)))) 46)))
-(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -2423 ($ (-685 (-339 (-2435 (QUOTE X)) (-2435) (-695))))))) (-1170)) (T -84))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-2435 (QUOTE X)) (-2435) (-695)))) (-5 *1 (-84 *3)) (-14 *3 (-1170)))))
-(-13 (-384) (-10 -8 (-15 -2423 ($ (-685 (-339 (-2435 (QUOTE X)) (-2435) (-695)))))))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 105) (((-3 $ "failed") (-1259 (-316 (-564)))) 94) (((-3 $ "failed") (-1259 (-948 (-379)))) 125) (((-3 $ "failed") (-1259 (-948 (-564)))) 115) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 83) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 70)) (-3120 (($ (-1259 (-316 (-379)))) 101) (($ (-1259 (-316 (-564)))) 90) (($ (-1259 (-948 (-379)))) 121) (($ (-1259 (-948 (-564)))) 111) (($ (-1259 (-407 (-948 (-379))))) 79) (($ (-1259 (-407 (-948 (-564))))) 63)) (-3111 (((-1264) $) 47)) (-2423 (((-858) $) 41) (($ (-641 (-330))) 50) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 53) (($ (-1259 (-339 (-2435 (QUOTE X)) (-2435) (-695)))) 38)))
-(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE X)) (-2435) (-695))))))) (-1170)) (T -85))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435 (QUOTE X)) (-2435) (-695)))) (-5 *1 (-85 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE X)) (-2435) (-695)))))))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 80) (((-3 $ "failed") (-1259 (-316 (-564)))) 69) (((-3 $ "failed") (-1259 (-948 (-379)))) 100) (((-3 $ "failed") (-1259 (-948 (-564)))) 90) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 58) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 45)) (-3120 (($ (-1259 (-316 (-379)))) 76) (($ (-1259 (-316 (-564)))) 65) (($ (-1259 (-948 (-379)))) 96) (($ (-1259 (-948 (-564)))) 86) (($ (-1259 (-407 (-948 (-379))))) 54) (($ (-1259 (-407 (-948 (-564))))) 38)) (-3111 (((-1264) $) 126)) (-2423 (((-858) $) 120) (($ (-641 (-330))) 111) (($ (-330)) 117) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 115) (($ (-1259 (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695)))) 37)))
-(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695))))))) (-1170)) (T -86))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695)))) (-5 *1 (-86 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -2423 ($ (-1259 (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695)))))))
-((-4284 (((-3 $ "failed") (-685 (-316 (-379)))) 117) (((-3 $ "failed") (-685 (-316 (-564)))) 105) (((-3 $ "failed") (-685 (-948 (-379)))) 139) (((-3 $ "failed") (-685 (-948 (-564)))) 128) (((-3 $ "failed") (-685 (-407 (-948 (-379))))) 93) (((-3 $ "failed") (-685 (-407 (-948 (-564))))) 79)) (-3120 (($ (-685 (-316 (-379)))) 113) (($ (-685 (-316 (-564)))) 101) (($ (-685 (-948 (-379)))) 135) (($ (-685 (-948 (-564)))) 124) (($ (-685 (-407 (-948 (-379))))) 89) (($ (-685 (-407 (-948 (-564))))) 72)) (-3111 (((-1264) $) 63)) (-2423 (((-858) $) 57) (($ (-641 (-330))) 47) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 52) (($ (-685 (-339 (-2435 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2435) (-695)))) 48)))
-(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -2423 ($ (-685 (-339 (-2435 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2435) (-695))))))) (-1170)) (T -87))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-2435 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2435) (-695)))) (-5 *1 (-87 *3)) (-14 *3 (-1170)))))
-(-13 (-384) (-10 -8 (-15 -2423 ($ (-685 (-339 (-2435 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2435) (-695)))))))
-((-3111 (((-1264) $) 45)) (-2423 (((-858) $) 39) (($ (-1259 (-695))) 101) (($ (-641 (-330))) 31) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 34)))
-(((-88 |#1|) (-440) (-1170)) (T -88))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 130) (((-3 $ "failed") (-1262 (-316 (-564)))) 120) (((-3 $ "failed") (-1262 (-950 (-379)))) 150) (((-3 $ "failed") (-1262 (-950 (-564)))) 140) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 110) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 98)) (-3027 (($ (-1262 (-316 (-379)))) 126) (($ (-1262 (-316 (-564)))) 116) (($ (-1262 (-950 (-379)))) 146) (($ (-1262 (-950 (-564)))) 136) (($ (-1262 (-407 (-950 (-379))))) 106) (($ (-1262 (-407 (-950 (-564))))) 91)) (-3019 (((-1267) $) 83)) (-2327 (((-860) $) 28) (($ (-642 (-330))) 73) (($ (-330)) 69) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 76) (($ (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697)))) 70)))
+(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697))))))) (-1173)) (T -74))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697)))) (-5 *1 (-74 *3)) (-14 *3 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697)))))))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 135) (((-3 $ "failed") (-1262 (-316 (-564)))) 124) (((-3 $ "failed") (-1262 (-950 (-379)))) 155) (((-3 $ "failed") (-1262 (-950 (-564)))) 145) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 113) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 100)) (-3027 (($ (-1262 (-316 (-379)))) 131) (($ (-1262 (-316 (-564)))) 120) (($ (-1262 (-950 (-379)))) 151) (($ (-1262 (-950 (-564)))) 141) (($ (-1262 (-407 (-950 (-379))))) 109) (($ (-1262 (-407 (-950 (-564))))) 93)) (-3019 (((-1267) $) 85)) (-2327 (((-860) $) 77) (($ (-642 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) NIL) (($ (-1262 (-339 (-2337 (QUOTE X) (QUOTE EPS)) (-2337 (QUOTE -2329)) (-697)))) 72)))
+(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE X) (QUOTE EPS)) (-2337 (QUOTE -2329)) (-697))))))) (-1173) (-1173) (-1173)) (T -75))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337 (QUOTE X) (QUOTE EPS)) (-2337 (QUOTE -2329)) (-697)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1173)) (-14 *4 (-1173)) (-14 *5 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE X) (QUOTE EPS)) (-2337 (QUOTE -2329)) (-697)))))))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 141) (((-3 $ "failed") (-1262 (-316 (-564)))) 130) (((-3 $ "failed") (-1262 (-950 (-379)))) 161) (((-3 $ "failed") (-1262 (-950 (-564)))) 151) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 119) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 106)) (-3027 (($ (-1262 (-316 (-379)))) 137) (($ (-1262 (-316 (-564)))) 126) (($ (-1262 (-950 (-379)))) 157) (($ (-1262 (-950 (-564)))) 147) (($ (-1262 (-407 (-950 (-379))))) 115) (($ (-1262 (-407 (-950 (-564))))) 99)) (-3019 (((-1267) $) 91)) (-2327 (((-860) $) 83) (($ (-642 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) NIL) (($ (-1262 (-339 (-2337 (QUOTE EPS)) (-2337 (QUOTE YA) (QUOTE YB)) (-697)))) 78)))
+(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE EPS)) (-2337 (QUOTE YA) (QUOTE YB)) (-697))))))) (-1173) (-1173) (-1173)) (T -76))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337 (QUOTE EPS)) (-2337 (QUOTE YA) (QUOTE YB)) (-697)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1173)) (-14 *4 (-1173)) (-14 *5 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE EPS)) (-2337 (QUOTE YA) (QUOTE YB)) (-697)))))))
+((-4278 (((-3 $ "failed") (-316 (-379))) 83) (((-3 $ "failed") (-316 (-564))) 88) (((-3 $ "failed") (-950 (-379))) 92) (((-3 $ "failed") (-950 (-564))) 96) (((-3 $ "failed") (-407 (-950 (-379)))) 78) (((-3 $ "failed") (-407 (-950 (-564)))) 71)) (-3027 (($ (-316 (-379))) 81) (($ (-316 (-564))) 86) (($ (-950 (-379))) 90) (($ (-950 (-564))) 94) (($ (-407 (-950 (-379)))) 76) (($ (-407 (-950 (-564)))) 68)) (-3019 (((-1267) $) 63)) (-2327 (((-860) $) 51) (($ (-642 (-330))) 47) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 55) (($ (-339 (-2337) (-2337 (QUOTE X)) (-697))) 48)))
+(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -2327 ($ (-339 (-2337) (-2337 (QUOTE X)) (-697)))))) (-1173)) (T -77))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-339 (-2337) (-2337 (QUOTE X)) (-697))) (-5 *1 (-77 *3)) (-14 *3 (-1173)))))
+(-13 (-396) (-10 -8 (-15 -2327 ($ (-339 (-2337) (-2337 (QUOTE X)) (-697))))))
+((-4278 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-564))) 52) (((-3 $ "failed") (-950 (-379))) 56) (((-3 $ "failed") (-950 (-564))) 60) (((-3 $ "failed") (-407 (-950 (-379)))) 42) (((-3 $ "failed") (-407 (-950 (-564)))) 35)) (-3027 (($ (-316 (-379))) 45) (($ (-316 (-564))) 50) (($ (-950 (-379))) 54) (($ (-950 (-564))) 58) (($ (-407 (-950 (-379)))) 40) (($ (-407 (-950 (-564)))) 32)) (-3019 (((-1267) $) 81)) (-2327 (((-860) $) 75) (($ (-642 (-330))) 67) (($ (-330)) 72) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 70) (($ (-339 (-2337) (-2337 (QUOTE X)) (-697))) 31)))
+(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -2327 ($ (-339 (-2337) (-2337 (QUOTE X)) (-697)))))) (-1173)) (T -78))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-339 (-2337) (-2337 (QUOTE X)) (-697))) (-5 *1 (-78 *3)) (-14 *3 (-1173)))))
+(-13 (-396) (-10 -8 (-15 -2327 ($ (-339 (-2337) (-2337 (QUOTE X)) (-697))))))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 90) (((-3 $ "failed") (-1262 (-316 (-564)))) 79) (((-3 $ "failed") (-1262 (-950 (-379)))) 110) (((-3 $ "failed") (-1262 (-950 (-564)))) 100) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 68) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 55)) (-3027 (($ (-1262 (-316 (-379)))) 86) (($ (-1262 (-316 (-564)))) 75) (($ (-1262 (-950 (-379)))) 106) (($ (-1262 (-950 (-564)))) 96) (($ (-1262 (-407 (-950 (-379))))) 64) (($ (-1262 (-407 (-950 (-564))))) 48)) (-3019 (((-1267) $) 126)) (-2327 (((-860) $) 120) (($ (-642 (-330))) 113) (($ (-330)) 38) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 116) (($ (-1262 (-339 (-2337) (-2337 (QUOTE XC)) (-697)))) 39)))
+(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337) (-2337 (QUOTE XC)) (-697))))))) (-1173)) (T -79))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337) (-2337 (QUOTE XC)) (-697)))) (-5 *1 (-79 *3)) (-14 *3 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337) (-2337 (QUOTE XC)) (-697)))))))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 158) (((-3 $ "failed") (-1262 (-316 (-564)))) 148) (((-3 $ "failed") (-1262 (-950 (-379)))) 178) (((-3 $ "failed") (-1262 (-950 (-564)))) 168) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 138) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 126)) (-3027 (($ (-1262 (-316 (-379)))) 154) (($ (-1262 (-316 (-564)))) 144) (($ (-1262 (-950 (-379)))) 174) (($ (-1262 (-950 (-564)))) 164) (($ (-1262 (-407 (-950 (-379))))) 134) (($ (-1262 (-407 (-950 (-564))))) 119)) (-3019 (((-1267) $) 112)) (-2327 (((-860) $) 106) (($ (-642 (-330))) 97) (($ (-330)) 104) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 102) (($ (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697)))) 98)))
+(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697))))))) (-1173)) (T -80))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697)))) (-5 *1 (-80 *3)) (-14 *3 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697)))))))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 79) (((-3 $ "failed") (-1262 (-316 (-564)))) 68) (((-3 $ "failed") (-1262 (-950 (-379)))) 99) (((-3 $ "failed") (-1262 (-950 (-564)))) 89) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 57) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 44)) (-3027 (($ (-1262 (-316 (-379)))) 75) (($ (-1262 (-316 (-564)))) 64) (($ (-1262 (-950 (-379)))) 95) (($ (-1262 (-950 (-564)))) 85) (($ (-1262 (-407 (-950 (-379))))) 53) (($ (-1262 (-407 (-950 (-564))))) 37)) (-3019 (((-1267) $) 125)) (-2327 (((-860) $) 119) (($ (-642 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 114) (($ (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697)))) 36)))
+(((-81 |#1|) (-13 (-441) (-614 (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697))))) (-1173)) (T -81))
+NIL
+(-13 (-441) (-614 (-1262 (-339 (-2337) (-2337 (QUOTE X)) (-697)))))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 98) (((-3 $ "failed") (-1262 (-316 (-564)))) 87) (((-3 $ "failed") (-1262 (-950 (-379)))) 118) (((-3 $ "failed") (-1262 (-950 (-564)))) 108) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 76) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 63)) (-3027 (($ (-1262 (-316 (-379)))) 94) (($ (-1262 (-316 (-564)))) 83) (($ (-1262 (-950 (-379)))) 114) (($ (-1262 (-950 (-564)))) 104) (($ (-1262 (-407 (-950 (-379))))) 72) (($ (-1262 (-407 (-950 (-564))))) 56)) (-3019 (((-1267) $) 48)) (-2327 (((-860) $) 42) (($ (-642 (-330))) 32) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 38) (($ (-1262 (-339 (-2337 (QUOTE X) (QUOTE -2329)) (-2337) (-697)))) 33)))
+(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE X) (QUOTE -2329)) (-2337) (-697))))))) (-1173)) (T -82))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337 (QUOTE X) (QUOTE -2329)) (-2337) (-697)))) (-5 *1 (-82 *3)) (-14 *3 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE X) (QUOTE -2329)) (-2337) (-697)))))))
+((-4278 (((-3 $ "failed") (-687 (-316 (-379)))) 118) (((-3 $ "failed") (-687 (-316 (-564)))) 107) (((-3 $ "failed") (-687 (-950 (-379)))) 140) (((-3 $ "failed") (-687 (-950 (-564)))) 129) (((-3 $ "failed") (-687 (-407 (-950 (-379))))) 96) (((-3 $ "failed") (-687 (-407 (-950 (-564))))) 83)) (-3027 (($ (-687 (-316 (-379)))) 114) (($ (-687 (-316 (-564)))) 103) (($ (-687 (-950 (-379)))) 136) (($ (-687 (-950 (-564)))) 125) (($ (-687 (-407 (-950 (-379))))) 92) (($ (-687 (-407 (-950 (-564))))) 76)) (-3019 (((-1267) $) 66)) (-2327 (((-860) $) 53) (($ (-642 (-330))) 60) (($ (-330)) 49) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 58) (($ (-687 (-339 (-2337 (QUOTE X) (QUOTE -2329)) (-2337) (-697)))) 50)))
+(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -2327 ($ (-687 (-339 (-2337 (QUOTE X) (QUOTE -2329)) (-2337) (-697))))))) (-1173)) (T -83))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-687 (-339 (-2337 (QUOTE X) (QUOTE -2329)) (-2337) (-697)))) (-5 *1 (-83 *3)) (-14 *3 (-1173)))))
+(-13 (-384) (-10 -8 (-15 -2327 ($ (-687 (-339 (-2337 (QUOTE X) (QUOTE -2329)) (-2337) (-697)))))))
+((-4278 (((-3 $ "failed") (-687 (-316 (-379)))) 113) (((-3 $ "failed") (-687 (-316 (-564)))) 101) (((-3 $ "failed") (-687 (-950 (-379)))) 135) (((-3 $ "failed") (-687 (-950 (-564)))) 124) (((-3 $ "failed") (-687 (-407 (-950 (-379))))) 89) (((-3 $ "failed") (-687 (-407 (-950 (-564))))) 75)) (-3027 (($ (-687 (-316 (-379)))) 109) (($ (-687 (-316 (-564)))) 97) (($ (-687 (-950 (-379)))) 131) (($ (-687 (-950 (-564)))) 120) (($ (-687 (-407 (-950 (-379))))) 85) (($ (-687 (-407 (-950 (-564))))) 68)) (-3019 (((-1267) $) 60)) (-2327 (((-860) $) 54) (($ (-642 (-330))) 48) (($ (-330)) 51) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 45) (($ (-687 (-339 (-2337 (QUOTE X)) (-2337) (-697)))) 46)))
+(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -2327 ($ (-687 (-339 (-2337 (QUOTE X)) (-2337) (-697))))))) (-1173)) (T -84))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-687 (-339 (-2337 (QUOTE X)) (-2337) (-697)))) (-5 *1 (-84 *3)) (-14 *3 (-1173)))))
+(-13 (-384) (-10 -8 (-15 -2327 ($ (-687 (-339 (-2337 (QUOTE X)) (-2337) (-697)))))))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 105) (((-3 $ "failed") (-1262 (-316 (-564)))) 94) (((-3 $ "failed") (-1262 (-950 (-379)))) 125) (((-3 $ "failed") (-1262 (-950 (-564)))) 115) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 83) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 70)) (-3027 (($ (-1262 (-316 (-379)))) 101) (($ (-1262 (-316 (-564)))) 90) (($ (-1262 (-950 (-379)))) 121) (($ (-1262 (-950 (-564)))) 111) (($ (-1262 (-407 (-950 (-379))))) 79) (($ (-1262 (-407 (-950 (-564))))) 63)) (-3019 (((-1267) $) 47)) (-2327 (((-860) $) 41) (($ (-642 (-330))) 50) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 53) (($ (-1262 (-339 (-2337 (QUOTE X)) (-2337) (-697)))) 38)))
+(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE X)) (-2337) (-697))))))) (-1173)) (T -85))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337 (QUOTE X)) (-2337) (-697)))) (-5 *1 (-85 *3)) (-14 *3 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE X)) (-2337) (-697)))))))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 80) (((-3 $ "failed") (-1262 (-316 (-564)))) 69) (((-3 $ "failed") (-1262 (-950 (-379)))) 100) (((-3 $ "failed") (-1262 (-950 (-564)))) 90) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 58) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 45)) (-3027 (($ (-1262 (-316 (-379)))) 76) (($ (-1262 (-316 (-564)))) 65) (($ (-1262 (-950 (-379)))) 96) (($ (-1262 (-950 (-564)))) 86) (($ (-1262 (-407 (-950 (-379))))) 54) (($ (-1262 (-407 (-950 (-564))))) 38)) (-3019 (((-1267) $) 126)) (-2327 (((-860) $) 120) (($ (-642 (-330))) 111) (($ (-330)) 117) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 115) (($ (-1262 (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697)))) 37)))
+(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697))))))) (-1173)) (T -86))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697)))) (-5 *1 (-86 *3)) (-14 *3 (-1173)))))
+(-13 (-441) (-10 -8 (-15 -2327 ($ (-1262 (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697)))))))
+((-4278 (((-3 $ "failed") (-687 (-316 (-379)))) 117) (((-3 $ "failed") (-687 (-316 (-564)))) 105) (((-3 $ "failed") (-687 (-950 (-379)))) 139) (((-3 $ "failed") (-687 (-950 (-564)))) 128) (((-3 $ "failed") (-687 (-407 (-950 (-379))))) 93) (((-3 $ "failed") (-687 (-407 (-950 (-564))))) 79)) (-3027 (($ (-687 (-316 (-379)))) 113) (($ (-687 (-316 (-564)))) 101) (($ (-687 (-950 (-379)))) 135) (($ (-687 (-950 (-564)))) 124) (($ (-687 (-407 (-950 (-379))))) 89) (($ (-687 (-407 (-950 (-564))))) 72)) (-3019 (((-1267) $) 63)) (-2327 (((-860) $) 57) (($ (-642 (-330))) 47) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 52) (($ (-687 (-339 (-2337 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2337) (-697)))) 48)))
+(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -2327 ($ (-687 (-339 (-2337 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2337) (-697))))))) (-1173)) (T -87))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-687 (-339 (-2337 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2337) (-697)))) (-5 *1 (-87 *3)) (-14 *3 (-1173)))))
+(-13 (-384) (-10 -8 (-15 -2327 ($ (-687 (-339 (-2337 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2337) (-697)))))))
+((-3019 (((-1267) $) 45)) (-2327 (((-860) $) 39) (($ (-1262 (-697))) 101) (($ (-642 (-330))) 31) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 34)))
+(((-88 |#1|) (-440) (-1173)) (T -88))
NIL
(-440)
-((-4284 (((-3 $ "failed") (-316 (-379))) 48) (((-3 $ "failed") (-316 (-564))) 53) (((-3 $ "failed") (-948 (-379))) 57) (((-3 $ "failed") (-948 (-564))) 61) (((-3 $ "failed") (-407 (-948 (-379)))) 43) (((-3 $ "failed") (-407 (-948 (-564)))) 36)) (-3120 (($ (-316 (-379))) 46) (($ (-316 (-564))) 51) (($ (-948 (-379))) 55) (($ (-948 (-564))) 59) (($ (-407 (-948 (-379)))) 41) (($ (-407 (-948 (-564)))) 33)) (-3111 (((-1264) $) 91)) (-2423 (((-858) $) 85) (($ (-641 (-330))) 79) (($ (-330)) 82) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 77) (($ (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695))) 32)))
-(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -2423 ($ (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695)))))) (-1170)) (T -89))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695))) (-5 *1 (-89 *3)) (-14 *3 (-1170)))))
-(-13 (-396) (-10 -8 (-15 -2423 ($ (-339 (-2435 (QUOTE X)) (-2435 (QUOTE -2425)) (-695))))))
-((-2206 (((-1259 (-685 |#1|)) (-685 |#1|)) 65)) (-3610 (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-917))))) |#2| (-917)) 54)) (-3885 (((-2 (|:| |minor| (-641 (-917))) (|:| -1606 |#2|) (|:| |minors| (-641 (-641 (-917)))) (|:| |ops| (-641 |#2|))) |#2| (-917)) 76 (|has| |#1| (-363)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -3610 ((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-917))))) |#2| (-917))) (-15 -2206 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -3885 ((-2 (|:| |minor| (-641 (-917))) (|:| -1606 |#2|) (|:| |minors| (-641 (-641 (-917)))) (|:| |ops| (-641 |#2|))) |#2| (-917))) |%noBranch|)) (-556) (-652 |#1|)) (T -90))
-((-3885 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |minor| (-641 (-917))) (|:| -1606 *3) (|:| |minors| (-641 (-641 (-917)))) (|:| |ops| (-641 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-652 *5)))) (-2206 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-685 *4)) (-4 *5 (-652 *4)))) (-3610 (*1 *2 *3 *4) (-12 (-4 *5 (-556)) (-5 *2 (-2 (|:| -2511 (-685 *5)) (|:| |vec| (-1259 (-641 (-917)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-652 *5)))))
-(-10 -7 (-15 -3610 ((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-917))))) |#2| (-917))) (-15 -2206 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -3885 ((-2 (|:| |minor| (-641 (-917))) (|:| -1606 |#2|) (|:| |minors| (-641 (-641 (-917)))) (|:| |ops| (-641 |#2|))) |#2| (-917))) |%noBranch|))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2462 ((|#1| $) 42)) (-1876 (((-112) $ (-767)) NIL)) (-4080 (($) NIL T CONST)) (-3780 ((|#1| |#1| $) 37)) (-2026 ((|#1| $) 35)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3149 ((|#1| $) NIL)) (-2566 (($ |#1| $) 38)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2554 ((|#1| $) 36)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 18)) (-2994 (($) 46)) (-1928 (((-767) $) 33)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) 17)) (-2423 (((-858) $) 32 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) NIL)) (-1888 (($ (-641 |#1|)) 44)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 15 (|has| |#1| (-1094)))) (-2181 (((-767) $) 12 (|has| $ (-6 -4407)))))
-(((-91 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -1888 ($ (-641 |#1|))))) (-1094)) (T -91))
-((-1888 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3)))))
-(-13 (-1115 |#1|) (-10 -8 (-15 -1888 ($ (-641 |#1|)))))
-((-2423 (((-858) $) 13) (($ (-1175)) 9) (((-1175) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -2423 ((-1175) |#1|)) (-15 -2423 (|#1| (-1175))) (-15 -2423 ((-858) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -2423 ((-1175) |#1|)) (-15 -2423 (|#1| (-1175))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-1175)) 17) (((-1175) $) 16)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
+((-4278 (((-3 $ "failed") (-316 (-379))) 48) (((-3 $ "failed") (-316 (-564))) 53) (((-3 $ "failed") (-950 (-379))) 57) (((-3 $ "failed") (-950 (-564))) 61) (((-3 $ "failed") (-407 (-950 (-379)))) 43) (((-3 $ "failed") (-407 (-950 (-564)))) 36)) (-3027 (($ (-316 (-379))) 46) (($ (-316 (-564))) 51) (($ (-950 (-379))) 55) (($ (-950 (-564))) 59) (($ (-407 (-950 (-379)))) 41) (($ (-407 (-950 (-564)))) 33)) (-3019 (((-1267) $) 91)) (-2327 (((-860) $) 85) (($ (-642 (-330))) 79) (($ (-330)) 82) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 77) (($ (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697))) 32)))
+(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -2327 ($ (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697)))))) (-1173)) (T -89))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697))) (-5 *1 (-89 *3)) (-14 *3 (-1173)))))
+(-13 (-396) (-10 -8 (-15 -2327 ($ (-339 (-2337 (QUOTE X)) (-2337 (QUOTE -2329)) (-697))))))
+((-1991 (((-1262 (-687 |#1|)) (-687 |#1|)) 65)) (-3699 (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 (-642 (-919))))) |#2| (-919)) 54)) (-1869 (((-2 (|:| |minor| (-642 (-919))) (|:| -1640 |#2|) (|:| |minors| (-642 (-642 (-919)))) (|:| |ops| (-642 |#2|))) |#2| (-919)) 76 (|has| |#1| (-363)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -3699 ((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 (-642 (-919))))) |#2| (-919))) (-15 -1991 ((-1262 (-687 |#1|)) (-687 |#1|))) (IF (|has| |#1| (-363)) (-15 -1869 ((-2 (|:| |minor| (-642 (-919))) (|:| -1640 |#2|) (|:| |minors| (-642 (-642 (-919)))) (|:| |ops| (-642 |#2|))) |#2| (-919))) |%noBranch|)) (-556) (-654 |#1|)) (T -90))
+((-1869 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |minor| (-642 (-919))) (|:| -1640 *3) (|:| |minors| (-642 (-642 (-919)))) (|:| |ops| (-642 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-919)) (-4 *3 (-654 *5)))) (-1991 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1262 (-687 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-687 *4)) (-4 *5 (-654 *4)))) (-3699 (*1 *2 *3 *4) (-12 (-4 *5 (-556)) (-5 *2 (-2 (|:| -1780 (-687 *5)) (|:| |vec| (-1262 (-642 (-919)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-919)) (-4 *3 (-654 *5)))))
+(-10 -7 (-15 -3699 ((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 (-642 (-919))))) |#2| (-919))) (-15 -1991 ((-1262 (-687 |#1|)) (-687 |#1|))) (IF (|has| |#1| (-363)) (-15 -1869 ((-2 (|:| |minor| (-642 (-919))) (|:| -1640 |#2|) (|:| |minors| (-642 (-642 (-919)))) (|:| |ops| (-642 |#2|))) |#2| (-919))) |%noBranch|))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2362 ((|#1| $) 42)) (-3697 (((-112) $ (-769)) NIL)) (-1976 (($) NIL T CONST)) (-1428 ((|#1| |#1| $) 37)) (-1744 ((|#1| $) 35)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2730 ((|#1| $) NIL)) (-3183 (($ |#1| $) 38)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3388 ((|#1| $) 36)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 18)) (-2972 (($) 46)) (-1930 (((-769) $) 33)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) 17)) (-2327 (((-860) $) 32 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) NIL)) (-4369 (($ (-642 |#1|)) 44)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 15 (|has| |#1| (-1097)))) (-2127 (((-769) $) 12 (|has| $ (-6 -4410)))))
+(((-91 |#1|) (-13 (-1118 |#1|) (-10 -8 (-15 -4369 ($ (-642 |#1|))))) (-1097)) (T -91))
+((-4369 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-91 *3)))))
+(-13 (-1118 |#1|) (-10 -8 (-15 -4369 ($ (-642 |#1|)))))
+((-2327 (((-860) $) 13) (($ (-1178)) 9) (((-1178) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -2327 ((-1178) |#1|)) (-15 -2327 (|#1| (-1178))) (-15 -2327 ((-860) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -2327 ((-1178) |#1|)) (-15 -2327 (|#1| (-1178))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-1178)) 17) (((-1178) $) 16)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
(((-93) (-140)) (T -93))
NIL
-(-13 (-1094) (-490 (-1175)))
-(((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-858)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T))
-((-3837 (($ $) 10)) (-3848 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -3848 (|#1| |#1|)) (-15 -3837 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1097) (-490 (-1178)))
+(((-102) . T) ((-614 #0=(-1178)) . T) ((-611 (-860)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1097) . T))
+((-3803 (($ $) 10)) (-3816 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -3816 (|#1| |#1|)) (-15 -3803 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -3848 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)))
-((-3811 (($ $) 11)) (-3787 (($ $) 10)) (-3837 (($ $) 9)) (-3848 (($ $) 8)) (-3825 (($ $) 7)) (-3799 (($ $) 6)))
+(-10 -8 (-15 -3816 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)))
+((-3776 (($ $) 11)) (-3750 (($ $) 10)) (-3803 (($ $) 9)) (-3816 (($ $) 8)) (-3791 (($ $) 7)) (-3763 (($ $) 6)))
(((-95) (-140)) (T -95))
-((-3811 (*1 *1 *1) (-4 *1 (-95))) (-3787 (*1 *1 *1) (-4 *1 (-95))) (-3837 (*1 *1 *1) (-4 *1 (-95))) (-3848 (*1 *1 *1) (-4 *1 (-95))) (-3825 (*1 *1 *1) (-4 *1 (-95))) (-3799 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -3799 ($ $)) (-15 -3825 ($ $)) (-15 -3848 ($ $)) (-15 -3837 ($ $)) (-15 -3787 ($ $)) (-15 -3811 ($ $))))
-((-3009 (((-112) $ $) NIL)) (-2562 (((-1129) $) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-96) (-13 (-1077) (-10 -8 (-15 -2562 ((-1129) $))))) (T -96))
-((-2562 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96)))))
-(-13 (-1077) (-10 -8 (-15 -2562 ((-1129) $))))
-((-3009 (((-112) $ $) NIL)) (-4266 (((-379) (-1152) (-379)) 45) (((-379) (-1152) (-1152) (-379)) 43)) (-1952 (((-379) (-379)) 35)) (-2797 (((-1264)) 38)) (-2766 (((-1152) $) NIL)) (-3089 (((-379) (-1152) (-1152)) 49) (((-379) (-1152)) 51)) (-4052 (((-1114) $) NIL)) (-1558 (((-379) (-1152) (-1152)) 50)) (-4171 (((-379) (-1152) (-1152)) 52) (((-379) (-1152)) 53)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-97) (-13 (-1094) (-10 -7 (-15 -3089 ((-379) (-1152) (-1152))) (-15 -3089 ((-379) (-1152))) (-15 -4171 ((-379) (-1152) (-1152))) (-15 -4171 ((-379) (-1152))) (-15 -1558 ((-379) (-1152) (-1152))) (-15 -2797 ((-1264))) (-15 -1952 ((-379) (-379))) (-15 -4266 ((-379) (-1152) (-379))) (-15 -4266 ((-379) (-1152) (-1152) (-379))) (-6 -4407)))) (T -97))
-((-3089 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-4171 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1558 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2797 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97)))) (-1952 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-4266 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))) (-4266 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))))
-(-13 (-1094) (-10 -7 (-15 -3089 ((-379) (-1152) (-1152))) (-15 -3089 ((-379) (-1152))) (-15 -4171 ((-379) (-1152) (-1152))) (-15 -4171 ((-379) (-1152))) (-15 -1558 ((-379) (-1152) (-1152))) (-15 -2797 ((-1264))) (-15 -1952 ((-379) (-379))) (-15 -4266 ((-379) (-1152) (-379))) (-15 -4266 ((-379) (-1152) (-1152) (-379))) (-6 -4407)))
+((-3776 (*1 *1 *1) (-4 *1 (-95))) (-3750 (*1 *1 *1) (-4 *1 (-95))) (-3803 (*1 *1 *1) (-4 *1 (-95))) (-3816 (*1 *1 *1) (-4 *1 (-95))) (-3791 (*1 *1 *1) (-4 *1 (-95))) (-3763 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -3763 ($ $)) (-15 -3791 ($ $)) (-15 -3816 ($ $)) (-15 -3803 ($ $)) (-15 -3750 ($ $)) (-15 -3776 ($ $))))
+((-2907 (((-112) $ $) NIL)) (-2461 (((-1132) $) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 15) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-96) (-13 (-1080) (-10 -8 (-15 -2461 ((-1132) $))))) (T -96))
+((-2461 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-96)))))
+(-13 (-1080) (-10 -8 (-15 -2461 ((-1132) $))))
+((-2907 (((-112) $ $) NIL)) (-3578 (((-379) (-1155) (-379)) 45) (((-379) (-1155) (-1155) (-379)) 43)) (-1940 (((-379) (-379)) 35)) (-4271 (((-1267)) 38)) (-3315 (((-1155) $) NIL)) (-1679 (((-379) (-1155) (-1155)) 49) (((-379) (-1155)) 51)) (-4033 (((-1117) $) NIL)) (-2388 (((-379) (-1155) (-1155)) 50)) (-1934 (((-379) (-1155) (-1155)) 52) (((-379) (-1155)) 53)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-97) (-13 (-1097) (-10 -7 (-15 -1679 ((-379) (-1155) (-1155))) (-15 -1679 ((-379) (-1155))) (-15 -1934 ((-379) (-1155) (-1155))) (-15 -1934 ((-379) (-1155))) (-15 -2388 ((-379) (-1155) (-1155))) (-15 -4271 ((-1267))) (-15 -1940 ((-379) (-379))) (-15 -3578 ((-379) (-1155) (-379))) (-15 -3578 ((-379) (-1155) (-1155) (-379))) (-6 -4410)))) (T -97))
+((-1679 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1934 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2388 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))) (-4271 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-97)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-3578 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1155)) (-5 *1 (-97)))) (-3578 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1155)) (-5 *1 (-97)))))
+(-13 (-1097) (-10 -7 (-15 -1679 ((-379) (-1155) (-1155))) (-15 -1679 ((-379) (-1155))) (-15 -1934 ((-379) (-1155) (-1155))) (-15 -1934 ((-379) (-1155))) (-15 -2388 ((-379) (-1155) (-1155))) (-15 -4271 ((-1267))) (-15 -1940 ((-379) (-379))) (-15 -3578 ((-379) (-1155) (-379))) (-15 -3578 ((-379) (-1155) (-1155) (-379))) (-6 -4410)))
NIL
(((-98) (-140)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4407) (-6 (-4409 "*")) (-6 -4408) (-6 -4404) (-6 -4402) (-6 -4401) (-6 -4400) (-6 -4405) (-6 -4399) (-6 -4398) (-6 -4397) (-6 -4396) (-6 -4395) (-6 -4403) (-6 -4406) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4394)))
-((-3009 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-2333 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-564))) 24)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 16)) (-4052 (((-1114) $) NIL)) (-4366 ((|#1| $ |#1|) 13)) (-3185 (($ $ $) NIL)) (-1542 (($ $ $) NIL)) (-2423 (((-858) $) 22)) (-1860 (((-112) $ $) NIL)) (-2417 (($) 8 T CONST)) (-2974 (((-112) $ $) 10)) (-3092 (($ $ $) NIL)) (** (($ $ (-917)) 34) (($ $ (-767)) NIL) (($ $ (-564)) 18)) (* (($ $ $) 35)))
-(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -2333 ($ (-1 |#1| |#1|))) (-15 -2333 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2333 ($ (-1 |#1| |#1| (-564)))))) (-1045)) (T -99))
-((-2333 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-2333 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-2333 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1045)) (-5 *1 (-99 *3)))))
-(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -2333 ($ (-1 |#1| |#1|))) (-15 -2333 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2333 ($ (-1 |#1| |#1| (-564))))))
-((-1512 (((-418 |#2|) |#2| (-641 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -1512 ((-418 |#2|) |#2| |#2|)) (-15 -1512 ((-418 |#2|) |#2| (-641 |#2|)))) (-13 (-452) (-147)) (-1235 |#1|)) (T -100))
-((-1512 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-1512 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -1512 ((-418 |#2|) |#2| |#2|)) (-15 -1512 ((-418 |#2|) |#2| (-641 |#2|))))
-((-3009 (((-112) $ $) 10)))
-(((-101 |#1|) (-10 -8 (-15 -3009 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -3009 ((-112) |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-2974 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4410) (-6 (-4412 "*")) (-6 -4411) (-6 -4407) (-6 -4405) (-6 -4404) (-6 -4403) (-6 -4408) (-6 -4402) (-6 -4401) (-6 -4400) (-6 -4399) (-6 -4398) (-6 -4406) (-6 -4409) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4397)))
+((-2907 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-2943 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-564))) 24)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 16)) (-4033 (((-1117) $) NIL)) (-4368 ((|#1| $ |#1|) 13)) (-1389 (($ $ $) NIL)) (-3759 (($ $ $) NIL)) (-2327 (((-860) $) 22)) (-1648 (((-112) $ $) NIL)) (-2322 (($) 8 T CONST)) (-2872 (((-112) $ $) 10)) (-2998 (($ $ $) NIL)) (** (($ $ (-919)) 34) (($ $ (-769)) NIL) (($ $ (-564)) 18)) (* (($ $ $) 35)))
+(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -2943 ($ (-1 |#1| |#1|))) (-15 -2943 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2943 ($ (-1 |#1| |#1| (-564)))))) (-1047)) (T -99))
+((-2943 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-99 *3)))) (-2943 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-99 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1047)) (-5 *1 (-99 *3)))))
+(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -2943 ($ (-1 |#1| |#1|))) (-15 -2943 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2943 ($ (-1 |#1| |#1| (-564))))))
+((-2269 (((-418 |#2|) |#2| (-642 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -2269 ((-418 |#2|) |#2| |#2|)) (-15 -2269 ((-418 |#2|) |#2| (-642 |#2|)))) (-13 (-452) (-147)) (-1238 |#1|)) (T -100))
+((-2269 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-2269 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1238 *4)))))
+(-10 -7 (-15 -2269 ((-418 |#2|) |#2| |#2|)) (-15 -2269 ((-418 |#2|) |#2| (-642 |#2|))))
+((-2907 (((-112) $ $) 10)))
+(((-101 |#1|) (-10 -8 (-15 -2907 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -2907 ((-112) |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2872 (((-112) $ $) 6)))
(((-102) (-140)) (T -102))
-((-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2974 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -2974 ((-112) $ $)) (-15 -3009 ((-112) $ $))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2128 ((|#1| $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-2925 ((|#1| $ |#1|) 24 (|has| $ (-6 -4408)))) (-4221 (($ $ $) NIL (|has| $ (-6 -4408)))) (-2003 (($ $ $) NIL (|has| $ (-6 -4408)))) (-2954 (($ $ (-641 |#1|)) 34)) (-3904 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "left" $) NIL (|has| $ (-6 -4408))) (($ $ "right" $) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4337 (($ $) 12)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) NIL)) (-1675 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3667 (($ $ |#1| $) 36)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3218 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3193 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|)) 53)) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-4328 (($ $) 11)) (-2730 (((-641 |#1|) $) NIL)) (-1841 (((-112) $) 13)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 9)) (-2994 (($) 35)) (-4366 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3277 (((-564) $ $) NIL)) (-3206 (((-112) $) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) NIL)) (-4059 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1442 (($ (-767) |#1|) 37)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -1442 ($ (-767) |#1|)) (-15 -2954 ($ $ (-641 |#1|))) (-15 -3218 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3218 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3193 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3193 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|))))) (-1094)) (T -103))
-((-1442 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))) (-2954 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-3218 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))) (-3218 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -1442 ($ (-767) |#1|)) (-15 -2954 ($ $ (-641 |#1|))) (-15 -3218 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3218 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3193 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3193 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|)))))
-((-2401 ((|#3| |#2| |#2|) 36)) (-2467 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4409 "*"))))) (-4075 ((|#3| |#2| |#2|) 38)) (-1645 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4409 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2401 (|#3| |#2| |#2|)) (-15 -4075 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4409 "*"))) (PROGN (-15 -2467 (|#1| |#2| |#2|)) (-15 -1645 (|#1| |#2|))) |%noBranch|)) (-1045) (-1235 |#1|) (-683 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104))
-((-1645 (*1 *2 *3) (-12 (|has| *2 (-6 (-4409 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-2467 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4409 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-4075 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-2401 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))))
-(-10 -7 (-15 -2401 (|#3| |#2| |#2|)) (-15 -4075 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4409 "*"))) (PROGN (-15 -2467 (|#1| |#2| |#2|)) (-15 -1645 (|#1| |#2|))) |%noBranch|))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-2710 (((-641 (-1170))) 37)) (-4236 (((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170)) 39)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-105) (-13 (-1094) (-10 -7 (-15 -2710 ((-641 (-1170)))) (-15 -4236 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4407)))) (T -105))
-((-2710 (*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105)))) (-4236 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225))))) (-5 *1 (-105)))))
-(-13 (-1094) (-10 -7 (-15 -2710 ((-641 (-1170)))) (-15 -4236 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4407)))
-((-1863 (($ (-641 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -1863 (|#1| (-641 |#2|)))) (-107 |#2|) (-1209)) (T -106))
-NIL
-(-10 -8 (-15 -1863 (|#1| (-641 |#2|))))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) 8)) (-4080 (($) 7 T CONST)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3149 ((|#1| $) 40)) (-2566 (($ |#1| $) 41)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) 43)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-107 |#1|) (-140) (-1209)) (T -107))
-((-1863 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-2566 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))))
-(-13 (-489 |t#1|) (-10 -8 (-6 -4408) (-15 -1863 ($ (-641 |t#1|))) (-15 -2554 (|t#1| $)) (-15 -2566 ($ |t#1| $)) (-15 -3149 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4198 (((-564) $) NIL (|has| (-564) (-307)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL (|has| (-564) (-816)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1034 (-564))))) (-3120 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1034 (-564)))) (((-564) $) NIL (|has| (-564) (-1034 (-564))))) (-2946 (($ $ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-564) (-545)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2384 (((-112) $) NIL (|has| (-564) (-816)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-564) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-564) (-882 (-379))))) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL)) (-2323 (((-564) $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-3326 (((-112) $) NIL (|has| (-564) (-816)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| (-564) (-846)))) (-4357 (($ (-1 (-564) (-564)) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-564) (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2882 (((-564) $) NIL (|has| (-564) (-545)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3291 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-1700 (((-767) $) NIL)) (-4366 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2827 (($ $) NIL)) (-2336 (((-564) $) NIL)) (-1311 (((-888 (-564)) $) NIL (|has| (-564) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-564) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1018))) (((-225) $) NIL (|has| (-564) (-1018)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL) (((-1000 2) $) 10)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| (-564) (-905))) (|has| (-564) (-145))))) (-3719 (((-767)) NIL T CONST)) (-3448 (((-564) $) NIL (|has| (-564) (-545)))) (-1595 (($ (-407 (-564))) 9)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3673 (($ $) NIL (|has| (-564) (-816)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3034 (((-112) $ $) NIL (|has| (-564) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2999 (((-112) $ $) NIL (|has| (-564) (-846)))) (-3092 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
-(((-108) (-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 2)) (-10 -8 (-15 -1687 ((-407 (-564)) $)) (-15 -1595 ($ (-407 (-564))))))) (T -108))
-((-1687 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) (-1595 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))))
-(-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 2)) (-10 -8 (-15 -1687 ((-407 (-564)) $)) (-15 -1595 ($ (-407 (-564))))))
-((-3464 (((-641 (-961)) $) 13)) (-2562 (((-506) $) 9)) (-2423 (((-858) $) 20)) (-4074 (($ (-506) (-641 (-961))) 15)))
-(((-109) (-13 (-611 (-858)) (-10 -8 (-15 -2562 ((-506) $)) (-15 -3464 ((-641 (-961)) $)) (-15 -4074 ($ (-506) (-641 (-961))))))) (T -109))
-((-2562 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-109)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-641 (-961))) (-5 *1 (-109)))) (-4074 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-641 (-961))) (-5 *1 (-109)))))
-(-13 (-611 (-858)) (-10 -8 (-15 -2562 ((-506) $)) (-15 -3464 ((-641 (-961)) $)) (-15 -4074 ($ (-506) (-641 (-961))))))
-((-3009 (((-112) $ $) NIL)) (-3021 (($ $) NIL)) (-2385 (($ $ $) NIL)) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3963 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-2484 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-3904 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4408))) (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-2591 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-1316 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-2726 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4408)))) (-2652 (((-112) $ (-564)) NIL)) (-3998 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-3035 (((-641 (-112)) $) NIL (|has| $ (-6 -4407)))) (-2372 (($ $ $) NIL)) (-2351 (($ $) NIL)) (-3452 (($ $ $) NIL)) (-4238 (($ (-767) (-112)) 10)) (-3480 (($ $ $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL)) (-3669 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1554 (((-641 (-112)) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL)) (-2714 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-4248 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 (((-112) $) NIL (|has| (-564) (-846)))) (-2139 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1592 (($ $ (-112)) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-2075 (((-641 (-112)) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) NIL) (((-112) $ (-564) (-112)) NIL)) (-2114 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-4062 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-2435 (($ (-641 (-112))) NIL)) (-3696 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2423 (((-858) $) NIL)) (-1987 (($ (-767) (-112)) 11)) (-1860 (((-112) $ $) NIL)) (-1368 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-2358 (($ $ $) NIL)) (-3064 (($ $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)) (-3051 (($ $ $) NIL)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -1987 ($ (-767) (-112)))))) (T -110))
-((-1987 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -1987 ($ (-767) (-112)))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ |#1| $) 24) (($ $ |#2|) 27)))
-(((-111 |#1| |#2|) (-140) (-1045) (-1045)) (T -111))
-NIL
-(-13 (-644 |t#1|) (-1051 |t#2|) (-10 -7 (-6 -4402) (-6 -4401)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-1051 |#2|) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-3021 (($ $) 13)) (-2385 (($ $ $) 18)) (-3396 (($) 7 T CONST)) (-1573 (($ $) 6)) (-2622 (((-767)) 26)) (-2534 (($) 34)) (-2372 (($ $ $) 16)) (-2351 (($ $) 9)) (-3452 (($ $ $) 19)) (-3480 (($ $ $) 20)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-3256 (((-917) $) 32)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) 30)) (-1561 (($ $ $) 22)) (-4052 (((-1114) $) NIL)) (-2136 (($) 8 T CONST)) (-2472 (($ $ $) 23)) (-1311 (((-536) $) 36)) (-2423 (((-858) $) 38)) (-1860 (((-112) $ $) NIL)) (-2358 (($ $ $) 14)) (-3064 (($ $ $) 17)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 21)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 24)) (-3051 (($ $ $) 15)))
-(((-112) (-13 (-840) (-657) (-963) (-612 (-536)) (-10 -8 (-15 -2385 ($ $ $)) (-15 -3480 ($ $ $)) (-15 -3452 ($ $ $)) (-15 -1573 ($ $))))) (T -112))
-((-2385 (*1 *1 *1 *1) (-5 *1 (-112))) (-3480 (*1 *1 *1 *1) (-5 *1 (-112))) (-3452 (*1 *1 *1 *1) (-5 *1 (-112))) (-1573 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-840) (-657) (-963) (-612 (-536)) (-10 -8 (-15 -2385 ($ $ $)) (-15 -3480 ($ $ $)) (-15 -3452 ($ $ $)) (-15 -1573 ($ $))))
-((-3195 (((-3 (-1 |#1| (-641 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-641 |#1|))) 11) (((-3 |#1| "failed") (-114) (-641 |#1|)) 25)) (-2551 (((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-641 (-1 |#1| (-641 |#1|)))) 30)) (-3540 (((-114) |#1|) 63)) (-3239 (((-3 |#1| "failed") (-114)) 58)))
-(((-113 |#1|) (-10 -7 (-15 -3195 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -3195 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -3195 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3195 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -2551 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2551 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2551 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (-15 -3540 ((-114) |#1|)) (-15 -3239 ((-3 |#1| "failed") (-114)))) (-1094)) (T -113))
-((-3239 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1094)))) (-3540 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1094)))) (-2551 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-2551 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-2551 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3195 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3195 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1094)))))
-(-10 -7 (-15 -3195 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -3195 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -3195 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3195 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -2551 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2551 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2551 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (-15 -3540 ((-114) |#1|)) (-15 -3239 ((-3 |#1| "failed") (-114))))
-((-3009 (((-112) $ $) NIL)) (-3476 (((-767) $) 91) (($ $ (-767)) 37)) (-1559 (((-112) $) 41)) (-2646 (($ $ (-1152) (-770)) 58) (($ $ (-506) (-770)) 33)) (-1632 (($ $ (-45 (-1152) (-770))) 16)) (-3140 (((-3 (-770) "failed") $ (-1152)) 27) (((-687 (-770)) $ (-506)) 32)) (-3464 (((-45 (-1152) (-770)) $) 15)) (-4232 (($ (-1170)) 20) (($ (-1170) (-767)) 23) (($ (-1170) (-55)) 24)) (-2463 (((-112) $) 39)) (-2985 (((-112) $) 43)) (-2562 (((-1170) $) 8)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-3679 (((-112) $ (-1170)) 11)) (-1673 (($ $ (-1 (-536) (-641 (-536)))) 64) (((-3 (-1 (-536) (-641 (-536))) "failed") $) 71)) (-4052 (((-1114) $) NIL)) (-1764 (((-112) $ (-506)) 36)) (-3977 (($ $ (-1 (-112) $ $)) 45)) (-1630 (((-3 (-1 (-858) (-641 (-858))) "failed") $) 69) (($ $ (-1 (-858) (-641 (-858)))) 51) (($ $ (-1 (-858) (-858))) 53)) (-1298 (($ $ (-1152)) 55) (($ $ (-506)) 56)) (-3926 (($ $) 77)) (-3768 (($ $ (-1 (-112) $ $)) 46)) (-2423 (((-858) $) 60)) (-1860 (((-112) $ $) NIL)) (-1444 (($ $ (-506)) 34)) (-2524 (((-55) $) 72)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 89)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 103)))
-(((-114) (-13 (-846) (-831 (-1170)) (-10 -8 (-15 -3464 ((-45 (-1152) (-770)) $)) (-15 -3926 ($ $)) (-15 -4232 ($ (-1170))) (-15 -4232 ($ (-1170) (-767))) (-15 -4232 ($ (-1170) (-55))) (-15 -2463 ((-112) $)) (-15 -1559 ((-112) $)) (-15 -2985 ((-112) $)) (-15 -3476 ((-767) $)) (-15 -3476 ($ $ (-767))) (-15 -3977 ($ $ (-1 (-112) $ $))) (-15 -3768 ($ $ (-1 (-112) $ $))) (-15 -1630 ((-3 (-1 (-858) (-641 (-858))) "failed") $)) (-15 -1630 ($ $ (-1 (-858) (-641 (-858))))) (-15 -1630 ($ $ (-1 (-858) (-858)))) (-15 -1673 ($ $ (-1 (-536) (-641 (-536))))) (-15 -1673 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -3679 ((-112) $ (-1170))) (-15 -1764 ((-112) $ (-506))) (-15 -1444 ($ $ (-506))) (-15 -1298 ($ $ (-1152))) (-15 -1298 ($ $ (-506))) (-15 -3140 ((-3 (-770) "failed") $ (-1152))) (-15 -3140 ((-687 (-770)) $ (-506))) (-15 -2646 ($ $ (-1152) (-770))) (-15 -2646 ($ $ (-506) (-770))) (-15 -1632 ($ $ (-45 (-1152) (-770))))))) (T -114))
-((-3464 (*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-770))) (-5 *1 (-114)))) (-3926 (*1 *1 *1) (-5 *1 (-114))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) (-4232 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *1 (-114)))) (-4232 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-55)) (-5 *1 (-114)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2985 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) (-3476 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) (-3977 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1630 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-858) (-641 (-858)))) (-5 *1 (-114)))) (-1630 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-641 (-858)))) (-5 *1 (-114)))) (-1630 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-858))) (-5 *1 (-114)))) (-1673 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-1673 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1764 (*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1444 (*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) (-1298 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-1298 (*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) (-3140 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-770)) (-5 *1 (-114)))) (-3140 (*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-770))) (-5 *1 (-114)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-770)) (-5 *1 (-114)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-770)) (-5 *1 (-114)))) (-1632 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-770))) (-5 *1 (-114)))))
-(-13 (-846) (-831 (-1170)) (-10 -8 (-15 -3464 ((-45 (-1152) (-770)) $)) (-15 -3926 ($ $)) (-15 -4232 ($ (-1170))) (-15 -4232 ($ (-1170) (-767))) (-15 -4232 ($ (-1170) (-55))) (-15 -2463 ((-112) $)) (-15 -1559 ((-112) $)) (-15 -2985 ((-112) $)) (-15 -3476 ((-767) $)) (-15 -3476 ($ $ (-767))) (-15 -3977 ($ $ (-1 (-112) $ $))) (-15 -3768 ($ $ (-1 (-112) $ $))) (-15 -1630 ((-3 (-1 (-858) (-641 (-858))) "failed") $)) (-15 -1630 ($ $ (-1 (-858) (-641 (-858))))) (-15 -1630 ($ $ (-1 (-858) (-858)))) (-15 -1673 ($ $ (-1 (-536) (-641 (-536))))) (-15 -1673 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -3679 ((-112) $ (-1170))) (-15 -1764 ((-112) $ (-506))) (-15 -1444 ($ $ (-506))) (-15 -1298 ($ $ (-1152))) (-15 -1298 ($ $ (-506))) (-15 -3140 ((-3 (-770) "failed") $ (-1152))) (-15 -3140 ((-687 (-770)) $ (-506))) (-15 -2646 ($ $ (-1152) (-770))) (-15 -2646 ($ $ (-506) (-770))) (-15 -1632 ($ $ (-45 (-1152) (-770))))))
-((-3308 (((-564) |#2|) 41)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -3308 ((-564) |#2|))) (-13 (-363) (-1034 (-407 (-564)))) (-1235 |#1|)) (T -115))
-((-3308 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-564)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -3308 ((-564) |#2|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3700 (($ $ (-564)) NIL)) (-3162 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-3537 (($ (-1166 (-564)) (-564)) NIL)) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-4035 (($ $) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-3744 (((-767) $) NIL)) (-4112 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3056 (((-564)) NIL)) (-2028 (((-564) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4016 (($ $ (-564)) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-1982 (((-1150 (-564)) $) NIL)) (-2732 (($ $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3646 (((-564) $ (-564)) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
-(((-116 |#1|) (-865 |#1|) (-564)) (T -116))
-NIL
-(-865 |#1|)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4198 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-905)))) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-905)))) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL (|has| (-116 |#1|) (-816)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-564))))) (-3120 (((-116 |#1|) $) NIL) (((-1170) $) NIL (|has| (-116 |#1|) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-116 |#1|) (-1034 (-564)))) (((-564) $) NIL (|has| (-116 |#1|) (-1034 (-564))))) (-2963 (($ $) NIL) (($ (-564) $) NIL)) (-2946 (($ $ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-116 |#1|))) (|:| |vec| (-1259 (-116 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-116 |#1|)) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-116 |#1|) (-545)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2384 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-116 |#1|) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-116 |#1|) (-882 (-379))))) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL)) (-2323 (((-116 |#1|) $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1145)))) (-3326 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-1497 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-4357 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-116 |#1|) (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-2882 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-905)))) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3291 (($ $ (-641 (-116 |#1|)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-1170)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|)))) (($ $ (-1170) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|))))) (-1700 (((-767) $) NIL)) (-4366 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2827 (($ $) NIL)) (-2336 (((-116 |#1|) $) NIL)) (-1311 (((-888 (-564)) $) NIL (|has| (-116 |#1|) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-116 |#1|) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1018))) (((-225) $) NIL (|has| (-116 |#1|) (-1018)))) (-3316 (((-174 (-407 (-564))) $) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-116 |#1|)) NIL) (($ (-1170)) NIL (|has| (-116 |#1|) (-1034 (-1170))))) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-905))) (|has| (-116 |#1|) (-145))))) (-3719 (((-767)) NIL T CONST)) (-3448 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3646 (((-407 (-564)) $ (-564)) NIL)) (-3673 (($ $) NIL (|has| (-116 |#1|) (-816)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-116 |#1|) (-896 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3034 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-2999 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-3092 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-988 (-116 |#1|)) (-10 -8 (-15 -3646 ((-407 (-564)) $ (-564))) (-15 -3316 ((-174 (-407 (-564))) $)) (-15 -2963 ($ $)) (-15 -2963 ($ (-564) $)))) (-564)) (T -117))
-((-3646 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) (-2963 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) (-2963 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-988 (-116 |#1|)) (-10 -8 (-15 -3646 ((-407 (-564)) $ (-564))) (-15 -3316 ((-174 (-407 (-564))) $)) (-15 -2963 ($ $)) (-15 -2963 ($ (-564) $))))
-((-3904 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3573 (((-641 $) $) 31)) (-1675 (((-112) $ $) 36)) (-3369 (((-112) |#2| $) 40)) (-2730 (((-641 |#2|) $) 25)) (-1841 (((-112) $) 18)) (-4366 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3206 (((-112) $) 57)) (-2423 (((-858) $) 47)) (-3154 (((-641 $) $) 32)) (-2974 (((-112) $ $) 38)) (-2181 (((-767) $) 50)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -2423 ((-858) |#1|)) (-15 -3904 (|#1| |#1| "right" |#1|)) (-15 -3904 (|#1| |#1| "left" |#1|)) (-15 -4366 (|#1| |#1| "right")) (-15 -4366 (|#1| |#1| "left")) (-15 -3904 (|#2| |#1| "value" |#2|)) (-15 -1675 ((-112) |#1| |#1|)) (-15 -2730 ((-641 |#2|) |#1|)) (-15 -3206 ((-112) |#1|)) (-15 -4366 (|#2| |#1| "value")) (-15 -1841 ((-112) |#1|)) (-15 -3573 ((-641 |#1|) |#1|)) (-15 -3154 ((-641 |#1|) |#1|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -3369 ((-112) |#2| |#1|)) (-15 -2181 ((-767) |#1|))) (-119 |#2|) (-1209)) (T -118))
-NIL
-(-10 -8 (-15 -2423 ((-858) |#1|)) (-15 -3904 (|#1| |#1| "right" |#1|)) (-15 -3904 (|#1| |#1| "left" |#1|)) (-15 -4366 (|#1| |#1| "right")) (-15 -4366 (|#1| |#1| "left")) (-15 -3904 (|#2| |#1| "value" |#2|)) (-15 -1675 ((-112) |#1| |#1|)) (-15 -2730 ((-641 |#2|) |#1|)) (-15 -3206 ((-112) |#1|)) (-15 -4366 (|#2| |#1| "value")) (-15 -1841 ((-112) |#1|)) (-15 -3573 ((-641 |#1|) |#1|)) (-15 -3154 ((-641 |#1|) |#1|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -3369 ((-112) |#2| |#1|)) (-15 -2181 ((-767) |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2128 ((|#1| $) 49)) (-1876 (((-112) $ (-767)) 8)) (-2925 ((|#1| $ |#1|) 40 (|has| $ (-6 -4408)))) (-4221 (($ $ $) 53 (|has| $ (-6 -4408)))) (-2003 (($ $ $) 55 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4408))) (($ $ "left" $) 56 (|has| $ (-6 -4408))) (($ $ "right" $) 54 (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 42 (|has| $ (-6 -4408)))) (-4080 (($) 7 T CONST)) (-4337 (($ $) 58)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) 51)) (-1675 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-4328 (($ $) 60)) (-2730 (((-641 |#1|) $) 46)) (-1841 (((-112) $) 50)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3277 (((-564) $ $) 45)) (-3206 (((-112) $) 47)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) 52)) (-4059 (((-112) $ $) 44 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-119 |#1|) (-140) (-1209)) (T -119))
-((-4328 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-4337 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-3904 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4408)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-2003 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-3904 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4408)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-4221 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))))
-(-13 (-1006 |t#1|) (-10 -8 (-15 -4328 ($ $)) (-15 -4366 ($ $ "left")) (-15 -4337 ($ $)) (-15 -4366 ($ $ "right")) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3904 ($ $ "left" $)) (-15 -2003 ($ $ $)) (-15 -3904 ($ $ "right" $)) (-15 -4221 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-1397 (((-112) |#1|) 29)) (-1344 (((-767) (-767)) 28) (((-767)) 27)) (-3259 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
-(((-120 |#1|) (-10 -7 (-15 -3259 ((-112) |#1|)) (-15 -3259 ((-112) |#1| (-112))) (-15 -1344 ((-767))) (-15 -1344 ((-767) (-767))) (-15 -1397 ((-112) |#1|))) (-1235 (-564))) (T -120))
-((-1397 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-1344 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-1344 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3259 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3259 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
-(-10 -7 (-15 -3259 ((-112) |#1|)) (-15 -3259 ((-112) |#1| (-112))) (-15 -1344 ((-767))) (-15 -1344 ((-767) (-767))) (-15 -1397 ((-112) |#1|)))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2128 ((|#1| $) 18)) (-1335 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 25)) (-1876 (((-112) $ (-767)) NIL)) (-2925 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-4221 (($ $ $) 21 (|has| $ (-6 -4408)))) (-2003 (($ $ $) 23 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "left" $) NIL (|has| $ (-6 -4408))) (($ $ "right" $) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4337 (($ $) 20)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) NIL)) (-1675 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3667 (($ $ |#1| $) 26)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-4328 (($ $) 22)) (-2730 (((-641 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1792 (($ |#1| $) 27)) (-2566 (($ |#1| $) 15)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 17)) (-2994 (($) 11)) (-4366 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3277 (((-564) $ $) NIL)) (-3206 (((-112) $) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) NIL)) (-4059 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1457 (($ (-641 |#1|)) 16)) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4408) (-6 -4407) (-15 -1457 ($ (-641 |#1|))) (-15 -2566 ($ |#1| $)) (-15 -1792 ($ |#1| $)) (-15 -1335 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-846)) (T -121))
-((-1457 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3)))) (-2566 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-1792 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-1335 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-846)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4408) (-6 -4407) (-15 -1457 ($ (-641 |#1|))) (-15 -2566 ($ |#1| $)) (-15 -1792 ($ |#1| $)) (-15 -1335 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-3021 (($ $) 13)) (-2351 (($ $) 11)) (-3452 (($ $ $) 23)) (-3480 (($ $ $) 21)) (-3064 (($ $ $) 19)) (-3051 (($ $ $) 17)))
-(((-122 |#1|) (-10 -8 (-15 -3452 (|#1| |#1| |#1|)) (-15 -3480 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3051 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -3452 (|#1| |#1| |#1|)) (-15 -3480 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3051 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-3021 (($ $) 104)) (-2385 (($ $ $) 26)) (-3236 (((-1264) $ (-564) (-564)) 67 (|has| $ (-6 -4408)))) (-3833 (((-112) $) 99 (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3963 (($ $) 103 (-12 (|has| (-112) (-846)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4408)))) (-2484 (($ $) 98 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1876 (((-112) $ (-767)) 38)) (-3904 (((-112) $ (-1226 (-564)) (-112)) 89 (|has| $ (-6 -4408))) (((-112) $ (-564) (-112)) 55 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4407)))) (-4080 (($) 39 T CONST)) (-2563 (($ $) 101 (|has| $ (-6 -4408)))) (-3200 (($ $) 91)) (-2696 (($ $) 69 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4407))) (($ (-112) $) 70 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4407))))) (-1316 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4407))))) (-2726 (((-112) $ (-564) (-112)) 54 (|has| $ (-6 -4408)))) (-2652 (((-112) $ (-564)) 56)) (-3998 (((-564) (-112) $ (-564)) 96 (|has| (-112) (-1094))) (((-564) (-112) $) 95 (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) 94)) (-3035 (((-641 (-112)) $) 46 (|has| $ (-6 -4407)))) (-2372 (($ $ $) 27)) (-2351 (($ $) 31)) (-3452 (($ $ $) 29)) (-4238 (($ (-767) (-112)) 78)) (-3480 (($ $ $) 30)) (-3097 (((-112) $ (-767)) 37)) (-1956 (((-564) $) 64 (|has| (-564) (-846)))) (-2855 (($ $ $) 14)) (-3669 (($ $ $) 97 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-1554 (((-641 (-112)) $) 47 (|has| $ (-6 -4407)))) (-3369 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 63 (|has| (-564) (-846)))) (-1497 (($ $ $) 15)) (-2714 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-3619 (((-112) $ (-767)) 36)) (-2766 (((-1152) $) 10)) (-4248 (($ $ $ (-564)) 88) (($ (-112) $ (-564)) 87)) (-3050 (((-641 (-564)) $) 61)) (-1563 (((-112) (-564) $) 60)) (-4052 (((-1114) $) 11)) (-2658 (((-112) $) 65 (|has| (-564) (-846)))) (-2139 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-1592 (($ $ (-112)) 66 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-112)) (-641 (-112))) 53 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3076 (((-112) $ $) 32)) (-3417 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-2075 (((-641 (-112)) $) 59)) (-1976 (((-112) $) 35)) (-2994 (($) 34)) (-4366 (($ $ (-1226 (-564))) 84) (((-112) $ (-564)) 58) (((-112) $ (-564) (-112)) 57)) (-2114 (($ $ (-1226 (-564))) 86) (($ $ (-564)) 85)) (-4062 (((-767) (-112) $) 48 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4407)))) (-3806 (($ $ $ (-564)) 100 (|has| $ (-6 -4408)))) (-3926 (($ $) 33)) (-1311 (((-536) $) 68 (|has| (-112) (-612 (-536))))) (-2435 (($ (-641 (-112))) 77)) (-3696 (($ (-641 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-1368 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4407)))) (-2358 (($ $ $) 28)) (-3064 (($ $ $) 106)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)) (-3051 (($ $ $) 105)) (-2181 (((-767) $) 40 (|has| $ (-6 -4407)))))
+((-2907 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2872 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -2872 ((-112) $ $)) (-15 -2907 ((-112) $ $))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2085 ((|#1| $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-3070 ((|#1| $ |#1|) 24 (|has| $ (-6 -4411)))) (-2015 (($ $ $) NIL (|has| $ (-6 -4411)))) (-2141 (($ $ $) NIL (|has| $ (-6 -4411)))) (-2791 (($ $ (-642 |#1|)) 34)) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "left" $) NIL (|has| $ (-6 -4411))) (($ $ "right" $) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4336 (($ $) 12)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) NIL)) (-1847 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3622 (($ $ |#1| $) 36)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2545 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3142 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-642 |#1|) |#1| |#1| |#1|)) 53)) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-4326 (($ $) 11)) (-2628 (((-642 |#1|) $) NIL)) (-2376 (((-112) $) 13)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 9)) (-2972 (($) 35)) (-4368 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2137 (((-564) $ $) NIL)) (-1392 (((-112) $) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) NIL)) (-3820 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1560 (($ (-769) |#1|) 37)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -1560 ($ (-769) |#1|)) (-15 -2791 ($ $ (-642 |#1|))) (-15 -2545 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2545 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3142 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3142 ($ $ |#1| (-1 (-642 |#1|) |#1| |#1| |#1|))))) (-1097)) (T -103))
+((-1560 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-103 *3)) (-4 *3 (-1097)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-103 *3)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1097)))) (-2545 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-103 *3)))) (-3142 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1097)) (-5 *1 (-103 *2)))) (-3142 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-642 *2) *2 *2 *2)) (-4 *2 (-1097)) (-5 *1 (-103 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -1560 ($ (-769) |#1|)) (-15 -2791 ($ $ (-642 |#1|))) (-15 -2545 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2545 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3142 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3142 ($ $ |#1| (-1 (-642 |#1|) |#1| |#1| |#1|)))))
+((-1985 ((|#3| |#2| |#2|) 36)) (-1488 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4412 "*"))))) (-2062 ((|#3| |#2| |#2|) 38)) (-1551 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4412 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1985 (|#3| |#2| |#2|)) (-15 -2062 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4412 "*"))) (PROGN (-15 -1488 (|#1| |#2| |#2|)) (-15 -1551 (|#1| |#2|))) |%noBranch|)) (-1047) (-1238 |#1|) (-685 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104))
+((-1551 (*1 *2 *3) (-12 (|has| *2 (-6 (-4412 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1047)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1238 *2)) (-4 *4 (-685 *2 *5 *6)))) (-1488 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4412 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1047)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1238 *2)) (-4 *4 (-685 *2 *5 *6)))) (-2062 (*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-685 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1238 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-1985 (*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-685 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1238 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))))
+(-10 -7 (-15 -1985 (|#3| |#2| |#2|)) (-15 -2062 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4412 "*"))) (PROGN (-15 -1488 (|#1| |#2| |#2|)) (-15 -1551 (|#1| |#2|))) |%noBranch|))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1546 (((-642 (-1173))) 37)) (-4344 (((-2 (|:| |zeros| (-1153 (-225))) (|:| |ones| (-1153 (-225))) (|:| |singularities| (-1153 (-225)))) (-1173)) 39)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-105) (-13 (-1097) (-10 -7 (-15 -1546 ((-642 (-1173)))) (-15 -4344 ((-2 (|:| |zeros| (-1153 (-225))) (|:| |ones| (-1153 (-225))) (|:| |singularities| (-1153 (-225)))) (-1173))) (-6 -4410)))) (T -105))
+((-1546 (*1 *2) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-105)))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-2 (|:| |zeros| (-1153 (-225))) (|:| |ones| (-1153 (-225))) (|:| |singularities| (-1153 (-225))))) (-5 *1 (-105)))))
+(-13 (-1097) (-10 -7 (-15 -1546 ((-642 (-1173)))) (-15 -4344 ((-2 (|:| |zeros| (-1153 (-225))) (|:| |ones| (-1153 (-225))) (|:| |singularities| (-1153 (-225)))) (-1173))) (-6 -4410)))
+((-4386 (($ (-642 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -4386 (|#1| (-642 |#2|)))) (-107 |#2|) (-1212)) (T -106))
+NIL
+(-10 -8 (-15 -4386 (|#1| (-642 |#2|))))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) 8)) (-1976 (($) 7 T CONST)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2730 ((|#1| $) 40)) (-3183 (($ |#1| $) 41)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) 43)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-107 |#1|) (-140) (-1212)) (T -107))
+((-4386 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-107 *3)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212)))) (-3183 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212)))))
+(-13 (-489 |t#1|) (-10 -8 (-6 -4411) (-15 -4386 ($ (-642 |t#1|))) (-15 -3388 (|t#1| $)) (-15 -3183 ($ |t#1| $)) (-15 -2730 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3703 (((-564) $) NIL (|has| (-564) (-307)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL (|has| (-564) (-818)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-564) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1036 (-564))))) (-3027 (((-564) $) NIL) (((-1173) $) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-564) (-1036 (-564)))) (((-564) $) NIL (|has| (-564) (-1036 (-564))))) (-2845 (($ $ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-564) (-545)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2538 (((-112) $) NIL (|has| (-564) (-818)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-564) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-564) (-884 (-379))))) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2245 (((-564) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| (-564) (-1148)))) (-3333 (((-112) $) NIL (|has| (-564) (-818)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| (-564) (-848)))) (-4358 (($ (-1 (-564) (-564)) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-564) (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2759 (((-564) $) NIL (|has| (-564) (-545)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3215 (($ $ (-642 (-564)) (-642 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-1173)) (-642 (-564))) NIL (|has| (-564) (-514 (-1173) (-564)))) (($ $ (-1173) (-564)) NIL (|has| (-564) (-514 (-1173) (-564))))) (-2048 (((-769) $) NIL)) (-4368 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2618 (($ $) NIL)) (-2255 (((-564) $) NIL)) (-1314 (((-890 (-564)) $) NIL (|has| (-564) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-564) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1020))) (((-225) $) NIL (|has| (-564) (-1020)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1173)) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL) (((-1002 2) $) 10)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| (-564) (-907))) (|has| (-564) (-145))))) (-2756 (((-769)) NIL T CONST)) (-3264 (((-564) $) NIL (|has| (-564) (-545)))) (-2560 (($ (-407 (-564))) 9)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-1381 (($ $) NIL (|has| (-564) (-818)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2934 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2897 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2998 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
+(((-108) (-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 2)) (-10 -8 (-15 -2903 ((-407 (-564)) $)) (-15 -2560 ($ (-407 (-564))))))) (T -108))
+((-2903 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))))
+(-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 2)) (-10 -8 (-15 -2903 ((-407 (-564)) $)) (-15 -2560 ($ (-407 (-564))))))
+((-3404 (((-642 (-963)) $) 13)) (-2461 (((-506) $) 9)) (-2327 (((-860) $) 20)) (-3144 (($ (-506) (-642 (-963))) 15)))
+(((-109) (-13 (-611 (-860)) (-10 -8 (-15 -2461 ((-506) $)) (-15 -3404 ((-642 (-963)) $)) (-15 -3144 ($ (-506) (-642 (-963))))))) (T -109))
+((-2461 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-109)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-642 (-963))) (-5 *1 (-109)))) (-3144 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-642 (-963))) (-5 *1 (-109)))))
+(-13 (-611 (-860)) (-10 -8 (-15 -2461 ((-506) $)) (-15 -3404 ((-642 (-963)) $)) (-15 -3144 ($ (-506) (-642 (-963))))))
+((-2907 (((-112) $ $) NIL)) (-2918 (($ $) NIL)) (-2296 (($ $ $) NIL)) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) $) NIL (|has| (-112) (-848))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2239 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-848)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2383 (($ $) NIL (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-3877 (((-112) $ (-1229 (-564)) (-112)) NIL (|has| $ (-6 -4411))) (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-2490 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-1320 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-2625 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4411)))) (-2551 (((-112) $ (-564)) NIL)) (-3979 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1097))) (((-564) (-112) $) NIL (|has| (-112) (-1097))) (((-564) (-1 (-112) (-112)) $) NIL)) (-2936 (((-642 (-112)) $) NIL (|has| $ (-6 -4410)))) (-2285 (($ $ $) NIL)) (-2268 (($ $) NIL)) (-2309 (($ $ $) NIL)) (-4227 (($ (-769) (-112)) 10)) (-4277 (($ $ $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL)) (-2740 (($ $ $) NIL (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3234 (((-642 (-112)) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL)) (-2613 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-4238 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 (((-112) $) NIL (|has| (-564) (-848)))) (-3254 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2696 (($ $ (-112)) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-112)) (-642 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-642 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-2724 (((-642 (-112)) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 (($ $ (-1229 (-564))) NIL) (((-112) $ (-564)) NIL) (((-112) $ (-564) (-112)) NIL)) (-2073 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-4043 (((-769) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097)))) (((-769) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-2337 (($ (-642 (-112))) NIL)) (-3651 (($ (-642 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2327 (((-860) $) NIL)) (-1497 (($ (-769) (-112)) 11)) (-1648 (((-112) $ $) NIL)) (-2710 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-2275 (($ $ $) NIL)) (-2971 (($ $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-2958 (($ $ $) NIL)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -1497 ($ (-769) (-112)))))) (T -110))
+((-1497 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -1497 ($ (-769) (-112)))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
+(((-111 |#1| |#2|) (-140) (-1047) (-1047)) (T -111))
+NIL
+(-13 (-646 |t#1|) (-1054 |t#2|) (-10 -7 (-6 -4405) (-6 -4404)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-1049 |#2|) . T) ((-1054 |#2|) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2918 (($ $) 13)) (-2296 (($ $ $) 18)) (-3331 (($) 7 T CONST)) (-1604 (($ $) 6)) (-2521 (((-769)) 26)) (-2433 (($) 34)) (-2285 (($ $ $) 16)) (-2268 (($ $) 9)) (-2309 (($ $ $) 19)) (-4277 (($ $ $) 20)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-919) $) 32)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) 30)) (-1403 (($ $ $) 22)) (-4033 (((-1117) $) NIL)) (-2092 (($) 8 T CONST)) (-4297 (($ $ $) 23)) (-1314 (((-536) $) 36)) (-2327 (((-860) $) 38)) (-1648 (((-112) $ $) NIL)) (-2275 (($ $ $) 14)) (-2971 (($ $ $) 17)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 21)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 24)) (-2958 (($ $ $) 15)))
+(((-112) (-13 (-842) (-659) (-965) (-612 (-536)) (-10 -8 (-15 -2296 ($ $ $)) (-15 -4277 ($ $ $)) (-15 -2309 ($ $ $)) (-15 -1604 ($ $))))) (T -112))
+((-2296 (*1 *1 *1 *1) (-5 *1 (-112))) (-4277 (*1 *1 *1 *1) (-5 *1 (-112))) (-2309 (*1 *1 *1 *1) (-5 *1 (-112))) (-1604 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-842) (-659) (-965) (-612 (-536)) (-10 -8 (-15 -2296 ($ $ $)) (-15 -4277 ($ $ $)) (-15 -2309 ($ $ $)) (-15 -1604 ($ $))))
+((-2180 (((-3 (-1 |#1| (-642 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-642 |#1|))) 11) (((-3 |#1| "failed") (-114) (-642 |#1|)) 25)) (-2854 (((-3 (-642 (-1 |#1| (-642 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-642 (-1 |#1| (-642 |#1|)))) 30)) (-3402 (((-114) |#1|) 63)) (-2981 (((-3 |#1| "failed") (-114)) 58)))
+(((-113 |#1|) (-10 -7 (-15 -2180 ((-3 |#1| "failed") (-114) (-642 |#1|))) (-15 -2180 ((-114) (-114) (-1 |#1| (-642 |#1|)))) (-15 -2180 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2180 ((-3 (-1 |#1| (-642 |#1|)) "failed") (-114))) (-15 -2854 ((-114) (-114) (-642 (-1 |#1| (-642 |#1|))))) (-15 -2854 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2854 ((-3 (-642 (-1 |#1| (-642 |#1|))) "failed") (-114))) (-15 -3402 ((-114) |#1|)) (-15 -2981 ((-3 |#1| "failed") (-114)))) (-1097)) (T -113))
+((-2981 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1097)))) (-3402 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1097)))) (-2854 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-642 (-1 *4 (-642 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1097)))) (-2854 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1097)) (-5 *1 (-113 *4)))) (-2854 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 (-1 *4 (-642 *4)))) (-4 *4 (-1097)) (-5 *1 (-113 *4)))) (-2180 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-642 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1097)))) (-2180 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1097)) (-5 *1 (-113 *4)))) (-2180 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-642 *4))) (-4 *4 (-1097)) (-5 *1 (-113 *4)))) (-2180 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-642 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1097)))))
+(-10 -7 (-15 -2180 ((-3 |#1| "failed") (-114) (-642 |#1|))) (-15 -2180 ((-114) (-114) (-1 |#1| (-642 |#1|)))) (-15 -2180 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2180 ((-3 (-1 |#1| (-642 |#1|)) "failed") (-114))) (-15 -2854 ((-114) (-114) (-642 (-1 |#1| (-642 |#1|))))) (-15 -2854 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2854 ((-3 (-642 (-1 |#1| (-642 |#1|))) "failed") (-114))) (-15 -3402 ((-114) |#1|)) (-15 -2981 ((-3 |#1| "failed") (-114))))
+((-2907 (((-112) $ $) NIL)) (-1915 (((-769) $) 91) (($ $ (-769)) 37)) (-4296 (((-112) $) 41)) (-3326 (($ $ (-1155) (-772)) 58) (($ $ (-506) (-772)) 33)) (-4091 (($ $ (-45 (-1155) (-772))) 16)) (-3050 (((-3 (-772) "failed") $ (-1155)) 27) (((-689 (-772)) $ (-506)) 32)) (-3404 (((-45 (-1155) (-772)) $) 15)) (-3307 (($ (-1173)) 20) (($ (-1173) (-769)) 23) (($ (-1173) (-55)) 24)) (-1948 (((-112) $) 39)) (-4155 (((-112) $) 43)) (-2461 (((-1173) $) 8)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-1523 (((-112) $ (-1173)) 11)) (-1707 (($ $ (-1 (-536) (-642 (-536)))) 64) (((-3 (-1 (-536) (-642 (-536))) "failed") $) 71)) (-4033 (((-1117) $) NIL)) (-2448 (((-112) $ (-506)) 36)) (-3944 (($ $ (-1 (-112) $ $)) 45)) (-1664 (((-3 (-1 (-860) (-642 (-860))) "failed") $) 69) (($ $ (-1 (-860) (-642 (-860)))) 51) (($ $ (-1 (-860) (-860))) 53)) (-3415 (($ $ (-1155)) 55) (($ $ (-506)) 56)) (-3901 (($ $) 77)) (-4272 (($ $ (-1 (-112) $ $)) 46)) (-2327 (((-860) $) 60)) (-1648 (((-112) $ $) NIL)) (-1461 (($ $ (-506)) 34)) (-3055 (((-55) $) 72)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 89)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 103)))
+(((-114) (-13 (-848) (-833 (-1173)) (-10 -8 (-15 -3404 ((-45 (-1155) (-772)) $)) (-15 -3901 ($ $)) (-15 -3307 ($ (-1173))) (-15 -3307 ($ (-1173) (-769))) (-15 -3307 ($ (-1173) (-55))) (-15 -1948 ((-112) $)) (-15 -4296 ((-112) $)) (-15 -4155 ((-112) $)) (-15 -1915 ((-769) $)) (-15 -1915 ($ $ (-769))) (-15 -3944 ($ $ (-1 (-112) $ $))) (-15 -4272 ($ $ (-1 (-112) $ $))) (-15 -1664 ((-3 (-1 (-860) (-642 (-860))) "failed") $)) (-15 -1664 ($ $ (-1 (-860) (-642 (-860))))) (-15 -1664 ($ $ (-1 (-860) (-860)))) (-15 -1707 ($ $ (-1 (-536) (-642 (-536))))) (-15 -1707 ((-3 (-1 (-536) (-642 (-536))) "failed") $)) (-15 -2448 ((-112) $ (-506))) (-15 -1461 ($ $ (-506))) (-15 -3415 ($ $ (-1155))) (-15 -3415 ($ $ (-506))) (-15 -3050 ((-3 (-772) "failed") $ (-1155))) (-15 -3050 ((-689 (-772)) $ (-506))) (-15 -3326 ($ $ (-1155) (-772))) (-15 -3326 ($ $ (-506) (-772))) (-15 -4091 ($ $ (-45 (-1155) (-772))))))) (T -114))
+((-3404 (*1 *2 *1) (-12 (-5 *2 (-45 (-1155) (-772))) (-5 *1 (-114)))) (-3901 (*1 *1 *1) (-5 *1 (-114))) (-3307 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-114)))) (-3307 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *1 (-114)))) (-3307 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-55)) (-5 *1 (-114)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-114)))) (-1915 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-114)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4272 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1664 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-860) (-642 (-860)))) (-5 *1 (-114)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-860) (-642 (-860)))) (-5 *1 (-114)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-860) (-860))) (-5 *1 (-114)))) (-1707 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-642 (-536)))) (-5 *1 (-114)))) (-1707 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-642 (-536)))) (-5 *1 (-114)))) (-2448 (*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1461 (*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) (-3415 (*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-114)))) (-3415 (*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) (-3050 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-772)) (-5 *1 (-114)))) (-3050 (*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-772))) (-5 *1 (-114)))) (-3326 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-772)) (-5 *1 (-114)))) (-3326 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-772)) (-5 *1 (-114)))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1155) (-772))) (-5 *1 (-114)))))
+(-13 (-848) (-833 (-1173)) (-10 -8 (-15 -3404 ((-45 (-1155) (-772)) $)) (-15 -3901 ($ $)) (-15 -3307 ($ (-1173))) (-15 -3307 ($ (-1173) (-769))) (-15 -3307 ($ (-1173) (-55))) (-15 -1948 ((-112) $)) (-15 -4296 ((-112) $)) (-15 -4155 ((-112) $)) (-15 -1915 ((-769) $)) (-15 -1915 ($ $ (-769))) (-15 -3944 ($ $ (-1 (-112) $ $))) (-15 -4272 ($ $ (-1 (-112) $ $))) (-15 -1664 ((-3 (-1 (-860) (-642 (-860))) "failed") $)) (-15 -1664 ($ $ (-1 (-860) (-642 (-860))))) (-15 -1664 ($ $ (-1 (-860) (-860)))) (-15 -1707 ($ $ (-1 (-536) (-642 (-536))))) (-15 -1707 ((-3 (-1 (-536) (-642 (-536))) "failed") $)) (-15 -2448 ((-112) $ (-506))) (-15 -1461 ($ $ (-506))) (-15 -3415 ($ $ (-1155))) (-15 -3415 ($ $ (-506))) (-15 -3050 ((-3 (-772) "failed") $ (-1155))) (-15 -3050 ((-689 (-772)) $ (-506))) (-15 -3326 ($ $ (-1155) (-772))) (-15 -3326 ($ $ (-506) (-772))) (-15 -4091 ($ $ (-45 (-1155) (-772))))))
+((-2736 (((-564) |#2|) 41)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -2736 ((-564) |#2|))) (-13 (-363) (-1036 (-407 (-564)))) (-1238 |#1|)) (T -115))
+((-2736 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1036 (-407 *2)))) (-5 *2 (-564)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1238 *4)))))
+(-10 -7 (-15 -2736 ((-564) |#2|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-3655 (($ $ (-564)) NIL)) (-4010 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-3501 (($ (-1169 (-564)) (-564)) NIL)) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2590 (($ $) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1427 (((-769) $) NIL)) (-3953 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1472 (((-564)) NIL)) (-2016 (((-564) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3804 (($ $ (-564)) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3918 (((-1153 (-564)) $) NIL)) (-4318 (($ $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-3601 (((-564) $ (-564)) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
+(((-116 |#1|) (-867 |#1|) (-564)) (T -116))
+NIL
+(-867 |#1|)
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3703 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-116 |#1|) (-907)))) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-116 |#1|) (-907)))) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL (|has| (-116 |#1|) (-818)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-116 |#1|) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-116 |#1|) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-116 |#1|) (-1036 (-564))))) (-3027 (((-116 |#1|) $) NIL) (((-1173) $) NIL (|has| (-116 |#1|) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-116 |#1|) (-1036 (-564)))) (((-564) $) NIL (|has| (-116 |#1|) (-1036 (-564))))) (-3517 (($ $) NIL) (($ (-564) $) NIL)) (-2845 (($ $ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-116 |#1|))) (|:| |vec| (-1262 (-116 |#1|)))) (-687 $) (-1262 $)) NIL) (((-687 (-116 |#1|)) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-116 |#1|) (-545)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2538 (((-112) $) NIL (|has| (-116 |#1|) (-818)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-116 |#1|) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-116 |#1|) (-884 (-379))))) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2245 (((-116 |#1|) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1148)))) (-3333 (((-112) $) NIL (|has| (-116 |#1|) (-818)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL (|has| (-116 |#1|) (-848)))) (-1520 (($ $ $) NIL (|has| (-116 |#1|) (-848)))) (-4358 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-116 |#1|) (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-2759 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-116 |#1|) (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-116 |#1|) (-907)))) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3215 (($ $ (-642 (-116 |#1|)) (-642 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-642 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-642 (-1173)) (-642 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1173) (-116 |#1|)))) (($ $ (-1173) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1173) (-116 |#1|))))) (-2048 (((-769) $) NIL)) (-4368 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-769)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1173)) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-769)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2618 (($ $) NIL)) (-2255 (((-116 |#1|) $) NIL)) (-1314 (((-890 (-564)) $) NIL (|has| (-116 |#1|) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-116 |#1|) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1020))) (((-225) $) NIL (|has| (-116 |#1|) (-1020)))) (-2587 (((-174 (-407 (-564))) $) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-116 |#1|)) NIL) (($ (-1173)) NIL (|has| (-116 |#1|) (-1036 (-1173))))) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-907))) (|has| (-116 |#1|) (-145))))) (-2756 (((-769)) NIL T CONST)) (-3264 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-3601 (((-407 (-564)) $ (-564)) NIL)) (-1381 (($ $) NIL (|has| (-116 |#1|) (-818)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-769)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1173)) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-116 |#1|) (-898 (-1173)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-769)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2934 (((-112) $ $) NIL (|has| (-116 |#1|) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-116 |#1|) (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| (-116 |#1|) (-848)))) (-2897 (((-112) $ $) NIL (|has| (-116 |#1|) (-848)))) (-2998 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-990 (-116 |#1|)) (-10 -8 (-15 -3601 ((-407 (-564)) $ (-564))) (-15 -2587 ((-174 (-407 (-564))) $)) (-15 -3517 ($ $)) (-15 -3517 ($ (-564) $)))) (-564)) (T -117))
+((-3601 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) (-3517 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) (-3517 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-990 (-116 |#1|)) (-10 -8 (-15 -3601 ((-407 (-564)) $ (-564))) (-15 -2587 ((-174 (-407 (-564))) $)) (-15 -3517 ($ $)) (-15 -3517 ($ (-564) $))))
+((-3877 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2622 (((-642 $) $) 31)) (-1847 (((-112) $ $) 36)) (-2776 (((-112) |#2| $) 40)) (-2628 (((-642 |#2|) $) 25)) (-2376 (((-112) $) 18)) (-4368 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1392 (((-112) $) 57)) (-2327 (((-860) $) 47)) (-1512 (((-642 $) $) 32)) (-2872 (((-112) $ $) 38)) (-2127 (((-769) $) 50)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -2327 ((-860) |#1|)) (-15 -3877 (|#1| |#1| "right" |#1|)) (-15 -3877 (|#1| |#1| "left" |#1|)) (-15 -4368 (|#1| |#1| "right")) (-15 -4368 (|#1| |#1| "left")) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -1847 ((-112) |#1| |#1|)) (-15 -2628 ((-642 |#2|) |#1|)) (-15 -1392 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -2376 ((-112) |#1|)) (-15 -2622 ((-642 |#1|) |#1|)) (-15 -1512 ((-642 |#1|) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2776 ((-112) |#2| |#1|)) (-15 -2127 ((-769) |#1|))) (-119 |#2|) (-1212)) (T -118))
+NIL
+(-10 -8 (-15 -2327 ((-860) |#1|)) (-15 -3877 (|#1| |#1| "right" |#1|)) (-15 -3877 (|#1| |#1| "left" |#1|)) (-15 -4368 (|#1| |#1| "right")) (-15 -4368 (|#1| |#1| "left")) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -1847 ((-112) |#1| |#1|)) (-15 -2628 ((-642 |#2|) |#1|)) (-15 -1392 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -2376 ((-112) |#1|)) (-15 -2622 ((-642 |#1|) |#1|)) (-15 -1512 ((-642 |#1|) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2776 ((-112) |#2| |#1|)) (-15 -2127 ((-769) |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2085 ((|#1| $) 49)) (-3697 (((-112) $ (-769)) 8)) (-3070 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-2015 (($ $ $) 53 (|has| $ (-6 -4411)))) (-2141 (($ $ $) 55 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) (($ $ "left" $) 56 (|has| $ (-6 -4411))) (($ $ "right" $) 54 (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-1976 (($) 7 T CONST)) (-4336 (($ $) 58)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) 51)) (-1847 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-4326 (($ $) 60)) (-2628 (((-642 |#1|) $) 46)) (-2376 (((-112) $) 50)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2137 (((-564) $ $) 45)) (-1392 (((-112) $) 47)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) 52)) (-3820 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-119 |#1|) (-140) (-1212)) (T -119))
+((-4326 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1212)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1212)))) (-4336 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1212)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1212)))) (-3877 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4411)) (-4 *1 (-119 *3)) (-4 *3 (-1212)))) (-2141 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-119 *2)) (-4 *2 (-1212)))) (-3877 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4411)) (-4 *1 (-119 *3)) (-4 *3 (-1212)))) (-2015 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-119 *2)) (-4 *2 (-1212)))))
+(-13 (-1008 |t#1|) (-10 -8 (-15 -4326 ($ $)) (-15 -4368 ($ $ "left")) (-15 -4336 ($ $)) (-15 -4368 ($ $ "right")) (IF (|has| $ (-6 -4411)) (PROGN (-15 -3877 ($ $ "left" $)) (-15 -2141 ($ $ $)) (-15 -3877 ($ $ "right" $)) (-15 -2015 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-1715 (((-112) |#1|) 29)) (-1875 (((-769) (-769)) 28) (((-769)) 27)) (-2944 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
+(((-120 |#1|) (-10 -7 (-15 -2944 ((-112) |#1|)) (-15 -2944 ((-112) |#1| (-112))) (-15 -1875 ((-769))) (-15 -1875 ((-769) (-769))) (-15 -1715 ((-112) |#1|))) (-1238 (-564))) (T -120))
+((-1715 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))) (-1875 (*1 *2 *2) (-12 (-5 *2 (-769)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))) (-1875 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))) (-2944 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))) (-2944 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))))
+(-10 -7 (-15 -2944 ((-112) |#1|)) (-15 -2944 ((-112) |#1| (-112))) (-15 -1875 ((-769))) (-15 -1875 ((-769) (-769))) (-15 -1715 ((-112) |#1|)))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2085 ((|#1| $) 18)) (-1414 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 25)) (-3697 (((-112) $ (-769)) NIL)) (-3070 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-2015 (($ $ $) 21 (|has| $ (-6 -4411)))) (-2141 (($ $ $) 23 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "left" $) NIL (|has| $ (-6 -4411))) (($ $ "right" $) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4336 (($ $) 20)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) NIL)) (-1847 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3622 (($ $ |#1| $) 26)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-4326 (($ $) 22)) (-2628 (((-642 |#1|) $) NIL)) (-2376 (((-112) $) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4242 (($ |#1| $) 27)) (-3183 (($ |#1| $) 15)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 17)) (-2972 (($) 11)) (-4368 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2137 (((-564) $ $) NIL)) (-1392 (((-112) $) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) NIL)) (-3820 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3014 (($ (-642 |#1|)) 16)) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4411) (-6 -4410) (-15 -3014 ($ (-642 |#1|))) (-15 -3183 ($ |#1| $)) (-15 -4242 ($ |#1| $)) (-15 -1414 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-848)) (T -121))
+((-3014 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-121 *3)))) (-3183 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-848)))) (-4242 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-848)))) (-1414 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-848)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4411) (-6 -4410) (-15 -3014 ($ (-642 |#1|))) (-15 -3183 ($ |#1| $)) (-15 -4242 ($ |#1| $)) (-15 -1414 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2918 (($ $) 13)) (-2268 (($ $) 11)) (-2309 (($ $ $) 23)) (-4277 (($ $ $) 21)) (-2971 (($ $ $) 19)) (-2958 (($ $ $) 17)))
+(((-122 |#1|) (-10 -8 (-15 -2309 (|#1| |#1| |#1|)) (-15 -4277 (|#1| |#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -2918 (|#1| |#1|)) (-15 -2958 (|#1| |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -2309 (|#1| |#1| |#1|)) (-15 -4277 (|#1| |#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -2918 (|#1| |#1|)) (-15 -2958 (|#1| |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2918 (($ $) 104)) (-2296 (($ $ $) 26)) (-1765 (((-1267) $ (-564) (-564)) 67 (|has| $ (-6 -4411)))) (-1757 (((-112) $) 99 (|has| (-112) (-848))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-2239 (($ $) 103 (-12 (|has| (-112) (-848)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4411)))) (-2383 (($ $) 98 (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-3697 (((-112) $ (-769)) 38)) (-3877 (((-112) $ (-1229 (-564)) (-112)) 89 (|has| $ (-6 -4411))) (((-112) $ (-564) (-112)) 55 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4410)))) (-1976 (($) 39 T CONST)) (-2087 (($ $) 101 (|has| $ (-6 -4411)))) (-3115 (($ $) 91)) (-2595 (($ $) 69 (-12 (|has| (-112) (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4410))) (($ (-112) $) 70 (-12 (|has| (-112) (-1097)) (|has| $ (-6 -4410))))) (-1320 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1097)) (|has| $ (-6 -4410))))) (-2625 (((-112) $ (-564) (-112)) 54 (|has| $ (-6 -4411)))) (-2551 (((-112) $ (-564)) 56)) (-3979 (((-564) (-112) $ (-564)) 96 (|has| (-112) (-1097))) (((-564) (-112) $) 95 (|has| (-112) (-1097))) (((-564) (-1 (-112) (-112)) $) 94)) (-2936 (((-642 (-112)) $) 46 (|has| $ (-6 -4410)))) (-2285 (($ $ $) 27)) (-2268 (($ $) 31)) (-2309 (($ $ $) 29)) (-4227 (($ (-769) (-112)) 78)) (-4277 (($ $ $) 30)) (-3462 (((-112) $ (-769)) 37)) (-2040 (((-564) $) 64 (|has| (-564) (-848)))) (-2755 (($ $ $) 14)) (-2740 (($ $ $) 97 (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-3234 (((-642 (-112)) $) 47 (|has| $ (-6 -4410)))) (-2776 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 63 (|has| (-564) (-848)))) (-1520 (($ $ $) 15)) (-2613 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-3576 (((-112) $ (-769)) 36)) (-3315 (((-1155) $) 10)) (-4238 (($ $ $ (-564)) 88) (($ (-112) $ (-564)) 87)) (-3997 (((-642 (-564)) $) 61)) (-4145 (((-112) (-564) $) 60)) (-4033 (((-1117) $) 11)) (-2557 (((-112) $) 65 (|has| (-564) (-848)))) (-3254 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2696 (($ $ (-112)) 66 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-112)) (-642 (-112))) 53 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-294 (-112))) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-642 (-294 (-112)))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097))))) (-4245 (((-112) $ $) 32)) (-3441 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-2724 (((-642 (-112)) $) 59)) (-3719 (((-112) $) 35)) (-2972 (($) 34)) (-4368 (($ $ (-1229 (-564))) 84) (((-112) $ (-564)) 58) (((-112) $ (-564) (-112)) 57)) (-2073 (($ $ (-1229 (-564))) 86) (($ $ (-564)) 85)) (-4043 (((-769) (-112) $) 48 (-12 (|has| (-112) (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4410)))) (-2568 (($ $ $ (-564)) 100 (|has| $ (-6 -4411)))) (-3901 (($ $) 33)) (-1314 (((-536) $) 68 (|has| (-112) (-612 (-536))))) (-2337 (($ (-642 (-112))) 77)) (-3651 (($ (-642 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2710 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4410)))) (-2275 (($ $ $) 28)) (-2971 (($ $ $) 106)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)) (-2958 (($ $ $) 105)) (-2127 (((-769) $) 40 (|has| $ (-6 -4410)))))
(((-123) (-140)) (T -123))
-((-2351 (*1 *1 *1) (-4 *1 (-123))) (-3480 (*1 *1 *1 *1) (-4 *1 (-123))) (-3452 (*1 *1 *1 *1) (-4 *1 (-123))) (-2358 (*1 *1 *1 *1) (-4 *1 (-123))) (-2372 (*1 *1 *1 *1) (-4 *1 (-123))) (-2385 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-846) (-657) (-19 (-112)) (-10 -8 (-15 -2351 ($ $)) (-15 -3480 ($ $ $)) (-15 -3452 ($ $ $)) (-15 -2358 ($ $ $)) (-15 -2372 ($ $ $)) (-15 -2385 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 #0=(-112)) . T) ((-612 (-536)) |has| (-112) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-647 #0#) . T) ((-657) . T) ((-19 #0#) . T) ((-846) . T) ((-1094) . T) ((-1209) . T))
-((-2714 (($ (-1 |#2| |#2|) $) 22)) (-3926 (($ $) 16)) (-2181 (((-767) $) 25)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -2714 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2181 ((-767) |#1|)) (-15 -3926 (|#1| |#1|))) (-125 |#2|) (-1094)) (T -124))
-NIL
-(-10 -8 (-15 -2714 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2181 ((-767) |#1|)) (-15 -3926 (|#1| |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2128 ((|#1| $) 49)) (-1876 (((-112) $ (-767)) 8)) (-2925 ((|#1| $ |#1|) 40 (|has| $ (-6 -4408)))) (-4221 (($ $ $) 53 (|has| $ (-6 -4408)))) (-2003 (($ $ $) 55 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4408))) (($ $ "left" $) 56 (|has| $ (-6 -4408))) (($ $ "right" $) 54 (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 42 (|has| $ (-6 -4408)))) (-4080 (($) 7 T CONST)) (-4337 (($ $) 58)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) 51)) (-1675 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-3667 (($ $ |#1| $) 61)) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-4328 (($ $) 60)) (-2730 (((-641 |#1|) $) 46)) (-1841 (((-112) $) 50)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3277 (((-564) $ $) 45)) (-3206 (((-112) $) 47)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) 52)) (-4059 (((-112) $ $) 44 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-125 |#1|) (-140) (-1094)) (T -125))
-((-3667 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4408) (-6 -4407) (-15 -3667 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-119 |#1|) . T) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2128 ((|#1| $) 18)) (-1876 (((-112) $ (-767)) NIL)) (-2925 ((|#1| $ |#1|) 22 (|has| $ (-6 -4408)))) (-4221 (($ $ $) 23 (|has| $ (-6 -4408)))) (-2003 (($ $ $) 21 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "left" $) NIL (|has| $ (-6 -4408))) (($ $ "right" $) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4337 (($ $) 24)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) NIL)) (-1675 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3667 (($ $ |#1| $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-4328 (($ $) NIL)) (-2730 (((-641 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2566 (($ |#1| $) 15)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 17)) (-2994 (($) 11)) (-4366 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3277 (((-564) $ $) NIL)) (-3206 (((-112) $) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) 20)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) NIL)) (-4059 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1486 (($ (-641 |#1|)) 16)) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4408) (-15 -1486 ($ (-641 |#1|))) (-15 -2566 ($ |#1| $)))) (-846)) (T -126))
-((-1486 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3)))) (-2566 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4408) (-15 -1486 ($ (-641 |#1|))) (-15 -2566 ($ |#1| $))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2128 ((|#1| $) 30)) (-1876 (((-112) $ (-767)) NIL)) (-2925 ((|#1| $ |#1|) 32 (|has| $ (-6 -4408)))) (-4221 (($ $ $) 36 (|has| $ (-6 -4408)))) (-2003 (($ $ $) 34 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "left" $) NIL (|has| $ (-6 -4408))) (($ $ "right" $) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4337 (($ $) 23)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) NIL)) (-1675 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3667 (($ $ |#1| $) 16)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-4328 (($ $) 22)) (-2730 (((-641 |#1|) $) NIL)) (-1841 (((-112) $) 25)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 20)) (-2994 (($) 11)) (-4366 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3277 (((-564) $ $) NIL)) (-3206 (((-112) $) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) NIL)) (-4059 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1567 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 10 (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1567 ($ |#1|)) (-15 -1567 ($ $ |#1| $)))) (-1094)) (T -127))
-((-1567 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))) (-1567 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -1567 ($ |#1|)) (-15 -1567 ($ $ |#1| $))))
-((-3009 (((-112) $ $) NIL (|has| (-129) (-1094)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-846)))) (-3963 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-846))))) (-2484 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 (((-129) $ (-564) (-129)) 26 (|has| $ (-6 -4408))) (((-129) $ (-1226 (-564)) (-129)) NIL (|has| $ (-6 -4408)))) (-4010 (((-767) $ (-767)) 34)) (-1667 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1094))))) (-2591 (($ (-129) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1094)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1094)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4407))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4407)))) (-2726 (((-129) $ (-564) (-129)) 25 (|has| $ (-6 -4408)))) (-2652 (((-129) $ (-564)) 20)) (-3998 (((-564) (-1 (-112) (-129)) $) NIL) (((-564) (-129) $) NIL (|has| (-129) (-1094))) (((-564) (-129) $ (-564)) NIL (|has| (-129) (-1094)))) (-3035 (((-641 (-129)) $) NIL (|has| $ (-6 -4407)))) (-4238 (($ (-767) (-129)) 14)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) 27 (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| (-129) (-846)))) (-3669 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-846)))) (-1554 (((-641 (-129)) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1094))))) (-2898 (((-564) $) 30 (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| (-129) (-846)))) (-2714 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| (-129) (-1094)))) (-4248 (($ (-129) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| (-129) (-1094)))) (-2658 (((-129) $) NIL (|has| (-564) (-846)))) (-2139 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-1592 (($ $ (-129)) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-641 (-129)) (-641 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1094))))) (-2075 (((-641 (-129)) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) 12)) (-4366 (((-129) $ (-564) (-129)) NIL) (((-129) $ (-564)) 23) (($ $ (-1226 (-564))) NIL)) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4062 (((-767) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4407))) (((-767) (-129) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-129) (-612 (-536))))) (-2435 (($ (-641 (-129))) 47)) (-3696 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-641 $)) NIL)) (-2423 (((-954 (-129)) $) 35) (((-1152) $) 44) (((-858) $) NIL (|has| (-129) (-611 (-858))))) (-3486 (((-767) $) 18)) (-4102 (($ (-767)) 8)) (-1860 (((-112) $ $) NIL (|has| (-129) (-1094)))) (-1368 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| (-129) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-129) (-846)))) (-2974 (((-112) $ $) 32 (|has| (-129) (-1094)))) (-3023 (((-112) $ $) NIL (|has| (-129) (-846)))) (-2999 (((-112) $ $) NIL (|has| (-129) (-846)))) (-2181 (((-767) $) 15 (|has| $ (-6 -4407)))))
-(((-128) (-13 (-19 (-129)) (-611 (-954 (-129))) (-611 (-1152)) (-10 -8 (-15 -4102 ($ (-767))) (-15 -3486 ((-767) $)) (-15 -4010 ((-767) $ (-767))) (-6 -4407)))) (T -128))
-((-4102 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-4010 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))))
-(-13 (-19 (-129)) (-611 (-954 (-129))) (-611 (-1152)) (-10 -8 (-15 -4102 ($ (-767))) (-15 -3486 ((-767) $)) (-15 -4010 ((-767) $ (-767))) (-6 -4407)))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) 12 T CONST)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) 22 T CONST)) (-1497 (($ $ $) NIL) (($) 23 T CONST)) (-3256 (((-917) $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-1420 (($ (-767)) 8)) (-2284 (($ $ $) 25)) (-2273 (($ $ $) 24)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 19)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 20)))
-(((-129) (-13 (-840) (-490 (-144)) (-10 -8 (-15 -1420 ($ (-767))) (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))) (T -129))
-((-1420 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))) (-2273 (*1 *1 *1 *1) (-5 *1 (-129))) (-2284 (*1 *1 *1 *1) (-5 *1 (-129))) (-4080 (*1 *1) (-5 *1 (-129))))
-(-13 (-840) (-490 (-144)) (-10 -8 (-15 -1420 ($ (-767))) (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))
+((-2268 (*1 *1 *1) (-4 *1 (-123))) (-4277 (*1 *1 *1 *1) (-4 *1 (-123))) (-2309 (*1 *1 *1 *1) (-4 *1 (-123))) (-2275 (*1 *1 *1 *1) (-4 *1 (-123))) (-2285 (*1 *1 *1 *1) (-4 *1 (-123))) (-2296 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-848) (-659) (-19 (-112)) (-10 -8 (-15 -2268 ($ $)) (-15 -4277 ($ $ $)) (-15 -2309 ($ $ $)) (-15 -2275 ($ $ $)) (-15 -2285 ($ $ $)) (-15 -2296 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 #0=(-112)) . T) ((-612 (-536)) |has| (-112) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097))) ((-649 #0#) . T) ((-659) . T) ((-19 #0#) . T) ((-848) . T) ((-1097) . T) ((-1212) . T))
+((-2613 (($ (-1 |#2| |#2|) $) 22)) (-3901 (($ $) 16)) (-2127 (((-769) $) 25)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -2613 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2127 ((-769) |#1|)) (-15 -3901 (|#1| |#1|))) (-125 |#2|) (-1097)) (T -124))
+NIL
+(-10 -8 (-15 -2613 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2127 ((-769) |#1|)) (-15 -3901 (|#1| |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2085 ((|#1| $) 49)) (-3697 (((-112) $ (-769)) 8)) (-3070 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-2015 (($ $ $) 53 (|has| $ (-6 -4411)))) (-2141 (($ $ $) 55 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) (($ $ "left" $) 56 (|has| $ (-6 -4411))) (($ $ "right" $) 54 (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-1976 (($) 7 T CONST)) (-4336 (($ $) 58)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) 51)) (-1847 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-3622 (($ $ |#1| $) 61)) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-4326 (($ $) 60)) (-2628 (((-642 |#1|) $) 46)) (-2376 (((-112) $) 50)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2137 (((-564) $ $) 45)) (-1392 (((-112) $) 47)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) 52)) (-3820 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-125 |#1|) (-140) (-1097)) (T -125))
+((-3622 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1097)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4411) (-6 -4410) (-15 -3622 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-119 |#1|) . T) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2085 ((|#1| $) 18)) (-3697 (((-112) $ (-769)) NIL)) (-3070 ((|#1| $ |#1|) 22 (|has| $ (-6 -4411)))) (-2015 (($ $ $) 23 (|has| $ (-6 -4411)))) (-2141 (($ $ $) 21 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "left" $) NIL (|has| $ (-6 -4411))) (($ $ "right" $) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4336 (($ $) 24)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) NIL)) (-1847 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3622 (($ $ |#1| $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-4326 (($ $) NIL)) (-2628 (((-642 |#1|) $) NIL)) (-2376 (((-112) $) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3183 (($ |#1| $) 15)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 17)) (-2972 (($) 11)) (-4368 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2137 (((-564) $ $) NIL)) (-1392 (((-112) $) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) 20)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) NIL)) (-3820 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3855 (($ (-642 |#1|)) 16)) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4411) (-15 -3855 ($ (-642 |#1|))) (-15 -3183 ($ |#1| $)))) (-848)) (T -126))
+((-3855 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-126 *3)))) (-3183 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-848)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4411) (-15 -3855 ($ (-642 |#1|))) (-15 -3183 ($ |#1| $))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2085 ((|#1| $) 30)) (-3697 (((-112) $ (-769)) NIL)) (-3070 ((|#1| $ |#1|) 32 (|has| $ (-6 -4411)))) (-2015 (($ $ $) 36 (|has| $ (-6 -4411)))) (-2141 (($ $ $) 34 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "left" $) NIL (|has| $ (-6 -4411))) (($ $ "right" $) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4336 (($ $) 23)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) NIL)) (-1847 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3622 (($ $ |#1| $) 16)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-4326 (($ $) 22)) (-2628 (((-642 |#1|) $) NIL)) (-2376 (((-112) $) 25)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 20)) (-2972 (($) 11)) (-4368 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2137 (((-564) $ $) NIL)) (-1392 (((-112) $) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) NIL)) (-3820 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2039 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 10 (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2039 ($ |#1|)) (-15 -2039 ($ $ |#1| $)))) (-1097)) (T -127))
+((-2039 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1097)))) (-2039 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1097)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -2039 ($ |#1|)) (-15 -2039 ($ $ |#1| $))))
+((-2907 (((-112) $ $) NIL (|has| (-129) (-1097)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-848)))) (-2239 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-848))))) (-2383 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 (((-129) $ (-564) (-129)) 26 (|has| $ (-6 -4411))) (((-129) $ (-1229 (-564)) (-129)) NIL (|has| $ (-6 -4411)))) (-3967 (((-769) $ (-769)) 34)) (-1700 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097))))) (-2490 (($ (-129) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4410))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4410)))) (-2625 (((-129) $ (-564) (-129)) 25 (|has| $ (-6 -4411)))) (-2551 (((-129) $ (-564)) 20)) (-3979 (((-564) (-1 (-112) (-129)) $) NIL) (((-564) (-129) $) NIL (|has| (-129) (-1097))) (((-564) (-129) $ (-564)) NIL (|has| (-129) (-1097)))) (-2936 (((-642 (-129)) $) NIL (|has| $ (-6 -4410)))) (-4227 (($ (-769) (-129)) 14)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) 27 (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| (-129) (-848)))) (-2740 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-848)))) (-3234 (((-642 (-129)) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097))))) (-3421 (((-564) $) 30 (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| (-129) (-848)))) (-2613 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| (-129) (-1097)))) (-4238 (($ (-129) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| (-129) (-1097)))) (-2557 (((-129) $) NIL (|has| (-564) (-848)))) (-3254 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2696 (($ $ (-129)) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1097)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1097)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1097)))) (($ $ (-642 (-129)) (-642 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097))))) (-2724 (((-642 (-129)) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) 12)) (-4368 (((-129) $ (-564) (-129)) NIL) (((-129) $ (-564)) 23) (($ $ (-1229 (-564))) NIL)) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4043 (((-769) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4410))) (((-769) (-129) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-129) (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-129) (-612 (-536))))) (-2337 (($ (-642 (-129))) 47)) (-3651 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-642 $)) NIL)) (-2327 (((-956 (-129)) $) 35) (((-1155) $) 44) (((-860) $) NIL (|has| (-129) (-611 (-860))))) (-4115 (((-769) $) 18)) (-1900 (($ (-769)) 8)) (-1648 (((-112) $ $) NIL (|has| (-129) (-1097)))) (-2710 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| (-129) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-129) (-848)))) (-2872 (((-112) $ $) 32 (|has| (-129) (-1097)))) (-2922 (((-112) $ $) NIL (|has| (-129) (-848)))) (-2897 (((-112) $ $) NIL (|has| (-129) (-848)))) (-2127 (((-769) $) 15 (|has| $ (-6 -4410)))))
+(((-128) (-13 (-19 (-129)) (-611 (-956 (-129))) (-611 (-1155)) (-10 -8 (-15 -1900 ($ (-769))) (-15 -4115 ((-769) $)) (-15 -3967 ((-769) $ (-769))) (-6 -4410)))) (T -128))
+((-1900 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-128)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-128)))) (-3967 (*1 *2 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-128)))))
+(-13 (-19 (-129)) (-611 (-956 (-129))) (-611 (-1155)) (-10 -8 (-15 -1900 ($ (-769))) (-15 -4115 ((-769) $)) (-15 -3967 ((-769) $ (-769))) (-6 -4410)))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) 12 T CONST)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) 22 T CONST)) (-1520 (($ $ $) NIL) (($) 23 T CONST)) (-1945 (((-919) $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-1435 (($ (-769)) 8)) (-2213 (($ $ $) 25)) (-2204 (($ $ $) 24)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 19)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 20)))
+(((-129) (-13 (-842) (-490 (-144)) (-10 -8 (-15 -1435 ($ (-769))) (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))) (T -129))
+((-1435 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-129)))) (-2204 (*1 *1 *1 *1) (-5 *1 (-129))) (-2213 (*1 *1 *1 *1) (-5 *1 (-129))) (-1976 (*1 *1) (-5 *1 (-129))))
+(-13 (-842) (-490 (-144)) (-10 -8 (-15 -1435 ($ (-769))) (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))
((|NonNegativeInteger|) (< |#1| 256))
-((-3009 (((-112) $ $) NIL)) (-2713 (($) 6 T CONST)) (-1498 (($) 7 T CONST)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 14)) (-3707 (($) 8 T CONST)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 10)))
-(((-130) (-13 (-1094) (-10 -8 (-15 -1498 ($) -2959) (-15 -3707 ($) -2959) (-15 -2713 ($) -2959)))) (T -130))
-((-1498 (*1 *1) (-5 *1 (-130))) (-3707 (*1 *1) (-5 *1 (-130))) (-2713 (*1 *1) (-5 *1 (-130))))
-(-13 (-1094) (-10 -8 (-15 -1498 ($) -2959) (-15 -3707 ($) -2959) (-15 -2713 ($) -2959)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16)))
+((-2907 (((-112) $ $) NIL)) (-3734 (($) 6 T CONST)) (-4244 (($) 7 T CONST)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 14)) (-2701 (($) 8 T CONST)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 10)))
+(((-130) (-13 (-1097) (-10 -8 (-15 -4244 ($) -2858) (-15 -2701 ($) -2858) (-15 -3734 ($) -2858)))) (T -130))
+((-4244 (*1 *1) (-5 *1 (-130))) (-2701 (*1 *1) (-5 *1 (-130))) (-3734 (*1 *1) (-5 *1 (-130))))
+(-13 (-1097) (-10 -8 (-15 -4244 ($) -2858) (-15 -2701 ($) -2858) (-15 -3734 ($) -2858)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16)))
(((-131) (-140)) (T -131))
-((-4012 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(-13 (-23) (-10 -8 (-15 -4012 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 7)) (-2738 (((-1264) $ (-767)) 14)) (-3998 (((-767) $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
+((-1532 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(-13 (-23) (-10 -8 (-15 -1532 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 7)) (-2511 (((-1267) $ (-769)) 14)) (-3979 (((-769) $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
(((-132) (-140)) (T -132))
-((-3998 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767)))) (-2738 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1264)))))
-(-13 (-1094) (-10 -8 (-15 -3998 ((-767) $)) (-15 -2738 ((-1264) $ (-767)))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2575 (((-641 (-1129)) $) 10)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-133) (-13 (-1077) (-10 -8 (-15 -2575 ((-641 (-1129)) $))))) (T -133))
-((-2575 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133)))))
-(-13 (-1077) (-10 -8 (-15 -2575 ((-641 (-1129)) $))))
-((-3009 (((-112) $ $) 47)) (-1494 (((-112) $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-767) "failed") $) 56)) (-3120 (((-767) $) 54)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) 36)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2837 (((-112)) 57)) (-1338 (((-112) (-112)) 59)) (-4008 (((-112) $) 30)) (-3596 (((-112) $) 53)) (-2423 (((-858) $) 28) (($ (-767)) 20)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 18 T CONST)) (-2417 (($) 19 T CONST)) (-3328 (($ (-767)) 21)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 32)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 34)) (-3082 (((-3 $ "failed") $ $) 40)) (-3070 (($ $ $) 37)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL) (($ $ $) 52)) (* (($ (-767) $) 46) (($ (-917) $) NIL) (($ $ $) 43)))
-(((-134) (-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4409 "*")) (-15 -3082 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3328 ($ (-767))) (-15 -4008 ((-112) $)) (-15 -3596 ((-112) $)) (-15 -2837 ((-112))) (-15 -1338 ((-112) (-112)))))) (T -134))
-((-3082 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2837 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1338 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4409 "*")) (-15 -3082 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3328 ($ (-767))) (-15 -4008 ((-112) $)) (-15 -3596 ((-112) $)) (-15 -2837 ((-112))) (-15 -1338 ((-112) (-112)))))
-((-3886 (((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-4357 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
-(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3886 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -4357 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-564) (-767) (-172) (-172)) (T -135))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3886 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -4357 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
-((-3009 (((-112) $ $) NIL)) (-1903 (($ (-641 |#3|)) 63)) (-3816 (($ $) 125) (($ $ (-564) (-564)) 124)) (-4080 (($) 20)) (-4284 (((-3 |#3| "failed") $) 85)) (-3120 ((|#3| $) NIL)) (-3677 (($ $ (-641 (-564))) 126)) (-3874 (((-641 |#3|) $) 58)) (-2514 (((-767) $) 68)) (-2897 (($ $ $) 119)) (-2189 (($) 67)) (-2766 (((-1152) $) NIL)) (-3147 (($) 19)) (-4052 (((-1114) $) NIL)) (-4366 ((|#3| $) 70) ((|#3| $ (-564)) 71) ((|#3| $ (-564) (-564)) 72) ((|#3| $ (-564) (-564) (-564)) 73) ((|#3| $ (-564) (-564) (-564) (-564)) 74) ((|#3| $ (-641 (-564))) 75)) (-1568 (((-767) $) 69)) (-2506 (($ $ (-564) $ (-564)) 120) (($ $ (-564) (-564)) 122)) (-2423 (((-858) $) 93) (($ |#3|) 94) (($ (-240 |#2| |#3|)) 101) (($ (-1136 |#2| |#3|)) 104) (($ (-641 |#3|)) 76) (($ (-641 $)) 82)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 95 T CONST)) (-2417 (($) 96 T CONST)) (-2974 (((-112) $ $) 106)) (-3082 (($ $) 112) (($ $ $) 110)) (-3070 (($ $ $) 108)) (* (($ |#3| $) 117) (($ $ |#3|) 118) (($ $ (-564)) 115) (($ (-564) $) 114) (($ $ $) 121)))
-(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-767)) (-470 (-564) (-767)) (-10 -8 (-15 -2423 ($ (-240 |#2| |#3|))) (-15 -2423 ($ (-1136 |#2| |#3|))) (-15 -2423 ($ (-641 |#3|))) (-15 -2423 ($ (-641 $))) (-15 -2514 ((-767) $)) (-15 -4366 (|#3| $)) (-15 -4366 (|#3| $ (-564))) (-15 -4366 (|#3| $ (-564) (-564))) (-15 -4366 (|#3| $ (-564) (-564) (-564))) (-15 -4366 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4366 (|#3| $ (-641 (-564)))) (-15 -2897 ($ $ $)) (-15 * ($ $ $)) (-15 -2506 ($ $ (-564) $ (-564))) (-15 -2506 ($ $ (-564) (-564))) (-15 -3816 ($ $)) (-15 -3816 ($ $ (-564) (-564))) (-15 -3677 ($ $ (-641 (-564)))) (-15 -3147 ($)) (-15 -2189 ($)) (-15 -3874 ((-641 |#3|) $)) (-15 -1903 ($ (-641 |#3|))) (-15 -4080 ($)))) (-564) (-767) (-172)) (T -136))
-((-2897 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-767)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-767)) (-4 *5 (-172)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 *2) (-4 *5 (-172)))) (-4366 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) (-14 *4 (-767)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4366 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4366 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4366 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-564)) (-14 *5 (-767)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) (-2506 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-2506 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-3816 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) (-3816 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-3677 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-767)) (-4 *5 (-172)))) (-3147 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) (-2189 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-767)) (-4 *5 (-172)))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-767)))) (-4080 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767)) (-4 *4 (-172)))))
-(-13 (-465 |#3| (-767)) (-470 (-564) (-767)) (-10 -8 (-15 -2423 ($ (-240 |#2| |#3|))) (-15 -2423 ($ (-1136 |#2| |#3|))) (-15 -2423 ($ (-641 |#3|))) (-15 -2423 ($ (-641 $))) (-15 -2514 ((-767) $)) (-15 -4366 (|#3| $)) (-15 -4366 (|#3| $ (-564))) (-15 -4366 (|#3| $ (-564) (-564))) (-15 -4366 (|#3| $ (-564) (-564) (-564))) (-15 -4366 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4366 (|#3| $ (-641 (-564)))) (-15 -2897 ($ $ $)) (-15 * ($ $ $)) (-15 -2506 ($ $ (-564) $ (-564))) (-15 -2506 ($ $ (-564) (-564))) (-15 -3816 ($ $)) (-15 -3816 ($ $ (-564) (-564))) (-15 -3677 ($ $ (-641 (-564)))) (-15 -3147 ($)) (-15 -2189 ($)) (-15 -3874 ((-641 |#3|) $)) (-15 -1903 ($ (-641 |#3|))) (-15 -4080 ($))))
-((-3009 (((-112) $ $) NIL)) (-1827 (((-1129) $) 11)) (-1813 (((-1129) $) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-137) (-13 (-1077) (-10 -8 (-15 -1813 ((-1129) $)) (-15 -1827 ((-1129) $))))) (T -137))
-((-1813 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))))
-(-13 (-1077) (-10 -8 (-15 -1813 ((-1129) $)) (-15 -1827 ((-1129) $))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-1611 (((-186) $) 10)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2575 (((-641 (-1129)) $) 13)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-138) (-13 (-1077) (-10 -8 (-15 -1611 ((-186) $)) (-15 -2575 ((-641 (-1129)) $))))) (T -138))
-((-1611 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-138)))))
-(-13 (-1077) (-10 -8 (-15 -1611 ((-186) $)) (-15 -2575 ((-641 (-1129)) $))))
-((-3009 (((-112) $ $) NIL)) (-2366 (((-641 (-861)) $) NIL)) (-2562 (((-506) $) NIL)) (-2766 (((-1152) $) NIL)) (-1611 (((-186) $) NIL)) (-4052 (((-1114) $) NIL)) (-2503 (((-641 (-112)) $) NIL)) (-2423 (((-858) $) NIL) (((-187) $) 6)) (-1860 (((-112) $ $) NIL)) (-2524 (((-55) $) NIL)) (-2974 (((-112) $ $) NIL)))
+((-3979 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-769)))) (-2511 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-769)) (-5 *2 (-1267)))))
+(-13 (-1097) (-10 -8 (-15 -3979 ((-769) $)) (-15 -2511 ((-1267) $ (-769)))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 16) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2474 (((-642 (-1132)) $) 10)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-133) (-13 (-1080) (-10 -8 (-15 -2474 ((-642 (-1132)) $))))) (T -133))
+((-2474 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-133)))))
+(-13 (-1080) (-10 -8 (-15 -2474 ((-642 (-1132)) $))))
+((-2907 (((-112) $ $) 47)) (-2952 (((-112) $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-769) "failed") $) 56)) (-3027 (((-769) $) 54)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) 36)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2002 (((-112)) 57)) (-1508 (((-112) (-112)) 59)) (-2574 (((-112) $) 30)) (-3156 (((-112) $) 53)) (-2327 (((-860) $) 28) (($ (-769)) 20)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 18 T CONST)) (-2322 (($) 19 T CONST)) (-2431 (($ (-769)) 21)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 32)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 34)) (-2987 (((-3 $ "failed") $ $) 40)) (-2974 (($ $ $) 37)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL) (($ $ $) 52)) (* (($ (-769) $) 46) (($ (-919) $) NIL) (($ $ $) 43)))
+(((-134) (-13 (-848) (-23) (-724) (-1036 (-769)) (-10 -8 (-6 (-4412 "*")) (-15 -2987 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2431 ($ (-769))) (-15 -2574 ((-112) $)) (-15 -3156 ((-112) $)) (-15 -2002 ((-112))) (-15 -1508 ((-112) (-112)))))) (T -134))
+((-2987 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-2431 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-134)))) (-2574 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2002 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1508 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(-13 (-848) (-23) (-724) (-1036 (-769)) (-10 -8 (-6 (-4412 "*")) (-15 -2987 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2431 ($ (-769))) (-15 -2574 ((-112) $)) (-15 -3156 ((-112) $)) (-15 -2002 ((-112))) (-15 -1508 ((-112) (-112)))))
+((-3858 (((-136 |#1| |#2| |#4|) (-642 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-4358 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
+(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3858 ((-136 |#1| |#2| |#4|) (-642 |#4|) (-136 |#1| |#2| |#3|))) (-15 -4358 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-564) (-769) (-172) (-172)) (T -135))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-769)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3858 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-769)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3858 ((-136 |#1| |#2| |#4|) (-642 |#4|) (-136 |#1| |#2| |#3|))) (-15 -4358 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
+((-2907 (((-112) $ $) NIL)) (-2771 (($ (-642 |#3|)) 63)) (-3673 (($ $) 125) (($ $ (-564) (-564)) 124)) (-1976 (($) 20)) (-4278 (((-3 |#3| "failed") $) 85)) (-3027 ((|#3| $) NIL)) (-4058 (($ $ (-642 (-564))) 126)) (-3844 (((-642 |#3|) $) 58)) (-2414 (((-769) $) 68)) (-1739 (($ $ $) 119)) (-2216 (($) 67)) (-3315 (((-1155) $) NIL)) (-2455 (($) 19)) (-4033 (((-1117) $) NIL)) (-4368 ((|#3| $) 70) ((|#3| $ (-564)) 71) ((|#3| $ (-564) (-564)) 72) ((|#3| $ (-564) (-564) (-564)) 73) ((|#3| $ (-564) (-564) (-564) (-564)) 74) ((|#3| $ (-642 (-564))) 75)) (-2775 (((-769) $) 69)) (-2147 (($ $ (-564) $ (-564)) 120) (($ $ (-564) (-564)) 122)) (-2327 (((-860) $) 93) (($ |#3|) 94) (($ (-240 |#2| |#3|)) 101) (($ (-1139 |#2| |#3|)) 104) (($ (-642 |#3|)) 76) (($ (-642 $)) 82)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 95 T CONST)) (-2322 (($) 96 T CONST)) (-2872 (((-112) $ $) 106)) (-2987 (($ $) 112) (($ $ $) 110)) (-2974 (($ $ $) 108)) (* (($ |#3| $) 117) (($ $ |#3|) 118) (($ $ (-564)) 115) (($ (-564) $) 114) (($ $ $) 121)))
+(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-769)) (-470 (-564) (-769)) (-10 -8 (-15 -2327 ($ (-240 |#2| |#3|))) (-15 -2327 ($ (-1139 |#2| |#3|))) (-15 -2327 ($ (-642 |#3|))) (-15 -2327 ($ (-642 $))) (-15 -2414 ((-769) $)) (-15 -4368 (|#3| $)) (-15 -4368 (|#3| $ (-564))) (-15 -4368 (|#3| $ (-564) (-564))) (-15 -4368 (|#3| $ (-564) (-564) (-564))) (-15 -4368 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4368 (|#3| $ (-642 (-564)))) (-15 -1739 ($ $ $)) (-15 * ($ $ $)) (-15 -2147 ($ $ (-564) $ (-564))) (-15 -2147 ($ $ (-564) (-564))) (-15 -3673 ($ $)) (-15 -3673 ($ $ (-564) (-564))) (-15 -4058 ($ $ (-642 (-564)))) (-15 -2455 ($)) (-15 -2216 ($)) (-15 -3844 ((-642 |#3|) $)) (-15 -2771 ($ (-642 |#3|))) (-15 -1976 ($)))) (-564) (-769) (-172)) (T -136))
+((-1739 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-769)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *5)) (-14 *4 (-769)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-769)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-769)) (-4 *5 (-172)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 *2) (-4 *5 (-172)))) (-4368 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) (-14 *4 (-769)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-769)))) (-4368 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-769)))) (-4368 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-769)))) (-4368 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-769)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-642 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-564)) (-14 *5 (-769)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))) (-2147 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-769)) (-4 *5 (-172)))) (-2147 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-769)) (-4 *5 (-172)))) (-3673 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))) (-3673 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-769)) (-4 *5 (-172)))) (-4058 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-769)) (-4 *5 (-172)))) (-2455 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))) (-2216 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-642 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-769)) (-4 *5 (-172)))) (-2771 (*1 *1 *2) (-12 (-5 *2 (-642 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-769)))) (-1976 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769)) (-4 *4 (-172)))))
+(-13 (-465 |#3| (-769)) (-470 (-564) (-769)) (-10 -8 (-15 -2327 ($ (-240 |#2| |#3|))) (-15 -2327 ($ (-1139 |#2| |#3|))) (-15 -2327 ($ (-642 |#3|))) (-15 -2327 ($ (-642 $))) (-15 -2414 ((-769) $)) (-15 -4368 (|#3| $)) (-15 -4368 (|#3| $ (-564))) (-15 -4368 (|#3| $ (-564) (-564))) (-15 -4368 (|#3| $ (-564) (-564) (-564))) (-15 -4368 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4368 (|#3| $ (-642 (-564)))) (-15 -1739 ($ $ $)) (-15 * ($ $ $)) (-15 -2147 ($ $ (-564) $ (-564))) (-15 -2147 ($ $ (-564) (-564))) (-15 -3673 ($ $)) (-15 -3673 ($ $ (-564) (-564))) (-15 -4058 ($ $ (-642 (-564)))) (-15 -2455 ($)) (-15 -2216 ($)) (-15 -3844 ((-642 |#3|) $)) (-15 -2771 ($ (-642 |#3|))) (-15 -1976 ($))))
+((-2907 (((-112) $ $) NIL)) (-1843 (((-1132) $) 11)) (-1833 (((-1132) $) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-137) (-13 (-1080) (-10 -8 (-15 -1833 ((-1132) $)) (-15 -1843 ((-1132) $))))) (T -137))
+((-1833 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-137)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-137)))))
+(-13 (-1080) (-10 -8 (-15 -1833 ((-1132) $)) (-15 -1843 ((-1132) $))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-1645 (((-186) $) 10)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 20) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2474 (((-642 (-1132)) $) 13)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-138) (-13 (-1080) (-10 -8 (-15 -1645 ((-186) $)) (-15 -2474 ((-642 (-1132)) $))))) (T -138))
+((-1645 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-138)))))
+(-13 (-1080) (-10 -8 (-15 -1645 ((-186) $)) (-15 -2474 ((-642 (-1132)) $))))
+((-2907 (((-112) $ $) NIL)) (-2280 (((-642 (-863)) $) NIL)) (-2461 (((-506) $) NIL)) (-3315 (((-1155) $) NIL)) (-1645 (((-186) $) NIL)) (-1523 (((-112) $ (-506)) NIL)) (-4033 (((-1117) $) NIL)) (-3983 (((-642 (-112)) $) NIL)) (-2327 (((-860) $) NIL) (((-187) $) 6)) (-1648 (((-112) $ $) NIL)) (-3055 (((-55) $) NIL)) (-2872 (((-112) $ $) NIL)))
(((-139) (-13 (-185) (-611 (-187)))) (T -139))
NIL
(-13 (-185) (-611 (-187)))
-((-4145 (((-641 (-183)) $) 13)) (-1547 (((-641 (-183)) $) 14)) (-1654 (((-641 (-834)) $) 10)) (-1491 (((-139) $) 7)) (-2423 (((-858) $) 16)))
-(((-140) (-13 (-611 (-858)) (-10 -8 (-15 -1491 ((-139) $)) (-15 -1654 ((-641 (-834)) $)) (-15 -4145 ((-641 (-183)) $)) (-15 -1547 ((-641 (-183)) $))))) (T -140))
-((-1491 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-641 (-834))) (-5 *1 (-140)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))))
-(-13 (-611 (-858)) (-10 -8 (-15 -1491 ((-139) $)) (-15 -1654 ((-641 (-834)) $)) (-15 -4145 ((-641 (-183)) $)) (-15 -1547 ((-641 (-183)) $))))
-((-3009 (((-112) $ $) NIL)) (-3890 (($) 17 T CONST)) (-3739 (($) NIL (|has| (-144) (-368)))) (-1682 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2340 (($ $ $) NIL)) (-2521 (((-112) $ $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-2622 (((-767)) NIL (|has| (-144) (-368)))) (-1724 (($) NIL) (($ (-641 (-144))) NIL)) (-1466 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-1945 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407))) (($ (-144) $) 61 (|has| $ (-6 -4407)))) (-2591 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-1316 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-2534 (($) NIL (|has| (-144) (-368)))) (-3035 (((-641 (-144)) $) 70 (|has| $ (-6 -4407)))) (-2342 (((-112) $ $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-2855 (((-144) $) NIL (|has| (-144) (-846)))) (-1554 (((-641 (-144)) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-1497 (((-144) $) NIL (|has| (-144) (-846)))) (-2714 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-144) (-144)) $) 65)) (-3364 (($) 18 T CONST)) (-3256 (((-917) $) NIL (|has| (-144) (-368)))) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-3888 (($ $ $) 30)) (-3149 (((-144) $) 62)) (-2566 (($ (-144) $) 60)) (-2083 (($ (-917)) NIL (|has| (-144) (-368)))) (-3320 (($) 16 T CONST)) (-4052 (((-1114) $) NIL)) (-2139 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2554 (((-144) $) 63)) (-4377 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) 58)) (-1623 (($) 15 T CONST)) (-2085 (($ $ $) 32) (($ $ (-144)) NIL)) (-3853 (($ (-641 (-144))) NIL) (($) NIL)) (-4062 (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094)))) (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-1152) $) 37) (((-536) $) NIL (|has| (-144) (-612 (-536)))) (((-641 (-144)) $) 35)) (-2435 (($ (-641 (-144))) NIL)) (-3026 (($ $) 33 (|has| (-144) (-368)))) (-2423 (((-858) $) 55)) (-2975 (($ (-1152)) 14) (($ (-641 (-144))) 52)) (-1775 (((-767) $) NIL)) (-3755 (($) 59) (($ (-641 (-144))) NIL)) (-1860 (((-112) $ $) NIL)) (-1863 (($ (-641 (-144))) NIL)) (-1368 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-4237 (($) 21 T CONST)) (-3194 (($) 20 T CONST)) (-2974 (((-112) $ $) 24)) (-2181 (((-767) $) 57 (|has| $ (-6 -4407)))))
-(((-141) (-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -2975 ($ (-1152))) (-15 -2975 ($ (-641 (-144)))) (-15 -1623 ($) -2959) (-15 -3320 ($) -2959) (-15 -3890 ($) -2959) (-15 -3364 ($) -2959) (-15 -3194 ($) -2959) (-15 -4237 ($) -2959)))) (T -141))
-((-2975 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141)))) (-1623 (*1 *1) (-5 *1 (-141))) (-3320 (*1 *1) (-5 *1 (-141))) (-3890 (*1 *1) (-5 *1 (-141))) (-3364 (*1 *1) (-5 *1 (-141))) (-3194 (*1 *1) (-5 *1 (-141))) (-4237 (*1 *1) (-5 *1 (-141))))
-(-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -2975 ($ (-1152))) (-15 -2975 ($ (-641 (-144)))) (-15 -1623 ($) -2959) (-15 -3320 ($) -2959) (-15 -3890 ($) -2959) (-15 -3364 ($) -2959) (-15 -3194 ($) -2959) (-15 -4237 ($) -2959)))
-((-1566 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2201 ((|#1| |#3|) 9)) (-1434 ((|#3| |#3|) 15)))
-(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -2201 (|#1| |#3|)) (-15 -1434 (|#3| |#3|)) (-15 -1566 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-988 |#1|) (-373 |#2|)) (T -142))
-((-1566 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-1434 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-988 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-2201 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4)))))
-(-10 -7 (-15 -2201 (|#1| |#3|)) (-15 -1434 (|#3| |#3|)) (-15 -1566 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3737 (($ $ $) 8)) (-1986 (($ $) 7)) (-2020 (($ $ $) 6)))
+((-1459 (((-642 (-183)) $) 13)) (-1575 (((-642 (-183)) $) 14)) (-1996 (((-642 (-836)) $) 10)) (-1513 (((-139) $) 7)) (-2327 (((-860) $) 16)))
+(((-140) (-13 (-611 (-860)) (-10 -8 (-15 -1513 ((-139) $)) (-15 -1996 ((-642 (-836)) $)) (-15 -1459 ((-642 (-183)) $)) (-15 -1575 ((-642 (-183)) $))))) (T -140))
+((-1513 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-642 (-836))) (-5 *1 (-140)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-642 (-183))) (-5 *1 (-140)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-642 (-183))) (-5 *1 (-140)))))
+(-13 (-611 (-860)) (-10 -8 (-15 -1513 ((-139) $)) (-15 -1996 ((-642 (-836)) $)) (-15 -1459 ((-642 (-183)) $)) (-15 -1575 ((-642 (-183)) $))))
+((-2907 (((-112) $ $) NIL)) (-3235 (($) 17 T CONST)) (-3969 (($) NIL (|has| (-144) (-368)))) (-1717 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2633 (($ $ $) NIL)) (-2869 (((-112) $ $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-2521 (((-769)) NIL (|has| (-144) (-368)))) (-1754 (($) NIL) (($ (-642 (-144))) NIL)) (-2462 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2265 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410))) (($ (-144) $) 61 (|has| $ (-6 -4410)))) (-2490 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-1320 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2433 (($) NIL (|has| (-144) (-368)))) (-2936 (((-642 (-144)) $) 70 (|has| $ (-6 -4410)))) (-1899 (((-112) $ $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2755 (((-144) $) NIL (|has| (-144) (-848)))) (-3234 (((-642 (-144)) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-1520 (((-144) $) NIL (|has| (-144) (-848)))) (-2613 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-144) (-144)) $) 65)) (-1436 (($) 18 T CONST)) (-1945 (((-919) $) NIL (|has| (-144) (-368)))) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-2452 (($ $ $) 30)) (-2730 (((-144) $) 62)) (-3183 (($ (-144) $) 60)) (-2047 (($ (-919)) NIL (|has| (-144) (-368)))) (-3376 (($) 16 T CONST)) (-4033 (((-1117) $) NIL)) (-3254 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3388 (((-144) $) 63)) (-2121 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-144)) (-642 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-642 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) 58)) (-1366 (($) 15 T CONST)) (-1438 (($ $ $) 32) (($ $ (-144)) NIL)) (-2593 (($ (-642 (-144))) NIL) (($) NIL)) (-4043 (((-769) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097)))) (((-769) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-1155) $) 37) (((-536) $) NIL (|has| (-144) (-612 (-536)))) (((-642 (-144)) $) 35)) (-2337 (($ (-642 (-144))) NIL)) (-3880 (($ $) 33 (|has| (-144) (-368)))) (-2327 (((-860) $) 55)) (-2926 (($ (-1155)) 14) (($ (-642 (-144))) 52)) (-2094 (((-769) $) NIL)) (-3715 (($) 59) (($ (-642 (-144))) NIL)) (-1648 (((-112) $ $) NIL)) (-4386 (($ (-642 (-144))) NIL)) (-2710 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-2505 (($) 21 T CONST)) (-3069 (($) 20 T CONST)) (-2872 (((-112) $ $) 24)) (-2127 (((-769) $) 57 (|has| $ (-6 -4410)))))
+(((-141) (-13 (-1097) (-612 (-1155)) (-425 (-144)) (-612 (-642 (-144))) (-10 -8 (-15 -2926 ($ (-1155))) (-15 -2926 ($ (-642 (-144)))) (-15 -1366 ($) -2858) (-15 -3376 ($) -2858) (-15 -3235 ($) -2858) (-15 -1436 ($) -2858) (-15 -3069 ($) -2858) (-15 -2505 ($) -2858)))) (T -141))
+((-2926 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-141)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-642 (-144))) (-5 *1 (-141)))) (-1366 (*1 *1) (-5 *1 (-141))) (-3376 (*1 *1) (-5 *1 (-141))) (-3235 (*1 *1) (-5 *1 (-141))) (-1436 (*1 *1) (-5 *1 (-141))) (-3069 (*1 *1) (-5 *1 (-141))) (-2505 (*1 *1) (-5 *1 (-141))))
+(-13 (-1097) (-612 (-1155)) (-425 (-144)) (-612 (-642 (-144))) (-10 -8 (-15 -2926 ($ (-1155))) (-15 -2926 ($ (-642 (-144)))) (-15 -1366 ($) -2858) (-15 -3376 ($) -2858) (-15 -3235 ($) -2858) (-15 -1436 ($) -2858) (-15 -3069 ($) -2858) (-15 -2505 ($) -2858)))
+((-3356 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1602 ((|#1| |#3|) 9)) (-3283 ((|#3| |#3|) 15)))
+(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -1602 (|#1| |#3|)) (-15 -3283 (|#3| |#3|)) (-15 -3356 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-990 |#1|) (-373 |#2|)) (T -142))
+((-3356 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-3283 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-990 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4)))))
+(-10 -7 (-15 -1602 (|#1| |#3|)) (-15 -3283 (|#3| |#3|)) (-15 -3356 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1588 (($ $ $) 8)) (-4303 (($ $) 7)) (-3310 (($ $ $) 6)))
(((-143) (-140)) (T -143))
-((-3737 (*1 *1 *1 *1) (-4 *1 (-143))) (-1986 (*1 *1 *1) (-4 *1 (-143))) (-2020 (*1 *1 *1 *1) (-4 *1 (-143))))
-(-13 (-10 -8 (-15 -2020 ($ $ $)) (-15 -1986 ($ $)) (-15 -3737 ($ $ $))))
-((-3009 (((-112) $ $) NIL)) (-2394 (((-112) $) 36)) (-3890 (($ $) 52)) (-2987 (($) 23)) (-2622 (((-767)) 10)) (-2534 (($) 22)) (-1743 (($) 24)) (-3510 (((-767) $) 18)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-1819 (((-112) $) 38)) (-3364 (($ $) 53)) (-3256 (((-917) $) 20)) (-2766 (((-1152) $) 46)) (-2083 (($ (-917)) 17)) (-2392 (((-112) $) 34)) (-4052 (((-1114) $) NIL)) (-2256 (($) 25)) (-2528 (((-112) $) 32)) (-2423 (((-858) $) 27)) (-2892 (($ (-767)) 16) (($ (-1152)) 51)) (-1860 (((-112) $ $) NIL)) (-1545 (((-112) $) 42)) (-3138 (((-112) $) 40)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 7)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 8)))
-(((-144) (-13 (-840) (-10 -8 (-15 -3510 ((-767) $)) (-15 -2892 ($ (-767))) (-15 -2892 ($ (-1152))) (-15 -2987 ($)) (-15 -1743 ($)) (-15 -2256 ($)) (-15 -3890 ($ $)) (-15 -3364 ($ $)) (-15 -2528 ((-112) $)) (-15 -2392 ((-112) $)) (-15 -3138 ((-112) $)) (-15 -2394 ((-112) $)) (-15 -1819 ((-112) $)) (-15 -1545 ((-112) $))))) (T -144))
-((-3510 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144)))) (-2987 (*1 *1) (-5 *1 (-144))) (-1743 (*1 *1) (-5 *1 (-144))) (-2256 (*1 *1) (-5 *1 (-144))) (-3890 (*1 *1 *1) (-5 *1 (-144))) (-3364 (*1 *1 *1) (-5 *1 (-144))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2394 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(-13 (-840) (-10 -8 (-15 -3510 ((-767) $)) (-15 -2892 ($ (-767))) (-15 -2892 ($ (-1152))) (-15 -2987 ($)) (-15 -1743 ($)) (-15 -2256 ($)) (-15 -3890 ($ $)) (-15 -3364 ($ $)) (-15 -2528 ((-112) $)) (-15 -2392 ((-112) $)) (-15 -3138 ((-112) $)) (-15 -2394 ((-112) $)) (-15 -1819 ((-112) $)) (-15 -1545 ((-112) $))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30)) (-2420 (((-3 $ "failed") $) 36)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
+((-1588 (*1 *1 *1 *1) (-4 *1 (-143))) (-4303 (*1 *1 *1) (-4 *1 (-143))) (-3310 (*1 *1 *1 *1) (-4 *1 (-143))))
+(-13 (-10 -8 (-15 -3310 ($ $ $)) (-15 -4303 ($ $)) (-15 -1588 ($ $ $))))
+((-2907 (((-112) $ $) NIL)) (-3035 (((-112) $) 36)) (-3235 (($ $) 52)) (-3809 (($) 23)) (-2521 (((-769)) 10)) (-2433 (($) 22)) (-1778 (($) 24)) (-1300 (((-769) $) 18)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-3917 (((-112) $) 38)) (-1436 (($ $) 53)) (-1945 (((-919) $) 20)) (-3315 (((-1155) $) 46)) (-2047 (($ (-919)) 17)) (-1913 (((-112) $) 34)) (-4033 (((-1117) $) NIL)) (-1809 (($) 25)) (-2432 (((-112) $) 32)) (-2327 (((-860) $) 27)) (-2792 (($ (-769)) 16) (($ (-1155)) 51)) (-1648 (((-112) $ $) NIL)) (-2429 (((-112) $) 42)) (-2110 (((-112) $) 40)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 7)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 8)))
+(((-144) (-13 (-842) (-10 -8 (-15 -1300 ((-769) $)) (-15 -2792 ($ (-769))) (-15 -2792 ($ (-1155))) (-15 -3809 ($)) (-15 -1778 ($)) (-15 -1809 ($)) (-15 -3235 ($ $)) (-15 -1436 ($ $)) (-15 -2432 ((-112) $)) (-15 -1913 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -3035 ((-112) $)) (-15 -3917 ((-112) $)) (-15 -2429 ((-112) $))))) (T -144))
+((-1300 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-144)))) (-2792 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-144)))) (-2792 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-144)))) (-3809 (*1 *1) (-5 *1 (-144))) (-1778 (*1 *1) (-5 *1 (-144))) (-1809 (*1 *1) (-5 *1 (-144))) (-3235 (*1 *1 *1) (-5 *1 (-144))) (-1436 (*1 *1 *1) (-5 *1 (-144))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(-13 (-842) (-10 -8 (-15 -1300 ((-769) $)) (-15 -2792 ($ (-769))) (-15 -2792 ($ (-1155))) (-15 -3809 ($)) (-15 -1778 ($)) (-15 -1809 ($)) (-15 -3235 ($ $)) (-15 -1436 ($ $)) (-15 -2432 ((-112) $)) (-15 -1913 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -3035 ((-112) $)) (-15 -3917 ((-112) $)) (-15 -2429 ((-112) $))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33)) (-2439 (((-3 $ "failed") $) 39)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
(((-145) (-140)) (T -145))
-((-2420 (*1 *1 *1) (|partial| -4 *1 (-145))))
-(-13 (-1045) (-10 -8 (-15 -2420 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-2134 ((|#1| (-685 |#1|) |#1|) 23)))
-(((-146 |#1|) (-10 -7 (-15 -2134 (|#1| (-685 |#1|) |#1|))) (-172)) (T -146))
-((-2134 (*1 *2 *3 *2) (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))))
-(-10 -7 (-15 -2134 (|#1| (-685 |#1|) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
+((-2439 (*1 *1 *1) (|partial| -4 *1 (-145))))
+(-13 (-1047) (-10 -8 (-15 -2439 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-3011 ((|#1| (-687 |#1|) |#1|) 23)))
+(((-146 |#1|) (-10 -7 (-15 -3011 (|#1| (-687 |#1|) |#1|))) (-172)) (T -146))
+((-3011 (*1 *2 *3 *2) (-12 (-5 *3 (-687 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))))
+(-10 -7 (-15 -3011 (|#1| (-687 |#1|) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
(((-147) (-140)) (T -147))
NIL
-(-13 (-1045))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-1425 (((-2 (|:| -1838 (-767)) (|:| -4376 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767)) 76)) (-1306 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|) 56)) (-4113 (((-2 (|:| -4376 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3906 ((|#1| |#3| |#3|) 44)) (-3291 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 20)) (-3792 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|) 53)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -4113 ((-2 (|:| -4376 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1306 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -1425 ((-2 (|:| -1838 (-767)) (|:| -4376 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -3906 (|#1| |#3| |#3|)) (-15 -3291 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -3792 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|))) (T -148))
-((-3792 (*1 *2 *3 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-3291 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3)))) (-3906 (*1 *2 *3 *3) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-1425 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -1838 (-767)) (|:| -4376 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1235 *3)))) (-1306 (*1 *2 *3) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-4113 (*1 *2 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -4376 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
-(-10 -7 (-15 -4113 ((-2 (|:| -4376 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1306 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -1425 ((-2 (|:| -1838 (-767)) (|:| -4376 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -3906 (|#1| |#3| |#3|)) (-15 -3291 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -3792 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|)))
-((-4192 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 35)))
-(((-149 |#1| |#2|) (-10 -7 (-15 -4192 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)))) (-545) (-166 |#1|)) (T -149))
-((-4192 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))))
-(-10 -7 (-15 -4192 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))))
-((-1667 (($ (-1 (-112) |#2|) $) 35)) (-2696 (($ $) 42)) (-2591 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-1316 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-2139 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-4377 (((-112) (-1 (-112) |#2|) $) 22)) (-4062 (((-767) (-1 (-112) |#2|) $) 18) (((-767) |#2| $) NIL)) (-1368 (((-112) (-1 (-112) |#2|) $) 21)) (-2181 (((-767) $) 12)))
-(((-150 |#1| |#2|) (-10 -8 (-15 -2696 (|#1| |#1|)) (-15 -2591 (|#1| |#2| |#1|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1667 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2591 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2139 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4062 ((-767) |#2| |#1|)) (-15 -4062 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -4377 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2181 ((-767) |#1|))) (-151 |#2|) (-1209)) (T -150))
-NIL
-(-10 -8 (-15 -2696 (|#1| |#1|)) (-15 -2591 (|#1| |#2| |#1|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1667 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2591 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2139 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4062 ((-767) |#2| |#1|)) (-15 -4062 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -4377 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2181 ((-767) |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) 8)) (-1667 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2696 (($ $) 42 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407))) (($ |#1| $) 43 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 41 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 50)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-151 |#1|) (-140) (-1209)) (T -151))
-((-2435 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3)))) (-2139 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-1316 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-1316 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-2591 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-1667 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-1316 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-2591 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-2696 (*1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))))
-(-13 (-489 |t#1|) (-10 -8 (-15 -2435 ($ (-641 |t#1|))) (-15 -2139 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4407)) (PROGN (-15 -1316 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1316 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2591 ($ (-1 (-112) |t#1|) $)) (-15 -1667 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -1316 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2591 ($ |t#1| $)) (-15 -2696 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) 114)) (-4112 (((-112) $) NIL)) (-3810 (($ |#2| (-641 (-917))) 74)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3380 (($ (-917)) 61)) (-4327 (((-134)) 26)) (-2423 (((-858) $) 89) (($ (-564)) 57) (($ |#2|) 58)) (-2007 ((|#2| $ (-641 (-917))) 77)) (-3719 (((-767)) 23 T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 51 T CONST)) (-2417 (($) 55 T CONST)) (-2974 (((-112) $ $) 37)) (-3092 (($ $ |#2|) NIL)) (-3082 (($ $) 46) (($ $ $) 44)) (-3070 (($ $ $) 42)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL)))
-(((-152 |#1| |#2| |#3|) (-13 (-1045) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -3380 ($ (-917))) (-15 -3810 ($ |#2| (-641 (-917)))) (-15 -2007 (|#2| $ (-641 (-917)))) (-15 -3293 ((-3 $ "failed") $)))) (-917) (-363) (-989 |#1| |#2|)) (T -152))
-((-3293 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-363)) (-14 *4 (-989 *2 *3)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-989 *3 *4)))) (-3810 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-917))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) (-4 *2 (-363)) (-14 *5 (-989 *4 *2)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-917))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) (-14 *5 (-989 *4 *2)))))
-(-13 (-1045) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -3380 ($ (-917))) (-15 -3810 ($ |#2| (-641 (-917)))) (-15 -2007 (|#2| $ (-641 (-917)))) (-15 -3293 ((-3 $ "failed") $))))
-((-2727 (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225)))) (-225) (-225) (-225) (-225)) 61)) (-4220 (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564))) 98) (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923)) 99)) (-3005 (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225))))) 102) (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-939 (-225)))) 101) (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564))) 94) (((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923)) 95)))
-(((-153) (-10 -7 (-15 -3005 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923))) (-15 -3005 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564)))) (-15 -4220 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923))) (-15 -4220 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564)))) (-15 -2727 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -3005 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-939 (-225))))) (-15 -3005 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225)))))))) (T -153))
-((-3005 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-939 (-225))))))) (-3005 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-939 (-225)))))) (-2727 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 *4)))) (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4)))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-939 *4)))))) (-4220 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))))
-(-10 -7 (-15 -3005 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923))) (-15 -3005 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564)))) (-15 -4220 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923))) (-15 -4220 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-923) (-407 (-564)) (-407 (-564)))) (-15 -2727 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -3005 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-939 (-225))))) (-15 -3005 ((-2 (|:| |brans| (-641 (-641 (-939 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-939 (-225)))))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-3407 (((-641 (-1129)) $) 20)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 27) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2575 (((-1129) $) 9)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-154) (-13 (-1077) (-10 -8 (-15 -3407 ((-641 (-1129)) $)) (-15 -2575 ((-1129) $))))) (T -154))
-((-3407 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154)))))
-(-13 (-1077) (-10 -8 (-15 -3407 ((-641 (-1129)) $)) (-15 -2575 ((-1129) $))))
-((-2748 (((-641 (-169 |#2|)) |#1| |#2|) 50)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -2748 ((-641 (-169 |#2|)) |#1| |#2|))) (-1235 (-169 (-564))) (-13 (-363) (-844))) (T -155))
-((-2748 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-844))))))
-(-10 -7 (-15 -2748 ((-641 (-169 |#2|)) |#1| |#2|)))
-((-3009 (((-112) $ $) NIL)) (-1827 (((-1208) $) 12)) (-1813 (((-1129) $) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-156) (-13 (-1077) (-10 -8 (-15 -1813 ((-1129) $)) (-15 -1827 ((-1208) $))))) (T -156))
-((-1813 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156)))))
-(-13 (-1077) (-10 -8 (-15 -1813 ((-1129) $)) (-15 -1827 ((-1208) $))))
-((-3009 (((-112) $ $) NIL)) (-4117 (($) 40)) (-1771 (($) 39)) (-4360 (((-917)) 45)) (-2766 (((-1152) $) NIL)) (-2878 (((-564) $) 43)) (-4052 (((-1114) $) NIL)) (-1797 (($) 41)) (-1785 (($ (-564)) 46)) (-2423 (((-858) $) 52)) (-4091 (($) 42)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 37)) (-3070 (($ $ $) 34)) (* (($ (-917) $) 44) (($ (-225) $) 11)))
-(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-225) $)) (-15 -3070 ($ $ $)) (-15 -1771 ($)) (-15 -4117 ($)) (-15 -1797 ($)) (-15 -4091 ($)) (-15 -2878 ((-564) $)) (-15 -4360 ((-917))) (-15 -1785 ($ (-564)))))) (T -157))
-((-3070 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-1771 (*1 *1) (-5 *1 (-157))) (-4117 (*1 *1) (-5 *1 (-157))) (-1797 (*1 *1) (-5 *1 (-157))) (-4091 (*1 *1) (-5 *1 (-157))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) (-4360 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-225) $)) (-15 -3070 ($ $ $)) (-15 -1771 ($)) (-15 -4117 ($)) (-15 -1797 ($)) (-15 -4091 ($)) (-15 -2878 ((-564) $)) (-15 -4360 ((-917))) (-15 -1785 ($ (-564)))))
-((-3250 ((|#2| |#2| (-1086 |#2|)) 98) ((|#2| |#2| (-1170)) 75)) (-2897 ((|#2| |#2| (-1086 |#2|)) 97) ((|#2| |#2| (-1170)) 74)) (-3737 ((|#2| |#2| |#2|) 25)) (-4232 (((-114) (-114)) 111)) (-3849 ((|#2| (-641 |#2|)) 130)) (-3333 ((|#2| (-641 |#2|)) 152)) (-4108 ((|#2| (-641 |#2|)) 138)) (-3237 ((|#2| |#2|) 136)) (-2756 ((|#2| (-641 |#2|)) 124)) (-1416 ((|#2| (-641 |#2|)) 125)) (-1685 ((|#2| (-641 |#2|)) 150)) (-2771 ((|#2| |#2| (-1170)) 63) ((|#2| |#2|) 62)) (-1986 ((|#2| |#2|) 21)) (-2020 ((|#2| |#2| |#2|) 24)) (-3263 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
-(((-158 |#1| |#2|) (-10 -7 (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2020 (|#2| |#2| |#2|)) (-15 -3737 (|#2| |#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -2771 (|#2| |#2| (-1170))) (-15 -3250 (|#2| |#2| (-1170))) (-15 -3250 (|#2| |#2| (-1086 |#2|))) (-15 -2897 (|#2| |#2| (-1170))) (-15 -2897 (|#2| |#2| (-1086 |#2|))) (-15 -3237 (|#2| |#2|)) (-15 -1685 (|#2| (-641 |#2|))) (-15 -4108 (|#2| (-641 |#2|))) (-15 -3333 (|#2| (-641 |#2|))) (-15 -2756 (|#2| (-641 |#2|))) (-15 -1416 (|#2| (-641 |#2|))) (-15 -3849 (|#2| (-641 |#2|)))) (-556) (-430 |#1|)) (T -158))
-((-3849 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-1416 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-3237 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2897 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)))) (-2897 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2771 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3737 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2020 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-4232 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))))
-(-10 -7 (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2020 (|#2| |#2| |#2|)) (-15 -3737 (|#2| |#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -2771 (|#2| |#2| (-1170))) (-15 -3250 (|#2| |#2| (-1170))) (-15 -3250 (|#2| |#2| (-1086 |#2|))) (-15 -2897 (|#2| |#2| (-1170))) (-15 -2897 (|#2| |#2| (-1086 |#2|))) (-15 -3237 (|#2| |#2|)) (-15 -1685 (|#2| (-641 |#2|))) (-15 -4108 (|#2| (-641 |#2|))) (-15 -3333 (|#2| (-641 |#2|))) (-15 -2756 (|#2| (-641 |#2|))) (-15 -1416 (|#2| (-641 |#2|))) (-15 -3849 (|#2| (-641 |#2|))))
-((-2406 ((|#1| |#1| |#1|) 65)) (-1992 ((|#1| |#1| |#1|) 62)) (-3737 ((|#1| |#1| |#1|) 56)) (-2915 ((|#1| |#1|) 45)) (-3359 ((|#1| |#1| (-641 |#1|)) 53)) (-1986 ((|#1| |#1|) 47)) (-2020 ((|#1| |#1| |#1|) 50)))
-(((-159 |#1|) (-10 -7 (-15 -2020 (|#1| |#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -3359 (|#1| |#1| (-641 |#1|))) (-15 -2915 (|#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -1992 (|#1| |#1| |#1|)) (-15 -2406 (|#1| |#1| |#1|))) (-545)) (T -159))
-((-2406 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1992 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3737 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2915 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3359 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-1986 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2020 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(-10 -7 (-15 -2020 (|#1| |#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -3359 (|#1| |#1| (-641 |#1|))) (-15 -2915 (|#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -1992 (|#1| |#1| |#1|)) (-15 -2406 (|#1| |#1| |#1|)))
-((-3250 (($ $ (-1170)) 12) (($ $ (-1086 $)) 11)) (-2897 (($ $ (-1170)) 10) (($ $ (-1086 $)) 9)) (-3737 (($ $ $) 8)) (-2771 (($ $) 14) (($ $ (-1170)) 13)) (-1986 (($ $) 7)) (-2020 (($ $ $) 6)))
+(-13 (-1047))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-1830 (((-2 (|:| -2700 (-769)) (|:| -4378 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-769)) 76)) (-2495 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-769))) "failed") |#3|) 56)) (-3777 (((-2 (|:| -4378 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1836 ((|#1| |#3| |#3|) 44)) (-3215 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 20)) (-1561 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-769))) |#3| |#3|) 53)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3777 ((-2 (|:| -4378 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2495 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-769))) "failed") |#3|)) (-15 -1830 ((-2 (|:| -2700 (-769)) (|:| -4378 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-769))) (-15 -1836 (|#1| |#3| |#3|)) (-15 -3215 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -1561 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-769))) |#3| |#3|))) (-1216) (-1238 |#1|) (-1238 (-407 |#2|))) (T -148))
+((-1561 (*1 *2 *3 *3) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-769)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5))))) (-3215 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1238 *3)))) (-1836 (*1 *2 *3 *3) (-12 (-4 *4 (-1238 *2)) (-4 *2 (-1216)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1238 (-407 *4))))) (-1830 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1216)) (-4 *6 (-1238 *5)) (-5 *2 (-2 (|:| -2700 (-769)) (|:| -4378 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-769)) (-4 *7 (-1238 *3)))) (-2495 (*1 *2 *3) (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-769)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5))))) (-3777 (*1 *2 *3) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| -4378 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5))))))
+(-10 -7 (-15 -3777 ((-2 (|:| -4378 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2495 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-769))) "failed") |#3|)) (-15 -1830 ((-2 (|:| -2700 (-769)) (|:| -4378 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-769))) (-15 -1836 (|#1| |#3| |#3|)) (-15 -3215 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -1561 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-769))) |#3| |#3|)))
+((-4094 (((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|)) 35)))
+(((-149 |#1| |#2|) (-10 -7 (-15 -4094 ((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|)))) (-545) (-166 |#1|)) (T -149))
+((-4094 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 *5))) (-5 *3 (-1169 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))))
+(-10 -7 (-15 -4094 ((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|))))
+((-1700 (($ (-1 (-112) |#2|) $) 35)) (-2595 (($ $) 42)) (-2490 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-1320 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3254 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-2121 (((-112) (-1 (-112) |#2|) $) 22)) (-4043 (((-769) (-1 (-112) |#2|) $) 18) (((-769) |#2| $) NIL)) (-2710 (((-112) (-1 (-112) |#2|) $) 21)) (-2127 (((-769) $) 12)))
+(((-150 |#1| |#2|) (-10 -8 (-15 -2595 (|#1| |#1|)) (-15 -2490 (|#1| |#2| |#1|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1700 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2490 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3254 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4043 ((-769) |#2| |#1|)) (-15 -4043 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -2121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-769) |#1|))) (-151 |#2|) (-1212)) (T -150))
+NIL
+(-10 -8 (-15 -2595 (|#1| |#1|)) (-15 -2490 (|#1| |#2| |#1|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1700 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2490 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3254 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4043 ((-769) |#2| |#1|)) (-15 -4043 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -2121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-769) |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) 8)) (-1700 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-2595 (($ $) 42 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410))) (($ |#1| $) 43 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 41 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 50)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-151 |#1|) (-140) (-1212)) (T -151))
+((-2337 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-151 *3)))) (-3254 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1212)))) (-1320 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)))) (-1320 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)))) (-2490 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *3)) (-4 *3 (-1212)))) (-1700 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *3)) (-4 *3 (-1212)))) (-1320 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1097)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)))) (-2490 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)) (-4 *2 (-1097)))) (-2595 (*1 *1 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212)) (-4 *2 (-1097)))))
+(-13 (-489 |t#1|) (-10 -8 (-15 -2337 ($ (-642 |t#1|))) (-15 -3254 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4410)) (PROGN (-15 -1320 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1320 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2490 ($ (-1 (-112) |t#1|) $)) (-15 -1700 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1097)) (PROGN (-15 -1320 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2490 ($ |t#1| $)) (-15 -2595 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) 114)) (-3953 (((-112) $) NIL)) (-3774 (($ |#2| (-642 (-919))) 74)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3312 (($ (-919)) 61)) (-3474 (((-134)) 26)) (-2327 (((-860) $) 89) (($ (-564)) 57) (($ |#2|) 58)) (-2102 ((|#2| $ (-642 (-919))) 77)) (-2756 (((-769)) 23 T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 51 T CONST)) (-2322 (($) 55 T CONST)) (-2872 (((-112) $ $) 37)) (-2998 (($ $ |#2|) NIL)) (-2987 (($ $) 46) (($ $ $) 44)) (-2974 (($ $ $) 42)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL)))
+(((-152 |#1| |#2| |#3|) (-13 (-1047) (-38 |#2|) (-1269 |#2|) (-10 -8 (-15 -3312 ($ (-919))) (-15 -3774 ($ |#2| (-642 (-919)))) (-15 -2102 (|#2| $ (-642 (-919)))) (-15 -3104 ((-3 $ "failed") $)))) (-919) (-363) (-991 |#1| |#2|)) (T -152))
+((-3104 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-919)) (-4 *3 (-363)) (-14 *4 (-991 *2 *3)))) (-3312 (*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-991 *3 *4)))) (-3774 (*1 *1 *2 *3) (-12 (-5 *3 (-642 (-919))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-919)) (-4 *2 (-363)) (-14 *5 (-991 *4 *2)))) (-2102 (*1 *2 *1 *3) (-12 (-5 *3 (-642 (-919))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-919)) (-14 *5 (-991 *4 *2)))))
+(-13 (-1047) (-38 |#2|) (-1269 |#2|) (-10 -8 (-15 -3312 ($ (-919))) (-15 -3774 ($ |#2| (-642 (-919)))) (-15 -2102 (|#2| $ (-642 (-919)))) (-15 -3104 ((-3 $ "failed") $))))
+((-2276 (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225)))) (-225) (-225) (-225) (-225)) 61)) (-2396 (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564))) 98) (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925)) 99)) (-1311 (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225))))) 102) (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-941 (-225)))) 101) (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564))) 94) (((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925)) 95)))
+(((-153) (-10 -7 (-15 -1311 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925))) (-15 -1311 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564)))) (-15 -2396 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925))) (-15 -2396 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564)))) (-15 -2276 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1311 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-941 (-225))))) (-15 -1311 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225)))))))) (T -153))
+((-1311 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)) (-5 *3 (-642 (-642 (-941 (-225))))))) (-1311 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)) (-5 *3 (-642 (-941 (-225)))))) (-2276 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 *4)))) (|:| |xValues| (-1091 *4)) (|:| |yValues| (-1091 *4)))) (-5 *1 (-153)) (-5 *3 (-642 (-642 (-941 *4)))))) (-2396 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-925)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)))) (-1311 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-925)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225))))) (-5 *1 (-153)))))
+(-10 -7 (-15 -1311 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925))) (-15 -1311 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564)))) (-15 -2396 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925))) (-15 -2396 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-925) (-407 (-564)) (-407 (-564)))) (-15 -2276 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1311 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-941 (-225))))) (-15 -1311 ((-2 (|:| |brans| (-642 (-642 (-941 (-225))))) (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))) (-642 (-642 (-941 (-225)))))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-3342 (((-642 (-1132)) $) 20)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 27) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2474 (((-1132) $) 9)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-154) (-13 (-1080) (-10 -8 (-15 -3342 ((-642 (-1132)) $)) (-15 -2474 ((-1132) $))))) (T -154))
+((-3342 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-154)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-154)))))
+(-13 (-1080) (-10 -8 (-15 -3342 ((-642 (-1132)) $)) (-15 -2474 ((-1132) $))))
+((-3067 (((-642 (-169 |#2|)) |#1| |#2|) 50)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -3067 ((-642 (-169 |#2|)) |#1| |#2|))) (-1238 (-169 (-564))) (-13 (-363) (-846))) (T -155))
+((-3067 (*1 *2 *3 *4) (-12 (-5 *2 (-642 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1238 (-169 (-564)))) (-4 *4 (-13 (-363) (-846))))))
+(-10 -7 (-15 -3067 ((-642 (-169 |#2|)) |#1| |#2|)))
+((-2907 (((-112) $ $) NIL)) (-1843 (((-1211) $) 12)) (-1833 (((-1132) $) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 19) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-156) (-13 (-1080) (-10 -8 (-15 -1833 ((-1132) $)) (-15 -1843 ((-1211) $))))) (T -156))
+((-1833 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-156)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-156)))))
+(-13 (-1080) (-10 -8 (-15 -1833 ((-1132) $)) (-15 -1843 ((-1211) $))))
+((-2907 (((-112) $ $) NIL)) (-4268 (($) 40)) (-3892 (($) 39)) (-2732 (((-919)) 45)) (-3315 (((-1155) $) NIL)) (-3265 (((-564) $) 43)) (-4033 (((-1117) $) NIL)) (-1889 (($) 41)) (-4183 (($ (-564)) 46)) (-2327 (((-860) $) 52)) (-1531 (($) 42)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 37)) (-2974 (($ $ $) 34)) (* (($ (-919) $) 44) (($ (-225) $) 11)))
+(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-919) $)) (-15 * ($ (-225) $)) (-15 -2974 ($ $ $)) (-15 -3892 ($)) (-15 -4268 ($)) (-15 -1889 ($)) (-15 -1531 ($)) (-15 -3265 ((-564) $)) (-15 -2732 ((-919))) (-15 -4183 ($ (-564)))))) (T -157))
+((-2974 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3892 (*1 *1) (-5 *1 (-157))) (-4268 (*1 *1) (-5 *1 (-157))) (-1889 (*1 *1) (-5 *1 (-157))) (-1531 (*1 *1) (-5 *1 (-157))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) (-2732 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-157)))) (-4183 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-919) $)) (-15 * ($ (-225) $)) (-15 -2974 ($ $ $)) (-15 -3892 ($)) (-15 -4268 ($)) (-15 -1889 ($)) (-15 -1531 ($)) (-15 -3265 ((-564) $)) (-15 -2732 ((-919))) (-15 -4183 ($ (-564)))))
+((-4012 ((|#2| |#2| (-1089 |#2|)) 98) ((|#2| |#2| (-1173)) 75)) (-1739 ((|#2| |#2| (-1089 |#2|)) 97) ((|#2| |#2| (-1173)) 74)) (-1588 ((|#2| |#2| |#2|) 25)) (-3307 (((-114) (-114)) 111)) (-4273 ((|#2| (-642 |#2|)) 130)) (-4152 ((|#2| (-642 |#2|)) 152)) (-1506 ((|#2| (-642 |#2|)) 138)) (-2104 ((|#2| |#2|) 136)) (-3882 ((|#2| (-642 |#2|)) 124)) (-4131 ((|#2| (-642 |#2|)) 125)) (-2055 ((|#2| (-642 |#2|)) 150)) (-3675 ((|#2| |#2| (-1173)) 63) ((|#2| |#2|) 62)) (-4303 ((|#2| |#2|) 21)) (-3310 ((|#2| |#2| |#2|) 24)) (-2357 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
+(((-158 |#1| |#2|) (-10 -7 (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3310 (|#2| |#2| |#2|)) (-15 -1588 (|#2| |#2| |#2|)) (-15 -4303 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -3675 (|#2| |#2| (-1173))) (-15 -4012 (|#2| |#2| (-1173))) (-15 -4012 (|#2| |#2| (-1089 |#2|))) (-15 -1739 (|#2| |#2| (-1173))) (-15 -1739 (|#2| |#2| (-1089 |#2|))) (-15 -2104 (|#2| |#2|)) (-15 -2055 (|#2| (-642 |#2|))) (-15 -1506 (|#2| (-642 |#2|))) (-15 -4152 (|#2| (-642 |#2|))) (-15 -3882 (|#2| (-642 |#2|))) (-15 -4131 (|#2| (-642 |#2|))) (-15 -4273 (|#2| (-642 |#2|)))) (-556) (-430 |#1|)) (T -158))
+((-4273 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-556)))) (-2104 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1739 (*1 *2 *2 *3) (-12 (-5 *3 (-1089 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)))) (-1739 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-4012 (*1 *2 *2 *3) (-12 (-5 *3 (-1089 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)))) (-4012 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3675 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-4303 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1588 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3310 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3307 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))))
+(-10 -7 (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3310 (|#2| |#2| |#2|)) (-15 -1588 (|#2| |#2| |#2|)) (-15 -4303 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -3675 (|#2| |#2| (-1173))) (-15 -4012 (|#2| |#2| (-1173))) (-15 -4012 (|#2| |#2| (-1089 |#2|))) (-15 -1739 (|#2| |#2| (-1173))) (-15 -1739 (|#2| |#2| (-1089 |#2|))) (-15 -2104 (|#2| |#2|)) (-15 -2055 (|#2| (-642 |#2|))) (-15 -1506 (|#2| (-642 |#2|))) (-15 -4152 (|#2| (-642 |#2|))) (-15 -3882 (|#2| (-642 |#2|))) (-15 -4131 (|#2| (-642 |#2|))) (-15 -4273 (|#2| (-642 |#2|))))
+((-4213 ((|#1| |#1| |#1|) 65)) (-2004 ((|#1| |#1| |#1|) 62)) (-1588 ((|#1| |#1| |#1|) 56)) (-3925 ((|#1| |#1|) 45)) (-2053 ((|#1| |#1| (-642 |#1|)) 53)) (-4303 ((|#1| |#1|) 47)) (-3310 ((|#1| |#1| |#1|) 50)))
+(((-159 |#1|) (-10 -7 (-15 -3310 (|#1| |#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -2053 (|#1| |#1| (-642 |#1|))) (-15 -3925 (|#1| |#1|)) (-15 -1588 (|#1| |#1| |#1|)) (-15 -2004 (|#1| |#1| |#1|)) (-15 -4213 (|#1| |#1| |#1|))) (-545)) (T -159))
+((-4213 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2004 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1588 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3925 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2053 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-4303 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3310 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(-10 -7 (-15 -3310 (|#1| |#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -2053 (|#1| |#1| (-642 |#1|))) (-15 -3925 (|#1| |#1|)) (-15 -1588 (|#1| |#1| |#1|)) (-15 -2004 (|#1| |#1| |#1|)) (-15 -4213 (|#1| |#1| |#1|)))
+((-4012 (($ $ (-1173)) 12) (($ $ (-1089 $)) 11)) (-1739 (($ $ (-1173)) 10) (($ $ (-1089 $)) 9)) (-1588 (($ $ $) 8)) (-3675 (($ $) 14) (($ $ (-1173)) 13)) (-4303 (($ $) 7)) (-3310 (($ $ $) 6)))
(((-160) (-140)) (T -160))
-((-2771 (*1 *1 *1) (-4 *1 (-160))) (-2771 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-3250 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-3250 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) (-2897 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))))
-(-13 (-143) (-10 -8 (-15 -2771 ($ $)) (-15 -2771 ($ $ (-1170))) (-15 -3250 ($ $ (-1170))) (-15 -3250 ($ $ (-1086 $))) (-15 -2897 ($ $ (-1170))) (-15 -2897 ($ $ (-1086 $)))))
+((-3675 (*1 *1 *1) (-4 *1 (-160))) (-3675 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173)))) (-4012 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173)))) (-4012 (*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-160)))) (-1739 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173)))) (-1739 (*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-160)))))
+(-13 (-143) (-10 -8 (-15 -3675 ($ $)) (-15 -3675 ($ $ (-1173))) (-15 -4012 ($ $ (-1173))) (-15 -4012 ($ $ (-1089 $))) (-15 -1739 ($ $ (-1173))) (-15 -1739 ($ $ (-1089 $)))))
(((-143) . T))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2575 (((-641 (-1129)) $) 10)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-161) (-13 (-1077) (-10 -8 (-15 -2575 ((-641 (-1129)) $))))) (T -161))
-((-2575 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-161)))))
-(-13 (-1077) (-10 -8 (-15 -2575 ((-641 (-1129)) $))))
-((-3009 (((-112) $ $) NIL)) (-3588 (($ (-564)) 14) (($ $ $) 15)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 18)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 9)))
-(((-162) (-13 (-1094) (-10 -8 (-15 -3588 ($ (-564))) (-15 -3588 ($ $ $))))) (T -162))
-((-3588 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))) (-3588 (*1 *1 *1 *1) (-5 *1 (-162))))
-(-13 (-1094) (-10 -8 (-15 -3588 ($ (-564))) (-15 -3588 ($ $ $))))
-((-4232 (((-114) (-1170)) 102)))
-(((-163) (-10 -7 (-15 -4232 ((-114) (-1170))))) (T -163))
-((-4232 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163)))))
-(-10 -7 (-15 -4232 ((-114) (-1170))))
-((-2608 ((|#3| |#3|) 19)))
-(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2608 (|#3| |#3|))) (-1045) (-1235 |#1|) (-1235 |#2|)) (T -164))
-((-2608 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1235 *4)))))
-(-10 -7 (-15 -2608 (|#3| |#3|)))
-((-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 227)) (-3847 ((|#2| $) 106)) (-3880 (($ $) 258)) (-3745 (($ $) 252)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 47)) (-3858 (($ $) 256)) (-3722 (($ $) 250)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 150)) (-3120 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 148)) (-2946 (($ $ $) 233)) (-4277 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 164) (((-685 |#2|) (-685 $)) 158)) (-1316 (($ (-1166 |#2|)) 129) (((-3 $ "failed") (-407 (-1166 |#2|))) NIL)) (-3293 (((-3 $ "failed") $) 218)) (-2450 (((-3 (-407 (-564)) "failed") $) 208)) (-1364 (((-112) $) 203)) (-2553 (((-407 (-564)) $) 206)) (-2514 (((-917)) 100)) (-2960 (($ $ $) 235)) (-1409 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 272)) (-4274 (($) 247)) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 197) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 202)) (-2499 ((|#2| $) 104)) (-3514 (((-1166 |#2|) $) 131)) (-4357 (($ (-1 |#2| |#2|) $) 112)) (-3657 (($ $) 249)) (-1305 (((-1166 |#2|) $) 130)) (-3936 (($ $) 211)) (-3451 (($) 107)) (-2037 (((-418 (-1166 $)) (-1166 $)) 99)) (-1348 (((-418 (-1166 $)) (-1166 $)) 64)) (-2998 (((-3 $ "failed") $ |#2|) 213) (((-3 $ "failed") $ $) 216)) (-1689 (($ $) 248)) (-1700 (((-767) $) 230)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 240)) (-1330 ((|#2| (-1259 $)) NIL) ((|#2|) 102)) (-3254 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 123) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-3721 (((-1166 |#2|)) 124)) (-3869 (($ $) 257)) (-3735 (($ $) 251)) (-4225 (((-1259 |#2|) $ (-1259 $)) 140) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 120) (((-685 |#2|) (-1259 $)) NIL)) (-1311 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) (((-1166 |#2|) $) NIL) (($ (-1166 |#2|)) NIL) (((-888 (-564)) $) 188) (((-888 (-379)) $) 192) (((-169 (-379)) $) 176) (((-169 (-225)) $) 171) (((-536) $) 184)) (-3185 (($ $) 108)) (-2423 (((-858) $) 147) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-407 (-564))) NIL) (($ $) NIL)) (-2134 (((-1166 |#2|) $) 32)) (-3719 (((-767)) 110)) (-1860 (((-112) $ $) 13)) (-3949 (($ $) 261)) (-3811 (($ $) 255)) (-3925 (($ $) 259)) (-3787 (($ $) 253)) (-3862 ((|#2| $) 244)) (-3937 (($ $) 260)) (-3799 (($ $) 254)) (-3673 (($ $) 166)) (-2974 (((-112) $ $) 114)) (-3082 (($ $) 116) (($ $ $) NIL)) (-3070 (($ $ $) 115)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-564))) 279) (($ $ $) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 122) (($ $ $) 151) (($ $ |#2|) NIL) (($ |#2| $) 118) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL)))
-(((-165 |#1| |#2|) (-10 -8 (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -2423 (|#1| |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1660 ((-2 (|:| -2885 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1700 ((-767) |#1|)) (-15 -1389 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -1311 ((-536) |#1|)) (-15 -1311 ((-169 (-225)) |#1|)) (-15 -1311 ((-169 (-379)) |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -3735 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -3880 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -1689 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4274 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -1348 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2037 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4192 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2450 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2553 ((-407 (-564)) |#1|)) (-15 -1364 ((-112) |#1|)) (-15 -1409 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3862 (|#2| |#1|)) (-15 -3673 (|#1| |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3185 (|#1| |#1|)) (-15 -3451 (|#1|)) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -1513 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -1513 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1316 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -1305 ((-1166 |#2|) |#1|)) (-15 -1311 (|#1| (-1166 |#2|))) (-15 -1316 (|#1| (-1166 |#2|))) (-15 -3721 ((-1166 |#2|))) (-15 -4277 ((-685 |#2|) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -1311 ((-1166 |#2|) |#1|)) (-15 -1330 (|#2|)) (-15 -1311 (|#1| (-1259 |#2|))) (-15 -1311 ((-1259 |#2|) |#1|)) (-15 -4225 ((-685 |#2|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1|)) (-15 -3514 ((-1166 |#2|) |#1|)) (-15 -2134 ((-1166 |#2|) |#1|)) (-15 -1330 (|#2| (-1259 |#1|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2499 (|#2| |#1|)) (-15 -3847 (|#2| |#1|)) (-15 -2514 ((-917))) (-15 -2423 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 -3293 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -1860 ((-112) |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165))
-((-3719 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2514 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1330 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3721 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
-(-10 -8 (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -2423 (|#1| |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1660 ((-2 (|:| -2885 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1700 ((-767) |#1|)) (-15 -1389 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -1311 ((-536) |#1|)) (-15 -1311 ((-169 (-225)) |#1|)) (-15 -1311 ((-169 (-379)) |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -3735 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -3880 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -1689 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4274 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -1348 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2037 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4192 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2450 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2553 ((-407 (-564)) |#1|)) (-15 -1364 ((-112) |#1|)) (-15 -1409 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3862 (|#2| |#1|)) (-15 -3673 (|#1| |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3185 (|#1| |#1|)) (-15 -3451 (|#1|)) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -1513 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -1513 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1316 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -1305 ((-1166 |#2|) |#1|)) (-15 -1311 (|#1| (-1166 |#2|))) (-15 -1316 (|#1| (-1166 |#2|))) (-15 -3721 ((-1166 |#2|))) (-15 -4277 ((-685 |#2|) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -1311 ((-1166 |#2|) |#1|)) (-15 -1330 (|#2|)) (-15 -1311 (|#1| (-1259 |#2|))) (-15 -1311 ((-1259 |#2|) |#1|)) (-15 -4225 ((-685 |#2|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1|)) (-15 -3514 ((-1166 |#2|) |#1|)) (-15 -2134 ((-1166 |#2|) |#1|)) (-15 -1330 (|#2| (-1259 |#1|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2499 (|#2| |#1|)) (-15 -3847 (|#2| |#1|)) (-15 -2514 ((-917))) (-15 -2423 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 -3293 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -1860 ((-112) |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 94 (-2807 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3063 (($ $) 95 (-2807 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3330 (((-112) $) 97 (-2807 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2270 (((-685 |#1|) (-1259 $)) 48) (((-685 |#1|)) 63)) (-3847 ((|#1| $) 54)) (-3880 (($ $) 221 (|has| |#1| (-1194)))) (-3745 (($ $) 204 (|has| |#1| (-1194)))) (-4373 (((-1182 (-917) (-767)) (-564)) 147 (|has| |#1| (-349)))) (-4012 (((-3 $ "failed") $ $) 20)) (-4199 (((-418 (-1166 $)) (-1166 $)) 235 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2683 (($ $) 114 (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2753 (((-418 $) $) 115 (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3700 (($ $) 234 (-12 (|has| |#1| (-998)) (|has| |#1| (-1194))))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 238 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3162 (((-112) $ $) 105 (|has| |#1| (-307)))) (-2622 (((-767)) 88 (|has| |#1| (-368)))) (-3858 (($ $) 220 (|has| |#1| (-1194)))) (-3722 (($ $) 205 (|has| |#1| (-1194)))) (-3902 (($ $) 219 (|has| |#1| (-1194)))) (-3766 (($ $) 206 (|has| |#1| (-1194)))) (-4080 (($) 18 T CONST)) (-4284 (((-3 (-564) "failed") $) 170 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 168 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 165)) (-3120 (((-564) $) 169 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 167 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 166)) (-3474 (($ (-1259 |#1|) (-1259 $)) 50) (($ (-1259 |#1|)) 66)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-349)))) (-2946 (($ $ $) 109 (|has| |#1| (-307)))) (-4057 (((-685 |#1|) $ (-1259 $)) 55) (((-685 |#1|) $) 61)) (-4277 (((-685 (-564)) (-685 $)) 164 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 162) (((-685 |#1|) (-685 $)) 161)) (-1316 (($ (-1166 |#1|)) 158) (((-3 $ "failed") (-407 (-1166 |#1|))) 155 (|has| |#1| (-363)))) (-3293 (((-3 $ "failed") $) 34)) (-3712 ((|#1| $) 246)) (-2450 (((-3 (-407 (-564)) "failed") $) 239 (|has| |#1| (-545)))) (-1364 (((-112) $) 241 (|has| |#1| (-545)))) (-2553 (((-407 (-564)) $) 240 (|has| |#1| (-545)))) (-2514 (((-917)) 56)) (-2534 (($) 91 (|has| |#1| (-368)))) (-2960 (($ $ $) 108 (|has| |#1| (-307)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 103 (|has| |#1| (-307)))) (-1471 (($) 149 (|has| |#1| (-349)))) (-1436 (((-112) $) 150 (|has| |#1| (-349)))) (-3456 (($ $ (-767)) 141 (|has| |#1| (-349))) (($ $) 140 (|has| |#1| (-349)))) (-1339 (((-112) $) 116 (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-1409 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 242 (-12 (|has| |#1| (-1054)) (|has| |#1| (-1194))))) (-4274 (($) 231 (|has| |#1| (-1194)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 254 (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 253 (|has| |#1| (-882 (-379))))) (-3744 (((-917) $) 152 (|has| |#1| (-349))) (((-829 (-917)) $) 138 (|has| |#1| (-349)))) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 233 (-12 (|has| |#1| (-998)) (|has| |#1| (-1194))))) (-2499 ((|#1| $) 53)) (-1846 (((-3 $ "failed") $) 142 (|has| |#1| (-349)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 112 (|has| |#1| (-307)))) (-3514 (((-1166 |#1|) $) 46 (|has| |#1| (-363)))) (-4357 (($ (-1 |#1| |#1|) $) 255)) (-3256 (((-917) $) 90 (|has| |#1| (-368)))) (-3657 (($ $) 228 (|has| |#1| (-1194)))) (-1305 (((-1166 |#1|) $) 156)) (-2084 (($ (-641 $)) 101 (-2807 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (($ $ $) 100 (-2807 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2766 (((-1152) $) 10)) (-3936 (($ $) 117 (|has| |#1| (-363)))) (-3431 (($) 143 (|has| |#1| (-349)) CONST)) (-2083 (($ (-917)) 89 (|has| |#1| (-368)))) (-3451 (($) 250)) (-3723 ((|#1| $) 247)) (-4052 (((-1114) $) 11)) (-2249 (($) 160)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 102 (-2807 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2123 (($ (-641 $)) 99 (-2807 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (($ $ $) 98 (-2807 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) 146 (|has| |#1| (-349)))) (-2037 (((-418 (-1166 $)) (-1166 $)) 237 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-1348 (((-418 (-1166 $)) (-1166 $)) 236 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3688 (((-418 $) $) 113 (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 111 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 110 (|has| |#1| (-307)))) (-2998 (((-3 $ "failed") $ |#1|) 245 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 93 (-2807 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 104 (|has| |#1| (-307)))) (-1689 (($ $) 229 (|has| |#1| (-1194)))) (-3291 (($ $ (-641 |#1|) (-641 |#1|)) 261 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 260 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 259 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 258 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 257 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 256 (|has| |#1| (-514 (-1170) |#1|)))) (-1700 (((-767) $) 106 (|has| |#1| (-307)))) (-4366 (($ $ |#1|) 262 (|has| |#1| (-286 |#1| |#1|)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 107 (|has| |#1| (-307)))) (-1330 ((|#1| (-1259 $)) 49) ((|#1|) 62)) (-4255 (((-767) $) 151 (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) 139 (|has| |#1| (-349)))) (-3254 (($ $ (-1 |#1| |#1|) (-767)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-641 (-1170)) (-641 (-767))) 130 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 131 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 132 (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) 133 (|has| |#1| (-896 (-1170)))) (($ $ (-767)) 135 (-2807 (-2358 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2358 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 137 (-2807 (-2358 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2358 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-1942 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-363)))) (-3721 (((-1166 |#1|)) 159)) (-3914 (($ $) 218 (|has| |#1| (-1194)))) (-3777 (($ $) 207 (|has| |#1| (-1194)))) (-3826 (($) 148 (|has| |#1| (-349)))) (-3891 (($ $) 217 (|has| |#1| (-1194)))) (-3756 (($ $) 208 (|has| |#1| (-1194)))) (-3869 (($ $) 216 (|has| |#1| (-1194)))) (-3735 (($ $) 209 (|has| |#1| (-1194)))) (-4225 (((-1259 |#1|) $ (-1259 $)) 52) (((-685 |#1|) (-1259 $) (-1259 $)) 51) (((-1259 |#1|) $) 68) (((-685 |#1|) (-1259 $)) 67)) (-1311 (((-1259 |#1|) $) 65) (($ (-1259 |#1|)) 64) (((-1166 |#1|) $) 171) (($ (-1166 |#1|)) 157) (((-888 (-564)) $) 252 (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) 251 (|has| |#1| (-612 (-888 (-379))))) (((-169 (-379)) $) 203 (|has| |#1| (-1018))) (((-169 (-225)) $) 202 (|has| |#1| (-1018))) (((-536) $) 201 (|has| |#1| (-612 (-536))))) (-3185 (($ $) 249)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 145 (-2807 (-2358 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (|has| |#1| (-349))))) (-3654 (($ |#1| |#1|) 248)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 39) (($ (-407 (-564))) 87 (-2807 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) 92 (-2807 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2420 (($ $) 144 (|has| |#1| (-349))) (((-3 $ "failed") $) 45 (-2807 (-2358 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (|has| |#1| (-145))))) (-2134 (((-1166 |#1|) $) 47)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2047 (((-1259 $)) 69)) (-3949 (($ $) 227 (|has| |#1| (-1194)))) (-3811 (($ $) 215 (|has| |#1| (-1194)))) (-2119 (((-112) $ $) 96 (-2807 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3925 (($ $) 226 (|has| |#1| (-1194)))) (-3787 (($ $) 214 (|has| |#1| (-1194)))) (-3972 (($ $) 225 (|has| |#1| (-1194)))) (-3837 (($ $) 213 (|has| |#1| (-1194)))) (-3862 ((|#1| $) 243 (|has| |#1| (-1194)))) (-2784 (($ $) 224 (|has| |#1| (-1194)))) (-3848 (($ $) 212 (|has| |#1| (-1194)))) (-3960 (($ $) 223 (|has| |#1| (-1194)))) (-3825 (($ $) 211 (|has| |#1| (-1194)))) (-3937 (($ $) 222 (|has| |#1| (-1194)))) (-3799 (($ $) 210 (|has| |#1| (-1194)))) (-3673 (($ $) 244 (|has| |#1| (-1054)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-1 |#1| |#1|) (-767)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-641 (-1170)) (-641 (-767))) 126 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 127 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 128 (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) 129 (|has| |#1| (-896 (-1170)))) (($ $ (-767)) 134 (-2807 (-2358 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2358 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 136 (-2807 (-2358 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2358 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 121 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-407 (-564))) 232 (-12 (|has| |#1| (-998)) (|has| |#1| (-1194)))) (($ $ $) 230 (|has| |#1| (-1194))) (($ $ (-564)) 118 (|has| |#1| (-363)))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 41) (($ |#1| $) 40) (($ (-407 (-564)) $) 120 (|has| |#1| (-363))) (($ $ (-407 (-564))) 119 (|has| |#1| (-363)))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 16) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2474 (((-642 (-1132)) $) 10)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-161) (-13 (-1080) (-10 -8 (-15 -2474 ((-642 (-1132)) $))))) (T -161))
+((-2474 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-161)))))
+(-13 (-1080) (-10 -8 (-15 -2474 ((-642 (-1132)) $))))
+((-2907 (((-112) $ $) NIL)) (-2748 (($ (-564)) 14) (($ $ $) 15)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 18)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 9)))
+(((-162) (-13 (-1097) (-10 -8 (-15 -2748 ($ (-564))) (-15 -2748 ($ $ $))))) (T -162))
+((-2748 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))) (-2748 (*1 *1 *1 *1) (-5 *1 (-162))))
+(-13 (-1097) (-10 -8 (-15 -2748 ($ (-564))) (-15 -2748 ($ $ $))))
+((-3307 (((-114) (-1173)) 102)))
+(((-163) (-10 -7 (-15 -3307 ((-114) (-1173))))) (T -163))
+((-3307 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-114)) (-5 *1 (-163)))))
+(-10 -7 (-15 -3307 ((-114) (-1173))))
+((-3395 ((|#3| |#3|) 19)))
+(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -3395 (|#3| |#3|))) (-1047) (-1238 |#1|) (-1238 |#2|)) (T -164))
+((-3395 (*1 *2 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-1238 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1238 *4)))))
+(-10 -7 (-15 -3395 (|#3| |#3|)))
+((-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 227)) (-3815 ((|#2| $) 106)) (-3851 (($ $) 258)) (-3704 (($ $) 252)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 47)) (-3827 (($ $) 256)) (-3679 (($ $) 250)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 150)) (-3027 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 148)) (-2845 (($ $ $) 233)) (-4315 (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 164) (((-687 |#2|) (-687 $)) 158)) (-1320 (($ (-1169 |#2|)) 129) (((-3 $ "failed") (-407 (-1169 |#2|))) NIL)) (-3104 (((-3 $ "failed") $) 218)) (-3838 (((-3 (-407 (-564)) "failed") $) 208)) (-2881 (((-112) $) 203)) (-4034 (((-407 (-564)) $) 206)) (-2414 (((-919)) 100)) (-2859 (($ $ $) 235)) (-2573 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 272)) (-4265 (($) 247)) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 197) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 202)) (-2218 ((|#2| $) 104)) (-3947 (((-1169 |#2|) $) 131)) (-4358 (($ (-1 |#2| |#2|) $) 112)) (-3612 (($ $) 249)) (-1308 (((-1169 |#2|) $) 130)) (-3911 (($ $) 211)) (-3541 (($) 107)) (-1643 (((-418 (-1169 $)) (-1169 $)) 99)) (-2923 (((-418 (-1169 $)) (-1169 $)) 64)) (-2896 (((-3 $ "failed") $ |#2|) 213) (((-3 $ "failed") $ $) 216)) (-1723 (($ $) 248)) (-2048 (((-769) $) 230)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 240)) (-1846 ((|#2| (-1262 $)) NIL) ((|#2|) 102)) (-3175 (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 123) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)) (-3280 (((-1169 |#2|)) 124)) (-3839 (($ $) 257)) (-3693 (($ $) 251)) (-2067 (((-1262 |#2|) $ (-1262 $)) 140) (((-687 |#2|) (-1262 $) (-1262 $)) NIL) (((-1262 |#2|) $) 120) (((-687 |#2|) (-1262 $)) NIL)) (-1314 (((-1262 |#2|) $) NIL) (($ (-1262 |#2|)) NIL) (((-1169 |#2|) $) NIL) (($ (-1169 |#2|)) NIL) (((-890 (-564)) $) 188) (((-890 (-379)) $) 192) (((-169 (-379)) $) 176) (((-169 (-225)) $) 171) (((-536) $) 184)) (-1389 (($ $) 108)) (-2327 (((-860) $) 147) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-407 (-564))) NIL) (($ $) NIL)) (-3011 (((-1169 |#2|) $) 32)) (-2756 (((-769)) 110)) (-1648 (((-112) $ $) 13)) (-3926 (($ $) 261)) (-3776 (($ $) 255)) (-3900 (($ $) 259)) (-3750 (($ $) 253)) (-3417 ((|#2| $) 244)) (-3913 (($ $) 260)) (-3763 (($ $) 254)) (-1381 (($ $) 166)) (-2872 (((-112) $ $) 114)) (-2987 (($ $) 116) (($ $ $) NIL)) (-2974 (($ $ $) 115)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-407 (-564))) 279) (($ $ $) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 122) (($ $ $) 151) (($ $ |#2|) NIL) (($ |#2| $) 118) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL)))
+(((-165 |#1| |#2|) (-10 -8 (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -2327 (|#1| |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4039 ((-2 (|:| -3587 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2048 ((-769) |#1|)) (-15 -4376 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -2845 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -1314 ((-536) |#1|)) (-15 -1314 ((-169 (-225)) |#1|)) (-15 -1314 ((-169 (-379)) |#1|)) (-15 -3704 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -3750 (|#1| |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -1723 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4265 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2923 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -1643 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -4094 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -3838 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4034 ((-407 (-564)) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -2573 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3417 (|#2| |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1389 (|#1| |#1|)) (-15 -3541 (|#1|)) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -2453 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -2453 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -1320 ((-3 |#1| "failed") (-407 (-1169 |#2|)))) (-15 -1308 ((-1169 |#2|) |#1|)) (-15 -1314 (|#1| (-1169 |#2|))) (-15 -1320 (|#1| (-1169 |#2|))) (-15 -3280 ((-1169 |#2|))) (-15 -4315 ((-687 |#2|) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -1314 ((-1169 |#2|) |#1|)) (-15 -1846 (|#2|)) (-15 -1314 (|#1| (-1262 |#2|))) (-15 -1314 ((-1262 |#2|) |#1|)) (-15 -2067 ((-687 |#2|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1|)) (-15 -3947 ((-1169 |#2|) |#1|)) (-15 -3011 ((-1169 |#2|) |#1|)) (-15 -1846 (|#2| (-1262 |#1|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -2218 (|#2| |#1|)) (-15 -3815 (|#2| |#1|)) (-15 -2414 ((-919))) (-15 -2327 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -1648 ((-112) |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165))
+((-2756 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2414 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-919)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1846 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3280 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1169 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
+(-10 -8 (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -2327 (|#1| |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4039 ((-2 (|:| -3587 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2048 ((-769) |#1|)) (-15 -4376 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -2845 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -1314 ((-536) |#1|)) (-15 -1314 ((-169 (-225)) |#1|)) (-15 -1314 ((-169 (-379)) |#1|)) (-15 -3704 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -3750 (|#1| |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -1723 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4265 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2923 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -1643 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -4094 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -3838 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4034 ((-407 (-564)) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -2573 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3417 (|#2| |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1389 (|#1| |#1|)) (-15 -3541 (|#1|)) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -2453 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -2453 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -1320 ((-3 |#1| "failed") (-407 (-1169 |#2|)))) (-15 -1308 ((-1169 |#2|) |#1|)) (-15 -1314 (|#1| (-1169 |#2|))) (-15 -1320 (|#1| (-1169 |#2|))) (-15 -3280 ((-1169 |#2|))) (-15 -4315 ((-687 |#2|) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -1314 ((-1169 |#2|) |#1|)) (-15 -1846 (|#2|)) (-15 -1314 (|#1| (-1262 |#2|))) (-15 -1314 ((-1262 |#2|) |#1|)) (-15 -2067 ((-687 |#2|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1|)) (-15 -3947 ((-1169 |#2|) |#1|)) (-15 -3011 ((-1169 |#2|) |#1|)) (-15 -1846 (|#2| (-1262 |#1|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -2218 (|#2| |#1|)) (-15 -3815 (|#2| |#1|)) (-15 -2414 ((-919))) (-15 -2327 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -1648 ((-112) |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 102 (-2706 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-1387 (($ $) 103 (-2706 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-2037 (((-112) $) 105 (-2706 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-3166 (((-687 |#1|) (-1262 $)) 53) (((-687 |#1|)) 68)) (-3815 ((|#1| $) 59)) (-3851 (($ $) 229 (|has| |#1| (-1197)))) (-3704 (($ $) 212 (|has| |#1| (-1197)))) (-1964 (((-1185 (-919) (-769)) (-564)) 155 (|has| |#1| (-349)))) (-1532 (((-3 $ "failed") $ $) 20)) (-2951 (((-418 (-1169 $)) (-1169 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-4316 (($ $) 122 (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-1978 (((-418 $) $) 123 (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-3655 (($ $) 242 (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197))))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 246 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-4010 (((-112) $ $) 113 (|has| |#1| (-307)))) (-2521 (((-769)) 96 (|has| |#1| (-368)))) (-3827 (($ $) 228 (|has| |#1| (-1197)))) (-3679 (($ $) 213 (|has| |#1| (-1197)))) (-3875 (($ $) 227 (|has| |#1| (-1197)))) (-3727 (($ $) 214 (|has| |#1| (-1197)))) (-1976 (($) 18 T CONST)) (-4278 (((-3 (-564) "failed") $) 178 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 176 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 173)) (-3027 (((-564) $) 177 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 175 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 174)) (-4221 (($ (-1262 |#1|) (-1262 $)) 55) (($ (-1262 |#1|)) 71)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-349)))) (-2845 (($ $ $) 117 (|has| |#1| (-307)))) (-1984 (((-687 |#1|) $ (-1262 $)) 60) (((-687 |#1|) $) 66)) (-4315 (((-687 (-564)) (-687 $)) 172 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 171 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 170) (((-687 |#1|) (-687 $)) 169)) (-1320 (($ (-1169 |#1|)) 166) (((-3 $ "failed") (-407 (-1169 |#1|))) 163 (|has| |#1| (-363)))) (-3104 (((-3 $ "failed") $) 37)) (-3668 ((|#1| $) 254)) (-3838 (((-3 (-407 (-564)) "failed") $) 247 (|has| |#1| (-545)))) (-2881 (((-112) $) 249 (|has| |#1| (-545)))) (-4034 (((-407 (-564)) $) 248 (|has| |#1| (-545)))) (-2414 (((-919)) 61)) (-2433 (($) 99 (|has| |#1| (-368)))) (-2859 (($ $ $) 116 (|has| |#1| (-307)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 111 (|has| |#1| (-307)))) (-1363 (($) 157 (|has| |#1| (-349)))) (-3424 (((-112) $) 158 (|has| |#1| (-349)))) (-3607 (($ $ (-769)) 149 (|has| |#1| (-349))) (($ $) 148 (|has| |#1| (-349)))) (-1469 (((-112) $) 124 (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-2573 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1057)) (|has| |#1| (-1197))))) (-4265 (($) 239 (|has| |#1| (-1197)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 262 (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 261 (|has| |#1| (-884 (-379))))) (-1427 (((-919) $) 160 (|has| |#1| (-349))) (((-831 (-919)) $) 146 (|has| |#1| (-349)))) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 241 (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197))))) (-2218 ((|#1| $) 58)) (-3157 (((-3 $ "failed") $) 150 (|has| |#1| (-349)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 120 (|has| |#1| (-307)))) (-3947 (((-1169 |#1|) $) 51 (|has| |#1| (-363)))) (-4358 (($ (-1 |#1| |#1|) $) 263)) (-1945 (((-919) $) 98 (|has| |#1| (-368)))) (-3612 (($ $) 236 (|has| |#1| (-1197)))) (-1308 (((-1169 |#1|) $) 164)) (-2049 (($ (-642 $)) 109 (-2706 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (($ $ $) 108 (-2706 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-3315 (((-1155) $) 10)) (-3911 (($ $) 125 (|has| |#1| (-363)))) (-3366 (($) 151 (|has| |#1| (-349)) CONST)) (-2047 (($ (-919)) 97 (|has| |#1| (-368)))) (-3541 (($) 258)) (-3680 ((|#1| $) 255)) (-4033 (((-1117) $) 11)) (-2185 (($) 168)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 110 (-2706 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-2080 (($ (-642 $)) 107 (-2706 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (($ $ $) 106 (-2706 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) 154 (|has| |#1| (-349)))) (-1643 (((-418 (-1169 $)) (-1169 $)) 245 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-2923 (((-418 (-1169 $)) (-1169 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-3643 (((-418 $) $) 121 (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 118 (|has| |#1| (-307)))) (-2896 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 101 (-2706 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 112 (|has| |#1| (-307)))) (-1723 (($ $) 237 (|has| |#1| (-1197)))) (-3215 (($ $ (-642 |#1|) (-642 |#1|)) 269 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) 266 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 265 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) 264 (|has| |#1| (-514 (-1173) |#1|)))) (-2048 (((-769) $) 114 (|has| |#1| (-307)))) (-4368 (($ $ |#1|) 270 (|has| |#1| (-286 |#1| |#1|)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 115 (|has| |#1| (-307)))) (-1846 ((|#1| (-1262 $)) 54) ((|#1|) 67)) (-2136 (((-769) $) 159 (|has| |#1| (-349))) (((-3 (-769) "failed") $ $) 147 (|has| |#1| (-349)))) (-3175 (($ $ (-1 |#1| |#1|) (-769)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-642 (-1173)) (-642 (-769))) 138 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 139 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 140 (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) 141 (|has| |#1| (-898 (-1173)))) (($ $ (-769)) 143 (-2706 (-2275 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2275 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 145 (-2706 (-2275 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2275 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2382 (((-687 |#1|) (-1262 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-363)))) (-3280 (((-1169 |#1|)) 167)) (-3888 (($ $) 226 (|has| |#1| (-1197)))) (-3739 (($ $) 215 (|has| |#1| (-1197)))) (-2668 (($) 156 (|has| |#1| (-349)))) (-3863 (($ $) 225 (|has| |#1| (-1197)))) (-3716 (($ $) 216 (|has| |#1| (-1197)))) (-3839 (($ $) 224 (|has| |#1| (-1197)))) (-3693 (($ $) 217 (|has| |#1| (-1197)))) (-2067 (((-1262 |#1|) $ (-1262 $)) 57) (((-687 |#1|) (-1262 $) (-1262 $)) 56) (((-1262 |#1|) $) 73) (((-687 |#1|) (-1262 $)) 72)) (-1314 (((-1262 |#1|) $) 70) (($ (-1262 |#1|)) 69) (((-1169 |#1|) $) 179) (($ (-1169 |#1|)) 165) (((-890 (-564)) $) 260 (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) 259 (|has| |#1| (-612 (-890 (-379))))) (((-169 (-379)) $) 211 (|has| |#1| (-1020))) (((-169 (-225)) $) 210 (|has| |#1| (-1020))) (((-536) $) 209 (|has| |#1| (-612 (-536))))) (-1389 (($ $) 257)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 153 (-2706 (-2275 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))) (|has| |#1| (-349))))) (-3609 (($ |#1| |#1|) 256)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44) (($ (-407 (-564))) 95 (-2706 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) 100 (-2706 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-2439 (($ $) 152 (|has| |#1| (-349))) (((-3 $ "failed") $) 50 (-2706 (-2275 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))) (|has| |#1| (-145))))) (-3011 (((-1169 |#1|) $) 52)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-4263 (((-1262 $)) 74)) (-3926 (($ $) 235 (|has| |#1| (-1197)))) (-3776 (($ $) 223 (|has| |#1| (-1197)))) (-2103 (((-112) $ $) 104 (-2706 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))) (-3900 (($ $) 234 (|has| |#1| (-1197)))) (-3750 (($ $) 222 (|has| |#1| (-1197)))) (-3951 (($ $) 233 (|has| |#1| (-1197)))) (-3803 (($ $) 221 (|has| |#1| (-1197)))) (-3417 ((|#1| $) 251 (|has| |#1| (-1197)))) (-2683 (($ $) 232 (|has| |#1| (-1197)))) (-3816 (($ $) 220 (|has| |#1| (-1197)))) (-3938 (($ $) 231 (|has| |#1| (-1197)))) (-3791 (($ $) 219 (|has| |#1| (-1197)))) (-3913 (($ $) 230 (|has| |#1| (-1197)))) (-3763 (($ $) 218 (|has| |#1| (-1197)))) (-1381 (($ $) 252 (|has| |#1| (-1057)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-1 |#1| |#1|) (-769)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-642 (-1173)) (-642 (-769))) 134 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 135 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 136 (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) 137 (|has| |#1| (-898 (-1173)))) (($ $ (-769)) 142 (-2706 (-2275 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2275 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 144 (-2706 (-2275 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2275 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 129 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-407 (-564))) 240 (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197)))) (($ $ $) 238 (|has| |#1| (-1197))) (($ $ (-564)) 126 (|has| |#1| (-363)))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-407 (-564)) $) 128 (|has| |#1| (-363))) (($ $ (-407 (-564))) 127 (|has| |#1| (-363)))))
(((-166 |#1|) (-140) (-172)) (T -166))
-((-2499 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3451 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3185 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3654 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2998 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3673 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1194)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2450 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))))
-(-13 (-720 |t#1| (-1166 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-880 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -3654) (-15 -3451 ($)) (-15 -3185 ($ $)) (-15 -3654 ($ |t#1| |t#1|)) (-15 -3723 (|t#1| $)) (-15 -3712 (|t#1| $)) (-15 -2499 (|t#1| $)) (IF (|has| |t#1| (-556)) (PROGN (-6 (-556)) (-15 -2998 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4406)) (-6 -4406) |%noBranch|) (IF (|has| |t#1| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-612 (-169 (-225)))) (-6 (-612 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3673 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1194)) (PROGN (-6 (-1194)) (-15 -3862 (|t#1| $)) (IF (|has| |t#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -1409 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -1364 ((-112) $)) (-15 -2553 ((-407 (-564)) $)) (-15 -2450 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-905)) (IF (|has| |t#1| (-307)) (-6 (-905)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1194)) ((-95) |has| |#1| (-1194)) ((-102) . T) ((-111 #0# #0#) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2807 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-611 (-858)) . T) ((-172) . T) ((-612 (-169 (-225))) |has| |#1| (-1018)) ((-612 (-169 (-379))) |has| |#1| (-1018)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-888 (-379))) |has| |#1| (-612 (-888 (-379)))) ((-612 (-888 (-564))) |has| |#1| (-612 (-888 (-564)))) ((-612 #1=(-1166 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2807 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1194)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -2807 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -2807 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -2807 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -2807 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1194)) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) -2807 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-644 #0#) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-720 |#1| #1#) . T) ((-722) . T) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-564)) |has| |#1| (-882 (-564))) ((-880 |#1|) . T) ((-905) -12 (|has| |#1| (-307)) (|has| |#1| (-905))) ((-916) -2807 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-998) -12 (|has| |#1| (-998)) (|has| |#1| (-1194))) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 #0#) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1194) |has| |#1| (-1194)) ((-1197) |has| |#1| (-1194)) ((-1209) . T) ((-1213) -2807 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))
-((-3688 (((-418 |#2|) |#2|) 69)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -3688 ((-418 |#2|) |#2|))) (-307) (-1235 (-169 |#1|))) (T -167))
-((-3688 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(-10 -7 (-15 -3688 ((-418 |#2|) |#2|)))
-((-4357 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -4357 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))))
-(-10 -7 (-15 -4357 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 34)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-3063 (($ $) NIL (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-3330 (((-112) $) NIL (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-2270 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3847 ((|#1| $) NIL)) (-3880 (($ $) NIL (|has| |#1| (-1194)))) (-3745 (($ $) NIL (|has| |#1| (-1194)))) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| |#1| (-349)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2683 (($ $) NIL (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2753 (((-418 $) $) NIL (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3700 (($ $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1194))))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3162 (((-112) $ $) NIL (|has| |#1| (-307)))) (-2622 (((-767)) NIL (|has| |#1| (-368)))) (-3858 (($ $) NIL (|has| |#1| (-1194)))) (-3722 (($ $) NIL (|has| |#1| (-1194)))) (-3902 (($ $) NIL (|has| |#1| (-1194)))) (-3766 (($ $) NIL (|has| |#1| (-1194)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-3474 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2946 (($ $ $) NIL (|has| |#1| (-307)))) (-4057 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1316 (($ (-1166 |#1|)) NIL) (((-3 $ "failed") (-407 (-1166 |#1|))) NIL (|has| |#1| (-363)))) (-3293 (((-3 $ "failed") $) NIL)) (-3712 ((|#1| $) 13)) (-2450 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-1364 (((-112) $) NIL (|has| |#1| (-545)))) (-2553 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2514 (((-917)) NIL)) (-2534 (($) NIL (|has| |#1| (-368)))) (-2960 (($ $ $) NIL (|has| |#1| (-307)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-307)))) (-1471 (($) NIL (|has| |#1| (-349)))) (-1436 (((-112) $) NIL (|has| |#1| (-349)))) (-3456 (($ $ (-767)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-1339 (((-112) $) NIL (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-1409 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1054)) (|has| |#1| (-1194))))) (-4274 (($) NIL (|has| |#1| (-1194)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#1| (-882 (-379))))) (-3744 (((-917) $) NIL (|has| |#1| (-349))) (((-829 (-917)) $) NIL (|has| |#1| (-349)))) (-4112 (((-112) $) 36)) (-3614 (($ $ (-564)) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1194))))) (-2499 ((|#1| $) 47)) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-3514 (((-1166 |#1|) $) NIL (|has| |#1| (-363)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3256 (((-917) $) NIL (|has| |#1| (-368)))) (-3657 (($ $) NIL (|has| |#1| (-1194)))) (-1305 (((-1166 |#1|) $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-363)))) (-3431 (($) NIL (|has| |#1| (-349)) CONST)) (-2083 (($ (-917)) NIL (|has| |#1| (-368)))) (-3451 (($) NIL)) (-3723 ((|#1| $) 15)) (-4052 (((-1114) $) NIL)) (-2249 (($) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-307)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| |#1| (-349)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3688 (((-418 $) $) NIL (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-307)))) (-2998 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 48 (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-1689 (($ $) NIL (|has| |#1| (-1194)))) (-3291 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-1700 (((-767) $) NIL (|has| |#1| (-307)))) (-4366 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-307)))) (-1330 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-4255 (((-767) $) NIL (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-349)))) (-3254 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1942 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3721 (((-1166 |#1|)) NIL)) (-3914 (($ $) NIL (|has| |#1| (-1194)))) (-3777 (($ $) NIL (|has| |#1| (-1194)))) (-3826 (($) NIL (|has| |#1| (-349)))) (-3891 (($ $) NIL (|has| |#1| (-1194)))) (-3756 (($ $) NIL (|has| |#1| (-1194)))) (-3869 (($ $) NIL (|has| |#1| (-1194)))) (-3735 (($ $) NIL (|has| |#1| (-1194)))) (-4225 (((-1259 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-1311 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL) (((-888 (-564)) $) NIL (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| |#1| (-612 (-888 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1018))) (((-169 (-225)) $) NIL (|has| |#1| (-1018))) (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3185 (($ $) 46)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-349))))) (-3654 (($ |#1| |#1|) 38)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) 37) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-2420 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-2134 (((-1166 |#1|) $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL)) (-3949 (($ $) NIL (|has| |#1| (-1194)))) (-3811 (($ $) NIL (|has| |#1| (-1194)))) (-2119 (((-112) $ $) NIL (-2807 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-556))))) (-3925 (($ $) NIL (|has| |#1| (-1194)))) (-3787 (($ $) NIL (|has| |#1| (-1194)))) (-3972 (($ $) NIL (|has| |#1| (-1194)))) (-3837 (($ $) NIL (|has| |#1| (-1194)))) (-3862 ((|#1| $) NIL (|has| |#1| (-1194)))) (-2784 (($ $) NIL (|has| |#1| (-1194)))) (-3848 (($ $) NIL (|has| |#1| (-1194)))) (-3960 (($ $) NIL (|has| |#1| (-1194)))) (-3825 (($ $) NIL (|has| |#1| (-1194)))) (-3937 (($ $) NIL (|has| |#1| (-1194)))) (-3799 (($ $) NIL (|has| |#1| (-1194)))) (-3673 (($ $) NIL (|has| |#1| (-1054)))) (-2403 (($) 28 T CONST)) (-2417 (($) 30 T CONST)) (-1613 (((-1152) $) 23 (|has| |#1| (-824))) (((-1152) $ (-112)) 25 (|has| |#1| (-824))) (((-1264) (-818) $) 26 (|has| |#1| (-824))) (((-1264) (-818) $ (-112)) 27 (|has| |#1| (-824)))) (-4063 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 40)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-564))) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1194)))) (($ $ $) NIL (|has| |#1| (-1194))) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363)))))
-(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-172)) (T -169))
-NIL
-(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|)))
-((-1311 (((-888 |#1|) |#3|) 22)))
-(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -1311 ((-888 |#1|) |#3|))) (-1094) (-13 (-612 (-888 |#1|)) (-172)) (-166 |#2|)) (T -170))
-((-1311 (*1 *2 *3) (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-888 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5)))))
-(-10 -7 (-15 -1311 ((-888 |#1|) |#3|)))
-((-3009 (((-112) $ $) NIL)) (-3779 (((-112) $) 9)) (-1767 (((-112) $ (-112)) 11)) (-4238 (($) 13)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3926 (($ $) 14)) (-2423 (((-858) $) 18)) (-4217 (((-112) $) 8)) (-1604 (((-112) $ (-112)) 10)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-171) (-13 (-1094) (-10 -8 (-15 -4238 ($)) (-15 -4217 ((-112) $)) (-15 -3779 ((-112) $)) (-15 -1604 ((-112) $ (-112))) (-15 -1767 ((-112) $ (-112))) (-15 -3926 ($ $))))) (T -171))
-((-4238 (*1 *1) (-5 *1 (-171))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3779 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1604 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1767 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3926 (*1 *1 *1) (-5 *1 (-171))))
-(-13 (-1094) (-10 -8 (-15 -4238 ($)) (-15 -4217 ((-112) $)) (-15 -3779 ((-112) $)) (-15 -1604 ((-112) $ (-112))) (-15 -1767 ((-112) $ (-112))) (-15 -3926 ($ $))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
+((-2218 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3541 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1389 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3609 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2896 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1381 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1057)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1197)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1057)) (-4 *3 (-1197)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3838 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))))
+(-13 (-722 |t#1| (-1169 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-882 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -3609) (-15 -3541 ($)) (-15 -1389 ($ $)) (-15 -3609 ($ |t#1| |t#1|)) (-15 -3680 (|t#1| $)) (-15 -3668 (|t#1| $)) (-15 -2218 (|t#1| $)) (IF (|has| |t#1| (-556)) (PROGN (-6 (-556)) (-15 -2896 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4409)) (-6 -4409) |%noBranch|) (IF (|has| |t#1| (-6 -4406)) (-6 -4406) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1020)) (PROGN (-6 (-612 (-169 (-225)))) (-6 (-612 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1057)) (-15 -1381 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1197)) (PROGN (-6 (-1197)) (-15 -3417 (|t#1| $)) (IF (|has| |t#1| (-1000)) (-6 (-1000)) |%noBranch|) (IF (|has| |t#1| (-1057)) (-15 -2573 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2881 ((-112) $)) (-15 -4034 ((-407 (-564)) $)) (-15 -3838 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-907)) (IF (|has| |t#1| (-307)) (-6 (-907)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1197)) ((-95) |has| |#1| (-1197)) ((-102) . T) ((-111 #0# #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2706 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-611 (-860)) . T) ((-172) . T) ((-612 (-169 (-225))) |has| |#1| (-1020)) ((-612 (-169 (-379))) |has| |#1| (-1020)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-890 (-379))) |has| |#1| (-612 (-890 (-379)))) ((-612 (-890 (-564))) |has| |#1| (-612 (-890 (-564)))) ((-612 #1=(-1169 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2706 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1197)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -2706 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -2706 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -2706 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -2706 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1197)) ((-514 (-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) -2706 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-644 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-638 |#1|) . T) ((-638 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-715 |#1|) . T) ((-715 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-722 |#1| #1#) . T) ((-724) . T) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-884 (-379)) |has| |#1| (-884 (-379))) ((-884 (-564)) |has| |#1| (-884 (-564))) ((-882 |#1|) . T) ((-907) -12 (|has| |#1| (-307)) (|has| |#1| (-907))) ((-918) -2706 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-1000) -12 (|has| |#1| (-1000)) (|has| |#1| (-1197))) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1049 |#1|) . T) ((-1049 $) . T) ((-1054 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| |#1| (-349)) ((-1197) |has| |#1| (-1197)) ((-1200) |has| |#1| (-1197)) ((-1212) . T) ((-1216) -2706 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-907)))))
+((-3643 (((-418 |#2|) |#2|) 69)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -3643 ((-418 |#2|) |#2|))) (-307) (-1238 (-169 |#1|))) (T -167))
+((-3643 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1238 (-169 *4))))))
+(-10 -7 (-15 -3643 ((-418 |#2|) |#2|)))
+((-4358 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -4358 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))))
+(-10 -7 (-15 -4358 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 34)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-1387 (($ $) NIL (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-2037 (((-112) $) NIL (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-3166 (((-687 |#1|) (-1262 $)) NIL) (((-687 |#1|)) NIL)) (-3815 ((|#1| $) NIL)) (-3851 (($ $) NIL (|has| |#1| (-1197)))) (-3704 (($ $) NIL (|has| |#1| (-1197)))) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| |#1| (-349)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-4316 (($ $) NIL (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-1978 (((-418 $) $) NIL (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-3655 (($ $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197))))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-4010 (((-112) $ $) NIL (|has| |#1| (-307)))) (-2521 (((-769)) NIL (|has| |#1| (-368)))) (-3827 (($ $) NIL (|has| |#1| (-1197)))) (-3679 (($ $) NIL (|has| |#1| (-1197)))) (-3875 (($ $) NIL (|has| |#1| (-1197)))) (-3727 (($ $) NIL (|has| |#1| (-1197)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-4221 (($ (-1262 |#1|) (-1262 $)) NIL) (($ (-1262 |#1|)) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2845 (($ $ $) NIL (|has| |#1| (-307)))) (-1984 (((-687 |#1|) $ (-1262 $)) NIL) (((-687 |#1|) $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-1320 (($ (-1169 |#1|)) NIL) (((-3 $ "failed") (-407 (-1169 |#1|))) NIL (|has| |#1| (-363)))) (-3104 (((-3 $ "failed") $) NIL)) (-3668 ((|#1| $) 13)) (-3838 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2881 (((-112) $) NIL (|has| |#1| (-545)))) (-4034 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2414 (((-919)) NIL)) (-2433 (($) NIL (|has| |#1| (-368)))) (-2859 (($ $ $) NIL (|has| |#1| (-307)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-307)))) (-1363 (($) NIL (|has| |#1| (-349)))) (-3424 (((-112) $) NIL (|has| |#1| (-349)))) (-3607 (($ $ (-769)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-1469 (((-112) $) NIL (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-2573 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1057)) (|has| |#1| (-1197))))) (-4265 (($) NIL (|has| |#1| (-1197)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| |#1| (-884 (-379))))) (-1427 (((-919) $) NIL (|has| |#1| (-349))) (((-831 (-919)) $) NIL (|has| |#1| (-349)))) (-3953 (((-112) $) 36)) (-1772 (($ $ (-564)) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197))))) (-2218 ((|#1| $) 47)) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-307)))) (-3947 (((-1169 |#1|) $) NIL (|has| |#1| (-363)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-1945 (((-919) $) NIL (|has| |#1| (-368)))) (-3612 (($ $) NIL (|has| |#1| (-1197)))) (-1308 (((-1169 |#1|) $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| |#1| (-363)))) (-3366 (($) NIL (|has| |#1| (-349)) CONST)) (-2047 (($ (-919)) NIL (|has| |#1| (-368)))) (-3541 (($) NIL)) (-3680 ((|#1| $) 15)) (-4033 (((-1117) $) NIL)) (-2185 (($) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-307)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| |#1| (-349)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-907))))) (-3643 (((-418 $) $) NIL (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-363))))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-307)))) (-2896 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 48 (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-307)))) (-1723 (($ $) NIL (|has| |#1| (-1197)))) (-3215 (($ $ (-642 |#1|) (-642 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-514 (-1173) |#1|)))) (-2048 (((-769) $) NIL (|has| |#1| (-307)))) (-4368 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-307)))) (-1846 ((|#1| (-1262 $)) NIL) ((|#1|) NIL)) (-2136 (((-769) $) NIL (|has| |#1| (-349))) (((-3 (-769) "failed") $ $) NIL (|has| |#1| (-349)))) (-3175 (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2382 (((-687 |#1|) (-1262 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3280 (((-1169 |#1|)) NIL)) (-3888 (($ $) NIL (|has| |#1| (-1197)))) (-3739 (($ $) NIL (|has| |#1| (-1197)))) (-2668 (($) NIL (|has| |#1| (-349)))) (-3863 (($ $) NIL (|has| |#1| (-1197)))) (-3716 (($ $) NIL (|has| |#1| (-1197)))) (-3839 (($ $) NIL (|has| |#1| (-1197)))) (-3693 (($ $) NIL (|has| |#1| (-1197)))) (-2067 (((-1262 |#1|) $ (-1262 $)) NIL) (((-687 |#1|) (-1262 $) (-1262 $)) NIL) (((-1262 |#1|) $) NIL) (((-687 |#1|) (-1262 $)) NIL)) (-1314 (((-1262 |#1|) $) NIL) (($ (-1262 |#1|)) NIL) (((-1169 |#1|) $) NIL) (($ (-1169 |#1|)) NIL) (((-890 (-564)) $) NIL (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| |#1| (-612 (-890 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1020))) (((-169 (-225)) $) NIL (|has| |#1| (-1020))) (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1389 (($ $) 46)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-349))))) (-3609 (($ |#1| |#1|) 38)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) 37) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-2439 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-3011 (((-1169 |#1|) $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL)) (-3926 (($ $) NIL (|has| |#1| (-1197)))) (-3776 (($ $) NIL (|has| |#1| (-1197)))) (-2103 (((-112) $ $) NIL (-2706 (-12 (|has| |#1| (-307)) (|has| |#1| (-907))) (|has| |#1| (-556))))) (-3900 (($ $) NIL (|has| |#1| (-1197)))) (-3750 (($ $) NIL (|has| |#1| (-1197)))) (-3951 (($ $) NIL (|has| |#1| (-1197)))) (-3803 (($ $) NIL (|has| |#1| (-1197)))) (-3417 ((|#1| $) NIL (|has| |#1| (-1197)))) (-2683 (($ $) NIL (|has| |#1| (-1197)))) (-3816 (($ $) NIL (|has| |#1| (-1197)))) (-3938 (($ $) NIL (|has| |#1| (-1197)))) (-3791 (($ $) NIL (|has| |#1| (-1197)))) (-3913 (($ $) NIL (|has| |#1| (-1197)))) (-3763 (($ $) NIL (|has| |#1| (-1197)))) (-1381 (($ $) NIL (|has| |#1| (-1057)))) (-2312 (($) 28 T CONST)) (-2322 (($) 30 T CONST)) (-1605 (((-1155) $) 23 (|has| |#1| (-826))) (((-1155) $ (-112)) 25 (|has| |#1| (-826))) (((-1267) (-820) $) 26 (|has| |#1| (-826))) (((-1267) (-820) $ (-112)) 27 (|has| |#1| (-826)))) (-4044 (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 40)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-407 (-564))) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1197)))) (($ $ $) NIL (|has| |#1| (-1197))) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363)))))
+(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|))) (-172)) (T -169))
+NIL
+(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|)))
+((-1314 (((-890 |#1|) |#3|) 22)))
+(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -1314 ((-890 |#1|) |#3|))) (-1097) (-13 (-612 (-890 |#1|)) (-172)) (-166 |#2|)) (T -170))
+((-1314 (*1 *2 *3) (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-890 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1097)) (-4 *3 (-166 *5)))))
+(-10 -7 (-15 -1314 ((-890 |#1|) |#3|)))
+((-2907 (((-112) $ $) NIL)) (-4071 (((-112) $) 9)) (-3500 (((-112) $ (-112)) 11)) (-4227 (($) 13)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3901 (($ $) 14)) (-2327 (((-860) $) 18)) (-4097 (((-112) $) 8)) (-1639 (((-112) $ (-112)) 10)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-171) (-13 (-1097) (-10 -8 (-15 -4227 ($)) (-15 -4097 ((-112) $)) (-15 -4071 ((-112) $)) (-15 -1639 ((-112) $ (-112))) (-15 -3500 ((-112) $ (-112))) (-15 -3901 ($ $))))) (T -171))
+((-4227 (*1 *1) (-5 *1 (-171))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1639 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3500 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3901 (*1 *1 *1) (-5 *1 (-171))))
+(-13 (-1097) (-10 -8 (-15 -4227 ($)) (-15 -4097 ((-112) $)) (-15 -4071 ((-112) $)) (-15 -1639 ((-112) $ (-112))) (-15 -3500 ((-112) $ (-112))) (-15 -3901 ($ $))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
(((-172) (-140)) (T -172))
NIL
-(-13 (-1045) (-111 $ $) (-10 -7 (-6 (-4409 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3179 (($ $) 6)))
+(-13 (-1047) (-111 $ $) (-10 -7 (-6 (-4412 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2528 (($ $) 6)))
(((-173) (-140)) (T -173))
-((-3179 (*1 *1 *1) (-4 *1 (-173))))
-(-13 (-10 -8 (-15 -3179 ($ $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4198 ((|#1| $) 81)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-2946 (($ $ $) NIL)) (-4352 (($ $) 21)) (-3818 (($ |#1| (-1150 |#1|)) 50)) (-3293 (((-3 $ "failed") $) 123)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2502 (((-1150 |#1|) $) 88)) (-3698 (((-1150 |#1|) $) 85)) (-1850 (((-1150 |#1|) $) 86)) (-4112 (((-112) $) NIL)) (-1927 (((-1150 |#1|) $) 94)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2084 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ (-641 $)) NIL) (($ $ $) NIL)) (-3688 (((-418 $) $) NIL)) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL)) (-4016 (($ $ (-564)) 97)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-2433 (((-1150 |#1|) $) 95)) (-2573 (((-1150 (-407 |#1|)) $) 14)) (-3316 (($ (-407 |#1|)) 17) (($ |#1| (-1150 |#1|) (-1150 |#1|)) 40)) (-2732 (($ $) 99)) (-2423 (((-858) $) 140) (($ (-564)) 53) (($ |#1|) 54) (($ (-407 |#1|)) 38) (($ (-407 (-564))) NIL) (($ $) NIL)) (-3719 (((-767)) 70 T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-2445 (((-1150 (-407 |#1|)) $) 20)) (-2403 (($) 27 T CONST)) (-2417 (($) 30 T CONST)) (-2974 (((-112) $ $) 37)) (-3092 (($ $ $) 121)) (-3082 (($ $) 112) (($ $ $) 109)) (-3070 (($ $ $) 107)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-407 |#1|) $) 117) (($ $ (-407 |#1|)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL)))
-(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -3316 ($ (-407 |#1|))) (-15 -3316 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -3818 ($ |#1| (-1150 |#1|))) (-15 -3698 ((-1150 |#1|) $)) (-15 -1850 ((-1150 |#1|) $)) (-15 -2502 ((-1150 |#1|) $)) (-15 -4198 (|#1| $)) (-15 -4352 ($ $)) (-15 -2445 ((-1150 (-407 |#1|)) $)) (-15 -2573 ((-1150 (-407 |#1|)) $)) (-15 -1927 ((-1150 |#1|) $)) (-15 -2433 ((-1150 |#1|) $)) (-15 -4016 ($ $ (-564))) (-15 -2732 ($ $)))) (-307)) (T -174))
-((-3316 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-3316 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-3818 (*1 *1 *2 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-4198 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-4352 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2732 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
-(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -3316 ($ (-407 |#1|))) (-15 -3316 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -3818 ($ |#1| (-1150 |#1|))) (-15 -3698 ((-1150 |#1|) $)) (-15 -1850 ((-1150 |#1|) $)) (-15 -2502 ((-1150 |#1|) $)) (-15 -4198 (|#1| $)) (-15 -4352 ($ $)) (-15 -2445 ((-1150 (-407 |#1|)) $)) (-15 -2573 ((-1150 (-407 |#1|)) $)) (-15 -1927 ((-1150 |#1|) $)) (-15 -2433 ((-1150 |#1|) $)) (-15 -4016 ($ $ (-564))) (-15 -2732 ($ $))))
-((-4387 (($ (-109) $) 15)) (-2636 (((-687 (-109)) (-506) $) 14)) (-2423 (((-858) $) 18)) (-4127 (((-641 (-109)) $) 8)))
-(((-175) (-13 (-611 (-858)) (-10 -8 (-15 -4127 ((-641 (-109)) $)) (-15 -4387 ($ (-109) $)) (-15 -2636 ((-687 (-109)) (-506) $))))) (T -175))
-((-4127 (*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175)))) (-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2636 (*1 *2 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-109))) (-5 *1 (-175)))))
-(-13 (-611 (-858)) (-10 -8 (-15 -4127 ((-641 (-109)) $)) (-15 -4387 ($ (-109) $)) (-15 -2636 ((-687 (-109)) (-506) $))))
-((-1800 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 40)) (-2512 (((-939 |#1|) (-939 |#1|)) 24)) (-3465 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 36)) (-3978 (((-939 |#1|) (-939 |#1|)) 22)) (-3942 (((-939 |#1|) (-939 |#1|)) 30)) (-2158 (((-939 |#1|) (-939 |#1|)) 29)) (-2692 (((-939 |#1|) (-939 |#1|)) 28)) (-2606 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 37)) (-1525 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 35)) (-2542 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 34)) (-2920 (((-939 |#1|) (-939 |#1|)) 23)) (-3831 (((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|) 43)) (-2863 (((-939 |#1|) (-939 |#1|)) 8)) (-3685 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 39)) (-2347 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 38)))
-(((-176 |#1|) (-10 -7 (-15 -2863 ((-939 |#1|) (-939 |#1|))) (-15 -3978 ((-939 |#1|) (-939 |#1|))) (-15 -2920 ((-939 |#1|) (-939 |#1|))) (-15 -2512 ((-939 |#1|) (-939 |#1|))) (-15 -2692 ((-939 |#1|) (-939 |#1|))) (-15 -2158 ((-939 |#1|) (-939 |#1|))) (-15 -3942 ((-939 |#1|) (-939 |#1|))) (-15 -2542 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1525 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3465 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2606 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2347 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3685 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1800 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3831 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|))) (-13 (-363) (-1194) (-998))) (T -176))
-((-3831 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-1800 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-3685 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-2347 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-2606 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-3465 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-1525 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-998))))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-2692 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-2512 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-2920 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))) (-2863 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998))) (-5 *1 (-176 *3)))))
-(-10 -7 (-15 -2863 ((-939 |#1|) (-939 |#1|))) (-15 -3978 ((-939 |#1|) (-939 |#1|))) (-15 -2920 ((-939 |#1|) (-939 |#1|))) (-15 -2512 ((-939 |#1|) (-939 |#1|))) (-15 -2692 ((-939 |#1|) (-939 |#1|))) (-15 -2158 ((-939 |#1|) (-939 |#1|))) (-15 -3942 ((-939 |#1|) (-939 |#1|))) (-15 -2542 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1525 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3465 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2606 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2347 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3685 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1800 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3831 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|)))
-((-2134 ((|#2| |#3|) 28)))
-(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -2134 (|#2| |#3|))) (-172) (-1235 |#1|) (-720 |#1| |#2|)) (T -177))
-((-2134 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-720 *4 *2)))))
-(-10 -7 (-15 -2134 (|#2| |#3|)))
-((-1513 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 49 (|has| (-948 |#2|) (-882 |#1|)))))
-(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-948 |#2|) (-882 |#1|)) (-15 -1513 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) |%noBranch|)) (-1094) (-13 (-882 |#1|) (-172)) (-166 |#2|)) (T -178))
-((-1513 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-4 *3 (-166 *6)) (-4 (-948 *6) (-882 *5)) (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-948 |#2|) (-882 |#1|)) (-15 -1513 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) |%noBranch|))
-((-2096 (((-641 |#1|) (-641 |#1|) |#1|) 41)) (-2350 (((-641 |#1|) |#1| (-641 |#1|)) 20)) (-2328 (((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|)) 36) ((|#1| (-641 |#1|) (-641 |#1|)) 32)))
-(((-179 |#1|) (-10 -7 (-15 -2350 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -2328 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -2328 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -2096 ((-641 |#1|) (-641 |#1|) |#1|))) (-307)) (T -179))
-((-2096 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-2328 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-2328 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-2350 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
-(-10 -7 (-15 -2350 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -2328 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -2328 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -2096 ((-641 |#1|) (-641 |#1|) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-3830 (((-1208) $) 13)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1350 (((-1129) $) 10)) (-2423 (((-858) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-180) (-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $)) (-15 -3830 ((-1208) $))))) (T -180))
-((-1350 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180)))))
-(-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $)) (-15 -3830 ((-1208) $))))
-((-2341 (((-2 (|:| |start| |#2|) (|:| -1572 (-418 |#2|))) |#2|) 66)) (-1925 ((|#1| |#1|) 58)) (-1500 (((-169 |#1|) |#2|) 92)) (-3632 ((|#1| |#2|) 144) ((|#1| |#2| |#1|) 90)) (-2906 ((|#2| |#2|) 91)) (-3713 (((-418 |#2|) |#2| |#1|) 127) (((-418 |#2|) |#2| |#1| (-112)) 88)) (-2499 ((|#1| |#2|) 126)) (-1351 ((|#2| |#2|) 139)) (-3688 (((-418 |#2|) |#2|) 161) (((-418 |#2|) |#2| |#1|) 33) (((-418 |#2|) |#2| |#1| (-112)) 160)) (-3987 (((-641 (-2 (|:| -1572 (-641 |#2|)) (|:| -1433 |#1|))) |#2| |#2|) 159) (((-641 (-2 (|:| -1572 (-641 |#2|)) (|:| -1433 |#1|))) |#2| |#2| (-112)) 81)) (-2748 (((-641 (-169 |#1|)) |#2| |#1|) 42) (((-641 (-169 |#1|)) |#2|) 43)))
-(((-181 |#1| |#2|) (-10 -7 (-15 -2748 ((-641 (-169 |#1|)) |#2|)) (-15 -2748 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -3987 ((-641 (-2 (|:| -1572 (-641 |#2|)) (|:| -1433 |#1|))) |#2| |#2| (-112))) (-15 -3987 ((-641 (-2 (|:| -1572 (-641 |#2|)) (|:| -1433 |#1|))) |#2| |#2|)) (-15 -3688 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3688 ((-418 |#2|) |#2| |#1|)) (-15 -3688 ((-418 |#2|) |#2|)) (-15 -1351 (|#2| |#2|)) (-15 -2499 (|#1| |#2|)) (-15 -3713 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3713 ((-418 |#2|) |#2| |#1|)) (-15 -2906 (|#2| |#2|)) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#2|)) (-15 -1500 ((-169 |#1|) |#2|)) (-15 -1925 (|#1| |#1|)) (-15 -2341 ((-2 (|:| |start| |#2|) (|:| -1572 (-418 |#2|))) |#2|))) (-13 (-363) (-844)) (-1235 (-169 |#1|))) (T -181))
-((-2341 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-2 (|:| |start| *3) (|:| -1572 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-1925 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1235 *2)))) (-3632 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-3632 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-2906 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-3713 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3713 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2499 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-1351 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3688 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3688 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3987 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-641 (-2 (|:| -1572 (-641 *3)) (|:| -1433 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3987 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844))) (-5 *2 (-641 (-2 (|:| -1572 (-641 *3)) (|:| -1433 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5))))) (-2748 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(-10 -7 (-15 -2748 ((-641 (-169 |#1|)) |#2|)) (-15 -2748 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -3987 ((-641 (-2 (|:| -1572 (-641 |#2|)) (|:| -1433 |#1|))) |#2| |#2| (-112))) (-15 -3987 ((-641 (-2 (|:| -1572 (-641 |#2|)) (|:| -1433 |#1|))) |#2| |#2|)) (-15 -3688 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3688 ((-418 |#2|) |#2| |#1|)) (-15 -3688 ((-418 |#2|) |#2|)) (-15 -1351 (|#2| |#2|)) (-15 -2499 (|#1| |#2|)) (-15 -3713 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3713 ((-418 |#2|) |#2| |#1|)) (-15 -2906 (|#2| |#2|)) (-15 -3632 (|#1| |#2| |#1|)) (-15 -3632 (|#1| |#2|)) (-15 -1500 ((-169 |#1|) |#2|)) (-15 -1925 (|#1| |#1|)) (-15 -2341 ((-2 (|:| |start| |#2|) (|:| -1572 (-418 |#2|))) |#2|)))
-((-2460 (((-3 |#2| "failed") |#2|) 20)) (-3511 (((-767) |#2|) 23)) (-1725 ((|#2| |#2| |#2|) 25)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -2460 ((-3 |#2| "failed") |#2|)) (-15 -3511 ((-767) |#2|)) (-15 -1725 (|#2| |#2| |#2|))) (-1209) (-670 |#1|)) (T -182))
-((-1725 (*1 *2 *2 *2) (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-1209)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3)) (-4 *3 (-670 *4)))) (-2460 (*1 *2 *2) (|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))))
-(-10 -7 (-15 -2460 ((-3 |#2| "failed") |#2|)) (-15 -3511 ((-767) |#2|)) (-15 -1725 (|#2| |#2| |#2|)))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1491 (((-187) $) 7)) (-2423 (((-858) $) 14)) (-1860 (((-112) $ $) NIL)) (-2838 (((-641 (-1175)) $) 10)) (-2974 (((-112) $ $) 12)))
-(((-183) (-13 (-1094) (-10 -8 (-15 -1491 ((-187) $)) (-15 -2838 ((-641 (-1175)) $))))) (T -183))
-((-1491 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183)))))
-(-13 (-1094) (-10 -8 (-15 -1491 ((-187) $)) (-15 -2838 ((-641 (-1175)) $))))
-((-2366 (((-641 (-861)) $) 16)) (-1611 (((-186) $) 8)) (-2503 (((-641 (-112)) $) 13)) (-2524 (((-55) $) 10)))
-(((-184 |#1|) (-10 -8 (-15 -2366 ((-641 (-861)) |#1|)) (-15 -2503 ((-641 (-112)) |#1|)) (-15 -1611 ((-186) |#1|)) (-15 -2524 ((-55) |#1|))) (-185)) (T -184))
-NIL
-(-10 -8 (-15 -2366 ((-641 (-861)) |#1|)) (-15 -2503 ((-641 (-112)) |#1|)) (-15 -1611 ((-186) |#1|)) (-15 -2524 ((-55) |#1|)))
-((-3009 (((-112) $ $) 7)) (-2366 (((-641 (-861)) $) 18)) (-2562 (((-506) $) 15)) (-2766 (((-1152) $) 10)) (-1611 (((-186) $) 20)) (-4052 (((-1114) $) 11)) (-2503 (((-641 (-112)) $) 19)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2524 (((-55) $) 14)) (-2974 (((-112) $ $) 6)))
+((-2528 (*1 *1 *1) (-4 *1 (-173))))
+(-13 (-10 -8 (-15 -2528 ($ $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3703 ((|#1| $) 81)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-2845 (($ $ $) NIL)) (-4156 (($ $) 21)) (-1857 (($ |#1| (-1153 |#1|)) 50)) (-3104 (((-3 $ "failed") $) 123)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2875 (((-1153 |#1|) $) 88)) (-2174 (((-1153 |#1|) $) 85)) (-1680 (((-1153 |#1|) $) 86)) (-3953 (((-112) $) NIL)) (-1598 (((-1153 |#1|) $) 94)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2049 (($ (-642 $)) NIL) (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ (-642 $)) NIL) (($ $ $) NIL)) (-3643 (((-418 $) $) NIL)) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL)) (-3804 (($ $ (-564)) 97)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-1800 (((-1153 |#1|) $) 95)) (-3792 (((-1153 (-407 |#1|)) $) 14)) (-2587 (($ (-407 |#1|)) 17) (($ |#1| (-1153 |#1|) (-1153 |#1|)) 40)) (-4318 (($ $) 99)) (-2327 (((-860) $) 140) (($ (-564)) 53) (($ |#1|) 54) (($ (-407 |#1|)) 38) (($ (-407 (-564))) NIL) (($ $) NIL)) (-2756 (((-769)) 70 T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-4069 (((-1153 (-407 |#1|)) $) 20)) (-2312 (($) 27 T CONST)) (-2322 (($) 30 T CONST)) (-2872 (((-112) $ $) 37)) (-2998 (($ $ $) 121)) (-2987 (($ $) 112) (($ $ $) 109)) (-2974 (($ $ $) 107)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-407 |#1|) $) 117) (($ $ (-407 |#1|)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL)))
+(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -2587 ($ (-407 |#1|))) (-15 -2587 ($ |#1| (-1153 |#1|) (-1153 |#1|))) (-15 -1857 ($ |#1| (-1153 |#1|))) (-15 -2174 ((-1153 |#1|) $)) (-15 -1680 ((-1153 |#1|) $)) (-15 -2875 ((-1153 |#1|) $)) (-15 -3703 (|#1| $)) (-15 -4156 ($ $)) (-15 -4069 ((-1153 (-407 |#1|)) $)) (-15 -3792 ((-1153 (-407 |#1|)) $)) (-15 -1598 ((-1153 |#1|) $)) (-15 -1800 ((-1153 |#1|) $)) (-15 -3804 ($ $ (-564))) (-15 -4318 ($ $)))) (-307)) (T -174))
+((-2587 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-2587 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1153 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-1857 (*1 *1 *2 *3) (-12 (-5 *3 (-1153 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3703 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-4156 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-4069 (*1 *2 *1) (-12 (-5 *2 (-1153 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-1153 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-4318 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
+(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -2587 ($ (-407 |#1|))) (-15 -2587 ($ |#1| (-1153 |#1|) (-1153 |#1|))) (-15 -1857 ($ |#1| (-1153 |#1|))) (-15 -2174 ((-1153 |#1|) $)) (-15 -1680 ((-1153 |#1|) $)) (-15 -2875 ((-1153 |#1|) $)) (-15 -3703 (|#1| $)) (-15 -4156 ($ $)) (-15 -4069 ((-1153 (-407 |#1|)) $)) (-15 -3792 ((-1153 (-407 |#1|)) $)) (-15 -1598 ((-1153 |#1|) $)) (-15 -1800 ((-1153 |#1|) $)) (-15 -3804 ($ $ (-564))) (-15 -4318 ($ $))))
+((-3968 (($ (-109) $) 15)) (-2140 (((-689 (-109)) (-506) $) 14)) (-2327 (((-860) $) 18)) (-3843 (((-642 (-109)) $) 8)))
+(((-175) (-13 (-611 (-860)) (-10 -8 (-15 -3843 ((-642 (-109)) $)) (-15 -3968 ($ (-109) $)) (-15 -2140 ((-689 (-109)) (-506) $))))) (T -175))
+((-3843 (*1 *2 *1) (-12 (-5 *2 (-642 (-109))) (-5 *1 (-175)))) (-3968 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2140 (*1 *2 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-109))) (-5 *1 (-175)))))
+(-13 (-611 (-860)) (-10 -8 (-15 -3843 ((-642 (-109)) $)) (-15 -3968 ($ (-109) $)) (-15 -2140 ((-689 (-109)) (-506) $))))
+((-2449 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 40)) (-2965 (((-941 |#1|) (-941 |#1|)) 24)) (-4324 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 36)) (-3056 (((-941 |#1|) (-941 |#1|)) 22)) (-3066 (((-941 |#1|) (-941 |#1|)) 30)) (-4173 (((-941 |#1|) (-941 |#1|)) 29)) (-3108 (((-941 |#1|) (-941 |#1|)) 28)) (-3498 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 37)) (-2684 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 35)) (-1957 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 34)) (-1336 (((-941 |#1|) (-941 |#1|)) 23)) (-2692 (((-1 (-941 |#1|) (-941 |#1|)) |#1| |#1|) 43)) (-2401 (((-941 |#1|) (-941 |#1|)) 8)) (-2558 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 39)) (-1500 (((-1 (-941 |#1|) (-941 |#1|)) |#1|) 38)))
+(((-176 |#1|) (-10 -7 (-15 -2401 ((-941 |#1|) (-941 |#1|))) (-15 -3056 ((-941 |#1|) (-941 |#1|))) (-15 -1336 ((-941 |#1|) (-941 |#1|))) (-15 -2965 ((-941 |#1|) (-941 |#1|))) (-15 -3108 ((-941 |#1|) (-941 |#1|))) (-15 -4173 ((-941 |#1|) (-941 |#1|))) (-15 -3066 ((-941 |#1|) (-941 |#1|))) (-15 -1957 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2684 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -4324 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -3498 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -1500 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2558 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2449 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2692 ((-1 (-941 |#1|) (-941 |#1|)) |#1| |#1|))) (-13 (-363) (-1197) (-1000))) (T -176))
+((-2692 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-2449 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-2558 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-3498 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-4324 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-2684 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-1336 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-3056 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))) (-2401 (*1 *2 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000))) (-5 *1 (-176 *3)))))
+(-10 -7 (-15 -2401 ((-941 |#1|) (-941 |#1|))) (-15 -3056 ((-941 |#1|) (-941 |#1|))) (-15 -1336 ((-941 |#1|) (-941 |#1|))) (-15 -2965 ((-941 |#1|) (-941 |#1|))) (-15 -3108 ((-941 |#1|) (-941 |#1|))) (-15 -4173 ((-941 |#1|) (-941 |#1|))) (-15 -3066 ((-941 |#1|) (-941 |#1|))) (-15 -1957 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2684 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -4324 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -3498 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -1500 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2558 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2449 ((-1 (-941 |#1|) (-941 |#1|)) |#1|)) (-15 -2692 ((-1 (-941 |#1|) (-941 |#1|)) |#1| |#1|)))
+((-3011 ((|#2| |#3|) 28)))
+(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -3011 (|#2| |#3|))) (-172) (-1238 |#1|) (-722 |#1| |#2|)) (T -177))
+((-3011 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1238 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-722 *4 *2)))))
+(-10 -7 (-15 -3011 (|#2| |#3|)))
+((-2453 (((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)) 49 (|has| (-950 |#2|) (-884 |#1|)))))
+(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-950 |#2|) (-884 |#1|)) (-15 -2453 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))) |%noBranch|)) (-1097) (-13 (-884 |#1|) (-172)) (-166 |#2|)) (T -178))
+((-2453 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *3)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-4 *3 (-166 *6)) (-4 (-950 *6) (-884 *5)) (-4 *6 (-13 (-884 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-950 |#2|) (-884 |#1|)) (-15 -2453 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))) |%noBranch|))
+((-4096 (((-642 |#1|) (-642 |#1|) |#1|) 41)) (-2021 (((-642 |#1|) |#1| (-642 |#1|)) 20)) (-2782 (((-642 |#1|) (-642 (-642 |#1|)) (-642 |#1|)) 36) ((|#1| (-642 |#1|) (-642 |#1|)) 32)))
+(((-179 |#1|) (-10 -7 (-15 -2021 ((-642 |#1|) |#1| (-642 |#1|))) (-15 -2782 (|#1| (-642 |#1|) (-642 |#1|))) (-15 -2782 ((-642 |#1|) (-642 (-642 |#1|)) (-642 |#1|))) (-15 -4096 ((-642 |#1|) (-642 |#1|) |#1|))) (-307)) (T -179))
+((-4096 (*1 *2 *2 *3) (-12 (-5 *2 (-642 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-2782 (*1 *2 *3 *2) (-12 (-5 *3 (-642 (-642 *4))) (-5 *2 (-642 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-2782 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-2021 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
+(-10 -7 (-15 -2021 ((-642 |#1|) |#1| (-642 |#1|))) (-15 -2782 (|#1| (-642 |#1|) (-642 |#1|))) (-15 -2782 ((-642 |#1|) (-642 (-642 |#1|)) (-642 |#1|))) (-15 -4096 ((-642 |#1|) (-642 |#1|) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-3796 (((-1211) $) 13)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1357 (((-1132) $) 10)) (-2327 (((-860) $) 20) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-180) (-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $)) (-15 -3796 ((-1211) $))))) (T -180))
+((-1357 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-180)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-180)))))
+(-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $)) (-15 -3796 ((-1211) $))))
+((-2166 (((-2 (|:| |start| |#2|) (|:| -2649 (-418 |#2|))) |#2|) 66)) (-3430 ((|#1| |#1|) 58)) (-3481 (((-169 |#1|) |#2|) 92)) (-1608 ((|#1| |#2|) 144) ((|#1| |#2| |#1|) 90)) (-2052 ((|#2| |#2|) 91)) (-4269 (((-418 |#2|) |#2| |#1|) 127) (((-418 |#2|) |#2| |#1| (-112)) 88)) (-2218 ((|#1| |#2|) 126)) (-3976 ((|#2| |#2|) 139)) (-3643 (((-418 |#2|) |#2|) 161) (((-418 |#2|) |#2| |#1|) 33) (((-418 |#2|) |#2| |#1| (-112)) 160)) (-4038 (((-642 (-2 (|:| -2649 (-642 |#2|)) (|:| -1449 |#1|))) |#2| |#2|) 159) (((-642 (-2 (|:| -2649 (-642 |#2|)) (|:| -1449 |#1|))) |#2| |#2| (-112)) 81)) (-3067 (((-642 (-169 |#1|)) |#2| |#1|) 42) (((-642 (-169 |#1|)) |#2|) 43)))
+(((-181 |#1| |#2|) (-10 -7 (-15 -3067 ((-642 (-169 |#1|)) |#2|)) (-15 -3067 ((-642 (-169 |#1|)) |#2| |#1|)) (-15 -4038 ((-642 (-2 (|:| -2649 (-642 |#2|)) (|:| -1449 |#1|))) |#2| |#2| (-112))) (-15 -4038 ((-642 (-2 (|:| -2649 (-642 |#2|)) (|:| -1449 |#1|))) |#2| |#2|)) (-15 -3643 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3643 ((-418 |#2|) |#2| |#1|)) (-15 -3643 ((-418 |#2|) |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -2218 (|#1| |#2|)) (-15 -4269 ((-418 |#2|) |#2| |#1| (-112))) (-15 -4269 ((-418 |#2|) |#2| |#1|)) (-15 -2052 (|#2| |#2|)) (-15 -1608 (|#1| |#2| |#1|)) (-15 -1608 (|#1| |#2|)) (-15 -3481 ((-169 |#1|) |#2|)) (-15 -3430 (|#1| |#1|)) (-15 -2166 ((-2 (|:| |start| |#2|) (|:| -2649 (-418 |#2|))) |#2|))) (-13 (-363) (-846)) (-1238 (-169 |#1|))) (T -181))
+((-2166 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-2 (|:| |start| *3) (|:| -2649 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-3430 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1238 (-169 *2))))) (-3481 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-846))) (-4 *3 (-1238 *2)))) (-1608 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1238 (-169 *2))))) (-1608 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1238 (-169 *2))))) (-2052 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-846))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1238 (-169 *3))))) (-4269 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-4269 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-2218 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1238 (-169 *2))))) (-3976 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-846))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1238 (-169 *3))))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-3643 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-3643 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-4038 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-642 (-2 (|:| -2649 (-642 *3)) (|:| -1449 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-4038 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-846))) (-5 *2 (-642 (-2 (|:| -2649 (-642 *3)) (|:| -1449 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1238 (-169 *5))))) (-3067 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-642 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))) (-3067 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-642 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))))
+(-10 -7 (-15 -3067 ((-642 (-169 |#1|)) |#2|)) (-15 -3067 ((-642 (-169 |#1|)) |#2| |#1|)) (-15 -4038 ((-642 (-2 (|:| -2649 (-642 |#2|)) (|:| -1449 |#1|))) |#2| |#2| (-112))) (-15 -4038 ((-642 (-2 (|:| -2649 (-642 |#2|)) (|:| -1449 |#1|))) |#2| |#2|)) (-15 -3643 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3643 ((-418 |#2|) |#2| |#1|)) (-15 -3643 ((-418 |#2|) |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -2218 (|#1| |#2|)) (-15 -4269 ((-418 |#2|) |#2| |#1| (-112))) (-15 -4269 ((-418 |#2|) |#2| |#1|)) (-15 -2052 (|#2| |#2|)) (-15 -1608 (|#1| |#2| |#1|)) (-15 -1608 (|#1| |#2|)) (-15 -3481 ((-169 |#1|) |#2|)) (-15 -3430 (|#1| |#1|)) (-15 -2166 ((-2 (|:| |start| |#2|) (|:| -2649 (-418 |#2|))) |#2|)))
+((-3590 (((-3 |#2| "failed") |#2|) 20)) (-3172 (((-769) |#2|) 23)) (-2723 ((|#2| |#2| |#2|) 25)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -3590 ((-3 |#2| "failed") |#2|)) (-15 -3172 ((-769) |#2|)) (-15 -2723 (|#2| |#2| |#2|))) (-1212) (-672 |#1|)) (T -182))
+((-2723 (*1 *2 *2 *2) (-12 (-4 *3 (-1212)) (-5 *1 (-182 *3 *2)) (-4 *2 (-672 *3)))) (-3172 (*1 *2 *3) (-12 (-4 *4 (-1212)) (-5 *2 (-769)) (-5 *1 (-182 *4 *3)) (-4 *3 (-672 *4)))) (-3590 (*1 *2 *2) (|partial| -12 (-4 *3 (-1212)) (-5 *1 (-182 *3 *2)) (-4 *2 (-672 *3)))))
+(-10 -7 (-15 -3590 ((-3 |#2| "failed") |#2|)) (-15 -3172 ((-769) |#2|)) (-15 -2723 (|#2| |#2| |#2|)))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1513 (((-187) $) 7)) (-2327 (((-860) $) 14)) (-1648 (((-112) $ $) NIL)) (-2737 (((-642 (-1178)) $) 10)) (-2872 (((-112) $ $) 12)))
+(((-183) (-13 (-1097) (-10 -8 (-15 -1513 ((-187) $)) (-15 -2737 ((-642 (-1178)) $))))) (T -183))
+((-1513 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-183)))))
+(-13 (-1097) (-10 -8 (-15 -1513 ((-187) $)) (-15 -2737 ((-642 (-1178)) $))))
+((-2280 (((-642 (-863)) $) 16)) (-1645 (((-186) $) 8)) (-3983 (((-642 (-112)) $) 13)) (-3055 (((-55) $) 10)))
+(((-184 |#1|) (-10 -8 (-15 -2280 ((-642 (-863)) |#1|)) (-15 -3983 ((-642 (-112)) |#1|)) (-15 -1645 ((-186) |#1|)) (-15 -3055 ((-55) |#1|))) (-185)) (T -184))
+NIL
+(-10 -8 (-15 -2280 ((-642 (-863)) |#1|)) (-15 -3983 ((-642 (-112)) |#1|)) (-15 -1645 ((-186) |#1|)) (-15 -3055 ((-55) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2280 (((-642 (-863)) $) 19)) (-2461 (((-506) $) 16)) (-3315 (((-1155) $) 10)) (-1645 (((-186) $) 21)) (-1523 (((-112) $ (-506)) 14)) (-4033 (((-1117) $) 11)) (-3983 (((-642 (-112)) $) 20)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-3055 (((-55) $) 15)) (-2872 (((-112) $ $) 6)))
(((-185) (-140)) (T -185))
-((-1611 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-2503 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112))))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-861))))))
-(-13 (-831 (-506)) (-10 -8 (-15 -1611 ((-186) $)) (-15 -2503 ((-641 (-112)) $)) (-15 -2366 ((-641 (-861)) $))))
-(((-102) . T) ((-611 (-858)) . T) ((-831 (-506)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-8 (($) 7 T CONST)) (-2423 (((-858) $) 12)) (-9 (($) 6 T CONST)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 10)))
-(((-186) (-13 (-1094) (-10 -8 (-15 -9 ($) -2959) (-15 -8 ($) -2959) (-15 -7 ($) -2959)))) (T -186))
+((-1645 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-642 (-112))))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-642 (-863))))))
+(-13 (-833 (-506)) (-10 -8 (-15 -1645 ((-186) $)) (-15 -3983 ((-642 (-112)) $)) (-15 -2280 ((-642 (-863)) $))))
+(((-102) . T) ((-611 (-860)) . T) ((-833 (-506)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-8 (($) 7 T CONST)) (-2327 (((-860) $) 12)) (-9 (($) 6 T CONST)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 10)))
+(((-186) (-13 (-1097) (-10 -8 (-15 -9 ($) -2858) (-15 -8 ($) -2858) (-15 -7 ($) -2858)))) (T -186))
((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186))))
-(-13 (-1094) (-10 -8 (-15 -9 ($) -2959) (-15 -8 ($) -2959) (-15 -7 ($) -2959)))
-((-3009 (((-112) $ $) NIL)) (-2366 (((-641 (-861)) $) NIL)) (-2562 (((-506) $) 8)) (-2766 (((-1152) $) NIL)) (-1611 (((-186) $) 10)) (-4052 (((-1114) $) NIL)) (-3535 (((-687 $) (-506)) 17)) (-2503 (((-641 (-112)) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2524 (((-55) $) 12)) (-2974 (((-112) $ $) NIL)))
-(((-187) (-13 (-185) (-10 -8 (-15 -3535 ((-687 $) (-506)))))) (T -187))
-((-3535 (*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-187))) (-5 *1 (-187)))))
-(-13 (-185) (-10 -8 (-15 -3535 ((-687 $) (-506)))))
-((-1549 ((|#2| |#2|) 28)) (-2466 (((-112) |#2|) 19)) (-3712 (((-316 |#1|) |#2|) 12)) (-3723 (((-316 |#1|) |#2|) 14)) (-2219 ((|#2| |#2| (-1170)) 69) ((|#2| |#2|) 70)) (-1481 (((-169 (-316 |#1|)) |#2|) 10)) (-2752 ((|#2| |#2| (-1170)) 66) ((|#2| |#2|) 60)))
-(((-188 |#1| |#2|) (-10 -7 (-15 -2219 (|#2| |#2|)) (-15 -2219 (|#2| |#2| (-1170))) (-15 -2752 (|#2| |#2|)) (-15 -2752 (|#2| |#2| (-1170))) (-15 -3712 ((-316 |#1|) |#2|)) (-15 -3723 ((-316 |#1|) |#2|)) (-15 -2466 ((-112) |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1481 ((-169 (-316 |#1|)) |#2|))) (-13 (-556) (-1034 (-564))) (-13 (-27) (-1194) (-430 (-169 |#1|)))) (T -188))
-((-1481 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1034 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-2466 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-3723 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-3712 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2752 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1034 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-2219 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1034 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))))
-(-10 -7 (-15 -2219 (|#2| |#2|)) (-15 -2219 (|#2| |#2| (-1170))) (-15 -2752 (|#2| |#2|)) (-15 -2752 (|#2| |#2| (-1170))) (-15 -3712 ((-316 |#1|) |#2|)) (-15 -3723 ((-316 |#1|) |#2|)) (-15 -2466 ((-112) |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1481 ((-169 (-316 |#1|)) |#2|)))
-((-1478 (((-1259 (-685 (-948 |#1|))) (-1259 (-685 |#1|))) 26)) (-2423 (((-1259 (-685 (-407 (-948 |#1|)))) (-1259 (-685 |#1|))) 37)))
-(((-189 |#1|) (-10 -7 (-15 -1478 ((-1259 (-685 (-948 |#1|))) (-1259 (-685 |#1|)))) (-15 -2423 ((-1259 (-685 (-407 (-948 |#1|)))) (-1259 (-685 |#1|))))) (-172)) (T -189))
-((-2423 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-407 (-948 *4))))) (-5 *1 (-189 *4)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-948 *4)))) (-5 *1 (-189 *4)))))
-(-10 -7 (-15 -1478 ((-1259 (-685 (-948 |#1|))) (-1259 (-685 |#1|)))) (-15 -2423 ((-1259 (-685 (-407 (-948 |#1|)))) (-1259 (-685 |#1|)))))
-((-3282 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 89)) (-2697 (((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564))) 99)) (-3090 (((-1172 (-407 (-564))) (-564)) 56)) (-2744 (((-1172 (-407 (-564))) (-564)) 75)) (-3291 (((-407 (-564)) (-1172 (-407 (-564)))) 85)) (-2260 (((-1172 (-407 (-564))) (-564)) 37)) (-3128 (((-1172 (-407 (-564))) (-564)) 68)) (-2299 (((-1172 (-407 (-564))) (-564)) 62)) (-3266 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 83)) (-2732 (((-1172 (-407 (-564))) (-564)) 29)) (-2361 (((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 87)) (-1997 (((-1172 (-407 (-564))) (-564)) 35)) (-2104 (((-1172 (-407 (-564))) (-641 (-564))) 96)))
-(((-190) (-10 -7 (-15 -2732 ((-1172 (-407 (-564))) (-564))) (-15 -3090 ((-1172 (-407 (-564))) (-564))) (-15 -2260 ((-1172 (-407 (-564))) (-564))) (-15 -1997 ((-1172 (-407 (-564))) (-564))) (-15 -2299 ((-1172 (-407 (-564))) (-564))) (-15 -3128 ((-1172 (-407 (-564))) (-564))) (-15 -2744 ((-1172 (-407 (-564))) (-564))) (-15 -2361 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3266 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3291 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -3282 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2104 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -2697 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564)))))) (T -190))
-((-2697 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-3282 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-3266 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-2361 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-2744 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3128 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2299 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-1997 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2260 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3090 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2732 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
-(-10 -7 (-15 -2732 ((-1172 (-407 (-564))) (-564))) (-15 -3090 ((-1172 (-407 (-564))) (-564))) (-15 -2260 ((-1172 (-407 (-564))) (-564))) (-15 -1997 ((-1172 (-407 (-564))) (-564))) (-15 -2299 ((-1172 (-407 (-564))) (-564))) (-15 -3128 ((-1172 (-407 (-564))) (-564))) (-15 -2744 ((-1172 (-407 (-564))) (-564))) (-15 -2361 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3266 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3291 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -3282 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2104 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -2697 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564)))))
-((-1779 (((-418 (-1166 (-564))) (-564)) 38)) (-2370 (((-641 (-1166 (-564))) (-564)) 33)) (-2900 (((-1166 (-564)) (-564)) 28)))
-(((-191) (-10 -7 (-15 -2370 ((-641 (-1166 (-564))) (-564))) (-15 -2900 ((-1166 (-564)) (-564))) (-15 -1779 ((-418 (-1166 (-564))) (-564))))) (T -191))
-((-1779 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))) (-2900 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) (-2370 (*1 *2 *3) (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
-(-10 -7 (-15 -2370 ((-641 (-1166 (-564))) (-564))) (-15 -2900 ((-1166 (-564)) (-564))) (-15 -1779 ((-418 (-1166 (-564))) (-564))))
-((-1909 (((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-3267 (((-641 (-1152)) (-1150 (-225))) NIL)) (-4095 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-2310 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225)))) NIL)) (-1577 (((-641 (-1152)) (-641 (-225))) NIL)) (-1941 (((-225) (-1088 (-839 (-225)))) 31)) (-3414 (((-225) (-1088 (-839 (-225)))) 32)) (-2048 (((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-3231 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-3017 (((-1152) (-225)) NIL)) (-2452 (((-1152) (-641 (-1152))) 27)) (-3411 (((-1031) (-1170) (-1170) (-1031)) 13)))
-(((-192) (-10 -7 (-15 -4095 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3231 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1941 ((-225) (-1088 (-839 (-225))))) (-15 -3414 ((-225) (-1088 (-839 (-225))))) (-15 -2048 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2310 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225))))) (-15 -1909 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3017 ((-1152) (-225))) (-15 -1577 ((-641 (-1152)) (-641 (-225)))) (-15 -3267 ((-641 (-1152)) (-1150 (-225)))) (-15 -2452 ((-1152) (-641 (-1152)))) (-15 -3411 ((-1031) (-1170) (-1170) (-1031))))) (T -192))
-((-3411 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1170)) (-5 *1 (-192)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-192)))) (-2310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192)))))
-(-10 -7 (-15 -4095 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3231 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1941 ((-225) (-1088 (-839 (-225))))) (-15 -3414 ((-225) (-1088 (-839 (-225))))) (-15 -2048 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2310 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225))))) (-15 -1909 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3017 ((-1152) (-225))) (-15 -1577 ((-641 (-1152)) (-641 (-225)))) (-15 -3267 ((-641 (-1152)) (-1150 (-225)))) (-15 -2452 ((-1152) (-641 (-1152)))) (-15 -3411 ((-1031) (-1170) (-1170) (-1031))))
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 61) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-193) (-783)) (T -193))
-NIL
-(-783)
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 66) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-194) (-783)) (T -194))
-NIL
-(-783)
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 81) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-195) (-783)) (T -195))
-NIL
-(-783)
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 63) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-196) (-783)) (T -196))
-NIL
-(-783)
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 75) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-197) (-783)) (T -197))
-NIL
-(-783)
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 90) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-198) (-783)) (T -198))
-NIL
-(-783)
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 90) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-199) (-783)) (T -199))
-NIL
-(-783)
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 77) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-200) (-783)) (T -200))
-NIL
-(-783)
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 78)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-201) (-783)) (T -201))
-NIL
-(-783)
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 79)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-202) (-783)) (T -202))
-NIL
-(-783)
-((-3009 (((-112) $ $) NIL)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 105) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-203) (-783)) (T -203))
-NIL
-(-783)
-((-1340 (((-3 (-2 (|:| -1626 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 111)) (-2092 (((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 58)) (-1586 (((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 92)))
-(((-204) (-10 -7 (-15 -1340 ((-3 (-2 (|:| -1626 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1586 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2092 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204))
-((-2092 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-564)) (-5 *1 (-204)))) (-1586 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-204)))) (-1340 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1626 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
-(-10 -7 (-15 -1340 ((-3 (-2 (|:| -1626 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1586 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2092 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-3769 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-2588 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 158)) (-4134 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225)))) 110)) (-1345 (((-379) (-685 (-316 (-225)))) 138)) (-2862 (((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170))) 134)) (-3421 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-4155 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-3291 (((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225)))) 123)) (-3728 (((-379) (-379) (-641 (-379))) 131) (((-379) (-379) (-379)) 126)) (-1864 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45)))
-(((-205) (-10 -7 (-15 -3728 ((-379) (-379) (-379))) (-15 -3728 ((-379) (-379) (-641 (-379)))) (-15 -1345 ((-379) (-685 (-316 (-225))))) (-15 -2862 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -3291 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -4134 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -2588 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3769 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4155 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1864 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3421 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205))
-((-3421 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-4134 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-3291 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-685 (-316 (-225)))) (-5 *3 (-641 (-1170))) (-5 *4 (-1259 (-316 (-225)))) (-5 *1 (-205)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3728 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3728 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))))
-(-10 -7 (-15 -3728 ((-379) (-379) (-379))) (-15 -3728 ((-379) (-379) (-641 (-379)))) (-15 -1345 ((-379) (-685 (-316 (-225))))) (-15 -2862 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -3291 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -4134 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -2588 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3769 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4155 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1864 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3421 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-3009 (((-112) $ $) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2969 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2974 (((-112) $ $) NIL)))
-(((-206) (-796)) (T -206))
-NIL
-(-796)
-((-3009 (((-112) $ $) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2969 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2974 (((-112) $ $) NIL)))
-(((-207) (-796)) (T -207))
-NIL
-(-796)
-((-3009 (((-112) $ $) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2969 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2974 (((-112) $ $) NIL)))
-(((-208) (-796)) (T -208))
-NIL
-(-796)
-((-3009 (((-112) $ $) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2969 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2974 (((-112) $ $) NIL)))
-(((-209) (-796)) (T -209))
-NIL
-(-796)
-((-3058 (((-641 (-1170)) (-1170) (-767)) 26)) (-2649 (((-316 (-225)) (-316 (-225))) 35)) (-4140 (((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 87)) (-1844 (((-112) (-225) (-225) (-641 (-316 (-225)))) 47)))
-(((-210) (-10 -7 (-15 -3058 ((-641 (-1170)) (-1170) (-767))) (-15 -2649 ((-316 (-225)) (-316 (-225)))) (-15 -1844 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -4140 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))) (T -210))
-((-4140 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-1844 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-641 (-1170))) (-5 *1 (-210)) (-5 *3 (-1170)))))
-(-10 -7 (-15 -3058 ((-641 (-1170)) (-1170) (-767))) (-15 -2649 ((-316 (-225)) (-316 (-225)))) (-15 -1844 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -4140 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))
-((-3009 (((-112) $ $) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 28)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-1557 (((-1031) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 70)) (-2974 (((-112) $ $) NIL)))
-(((-211) (-891)) (T -211))
-NIL
-(-891)
-((-3009 (((-112) $ $) NIL)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 24)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-1557 (((-1031) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-212) (-891)) (T -212))
-NIL
-(-891)
-((-3009 (((-112) $ $) NIL)) (-2664 ((|#2| $ (-767) |#2|) 11)) (-2652 ((|#2| $ (-767)) 10)) (-4238 (($) 8)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 26)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 13)))
-(((-213 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -4238 ($)) (-15 -2652 (|#2| $ (-767))) (-15 -2664 (|#2| $ (-767) |#2|)))) (-917) (-1094)) (T -213))
-((-4238 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1094)))) (-2652 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)))) (-2664 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)) (-4 *2 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -4238 ($)) (-15 -2652 (|#2| $ (-767))) (-15 -2664 (|#2| $ (-767) |#2|))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1757 (((-1264) $) 37) (((-1264) $ (-917) (-917)) 44)) (-4366 (($ $ (-985)) 19) (((-245 (-1152)) $ (-1170)) 15)) (-1630 (((-1264) $) 35)) (-2423 (((-858) $) 32) (($ (-641 |#1|)) 8)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $ $) 27)) (-3070 (($ $ $) 22)))
-(((-214 |#1|) (-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -4366 ($ $ (-985))) (-15 -4366 ((-245 (-1152)) $ (-1170))) (-15 -3070 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -1630 ((-1264) $)) (-15 -1757 ((-1264) $)) (-15 -1757 ((-1264) $ (-917) (-917))))) (-13 (-846) (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 ((-1264) $)) (-15 -1757 ((-1264) $))))) (T -214))
-((-4366 (*1 *1 *1 *2) (-12 (-5 *2 (-985)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 ((-1264) $)) (-15 -1757 ((-1264) $))))))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -4366 ((-1152) $ *3)) (-15 -1630 ((-1264) $)) (-15 -1757 ((-1264) $))))))) (-3070 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 ((-1264) $)) (-15 -1757 ((-1264) $))))))) (-3082 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 ((-1264) $)) (-15 -1757 ((-1264) $))))))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 (*2 $)) (-15 -1757 (*2 $))))))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 (*2 $)) (-15 -1757 (*2 $))))))) (-1757 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 (*2 $)) (-15 -1757 (*2 $))))))))
-(-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -4366 ($ $ (-985))) (-15 -4366 ((-245 (-1152)) $ (-1170))) (-15 -3070 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -1630 ((-1264) $)) (-15 -1757 ((-1264) $)) (-15 -1757 ((-1264) $ (-917) (-917)))))
-((-2934 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
-(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2934 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215))
-((-2934 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6)))))
-(-10 -7 (-15 -2934 (|#2| |#4| (-1 |#2| |#2|))))
-((-2130 ((|#2| |#2| (-767) |#2|) 58)) (-1810 ((|#2| |#2| (-767) |#2|) 54)) (-2226 (((-641 |#2|) (-641 (-2 (|:| |deg| (-767)) (|:| -1770 |#2|)))) 82)) (-3627 (((-641 (-2 (|:| |deg| (-767)) (|:| -1770 |#2|))) |#2|) 76)) (-1980 (((-112) |#2|) 74)) (-3600 (((-418 |#2|) |#2|) 100)) (-3688 (((-418 |#2|) |#2|) 99)) (-3520 ((|#2| |#2| (-767) |#2|) 52)) (-2983 (((-2 (|:| |cont| |#1|) (|:| -1572 (-641 (-2 (|:| |irr| |#2|) (|:| -2173 (-564)))))) |#2| (-112)) 92)))
-(((-216 |#1| |#2|) (-10 -7 (-15 -3688 ((-418 |#2|) |#2|)) (-15 -3600 ((-418 |#2|) |#2|)) (-15 -2983 ((-2 (|:| |cont| |#1|) (|:| -1572 (-641 (-2 (|:| |irr| |#2|) (|:| -2173 (-564)))))) |#2| (-112))) (-15 -3627 ((-641 (-2 (|:| |deg| (-767)) (|:| -1770 |#2|))) |#2|)) (-15 -2226 ((-641 |#2|) (-641 (-2 (|:| |deg| (-767)) (|:| -1770 |#2|))))) (-15 -3520 (|#2| |#2| (-767) |#2|)) (-15 -1810 (|#2| |#2| (-767) |#2|)) (-15 -2130 (|#2| |#2| (-767) |#2|)) (-15 -1980 ((-112) |#2|))) (-349) (-1235 |#1|)) (T -216))
-((-1980 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-2130 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-1810 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-3520 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |deg| (-767)) (|:| -1770 *5)))) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5)) (-5 *1 (-216 *4 *5)))) (-3627 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-641 (-2 (|:| |deg| (-767)) (|:| -1770 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-2983 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1572 (-641 (-2 (|:| |irr| *3) (|:| -2173 (-564))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5)))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -3688 ((-418 |#2|) |#2|)) (-15 -3600 ((-418 |#2|) |#2|)) (-15 -2983 ((-2 (|:| |cont| |#1|) (|:| -1572 (-641 (-2 (|:| |irr| |#2|) (|:| -2173 (-564)))))) |#2| (-112))) (-15 -3627 ((-641 (-2 (|:| |deg| (-767)) (|:| -1770 |#2|))) |#2|)) (-15 -2226 ((-641 |#2|) (-641 (-2 (|:| |deg| (-767)) (|:| -1770 |#2|))))) (-15 -3520 (|#2| |#2| (-767) |#2|)) (-15 -1810 (|#2| |#2| (-767) |#2|)) (-15 -2130 (|#2| |#2| (-767) |#2|)) (-15 -1980 ((-112) |#2|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4198 (((-564) $) NIL (|has| (-564) (-307)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL (|has| (-564) (-816)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1034 (-564))))) (-3120 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1034 (-564)))) (((-564) $) NIL (|has| (-564) (-1034 (-564))))) (-2946 (($ $ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-564) (-545)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2384 (((-112) $) NIL (|has| (-564) (-816)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-564) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-564) (-882 (-379))))) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL)) (-2323 (((-564) $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-3326 (((-112) $) NIL (|has| (-564) (-816)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| (-564) (-846)))) (-4357 (($ (-1 (-564) (-564)) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-564) (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2882 (((-564) $) NIL (|has| (-564) (-545)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3291 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-1700 (((-767) $) NIL)) (-4366 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2827 (($ $) NIL)) (-2336 (((-564) $) NIL)) (-3770 (($ (-407 (-564))) 9)) (-1311 (((-888 (-564)) $) NIL (|has| (-564) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-564) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1018))) (((-225) $) NIL (|has| (-564) (-1018)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL) (((-1000 10) $) 10)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| (-564) (-905))) (|has| (-564) (-145))))) (-3719 (((-767)) NIL T CONST)) (-3448 (((-564) $) NIL (|has| (-564) (-545)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3673 (($ $) NIL (|has| (-564) (-816)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3034 (((-112) $ $) NIL (|has| (-564) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2999 (((-112) $ $) NIL (|has| (-564) (-846)))) (-3092 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
-(((-217) (-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 10)) (-10 -8 (-15 -1687 ((-407 (-564)) $)) (-15 -3770 ($ (-407 (-564))))))) (T -217))
-((-1687 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))))
-(-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 10)) (-10 -8 (-15 -1687 ((-407 (-564)) $)) (-15 -3770 ($ (-407 (-564))))))
-((-3009 (((-112) $ $) NIL)) (-1789 (((-1112) $) 13)) (-2766 (((-1152) $) NIL)) (-2944 (((-483) $) 10)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 23) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2575 (((-1129) $) 15)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-218) (-13 (-1077) (-10 -8 (-15 -2944 ((-483) $)) (-15 -1789 ((-1112) $)) (-15 -2575 ((-1129) $))))) (T -218))
-((-2944 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-218)))))
-(-13 (-1077) (-10 -8 (-15 -2944 ((-483) $)) (-15 -1789 ((-1112) $)) (-15 -2575 ((-1129) $))))
-((-2070 (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|)) (-1152)) 29) (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|))) 25)) (-3244 (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-839 |#2|) (-839 |#2|) (-112)) 17)))
-(((-219 |#1| |#2|) (-10 -7 (-15 -2070 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|)))) (-15 -2070 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|)) (-1152))) (-15 -3244 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-839 |#2|) (-839 |#2|) (-112)))) (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-955) (-29 |#1|))) (T -219))
-((-3244 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1170)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-4 *3 (-13 (-1194) (-955) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-839 *3)))) (-2070 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-839 *3))) (-5 *5 (-1152)) (-4 *3 (-13 (-1194) (-955) (-29 *6))) (-4 *6 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-839 *3))) (-4 *3 (-13 (-1194) (-955) (-29 *5))) (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3)))))
-(-10 -7 (-15 -2070 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|)))) (-15 -2070 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-839 |#2|)) (-1152))) (-15 -3244 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-641 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-839 |#2|) (-839 |#2|) (-112))))
-((-2070 (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|)))) (-1152)) 49) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|))))) 46) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|))) (-1152)) 50) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|)))) 22)))
-(((-220 |#1|) (-10 -7 (-15 -2070 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|))))) (-15 -2070 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|))) (-1152))) (-15 -2070 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|)))))) (-15 -2070 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|)))) (-1152)))) (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (T -220))
-((-2070 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-839 (-407 (-948 *6))))) (-5 *5 (-1152)) (-5 *3 (-407 (-948 *6))) (-4 *6 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-641 (-839 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-839 (-407 (-948 *5))))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-641 (-839 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-2070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1086 (-839 (-316 *6)))) (-5 *5 (-1152)) (-4 *6 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-641 (-839 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1086 (-839 (-316 *5)))) (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-641 (-839 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))))
-(-10 -7 (-15 -2070 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|))))) (-15 -2070 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-316 |#1|))) (-1152))) (-15 -2070 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|)))))) (-15 -2070 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-641 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1086 (-839 (-407 (-948 |#1|)))) (-1152))))
-((-1316 (((-2 (|:| -1744 (-1166 |#1|)) (|:| |deg| (-917))) (-1166 |#1|)) 26)) (-1641 (((-641 (-316 |#2|)) (-316 |#2|) (-917)) 54)))
-(((-221 |#1| |#2|) (-10 -7 (-15 -1316 ((-2 (|:| -1744 (-1166 |#1|)) (|:| |deg| (-917))) (-1166 |#1|))) (-15 -1641 ((-641 (-316 |#2|)) (-316 |#2|) (-917)))) (-1045) (-556)) (T -221))
-((-1641 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *6 (-556)) (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1045)))) (-1316 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-2 (|:| -1744 (-1166 *4)) (|:| |deg| (-917)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-556)))))
-(-10 -7 (-15 -1316 ((-2 (|:| -1744 (-1166 |#1|)) (|:| |deg| (-917))) (-1166 |#1|))) (-15 -1641 ((-641 (-316 |#2|)) (-316 |#2|) (-917))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3661 ((|#1| $) NIL)) (-2462 ((|#1| $) 30)) (-1876 (((-112) $ (-767)) NIL)) (-4080 (($) NIL T CONST)) (-4332 (($ $) NIL)) (-2563 (($ $) 39)) (-3780 ((|#1| |#1| $) NIL)) (-2026 ((|#1| $) NIL)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2581 (((-767) $) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3149 ((|#1| $) NIL)) (-3331 ((|#1| |#1| $) 35)) (-1953 ((|#1| |#1| $) 37)) (-2566 (($ |#1| $) NIL)) (-1292 (((-767) $) 33)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1304 ((|#1| $) NIL)) (-2147 ((|#1| $) 31)) (-4271 ((|#1| $) 29)) (-2554 ((|#1| $) NIL)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-2570 ((|#1| |#1| $) NIL)) (-1976 (((-112) $) 9)) (-2994 (($) NIL)) (-1821 ((|#1| $) NIL)) (-2629 (($) NIL) (($ (-641 |#1|)) 16)) (-1928 (((-767) $) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-4170 ((|#1| $) 13)) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) NIL)) (-2773 ((|#1| $) NIL)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -2629 ($ (-641 |#1|))))) (-1094)) (T -222))
-((-2629 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3)))))
-(-13 (-254 |#1|) (-10 -8 (-15 -2629 ($ (-641 |#1|)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1323 (($ (-316 |#1|)) 27)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1884 (((-112) $) NIL)) (-4284 (((-3 (-316 |#1|) "failed") $) NIL)) (-3120 (((-316 |#1|) $) NIL)) (-1684 (($ $) 35)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-4357 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-3982 (((-316 |#1|) $) NIL)) (-2789 (($ $) 34)) (-2766 (((-1152) $) NIL)) (-3287 (((-112) $) NIL)) (-4052 (((-1114) $) NIL)) (-2249 (($ (-767)) NIL)) (-4386 (($ $) 36)) (-1568 (((-564) $) NIL)) (-2423 (((-858) $) 68) (($ (-564)) NIL) (($ (-316 |#1|)) NIL)) (-2007 (((-316 |#1|) $ $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 29 T CONST)) (-2417 (($) NIL T CONST)) (-2974 (((-112) $ $) 32)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 23)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 28) (($ (-316 |#1|) $) 22)))
-(((-223 |#1| |#2|) (-13 (-618 (-316 |#1|)) (-1034 (-316 |#1|)) (-10 -8 (-15 -3982 ((-316 |#1|) $)) (-15 -2789 ($ $)) (-15 -1684 ($ $)) (-15 -2007 ((-316 |#1|) $ $)) (-15 -2249 ($ (-767))) (-15 -3287 ((-112) $)) (-15 -1884 ((-112) $)) (-15 -1568 ((-564) $)) (-15 -4357 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1323 ($ (-316 |#1|))) (-15 -4386 ($ $)))) (-13 (-1045) (-846)) (-641 (-1170))) (T -223))
-((-3982 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-2789 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-641 (-1170))))) (-1684 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-641 (-1170))))) (-2007 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-2249 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170))))) (-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-1323 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-641 (-1170))))))
-(-13 (-618 (-316 |#1|)) (-1034 (-316 |#1|)) (-10 -8 (-15 -3982 ((-316 |#1|) $)) (-15 -2789 ($ $)) (-15 -1684 ($ $)) (-15 -2007 ((-316 |#1|) $ $)) (-15 -2249 ($ (-767))) (-15 -3287 ((-112) $)) (-15 -1884 ((-112) $)) (-15 -1568 ((-564) $)) (-15 -4357 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1323 ($ (-316 |#1|))) (-15 -4386 ($ $))))
-((-1851 (((-112) (-1152)) 25)) (-3432 (((-3 (-839 |#2|) "failed") (-610 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112)) 34)) (-2224 (((-3 (-112) "failed") (-1166 |#2|) (-839 |#2|) (-839 |#2|) (-112)) 83) (((-3 (-112) "failed") (-948 |#1|) (-1170) (-839 |#2|) (-839 |#2|) (-112)) 84)))
-(((-224 |#1| |#2|) (-10 -7 (-15 -1851 ((-112) (-1152))) (-15 -3432 ((-3 (-839 |#2|) "failed") (-610 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112))) (-15 -2224 ((-3 (-112) "failed") (-948 |#1|) (-1170) (-839 |#2|) (-839 |#2|) (-112))) (-15 -2224 ((-3 (-112) "failed") (-1166 |#2|) (-839 |#2|) (-839 |#2|) (-112)))) (-13 (-452) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -224))
-((-2224 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-839 *6)) (-4 *6 (-13 (-1194) (-29 *5))) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-224 *5 *6)))) (-2224 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-948 *6)) (-5 *4 (-1170)) (-5 *5 (-839 *7)) (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-3432 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-839 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1194) (-29 *6))) (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-224 *6 *4)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4))))))
-(-10 -7 (-15 -1851 ((-112) (-1152))) (-15 -3432 ((-3 (-839 |#2|) "failed") (-610 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112))) (-15 -2224 ((-3 (-112) "failed") (-948 |#1|) (-1170) (-839 |#2|) (-839 |#2|) (-112))) (-15 -2224 ((-3 (-112) "failed") (-1166 |#2|) (-839 |#2|) (-839 |#2|) (-112))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 96)) (-4198 (((-564) $) 36)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1709 (($ $) NIL)) (-3880 (($ $) 85)) (-3745 (($ $) 73)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3700 (($ $) 64)) (-3162 (((-112) $ $) NIL)) (-3858 (($ $) 83)) (-3722 (($ $) 71)) (-3249 (((-564) $) 126)) (-3902 (($ $) 88)) (-3766 (($ $) 75)) (-4080 (($) NIL T CONST)) (-2192 (($ $) NIL)) (-4284 (((-3 (-564) "failed") $) 125) (((-3 (-407 (-564)) "failed") $) 122)) (-3120 (((-564) $) 123) (((-407 (-564)) $) 120)) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) 101)) (-1584 (((-407 (-564)) $ (-767)) 115) (((-407 (-564)) $ (-767) (-767)) 114)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2234 (((-917)) 29) (((-917) (-917)) NIL (|has| $ (-6 -4398)))) (-2384 (((-112) $) NIL)) (-4274 (($) 47)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-3744 (((-564) $) 43)) (-4112 (((-112) $) 97)) (-3614 (($ $ (-564)) NIL)) (-2499 (($ $) NIL)) (-3326 (((-112) $) 95)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) 61) (($) 39 (-12 (-2351 (|has| $ (-6 -4390))) (-2351 (|has| $ (-6 -4398)))))) (-1497 (($ $ $) 60) (($) 38 (-12 (-2351 (|has| $ (-6 -4390))) (-2351 (|has| $ (-6 -4398)))))) (-3725 (((-564) $) 27)) (-2376 (($ $) 34)) (-2262 (($ $) 65)) (-3657 (($ $) 70)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3549 (((-917) (-564)) NIL (|has| $ (-6 -4398)))) (-4052 (((-1114) $) 99)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL)) (-2882 (($ $) NIL)) (-2962 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-917)) 108)) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1838 (((-564) $) 28)) (-1519 (($) 46)) (-1689 (($ $) 69)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-1982 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4398)))) (-3254 (($ $ (-767)) NIL) (($ $) 102)) (-2494 (((-917) (-564)) NIL (|has| $ (-6 -4398)))) (-3914 (($ $) 86)) (-3777 (($ $) 76)) (-3891 (($ $) 87)) (-3756 (($ $) 74)) (-3869 (($ $) 84)) (-3735 (($ $) 72)) (-1311 (((-379) $) 111) (((-225) $) 14) (((-888 (-379)) $) NIL) (((-536) $) 53)) (-2423 (((-858) $) 50) (($ (-564)) 68) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 68) (($ (-407 (-564))) NIL)) (-3719 (((-767)) NIL T CONST)) (-3448 (($ $) NIL)) (-1987 (((-917)) 37) (((-917) (-917)) NIL (|has| $ (-6 -4398)))) (-1860 (((-112) $ $) NIL)) (-2648 (((-917)) 25)) (-3949 (($ $) 91)) (-3811 (($ $) 79) (($ $ $) 118)) (-2119 (((-112) $ $) NIL)) (-3925 (($ $) 89)) (-3787 (($ $) 77)) (-3972 (($ $) 94)) (-3837 (($ $) 82)) (-2784 (($ $) 92)) (-3848 (($ $) 80)) (-3960 (($ $) 93)) (-3825 (($ $) 81)) (-3937 (($ $) 90)) (-3799 (($ $) 78)) (-3673 (($ $) 117)) (-2403 (($) 23 T CONST)) (-2417 (($) 44 T CONST)) (-1613 (((-1152) $) 18) (((-1152) $ (-112)) 20) (((-1264) (-818) $) 21) (((-1264) (-818) $ (-112)) 22)) (-3727 (($ $) 105)) (-4063 (($ $ (-767)) NIL) (($ $) NIL)) (-1731 (($ $ $) 107)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 62)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 54)) (-3092 (($ $ $) 45) (($ $ (-564)) 63)) (-3082 (($ $) 55) (($ $ $) 57)) (-3070 (($ $ $) 56)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 66) (($ $ (-407 (-564))) 149) (($ $ $) 67)) (* (($ (-917) $) 35) (($ (-767) $) NIL) (($ (-564) $) 59) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-225) (-13 (-404) (-233) (-824) (-1194) (-612 (-536)) (-10 -8 (-15 -3092 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -1519 ($)) (-15 -2376 ($ $)) (-15 -2262 ($ $)) (-15 -3811 ($ $ $)) (-15 -3727 ($ $)) (-15 -1731 ($ $ $)) (-15 -1584 ((-407 (-564)) $ (-767))) (-15 -1584 ((-407 (-564)) $ (-767) (-767)))))) (T -225))
-((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) (-1519 (*1 *1) (-5 *1 (-225))) (-2376 (*1 *1 *1) (-5 *1 (-225))) (-2262 (*1 *1 *1) (-5 *1 (-225))) (-3811 (*1 *1 *1 *1) (-5 *1 (-225))) (-3727 (*1 *1 *1) (-5 *1 (-225))) (-1731 (*1 *1 *1 *1) (-5 *1 (-225))) (-1584 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) (-1584 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))))
-(-13 (-404) (-233) (-824) (-1194) (-612 (-536)) (-10 -8 (-15 -3092 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -1519 ($)) (-15 -2376 ($ $)) (-15 -2262 ($ $)) (-15 -3811 ($ $ $)) (-15 -3727 ($ $)) (-15 -1731 ($ $ $)) (-15 -1584 ((-407 (-564)) $ (-767))) (-15 -1584 ((-407 (-564)) $ (-767) (-767)))))
-((-3377 (((-169 (-225)) (-767) (-169 (-225))) 11) (((-225) (-767) (-225)) 12)) (-3882 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-1708 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-2369 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-2604 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3042 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-1801 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-1845 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-2419 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-3248 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-3727 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-1731 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31)))
-(((-226) (-10 -7 (-15 -3727 ((-225) (-225))) (-15 -3727 ((-169 (-225)) (-169 (-225)))) (-15 -1731 ((-225) (-225) (-225))) (-15 -1731 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3882 ((-225) (-225))) (-15 -3882 ((-169 (-225)) (-169 (-225)))) (-15 -2369 ((-225) (-225))) (-15 -2369 ((-169 (-225)) (-169 (-225)))) (-15 -3377 ((-225) (-767) (-225))) (-15 -3377 ((-169 (-225)) (-767) (-169 (-225)))) (-15 -1801 ((-225) (-225) (-225))) (-15 -1801 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2604 ((-225) (-225) (-225))) (-15 -2604 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1845 ((-225) (-225) (-225))) (-15 -1845 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3042 ((-225) (-225) (-225))) (-15 -3042 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3248 ((-169 (-225)) (-169 (-225)))) (-15 -3248 ((-225) (-225))) (-15 -2419 ((-225) (-225))) (-15 -2419 ((-169 (-225)) (-169 (-225)))) (-15 -1708 ((-225) (-225) (-225))) (-15 -1708 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226))
-((-1708 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1708 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2419 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2419 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3248 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3248 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3042 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3042 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1845 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1845 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2604 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2604 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1801 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1801 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3377 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-767)) (-5 *1 (-226)))) (-3377 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226)))) (-2369 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2369 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3882 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3882 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1731 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1731 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))))
-(-10 -7 (-15 -3727 ((-225) (-225))) (-15 -3727 ((-169 (-225)) (-169 (-225)))) (-15 -1731 ((-225) (-225) (-225))) (-15 -1731 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3882 ((-225) (-225))) (-15 -3882 ((-169 (-225)) (-169 (-225)))) (-15 -2369 ((-225) (-225))) (-15 -2369 ((-169 (-225)) (-169 (-225)))) (-15 -3377 ((-225) (-767) (-225))) (-15 -3377 ((-169 (-225)) (-767) (-169 (-225)))) (-15 -1801 ((-225) (-225) (-225))) (-15 -1801 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2604 ((-225) (-225) (-225))) (-15 -2604 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1845 ((-225) (-225) (-225))) (-15 -1845 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3042 ((-225) (-225) (-225))) (-15 -3042 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3248 ((-169 (-225)) (-169 (-225)))) (-15 -3248 ((-225) (-225))) (-15 -2419 ((-225) (-225))) (-15 -2419 ((-169 (-225)) (-169 (-225)))) (-15 -1708 ((-225) (-225) (-225))) (-15 -1708 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4122 (($ (-767) (-767)) NIL)) (-1837 (($ $ $) NIL)) (-3816 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-3477 (($ |#1| |#1| |#1|) 33)) (-4239 (((-112) $) NIL)) (-3152 (($ $ (-564) (-564)) NIL)) (-2190 (($ $ (-564) (-564)) NIL)) (-2886 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3468 (($ $) NIL)) (-3999 (((-112) $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-2255 (($ $ (-564) (-564) $) NIL)) (-3904 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-1440 (($ $ (-564) (-1259 |#1|)) NIL)) (-3404 (($ $ (-564) (-1259 |#1|)) NIL)) (-2052 (($ |#1| |#1| |#1|) 32)) (-3483 (($ (-767) |#1|) NIL)) (-4080 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| |#1| (-307)))) (-4086 (((-1259 |#1|) $ (-564)) NIL)) (-2422 (($ |#1|) 31)) (-2009 (($ |#1|) 30)) (-3462 (($ |#1|) 29)) (-2514 (((-767) $) NIL (|has| |#1| (-556)))) (-2726 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2652 ((|#1| $ (-564) (-564)) NIL)) (-3035 (((-641 |#1|) $) NIL)) (-2907 (((-767) $) NIL (|has| |#1| (-556)))) (-2383 (((-641 (-1259 |#1|)) $) NIL (|has| |#1| (-556)))) (-2667 (((-767) $) NIL)) (-4238 (($ (-767) (-767) |#1|) NIL)) (-2681 (((-767) $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-2665 ((|#1| $) NIL (|has| |#1| (-6 (-4409 "*"))))) (-1795 (((-564) $) NIL)) (-2980 (((-564) $) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2283 (((-564) $) NIL)) (-2287 (((-564) $) NIL)) (-2322 (($ (-641 (-641 |#1|))) 11)) (-2714 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3587 (((-641 (-641 |#1|)) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2540 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2282 (($) 12)) (-1796 (($ $ $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1592 (($ $ |#1|) NIL)) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-2006 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-2701 (((-112) $) NIL)) (-1540 ((|#1| $) NIL (|has| |#1| (-6 (-4409 "*"))))) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-1575 (((-1259 |#1|) $ (-564)) NIL)) (-2423 (($ (-1259 |#1|)) NIL) (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3113 (((-112) $) NIL)) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $ $) NIL) (($ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) 15) (((-1259 |#1|) (-1259 |#1|) $) NIL) (((-939 |#1|) $ (-939 |#1|)) 21)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-227 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -2282 ($)) (-15 -3462 ($ |#1|)) (-15 -2009 ($ |#1|)) (-15 -2422 ($ |#1|)) (-15 -2052 ($ |#1| |#1| |#1|)) (-15 -3477 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1194))) (T -227))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194))) (-5 *1 (-227 *3)))) (-2282 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-3462 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-2009 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-2422 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-2052 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-3477 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
-(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -2282 ($)) (-15 -3462 ($ |#1|)) (-15 -2009 ($ |#1|)) (-15 -2422 ($ |#1|)) (-15 -2052 ($ |#1| |#1| |#1|)) (-15 -3477 ($ |#1| |#1| |#1|))))
-((-1466 (($ (-1 (-112) |#2|) $) 16)) (-1945 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-3853 (($) NIL) (($ (-641 |#2|)) 11)) (-2974 (((-112) $ $) 25)))
-(((-228 |#1| |#2|) (-10 -8 (-15 -1466 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -3853 (|#1| (-641 |#2|))) (-15 -3853 (|#1|)) (-15 -2974 ((-112) |#1| |#1|))) (-229 |#2|) (-1094)) (T -228))
-NIL
-(-10 -8 (-15 -1466 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -3853 (|#1| (-641 |#2|))) (-15 -3853 (|#1|)) (-15 -2974 ((-112) |#1| |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) 8)) (-1466 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2696 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1945 (($ |#1| $) 48 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4407)))) (-2591 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4407)))) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3149 ((|#1| $) 40)) (-2566 (($ |#1| $) 41)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-3853 (($) 50) (($ (-641 |#1|)) 49)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 51)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) 43)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-229 |#1|) (-140) (-1094)) (T -229))
+(-13 (-1097) (-10 -8 (-15 -9 ($) -2858) (-15 -8 ($) -2858) (-15 -7 ($) -2858)))
+((-2907 (((-112) $ $) NIL)) (-2280 (((-642 (-863)) $) NIL)) (-2461 (((-506) $) 8)) (-3315 (((-1155) $) NIL)) (-1645 (((-186) $) 10)) (-1523 (((-112) $ (-506)) NIL)) (-4033 (((-1117) $) NIL)) (-3058 (((-689 $) (-506)) 17)) (-3983 (((-642 (-112)) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-3055 (((-55) $) 12)) (-2872 (((-112) $ $) NIL)))
+(((-187) (-13 (-185) (-10 -8 (-15 -3058 ((-689 $) (-506)))))) (T -187))
+((-3058 (*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-187))) (-5 *1 (-187)))))
+(-13 (-185) (-10 -8 (-15 -3058 ((-689 $) (-506)))))
+((-2320 ((|#2| |#2|) 28)) (-1647 (((-112) |#2|) 19)) (-3668 (((-316 |#1|) |#2|) 12)) (-3680 (((-316 |#1|) |#2|) 14)) (-1578 ((|#2| |#2| (-1173)) 69) ((|#2| |#2|) 70)) (-3227 (((-169 (-316 |#1|)) |#2|) 10)) (-2279 ((|#2| |#2| (-1173)) 66) ((|#2| |#2|) 60)))
+(((-188 |#1| |#2|) (-10 -7 (-15 -1578 (|#2| |#2|)) (-15 -1578 (|#2| |#2| (-1173))) (-15 -2279 (|#2| |#2|)) (-15 -2279 (|#2| |#2| (-1173))) (-15 -3668 ((-316 |#1|) |#2|)) (-15 -3680 ((-316 |#1|) |#2|)) (-15 -1647 ((-112) |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -3227 ((-169 (-316 |#1|)) |#2|))) (-13 (-556) (-1036 (-564))) (-13 (-27) (-1197) (-430 (-169 |#1|)))) (T -188))
+((-3227 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3)))))) (-1647 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-3680 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-3668 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-2279 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3)))))) (-1578 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *4)))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3)))))))
+(-10 -7 (-15 -1578 (|#2| |#2|)) (-15 -1578 (|#2| |#2| (-1173))) (-15 -2279 (|#2| |#2|)) (-15 -2279 (|#2| |#2| (-1173))) (-15 -3668 ((-316 |#1|) |#2|)) (-15 -3680 ((-316 |#1|) |#2|)) (-15 -1647 ((-112) |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -3227 ((-169 (-316 |#1|)) |#2|)))
+((-1651 (((-1262 (-687 (-950 |#1|))) (-1262 (-687 |#1|))) 26)) (-2327 (((-1262 (-687 (-407 (-950 |#1|)))) (-1262 (-687 |#1|))) 37)))
+(((-189 |#1|) (-10 -7 (-15 -1651 ((-1262 (-687 (-950 |#1|))) (-1262 (-687 |#1|)))) (-15 -2327 ((-1262 (-687 (-407 (-950 |#1|)))) (-1262 (-687 |#1|))))) (-172)) (T -189))
+((-2327 (*1 *2 *3) (-12 (-5 *3 (-1262 (-687 *4))) (-4 *4 (-172)) (-5 *2 (-1262 (-687 (-407 (-950 *4))))) (-5 *1 (-189 *4)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-1262 (-687 *4))) (-4 *4 (-172)) (-5 *2 (-1262 (-687 (-950 *4)))) (-5 *1 (-189 *4)))))
+(-10 -7 (-15 -1651 ((-1262 (-687 (-950 |#1|))) (-1262 (-687 |#1|)))) (-15 -2327 ((-1262 (-687 (-407 (-950 |#1|)))) (-1262 (-687 |#1|)))))
+((-3407 (((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564)))) 89)) (-1783 (((-1175 (-407 (-564))) (-642 (-564)) (-642 (-564))) 99)) (-4001 (((-1175 (-407 (-564))) (-564)) 56)) (-1981 (((-1175 (-407 (-564))) (-564)) 75)) (-3215 (((-407 (-564)) (-1175 (-407 (-564)))) 85)) (-3170 (((-1175 (-407 (-564))) (-564)) 37)) (-3434 (((-1175 (-407 (-564))) (-564)) 68)) (-2658 (((-1175 (-407 (-564))) (-564)) 62)) (-3281 (((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564)))) 83)) (-4318 (((-1175 (-407 (-564))) (-564)) 29)) (-2904 (((-407 (-564)) (-1175 (-407 (-564))) (-1175 (-407 (-564)))) 87)) (-3093 (((-1175 (-407 (-564))) (-564)) 35)) (-1318 (((-1175 (-407 (-564))) (-642 (-564))) 96)))
+(((-190) (-10 -7 (-15 -4318 ((-1175 (-407 (-564))) (-564))) (-15 -4001 ((-1175 (-407 (-564))) (-564))) (-15 -3170 ((-1175 (-407 (-564))) (-564))) (-15 -3093 ((-1175 (-407 (-564))) (-564))) (-15 -2658 ((-1175 (-407 (-564))) (-564))) (-15 -3434 ((-1175 (-407 (-564))) (-564))) (-15 -1981 ((-1175 (-407 (-564))) (-564))) (-15 -2904 ((-407 (-564)) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -3281 ((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -3215 ((-407 (-564)) (-1175 (-407 (-564))))) (-15 -3407 ((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -1318 ((-1175 (-407 (-564))) (-642 (-564)))) (-15 -1783 ((-1175 (-407 (-564))) (-642 (-564)) (-642 (-564)))))) (T -190))
+((-1783 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)))) (-3407 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-1175 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-3281 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)))) (-2904 (*1 *2 *3 *3) (-12 (-5 *3 (-1175 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-1981 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3434 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2658 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3093 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3170 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-4001 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-4318 (*1 *2 *3) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(-10 -7 (-15 -4318 ((-1175 (-407 (-564))) (-564))) (-15 -4001 ((-1175 (-407 (-564))) (-564))) (-15 -3170 ((-1175 (-407 (-564))) (-564))) (-15 -3093 ((-1175 (-407 (-564))) (-564))) (-15 -2658 ((-1175 (-407 (-564))) (-564))) (-15 -3434 ((-1175 (-407 (-564))) (-564))) (-15 -1981 ((-1175 (-407 (-564))) (-564))) (-15 -2904 ((-407 (-564)) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -3281 ((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -3215 ((-407 (-564)) (-1175 (-407 (-564))))) (-15 -3407 ((-1175 (-407 (-564))) (-1175 (-407 (-564))) (-1175 (-407 (-564))))) (-15 -1318 ((-1175 (-407 (-564))) (-642 (-564)))) (-15 -1783 ((-1175 (-407 (-564))) (-642 (-564)) (-642 (-564)))))
+((-1610 (((-418 (-1169 (-564))) (-564)) 38)) (-3270 (((-642 (-1169 (-564))) (-564)) 33)) (-1690 (((-1169 (-564)) (-564)) 28)))
+(((-191) (-10 -7 (-15 -3270 ((-642 (-1169 (-564))) (-564))) (-15 -1690 ((-1169 (-564)) (-564))) (-15 -1610 ((-418 (-1169 (-564))) (-564))))) (T -191))
+((-1610 (*1 *2 *3) (-12 (-5 *2 (-418 (-1169 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))) (-1690 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) (-3270 (*1 *2 *3) (-12 (-5 *2 (-642 (-1169 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
+(-10 -7 (-15 -3270 ((-642 (-1169 (-564))) (-564))) (-15 -1690 ((-1169 (-564)) (-564))) (-15 -1610 ((-418 (-1169 (-564))) (-564))))
+((-1316 (((-1153 (-225)) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-2105 (((-642 (-1155)) (-1153 (-225))) NIL)) (-2293 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-3895 (((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225)))) NIL)) (-3178 (((-642 (-1155)) (-642 (-225))) NIL)) (-3362 (((-225) (-1091 (-841 (-225)))) 31)) (-3197 (((-225) (-1091 (-841 (-225)))) 32)) (-1832 (((-379) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-2299 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-4387 (((-1155) (-225)) NIL)) (-2657 (((-1155) (-642 (-1155))) 27)) (-1621 (((-1033) (-1173) (-1173) (-1033)) 13)))
+(((-192) (-10 -7 (-15 -2293 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2299 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3362 ((-225) (-1091 (-841 (-225))))) (-15 -3197 ((-225) (-1091 (-841 (-225))))) (-15 -1832 ((-379) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3895 ((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225))))) (-15 -1316 ((-1153 (-225)) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4387 ((-1155) (-225))) (-15 -3178 ((-642 (-1155)) (-642 (-225)))) (-15 -2105 ((-642 (-1155)) (-1153 (-225)))) (-15 -2657 ((-1155) (-642 (-1155)))) (-15 -1621 ((-1033) (-1173) (-1173) (-1033))))) (T -192))
+((-1621 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1033)) (-5 *3 (-1173)) (-5 *1 (-192)))) (-2657 (*1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-192)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-192)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-192)))) (-4387 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-192)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-192)))) (-3895 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1173)) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-192)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2293 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192)))))
+(-10 -7 (-15 -2293 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2299 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3362 ((-225) (-1091 (-841 (-225))))) (-15 -3197 ((-225) (-1091 (-841 (-225))))) (-15 -1832 ((-379) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3895 ((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225))))) (-15 -1316 ((-1153 (-225)) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4387 ((-1155) (-225))) (-15 -3178 ((-642 (-1155)) (-642 (-225)))) (-15 -2105 ((-642 (-1155)) (-1153 (-225)))) (-15 -2657 ((-1155) (-642 (-1155)))) (-15 -1621 ((-1033) (-1173) (-1173) (-1033))))
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 61) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-193) (-785)) (T -193))
+NIL
+(-785)
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 66) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-194) (-785)) (T -194))
+NIL
+(-785)
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 81) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-195) (-785)) (T -195))
+NIL
+(-785)
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 63) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-196) (-785)) (T -196))
+NIL
+(-785)
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 75) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-197) (-785)) (T -197))
+NIL
+(-785)
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 90) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-198) (-785)) (T -198))
+NIL
+(-785)
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 90) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-199) (-785)) (T -199))
+NIL
+(-785)
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 77) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-200) (-785)) (T -200))
+NIL
+(-785)
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 78)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-201) (-785)) (T -201))
+NIL
+(-785)
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 79)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-202) (-785)) (T -202))
+NIL
+(-785)
+((-2907 (((-112) $ $) NIL)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 105) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-203) (-785)) (T -203))
+NIL
+(-785)
+((-4100 (((-3 (-2 (|:| -1660 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 111)) (-1584 (((-564) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 58)) (-1951 (((-3 (-642 (-225)) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 92)))
+(((-204) (-10 -7 (-15 -4100 ((-3 (-2 (|:| -1660 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1951 ((-3 (-642 (-225)) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1584 ((-564) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204))
+((-1584 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-564)) (-5 *1 (-204)))) (-1951 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-204)))) (-4100 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1660 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
+(-10 -7 (-15 -4100 ((-3 (-2 (|:| -1660 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1951 ((-3 (-642 (-225)) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1584 ((-564) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-3681 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-2905 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 158)) (-2107 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-687 (-316 (-225)))) 110)) (-3133 (((-379) (-687 (-316 (-225)))) 138)) (-2243 (((-687 (-316 (-225))) (-1262 (-316 (-225))) (-642 (-1173))) 134)) (-3222 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-4298 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-3215 (((-687 (-316 (-225))) (-687 (-316 (-225))) (-642 (-1173)) (-1262 (-316 (-225)))) 123)) (-3744 (((-379) (-379) (-642 (-379))) 131) (((-379) (-379) (-379)) 126)) (-2422 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45)))
+(((-205) (-10 -7 (-15 -3744 ((-379) (-379) (-379))) (-15 -3744 ((-379) (-379) (-642 (-379)))) (-15 -3133 ((-379) (-687 (-316 (-225))))) (-15 -2243 ((-687 (-316 (-225))) (-1262 (-316 (-225))) (-642 (-1173)))) (-15 -3215 ((-687 (-316 (-225))) (-687 (-316 (-225))) (-642 (-1173)) (-1262 (-316 (-225))))) (-15 -2107 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-687 (-316 (-225))))) (-15 -2905 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3681 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4298 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2422 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3222 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205))
+((-3222 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-4298 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-687 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-3215 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-687 (-316 (-225)))) (-5 *3 (-642 (-1173))) (-5 *4 (-1262 (-316 (-225)))) (-5 *1 (-205)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *4 (-642 (-1173))) (-5 *2 (-687 (-316 (-225)))) (-5 *1 (-205)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-687 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3744 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3744 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))))
+(-10 -7 (-15 -3744 ((-379) (-379) (-379))) (-15 -3744 ((-379) (-379) (-642 (-379)))) (-15 -3133 ((-379) (-687 (-316 (-225))))) (-15 -2243 ((-687 (-316 (-225))) (-1262 (-316 (-225))) (-642 (-1173)))) (-15 -3215 ((-687 (-316 (-225))) (-687 (-316 (-225))) (-642 (-1173)) (-1262 (-316 (-225))))) (-15 -2107 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-687 (-316 (-225))))) (-15 -2905 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3681 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4298 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2422 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3222 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-2907 (((-112) $ $) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2916 (((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2872 (((-112) $ $) NIL)))
+(((-206) (-798)) (T -206))
+NIL
+(-798)
+((-2907 (((-112) $ $) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2916 (((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2872 (((-112) $ $) NIL)))
+(((-207) (-798)) (T -207))
+NIL
+(-798)
+((-2907 (((-112) $ $) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2916 (((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2872 (((-112) $ $) NIL)))
+(((-208) (-798)) (T -208))
+NIL
+(-798)
+((-2907 (((-112) $ $) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2916 (((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2872 (((-112) $ $) NIL)))
+(((-209) (-798)) (T -209))
+NIL
+(-798)
+((-2961 (((-642 (-1173)) (-1173) (-769)) 26)) (-3806 (((-316 (-225)) (-316 (-225))) 35)) (-3420 (((-112) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 87)) (-3738 (((-112) (-225) (-225) (-642 (-316 (-225)))) 47)))
+(((-210) (-10 -7 (-15 -2961 ((-642 (-1173)) (-1173) (-769))) (-15 -3806 ((-316 (-225)) (-316 (-225)))) (-15 -3738 ((-112) (-225) (-225) (-642 (-316 (-225))))) (-15 -3420 ((-112) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))))))) (T -210))
+((-3420 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-3738 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-642 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-5 *2 (-642 (-1173))) (-5 *1 (-210)) (-5 *3 (-1173)))))
+(-10 -7 (-15 -2961 ((-642 (-1173)) (-1173) (-769))) (-15 -3806 ((-316 (-225)) (-316 (-225)))) (-15 -3738 ((-112) (-225) (-225) (-642 (-316 (-225))))) (-15 -3420 ((-112) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))))))
+((-2907 (((-112) $ $) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 28)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2753 (((-1033) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 70)) (-2872 (((-112) $ $) NIL)))
+(((-211) (-893)) (T -211))
+NIL
+(-893)
+((-2907 (((-112) $ $) NIL)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 24)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2753 (((-1033) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-212) (-893)) (T -212))
+NIL
+(-893)
+((-2907 (((-112) $ $) NIL)) (-2563 ((|#2| $ (-769) |#2|) 11)) (-2551 ((|#2| $ (-769)) 10)) (-4227 (($) 8)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 26)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 13)))
+(((-213 |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -4227 ($)) (-15 -2551 (|#2| $ (-769))) (-15 -2563 (|#2| $ (-769) |#2|)))) (-919) (-1097)) (T -213))
+((-4227 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1097)))) (-2551 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *2 (-1097)) (-5 *1 (-213 *4 *2)) (-14 *4 (-919)))) (-2563 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-213 *4 *2)) (-14 *4 (-919)) (-4 *2 (-1097)))))
+(-13 (-1097) (-10 -8 (-15 -4227 ($)) (-15 -2551 (|#2| $ (-769))) (-15 -2563 (|#2| $ (-769) |#2|))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1937 (((-1267) $) 37) (((-1267) $ (-919) (-919)) 44)) (-4368 (($ $ (-987)) 19) (((-245 (-1155)) $ (-1173)) 15)) (-1664 (((-1267) $) 35)) (-2327 (((-860) $) 32) (($ (-642 |#1|)) 8)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $ $) 27)) (-2974 (($ $ $) 22)))
+(((-214 |#1|) (-13 (-1097) (-614 (-642 |#1|)) (-10 -8 (-15 -4368 ($ $ (-987))) (-15 -4368 ((-245 (-1155)) $ (-1173))) (-15 -2974 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -1664 ((-1267) $)) (-15 -1937 ((-1267) $)) (-15 -1937 ((-1267) $ (-919) (-919))))) (-13 (-848) (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 ((-1267) $)) (-15 -1937 ((-1267) $))))) (T -214))
+((-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-987)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-848) (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 ((-1267) $)) (-15 -1937 ((-1267) $))))))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-245 (-1155))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-848) (-10 -8 (-15 -4368 ((-1155) $ *3)) (-15 -1664 ((-1267) $)) (-15 -1937 ((-1267) $))))))) (-2974 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-848) (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 ((-1267) $)) (-15 -1937 ((-1267) $))))))) (-2987 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-848) (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 ((-1267) $)) (-15 -1937 ((-1267) $))))))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-848) (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 (*2 $)) (-15 -1937 (*2 $))))))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-848) (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 (*2 $)) (-15 -1937 (*2 $))))))) (-1937 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-848) (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 (*2 $)) (-15 -1937 (*2 $))))))))
+(-13 (-1097) (-614 (-642 |#1|)) (-10 -8 (-15 -4368 ($ $ (-987))) (-15 -4368 ((-245 (-1155)) $ (-1173))) (-15 -2974 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -1664 ((-1267) $)) (-15 -1937 ((-1267) $)) (-15 -1937 ((-1267) $ (-919) (-919)))))
+((-1396 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
+(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1396 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215))
+((-1396 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1238 (-407 *2))) (-4 *2 (-1238 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6)))))
+(-10 -7 (-15 -1396 (|#2| |#4| (-1 |#2| |#2|))))
+((-1858 ((|#2| |#2| (-769) |#2|) 58)) (-3334 ((|#2| |#2| (-769) |#2|) 54)) (-4078 (((-642 |#2|) (-642 (-2 (|:| |deg| (-769)) (|:| -2118 |#2|)))) 82)) (-2212 (((-642 (-2 (|:| |deg| (-769)) (|:| -2118 |#2|))) |#2|) 76)) (-2063 (((-112) |#2|) 74)) (-2542 (((-418 |#2|) |#2|) 100)) (-3643 (((-418 |#2|) |#2|) 99)) (-3288 ((|#2| |#2| (-769) |#2|) 52)) (-3400 (((-2 (|:| |cont| |#1|) (|:| -2649 (-642 (-2 (|:| |irr| |#2|) (|:| -3672 (-564)))))) |#2| (-112)) 92)))
+(((-216 |#1| |#2|) (-10 -7 (-15 -3643 ((-418 |#2|) |#2|)) (-15 -2542 ((-418 |#2|) |#2|)) (-15 -3400 ((-2 (|:| |cont| |#1|) (|:| -2649 (-642 (-2 (|:| |irr| |#2|) (|:| -3672 (-564)))))) |#2| (-112))) (-15 -2212 ((-642 (-2 (|:| |deg| (-769)) (|:| -2118 |#2|))) |#2|)) (-15 -4078 ((-642 |#2|) (-642 (-2 (|:| |deg| (-769)) (|:| -2118 |#2|))))) (-15 -3288 (|#2| |#2| (-769) |#2|)) (-15 -3334 (|#2| |#2| (-769) |#2|)) (-15 -1858 (|#2| |#2| (-769) |#2|)) (-15 -2063 ((-112) |#2|))) (-349) (-1238 |#1|)) (T -216))
+((-2063 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1238 *4)))) (-1858 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1238 *4)))) (-3334 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1238 *4)))) (-3288 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1238 *4)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| |deg| (-769)) (|:| -2118 *5)))) (-4 *5 (-1238 *4)) (-4 *4 (-349)) (-5 *2 (-642 *5)) (-5 *1 (-216 *4 *5)))) (-2212 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-642 (-2 (|:| |deg| (-769)) (|:| -2118 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1238 *4)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2649 (-642 (-2 (|:| |irr| *3) (|:| -3672 (-564))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1238 *5)))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1238 *4)))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1238 *4)))))
+(-10 -7 (-15 -3643 ((-418 |#2|) |#2|)) (-15 -2542 ((-418 |#2|) |#2|)) (-15 -3400 ((-2 (|:| |cont| |#1|) (|:| -2649 (-642 (-2 (|:| |irr| |#2|) (|:| -3672 (-564)))))) |#2| (-112))) (-15 -2212 ((-642 (-2 (|:| |deg| (-769)) (|:| -2118 |#2|))) |#2|)) (-15 -4078 ((-642 |#2|) (-642 (-2 (|:| |deg| (-769)) (|:| -2118 |#2|))))) (-15 -3288 (|#2| |#2| (-769) |#2|)) (-15 -3334 (|#2| |#2| (-769) |#2|)) (-15 -1858 (|#2| |#2| (-769) |#2|)) (-15 -2063 ((-112) |#2|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3703 (((-564) $) NIL (|has| (-564) (-307)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL (|has| (-564) (-818)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-564) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1036 (-564))))) (-3027 (((-564) $) NIL) (((-1173) $) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-564) (-1036 (-564)))) (((-564) $) NIL (|has| (-564) (-1036 (-564))))) (-2845 (($ $ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-564) (-545)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2538 (((-112) $) NIL (|has| (-564) (-818)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-564) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-564) (-884 (-379))))) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2245 (((-564) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| (-564) (-1148)))) (-3333 (((-112) $) NIL (|has| (-564) (-818)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| (-564) (-848)))) (-4358 (($ (-1 (-564) (-564)) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-564) (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2759 (((-564) $) NIL (|has| (-564) (-545)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3215 (($ $ (-642 (-564)) (-642 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-1173)) (-642 (-564))) NIL (|has| (-564) (-514 (-1173) (-564)))) (($ $ (-1173) (-564)) NIL (|has| (-564) (-514 (-1173) (-564))))) (-2048 (((-769) $) NIL)) (-4368 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2618 (($ $) NIL)) (-2255 (((-564) $) NIL)) (-3109 (($ (-407 (-564))) 9)) (-1314 (((-890 (-564)) $) NIL (|has| (-564) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-564) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1020))) (((-225) $) NIL (|has| (-564) (-1020)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1173)) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL) (((-1002 10) $) 10)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| (-564) (-907))) (|has| (-564) (-145))))) (-2756 (((-769)) NIL T CONST)) (-3264 (((-564) $) NIL (|has| (-564) (-545)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-1381 (($ $) NIL (|has| (-564) (-818)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2934 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2897 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2998 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
+(((-217) (-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 10)) (-10 -8 (-15 -2903 ((-407 (-564)) $)) (-15 -3109 ($ (-407 (-564))))))) (T -217))
+((-2903 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) (-3109 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))))
+(-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 10)) (-10 -8 (-15 -2903 ((-407 (-564)) $)) (-15 -3109 ($ (-407 (-564))))))
+((-2907 (((-112) $ $) NIL)) (-1812 (((-1115) $) 13)) (-3315 (((-1155) $) NIL)) (-3345 (((-483) $) 10)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 23) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2474 (((-1132) $) 15)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-218) (-13 (-1080) (-10 -8 (-15 -3345 ((-483) $)) (-15 -1812 ((-1115) $)) (-15 -2474 ((-1132) $))))) (T -218))
+((-3345 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-218)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-218)))))
+(-13 (-1080) (-10 -8 (-15 -3345 ((-483) $)) (-15 -1812 ((-1115) $)) (-15 -2474 ((-1132) $))))
+((-4107 (((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|)) (-1155)) 29) (((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|))) 25)) (-3840 (((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1173) (-841 |#2|) (-841 |#2|) (-112)) 17)))
+(((-219 |#1| |#2|) (-10 -7 (-15 -4107 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|)))) (-15 -4107 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|)) (-1155))) (-15 -3840 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1173) (-841 |#2|) (-841 |#2|) (-112)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-957) (-29 |#1|))) (T -219))
+((-3840 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1173)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-4 *3 (-13 (-1197) (-957) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-841 *3)))) (-4107 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089 (-841 *3))) (-5 *5 (-1155)) (-4 *3 (-13 (-1197) (-957) (-29 *6))) (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *4 (-1089 (-841 *3))) (-4 *3 (-13 (-1197) (-957) (-29 *5))) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3)))))
+(-10 -7 (-15 -4107 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|)))) (-15 -4107 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089 (-841 |#2|)) (-1155))) (-15 -3840 ((-3 (|:| |f1| (-841 |#2|)) (|:| |f2| (-642 (-841 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1173) (-841 |#2|) (-841 |#2|) (-112))))
+((-4107 (((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|)))) (-1155)) 49) (((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|))))) 46) (((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|))) (-1155)) 50) (((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|)))) 22)))
+(((-220 |#1|) (-10 -7 (-15 -4107 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|))))) (-15 -4107 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|))) (-1155))) (-15 -4107 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|)))))) (-15 -4107 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|)))) (-1155)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (T -220))
+((-4107 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089 (-841 (-407 (-950 *6))))) (-5 *5 (-1155)) (-5 *3 (-407 (-950 *6))) (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 (-316 *6))) (|:| |f2| (-642 (-841 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *4 (-1089 (-841 (-407 (-950 *5))))) (-5 *3 (-407 (-950 *5))) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 (-316 *5))) (|:| |f2| (-642 (-841 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-4107 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-950 *6))) (-5 *4 (-1089 (-841 (-316 *6)))) (-5 *5 (-1155)) (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 (-316 *6))) (|:| |f2| (-642 (-841 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1089 (-841 (-316 *5)))) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-841 (-316 *5))) (|:| |f2| (-642 (-841 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))))
+(-10 -7 (-15 -4107 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|))))) (-15 -4107 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-316 |#1|))) (-1155))) (-15 -4107 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|)))))) (-15 -4107 ((-3 (|:| |f1| (-841 (-316 |#1|))) (|:| |f2| (-642 (-841 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-950 |#1|)) (-1089 (-841 (-407 (-950 |#1|)))) (-1155))))
+((-1320 (((-2 (|:| -4229 (-1169 |#1|)) (|:| |deg| (-919))) (-1169 |#1|)) 26)) (-1675 (((-642 (-316 |#2|)) (-316 |#2|) (-919)) 54)))
+(((-221 |#1| |#2|) (-10 -7 (-15 -1320 ((-2 (|:| -4229 (-1169 |#1|)) (|:| |deg| (-919))) (-1169 |#1|))) (-15 -1675 ((-642 (-316 |#2|)) (-316 |#2|) (-919)))) (-1047) (-556)) (T -221))
+((-1675 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-4 *6 (-556)) (-5 *2 (-642 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1047)))) (-1320 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-2 (|:| -4229 (-1169 *4)) (|:| |deg| (-919)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1169 *4)) (-4 *5 (-556)))))
+(-10 -7 (-15 -1320 ((-2 (|:| -4229 (-1169 |#1|)) (|:| |deg| (-919))) (-1169 |#1|))) (-15 -1675 ((-642 (-316 |#2|)) (-316 |#2|) (-919))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3686 ((|#1| $) NIL)) (-2362 ((|#1| $) 30)) (-3697 (((-112) $ (-769)) NIL)) (-1976 (($) NIL T CONST)) (-4166 (($ $) NIL)) (-2087 (($ $) 39)) (-1428 ((|#1| |#1| $) NIL)) (-1744 ((|#1| $) NIL)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-2480 (((-769) $) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2730 ((|#1| $) NIL)) (-1704 ((|#1| |#1| $) 35)) (-3604 ((|#1| |#1| $) 37)) (-3183 (($ |#1| $) NIL)) (-1295 (((-769) $) 33)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-1353 ((|#1| $) NIL)) (-1479 ((|#1| $) 31)) (-1475 ((|#1| $) 29)) (-3388 ((|#1| $) NIL)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-2311 ((|#1| |#1| $) NIL)) (-3719 (((-112) $) 9)) (-2972 (($) NIL)) (-1456 ((|#1| $) NIL)) (-3945 (($) NIL) (($ (-642 |#1|)) 16)) (-1930 (((-769) $) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1825 ((|#1| $) 13)) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) NIL)) (-1733 ((|#1| $) NIL)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -3945 ($ (-642 |#1|))))) (-1097)) (T -222))
+((-3945 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-222 *3)))))
+(-13 (-254 |#1|) (-10 -8 (-15 -3945 ($ (-642 |#1|)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4187 (($ (-316 |#1|)) 27)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-2672 (((-112) $) NIL)) (-4278 (((-3 (-316 |#1|) "failed") $) NIL)) (-3027 (((-316 |#1|) $) NIL)) (-1718 (($ $) 35)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-4358 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-3962 (((-316 |#1|) $) NIL)) (-2967 (($ $) 34)) (-3315 (((-1155) $) NIL)) (-2937 (((-112) $) NIL)) (-4033 (((-1117) $) NIL)) (-2185 (($ (-769)) NIL)) (-3111 (($ $) 36)) (-2775 (((-564) $) NIL)) (-2327 (((-860) $) 68) (($ (-564)) NIL) (($ (-316 |#1|)) NIL)) (-2102 (((-316 |#1|) $ $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 29 T CONST)) (-2322 (($) NIL T CONST)) (-2872 (((-112) $ $) 32)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 23)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 28) (($ (-316 |#1|) $) 22)))
+(((-223 |#1| |#2|) (-13 (-618 (-316 |#1|)) (-1036 (-316 |#1|)) (-10 -8 (-15 -3962 ((-316 |#1|) $)) (-15 -2967 ($ $)) (-15 -1718 ($ $)) (-15 -2102 ((-316 |#1|) $ $)) (-15 -2185 ($ (-769))) (-15 -2937 ((-112) $)) (-15 -2672 ((-112) $)) (-15 -2775 ((-564) $)) (-15 -4358 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -4187 ($ (-316 |#1|))) (-15 -3111 ($ $)))) (-13 (-1047) (-848)) (-642 (-1173))) (T -223))
+((-3962 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-2967 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848))) (-14 *3 (-642 (-1173))))) (-1718 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848))) (-14 *3 (-642 (-1173))))) (-2102 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173))))) (-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1047) (-848))) (-5 *1 (-223 *3 *4)) (-14 *4 (-642 (-1173))))) (-4187 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1047) (-848))) (-5 *1 (-223 *3 *4)) (-14 *4 (-642 (-1173))))) (-3111 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848))) (-14 *3 (-642 (-1173))))))
+(-13 (-618 (-316 |#1|)) (-1036 (-316 |#1|)) (-10 -8 (-15 -3962 ((-316 |#1|) $)) (-15 -2967 ($ $)) (-15 -1718 ($ $)) (-15 -2102 ((-316 |#1|) $ $)) (-15 -2185 ($ (-769))) (-15 -2937 ((-112) $)) (-15 -2672 ((-112) $)) (-15 -2775 ((-564) $)) (-15 -4358 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -4187 ($ (-316 |#1|))) (-15 -3111 ($ $))))
+((-1380 (((-112) (-1155)) 25)) (-3494 (((-3 (-841 |#2|) "failed") (-610 |#2|) |#2| (-841 |#2|) (-841 |#2|) (-112)) 34)) (-3559 (((-3 (-112) "failed") (-1169 |#2|) (-841 |#2|) (-841 |#2|) (-112)) 83) (((-3 (-112) "failed") (-950 |#1|) (-1173) (-841 |#2|) (-841 |#2|) (-112)) 84)))
+(((-224 |#1| |#2|) (-10 -7 (-15 -1380 ((-112) (-1155))) (-15 -3494 ((-3 (-841 |#2|) "failed") (-610 |#2|) |#2| (-841 |#2|) (-841 |#2|) (-112))) (-15 -3559 ((-3 (-112) "failed") (-950 |#1|) (-1173) (-841 |#2|) (-841 |#2|) (-112))) (-15 -3559 ((-3 (-112) "failed") (-1169 |#2|) (-841 |#2|) (-841 |#2|) (-112)))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-29 |#1|))) (T -224))
+((-3559 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1169 *6)) (-5 *4 (-841 *6)) (-4 *6 (-13 (-1197) (-29 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-224 *5 *6)))) (-3559 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-950 *6)) (-5 *4 (-1173)) (-5 *5 (-841 *7)) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-4 *7 (-13 (-1197) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-3494 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-841 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1197) (-29 *6))) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-224 *6 *4)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1197) (-29 *4))))))
+(-10 -7 (-15 -1380 ((-112) (-1155))) (-15 -3494 ((-3 (-841 |#2|) "failed") (-610 |#2|) |#2| (-841 |#2|) (-841 |#2|) (-112))) (-15 -3559 ((-3 (-112) "failed") (-950 |#1|) (-1173) (-841 |#2|) (-841 |#2|) (-112))) (-15 -3559 ((-3 (-112) "failed") (-1169 |#2|) (-841 |#2|) (-841 |#2|) (-112))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 96)) (-3703 (((-564) $) 36)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1726 (($ $) NIL)) (-3851 (($ $) 85)) (-3704 (($ $) 73)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-3655 (($ $) 64)) (-4010 (((-112) $ $) NIL)) (-3827 (($ $) 83)) (-3679 (($ $) 71)) (-2959 (((-564) $) 126)) (-3875 (($ $) 88)) (-3727 (($ $) 75)) (-1976 (($) NIL T CONST)) (-1971 (($ $) NIL)) (-4278 (((-3 (-564) "failed") $) 125) (((-3 (-407 (-564)) "failed") $) 122)) (-3027 (((-564) $) 123) (((-407 (-564)) $) 120)) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) 101)) (-2982 (((-407 (-564)) $ (-769)) 115) (((-407 (-564)) $ (-769) (-769)) 114)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2170 (((-919)) 29) (((-919) (-919)) NIL (|has| $ (-6 -4401)))) (-2538 (((-112) $) NIL)) (-4265 (($) 47)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL)) (-1427 (((-564) $) 43)) (-3953 (((-112) $) 97)) (-1772 (($ $ (-564)) NIL)) (-2218 (($ $) NIL)) (-3333 (((-112) $) 95)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) 61) (($) 39 (-12 (-2268 (|has| $ (-6 -4393))) (-2268 (|has| $ (-6 -4401)))))) (-1520 (($ $ $) 60) (($) 38 (-12 (-2268 (|has| $ (-6 -4393))) (-2268 (|has| $ (-6 -4401)))))) (-3683 (((-564) $) 27)) (-2826 (($ $) 34)) (-2195 (($ $) 65)) (-3612 (($ $) 70)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-1582 (((-919) (-564)) NIL (|has| $ (-6 -4401)))) (-4033 (((-1117) $) 99)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL)) (-2759 (($ $) NIL)) (-2861 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-919)) 108)) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2700 (((-564) $) 28)) (-1788 (($) 46)) (-1723 (($ $) 69)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3918 (((-919)) NIL) (((-919) (-919)) NIL (|has| $ (-6 -4401)))) (-3175 (($ $ (-769)) NIL) (($ $) 102)) (-4163 (((-919) (-564)) NIL (|has| $ (-6 -4401)))) (-3888 (($ $) 86)) (-3739 (($ $) 76)) (-3863 (($ $) 87)) (-3716 (($ $) 74)) (-3839 (($ $) 84)) (-3693 (($ $) 72)) (-1314 (((-379) $) 111) (((-225) $) 14) (((-890 (-379)) $) NIL) (((-536) $) 53)) (-2327 (((-860) $) 50) (($ (-564)) 68) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 68) (($ (-407 (-564))) NIL)) (-2756 (((-769)) NIL T CONST)) (-3264 (($ $) NIL)) (-1497 (((-919)) 37) (((-919) (-919)) NIL (|has| $ (-6 -4401)))) (-1648 (((-112) $ $) NIL)) (-2547 (((-919)) 25)) (-3926 (($ $) 91)) (-3776 (($ $) 79) (($ $ $) 118)) (-2103 (((-112) $ $) NIL)) (-3900 (($ $) 89)) (-3750 (($ $) 77)) (-3951 (($ $) 94)) (-3803 (($ $) 82)) (-2683 (($ $) 92)) (-3816 (($ $) 80)) (-3938 (($ $) 93)) (-3791 (($ $) 81)) (-3913 (($ $) 90)) (-3763 (($ $) 78)) (-1381 (($ $) 117)) (-2312 (($) 23 T CONST)) (-2322 (($) 44 T CONST)) (-1605 (((-1155) $) 18) (((-1155) $ (-112)) 20) (((-1267) (-820) $) 21) (((-1267) (-820) $ (-112)) 22)) (-4035 (($ $) 105)) (-4044 (($ $ (-769)) NIL) (($ $) NIL)) (-2003 (($ $ $) 107)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 62)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 54)) (-2998 (($ $ $) 45) (($ $ (-564)) 63)) (-2987 (($ $) 55) (($ $ $) 57)) (-2974 (($ $ $) 56)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 66) (($ $ (-407 (-564))) 149) (($ $ $) 67)) (* (($ (-919) $) 35) (($ (-769) $) NIL) (($ (-564) $) 59) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-225) (-13 (-404) (-233) (-826) (-1197) (-612 (-536)) (-10 -8 (-15 -2998 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -1788 ($)) (-15 -2826 ($ $)) (-15 -2195 ($ $)) (-15 -3776 ($ $ $)) (-15 -4035 ($ $)) (-15 -2003 ($ $ $)) (-15 -2982 ((-407 (-564)) $ (-769))) (-15 -2982 ((-407 (-564)) $ (-769) (-769)))))) (T -225))
+((** (*1 *1 *1 *1) (-5 *1 (-225))) (-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) (-1788 (*1 *1) (-5 *1 (-225))) (-2826 (*1 *1 *1) (-5 *1 (-225))) (-2195 (*1 *1 *1) (-5 *1 (-225))) (-3776 (*1 *1 *1 *1) (-5 *1 (-225))) (-4035 (*1 *1 *1) (-5 *1 (-225))) (-2003 (*1 *1 *1 *1) (-5 *1 (-225))) (-2982 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) (-2982 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))))
+(-13 (-404) (-233) (-826) (-1197) (-612 (-536)) (-10 -8 (-15 -2998 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -1788 ($)) (-15 -2826 ($ $)) (-15 -2195 ($ $)) (-15 -3776 ($ $ $)) (-15 -4035 ($ $)) (-15 -2003 ($ $ $)) (-15 -2982 ((-407 (-564)) $ (-769))) (-15 -2982 ((-407 (-564)) $ (-769) (-769)))))
+((-2056 (((-169 (-225)) (-769) (-169 (-225))) 11) (((-225) (-769) (-225)) 12)) (-1321 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-2860 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-1771 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-3657 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-2996 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-3718 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-1484 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-2283 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-2372 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-4035 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-2003 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31)))
+(((-226) (-10 -7 (-15 -4035 ((-225) (-225))) (-15 -4035 ((-169 (-225)) (-169 (-225)))) (-15 -2003 ((-225) (-225) (-225))) (-15 -2003 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1321 ((-225) (-225))) (-15 -1321 ((-169 (-225)) (-169 (-225)))) (-15 -1771 ((-225) (-225))) (-15 -1771 ((-169 (-225)) (-169 (-225)))) (-15 -2056 ((-225) (-769) (-225))) (-15 -2056 ((-169 (-225)) (-769) (-169 (-225)))) (-15 -3718 ((-225) (-225) (-225))) (-15 -3718 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3657 ((-225) (-225) (-225))) (-15 -3657 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1484 ((-225) (-225) (-225))) (-15 -1484 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2996 ((-225) (-225) (-225))) (-15 -2996 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2372 ((-169 (-225)) (-169 (-225)))) (-15 -2372 ((-225) (-225))) (-15 -2283 ((-225) (-225))) (-15 -2283 ((-169 (-225)) (-169 (-225)))) (-15 -2860 ((-225) (-225) (-225))) (-15 -2860 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226))
+((-2860 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2860 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2996 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2996 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1484 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1484 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3657 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3657 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3718 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3718 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2056 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-769)) (-5 *1 (-226)))) (-2056 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-769)) (-5 *1 (-226)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1321 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1321 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2003 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2003 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))))
+(-10 -7 (-15 -4035 ((-225) (-225))) (-15 -4035 ((-169 (-225)) (-169 (-225)))) (-15 -2003 ((-225) (-225) (-225))) (-15 -2003 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1321 ((-225) (-225))) (-15 -1321 ((-169 (-225)) (-169 (-225)))) (-15 -1771 ((-225) (-225))) (-15 -1771 ((-169 (-225)) (-169 (-225)))) (-15 -2056 ((-225) (-769) (-225))) (-15 -2056 ((-169 (-225)) (-769) (-169 (-225)))) (-15 -3718 ((-225) (-225) (-225))) (-15 -3718 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3657 ((-225) (-225) (-225))) (-15 -3657 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1484 ((-225) (-225) (-225))) (-15 -1484 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2996 ((-225) (-225) (-225))) (-15 -2996 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2372 ((-169 (-225)) (-169 (-225)))) (-15 -2372 ((-225) (-225))) (-15 -2283 ((-225) (-225))) (-15 -2283 ((-169 (-225)) (-169 (-225)))) (-15 -2860 ((-225) (-225) (-225))) (-15 -2860 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4103 (($ (-769) (-769)) NIL)) (-1698 (($ $ $) NIL)) (-3673 (($ (-1262 |#1|)) NIL) (($ $) NIL)) (-3418 (($ |#1| |#1| |#1|) 33)) (-4129 (((-112) $) NIL)) (-2772 (($ $ (-564) (-564)) NIL)) (-2767 (($ $ (-564) (-564)) NIL)) (-2184 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3705 (($ $) NIL)) (-3873 (((-112) $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-3149 (($ $ (-564) (-564) $) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564)) $) NIL)) (-2950 (($ $ (-564) (-1262 |#1|)) NIL)) (-1919 (($ $ (-564) (-1262 |#1|)) NIL)) (-4352 (($ |#1| |#1| |#1|) 32)) (-2540 (($ (-769) |#1|) NIL)) (-1976 (($) NIL T CONST)) (-4239 (($ $) NIL (|has| |#1| (-307)))) (-2600 (((-1262 |#1|) $ (-564)) NIL)) (-3154 (($ |#1|) 31)) (-2413 (($ |#1|) 30)) (-3821 (($ |#1|) 29)) (-2414 (((-769) $) NIL (|has| |#1| (-556)))) (-2625 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2551 ((|#1| $ (-564) (-564)) NIL)) (-2936 (((-642 |#1|) $) NIL)) (-2054 (((-769) $) NIL (|has| |#1| (-556)))) (-4286 (((-642 (-1262 |#1|)) $) NIL (|has| |#1| (-556)))) (-2567 (((-769) $) NIL)) (-4227 (($ (-769) (-769) |#1|) NIL)) (-2579 (((-769) $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-3422 ((|#1| $) NIL (|has| |#1| (-6 (-4412 "*"))))) (-3491 (((-564) $) NIL)) (-3865 (((-564) $) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3054 (((-564) $) NIL)) (-2977 (((-564) $) NIL)) (-2244 (($ (-642 (-642 |#1|))) 11)) (-2613 (($ (-1 |#1| |#1|) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1624 (((-642 (-642 |#1|)) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4168 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3140 (($) 12)) (-4334 (($ $ $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2696 (($ $ |#1|) NIL)) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564))) NIL)) (-3548 (($ (-642 |#1|)) NIL) (($ (-642 $)) NIL)) (-2877 (((-112) $) NIL)) (-1504 ((|#1| $) NIL (|has| |#1| (-6 (-4412 "*"))))) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-3022 (((-1262 |#1|) $ (-564)) NIL)) (-2327 (($ (-1262 |#1|)) NIL) (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1332 (((-112) $) NIL)) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $ $) NIL) (($ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1262 |#1|) $ (-1262 |#1|)) 15) (((-1262 |#1|) (-1262 |#1|) $) NIL) (((-941 |#1|) $ (-941 |#1|)) 21)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-227 |#1|) (-13 (-685 |#1| (-1262 |#1|) (-1262 |#1|)) (-10 -8 (-15 * ((-941 |#1|) $ (-941 |#1|))) (-15 -3140 ($)) (-15 -3821 ($ |#1|)) (-15 -2413 ($ |#1|)) (-15 -3154 ($ |#1|)) (-15 -4352 ($ |#1| |#1| |#1|)) (-15 -3418 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1197))) (T -227))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197))) (-5 *1 (-227 *3)))) (-3140 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) (-3821 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) (-2413 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) (-3154 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) (-4352 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))) (-3418 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))))
+(-13 (-685 |#1| (-1262 |#1|) (-1262 |#1|)) (-10 -8 (-15 * ((-941 |#1|) $ (-941 |#1|))) (-15 -3140 ($)) (-15 -3821 ($ |#1|)) (-15 -2413 ($ |#1|)) (-15 -3154 ($ |#1|)) (-15 -4352 ($ |#1| |#1| |#1|)) (-15 -3418 ($ |#1| |#1| |#1|))))
+((-2462 (($ (-1 (-112) |#2|) $) 16)) (-2265 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-2593 (($) NIL) (($ (-642 |#2|)) 11)) (-2872 (((-112) $ $) 25)))
+(((-228 |#1| |#2|) (-10 -8 (-15 -2462 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -2593 (|#1| (-642 |#2|))) (-15 -2593 (|#1|)) (-15 -2872 ((-112) |#1| |#1|))) (-229 |#2|) (-1097)) (T -228))
+NIL
+(-10 -8 (-15 -2462 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -2593 (|#1| (-642 |#2|))) (-15 -2593 (|#1|)) (-15 -2872 ((-112) |#1| |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) 8)) (-2462 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-2595 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2265 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2490 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2730 ((|#1| $) 40)) (-3183 (($ |#1| $) 41)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-2593 (($) 50) (($ (-642 |#1|)) 49)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 51)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) 43)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-229 |#1|) (-140) (-1097)) (T -229))
NIL
(-13 (-235 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3254 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) 14) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 22) (($ $ (-767)) NIL) (($ $) 19)) (-4063 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-767)) 17) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -3254 (|#1| |#1|)) (-15 -4063 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -4063 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -4063 (|#1| |#1| (-1170))) (-15 -4063 (|#1| |#1| (-641 (-1170)))) (-15 -4063 (|#1| |#1| (-1170) (-767))) (-15 -4063 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -4063 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4063 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1045)) (T -230))
-NIL
-(-10 -8 (-15 -3254 (|#1| |#1|)) (-15 -4063 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -4063 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -4063 (|#1| |#1| (-1170))) (-15 -4063 (|#1| |#1| (-641 (-1170)))) (-15 -4063 (|#1| |#1| (-1170) (-767))) (-15 -4063 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -4063 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4063 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-3254 (($ $ (-1 |#1| |#1|)) 53) (($ $ (-1 |#1| |#1|) (-767)) 52) (($ $ (-641 (-1170)) (-641 (-767))) 45 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 44 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 43 (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) 42 (|has| |#1| (-896 (-1170)))) (($ $ (-767)) 40 (|has| |#1| (-233))) (($ $) 38 (|has| |#1| (-233)))) (-2423 (((-858) $) 12) (($ (-564)) 30)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-1 |#1| |#1|)) 51) (($ $ (-1 |#1| |#1|) (-767)) 50) (($ $ (-641 (-1170)) (-641 (-767))) 49 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 48 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 47 (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) 46 (|has| |#1| (-896 (-1170)))) (($ $ (-767)) 41 (|has| |#1| (-233))) (($ $) 39 (|has| |#1| (-233)))) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-231 |#1|) (-140) (-1045)) (T -231))
-((-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-3254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045)))) (-4063 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-4063 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045)))))
-(-13 (-1045) (-10 -8 (-15 -3254 ($ $ (-1 |t#1| |t#1|))) (-15 -3254 ($ $ (-1 |t#1| |t#1|) (-767))) (-15 -4063 ($ $ (-1 |t#1| |t#1|))) (-15 -4063 ($ $ (-1 |t#1| |t#1|) (-767))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-896 (-1170))) (-6 (-896 (-1170))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-233) |has| |#1| (-233)) ((-644 $) . T) ((-722) . T) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3254 (($ $) NIL) (($ $ (-767)) 13)) (-4063 (($ $) 8) (($ $ (-767)) 15)))
-(((-232 |#1|) (-10 -8 (-15 -4063 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-767))) (-15 -4063 (|#1| |#1|)) (-15 -3254 (|#1| |#1|))) (-233)) (T -232))
-NIL
-(-10 -8 (-15 -4063 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-767))) (-15 -4063 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-3254 (($ $) 39) (($ $ (-767)) 37)) (-2423 (((-858) $) 12) (($ (-564)) 30)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $) 38) (($ $ (-767)) 36)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-3175 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) 14) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) 22) (($ $ (-769)) NIL) (($ $) 19)) (-4044 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-769)) 17) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)))
+(((-230 |#1| |#2|) (-10 -8 (-15 -3175 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -4044 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -4044 (|#1| |#1| (-1173))) (-15 -4044 (|#1| |#1| (-642 (-1173)))) (-15 -4044 (|#1| |#1| (-1173) (-769))) (-15 -4044 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -4044 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -4044 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1047)) (T -230))
+NIL
+(-10 -8 (-15 -3175 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -4044 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -4044 (|#1| |#1| (-1173))) (-15 -4044 (|#1| |#1| (-642 (-1173)))) (-15 -4044 (|#1| |#1| (-1173) (-769))) (-15 -4044 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -4044 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -4044 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3175 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-769)) 55) (($ $ (-642 (-1173)) (-642 (-769))) 48 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 47 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 46 (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) 45 (|has| |#1| (-898 (-1173)))) (($ $ (-769)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-2327 (((-860) $) 12) (($ (-564)) 33)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-769)) 53) (($ $ (-642 (-1173)) (-642 (-769))) 52 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 51 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 50 (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) 49 (|has| |#1| (-898 (-1173)))) (($ $ (-769)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-231 |#1|) (-140) (-1047)) (T -231))
+((-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1047)))) (-3175 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *1 (-231 *4)) (-4 *4 (-1047)))) (-4044 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1047)))) (-4044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *1 (-231 *4)) (-4 *4 (-1047)))))
+(-13 (-1047) (-10 -8 (-15 -3175 ($ $ (-1 |t#1| |t#1|))) (-15 -3175 ($ $ (-1 |t#1| |t#1|) (-769))) (-15 -4044 ($ $ (-1 |t#1| |t#1|))) (-15 -4044 ($ $ (-1 |t#1| |t#1|) (-769))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-898 (-1173))) (-6 (-898 (-1173))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-233) |has| |#1| (-233)) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-3175 (($ $) NIL) (($ $ (-769)) 13)) (-4044 (($ $) 8) (($ $ (-769)) 15)))
+(((-232 |#1|) (-10 -8 (-15 -4044 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-769))) (-15 -4044 (|#1| |#1|)) (-15 -3175 (|#1| |#1|))) (-233)) (T -232))
+NIL
+(-10 -8 (-15 -4044 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-769))) (-15 -4044 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3175 (($ $) 42) (($ $ (-769)) 40)) (-2327 (((-860) $) 12) (($ (-564)) 33)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $) 41) (($ $ (-769)) 39)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
(((-233) (-140)) (T -233))
-((-3254 (*1 *1 *1) (-4 *1 (-233))) (-4063 (*1 *1 *1) (-4 *1 (-233))) (-3254 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) (-4063 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))))
-(-13 (-1045) (-10 -8 (-15 -3254 ($ $)) (-15 -4063 ($ $)) (-15 -3254 ($ $ (-767))) (-15 -4063 ($ $ (-767)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3853 (($) 12) (($ (-641 |#2|)) NIL)) (-3926 (($ $) 14)) (-2435 (($ (-641 |#2|)) 10)) (-2423 (((-858) $) 21)))
-(((-234 |#1| |#2|) (-10 -8 (-15 -2423 ((-858) |#1|)) (-15 -3853 (|#1| (-641 |#2|))) (-15 -3853 (|#1|)) (-15 -2435 (|#1| (-641 |#2|))) (-15 -3926 (|#1| |#1|))) (-235 |#2|) (-1094)) (T -234))
-NIL
-(-10 -8 (-15 -2423 ((-858) |#1|)) (-15 -3853 (|#1| (-641 |#2|))) (-15 -3853 (|#1|)) (-15 -2435 (|#1| (-641 |#2|))) (-15 -3926 (|#1| |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) 8)) (-1466 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2696 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1945 (($ |#1| $) 48 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4407)))) (-2591 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4407)))) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3149 ((|#1| $) 40)) (-2566 (($ |#1| $) 41)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-3853 (($) 50) (($ (-641 |#1|)) 49)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 51)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) 43)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-235 |#1|) (-140) (-1094)) (T -235))
-((-3853 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3)))) (-1945 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-1945 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))) (-1466 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))))
-(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -3853 ($)) (-15 -3853 ($ (-641 |t#1|))) (IF (|has| $ (-6 -4407)) (PROGN (-15 -1945 ($ |t#1| $)) (-15 -1945 ($ (-1 (-112) |t#1|) $)) (-15 -1466 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-1533 (((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-767))) "failed")) (|:| |hom| (-641 (-1259 (-767))))) (-294 (-948 (-564)))) 42)))
-(((-236) (-10 -7 (-15 -1533 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-767))) "failed")) (|:| |hom| (-641 (-1259 (-767))))) (-294 (-948 (-564))))))) (T -236))
-((-1533 (*1 *2 *3) (-12 (-5 *3 (-294 (-948 (-564)))) (-5 *2 (-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-767))) "failed")) (|:| |hom| (-641 (-1259 (-767)))))) (-5 *1 (-236)))))
-(-10 -7 (-15 -1533 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-767))) "failed")) (|:| |hom| (-641 (-1259 (-767))))) (-294 (-948 (-564))))))
-((-2622 (((-767)) 56)) (-4277 (((-2 (|:| -2511 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 53) (((-685 |#3|) (-685 $)) 44) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-4327 (((-134)) 62)) (-3254 (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2423 (((-1259 |#3|) $) NIL) (($ |#3|) NIL) (((-858) $) NIL) (($ (-564)) 12) (($ (-407 (-564))) NIL)) (-3719 (((-767)) 15)) (-3092 (($ $ |#3|) 59)))
-(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)) (-15 -3719 ((-767))) (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2423 (|#1| |#3|)) (-15 -3254 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3254 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -4277 ((-685 |#3|) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -2622 ((-767))) (-15 -3092 (|#1| |#1| |#3|)) (-15 -4327 ((-134))) (-15 -2423 ((-1259 |#3|) |#1|))) (-238 |#2| |#3|) (-767) (-1209)) (T -237))
-((-4327 (*1 *2) (-12 (-14 *4 (-767)) (-4 *5 (-1209)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2622 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3719 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))))
-(-10 -8 (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)) (-15 -3719 ((-767))) (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2423 (|#1| |#3|)) (-15 -3254 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3254 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -4277 ((-685 |#3|) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -2622 ((-767))) (-15 -3092 (|#1| |#1| |#3|)) (-15 -4327 ((-134))) (-15 -2423 ((-1259 |#3|) |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-1494 (((-112) $) 73 (|has| |#2| (-131)))) (-3586 (($ (-917)) 126 (|has| |#2| (-1045)))) (-3236 (((-1264) $ (-564) (-564)) 41 (|has| $ (-6 -4408)))) (-3878 (($ $ $) 122 (|has| |#2| (-789)))) (-4012 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1876 (((-112) $ (-767)) 8)) (-2622 (((-767)) 108 (|has| |#2| (-368)))) (-3249 (((-564) $) 120 (|has| |#2| (-844)))) (-3904 ((|#2| $ (-564) |#2|) 53 (|has| $ (-6 -4408)))) (-4080 (($) 7 T CONST)) (-4284 (((-3 (-564) "failed") $) 68 (-2358 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) 65 (-2358 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1094)))) (-3120 (((-564) $) 67 (-2358 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) 64 (-2358 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 63 (|has| |#2| (-1094)))) (-4277 (((-685 (-564)) (-685 $)) 107 (-2358 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 106 (-2358 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 105 (|has| |#2| (-1045))) (((-685 |#2|) (-685 $)) 104 (|has| |#2| (-1045)))) (-3293 (((-3 $ "failed") $) 80 (|has| |#2| (-722)))) (-2534 (($) 111 (|has| |#2| (-368)))) (-2726 ((|#2| $ (-564) |#2|) 54 (|has| $ (-6 -4408)))) (-2652 ((|#2| $ (-564)) 52)) (-2384 (((-112) $) 118 (|has| |#2| (-844)))) (-3035 (((-641 |#2|) $) 31 (|has| $ (-6 -4407)))) (-4112 (((-112) $) 82 (|has| |#2| (-722)))) (-3326 (((-112) $) 119 (|has| |#2| (-844)))) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 44 (|has| (-564) (-846)))) (-2855 (($ $ $) 117 (-2807 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1554 (((-641 |#2|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 45 (|has| (-564) (-846)))) (-1497 (($ $ $) 116 (-2807 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2714 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#2| |#2|) $) 36)) (-3256 (((-917) $) 110 (|has| |#2| (-368)))) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#2| (-1094)))) (-3050 (((-641 (-564)) $) 47)) (-1563 (((-112) (-564) $) 48)) (-2083 (($ (-917)) 109 (|has| |#2| (-368)))) (-4052 (((-1114) $) 21 (|has| |#2| (-1094)))) (-2658 ((|#2| $) 43 (|has| (-564) (-846)))) (-1592 (($ $ |#2|) 42 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#2|))) 27 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#2| $ (-564) |#2|) 51) ((|#2| $ (-564)) 50)) (-3270 ((|#2| $ $) 125 (|has| |#2| (-1045)))) (-3729 (($ (-1259 |#2|)) 127)) (-4327 (((-134)) 124 (|has| |#2| (-363)))) (-3254 (($ $) 99 (-2358 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 97 (-2358 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) 95 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) 94 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) 93 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) 92 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 85 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1045)))) (-4062 (((-767) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4407))) (((-767) |#2| $) 29 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-1259 |#2|) $) 128) (($ (-564)) 69 (-2807 (-2358 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-564))) 66 (-2358 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 61 (|has| |#2| (-1094))) (((-858) $) 18 (|has| |#2| (-611 (-858))))) (-3719 (((-767)) 103 (|has| |#2| (-1045)) CONST)) (-1860 (((-112) $ $) 23 (|has| |#2| (-1094)))) (-1368 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4407)))) (-3673 (($ $) 121 (|has| |#2| (-844)))) (-2403 (($) 72 (|has| |#2| (-131)) CONST)) (-2417 (($) 83 (|has| |#2| (-722)) CONST)) (-4063 (($ $) 98 (-2358 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 96 (-2358 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) 91 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) 90 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) 89 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) 88 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 87 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1045)))) (-3034 (((-112) $ $) 114 (-2807 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-3011 (((-112) $ $) 113 (-2807 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2974 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-3023 (((-112) $ $) 115 (-2807 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2999 (((-112) $ $) 112 (-2807 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-3092 (($ $ |#2|) 123 (|has| |#2| (-363)))) (-3082 (($ $ $) 101 (|has| |#2| (-1045))) (($ $) 100 (|has| |#2| (-1045)))) (-3070 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-767)) 81 (|has| |#2| (-722))) (($ $ (-917)) 78 (|has| |#2| (-722)))) (* (($ (-564) $) 102 (|has| |#2| (-1045))) (($ $ $) 79 (|has| |#2| (-722))) (($ $ |#2|) 77 (|has| |#2| (-722))) (($ |#2| $) 76 (|has| |#2| (-722))) (($ (-767) $) 74 (|has| |#2| (-131))) (($ (-917) $) 71 (|has| |#2| (-25)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-238 |#1| |#2|) (-140) (-767) (-1209)) (T -238))
-((-3729 (*1 *1 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4)))) (-3586 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045)) (-4 *4 (-1209)))) (-3270 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))))
-(-13 (-602 (-564) |t#2|) (-611 (-1259 |t#2|)) (-10 -8 (-6 -4407) (-15 -3729 ($ (-1259 |t#2|))) (IF (|has| |t#2| (-1094)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1045)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -3586 ($ (-917))) (-15 -3270 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-722)) (PROGN (-6 (-722)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |t#2| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#2| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1266 |t#2|)) |%noBranch|)))
-(((-21) -2807 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -2807 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2807 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2807 (|has| |#2| (-1094)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2807 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2807 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-614 #0=(-407 (-564))) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094))) ((-614 (-564)) -2807 (|has| |#2| (-1045)) (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-614 |#2|) -2807 (|has| |#2| (-1094)) (|has| |#2| (-172))) ((-611 (-858)) -2807 (|has| |#2| (-1094)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-611 (-858))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-611 (-1259 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1045)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1045))) ((-286 #1=(-564) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1045)) ((-411 |#2|) |has| |#2| (-1094)) ((-489 |#2|) . T) ((-602 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) -2807 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-644 $) -2807 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-637 (-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045))) ((-637 |#2|) |has| |#2| (-1045)) ((-713 |#2|) -2807 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-722) -2807 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-787) |has| |#2| (-844)) ((-788) -2807 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-789) |has| |#2| (-789)) ((-790) -2807 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-791) -2807 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-844) |has| |#2| (-844)) ((-846) -2807 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-896 (-1170)) -12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045))) ((-1034 #0#) -12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094))) ((-1034 (-564)) -12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) ((-1034 |#2|) |has| |#2| (-1094)) ((-1051 |#2|) -2807 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1051 $) |has| |#2| (-172)) ((-1045) -2807 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1052) -2807 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1106) -2807 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-1094) -2807 (|has| |#2| (-1094)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1209) . T) ((-1266 |#2|) |has| |#2| (-363)))
-((-2903 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-1316 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-4357 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18)))
-(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -2903 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1316 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4357 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-767) (-1209) (-1209)) (T -239))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-1316 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2)))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-767)) (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5)))))
-(-10 -7 (-15 -2903 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1316 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4357 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|))))
-((-3009 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1494 (((-112) $) NIL (|has| |#2| (-131)))) (-3586 (($ (-917)) 65 (|has| |#2| (-1045)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3878 (($ $ $) 69 (|has| |#2| (-789)))) (-4012 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1876 (((-112) $ (-767)) 17)) (-2622 (((-767)) NIL (|has| |#2| (-368)))) (-3249 (((-564) $) NIL (|has| |#2| (-844)))) (-3904 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1094)))) (-3120 (((-564) $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 32 (|has| |#2| (-1094)))) (-4277 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1045))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1045)))) (-3293 (((-3 $ "failed") $) 61 (|has| |#2| (-722)))) (-2534 (($) NIL (|has| |#2| (-368)))) (-2726 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#2| $ (-564)) 59)) (-2384 (((-112) $) NIL (|has| |#2| (-844)))) (-3035 (((-641 |#2|) $) 15 (|has| $ (-6 -4407)))) (-4112 (((-112) $) NIL (|has| |#2| (-722)))) (-3326 (((-112) $) NIL (|has| |#2| (-844)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) 20 (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1554 (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2898 (((-564) $) 58 (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2714 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#2| |#2|) $) 47)) (-3256 (((-917) $) NIL (|has| |#2| (-368)))) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-2083 (($ (-917)) NIL (|has| |#2| (-368)))) (-4052 (((-1114) $) NIL (|has| |#2| (-1094)))) (-2658 ((|#2| $) NIL (|has| (-564) (-846)))) (-1592 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) 21)) (-3270 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-3729 (($ (-1259 |#2|)) 18)) (-4327 (((-134)) NIL (|has| |#2| (-363)))) (-3254 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-4062 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-1259 |#2|) $) 10) (($ (-564)) NIL (-2807 (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 13 (|has| |#2| (-1094))) (((-858) $) NIL (|has| |#2| (-611 (-858))))) (-3719 (((-767)) NIL (|has| |#2| (-1045)) CONST)) (-1860 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1368 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3673 (($ $) NIL (|has| |#2| (-844)))) (-2403 (($) 40 (|has| |#2| (-131)) CONST)) (-2417 (($) 44 (|has| |#2| (-722)) CONST)) (-4063 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-3034 (((-112) $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3011 (((-112) $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2974 (((-112) $ $) 31 (|has| |#2| (-1094)))) (-3023 (((-112) $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2999 (((-112) $ $) 67 (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3092 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3082 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-3070 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-564) $) NIL (|has| |#2| (-1045))) (($ $ $) 50 (|has| |#2| (-722))) (($ $ |#2|) 48 (|has| |#2| (-722))) (($ |#2| $) 49 (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-240 |#1| |#2|) (-238 |#1| |#2|) (-767) (-1209)) (T -240))
+((-3175 (*1 *1 *1) (-4 *1 (-233))) (-4044 (*1 *1 *1) (-4 *1 (-233))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-769)))) (-4044 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-769)))))
+(-13 (-1047) (-10 -8 (-15 -3175 ($ $)) (-15 -4044 ($ $)) (-15 -3175 ($ $ (-769))) (-15 -4044 ($ $ (-769)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2593 (($) 12) (($ (-642 |#2|)) NIL)) (-3901 (($ $) 14)) (-2337 (($ (-642 |#2|)) 10)) (-2327 (((-860) $) 21)))
+(((-234 |#1| |#2|) (-10 -8 (-15 -2327 ((-860) |#1|)) (-15 -2593 (|#1| (-642 |#2|))) (-15 -2593 (|#1|)) (-15 -2337 (|#1| (-642 |#2|))) (-15 -3901 (|#1| |#1|))) (-235 |#2|) (-1097)) (T -234))
+NIL
+(-10 -8 (-15 -2327 ((-860) |#1|)) (-15 -2593 (|#1| (-642 |#2|))) (-15 -2593 (|#1|)) (-15 -2337 (|#1| (-642 |#2|))) (-15 -3901 (|#1| |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) 8)) (-2462 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-2595 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2265 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2490 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2730 ((|#1| $) 40)) (-3183 (($ |#1| $) 41)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-2593 (($) 50) (($ (-642 |#1|)) 49)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 51)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) 43)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-235 |#1|) (-140) (-1097)) (T -235))
+((-2593 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1097)))) (-2593 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-235 *3)))) (-2265 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-235 *2)) (-4 *2 (-1097)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-235 *3)) (-4 *3 (-1097)))) (-2462 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-235 *3)) (-4 *3 (-1097)))))
+(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -2593 ($)) (-15 -2593 ($ (-642 |t#1|))) (IF (|has| $ (-6 -4410)) (PROGN (-15 -2265 ($ |t#1| $)) (-15 -2265 ($ (-1 (-112) |t#1|) $)) (-15 -2462 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-2464 (((-2 (|:| |varOrder| (-642 (-1173))) (|:| |inhom| (-3 (-642 (-1262 (-769))) "failed")) (|:| |hom| (-642 (-1262 (-769))))) (-294 (-950 (-564)))) 42)))
+(((-236) (-10 -7 (-15 -2464 ((-2 (|:| |varOrder| (-642 (-1173))) (|:| |inhom| (-3 (-642 (-1262 (-769))) "failed")) (|:| |hom| (-642 (-1262 (-769))))) (-294 (-950 (-564))))))) (T -236))
+((-2464 (*1 *2 *3) (-12 (-5 *3 (-294 (-950 (-564)))) (-5 *2 (-2 (|:| |varOrder| (-642 (-1173))) (|:| |inhom| (-3 (-642 (-1262 (-769))) "failed")) (|:| |hom| (-642 (-1262 (-769)))))) (-5 *1 (-236)))))
+(-10 -7 (-15 -2464 ((-2 (|:| |varOrder| (-642 (-1173))) (|:| |inhom| (-3 (-642 (-1262 (-769))) "failed")) (|:| |hom| (-642 (-1262 (-769))))) (-294 (-950 (-564))))))
+((-2521 (((-769)) 56)) (-4315 (((-2 (|:| -1780 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 $) (-1262 $)) 53) (((-687 |#3|) (-687 $)) 44) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-3474 (((-134)) 62)) (-3175 (($ $ (-1 |#3| |#3|) (-769)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)) (-2327 (((-1262 |#3|) $) NIL) (($ |#3|) NIL) (((-860) $) NIL) (($ (-564)) 12) (($ (-407 (-564))) NIL)) (-2756 (((-769)) 15)) (-2998 (($ $ |#3|) 59)))
+(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)) (-15 -2756 ((-769))) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -2327 (|#1| |#3|)) (-15 -3175 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3175 (|#1| |#1| (-1 |#3| |#3|) (-769))) (-15 -4315 ((-687 |#3|) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 |#1|) (-1262 |#1|))) (-15 -2521 ((-769))) (-15 -2998 (|#1| |#1| |#3|)) (-15 -3474 ((-134))) (-15 -2327 ((-1262 |#3|) |#1|))) (-238 |#2| |#3|) (-769) (-1212)) (T -237))
+((-3474 (*1 *2) (-12 (-14 *4 (-769)) (-4 *5 (-1212)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2521 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1212)) (-5 *2 (-769)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2756 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1212)) (-5 *2 (-769)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))))
+(-10 -8 (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)) (-15 -2756 ((-769))) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -2327 (|#1| |#3|)) (-15 -3175 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3175 (|#1| |#1| (-1 |#3| |#3|) (-769))) (-15 -4315 ((-687 |#3|) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 |#1|) (-1262 |#1|))) (-15 -2521 ((-769))) (-15 -2998 (|#1| |#1| |#3|)) (-15 -3474 ((-134))) (-15 -2327 ((-1262 |#3|) |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#2| (-1097)))) (-2952 (((-112) $) 73 (|has| |#2| (-131)))) (-3638 (($ (-919)) 126 (|has| |#2| (-1047)))) (-1765 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-3532 (($ $ $) 122 (|has| |#2| (-791)))) (-1532 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-3697 (((-112) $ (-769)) 8)) (-2521 (((-769)) 108 (|has| |#2| (-368)))) (-2959 (((-564) $) 120 (|has| |#2| (-846)))) (-3877 ((|#2| $ (-564) |#2|) 53 (|has| $ (-6 -4411)))) (-1976 (($) 7 T CONST)) (-4278 (((-3 (-564) "failed") $) 68 (-2275 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-3 (-407 (-564)) "failed") $) 65 (-2275 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1097)))) (-3027 (((-564) $) 67 (-2275 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-407 (-564)) $) 64 (-2275 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) ((|#2| $) 63 (|has| |#2| (-1097)))) (-4315 (((-687 (-564)) (-687 $)) 107 (-2275 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 106 (-2275 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 105 (|has| |#2| (-1047))) (((-687 |#2|) (-687 $)) 104 (|has| |#2| (-1047)))) (-3104 (((-3 $ "failed") $) 80 (|has| |#2| (-724)))) (-2433 (($) 111 (|has| |#2| (-368)))) (-2625 ((|#2| $ (-564) |#2|) 54 (|has| $ (-6 -4411)))) (-2551 ((|#2| $ (-564)) 52)) (-2538 (((-112) $) 118 (|has| |#2| (-846)))) (-2936 (((-642 |#2|) $) 31 (|has| $ (-6 -4410)))) (-3953 (((-112) $) 82 (|has| |#2| (-724)))) (-3333 (((-112) $) 119 (|has| |#2| (-846)))) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 44 (|has| (-564) (-848)))) (-2755 (($ $ $) 117 (-2706 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-3234 (((-642 |#2|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 45 (|has| (-564) (-848)))) (-1520 (($ $ $) 116 (-2706 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-2613 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#2| |#2|) $) 36)) (-1945 (((-919) $) 110 (|has| |#2| (-368)))) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#2| (-1097)))) (-3997 (((-642 (-564)) $) 47)) (-4145 (((-112) (-564) $) 48)) (-2047 (($ (-919)) 109 (|has| |#2| (-368)))) (-4033 (((-1117) $) 21 (|has| |#2| (-1097)))) (-2557 ((|#2| $) 43 (|has| (-564) (-848)))) (-2696 (($ $ |#2|) 42 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#2|))) 27 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#2| $ (-564) |#2|) 51) ((|#2| $ (-564)) 50)) (-2619 ((|#2| $ $) 125 (|has| |#2| (-1047)))) (-3685 (($ (-1262 |#2|)) 127)) (-3474 (((-134)) 124 (|has| |#2| (-363)))) (-3175 (($ $) 99 (-2275 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) 97 (-2275 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) 95 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) 94 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) 93 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) 92 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) 85 (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1047)))) (-4043 (((-769) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4410))) (((-769) |#2| $) 29 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-1262 |#2|) $) 128) (($ (-564)) 69 (-2706 (-2275 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047)))) (($ (-407 (-564))) 66 (-2275 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (($ |#2|) 61 (|has| |#2| (-1097))) (((-860) $) 18 (|has| |#2| (-611 (-860))))) (-2756 (((-769)) 103 (|has| |#2| (-1047)) CONST)) (-1648 (((-112) $ $) 23 (|has| |#2| (-1097)))) (-2710 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4410)))) (-1381 (($ $) 121 (|has| |#2| (-846)))) (-2312 (($) 72 (|has| |#2| (-131)) CONST)) (-2322 (($) 83 (|has| |#2| (-724)) CONST)) (-4044 (($ $) 98 (-2275 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) 96 (-2275 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) 91 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) 90 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) 89 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) 88 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) 87 (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1047)))) (-2934 (((-112) $ $) 114 (-2706 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-2908 (((-112) $ $) 113 (-2706 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-2872 (((-112) $ $) 20 (|has| |#2| (-1097)))) (-2922 (((-112) $ $) 115 (-2706 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-2897 (((-112) $ $) 112 (-2706 (|has| |#2| (-846)) (|has| |#2| (-791))))) (-2998 (($ $ |#2|) 123 (|has| |#2| (-363)))) (-2987 (($ $ $) 102 (|has| |#2| (-1047))) (($ $) 101 (|has| |#2| (-1047)))) (-2974 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-769)) 81 (|has| |#2| (-724))) (($ $ (-919)) 78 (|has| |#2| (-724)))) (* (($ (-564) $) 100 (|has| |#2| (-1047))) (($ $ $) 79 (|has| |#2| (-724))) (($ $ |#2|) 77 (|has| |#2| (-724))) (($ |#2| $) 76 (|has| |#2| (-724))) (($ (-769) $) 74 (|has| |#2| (-131))) (($ (-919) $) 71 (|has| |#2| (-25)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-238 |#1| |#2|) (-140) (-769) (-1212)) (T -238))
+((-3685 (*1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1212)) (-4 *1 (-238 *3 *4)))) (-3638 (*1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1047)) (-4 *4 (-1212)))) (-2619 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-1047)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))))
+(-13 (-602 (-564) |t#2|) (-611 (-1262 |t#2|)) (-10 -8 (-6 -4410) (-15 -3685 ($ (-1262 |t#2|))) (IF (|has| |t#2| (-1097)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1047)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -3638 ($ (-919))) (-15 -2619 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-724)) (PROGN (-6 (-724)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |t#2| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#2| (-791)) (-6 (-791)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1269 |t#2|)) |%noBranch|)))
+(((-21) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2706 (|has| |#2| (-1097)) (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-724)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2706 (|has| |#2| (-1047)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-614 #0=(-407 (-564))) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097))) ((-614 (-564)) -2706 (|has| |#2| (-1047)) (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-846)) (|has| |#2| (-172))) ((-614 |#2|) -2706 (|has| |#2| (-1097)) (|has| |#2| (-172))) ((-611 (-860)) -2706 (|has| |#2| (-1097)) (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-724)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-611 (-860))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-611 (-1262 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1047)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1047))) ((-286 #1=(-564) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1047)) ((-411 |#2|) |has| |#2| (-1097)) ((-489 |#2|) . T) ((-602 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-644 (-564)) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-644 |#2|) -2706 (|has| |#2| (-1047)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-644 $) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-172))) ((-646 |#2|) -2706 (|has| |#2| (-1047)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-646 $) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-172))) ((-638 |#2|) -2706 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-637 (-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047))) ((-637 |#2|) |has| |#2| (-1047)) ((-715 |#2|) -2706 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-724) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-724)) (|has| |#2| (-172))) ((-789) |has| |#2| (-846)) ((-790) -2706 (|has| |#2| (-846)) (|has| |#2| (-791))) ((-791) |has| |#2| (-791)) ((-792) -2706 (|has| |#2| (-846)) (|has| |#2| (-791))) ((-793) -2706 (|has| |#2| (-846)) (|has| |#2| (-791))) ((-846) |has| |#2| (-846)) ((-848) -2706 (|has| |#2| (-846)) (|has| |#2| (-791))) ((-898 (-1173)) -12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047))) ((-1036 #0#) -12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097))) ((-1036 (-564)) -12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) ((-1036 |#2|) |has| |#2| (-1097)) ((-1049 |#2|) -2706 (|has| |#2| (-1047)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1049 $) |has| |#2| (-172)) ((-1054 |#2|) -2706 (|has| |#2| (-1047)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1054 $) |has| |#2| (-172)) ((-1047) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-172))) ((-1055) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-172))) ((-1109) -2706 (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-724)) (|has| |#2| (-172))) ((-1097) -2706 (|has| |#2| (-1097)) (|has| |#2| (-1047)) (|has| |#2| (-846)) (|has| |#2| (-791)) (|has| |#2| (-724)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1212) . T) ((-1269 |#2|) |has| |#2| (-363)))
+((-1910 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-1320 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-4358 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18)))
+(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -1910 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1320 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4358 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-769) (-1212) (-1212)) (T -239))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-769)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-1320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-769)) (-4 *6 (-1212)) (-4 *2 (-1212)) (-5 *1 (-239 *5 *6 *2)))) (-1910 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-769)) (-4 *7 (-1212)) (-4 *5 (-1212)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5)))))
+(-10 -7 (-15 -1910 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1320 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4358 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|))))
+((-2907 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2952 (((-112) $) NIL (|has| |#2| (-131)))) (-3638 (($ (-919)) 65 (|has| |#2| (-1047)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3532 (($ $ $) 69 (|has| |#2| (-791)))) (-1532 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-3697 (((-112) $ (-769)) 17)) (-2521 (((-769)) NIL (|has| |#2| (-368)))) (-2959 (((-564) $) NIL (|has| |#2| (-846)))) (-3877 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1097)))) (-3027 (((-564) $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) ((|#2| $) 32 (|has| |#2| (-1097)))) (-4315 (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL (|has| |#2| (-1047))) (((-687 |#2|) (-687 $)) NIL (|has| |#2| (-1047)))) (-3104 (((-3 $ "failed") $) 61 (|has| |#2| (-724)))) (-2433 (($) NIL (|has| |#2| (-368)))) (-2625 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#2| $ (-564)) 59)) (-2538 (((-112) $) NIL (|has| |#2| (-846)))) (-2936 (((-642 |#2|) $) 15 (|has| $ (-6 -4410)))) (-3953 (((-112) $) NIL (|has| |#2| (-724)))) (-3333 (((-112) $) NIL (|has| |#2| (-846)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) 20 (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-3234 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3421 (((-564) $) 58 (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2613 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#2| |#2|) $) 47)) (-1945 (((-919) $) NIL (|has| |#2| (-368)))) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#2| (-1097)))) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-2047 (($ (-919)) NIL (|has| |#2| (-368)))) (-4033 (((-1117) $) NIL (|has| |#2| (-1097)))) (-2557 ((|#2| $) NIL (|has| (-564) (-848)))) (-2696 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) 21)) (-2619 ((|#2| $ $) NIL (|has| |#2| (-1047)))) (-3685 (($ (-1262 |#2|)) 18)) (-3474 (((-134)) NIL (|has| |#2| (-363)))) (-3175 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-4043 (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-1262 |#2|) $) 10) (($ (-564)) NIL (-2706 (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (($ |#2|) 13 (|has| |#2| (-1097))) (((-860) $) NIL (|has| |#2| (-611 (-860))))) (-2756 (((-769)) NIL (|has| |#2| (-1047)) CONST)) (-1648 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2710 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-1381 (($ $) NIL (|has| |#2| (-846)))) (-2312 (($) 40 (|has| |#2| (-131)) CONST)) (-2322 (($) 44 (|has| |#2| (-724)) CONST)) (-4044 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-2934 (((-112) $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2908 (((-112) $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2872 (((-112) $ $) 31 (|has| |#2| (-1097)))) (-2922 (((-112) $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2897 (((-112) $ $) 67 (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2998 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2987 (($ $ $) NIL (|has| |#2| (-1047))) (($ $) NIL (|has| |#2| (-1047)))) (-2974 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-769)) NIL (|has| |#2| (-724))) (($ $ (-919)) NIL (|has| |#2| (-724)))) (* (($ (-564) $) NIL (|has| |#2| (-1047))) (($ $ $) 50 (|has| |#2| (-724))) (($ $ |#2|) 48 (|has| |#2| (-724))) (($ |#2| $) 49 (|has| |#2| (-724))) (($ (-769) $) NIL (|has| |#2| (-131))) (($ (-919) $) NIL (|has| |#2| (-25)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-240 |#1| |#2|) (-238 |#1| |#2|) (-769) (-1212)) (T -240))
NIL
(-238 |#1| |#2|)
-((-3458 (((-564) (-641 (-1152))) 34) (((-564) (-1152)) 28)) (-4007 (((-1264) (-641 (-1152))) 39) (((-1264) (-1152)) 38)) (-2653 (((-1152)) 16)) (-3338 (((-1152) (-564) (-1152)) 23)) (-3639 (((-641 (-1152)) (-641 (-1152)) (-564) (-1152)) 35) (((-1152) (-1152) (-564) (-1152)) 33)) (-3241 (((-641 (-1152)) (-641 (-1152))) 15) (((-641 (-1152)) (-1152)) 11)))
-(((-241) (-10 -7 (-15 -3241 ((-641 (-1152)) (-1152))) (-15 -3241 ((-641 (-1152)) (-641 (-1152)))) (-15 -2653 ((-1152))) (-15 -3338 ((-1152) (-564) (-1152))) (-15 -3639 ((-1152) (-1152) (-564) (-1152))) (-15 -3639 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -4007 ((-1264) (-1152))) (-15 -4007 ((-1264) (-641 (-1152)))) (-15 -3458 ((-564) (-1152))) (-15 -3458 ((-564) (-641 (-1152)))))) (T -241))
-((-3458 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241)))) (-3639 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *1 (-241)))) (-3639 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-3338 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-2653 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241)))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)))) (-3241 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152)))))
-(-10 -7 (-15 -3241 ((-641 (-1152)) (-1152))) (-15 -3241 ((-641 (-1152)) (-641 (-1152)))) (-15 -2653 ((-1152))) (-15 -3338 ((-1152) (-564) (-1152))) (-15 -3639 ((-1152) (-1152) (-564) (-1152))) (-15 -3639 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -4007 ((-1264) (-1152))) (-15 -4007 ((-1264) (-641 (-1152)))) (-15 -3458 ((-564) (-1152))) (-15 -3458 ((-564) (-641 (-1152)))))
-((** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 20)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) NIL)))
-(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-243)) (T -242))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 41)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ (-407 (-564))) 45)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 42)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ (-407 (-564)) $) 44) (($ $ (-407 (-564))) 43)))
+((-3447 (((-564) (-642 (-1155))) 34) (((-564) (-1155)) 28)) (-3988 (((-1267) (-642 (-1155))) 39) (((-1267) (-1155)) 38)) (-3879 (((-1155)) 16)) (-1791 (((-1155) (-564) (-1155)) 23)) (-3594 (((-642 (-1155)) (-642 (-1155)) (-564) (-1155)) 35) (((-1155) (-1155) (-564) (-1155)) 33)) (-3161 (((-642 (-1155)) (-642 (-1155))) 15) (((-642 (-1155)) (-1155)) 11)))
+(((-241) (-10 -7 (-15 -3161 ((-642 (-1155)) (-1155))) (-15 -3161 ((-642 (-1155)) (-642 (-1155)))) (-15 -3879 ((-1155))) (-15 -1791 ((-1155) (-564) (-1155))) (-15 -3594 ((-1155) (-1155) (-564) (-1155))) (-15 -3594 ((-642 (-1155)) (-642 (-1155)) (-564) (-1155))) (-15 -3988 ((-1267) (-1155))) (-15 -3988 ((-1267) (-642 (-1155)))) (-15 -3447 ((-564) (-1155))) (-15 -3447 ((-564) (-642 (-1155)))))) (T -241))
+((-3447 (*1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-564)) (-5 *1 (-241)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-564)) (-5 *1 (-241)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1267)) (-5 *1 (-241)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-241)))) (-3594 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-642 (-1155))) (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *1 (-241)))) (-3594 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-241)))) (-1791 (*1 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-241)))) (-3879 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-241)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-241)))) (-3161 (*1 *2 *3) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-241)) (-5 *3 (-1155)))))
+(-10 -7 (-15 -3161 ((-642 (-1155)) (-1155))) (-15 -3161 ((-642 (-1155)) (-642 (-1155)))) (-15 -3879 ((-1155))) (-15 -1791 ((-1155) (-564) (-1155))) (-15 -3594 ((-1155) (-1155) (-564) (-1155))) (-15 -3594 ((-642 (-1155)) (-642 (-1155)) (-564) (-1155))) (-15 -3988 ((-1267) (-1155))) (-15 -3988 ((-1267) (-642 (-1155)))) (-15 -3447 ((-564) (-1155))) (-15 -3447 ((-564) (-642 (-1155)))))
+((** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 20)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) NIL)))
+(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) (-243)) (T -242))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 47)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 51)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 48)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ (-407 (-564)) $) 50) (($ $ (-407 (-564))) 49)))
(((-243) (-140)) (T -243))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) (-3936 (*1 *1 *1) (-4 *1 (-243))))
-(-13 (-290) (-38 (-407 (-564))) (-10 -8 (-15 ** ($ $ (-564))) (-15 -3936 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-290) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-722) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2128 ((|#1| $) 49)) (-1403 (($ $) 58)) (-1876 (((-112) $ (-767)) 8)) (-2925 ((|#1| $ |#1|) 40 (|has| $ (-6 -4408)))) (-3335 (($ $ $) 54 (|has| $ (-6 -4408)))) (-3802 (($ $ $) 53 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 42 (|has| $ (-6 -4408)))) (-4080 (($) 7 T CONST)) (-2778 (($ $) 57)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) 51)) (-1675 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2715 (($ $) 56)) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2730 (((-641 |#1|) $) 46)) (-1841 (((-112) $) 50)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2615 ((|#1| $) 60)) (-2944 (($ $) 59)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ "value") 48)) (-3277 (((-564) $ $) 45)) (-3206 (((-112) $) 47)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-3634 (($ $ $) 55 (|has| $ (-6 -4408)))) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) 52)) (-4059 (((-112) $ $) 44 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-244 |#1|) (-140) (-1209)) (T -244))
-((-2615 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-1403 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-2778 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-2715 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3634 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3335 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3802 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
-(-13 (-1006 |t#1|) (-10 -8 (-15 -2615 (|t#1| $)) (-15 -2944 ($ $)) (-15 -1403 ($ $)) (-15 -2778 ($ $)) (-15 -2715 ($ $)) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3634 ($ $ $)) (-15 -3335 ($ $ $)) (-15 -3802 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2128 ((|#1| $) NIL)) (-1783 ((|#1| $) NIL)) (-1403 (($ $) NIL)) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3611 (($ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3963 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2484 (($ $) 10 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-2925 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-1886 (($ $ $) NIL (|has| $ (-6 -4408)))) (-1776 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-4265 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "rest" $) NIL (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) NIL (|has| $ (-6 -4408)))) (-1466 (($ (-1 (-112) |#1|) $) NIL)) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1772 ((|#1| $) NIL)) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2671 (($ $) NIL) (($ $ (-767)) NIL)) (-2679 (($ $) NIL (|has| |#1| (-1094)))) (-2696 (($ $) 7 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1945 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2591 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2726 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) NIL)) (-2643 (((-112) $) NIL)) (-3998 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) NIL)) (-1675 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4238 (($ (-767) |#1|) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-2087 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3669 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2522 (($ |#1|) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2730 (((-641 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2615 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-2566 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4248 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2658 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-1555 (((-112) $) NIL)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-767) $ "count") 16)) (-3277 (((-564) $ $) NIL)) (-2251 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2114 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2455 (($ (-641 |#1|)) 22)) (-3206 (((-112) $) NIL)) (-3068 (($ $) NIL)) (-2602 (($ $) NIL (|has| $ (-6 -4408)))) (-3004 (((-767) $) NIL)) (-1977 (($ $) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) NIL)) (-3634 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3696 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-2423 (($ (-641 |#1|)) 17) (((-641 |#1|) $) 18) (((-858) $) 21 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) NIL)) (-4059 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2181 (((-767) $) 14 (|has| $ (-6 -4407)))))
-(((-245 |#1|) (-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -2455 ($ (-641 |#1|))) (-15 -4366 ($ $ "unique")) (-15 -4366 ($ $ "sort")) (-15 -4366 ((-767) $ "count")))) (-846)) (T -245))
-((-2455 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846)))))
-(-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -2455 ($ (-641 |#1|))) (-15 -4366 ($ $ "unique")) (-15 -4366 ($ $ "sort")) (-15 -4366 ((-767) $ "count"))))
-((-1391 (((-3 (-767) "failed") |#1| |#1| (-767)) 43)))
-(((-246 |#1|) (-10 -7 (-15 -1391 ((-3 (-767) "failed") |#1| |#1| (-767)))) (-13 (-722) (-368) (-10 -7 (-15 ** (|#1| |#1| (-564)))))) (T -246))
-((-1391 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-767)) (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) (-5 *1 (-246 *3)))))
-(-10 -7 (-15 -1391 ((-3 (-767) "failed") |#1| |#1| (-767))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-860 |#1|)) $) NIL)) (-3660 (((-1166 $) $ (-860 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-3063 (($ $) NIL (|has| |#2| (-556)))) (-3330 (((-112) $) NIL (|has| |#2| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-860 |#1|))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2683 (($ $) NIL (|has| |#2| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#2| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-3120 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-860 |#1|) $) NIL)) (-2746 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3720 (($ $ (-641 (-564))) NIL)) (-1684 (($ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#2| (-905)))) (-3850 (($ $ |#2| (-240 (-2181 |#1|) (-767)) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-3824 (($ (-1166 |#2|) (-860 |#1|)) NIL) (($ (-1166 $) (-860 |#1|)) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#2| (-240 (-2181 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-860 |#1|)) NIL)) (-2043 (((-240 (-2181 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-1948 (($ (-1 (-240 (-2181 |#1|) (-767)) (-240 (-2181 |#1|) (-767))) $) NIL)) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-3025 (((-3 (-860 |#1|) "failed") $) NIL)) (-3971 (($ $) NIL)) (-3982 ((|#2| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2766 (((-1152) $) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -1838 (-767))) "failed") $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 ((|#2| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#2| (-905)))) (-2998 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-641 (-860 |#1|)) (-641 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-641 (-860 |#1|)) (-641 $)) NIL)) (-1330 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3254 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-1568 (((-240 (-2181 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4090 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-564))) NIL (-2807 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3191 (((-641 |#2|) $) NIL)) (-2007 ((|#2| $ (-240 (-2181 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-247 |#1| |#2|) (-13 (-945 |#2| (-240 (-2181 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3720 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1045)) (T -247))
-((-3720 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1045)))))
-(-13 (-945 |#2| (-240 (-2181 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3720 ($ $ (-641 (-564))))))
-((-3009 (((-112) $ $) NIL)) (-2478 (((-1264) $) 17)) (-4201 (((-183) $) 11)) (-1487 (($ (-183)) 12)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1491 (((-249) $) 7)) (-2423 (((-858) $) 9)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 15)))
-(((-248) (-13 (-1094) (-10 -8 (-15 -1491 ((-249) $)) (-15 -4201 ((-183) $)) (-15 -1487 ($ (-183))) (-15 -2478 ((-1264) $))))) (T -248))
-((-1491 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-1487 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248)))))
-(-13 (-1094) (-10 -8 (-15 -1491 ((-249) $)) (-15 -4201 ((-183) $)) (-15 -1487 ($ (-183))) (-15 -2478 ((-1264) $))))
-((-3009 (((-112) $ $) NIL)) (-2366 (((-641 (-861)) $) NIL)) (-2562 (((-506) $) NIL)) (-2766 (((-1152) $) NIL)) (-1611 (((-186) $) NIL)) (-4052 (((-1114) $) NIL)) (-2503 (((-641 (-112)) $) NIL)) (-2423 (((-858) $) NIL) (((-187) $) 6)) (-1860 (((-112) $ $) NIL)) (-2524 (((-55) $) NIL)) (-2974 (((-112) $ $) NIL)))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) (-3911 (*1 *1 *1) (-4 *1 (-243))))
+(-13 (-290) (-38 (-407 (-564))) (-10 -8 (-15 ** ($ $ (-564))) (-15 -3911 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-290) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-715 #0#) . T) ((-724) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2085 ((|#1| $) 49)) (-1416 (($ $) 58)) (-3697 (((-112) $ (-769)) 8)) (-3070 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-1466 (($ $ $) 54 (|has| $ (-6 -4411)))) (-2441 (($ $ $) 53 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-1976 (($) 7 T CONST)) (-2677 (($ $) 57)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) 51)) (-1847 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-2612 (($ $) 56)) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-2628 (((-642 |#1|) $) 46)) (-2376 (((-112) $) 50)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2514 ((|#1| $) 60)) (-3345 (($ $) 59)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ "value") 48)) (-2137 (((-564) $ $) 45)) (-1392 (((-112) $) 47)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2582 (($ $ $) 55 (|has| $ (-6 -4411)))) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) 52)) (-3820 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-244 |#1|) (-140) (-1212)) (T -244))
+((-2514 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-3345 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-1416 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-2677 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-2612 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-2582 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-1466 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212)))) (-2441 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212)))))
+(-13 (-1008 |t#1|) (-10 -8 (-15 -2514 (|t#1| $)) (-15 -3345 ($ $)) (-15 -1416 ($ $)) (-15 -2677 ($ $)) (-15 -2612 ($ $)) (IF (|has| $ (-6 -4411)) (PROGN (-15 -2582 ($ $ $)) (-15 -1466 ($ $ $)) (-15 -2441 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2085 ((|#1| $) NIL)) (-1807 ((|#1| $) NIL)) (-1416 (($ $) NIL)) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3256 (($ $ (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) $) NIL (|has| |#1| (-848))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2239 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2383 (($ $) 10 (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-3070 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-1505 (($ $ $) NIL (|has| $ (-6 -4411)))) (-2153 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-4059 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "rest" $) NIL (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2462 (($ (-1 (-112) |#1|) $) NIL)) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1799 ((|#1| $) NIL)) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2570 (($ $) NIL) (($ $ (-769)) NIL)) (-1938 (($ $) NIL (|has| |#1| (-1097)))) (-2595 (($ $) 7 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) NIL)) (-2490 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2625 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) NIL)) (-3297 (((-112) $) NIL)) (-3979 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097))) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) (-1 (-112) |#1|) $) NIL)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) NIL)) (-1847 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4227 (($ (-769) |#1|) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-3427 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2740 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2421 (($ |#1|) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-2628 (((-642 |#1|) $) NIL)) (-2376 (((-112) $) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2514 ((|#1| $) NIL) (($ $ (-769)) NIL)) (-3183 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4238 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2557 ((|#1| $) NIL) (($ $ (-769)) NIL)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-2531 (((-112) $) NIL)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1229 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-769) $ "count") 16)) (-2137 (((-564) $ $) NIL)) (-3184 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-2073 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-2356 (($ (-642 |#1|)) 22)) (-1392 (((-112) $) NIL)) (-1444 (($ $) NIL)) (-2960 (($ $) NIL (|has| $ (-6 -4411)))) (-3399 (((-769) $) NIL)) (-3848 (($ $) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) NIL)) (-2582 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3651 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-642 $)) NIL) (($ $ |#1|) NIL)) (-2327 (($ (-642 |#1|)) 17) (((-642 |#1|) $) 18) (((-860) $) 21 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) NIL)) (-3820 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2127 (((-769) $) 14 (|has| $ (-6 -4410)))))
+(((-245 |#1|) (-13 (-664 |#1|) (-490 (-642 |#1|)) (-10 -8 (-15 -2356 ($ (-642 |#1|))) (-15 -4368 ($ $ "unique")) (-15 -4368 ($ $ "sort")) (-15 -4368 ((-769) $ "count")))) (-848)) (T -245))
+((-2356 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-245 *3)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-848)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-848)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-769)) (-5 *1 (-245 *4)) (-4 *4 (-848)))))
+(-13 (-664 |#1|) (-490 (-642 |#1|)) (-10 -8 (-15 -2356 ($ (-642 |#1|))) (-15 -4368 ($ $ "unique")) (-15 -4368 ($ $ "sort")) (-15 -4368 ((-769) $ "count"))))
+((-1451 (((-3 (-769) "failed") |#1| |#1| (-769)) 43)))
+(((-246 |#1|) (-10 -7 (-15 -1451 ((-3 (-769) "failed") |#1| |#1| (-769)))) (-13 (-724) (-368) (-10 -7 (-15 ** (|#1| |#1| (-564)))))) (T -246))
+((-1451 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-769)) (-4 *3 (-13 (-724) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) (-5 *1 (-246 *3)))))
+(-10 -7 (-15 -1451 ((-3 (-769) "failed") |#1| |#1| (-769))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-862 |#1|)) $) NIL)) (-3615 (((-1169 $) $ (-862 |#1|)) NIL) (((-1169 |#2|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1387 (($ $) NIL (|has| |#2| (-556)))) (-2037 (((-112) $) NIL (|has| |#2| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-862 |#1|))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-4316 (($ $) NIL (|has| |#2| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#2| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-862 |#1|) "failed") $) NIL)) (-3027 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-862 |#1|) $) NIL)) (-2022 (($ $ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-3884 (($ $ (-642 (-564))) NIL)) (-1718 (($ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#2| (-907)))) (-2575 (($ $ |#2| (-240 (-2127 |#1|) (-769)) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-3790 (($ (-1169 |#2|) (-862 |#1|)) NIL) (($ (-1169 $) (-862 |#1|)) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#2| (-240 (-2127 |#1|) (-769))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-862 |#1|)) NIL)) (-1398 (((-240 (-2127 |#1|) (-769)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-2026 (($ (-1 (-240 (-2127 |#1|) (-769)) (-240 (-2127 |#1|) (-769))) $) NIL)) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-4184 (((-3 (-862 |#1|) "failed") $) NIL)) (-3950 (($ $) NIL)) (-3962 ((|#2| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3315 (((-1155) $) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-862 |#1|)) (|:| -2700 (-769))) "failed") $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 ((|#2| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#2| (-907)))) (-2896 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-862 |#1|) |#2|) NIL) (($ $ (-642 (-862 |#1|)) (-642 |#2|)) NIL) (($ $ (-862 |#1|) $) NIL) (($ $ (-642 (-862 |#1|)) (-642 $)) NIL)) (-1846 (($ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-3175 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2775 (((-240 (-2127 |#1|) (-769)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-862 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4028 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-862 |#1|)) NIL) (($ (-407 (-564))) NIL (-2706 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3849 (((-642 |#2|) $) NIL)) (-2102 ((|#2| $ (-240 (-2127 |#1|) (-769))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#2| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-247 |#1| |#2|) (-13 (-947 |#2| (-240 (-2127 |#1|) (-769)) (-862 |#1|)) (-10 -8 (-15 -3884 ($ $ (-642 (-564)))))) (-642 (-1173)) (-1047)) (T -247))
+((-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-247 *3 *4)) (-14 *3 (-642 (-1173))) (-4 *4 (-1047)))))
+(-13 (-947 |#2| (-240 (-2127 |#1|) (-769)) (-862 |#1|)) (-10 -8 (-15 -3884 ($ $ (-642 (-564))))))
+((-2907 (((-112) $ $) NIL)) (-2377 (((-1267) $) 17)) (-4141 (((-183) $) 11)) (-3295 (($ (-183)) 12)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1513 (((-249) $) 7)) (-2327 (((-860) $) 9)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 15)))
+(((-248) (-13 (-1097) (-10 -8 (-15 -1513 ((-249) $)) (-15 -4141 ((-183) $)) (-15 -3295 ($ (-183))) (-15 -2377 ((-1267) $))))) (T -248))
+((-1513 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-3295 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-248)))))
+(-13 (-1097) (-10 -8 (-15 -1513 ((-249) $)) (-15 -4141 ((-183) $)) (-15 -3295 ($ (-183))) (-15 -2377 ((-1267) $))))
+((-2907 (((-112) $ $) NIL)) (-2280 (((-642 (-863)) $) NIL)) (-2461 (((-506) $) NIL)) (-3315 (((-1155) $) NIL)) (-1645 (((-186) $) NIL)) (-1523 (((-112) $ (-506)) NIL)) (-4033 (((-1117) $) NIL)) (-3983 (((-642 (-112)) $) NIL)) (-2327 (((-860) $) NIL) (((-187) $) 6)) (-1648 (((-112) $ $) NIL)) (-3055 (((-55) $) NIL)) (-2872 (((-112) $ $) NIL)))
(((-249) (-13 (-185) (-611 (-187)))) (T -249))
NIL
(-13 (-185) (-611 (-187)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3586 (($ (-917)) NIL (|has| |#4| (-1045)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3878 (($ $ $) NIL (|has| |#4| (-789)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-2622 (((-767)) NIL (|has| |#4| (-368)))) (-3249 (((-564) $) NIL (|has| |#4| (-844)))) (-3904 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#4| (-1034 (-564))) (|has| |#4| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#4| (-1034 (-407 (-564)))) (|has| |#4| (-1094))))) (-3120 ((|#4| $) NIL (|has| |#4| (-1094))) (((-564) $) NIL (-12 (|has| |#4| (-1034 (-564))) (|has| |#4| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#4| (-1034 (-407 (-564)))) (|has| |#4| (-1094))))) (-4277 (((-2 (|:| -2511 (-685 |#4|)) (|:| |vec| (-1259 |#4|))) (-685 $) (-1259 $)) NIL (|has| |#4| (-1045))) (((-685 |#4|) (-685 $)) NIL (|has| |#4| (-1045))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))))) (-3293 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))))) (-2534 (($) NIL (|has| |#4| (-368)))) (-2726 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#4| $ (-564)) NIL)) (-2384 (((-112) $) NIL (|has| |#4| (-844)))) (-3035 (((-641 |#4|) $) NIL (|has| $ (-6 -4407)))) (-4112 (((-112) $) NIL (-2807 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))))) (-3326 (((-112) $) NIL (|has| |#4| (-844)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (-2807 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1554 (((-641 |#4|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (-2807 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2714 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) NIL)) (-3256 (((-917) $) NIL (|has| |#4| (-368)))) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-2083 (($ (-917)) NIL (|has| |#4| (-368)))) (-4052 (((-1114) $) NIL)) (-2658 ((|#4| $) NIL (|has| (-564) (-846)))) (-1592 (($ $ |#4|) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2075 (((-641 |#4|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#4| $ (-564) |#4|) NIL) ((|#4| $ (-564)) 16)) (-3270 ((|#4| $ $) NIL (|has| |#4| (-1045)))) (-3729 (($ (-1259 |#4|)) NIL)) (-4327 (((-134)) NIL (|has| |#4| (-363)))) (-3254 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-4062 (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407))) (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-1259 |#4|) $) NIL) (((-858) $) NIL) (($ |#4|) NIL (|has| |#4| (-1094))) (($ (-564)) NIL (-2807 (-12 (|has| |#4| (-1034 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#4| (-1034 (-407 (-564)))) (|has| |#4| (-1094))))) (-3719 (((-767)) NIL (|has| |#4| (-1045)) CONST)) (-1860 (((-112) $ $) NIL)) (-1368 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3673 (($ $) NIL (|has| |#4| (-844)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL (-2807 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) CONST)) (-4063 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-3034 (((-112) $ $) NIL (-2807 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-3011 (((-112) $ $) NIL (-2807 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (-2807 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2999 (((-112) $ $) NIL (-2807 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-3092 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-3082 (($ $ $) NIL) (($ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-2807 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045))))) (($ $ (-917)) NIL (-2807 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))))) (* (($ |#2| $) 18) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-722))) (($ |#4| $) NIL (|has| |#4| (-722))) (($ $ $) NIL (-2807 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1170))) (|has| |#4| (-1045)))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-644 |#2|) (-644 |#3|)) (-917) (-1045) (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-644 |#2|)) (T -250))
-NIL
-(-13 (-238 |#1| |#4|) (-644 |#2|) (-644 |#3|))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3586 (($ (-917)) NIL (|has| |#3| (-1045)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3878 (($ $ $) NIL (|has| |#3| (-789)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-2622 (((-767)) NIL (|has| |#3| (-368)))) (-3249 (((-564) $) NIL (|has| |#3| (-844)))) (-3904 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094))))) (-3120 ((|#3| $) NIL (|has| |#3| (-1094))) (((-564) $) NIL (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094))))) (-4277 (((-2 (|:| -2511 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1045))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1045))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))))) (-3293 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))))) (-2534 (($) NIL (|has| |#3| (-368)))) (-2726 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#3| $ (-564)) NIL)) (-2384 (((-112) $) NIL (|has| |#3| (-844)))) (-3035 (((-641 |#3|) $) NIL (|has| $ (-6 -4407)))) (-4112 (((-112) $) NIL (-2807 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))))) (-3326 (((-112) $) NIL (|has| |#3| (-844)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1554 (((-641 |#3|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2714 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#3| |#3|) $) NIL)) (-3256 (((-917) $) NIL (|has| |#3| (-368)))) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-2083 (($ (-917)) NIL (|has| |#3| (-368)))) (-4052 (((-1114) $) NIL)) (-2658 ((|#3| $) NIL (|has| (-564) (-846)))) (-1592 (($ $ |#3|) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1094))))) (-2075 (((-641 |#3|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) 15)) (-3270 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-3729 (($ (-1259 |#3|)) NIL)) (-4327 (((-134)) NIL (|has| |#3| (-363)))) (-3254 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-4062 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-1259 |#3|) $) NIL) (((-858) $) NIL) (($ |#3|) NIL (|has| |#3| (-1094))) (($ (-564)) NIL (-2807 (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094))))) (-3719 (((-767)) NIL (|has| |#3| (-1045)) CONST)) (-1860 (((-112) $ $) NIL)) (-1368 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-3673 (($ $) NIL (|has| |#3| (-844)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL (-2807 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) CONST)) (-4063 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-3034 (((-112) $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3011 (((-112) $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2999 (((-112) $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3092 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-3082 (($ $ $) NIL) (($ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-2807 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045))))) (($ $ (-917)) NIL (-2807 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))))) (* (($ |#2| $) 17) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ $ $) NIL (-2807 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-251 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-644 |#2|)) (-767) (-1045) (-644 |#2|)) (T -251))
-NIL
-(-13 (-238 |#1| |#3|) (-644 |#2|))
-((-2828 (((-641 (-767)) $) 56) (((-641 (-767)) $ |#3|) 59)) (-3476 (((-767) $) 58) (((-767) $ |#3|) 61)) (-3505 (($ $) 76)) (-4284 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3744 (((-767) $ |#3|) 43) (((-767) $) 38)) (-4206 (((-1 $ (-767)) |#3|) 15) (((-1 $ (-767)) $) 88)) (-1453 ((|#4| $) 69)) (-4384 (((-112) $) 67)) (-3252 (($ $) 75)) (-3291 (($ $ (-641 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-641 |#3|) (-641 |#2|)) 100)) (-3254 (($ $ |#4|) NIL) (($ $ (-641 |#4|)) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-641 |#4|) (-641 (-767))) NIL) (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2576 (((-641 |#3|) $) 86)) (-1568 ((|#5| $) NIL) (((-767) $ |#4|) NIL) (((-641 (-767)) $ (-641 |#4|)) NIL) (((-767) $ |#3|) 49)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-407 (-564))) NIL) (($ $) NIL)))
-(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2423 (|#1| |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -3291 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -3291 (|#1| |#1| |#3| |#2|)) (-15 -3291 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#3| |#1|)) (-15 -4206 ((-1 |#1| (-767)) |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -3252 (|#1| |#1|)) (-15 -1453 (|#4| |#1|)) (-15 -4384 ((-112) |#1|)) (-15 -3476 ((-767) |#1| |#3|)) (-15 -2828 ((-641 (-767)) |#1| |#3|)) (-15 -3476 ((-767) |#1|)) (-15 -2828 ((-641 (-767)) |#1|)) (-15 -1568 ((-767) |#1| |#3|)) (-15 -3744 ((-767) |#1|)) (-15 -3744 ((-767) |#1| |#3|)) (-15 -2576 ((-641 |#3|) |#1|)) (-15 -4206 ((-1 |#1| (-767)) |#3|)) (-15 -2423 (|#1| |#3|)) (-15 -4284 ((-3 |#3| "failed") |#1|)) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1|)) (-15 -1568 ((-641 (-767)) |#1| (-641 |#4|))) (-15 -1568 ((-767) |#1| |#4|)) (-15 -2423 (|#1| |#4|)) (-15 -4284 ((-3 |#4| "failed") |#1|)) (-15 -3291 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#4| |#1|)) (-15 -3291 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -3291 (|#1| |#1| |#4| |#2|)) (-15 -3291 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| (-294 |#1|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -1568 (|#5| |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -3254 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -3254 (|#1| |#1| |#4| (-767))) (-15 -3254 (|#1| |#1| (-641 |#4|))) (-15 -3254 (|#1| |#1| |#4|)) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1045) (-846) (-266 |#3|) (-789)) (T -252))
-NIL
-(-10 -8 (-15 -2423 (|#1| |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -3291 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -3291 (|#1| |#1| |#3| |#2|)) (-15 -3291 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#3| |#1|)) (-15 -4206 ((-1 |#1| (-767)) |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -3252 (|#1| |#1|)) (-15 -1453 (|#4| |#1|)) (-15 -4384 ((-112) |#1|)) (-15 -3476 ((-767) |#1| |#3|)) (-15 -2828 ((-641 (-767)) |#1| |#3|)) (-15 -3476 ((-767) |#1|)) (-15 -2828 ((-641 (-767)) |#1|)) (-15 -1568 ((-767) |#1| |#3|)) (-15 -3744 ((-767) |#1|)) (-15 -3744 ((-767) |#1| |#3|)) (-15 -2576 ((-641 |#3|) |#1|)) (-15 -4206 ((-1 |#1| (-767)) |#3|)) (-15 -2423 (|#1| |#3|)) (-15 -4284 ((-3 |#3| "failed") |#1|)) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1|)) (-15 -1568 ((-641 (-767)) |#1| (-641 |#4|))) (-15 -1568 ((-767) |#1| |#4|)) (-15 -2423 (|#1| |#4|)) (-15 -4284 ((-3 |#4| "failed") |#1|)) (-15 -3291 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#4| |#1|)) (-15 -3291 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -3291 (|#1| |#1| |#4| |#2|)) (-15 -3291 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| (-294 |#1|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -1568 (|#5| |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -3254 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -3254 (|#1| |#1| |#4| (-767))) (-15 -3254 (|#1| |#1| (-641 |#4|))) (-15 -3254 (|#1| |#1| |#4|)) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-2828 (((-641 (-767)) $) 208) (((-641 (-767)) $ |#2|) 206)) (-3476 (((-767) $) 207) (((-767) $ |#2|) 205)) (-3836 (((-641 |#3|) $) 104)) (-3660 (((-1166 $) $ |#3|) 119) (((-1166 |#1|) $) 118)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 81 (|has| |#1| (-556)))) (-3063 (($ $) 82 (|has| |#1| (-556)))) (-3330 (((-112) $) 84 (|has| |#1| (-556)))) (-1737 (((-767) $) 106) (((-767) $ (-641 |#3|)) 105)) (-4012 (((-3 $ "failed") $ $) 20)) (-4199 (((-418 (-1166 $)) (-1166 $)) 94 (|has| |#1| (-905)))) (-2683 (($ $) 92 (|has| |#1| (-452)))) (-2753 (((-418 $) $) 91 (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 97 (|has| |#1| (-905)))) (-3505 (($ $) 201)) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#1| "failed") $) 158) (((-3 (-407 (-564)) "failed") $) 155 (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) 153 (|has| |#1| (-1034 (-564)))) (((-3 |#3| "failed") $) 130) (((-3 |#2| "failed") $) 215)) (-3120 ((|#1| $) 157) (((-407 (-564)) $) 156 (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) 154 (|has| |#1| (-1034 (-564)))) ((|#3| $) 131) ((|#2| $) 216)) (-2746 (($ $ $ |#3|) 102 (|has| |#1| (-172)))) (-1684 (($ $) 148)) (-4277 (((-685 (-564)) (-685 $)) 128 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 127 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 126) (((-685 |#1|) (-685 $)) 125)) (-3293 (((-3 $ "failed") $) 34)) (-2571 (($ $) 170 (|has| |#1| (-452))) (($ $ |#3|) 99 (|has| |#1| (-452)))) (-3993 (((-641 $) $) 103)) (-1339 (((-112) $) 90 (|has| |#1| (-905)))) (-3850 (($ $ |#1| |#4| $) 166)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 78 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 77 (-12 (|has| |#3| (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3744 (((-767) $ |#2|) 211) (((-767) $) 210)) (-4112 (((-112) $) 32)) (-2497 (((-767) $) 163)) (-3824 (($ (-1166 |#1|) |#3|) 111) (($ (-1166 $) |#3|) 110)) (-2210 (((-641 $) $) 120)) (-4003 (((-112) $) 146)) (-3810 (($ |#1| |#4|) 147) (($ $ |#3| (-767)) 113) (($ $ (-641 |#3|) (-641 (-767))) 112)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ |#3|) 114)) (-2043 ((|#4| $) 164) (((-767) $ |#3|) 116) (((-641 (-767)) $ (-641 |#3|)) 115)) (-1948 (($ (-1 |#4| |#4|) $) 165)) (-4357 (($ (-1 |#1| |#1|) $) 145)) (-4206 (((-1 $ (-767)) |#2|) 213) (((-1 $ (-767)) $) 200 (|has| |#1| (-233)))) (-3025 (((-3 |#3| "failed") $) 117)) (-3971 (($ $) 143)) (-3982 ((|#1| $) 142)) (-1453 ((|#3| $) 203)) (-2084 (($ (-641 $)) 88 (|has| |#1| (-452))) (($ $ $) 87 (|has| |#1| (-452)))) (-2766 (((-1152) $) 10)) (-4384 (((-112) $) 204)) (-1958 (((-3 (-641 $) "failed") $) 108)) (-1301 (((-3 (-641 $) "failed") $) 109)) (-3401 (((-3 (-2 (|:| |var| |#3|) (|:| -1838 (-767))) "failed") $) 107)) (-3252 (($ $) 202)) (-4052 (((-1114) $) 11)) (-3944 (((-112) $) 160)) (-3954 ((|#1| $) 161)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 89 (|has| |#1| (-452)))) (-2123 (($ (-641 $)) 86 (|has| |#1| (-452))) (($ $ $) 85 (|has| |#1| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) 96 (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) 95 (|has| |#1| (-905)))) (-3688 (((-418 $) $) 93 (|has| |#1| (-905)))) (-2998 (((-3 $ "failed") $ |#1|) 168 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 80 (|has| |#1| (-556)))) (-3291 (($ $ (-641 (-294 $))) 139) (($ $ (-294 $)) 138) (($ $ $ $) 137) (($ $ (-641 $) (-641 $)) 136) (($ $ |#3| |#1|) 135) (($ $ (-641 |#3|) (-641 |#1|)) 134) (($ $ |#3| $) 133) (($ $ (-641 |#3|) (-641 $)) 132) (($ $ |#2| $) 199 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) 198 (|has| |#1| (-233))) (($ $ |#2| |#1|) 197 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) 196 (|has| |#1| (-233)))) (-1330 (($ $ |#3|) 101 (|has| |#1| (-172)))) (-3254 (($ $ |#3|) 43) (($ $ (-641 |#3|)) 42) (($ $ |#3| (-767)) 41) (($ $ (-641 |#3|) (-641 (-767))) 40) (($ $) 232 (|has| |#1| (-233))) (($ $ (-767)) 230 (|has| |#1| (-233))) (($ $ (-1170)) 228 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 227 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 226 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 225 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 218) (($ $ (-1 |#1| |#1|)) 217)) (-2576 (((-641 |#2|) $) 212)) (-1568 ((|#4| $) 144) (((-767) $ |#3|) 124) (((-641 (-767)) $ (-641 |#3|)) 123) (((-767) $ |#2|) 209)) (-1311 (((-888 (-379)) $) 76 (-12 (|has| |#3| (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) 75 (-12 (|has| |#3| (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) 74 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4090 ((|#1| $) 169 (|has| |#1| (-452))) (($ $ |#3|) 100 (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 98 (-2358 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 159) (($ |#3|) 129) (($ |#2|) 214) (($ (-407 (-564))) 72 (-2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 79 (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) 162)) (-2007 ((|#1| $ |#4|) 149) (($ $ |#3| (-767)) 122) (($ $ (-641 |#3|) (-641 (-767))) 121)) (-2420 (((-3 $ "failed") $) 73 (-2807 (-2358 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) 29 T CONST)) (-3242 (($ $ $ (-767)) 167 (|has| |#1| (-172)))) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 83 (|has| |#1| (-556)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ |#3|) 39) (($ $ (-641 |#3|)) 38) (($ $ |#3| (-767)) 37) (($ $ (-641 |#3|) (-641 (-767))) 36) (($ $) 231 (|has| |#1| (-233))) (($ $ (-767)) 229 (|has| |#1| (-233))) (($ $ (-1170)) 224 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 223 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 222 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 221 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 220) (($ $ (-1 |#1| |#1|)) 219)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 150 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 152 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 151 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 141) (($ $ |#1|) 140)))
-(((-253 |#1| |#2| |#3| |#4|) (-140) (-1045) (-846) (-266 |t#2|) (-789)) (T -253))
-((-4206 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6)))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-641 *4)))) (-3744 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-1568 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-641 (-767))))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-2828 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-641 (-767))))) (-3476 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112)))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-789)) (-4 *2 (-266 *4)))) (-3252 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-4206 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6)))))
-(-13 (-945 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1034 |t#2|) (-10 -8 (-15 -4206 ((-1 $ (-767)) |t#2|)) (-15 -2576 ((-641 |t#2|) $)) (-15 -3744 ((-767) $ |t#2|)) (-15 -3744 ((-767) $)) (-15 -1568 ((-767) $ |t#2|)) (-15 -2828 ((-641 (-767)) $)) (-15 -3476 ((-767) $)) (-15 -2828 ((-641 (-767)) $ |t#2|)) (-15 -3476 ((-767) $ |t#2|)) (-15 -4384 ((-112) $)) (-15 -1453 (|t#3| $)) (-15 -3252 ($ $)) (-15 -3505 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -4206 ((-1 $ (-767)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#2|) . T) ((-614 |#3|) . T) ((-614 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#3| (-612 (-888 (-379))))) ((-612 (-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#3| (-612 (-888 (-564))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2807 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-722) . T) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#3| (-882 (-564)))) ((-945 |#1| |#4| |#3|) . T) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1034 |#2|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-905)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3661 ((|#1| $) 55)) (-2462 ((|#1| $) 45)) (-1876 (((-112) $ (-767)) 8)) (-4080 (($) 7 T CONST)) (-4332 (($ $) 61)) (-2563 (($ $) 49)) (-3780 ((|#1| |#1| $) 47)) (-2026 ((|#1| $) 46)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2581 (((-767) $) 62)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3149 ((|#1| $) 40)) (-3331 ((|#1| |#1| $) 53)) (-1953 ((|#1| |#1| $) 52)) (-2566 (($ |#1| $) 41)) (-1292 (((-767) $) 56)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1304 ((|#1| $) 63)) (-2147 ((|#1| $) 51)) (-4271 ((|#1| $) 50)) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-2570 ((|#1| |#1| $) 59)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-1821 ((|#1| $) 60)) (-2629 (($) 58) (($ (-641 |#1|)) 57)) (-1928 (((-767) $) 44)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-4170 ((|#1| $) 54)) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) 43)) (-2773 ((|#1| $) 64)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-254 |#1|) (-140) (-1209)) (T -254))
-((-2629 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2629 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3331 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-1953 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2147 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-4271 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2563 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(-13 (-1115 |t#1|) (-991 |t#1|) (-10 -8 (-15 -2629 ($)) (-15 -2629 ($ (-641 |t#1|))) (-15 -1292 ((-767) $)) (-15 -3661 (|t#1| $)) (-15 -4170 (|t#1| $)) (-15 -3331 (|t#1| |t#1| $)) (-15 -1953 (|t#1| |t#1| $)) (-15 -2147 (|t#1| $)) (-15 -4271 (|t#1| $)) (-15 -2563 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-991 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1115 |#1|) . T) ((-1209) . T))
-((-4276 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 152)) (-4353 (((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 172) (((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 170) (((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 175) (((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 171) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 163) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 162) (((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379))) 144) (((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 142) (((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379))) 143) (((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 140)) (-4316 (((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 174) (((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 173) (((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 177) (((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 176) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 165) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 164) (((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379))) 150) (((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 149) (((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379))) 148) (((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 147) (((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379))) 112) (((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 111) (((-1260) (-1 (-225) (-225)) (-1088 (-379))) 106) (((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263))) 104)))
-(((-255) (-10 -7 (-15 -4316 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -4316 ((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -4316 ((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -4316 ((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379)))) (-15 -4353 ((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -4353 ((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379)))) (-15 -4316 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -4353 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -4316 ((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -4353 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -4316 ((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -4353 ((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -4276 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255))
-((-4276 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-4316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))))
-(-10 -7 (-15 -4316 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -4316 ((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1260) (-873 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -4316 ((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-875 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -4316 ((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-1 (-939 (-225)) (-225)) (-1088 (-379)))) (-15 -4353 ((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-875 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -4353 ((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-1 (-939 (-225)) (-225)) (-1088 (-379)))) (-15 -4316 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -4353 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -4316 ((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -4353 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -4316 ((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -4353 ((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -4276 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
-((-4316 (((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))) 101)))
-(((-256 |#1| |#2|) (-10 -7 (-15 -4316 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))))) (-13 (-556) (-846) (-1034 (-564))) (-430 |#1|)) (T -256))
-((-4316 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1170)) (-5 *5 (-641 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-846) (-1034 (-564)))) (-5 *2 (-1260)) (-5 *1 (-256 *6 *7)))))
-(-10 -7 (-15 -4316 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263)))))
-((-1576 (((-564) (-564)) 73)) (-3804 (((-564) (-564)) 74)) (-2887 (((-225) (-225)) 75)) (-1578 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225))) 72)) (-1895 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112)) 70)))
-(((-257) (-10 -7 (-15 -1895 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -1578 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -1576 ((-564) (-564))) (-15 -3804 ((-564) (-564))) (-15 -2887 ((-225) (-225))))) (T -257))
-((-2887 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-1578 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *2 (-1261)) (-5 *1 (-257)))) (-1895 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257)))))
-(-10 -7 (-15 -1895 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -1578 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -1576 ((-564) (-564))) (-15 -3804 ((-564) (-564))) (-15 -2887 ((-225) (-225))))
-((-2423 (((-1086 (-379)) (-1086 (-316 |#1|))) 16)))
-(((-258 |#1|) (-10 -7 (-15 -2423 ((-1086 (-379)) (-1086 (-316 |#1|))))) (-13 (-846) (-556) (-612 (-379)))) (T -258))
-((-2423 (*1 *2 *3) (-12 (-5 *3 (-1086 (-316 *4))) (-4 *4 (-13 (-846) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379))) (-5 *1 (-258 *4)))))
-(-10 -7 (-15 -2423 ((-1086 (-379)) (-1086 (-316 |#1|)))))
-((-4353 (((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379))) 75) (((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 74) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379))) 65) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 64) (((-1127 (-225)) (-875 |#1|) (-1086 (-379))) 56) (((-1127 (-225)) (-875 |#1|) (-1086 (-379)) (-641 (-263))) 55)) (-4316 (((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379))) 78) (((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 77) (((-1261) |#1| (-1086 (-379)) (-1086 (-379))) 68) (((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 67) (((-1261) (-875 |#1|) (-1086 (-379))) 60) (((-1261) (-875 |#1|) (-1086 (-379)) (-641 (-263))) 59) (((-1260) (-873 |#1|) (-1086 (-379))) 47) (((-1260) (-873 |#1|) (-1086 (-379)) (-641 (-263))) 46) (((-1260) |#1| (-1086 (-379))) 38) (((-1260) |#1| (-1086 (-379)) (-641 (-263))) 36)))
-(((-259 |#1|) (-10 -7 (-15 -4316 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -4316 ((-1260) |#1| (-1086 (-379)))) (-15 -4316 ((-1260) (-873 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -4316 ((-1260) (-873 |#1|) (-1086 (-379)))) (-15 -4316 ((-1261) (-875 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-875 |#1|) (-1086 (-379)))) (-15 -4353 ((-1127 (-225)) (-875 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-875 |#1|) (-1086 (-379)))) (-15 -4316 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -4353 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -4316 ((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -4353 ((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379))))) (-13 (-612 (-536)) (-1094))) (T -259))
-((-4353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-4353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-4316 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-4316 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-4353 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-4353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-4316 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-4316 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-4316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-873 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *5)))) (-4316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *6)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-4316 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))))
-(-10 -7 (-15 -4316 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -4316 ((-1260) |#1| (-1086 (-379)))) (-15 -4316 ((-1260) (-873 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -4316 ((-1260) (-873 |#1|) (-1086 (-379)))) (-15 -4316 ((-1261) (-875 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-875 |#1|) (-1086 (-379)))) (-15 -4353 ((-1127 (-225)) (-875 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-875 |#1|) (-1086 (-379)))) (-15 -4316 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -4353 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -4316 ((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -4316 ((-1261) (-878 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -4353 ((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -4353 ((-1127 (-225)) (-878 |#1|) (-1086 (-379)) (-1086 (-379)))))
-((-4316 (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263))) 23) (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225))) 24) (((-1260) (-641 (-939 (-225))) (-641 (-263))) 16) (((-1260) (-641 (-939 (-225)))) 17) (((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263))) 20) (((-1260) (-641 (-225)) (-641 (-225))) 21)))
-(((-260) (-10 -7 (-15 -4316 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -4316 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -4316 ((-1260) (-641 (-939 (-225))))) (-15 -4316 ((-1260) (-641 (-939 (-225))) (-641 (-263)))) (-15 -4316 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -4316 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263)))))) (T -260))
-((-4316 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-4316 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-4316 (*1 *2 *3) (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-4316 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-4316 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1260)) (-5 *1 (-260)))))
-(-10 -7 (-15 -4316 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -4316 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -4316 ((-1260) (-641 (-939 (-225))))) (-15 -4316 ((-1260) (-641 (-939 (-225))) (-641 (-263)))) (-15 -4316 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -4316 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263)))))
-((-3889 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-2289 (((-917) (-641 (-263)) (-917)) 52)) (-3261 (((-917) (-641 (-263)) (-917)) 51)) (-3170 (((-641 (-379)) (-641 (-263)) (-641 (-379))) 68)) (-1514 (((-379) (-641 (-263)) (-379)) 57)) (-4076 (((-917) (-641 (-263)) (-917)) 53)) (-3048 (((-112) (-641 (-263)) (-112)) 27)) (-3348 (((-1152) (-641 (-263)) (-1152)) 19)) (-1706 (((-1152) (-641 (-263)) (-1152)) 26)) (-2987 (((-1127 (-225)) (-641 (-263))) 46)) (-2019 (((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379)))) 40)) (-3852 (((-870) (-641 (-263)) (-870)) 32)) (-2544 (((-870) (-641 (-263)) (-870)) 33)) (-4184 (((-1 (-939 (-225)) (-939 (-225))) (-641 (-263)) (-1 (-939 (-225)) (-939 (-225)))) 63)) (-1905 (((-112) (-641 (-263)) (-112)) 14)) (-2318 (((-112) (-641 (-263)) (-112)) 13)))
-(((-261) (-10 -7 (-15 -2318 ((-112) (-641 (-263)) (-112))) (-15 -1905 ((-112) (-641 (-263)) (-112))) (-15 -3889 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3348 ((-1152) (-641 (-263)) (-1152))) (-15 -1706 ((-1152) (-641 (-263)) (-1152))) (-15 -3048 ((-112) (-641 (-263)) (-112))) (-15 -3852 ((-870) (-641 (-263)) (-870))) (-15 -2544 ((-870) (-641 (-263)) (-870))) (-15 -2019 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -3261 ((-917) (-641 (-263)) (-917))) (-15 -2289 ((-917) (-641 (-263)) (-917))) (-15 -2987 ((-1127 (-225)) (-641 (-263)))) (-15 -4076 ((-917) (-641 (-263)) (-917))) (-15 -1514 ((-379) (-641 (-263)) (-379))) (-15 -4184 ((-1 (-939 (-225)) (-939 (-225))) (-641 (-263)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -3170 ((-641 (-379)) (-641 (-263)) (-641 (-379)))))) (T -261))
-((-3170 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-4184 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-4076 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261)))) (-2289 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3261 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2019 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2544 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3852 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3048 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1706 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3348 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3889 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1905 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2318 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
-(-10 -7 (-15 -2318 ((-112) (-641 (-263)) (-112))) (-15 -1905 ((-112) (-641 (-263)) (-112))) (-15 -3889 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3348 ((-1152) (-641 (-263)) (-1152))) (-15 -1706 ((-1152) (-641 (-263)) (-1152))) (-15 -3048 ((-112) (-641 (-263)) (-112))) (-15 -3852 ((-870) (-641 (-263)) (-870))) (-15 -2544 ((-870) (-641 (-263)) (-870))) (-15 -2019 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -3261 ((-917) (-641 (-263)) (-917))) (-15 -2289 ((-917) (-641 (-263)) (-917))) (-15 -2987 ((-1127 (-225)) (-641 (-263)))) (-15 -4076 ((-917) (-641 (-263)) (-917))) (-15 -1514 ((-379) (-641 (-263)) (-379))) (-15 -4184 ((-1 (-939 (-225)) (-939 (-225))) (-641 (-263)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -3170 ((-641 (-379)) (-641 (-263)) (-641 (-379)))))
-((-1503 (((-3 |#1| "failed") (-641 (-263)) (-1170)) 17)))
-(((-262 |#1|) (-10 -7 (-15 -1503 ((-3 |#1| "failed") (-641 (-263)) (-1170)))) (-1209)) (T -262))
-((-1503 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *1 (-262 *2)) (-4 *2 (-1209)))))
-(-10 -7 (-15 -1503 ((-3 |#1| "failed") (-641 (-263)) (-1170))))
-((-3009 (((-112) $ $) NIL)) (-3889 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-2289 (($ (-917)) 80)) (-3261 (($ (-917)) 79)) (-2885 (($ (-641 (-379))) 86)) (-1514 (($ (-379)) 66)) (-4076 (($ (-917)) 81)) (-3048 (($ (-112)) 33)) (-3348 (($ (-1152)) 28)) (-1706 (($ (-1152)) 29)) (-2987 (($ (-1127 (-225))) 75)) (-2019 (($ (-641 (-1088 (-379)))) 71)) (-2141 (($ (-641 (-1088 (-379)))) 67) (($ (-641 (-1088 (-407 (-564))))) 70)) (-1511 (($ (-379)) 38) (($ (-870)) 42)) (-4323 (((-112) (-641 $) (-1170)) 99)) (-1503 (((-3 (-52) "failed") (-641 $) (-1170)) 101)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1970 (($ (-379)) 43) (($ (-870)) 44)) (-4225 (($ (-1 (-939 (-225)) (-939 (-225)))) 65)) (-4184 (($ (-1 (-939 (-225)) (-939 (-225)))) 82)) (-2388 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-2423 (((-858) $) 92)) (-3005 (($ (-112)) 34) (($ (-641 (-1088 (-379)))) 60)) (-1860 (((-112) $ $) NIL)) (-2318 (($ (-112)) 35)) (-2974 (((-112) $ $) 96)))
-(((-263) (-13 (-1094) (-10 -8 (-15 -2318 ($ (-112))) (-15 -3005 ($ (-112))) (-15 -3889 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3348 ($ (-1152))) (-15 -1706 ($ (-1152))) (-15 -3048 ($ (-112))) (-15 -3005 ($ (-641 (-1088 (-379))))) (-15 -4225 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -1511 ($ (-379))) (-15 -1511 ($ (-870))) (-15 -1970 ($ (-379))) (-15 -1970 ($ (-870))) (-15 -2388 ($ (-1 (-225) (-225)))) (-15 -2388 ($ (-1 (-225) (-225) (-225)))) (-15 -2388 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1514 ($ (-379))) (-15 -2141 ($ (-641 (-1088 (-379))))) (-15 -2141 ($ (-641 (-1088 (-407 (-564)))))) (-15 -2019 ($ (-641 (-1088 (-379))))) (-15 -2987 ($ (-1127 (-225)))) (-15 -3261 ($ (-917))) (-15 -2289 ($ (-917))) (-15 -4076 ($ (-917))) (-15 -4184 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -2885 ($ (-641 (-379)))) (-15 -1503 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -4323 ((-112) (-641 $) (-1170)))))) (T -263))
-((-2318 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-3005 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-3889 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-3048 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-3005 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2141 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-2141 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263)))) (-2019 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-2987 (*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263)))) (-3261 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) (-2885 (*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263)))) (-1503 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52)) (-5 *1 (-263)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112)) (-5 *1 (-263)))))
-(-13 (-1094) (-10 -8 (-15 -2318 ($ (-112))) (-15 -3005 ($ (-112))) (-15 -3889 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3348 ($ (-1152))) (-15 -1706 ($ (-1152))) (-15 -3048 ($ (-112))) (-15 -3005 ($ (-641 (-1088 (-379))))) (-15 -4225 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -1511 ($ (-379))) (-15 -1511 ($ (-870))) (-15 -1970 ($ (-379))) (-15 -1970 ($ (-870))) (-15 -2388 ($ (-1 (-225) (-225)))) (-15 -2388 ($ (-1 (-225) (-225) (-225)))) (-15 -2388 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1514 ($ (-379))) (-15 -2141 ($ (-641 (-1088 (-379))))) (-15 -2141 ($ (-641 (-1088 (-407 (-564)))))) (-15 -2019 ($ (-641 (-1088 (-379))))) (-15 -2987 ($ (-1127 (-225)))) (-15 -3261 ($ (-917))) (-15 -2289 ($ (-917))) (-15 -4076 ($ (-917))) (-15 -4184 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -2885 ($ (-641 (-379)))) (-15 -1503 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -4323 ((-112) (-641 $) (-1170)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2828 (((-641 (-767)) $) NIL) (((-641 (-767)) $ |#2|) NIL)) (-3476 (((-767) $) NIL) (((-767) $ |#2|) NIL)) (-3836 (((-641 |#3|) $) NIL)) (-3660 (((-1166 $) $ |#3|) NIL) (((-1166 |#1|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 |#3|)) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2683 (($ $) NIL (|has| |#1| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3505 (($ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1119 |#1| |#2|) "failed") $) 23)) (-3120 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1119 |#1| |#2|) $) NIL)) (-2746 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-1684 (($ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#1| (-905)))) (-3850 (($ $ |#1| (-531 |#3|) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| |#1| (-882 (-564))) (|has| |#3| (-882 (-564)))))) (-3744 (((-767) $ |#2|) NIL) (((-767) $) 10)) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-3824 (($ (-1166 |#1|) |#3|) NIL) (($ (-1166 $) |#3|) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-641 |#3|) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ |#3|) NIL)) (-2043 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-641 (-767)) $ (-641 |#3|)) NIL)) (-1948 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-4206 (((-1 $ (-767)) |#2|) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-3025 (((-3 |#3| "failed") $) NIL)) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-1453 ((|#3| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2766 (((-1152) $) NIL)) (-4384 (((-112) $) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| |#3|) (|:| -1838 (-767))) "failed") $) NIL)) (-3252 (($ $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 ((|#1| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-641 |#3|) (-641 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-1330 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-3254 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-641 |#3|) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2576 (((-641 |#2|) $) NIL)) (-1568 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-641 (-767)) $ (-641 |#3|)) NIL) (((-767) $ |#2|) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#3| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#3| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))))) (-4090 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1119 |#1| |#2|)) 32) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-641 |#3|) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-641 |#3|) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-264 |#1| |#2| |#3|) (-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1034 (-1119 |#1| |#2|))) (-1045) (-846) (-266 |#2|)) (T -264))
-NIL
-(-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1034 (-1119 |#1| |#2|)))
-((-3476 (((-767) $) 37)) (-4284 (((-3 |#2| "failed") $) 22)) (-3120 ((|#2| $) 33)) (-3254 (($ $) 14) (($ $ (-767)) 18)) (-2423 (((-858) $) 32) (($ |#2|) 11)) (-2974 (((-112) $ $) 26)) (-2999 (((-112) $ $) 36)))
-(((-265 |#1| |#2|) (-10 -8 (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1|)) (-15 -3476 ((-767) |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -2999 ((-112) |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|))) (-266 |#2|) (-846)) (T -265))
-NIL
-(-10 -8 (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1|)) (-15 -3476 ((-767) |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -2999 ((-112) |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-3476 (((-767) $) 23)) (-3395 ((|#1| $) 24)) (-4284 (((-3 |#1| "failed") $) 28)) (-3120 ((|#1| $) 29)) (-3744 (((-767) $) 25)) (-2855 (($ $ $) 14)) (-1497 (($ $ $) 15)) (-4206 (($ |#1| (-767)) 26)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-3254 (($ $) 22) (($ $ (-767)) 21)) (-2423 (((-858) $) 12) (($ |#1|) 27)) (-1860 (((-112) $ $) 9)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)))
-(((-266 |#1|) (-140) (-846)) (T -266))
-((-2423 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3395 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3254 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846)))))
-(-13 (-846) (-1034 |t#1|) (-10 -8 (-15 -4206 ($ |t#1| (-767))) (-15 -3744 ((-767) $)) (-15 -3395 (|t#1| $)) (-15 -3476 ((-767) $)) (-15 -3254 ($ $)) (-15 -3254 ($ $ (-767))) (-15 -2423 ($ |t#1|))))
-(((-102) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-846) . T) ((-1034 |#1|) . T) ((-1094) . T))
-((-3836 (((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) 54)) (-3058 (((-641 (-1170)) (-316 (-225)) (-767)) 96)) (-1754 (((-3 (-316 (-225)) "failed") (-316 (-225))) 64)) (-2763 (((-316 (-225)) (-316 (-225))) 82)) (-3541 (((-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 39)) (-3197 (((-112) (-641 (-316 (-225)))) 106)) (-1300 (((-112) (-316 (-225))) 37)) (-3676 (((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))))) 134)) (-2106 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 110)) (-3415 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 108)) (-1448 (((-685 (-225)) (-641 (-316 (-225))) (-767)) 122)) (-2768 (((-112) (-316 (-225))) 32) (((-112) (-641 (-316 (-225)))) 107)) (-4174 (((-641 (-225)) (-641 (-839 (-225))) (-225)) 15)) (-3832 (((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) 128)) (-2538 (((-1031) (-1170) (-1031)) 47)))
-(((-267) (-10 -7 (-15 -4174 ((-641 (-225)) (-641 (-839 (-225))) (-225))) (-15 -3541 ((-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))) (-15 -1754 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2763 ((-316 (-225)) (-316 (-225)))) (-15 -3197 ((-112) (-641 (-316 (-225))))) (-15 -2768 ((-112) (-641 (-316 (-225))))) (-15 -2768 ((-112) (-316 (-225)))) (-15 -1448 ((-685 (-225)) (-641 (-316 (-225))) (-767))) (-15 -3415 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -2106 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -1300 ((-112) (-316 (-225)))) (-15 -3836 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) (-15 -3058 ((-641 (-1170)) (-316 (-225)) (-767))) (-15 -2538 ((-1031) (-1170) (-1031))) (-15 -3832 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) (-15 -3676 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))))))) (T -267))
-((-3676 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))))) (-5 *2 (-641 (-1152))) (-5 *1 (-267)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-2538 (*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1170)) (-5 *1 (-267)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-767)) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2106 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-3415 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-1448 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-767)) (-5 *2 (-685 (-225))) (-5 *1 (-267)))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2763 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-1754 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3541 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (-5 *1 (-267)))) (-4174 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-839 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4)) (-5 *1 (-267)))))
-(-10 -7 (-15 -4174 ((-641 (-225)) (-641 (-839 (-225))) (-225))) (-15 -3541 ((-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))) (-15 -1754 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2763 ((-316 (-225)) (-316 (-225)))) (-15 -3197 ((-112) (-641 (-316 (-225))))) (-15 -2768 ((-112) (-641 (-316 (-225))))) (-15 -2768 ((-112) (-316 (-225)))) (-15 -1448 ((-685 (-225)) (-641 (-316 (-225))) (-767))) (-15 -3415 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -2106 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -1300 ((-112) (-316 (-225)))) (-15 -3836 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) (-15 -3058 ((-641 (-1170)) (-316 (-225)) (-767))) (-15 -2538 ((-1031) (-1170) (-1031))) (-15 -3832 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) (-15 -3676 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))))))
-((-3009 (((-112) $ $) NIL)) (-4033 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 56)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 32) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-268) (-835)) (T -268))
-NIL
-(-835)
-((-3009 (((-112) $ $) NIL)) (-4033 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) 75) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 66)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 45) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) 47)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-269) (-835)) (T -269))
-NIL
-(-835)
-((-3009 (((-112) $ $) NIL)) (-4033 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) 91) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 86)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 56) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) 67)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-270) (-835)) (T -270))
-NIL
-(-835)
-((-3009 (((-112) $ $) NIL)) (-4033 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 73)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 45) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-271) (-835)) (T -271))
-NIL
-(-835)
-((-3009 (((-112) $ $) NIL)) (-4033 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 65)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 31) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-272) (-835)) (T -272))
-NIL
-(-835)
-((-3009 (((-112) $ $) NIL)) (-4033 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 90)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 33) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-273) (-835)) (T -273))
-NIL
-(-835)
-((-3009 (((-112) $ $) NIL)) (-4033 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 95)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 32) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-274) (-835)) (T -274))
-NIL
-(-835)
-((-3009 (((-112) $ $) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-4045 (((-641 (-564)) $) 29)) (-1568 (((-767) $) 27)) (-2423 (((-858) $) 36) (($ (-641 (-564))) 23)) (-1860 (((-112) $ $) NIL)) (-1882 (($ (-767)) 33)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 9)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 17)))
-(((-275) (-13 (-846) (-10 -8 (-15 -2423 ($ (-641 (-564)))) (-15 -1568 ((-767) $)) (-15 -4045 ((-641 (-564)) $)) (-15 -1882 ($ (-767)))))) (T -275))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-1882 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275)))))
-(-13 (-846) (-10 -8 (-15 -2423 ($ (-641 (-564)))) (-15 -1568 ((-767) $)) (-15 -4045 ((-641 (-564)) $)) (-15 -1882 ($ (-767)))))
-((-3880 ((|#2| |#2|) 77)) (-3745 ((|#2| |#2|) 65)) (-4156 (((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3858 ((|#2| |#2|) 75)) (-3722 ((|#2| |#2|) 63)) (-3902 ((|#2| |#2|) 79)) (-3766 ((|#2| |#2|) 67)) (-4274 ((|#2|) 46)) (-4232 (((-114) (-114)) 100)) (-3657 ((|#2| |#2|) 61)) (-2164 (((-112) |#2|) 147)) (-4291 ((|#2| |#2|) 195)) (-2023 ((|#2| |#2|) 171)) (-1971 ((|#2|) 59)) (-3344 ((|#2|) 58)) (-2545 ((|#2| |#2|) 191)) (-2391 ((|#2| |#2|) 167)) (-4027 ((|#2| |#2|) 199)) (-2233 ((|#2| |#2|) 175)) (-4130 ((|#2| |#2|) 163)) (-3608 ((|#2| |#2|) 165)) (-4218 ((|#2| |#2|) 201)) (-1793 ((|#2| |#2|) 177)) (-3819 ((|#2| |#2|) 197)) (-2614 ((|#2| |#2|) 173)) (-3746 ((|#2| |#2|) 193)) (-2638 ((|#2| |#2|) 169)) (-3951 ((|#2| |#2|) 207)) (-1538 ((|#2| |#2|) 183)) (-2269 ((|#2| |#2|) 203)) (-3463 ((|#2| |#2|) 179)) (-2316 ((|#2| |#2|) 211)) (-2630 ((|#2| |#2|) 187)) (-4131 ((|#2| |#2|) 213)) (-1482 ((|#2| |#2|) 189)) (-4278 ((|#2| |#2|) 209)) (-4362 ((|#2| |#2|) 185)) (-1417 ((|#2| |#2|) 205)) (-2510 ((|#2| |#2|) 181)) (-1689 ((|#2| |#2|) 62)) (-3914 ((|#2| |#2|) 80)) (-3777 ((|#2| |#2|) 68)) (-3891 ((|#2| |#2|) 78)) (-3756 ((|#2| |#2|) 66)) (-3869 ((|#2| |#2|) 76)) (-3735 ((|#2| |#2|) 64)) (-3263 (((-112) (-114)) 98)) (-3949 ((|#2| |#2|) 83)) (-3811 ((|#2| |#2|) 71)) (-3925 ((|#2| |#2|) 81)) (-3787 ((|#2| |#2|) 69)) (-3972 ((|#2| |#2|) 85)) (-3837 ((|#2| |#2|) 73)) (-2784 ((|#2| |#2|) 86)) (-3848 ((|#2| |#2|) 74)) (-3960 ((|#2| |#2|) 84)) (-3825 ((|#2| |#2|) 72)) (-3937 ((|#2| |#2|) 82)) (-3799 ((|#2| |#2|) 70)))
-(((-276 |#1| |#2|) (-10 -7 (-15 -1689 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3722 (|#2| |#2|)) (-15 -3735 (|#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -3756 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3777 (|#2| |#2|)) (-15 -3787 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3858 (|#2| |#2|)) (-15 -3869 (|#2| |#2|)) (-15 -3880 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3902 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3972 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -4274 (|#2|)) (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 -3344 (|#2|)) (-15 -1971 (|#2|)) (-15 -3608 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2023 (|#2| |#2|)) (-15 -2614 (|#2| |#2|)) (-15 -2233 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -2510 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -4362 (|#2| |#2|)) (-15 -2630 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -2545 (|#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -4291 (|#2| |#2|)) (-15 -3819 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -3951 (|#2| |#2|)) (-15 -4278 (|#2| |#2|)) (-15 -2316 (|#2| |#2|)) (-15 -4131 (|#2| |#2|)) (-15 -4156 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2164 ((-112) |#2|))) (-556) (-13 (-430 |#1|) (-998))) (T -276))
-((-2164 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-998))))) (-4156 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-998))) (-4 *4 (-556)) (-5 *1 (-276 *4 *2)))) (-4131 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2316 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4278 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1417 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4027 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3819 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4291 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3746 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2630 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4362 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2510 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2233 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2023 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3608 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1971 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-556)))) (-3344 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-556)))) (-4232 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-998))))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-998))))) (-4274 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-556)))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3972 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3880 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3869 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3777 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3756 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3735 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))))
-(-10 -7 (-15 -1689 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3722 (|#2| |#2|)) (-15 -3735 (|#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -3756 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3777 (|#2| |#2|)) (-15 -3787 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3858 (|#2| |#2|)) (-15 -3869 (|#2| |#2|)) (-15 -3880 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3902 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3972 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -4274 (|#2|)) (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 -3344 (|#2|)) (-15 -1971 (|#2|)) (-15 -3608 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2023 (|#2| |#2|)) (-15 -2614 (|#2| |#2|)) (-15 -2233 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -2510 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -4362 (|#2| |#2|)) (-15 -2630 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -2545 (|#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -4291 (|#2| |#2|)) (-15 -3819 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -3951 (|#2| |#2|)) (-15 -4278 (|#2| |#2|)) (-15 -2316 (|#2| |#2|)) (-15 -4131 (|#2| |#2|)) (-15 -4156 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2164 ((-112) |#2|)))
-((-3159 (((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170)) 153)) (-1868 ((|#2| (-407 (-564)) |#2|) 49)) (-1422 ((|#2| |#2| (-610 |#2|)) 146)) (-2216 (((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170)) 145)) (-4060 ((|#2| |#2| (-1170)) 20) ((|#2| |#2|) 23)) (-2520 ((|#2| |#2| (-1170)) 159) ((|#2| |#2|) 157)))
-(((-277 |#1| |#2|) (-10 -7 (-15 -2520 (|#2| |#2|)) (-15 -2520 (|#2| |#2| (-1170))) (-15 -2216 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -4060 (|#2| |#2|)) (-15 -4060 (|#2| |#2| (-1170))) (-15 -3159 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -1422 (|#2| |#2| (-610 |#2|))) (-15 -1868 (|#2| (-407 (-564)) |#2|))) (-13 (-556) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -277))
-((-1868 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-1422 (*1 *2 *2 *3) (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))) (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)))) (-3159 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *5 *2)))) (-4060 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2216 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3))) (|:| |vals| (-641 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2520 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2520 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
-(-10 -7 (-15 -2520 (|#2| |#2|)) (-15 -2520 (|#2| |#2| (-1170))) (-15 -2216 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -4060 (|#2| |#2|)) (-15 -4060 (|#2| |#2| (-1170))) (-15 -3159 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -1422 (|#2| |#2| (-610 |#2|))) (-15 -1868 (|#2| (-407 (-564)) |#2|)))
-((-1849 (((-3 |#3| "failed") |#3|) 121)) (-3880 ((|#3| |#3|) 143)) (-1320 (((-3 |#3| "failed") |#3|) 89)) (-3745 ((|#3| |#3|) 133)) (-3921 (((-3 |#3| "failed") |#3|) 65)) (-3858 ((|#3| |#3|) 141)) (-3325 (((-3 |#3| "failed") |#3|) 53)) (-3722 ((|#3| |#3|) 131)) (-3055 (((-3 |#3| "failed") |#3|) 123)) (-3902 ((|#3| |#3|) 145)) (-1446 (((-3 |#3| "failed") |#3|) 91)) (-3766 ((|#3| |#3|) 135)) (-2625 (((-3 |#3| "failed") |#3| (-767)) 41)) (-3857 (((-3 |#3| "failed") |#3|) 81)) (-3657 ((|#3| |#3|) 130)) (-3597 (((-3 |#3| "failed") |#3|) 51)) (-1689 ((|#3| |#3|) 129)) (-2777 (((-3 |#3| "failed") |#3|) 124)) (-3914 ((|#3| |#3|) 146)) (-1510 (((-3 |#3| "failed") |#3|) 92)) (-3777 ((|#3| |#3|) 136)) (-3307 (((-3 |#3| "failed") |#3|) 122)) (-3891 ((|#3| |#3|) 144)) (-1628 (((-3 |#3| "failed") |#3|) 90)) (-3756 ((|#3| |#3|) 134)) (-4302 (((-3 |#3| "failed") |#3|) 67)) (-3869 ((|#3| |#3|) 142)) (-1318 (((-3 |#3| "failed") |#3|) 55)) (-3735 ((|#3| |#3|) 132)) (-3570 (((-3 |#3| "failed") |#3|) 73)) (-3949 ((|#3| |#3|) 149)) (-1535 (((-3 |#3| "failed") |#3|) 115)) (-3811 ((|#3| |#3|) 155)) (-1499 (((-3 |#3| "failed") |#3|) 69)) (-3925 ((|#3| |#3|) 147)) (-2543 (((-3 |#3| "failed") |#3|) 57)) (-3787 ((|#3| |#3|) 137)) (-3073 (((-3 |#3| "failed") |#3|) 77)) (-3972 ((|#3| |#3|) 151)) (-3173 (((-3 |#3| "failed") |#3|) 61)) (-3837 ((|#3| |#3|) 139)) (-4292 (((-3 |#3| "failed") |#3|) 79)) (-2784 ((|#3| |#3|) 152)) (-3110 (((-3 |#3| "failed") |#3|) 63)) (-3848 ((|#3| |#3|) 140)) (-3958 (((-3 |#3| "failed") |#3|) 75)) (-3960 ((|#3| |#3|) 150)) (-3472 (((-3 |#3| "failed") |#3|) 118)) (-3825 ((|#3| |#3|) 156)) (-3102 (((-3 |#3| "failed") |#3|) 71)) (-3937 ((|#3| |#3|) 148)) (-1396 (((-3 |#3| "failed") |#3|) 59)) (-3799 ((|#3| |#3|) 138)) (** ((|#3| |#3| (-407 (-564))) 47 (|has| |#1| (-363)))))
-(((-278 |#1| |#2| |#3|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -1689 (|#3| |#3|)) (-15 -3657 (|#3| |#3|)) (-15 -3722 (|#3| |#3|)) (-15 -3735 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3756 (|#3| |#3|)) (-15 -3766 (|#3| |#3|)) (-15 -3777 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3858 (|#3| |#3|)) (-15 -3869 (|#3| |#3|)) (-15 -3880 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3902 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3972 (|#3| |#3|)) (-15 -2784 (|#3| |#3|)))) (-38 (-407 (-564))) (-1250 |#1|) (-1221 |#1| |#2|)) (T -278))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1250 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1221 *4 *5)))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3735 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3756 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3777 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3869 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3880 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3972 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))))
-(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -1689 (|#3| |#3|)) (-15 -3657 (|#3| |#3|)) (-15 -3722 (|#3| |#3|)) (-15 -3735 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3756 (|#3| |#3|)) (-15 -3766 (|#3| |#3|)) (-15 -3777 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3858 (|#3| |#3|)) (-15 -3869 (|#3| |#3|)) (-15 -3880 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3902 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3972 (|#3| |#3|)) (-15 -2784 (|#3| |#3|))))
-((-1849 (((-3 |#3| "failed") |#3|) 70)) (-3880 ((|#3| |#3|) 137)) (-1320 (((-3 |#3| "failed") |#3|) 54)) (-3745 ((|#3| |#3|) 125)) (-3921 (((-3 |#3| "failed") |#3|) 66)) (-3858 ((|#3| |#3|) 135)) (-3325 (((-3 |#3| "failed") |#3|) 50)) (-3722 ((|#3| |#3|) 123)) (-3055 (((-3 |#3| "failed") |#3|) 74)) (-3902 ((|#3| |#3|) 139)) (-1446 (((-3 |#3| "failed") |#3|) 58)) (-3766 ((|#3| |#3|) 127)) (-2625 (((-3 |#3| "failed") |#3| (-767)) 38)) (-3857 (((-3 |#3| "failed") |#3|) 48)) (-3657 ((|#3| |#3|) 111)) (-3597 (((-3 |#3| "failed") |#3|) 46)) (-1689 ((|#3| |#3|) 122)) (-2777 (((-3 |#3| "failed") |#3|) 76)) (-3914 ((|#3| |#3|) 140)) (-1510 (((-3 |#3| "failed") |#3|) 60)) (-3777 ((|#3| |#3|) 128)) (-3307 (((-3 |#3| "failed") |#3|) 72)) (-3891 ((|#3| |#3|) 138)) (-1628 (((-3 |#3| "failed") |#3|) 56)) (-3756 ((|#3| |#3|) 126)) (-4302 (((-3 |#3| "failed") |#3|) 68)) (-3869 ((|#3| |#3|) 136)) (-1318 (((-3 |#3| "failed") |#3|) 52)) (-3735 ((|#3| |#3|) 124)) (-3570 (((-3 |#3| "failed") |#3|) 78)) (-3949 ((|#3| |#3|) 143)) (-1535 (((-3 |#3| "failed") |#3|) 62)) (-3811 ((|#3| |#3|) 131)) (-1499 (((-3 |#3| "failed") |#3|) 112)) (-3925 ((|#3| |#3|) 141)) (-2543 (((-3 |#3| "failed") |#3|) 100)) (-3787 ((|#3| |#3|) 129)) (-3073 (((-3 |#3| "failed") |#3|) 116)) (-3972 ((|#3| |#3|) 145)) (-3173 (((-3 |#3| "failed") |#3|) 107)) (-3837 ((|#3| |#3|) 133)) (-4292 (((-3 |#3| "failed") |#3|) 117)) (-2784 ((|#3| |#3|) 146)) (-3110 (((-3 |#3| "failed") |#3|) 109)) (-3848 ((|#3| |#3|) 134)) (-3958 (((-3 |#3| "failed") |#3|) 80)) (-3960 ((|#3| |#3|) 144)) (-3472 (((-3 |#3| "failed") |#3|) 64)) (-3825 ((|#3| |#3|) 132)) (-3102 (((-3 |#3| "failed") |#3|) 113)) (-3937 ((|#3| |#3|) 142)) (-1396 (((-3 |#3| "failed") |#3|) 103)) (-3799 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-407 (-564))) 44 (|has| |#1| (-363)))))
-(((-279 |#1| |#2| |#3| |#4|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -1689 (|#3| |#3|)) (-15 -3657 (|#3| |#3|)) (-15 -3722 (|#3| |#3|)) (-15 -3735 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3756 (|#3| |#3|)) (-15 -3766 (|#3| |#3|)) (-15 -3777 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3858 (|#3| |#3|)) (-15 -3869 (|#3| |#3|)) (-15 -3880 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3902 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3972 (|#3| |#3|)) (-15 -2784 (|#3| |#3|)))) (-38 (-407 (-564))) (-1219 |#1|) (-1242 |#1| |#2|) (-979 |#2|)) (T -279))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1219 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1242 *4 *5)) (-4 *6 (-979 *5)))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3735 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3756 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3777 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3869 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3880 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-3972 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4)))))
-(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -1689 (|#3| |#3|)) (-15 -3657 (|#3| |#3|)) (-15 -3722 (|#3| |#3|)) (-15 -3735 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3756 (|#3| |#3|)) (-15 -3766 (|#3| |#3|)) (-15 -3777 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3858 (|#3| |#3|)) (-15 -3869 (|#3| |#3|)) (-15 -3880 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3902 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3925 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3972 (|#3| |#3|)) (-15 -2784 (|#3| |#3|))))
-((-3350 (((-112) $) 20)) (-2992 (((-183) $) 7)) (-1450 (((-3 (-506) "failed") $) 14)) (-3148 (((-3 (-641 $) "failed") $) NIL)) (-2178 (((-3 (-506) "failed") $) 21)) (-1950 (((-3 (-1098) "failed") $) 18)) (-2252 (((-112) $) 16)) (-2423 (((-858) $) NIL)) (-1426 (((-112) $) 9)))
-(((-280) (-13 (-611 (-858)) (-10 -8 (-15 -2992 ((-183) $)) (-15 -2252 ((-112) $)) (-15 -1950 ((-3 (-1098) "failed") $)) (-15 -3350 ((-112) $)) (-15 -2178 ((-3 (-506) "failed") $)) (-15 -1426 ((-112) $)) (-15 -1450 ((-3 (-506) "failed") $)) (-15 -3148 ((-3 (-641 $) "failed") $))))) (T -280))
-((-2992 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-1950 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2178 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-1450 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-3148 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280)))))
-(-13 (-611 (-858)) (-10 -8 (-15 -2992 ((-183) $)) (-15 -2252 ((-112) $)) (-15 -1950 ((-3 (-1098) "failed") $)) (-15 -3350 ((-112) $)) (-15 -2178 ((-3 (-506) "failed") $)) (-15 -1426 ((-112) $)) (-15 -1450 ((-3 (-506) "failed") $)) (-15 -3148 ((-3 (-641 $) "failed") $))))
-((-1667 (($ (-1 (-112) |#2|) $) 24)) (-2696 (($ $) 38)) (-1945 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2591 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2087 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4248 (($ |#2| $ (-564)) 20) (($ $ $ (-564)) 22)) (-2114 (($ $ (-564)) 11) (($ $ (-1226 (-564))) 14)) (-3634 (($ $ |#2|) 32) (($ $ $) NIL)) (-3696 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-641 $)) NIL)))
-(((-281 |#1| |#2|) (-10 -8 (-15 -2087 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -2087 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -4248 (|#1| |#1| |#1| (-564))) (-15 -4248 (|#1| |#2| |#1| (-564))) (-15 -2114 (|#1| |#1| (-1226 (-564)))) (-15 -2114 (|#1| |#1| (-564))) (-15 -3696 (|#1| (-641 |#1|))) (-15 -3696 (|#1| |#1| |#1|)) (-15 -3696 (|#1| |#2| |#1|)) (-15 -3696 (|#1| |#1| |#2|)) (-15 -2591 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1667 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2591 (|#1| |#2| |#1|)) (-15 -2696 (|#1| |#1|))) (-282 |#2|) (-1209)) (T -281))
-NIL
-(-10 -8 (-15 -2087 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -2087 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -4248 (|#1| |#1| |#1| (-564))) (-15 -4248 (|#1| |#2| |#1| (-564))) (-15 -2114 (|#1| |#1| (-1226 (-564)))) (-15 -2114 (|#1| |#1| (-564))) (-15 -3696 (|#1| (-641 |#1|))) (-15 -3696 (|#1| |#1| |#1|)) (-15 -3696 (|#1| |#2| |#1|)) (-15 -3696 (|#1| |#1| |#2|)) (-15 -2591 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1667 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2591 (|#1| |#2| |#1|)) (-15 -2696 (|#1| |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3236 (((-1264) $ (-564) (-564)) 41 (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) 8)) (-3904 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) 59 (|has| $ (-6 -4408)))) (-1466 (($ (-1 (-112) |#1|) $) 86)) (-1667 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2679 (($ $) 84 (|has| |#1| (-1094)))) (-2696 (($ $) 79 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1945 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1094)))) (-2591 (($ |#1| $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 52)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-4238 (($ (-767) |#1|) 70)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 44 (|has| (-564) (-846)))) (-2087 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 45 (|has| (-564) (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2566 (($ |#1| $ (-564)) 89) (($ $ $ (-564)) 88)) (-4248 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3050 (((-641 (-564)) $) 47)) (-1563 (((-112) (-564) $) 48)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2658 ((|#1| $) 43 (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1592 (($ $ |#1|) 42 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1226 (-564))) 64)) (-2251 (($ $ (-564)) 92) (($ $ (-1226 (-564))) 91)) (-2114 (($ $ (-564)) 63) (($ $ (-1226 (-564))) 62)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 71)) (-3634 (($ $ |#1|) 94) (($ $ $) 93)) (-3696 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-641 $)) 66)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-282 |#1|) (-140) (-1209)) (T -282))
-((-3634 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-3634 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-2251 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2251 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-1945 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2566 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-2566 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2087 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-1466 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-1945 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-2679 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-2087 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-846)))))
-(-13 (-647 |t#1|) (-10 -8 (-6 -4408) (-15 -3634 ($ $ |t#1|)) (-15 -3634 ($ $ $)) (-15 -2251 ($ $ (-564))) (-15 -2251 ($ $ (-1226 (-564)))) (-15 -1945 ($ (-1 (-112) |t#1|) $)) (-15 -2566 ($ |t#1| $ (-564))) (-15 -2566 ($ $ $ (-564))) (-15 -2087 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1466 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -1945 ($ |t#1| $)) (-15 -2679 ($ $))) |%noBranch|) (IF (|has| |t#1| (-846)) (-15 -2087 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3638 (($ (-919)) NIL (|has| |#4| (-1047)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3532 (($ $ $) NIL (|has| |#4| (-791)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-2521 (((-769)) NIL (|has| |#4| (-368)))) (-2959 (((-564) $) NIL (|has| |#4| (-846)))) (-3877 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1097))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#4| (-1036 (-564))) (|has| |#4| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#4| (-1036 (-407 (-564)))) (|has| |#4| (-1097))))) (-3027 ((|#4| $) NIL (|has| |#4| (-1097))) (((-564) $) NIL (-12 (|has| |#4| (-1036 (-564))) (|has| |#4| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#4| (-1036 (-407 (-564)))) (|has| |#4| (-1097))))) (-4315 (((-2 (|:| -1780 (-687 |#4|)) (|:| |vec| (-1262 |#4|))) (-687 $) (-1262 $)) NIL (|has| |#4| (-1047))) (((-687 |#4|) (-687 $)) NIL (|has| |#4| (-1047))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))))) (-3104 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))))) (-2433 (($) NIL (|has| |#4| (-368)))) (-2625 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#4| $ (-564)) NIL)) (-2538 (((-112) $) NIL (|has| |#4| (-846)))) (-2936 (((-642 |#4|) $) NIL (|has| $ (-6 -4410)))) (-3953 (((-112) $) NIL (-2706 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))))) (-3333 (((-112) $) NIL (|has| |#4| (-846)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (-2706 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-3234 (((-642 |#4|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (-2706 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-2613 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) NIL)) (-1945 (((-919) $) NIL (|has| |#4| (-368)))) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-2047 (($ (-919)) NIL (|has| |#4| (-368)))) (-4033 (((-1117) $) NIL)) (-2557 ((|#4| $) NIL (|has| (-564) (-848)))) (-2696 (($ $ |#4|) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2724 (((-642 |#4|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#4| $ (-564) |#4|) NIL) ((|#4| $ (-564)) 16)) (-2619 ((|#4| $ $) NIL (|has| |#4| (-1047)))) (-3685 (($ (-1262 |#4|)) NIL)) (-3474 (((-134)) NIL (|has| |#4| (-363)))) (-3175 (($ $ (-1 |#4| |#4|) (-769)) NIL (|has| |#4| (-1047))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1047)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))))) (-4043 (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410))) (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-1262 |#4|) $) NIL) (((-860) $) NIL) (($ |#4|) NIL (|has| |#4| (-1097))) (($ (-564)) NIL (-2706 (-12 (|has| |#4| (-1036 (-564))) (|has| |#4| (-1097))) (|has| |#4| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#4| (-1036 (-407 (-564)))) (|has| |#4| (-1097))))) (-2756 (((-769)) NIL (|has| |#4| (-1047)) CONST)) (-1648 (((-112) $ $) NIL)) (-2710 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1381 (($ $) NIL (|has| |#4| (-846)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL (-2706 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) CONST)) (-4044 (($ $ (-1 |#4| |#4|) (-769)) NIL (|has| |#4| (-1047))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1047)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))))) (-2934 (((-112) $ $) NIL (-2706 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-2908 (((-112) $ $) NIL (-2706 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (-2706 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-2897 (((-112) $ $) NIL (-2706 (|has| |#4| (-791)) (|has| |#4| (-846))))) (-2998 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-2987 (($ $ $) NIL) (($ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-769)) NIL (-2706 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047))))) (($ $ (-919)) NIL (-2706 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))))) (* (($ |#2| $) 18) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-724))) (($ |#4| $) NIL (|has| |#4| (-724))) (($ $ $) NIL (-2706 (-12 (|has| |#4| (-233)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1047))) (|has| |#4| (-724)) (-12 (|has| |#4| (-898 (-1173))) (|has| |#4| (-1047)))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-646 |#2|) (-646 |#3|)) (-919) (-1047) (-1120 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-646 |#2|)) (T -250))
+NIL
+(-13 (-238 |#1| |#4|) (-646 |#2|) (-646 |#3|))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3638 (($ (-919)) NIL (|has| |#3| (-1047)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3532 (($ $ $) NIL (|has| |#3| (-791)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-2521 (((-769)) NIL (|has| |#3| (-368)))) (-2959 (((-564) $) NIL (|has| |#3| (-846)))) (-3877 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1097))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097))))) (-3027 ((|#3| $) NIL (|has| |#3| (-1097))) (((-564) $) NIL (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097))))) (-4315 (((-2 (|:| -1780 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 $) (-1262 $)) NIL (|has| |#3| (-1047))) (((-687 |#3|) (-687 $)) NIL (|has| |#3| (-1047))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))))) (-3104 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))))) (-2433 (($) NIL (|has| |#3| (-368)))) (-2625 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#3| $ (-564)) NIL)) (-2538 (((-112) $) NIL (|has| |#3| (-846)))) (-2936 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-3953 (((-112) $) NIL (-2706 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))))) (-3333 (((-112) $) NIL (|has| |#3| (-846)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-3234 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2613 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#3| |#3|) $) NIL)) (-1945 (((-919) $) NIL (|has| |#3| (-368)))) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-2047 (($ (-919)) NIL (|has| |#3| (-368)))) (-4033 (((-1117) $) NIL)) (-2557 ((|#3| $) NIL (|has| (-564) (-848)))) (-2696 (($ $ |#3|) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-642 |#3|) (-642 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-2724 (((-642 |#3|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) 15)) (-2619 ((|#3| $ $) NIL (|has| |#3| (-1047)))) (-3685 (($ (-1262 |#3|)) NIL)) (-3474 (((-134)) NIL (|has| |#3| (-363)))) (-3175 (($ $ (-1 |#3| |#3|) (-769)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))))) (-4043 (((-769) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410))) (((-769) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-1262 |#3|) $) NIL) (((-860) $) NIL) (($ |#3|) NIL (|has| |#3| (-1097))) (($ (-564)) NIL (-2706 (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (|has| |#3| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097))))) (-2756 (((-769)) NIL (|has| |#3| (-1047)) CONST)) (-1648 (((-112) $ $) NIL)) (-2710 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-1381 (($ $) NIL (|has| |#3| (-846)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL (-2706 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) CONST)) (-4044 (($ $ (-1 |#3| |#3|) (-769)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))))) (-2934 (((-112) $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2908 (((-112) $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2897 (((-112) $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2998 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-2987 (($ $ $) NIL) (($ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-769)) NIL (-2706 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047))))) (($ $ (-919)) NIL (-2706 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))))) (* (($ |#2| $) 17) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-724))) (($ |#3| $) NIL (|has| |#3| (-724))) (($ $ $) NIL (-2706 (-12 (|has| |#3| (-233)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047))) (|has| |#3| (-724)) (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-251 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-646 |#2|)) (-769) (-1047) (-646 |#2|)) (T -251))
+NIL
+(-13 (-238 |#1| |#3|) (-646 |#2|))
+((-2773 (((-642 (-769)) $) 56) (((-642 (-769)) $ |#3|) 59)) (-1915 (((-769) $) 58) (((-769) $ |#3|) 61)) (-2236 (($ $) 76)) (-4278 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-1427 (((-769) $ |#3|) 43) (((-769) $) 38)) (-2089 (((-1 $ (-769)) |#3|) 15) (((-1 $ (-769)) $) 88)) (-1471 ((|#4| $) 69)) (-4240 (((-112) $) 67)) (-3173 (($ $) 75)) (-3215 (($ $ (-642 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-642 |#4|) (-642 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-642 |#4|) (-642 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-642 |#3|) (-642 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-642 |#3|) (-642 |#2|)) 100)) (-3175 (($ $ |#4|) NIL) (($ $ (-642 |#4|)) NIL) (($ $ |#4| (-769)) NIL) (($ $ (-642 |#4|) (-642 (-769))) NIL) (($ $) NIL) (($ $ (-769)) NIL) (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1410 (((-642 |#3|) $) 86)) (-2775 ((|#5| $) NIL) (((-769) $ |#4|) NIL) (((-642 (-769)) $ (-642 |#4|)) NIL) (((-769) $ |#3|) 49)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-407 (-564))) NIL) (($ $) NIL)))
+(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2327 (|#1| |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -3215 (|#1| |#1| (-642 |#3|) (-642 |#2|))) (-15 -3215 (|#1| |#1| |#3| |#2|)) (-15 -3215 (|#1| |#1| (-642 |#3|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#3| |#1|)) (-15 -2089 ((-1 |#1| (-769)) |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -1471 (|#4| |#1|)) (-15 -4240 ((-112) |#1|)) (-15 -1915 ((-769) |#1| |#3|)) (-15 -2773 ((-642 (-769)) |#1| |#3|)) (-15 -1915 ((-769) |#1|)) (-15 -2773 ((-642 (-769)) |#1|)) (-15 -2775 ((-769) |#1| |#3|)) (-15 -1427 ((-769) |#1|)) (-15 -1427 ((-769) |#1| |#3|)) (-15 -1410 ((-642 |#3|) |#1|)) (-15 -2089 ((-1 |#1| (-769)) |#3|)) (-15 -2327 (|#1| |#3|)) (-15 -4278 ((-3 |#3| "failed") |#1|)) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1|)) (-15 -2775 ((-642 (-769)) |#1| (-642 |#4|))) (-15 -2775 ((-769) |#1| |#4|)) (-15 -2327 (|#1| |#4|)) (-15 -4278 ((-3 |#4| "failed") |#1|)) (-15 -3215 (|#1| |#1| (-642 |#4|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#4| |#1|)) (-15 -3215 (|#1| |#1| (-642 |#4|) (-642 |#2|))) (-15 -3215 (|#1| |#1| |#4| |#2|)) (-15 -3215 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| (-294 |#1|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -2775 (|#5| |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -3175 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -3175 (|#1| |#1| |#4| (-769))) (-15 -3175 (|#1| |#1| (-642 |#4|))) (-15 -3175 (|#1| |#1| |#4|)) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1047) (-848) (-266 |#3|) (-791)) (T -252))
+NIL
+(-10 -8 (-15 -2327 (|#1| |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -3215 (|#1| |#1| (-642 |#3|) (-642 |#2|))) (-15 -3215 (|#1| |#1| |#3| |#2|)) (-15 -3215 (|#1| |#1| (-642 |#3|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#3| |#1|)) (-15 -2089 ((-1 |#1| (-769)) |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -1471 (|#4| |#1|)) (-15 -4240 ((-112) |#1|)) (-15 -1915 ((-769) |#1| |#3|)) (-15 -2773 ((-642 (-769)) |#1| |#3|)) (-15 -1915 ((-769) |#1|)) (-15 -2773 ((-642 (-769)) |#1|)) (-15 -2775 ((-769) |#1| |#3|)) (-15 -1427 ((-769) |#1|)) (-15 -1427 ((-769) |#1| |#3|)) (-15 -1410 ((-642 |#3|) |#1|)) (-15 -2089 ((-1 |#1| (-769)) |#3|)) (-15 -2327 (|#1| |#3|)) (-15 -4278 ((-3 |#3| "failed") |#1|)) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1|)) (-15 -2775 ((-642 (-769)) |#1| (-642 |#4|))) (-15 -2775 ((-769) |#1| |#4|)) (-15 -2327 (|#1| |#4|)) (-15 -4278 ((-3 |#4| "failed") |#1|)) (-15 -3215 (|#1| |#1| (-642 |#4|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#4| |#1|)) (-15 -3215 (|#1| |#1| (-642 |#4|) (-642 |#2|))) (-15 -3215 (|#1| |#1| |#4| |#2|)) (-15 -3215 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| (-294 |#1|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -2775 (|#5| |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -3175 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -3175 (|#1| |#1| |#4| (-769))) (-15 -3175 (|#1| |#1| (-642 |#4|))) (-15 -3175 (|#1| |#1| |#4|)) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-2773 (((-642 (-769)) $) 216) (((-642 (-769)) $ |#2|) 214)) (-1915 (((-769) $) 215) (((-769) $ |#2|) 213)) (-3802 (((-642 |#3|) $) 112)) (-3615 (((-1169 $) $ |#3|) 127) (((-1169 |#1|) $) 126)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 89 (|has| |#1| (-556)))) (-1387 (($ $) 90 (|has| |#1| (-556)))) (-2037 (((-112) $) 92 (|has| |#1| (-556)))) (-4055 (((-769) $) 114) (((-769) $ (-642 |#3|)) 113)) (-1532 (((-3 $ "failed") $ $) 20)) (-2951 (((-418 (-1169 $)) (-1169 $)) 102 (|has| |#1| (-907)))) (-4316 (($ $) 100 (|has| |#1| (-452)))) (-1978 (((-418 $) $) 99 (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 105 (|has| |#1| (-907)))) (-2236 (($ $) 209)) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#1| "failed") $) 166) (((-3 (-407 (-564)) "failed") $) 163 (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) 161 (|has| |#1| (-1036 (-564)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-3027 ((|#1| $) 165) (((-407 (-564)) $) 164 (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) 162 (|has| |#1| (-1036 (-564)))) ((|#3| $) 139) ((|#2| $) 224)) (-2022 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-1718 (($ $) 156)) (-4315 (((-687 (-564)) (-687 $)) 136 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 135 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 134) (((-687 |#1|) (-687 $)) 133)) (-3104 (((-3 $ "failed") $) 37)) (-3246 (($ $) 178 (|has| |#1| (-452))) (($ $ |#3|) 107 (|has| |#1| (-452)))) (-3974 (((-642 $) $) 111)) (-1469 (((-112) $) 98 (|has| |#1| (-907)))) (-2575 (($ $ |#1| |#4| $) 174)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 86 (-12 (|has| |#3| (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 85 (-12 (|has| |#3| (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-1427 (((-769) $ |#2|) 219) (((-769) $) 218)) (-3953 (((-112) $) 35)) (-3934 (((-769) $) 171)) (-3790 (($ (-1169 |#1|) |#3|) 119) (($ (-1169 $) |#3|) 118)) (-1763 (((-642 $) $) 128)) (-2316 (((-112) $) 154)) (-3774 (($ |#1| |#4|) 155) (($ $ |#3| (-769)) 121) (($ $ (-642 |#3|) (-642 (-769))) 120)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ |#3|) 122)) (-1398 ((|#4| $) 172) (((-769) $ |#3|) 124) (((-642 (-769)) $ (-642 |#3|)) 123)) (-2026 (($ (-1 |#4| |#4|) $) 173)) (-4358 (($ (-1 |#1| |#1|) $) 153)) (-2089 (((-1 $ (-769)) |#2|) 221) (((-1 $ (-769)) $) 208 (|has| |#1| (-233)))) (-4184 (((-3 |#3| "failed") $) 125)) (-3950 (($ $) 151)) (-3962 ((|#1| $) 150)) (-1471 ((|#3| $) 211)) (-2049 (($ (-642 $)) 96 (|has| |#1| (-452))) (($ $ $) 95 (|has| |#1| (-452)))) (-3315 (((-1155) $) 10)) (-4240 (((-112) $) 212)) (-1572 (((-3 (-642 $) "failed") $) 116)) (-1802 (((-3 (-642 $) "failed") $) 117)) (-3611 (((-3 (-2 (|:| |var| |#3|) (|:| -2700 (-769))) "failed") $) 115)) (-3173 (($ $) 210)) (-4033 (((-1117) $) 11)) (-3921 (((-112) $) 168)) (-3932 ((|#1| $) 169)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 97 (|has| |#1| (-452)))) (-2080 (($ (-642 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) 104 (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) 103 (|has| |#1| (-907)))) (-3643 (((-418 $) $) 101 (|has| |#1| (-907)))) (-2896 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-556)))) (-3215 (($ $ (-642 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-642 $) (-642 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-642 |#3|) (-642 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-642 |#3|) (-642 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-642 |#2|) (-642 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-642 |#2|) (-642 |#1|)) 204 (|has| |#1| (-233)))) (-1846 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3175 (($ $ |#3|) 46) (($ $ (-642 |#3|)) 45) (($ $ |#3| (-769)) 44) (($ $ (-642 |#3|) (-642 (-769))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-769)) 238 (|has| |#1| (-233))) (($ $ (-1173)) 236 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 235 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 234 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 233 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1410 (((-642 |#2|) $) 220)) (-2775 ((|#4| $) 152) (((-769) $ |#3|) 132) (((-642 (-769)) $ (-642 |#3|)) 131) (((-769) $ |#2|) 217)) (-1314 (((-890 (-379)) $) 84 (-12 (|has| |#3| (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) 83 (-12 (|has| |#3| (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) 82 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4028 ((|#1| $) 177 (|has| |#1| (-452))) (($ $ |#3|) 108 (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 106 (-2275 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-407 (-564))) 80 (-2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 87 (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) 170)) (-2102 ((|#1| $ |#4|) 157) (($ $ |#3| (-769)) 130) (($ $ (-642 |#3|) (-642 (-769))) 129)) (-2439 (((-3 $ "failed") $) 81 (-2706 (-2275 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) 32 T CONST)) (-1967 (($ $ $ (-769)) 175 (|has| |#1| (-172)))) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 91 (|has| |#1| (-556)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ |#3|) 42) (($ $ (-642 |#3|)) 41) (($ $ |#3| (-769)) 40) (($ $ (-642 |#3|) (-642 (-769))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-769)) 237 (|has| |#1| (-233))) (($ $ (-1173)) 232 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 231 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 230 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 229 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 158 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 160 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 159 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-253 |#1| |#2| |#3| |#4|) (-140) (-1047) (-848) (-266 |t#2|) (-791)) (T -253))
+((-2089 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-1 *1 (-769))) (-4 *1 (-253 *4 *3 *5 *6)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-642 *4)))) (-1427 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-769)))) (-2775 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769)))) (-2773 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-642 (-769))))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-769)))) (-2773 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-642 (-769))))) (-1915 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-112)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-791)) (-4 *2 (-266 *4)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-848)) (-4 *4 (-266 *3)) (-4 *5 (-791)))) (-2236 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-848)) (-4 *4 (-266 *3)) (-4 *5 (-791)))) (-2089 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-1 *1 (-769))) (-4 *1 (-253 *3 *4 *5 *6)))))
+(-13 (-947 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1036 |t#2|) (-10 -8 (-15 -2089 ((-1 $ (-769)) |t#2|)) (-15 -1410 ((-642 |t#2|) $)) (-15 -1427 ((-769) $ |t#2|)) (-15 -1427 ((-769) $)) (-15 -2775 ((-769) $ |t#2|)) (-15 -2773 ((-642 (-769)) $)) (-15 -1915 ((-769) $)) (-15 -2773 ((-642 (-769)) $ |t#2|)) (-15 -1915 ((-769) $ |t#2|)) (-15 -4240 ((-112) $)) (-15 -1471 (|t#3| $)) (-15 -3173 ($ $)) (-15 -2236 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -2089 ((-1 $ (-769)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#2|) . T) ((-614 |#3|) . T) ((-614 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#3| (-612 (-890 (-379))))) ((-612 (-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#3| (-612 (-890 (-564))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2706 (|has| |#1| (-907)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-724) . T) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-898 |#3|) . T) ((-884 (-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#3| (-884 (-379)))) ((-884 (-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#3| (-884 (-564)))) ((-947 |#1| |#4| |#3|) . T) ((-907) |has| |#1| (-907)) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1036 |#2|) . T) ((-1036 |#3|) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) |has| |#1| (-907)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3686 ((|#1| $) 55)) (-2362 ((|#1| $) 45)) (-3697 (((-112) $ (-769)) 8)) (-1976 (($) 7 T CONST)) (-4166 (($ $) 61)) (-2087 (($ $) 49)) (-1428 ((|#1| |#1| $) 47)) (-1744 ((|#1| $) 46)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-2480 (((-769) $) 62)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2730 ((|#1| $) 40)) (-1704 ((|#1| |#1| $) 53)) (-3604 ((|#1| |#1| $) 52)) (-3183 (($ |#1| $) 41)) (-1295 (((-769) $) 56)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-1353 ((|#1| $) 63)) (-1479 ((|#1| $) 51)) (-1475 ((|#1| $) 50)) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-2311 ((|#1| |#1| $) 59)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-1456 ((|#1| $) 60)) (-3945 (($) 58) (($ (-642 |#1|)) 57)) (-1930 (((-769) $) 44)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1825 ((|#1| $) 54)) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) 43)) (-1733 ((|#1| $) 64)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-254 |#1|) (-140) (-1212)) (T -254))
+((-3945 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-254 *3)))) (-1295 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-1704 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-3604 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))) (-2087 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))))
+(-13 (-1118 |t#1|) (-993 |t#1|) (-10 -8 (-15 -3945 ($)) (-15 -3945 ($ (-642 |t#1|))) (-15 -1295 ((-769) $)) (-15 -3686 (|t#1| $)) (-15 -1825 (|t#1| $)) (-15 -1704 (|t#1| |t#1| $)) (-15 -3604 (|t#1| |t#1| $)) (-15 -1479 (|t#1| $)) (-15 -1475 (|t#1| $)) (-15 -2087 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-993 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1118 |#1|) . T) ((-1212) . T))
+((-2201 (((-1 (-941 (-225)) (-225) (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 152)) (-4353 (((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379))) 172) (((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 170) (((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379))) 175) (((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 171) (((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379))) 163) (((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 162) (((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379))) 144) (((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263))) 142) (((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379))) 143) (((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263))) 140)) (-4313 (((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379))) 174) (((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 173) (((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379))) 177) (((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 176) (((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379))) 165) (((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263))) 164) (((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379))) 150) (((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263))) 149) (((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379))) 148) (((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263))) 147) (((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379))) 112) (((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263))) 111) (((-1263) (-1 (-225) (-225)) (-1091 (-379))) 106) (((-1263) (-1 (-225) (-225)) (-1091 (-379)) (-642 (-263))) 104)))
+(((-255) (-10 -7 (-15 -4313 ((-1263) (-1 (-225) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1263) (-1 (-225) (-225)) (-1091 (-379)))) (-15 -4313 ((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -4313 ((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -4313 ((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379)))) (-15 -4353 ((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -4353 ((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379)))) (-15 -4313 ((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -4353 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -4313 ((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -4353 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -4313 ((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)))) (-15 -4353 ((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)))) (-15 -2201 ((-1 (-941 (-225)) (-225) (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255))
+((-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-941 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *2 (-1263)) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *2 (-1263)) (-5 *1 (-255)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1091 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-255)))))
+(-10 -7 (-15 -4313 ((-1263) (-1 (-225) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1263) (-1 (-225) (-225)) (-1091 (-379)))) (-15 -4313 ((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1263) (-875 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -4313 ((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-877 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -4313 ((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-1 (-941 (-225)) (-225)) (-1091 (-379)))) (-15 -4353 ((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-877 (-1 (-225) (-225))) (-1091 (-379)))) (-15 -4353 ((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-1 (-941 (-225)) (-225)) (-1091 (-379)))) (-15 -4313 ((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -4353 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -4313 ((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -4353 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-379)) (-1091 (-379)))) (-15 -4313 ((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)))) (-15 -4353 ((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-880 (-1 (-225) (-225) (-225))) (-1091 (-379)) (-1091 (-379)))) (-15 -2201 ((-1 (-941 (-225)) (-225) (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
+((-4313 (((-1263) (-294 |#2|) (-1173) (-1173) (-642 (-263))) 101)))
+(((-256 |#1| |#2|) (-10 -7 (-15 -4313 ((-1263) (-294 |#2|) (-1173) (-1173) (-642 (-263))))) (-13 (-556) (-848) (-1036 (-564))) (-430 |#1|)) (T -256))
+((-4313 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1173)) (-5 *5 (-642 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-848) (-1036 (-564)))) (-5 *2 (-1263)) (-5 *1 (-256 *6 *7)))))
+(-10 -7 (-15 -4313 ((-1263) (-294 |#2|) (-1173) (-1173) (-642 (-263)))))
+((-3037 (((-564) (-564)) 73)) (-2660 (((-564) (-564)) 74)) (-1655 (((-225) (-225)) 75)) (-1322 (((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225))) 72)) (-2260 (((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225)) (-112)) 70)))
+(((-257) (-10 -7 (-15 -2260 ((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225)) (-112))) (-15 -1322 ((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225)))) (-15 -3037 ((-564) (-564))) (-15 -2660 ((-564) (-564))) (-15 -1655 ((-225) (-225))))) (T -257))
+((-1655 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-2660 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-3037 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-1322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1091 (-225))) (-5 *2 (-1264)) (-5 *1 (-257)))) (-2260 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1091 (-225))) (-5 *5 (-112)) (-5 *2 (-1264)) (-5 *1 (-257)))))
+(-10 -7 (-15 -2260 ((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225)) (-112))) (-15 -1322 ((-1264) (-1 (-169 (-225)) (-169 (-225))) (-1091 (-225)) (-1091 (-225)))) (-15 -3037 ((-564) (-564))) (-15 -2660 ((-564) (-564))) (-15 -1655 ((-225) (-225))))
+((-2327 (((-1089 (-379)) (-1089 (-316 |#1|))) 16)))
+(((-258 |#1|) (-10 -7 (-15 -2327 ((-1089 (-379)) (-1089 (-316 |#1|))))) (-13 (-848) (-556) (-612 (-379)))) (T -258))
+((-2327 (*1 *2 *3) (-12 (-5 *3 (-1089 (-316 *4))) (-4 *4 (-13 (-848) (-556) (-612 (-379)))) (-5 *2 (-1089 (-379))) (-5 *1 (-258 *4)))))
+(-10 -7 (-15 -2327 ((-1089 (-379)) (-1089 (-316 |#1|)))))
+((-4353 (((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379))) 75) (((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263))) 74) (((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379))) 65) (((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263))) 64) (((-1130 (-225)) (-877 |#1|) (-1089 (-379))) 56) (((-1130 (-225)) (-877 |#1|) (-1089 (-379)) (-642 (-263))) 55)) (-4313 (((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379))) 78) (((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263))) 77) (((-1264) |#1| (-1089 (-379)) (-1089 (-379))) 68) (((-1264) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263))) 67) (((-1264) (-877 |#1|) (-1089 (-379))) 60) (((-1264) (-877 |#1|) (-1089 (-379)) (-642 (-263))) 59) (((-1263) (-875 |#1|) (-1089 (-379))) 47) (((-1263) (-875 |#1|) (-1089 (-379)) (-642 (-263))) 46) (((-1263) |#1| (-1089 (-379))) 38) (((-1263) |#1| (-1089 (-379)) (-642 (-263))) 36)))
+(((-259 |#1|) (-10 -7 (-15 -4313 ((-1263) |#1| (-1089 (-379)) (-642 (-263)))) (-15 -4313 ((-1263) |#1| (-1089 (-379)))) (-15 -4313 ((-1263) (-875 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -4313 ((-1263) (-875 |#1|) (-1089 (-379)))) (-15 -4313 ((-1264) (-877 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-877 |#1|) (-1089 (-379)))) (-15 -4353 ((-1130 (-225)) (-877 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-877 |#1|) (-1089 (-379)))) (-15 -4313 ((-1264) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) |#1| (-1089 (-379)) (-1089 (-379)))) (-15 -4353 ((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379)))) (-15 -4313 ((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379)))) (-15 -4353 ((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379))))) (-13 (-612 (-536)) (-1097))) (T -259))
+((-4353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1089 (-379))) (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *5)))) (-4353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-880 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *6)))) (-4313 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1089 (-379))) (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) (-5 *1 (-259 *5)))) (-4313 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-880 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) (-5 *1 (-259 *6)))) (-4353 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) (-4353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) (-4313 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1264)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) (-4313 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1089 (-379))) (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *5)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1089 (-379))) (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) (-5 *1 (-259 *5)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264)) (-5 *1 (-259 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1089 (-379))) (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1263)) (-5 *1 (-259 *5)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1263)) (-5 *1 (-259 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1263)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097))))))
+(-10 -7 (-15 -4313 ((-1263) |#1| (-1089 (-379)) (-642 (-263)))) (-15 -4313 ((-1263) |#1| (-1089 (-379)))) (-15 -4313 ((-1263) (-875 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -4313 ((-1263) (-875 |#1|) (-1089 (-379)))) (-15 -4313 ((-1264) (-877 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-877 |#1|) (-1089 (-379)))) (-15 -4353 ((-1130 (-225)) (-877 |#1|) (-1089 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-877 |#1|) (-1089 (-379)))) (-15 -4313 ((-1264) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) |#1| (-1089 (-379)) (-1089 (-379)))) (-15 -4353 ((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) |#1| (-1089 (-379)) (-1089 (-379)))) (-15 -4313 ((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -4313 ((-1264) (-880 |#1|) (-1089 (-379)) (-1089 (-379)))) (-15 -4353 ((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379)) (-642 (-263)))) (-15 -4353 ((-1130 (-225)) (-880 |#1|) (-1089 (-379)) (-1089 (-379)))))
+((-4313 (((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225)) (-642 (-263))) 23) (((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225))) 24) (((-1263) (-642 (-941 (-225))) (-642 (-263))) 16) (((-1263) (-642 (-941 (-225)))) 17) (((-1263) (-642 (-225)) (-642 (-225)) (-642 (-263))) 20) (((-1263) (-642 (-225)) (-642 (-225))) 21)))
+(((-260) (-10 -7 (-15 -4313 ((-1263) (-642 (-225)) (-642 (-225)))) (-15 -4313 ((-1263) (-642 (-225)) (-642 (-225)) (-642 (-263)))) (-15 -4313 ((-1263) (-642 (-941 (-225))))) (-15 -4313 ((-1263) (-642 (-941 (-225))) (-642 (-263)))) (-15 -4313 ((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225)))) (-15 -4313 ((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225)) (-642 (-263)))))) (T -260))
+((-4313 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-642 (-225))) (-5 *4 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-260)))) (-4313 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1264)) (-5 *1 (-260)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *4 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-260)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *2 (-1263)) (-5 *1 (-260)))) (-4313 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-642 (-225))) (-5 *4 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-260)))) (-4313 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1263)) (-5 *1 (-260)))))
+(-10 -7 (-15 -4313 ((-1263) (-642 (-225)) (-642 (-225)))) (-15 -4313 ((-1263) (-642 (-225)) (-642 (-225)) (-642 (-263)))) (-15 -4313 ((-1263) (-642 (-941 (-225))))) (-15 -4313 ((-1263) (-642 (-941 (-225))) (-642 (-263)))) (-15 -4313 ((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225)))) (-15 -4313 ((-1264) (-642 (-225)) (-642 (-225)) (-642 (-225)) (-642 (-263)))))
+((-1360 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-642 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-3041 (((-919) (-642 (-263)) (-919)) 52)) (-2323 (((-919) (-642 (-263)) (-919)) 51)) (-3083 (((-642 (-379)) (-642 (-263)) (-642 (-379))) 68)) (-3919 (((-379) (-642 (-263)) (-379)) 57)) (-3469 (((-919) (-642 (-263)) (-919)) 53)) (-1828 (((-112) (-642 (-263)) (-112)) 27)) (-3277 (((-1155) (-642 (-263)) (-1155)) 19)) (-3828 (((-1155) (-642 (-263)) (-1155)) 26)) (-3809 (((-1130 (-225)) (-642 (-263))) 46)) (-2229 (((-642 (-1091 (-379))) (-642 (-263)) (-642 (-1091 (-379)))) 40)) (-4196 (((-872) (-642 (-263)) (-872)) 32)) (-3306 (((-872) (-642 (-263)) (-872)) 33)) (-4322 (((-1 (-941 (-225)) (-941 (-225))) (-642 (-263)) (-1 (-941 (-225)) (-941 (-225)))) 63)) (-2697 (((-112) (-642 (-263)) (-112)) 14)) (-2098 (((-112) (-642 (-263)) (-112)) 13)))
+(((-261) (-10 -7 (-15 -2098 ((-112) (-642 (-263)) (-112))) (-15 -2697 ((-112) (-642 (-263)) (-112))) (-15 -1360 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-642 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3277 ((-1155) (-642 (-263)) (-1155))) (-15 -3828 ((-1155) (-642 (-263)) (-1155))) (-15 -1828 ((-112) (-642 (-263)) (-112))) (-15 -4196 ((-872) (-642 (-263)) (-872))) (-15 -3306 ((-872) (-642 (-263)) (-872))) (-15 -2229 ((-642 (-1091 (-379))) (-642 (-263)) (-642 (-1091 (-379))))) (-15 -2323 ((-919) (-642 (-263)) (-919))) (-15 -3041 ((-919) (-642 (-263)) (-919))) (-15 -3809 ((-1130 (-225)) (-642 (-263)))) (-15 -3469 ((-919) (-642 (-263)) (-919))) (-15 -3919 ((-379) (-642 (-263)) (-379))) (-15 -4322 ((-1 (-941 (-225)) (-941 (-225))) (-642 (-263)) (-1 (-941 (-225)) (-941 (-225))))) (-15 -3083 ((-642 (-379)) (-642 (-263)) (-642 (-379)))))) (T -261))
+((-3083 (*1 *2 *3 *2) (-12 (-5 *2 (-642 (-379))) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-4322 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3919 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3469 (*1 *2 *3 *2) (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-261)))) (-3041 (*1 *2 *3 *2) (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-2323 (*1 *2 *3 *2) (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-2229 (*1 *2 *3 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3306 (*1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-4196 (*1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-1828 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3828 (*1 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-3277 (*1 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-1360 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-2697 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))) (-2098 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))))
+(-10 -7 (-15 -2098 ((-112) (-642 (-263)) (-112))) (-15 -2697 ((-112) (-642 (-263)) (-112))) (-15 -1360 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-642 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3277 ((-1155) (-642 (-263)) (-1155))) (-15 -3828 ((-1155) (-642 (-263)) (-1155))) (-15 -1828 ((-112) (-642 (-263)) (-112))) (-15 -4196 ((-872) (-642 (-263)) (-872))) (-15 -3306 ((-872) (-642 (-263)) (-872))) (-15 -2229 ((-642 (-1091 (-379))) (-642 (-263)) (-642 (-1091 (-379))))) (-15 -2323 ((-919) (-642 (-263)) (-919))) (-15 -3041 ((-919) (-642 (-263)) (-919))) (-15 -3809 ((-1130 (-225)) (-642 (-263)))) (-15 -3469 ((-919) (-642 (-263)) (-919))) (-15 -3919 ((-379) (-642 (-263)) (-379))) (-15 -4322 ((-1 (-941 (-225)) (-941 (-225))) (-642 (-263)) (-1 (-941 (-225)) (-941 (-225))))) (-15 -3083 ((-642 (-379)) (-642 (-263)) (-642 (-379)))))
+((-1526 (((-3 |#1| "failed") (-642 (-263)) (-1173)) 17)))
+(((-262 |#1|) (-10 -7 (-15 -1526 ((-3 |#1| "failed") (-642 (-263)) (-1173)))) (-1212)) (T -262))
+((-1526 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) (-5 *1 (-262 *2)) (-4 *2 (-1212)))))
+(-10 -7 (-15 -1526 ((-3 |#1| "failed") (-642 (-263)) (-1173))))
+((-2907 (((-112) $ $) NIL)) (-1360 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-3041 (($ (-919)) 80)) (-2323 (($ (-919)) 79)) (-3587 (($ (-642 (-379))) 86)) (-3919 (($ (-379)) 66)) (-3469 (($ (-919)) 81)) (-1828 (($ (-112)) 33)) (-3277 (($ (-1155)) 28)) (-3828 (($ (-1155)) 29)) (-3809 (($ (-1130 (-225))) 75)) (-2229 (($ (-642 (-1091 (-379)))) 71)) (-3894 (($ (-642 (-1091 (-379)))) 67) (($ (-642 (-1091 (-407 (-564))))) 70)) (-2886 (($ (-379)) 38) (($ (-872)) 42)) (-1666 (((-112) (-642 $) (-1173)) 99)) (-1526 (((-3 (-52) "failed") (-642 $) (-1173)) 101)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1758 (($ (-379)) 43) (($ (-872)) 44)) (-2067 (($ (-1 (-941 (-225)) (-941 (-225)))) 65)) (-4322 (($ (-1 (-941 (-225)) (-941 (-225)))) 82)) (-4182 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-2327 (((-860) $) 92)) (-1311 (($ (-112)) 34) (($ (-642 (-1091 (-379)))) 60)) (-1648 (((-112) $ $) NIL)) (-2098 (($ (-112)) 35)) (-2872 (((-112) $ $) 96)))
+(((-263) (-13 (-1097) (-10 -8 (-15 -2098 ($ (-112))) (-15 -1311 ($ (-112))) (-15 -1360 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3277 ($ (-1155))) (-15 -3828 ($ (-1155))) (-15 -1828 ($ (-112))) (-15 -1311 ($ (-642 (-1091 (-379))))) (-15 -2067 ($ (-1 (-941 (-225)) (-941 (-225))))) (-15 -2886 ($ (-379))) (-15 -2886 ($ (-872))) (-15 -1758 ($ (-379))) (-15 -1758 ($ (-872))) (-15 -4182 ($ (-1 (-225) (-225)))) (-15 -4182 ($ (-1 (-225) (-225) (-225)))) (-15 -4182 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3919 ($ (-379))) (-15 -3894 ($ (-642 (-1091 (-379))))) (-15 -3894 ($ (-642 (-1091 (-407 (-564)))))) (-15 -2229 ($ (-642 (-1091 (-379))))) (-15 -3809 ($ (-1130 (-225)))) (-15 -2323 ($ (-919))) (-15 -3041 ($ (-919))) (-15 -3469 ($ (-919))) (-15 -4322 ($ (-1 (-941 (-225)) (-941 (-225))))) (-15 -3587 ($ (-642 (-379)))) (-15 -1526 ((-3 (-52) "failed") (-642 $) (-1173))) (-15 -1666 ((-112) (-642 $) (-1173)))))) (T -263))
+((-2098 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1360 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-3277 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-263)))) (-3828 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-263)))) (-1828 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *1 (-263)))) (-2886 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2886 (*1 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-263)))) (-1758 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-1758 (*1 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-263)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-3919 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-3894 (*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263)))) (-3894 (*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-407 (-564))))) (-5 *1 (-263)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-263)))) (-2323 (*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263)))) (-3041 (*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263)))) (-4322 (*1 *1 *2) (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *1 (-263)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-263)))) (-1526 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) (-5 *2 (-52)) (-5 *1 (-263)))) (-1666 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) (-5 *2 (-112)) (-5 *1 (-263)))))
+(-13 (-1097) (-10 -8 (-15 -2098 ($ (-112))) (-15 -1311 ($ (-112))) (-15 -1360 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3277 ($ (-1155))) (-15 -3828 ($ (-1155))) (-15 -1828 ($ (-112))) (-15 -1311 ($ (-642 (-1091 (-379))))) (-15 -2067 ($ (-1 (-941 (-225)) (-941 (-225))))) (-15 -2886 ($ (-379))) (-15 -2886 ($ (-872))) (-15 -1758 ($ (-379))) (-15 -1758 ($ (-872))) (-15 -4182 ($ (-1 (-225) (-225)))) (-15 -4182 ($ (-1 (-225) (-225) (-225)))) (-15 -4182 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3919 ($ (-379))) (-15 -3894 ($ (-642 (-1091 (-379))))) (-15 -3894 ($ (-642 (-1091 (-407 (-564)))))) (-15 -2229 ($ (-642 (-1091 (-379))))) (-15 -3809 ($ (-1130 (-225)))) (-15 -2323 ($ (-919))) (-15 -3041 ($ (-919))) (-15 -3469 ($ (-919))) (-15 -4322 ($ (-1 (-941 (-225)) (-941 (-225))))) (-15 -3587 ($ (-642 (-379)))) (-15 -1526 ((-3 (-52) "failed") (-642 $) (-1173))) (-15 -1666 ((-112) (-642 $) (-1173)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2773 (((-642 (-769)) $) NIL) (((-642 (-769)) $ |#2|) NIL)) (-1915 (((-769) $) NIL) (((-769) $ |#2|) NIL)) (-3802 (((-642 |#3|) $) NIL)) (-3615 (((-1169 $) $ |#3|) NIL) (((-1169 |#1|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 |#3|)) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4316 (($ $) NIL (|has| |#1| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (($ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1122 |#1| |#2|) "failed") $) 23)) (-3027 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1122 |#1| |#2|) $) NIL)) (-2022 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-1718 (($ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#1| (-907)))) (-2575 (($ $ |#1| (-531 |#3|) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| |#1| (-884 (-379))) (|has| |#3| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| |#1| (-884 (-564))) (|has| |#3| (-884 (-564)))))) (-1427 (((-769) $ |#2|) NIL) (((-769) $) 10)) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-3790 (($ (-1169 |#1|) |#3|) NIL) (($ (-1169 $) |#3|) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-769)) NIL) (($ $ (-642 |#3|) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ |#3|) NIL)) (-1398 (((-531 |#3|) $) NIL) (((-769) $ |#3|) NIL) (((-642 (-769)) $ (-642 |#3|)) NIL)) (-2026 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-2089 (((-1 $ (-769)) |#2|) NIL) (((-1 $ (-769)) $) NIL (|has| |#1| (-233)))) (-4184 (((-3 |#3| "failed") $) NIL)) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-1471 ((|#3| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3315 (((-1155) $) NIL)) (-4240 (((-112) $) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| |#3|) (|:| -2700 (-769))) "failed") $) NIL)) (-3173 (($ $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 ((|#1| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-642 |#3|) (-642 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-642 |#3|) (-642 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-642 |#2|) (-642 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-642 |#2|) (-642 |#1|)) NIL (|has| |#1| (-233)))) (-1846 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-3175 (($ $ |#3|) NIL) (($ $ (-642 |#3|)) NIL) (($ $ |#3| (-769)) NIL) (($ $ (-642 |#3|) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1410 (((-642 |#2|) $) NIL)) (-2775 (((-531 |#3|) $) NIL) (((-769) $ |#3|) NIL) (((-642 (-769)) $ (-642 |#3|)) NIL) (((-769) $ |#2|) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#3| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#3| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))))) (-4028 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1122 |#1| |#2|)) 32) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-769)) NIL) (($ $ (-642 |#3|) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ |#3|) NIL) (($ $ (-642 |#3|)) NIL) (($ $ |#3| (-769)) NIL) (($ $ (-642 |#3|) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-264 |#1| |#2| |#3|) (-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1036 (-1122 |#1| |#2|))) (-1047) (-848) (-266 |#2|)) (T -264))
+NIL
+(-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1036 (-1122 |#1| |#2|)))
+((-1915 (((-769) $) 37)) (-4278 (((-3 |#2| "failed") $) 22)) (-3027 ((|#2| $) 33)) (-3175 (($ $) 14) (($ $ (-769)) 18)) (-2327 (((-860) $) 32) (($ |#2|) 11)) (-2872 (((-112) $ $) 26)) (-2897 (((-112) $ $) 36)))
+(((-265 |#1| |#2|) (-10 -8 (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1|)) (-15 -1915 ((-769) |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|))) (-266 |#2|) (-848)) (T -265))
+NIL
+(-10 -8 (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1|)) (-15 -1915 ((-769) |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-1915 (((-769) $) 23)) (-3329 ((|#1| $) 24)) (-4278 (((-3 |#1| "failed") $) 28)) (-3027 ((|#1| $) 29)) (-1427 (((-769) $) 25)) (-2755 (($ $ $) 14)) (-1520 (($ $ $) 15)) (-2089 (($ |#1| (-769)) 26)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3175 (($ $) 22) (($ $ (-769)) 21)) (-2327 (((-860) $) 12) (($ |#1|) 27)) (-1648 (((-112) $ $) 9)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)))
+(((-266 |#1|) (-140) (-848)) (T -266))
+((-2327 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848)))) (-2089 (*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-266 *2)) (-4 *2 (-848)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-848)) (-5 *2 (-769)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-848)) (-5 *2 (-769)))) (-3175 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-266 *3)) (-4 *3 (-848)))))
+(-13 (-848) (-1036 |t#1|) (-10 -8 (-15 -2089 ($ |t#1| (-769))) (-15 -1427 ((-769) $)) (-15 -3329 (|t#1| $)) (-15 -1915 ((-769) $)) (-15 -3175 ($ $)) (-15 -3175 ($ $ (-769))) (-15 -2327 ($ |t#1|))))
+(((-102) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-848) . T) ((-1036 |#1|) . T) ((-1097) . T))
+((-3802 (((-642 (-1173)) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) 54)) (-2961 (((-642 (-1173)) (-316 (-225)) (-769)) 96)) (-1476 (((-3 (-316 (-225)) "failed") (-316 (-225))) 64)) (-4285 (((-316 (-225)) (-316 (-225))) 82)) (-3745 (((-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 39)) (-3483 (((-112) (-642 (-316 (-225)))) 106)) (-2833 (((-112) (-316 (-225))) 37)) (-3756 (((-642 (-1155)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))))) 134)) (-1629 (((-642 (-316 (-225))) (-642 (-316 (-225)))) 110)) (-3832 (((-642 (-316 (-225))) (-642 (-316 (-225)))) 108)) (-1897 (((-687 (-225)) (-642 (-316 (-225))) (-769)) 122)) (-4346 (((-112) (-316 (-225))) 32) (((-112) (-642 (-316 (-225)))) 107)) (-2509 (((-642 (-225)) (-642 (-841 (-225))) (-225)) 15)) (-3476 (((-379) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) 128)) (-1719 (((-1033) (-1173) (-1033)) 47)))
+(((-267) (-10 -7 (-15 -2509 ((-642 (-225)) (-642 (-841 (-225))) (-225))) (-15 -3745 ((-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))) (-15 -1476 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -4285 ((-316 (-225)) (-316 (-225)))) (-15 -3483 ((-112) (-642 (-316 (-225))))) (-15 -4346 ((-112) (-642 (-316 (-225))))) (-15 -4346 ((-112) (-316 (-225)))) (-15 -1897 ((-687 (-225)) (-642 (-316 (-225))) (-769))) (-15 -3832 ((-642 (-316 (-225))) (-642 (-316 (-225))))) (-15 -1629 ((-642 (-316 (-225))) (-642 (-316 (-225))))) (-15 -2833 ((-112) (-316 (-225)))) (-15 -3802 ((-642 (-1173)) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) (-15 -2961 ((-642 (-1173)) (-316 (-225)) (-769))) (-15 -1719 ((-1033) (-1173) (-1033))) (-15 -3476 ((-379) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) (-15 -3756 ((-642 (-1155)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))))))) (T -267))
+((-3756 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))))) (-5 *2 (-642 (-1155))) (-5 *1 (-267)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-1719 (*1 *2 *3 *2) (-12 (-5 *2 (-1033)) (-5 *3 (-1173)) (-5 *1 (-267)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-769)) (-5 *2 (-642 (-1173))) (-5 *1 (-267)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) (-5 *2 (-642 (-1173))) (-5 *1 (-267)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-1629 (*1 *2 *2) (-12 (-5 *2 (-642 (-316 (-225)))) (-5 *1 (-267)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-642 (-316 (-225)))) (-5 *1 (-267)))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *4 (-769)) (-5 *2 (-687 (-225))) (-5 *1 (-267)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-1476 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (-5 *1 (-267)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-841 (-225)))) (-5 *4 (-225)) (-5 *2 (-642 *4)) (-5 *1 (-267)))))
+(-10 -7 (-15 -2509 ((-642 (-225)) (-642 (-841 (-225))) (-225))) (-15 -3745 ((-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))) (-15 -1476 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -4285 ((-316 (-225)) (-316 (-225)))) (-15 -3483 ((-112) (-642 (-316 (-225))))) (-15 -4346 ((-112) (-642 (-316 (-225))))) (-15 -4346 ((-112) (-316 (-225)))) (-15 -1897 ((-687 (-225)) (-642 (-316 (-225))) (-769))) (-15 -3832 ((-642 (-316 (-225))) (-642 (-316 (-225))))) (-15 -1629 ((-642 (-316 (-225))) (-642 (-316 (-225))))) (-15 -2833 ((-112) (-316 (-225)))) (-15 -3802 ((-642 (-1173)) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) (-15 -2961 ((-642 (-1173)) (-316 (-225)) (-769))) (-15 -1719 ((-1033) (-1173) (-1033))) (-15 -3476 ((-379) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) (-15 -3756 ((-642 (-1155)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))))))
+((-2907 (((-112) $ $) NIL)) (-1916 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 56)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 32) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-268) (-837)) (T -268))
+NIL
+(-837)
+((-2907 (((-112) $ $) NIL)) (-1916 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) 75) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 66)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 45) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) 47)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-269) (-837)) (T -269))
+NIL
+(-837)
+((-2907 (((-112) $ $) NIL)) (-1916 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) 91) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 86)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 56) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) 67)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-270) (-837)) (T -270))
+NIL
+(-837)
+((-2907 (((-112) $ $) NIL)) (-1916 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 73)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 45) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-271) (-837)) (T -271))
+NIL
+(-837)
+((-2907 (((-112) $ $) NIL)) (-1916 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 65)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 31) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-272) (-837)) (T -272))
+NIL
+(-837)
+((-2907 (((-112) $ $) NIL)) (-1916 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 90)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 33) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-273) (-837)) (T -273))
+NIL
+(-837)
+((-2907 (((-112) $ $) NIL)) (-1916 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) NIL) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 95)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 32) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-274) (-837)) (T -274))
+NIL
+(-837)
+((-2907 (((-112) $ $) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2135 (((-642 (-564)) $) 29)) (-2775 (((-769) $) 27)) (-2327 (((-860) $) 36) (($ (-642 (-564))) 23)) (-1648 (((-112) $ $) NIL)) (-4053 (($ (-769)) 33)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 9)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 17)))
+(((-275) (-13 (-848) (-10 -8 (-15 -2327 ($ (-642 (-564)))) (-15 -2775 ((-769) $)) (-15 -2135 ((-642 (-564)) $)) (-15 -4053 ($ (-769)))))) (T -275))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-275)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-275)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-275)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-275)))))
+(-13 (-848) (-10 -8 (-15 -2327 ($ (-642 (-564)))) (-15 -2775 ((-769) $)) (-15 -2135 ((-642 (-564)) $)) (-15 -4053 ($ (-769)))))
+((-3851 ((|#2| |#2|) 77)) (-3704 ((|#2| |#2|) 65)) (-4201 (((-3 |#2| "failed") |#2| (-642 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3827 ((|#2| |#2|) 75)) (-3679 ((|#2| |#2|) 63)) (-3875 ((|#2| |#2|) 79)) (-3727 ((|#2| |#2|) 67)) (-4265 ((|#2|) 46)) (-3307 (((-114) (-114)) 100)) (-3612 ((|#2| |#2|) 61)) (-2095 (((-112) |#2|) 147)) (-3096 ((|#2| |#2|) 195)) (-2876 ((|#2| |#2|) 171)) (-4388 ((|#2|) 59)) (-2577 ((|#2|) 58)) (-3257 ((|#2| |#2|) 191)) (-1716 ((|#2| |#2|) 167)) (-1845 ((|#2| |#2|) 199)) (-2611 ((|#2| |#2|) 175)) (-2390 ((|#2| |#2|) 163)) (-2651 ((|#2| |#2|) 165)) (-1370 ((|#2| |#2|) 201)) (-3189 ((|#2| |#2|) 177)) (-1820 ((|#2| |#2|) 197)) (-2932 ((|#2| |#2|) 173)) (-3551 ((|#2| |#2|) 193)) (-3588 ((|#2| |#2|) 169)) (-3529 ((|#2| |#2|) 207)) (-2365 ((|#2| |#2|) 183)) (-2144 ((|#2| |#2|) 203)) (-1342 ((|#2| |#2|) 179)) (-2030 ((|#2| |#2|) 211)) (-2945 ((|#2| |#2|) 187)) (-2278 ((|#2| |#2|) 213)) (-2979 ((|#2| |#2|) 189)) (-3143 ((|#2| |#2|) 209)) (-2844 ((|#2| |#2|) 185)) (-3467 ((|#2| |#2|) 205)) (-4188 ((|#2| |#2|) 181)) (-1723 ((|#2| |#2|) 62)) (-3888 ((|#2| |#2|) 80)) (-3739 ((|#2| |#2|) 68)) (-3863 ((|#2| |#2|) 78)) (-3716 ((|#2| |#2|) 66)) (-3839 ((|#2| |#2|) 76)) (-3693 ((|#2| |#2|) 64)) (-2357 (((-112) (-114)) 98)) (-3926 ((|#2| |#2|) 83)) (-3776 ((|#2| |#2|) 71)) (-3900 ((|#2| |#2|) 81)) (-3750 ((|#2| |#2|) 69)) (-3951 ((|#2| |#2|) 85)) (-3803 ((|#2| |#2|) 73)) (-2683 ((|#2| |#2|) 86)) (-3816 ((|#2| |#2|) 74)) (-3938 ((|#2| |#2|) 84)) (-3791 ((|#2| |#2|) 72)) (-3913 ((|#2| |#2|) 82)) (-3763 ((|#2| |#2|) 70)))
+(((-276 |#1| |#2|) (-10 -7 (-15 -1723 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -3679 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -3716 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -3763 (|#2| |#2|)) (-15 -3776 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3951 (|#2| |#2|)) (-15 -2683 (|#2| |#2|)) (-15 -4265 (|#2|)) (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 -2577 (|#2|)) (-15 -4388 (|#2|)) (-15 -2651 (|#2| |#2|)) (-15 -2390 (|#2| |#2|)) (-15 -1716 (|#2| |#2|)) (-15 -3588 (|#2| |#2|)) (-15 -2876 (|#2| |#2|)) (-15 -2932 (|#2| |#2|)) (-15 -2611 (|#2| |#2|)) (-15 -3189 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -4188 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -2844 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -3096 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -1845 (|#2| |#2|)) (-15 -1370 (|#2| |#2|)) (-15 -2144 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -3529 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -2030 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -4201 ((-3 |#2| "failed") |#2| (-642 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2095 ((-112) |#2|))) (-556) (-13 (-430 |#1|) (-1000))) (T -276))
+((-2095 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-1000))))) (-4201 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-642 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-1000))) (-4 *4 (-556)) (-5 *1 (-276 *4 *2)))) (-2278 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2030 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3143 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3529 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2144 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1370 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1845 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1820 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3551 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2979 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2945 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2365 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1342 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3189 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2611 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2932 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2876 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3588 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1716 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2390 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-4388 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2)) (-4 *3 (-556)))) (-2577 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2)) (-4 *3 (-556)))) (-3307 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-1000))))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-1000))))) (-4265 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2)) (-4 *3 (-556)))) (-2683 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3763 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3704 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3679 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))) (-1723 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000))))))
+(-10 -7 (-15 -1723 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -3679 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -3716 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -3763 (|#2| |#2|)) (-15 -3776 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3951 (|#2| |#2|)) (-15 -2683 (|#2| |#2|)) (-15 -4265 (|#2|)) (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 -2577 (|#2|)) (-15 -4388 (|#2|)) (-15 -2651 (|#2| |#2|)) (-15 -2390 (|#2| |#2|)) (-15 -1716 (|#2| |#2|)) (-15 -3588 (|#2| |#2|)) (-15 -2876 (|#2| |#2|)) (-15 -2932 (|#2| |#2|)) (-15 -2611 (|#2| |#2|)) (-15 -3189 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -4188 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -2844 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -3096 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -1845 (|#2| |#2|)) (-15 -1370 (|#2| |#2|)) (-15 -2144 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -3529 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -2030 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -4201 ((-3 |#2| "failed") |#2| (-642 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2095 ((-112) |#2|)))
+((-1433 (((-3 |#2| "failed") (-642 (-610 |#2|)) |#2| (-1173)) 153)) (-2729 ((|#2| (-407 (-564)) |#2|) 49)) (-3829 ((|#2| |#2| (-610 |#2|)) 146)) (-3229 (((-2 (|:| |func| |#2|) (|:| |kers| (-642 (-610 |#2|))) (|:| |vals| (-642 |#2|))) |#2| (-1173)) 145)) (-2662 ((|#2| |#2| (-1173)) 20) ((|#2| |#2|) 23)) (-3941 ((|#2| |#2| (-1173)) 159) ((|#2| |#2|) 157)))
+(((-277 |#1| |#2|) (-10 -7 (-15 -3941 (|#2| |#2|)) (-15 -3941 (|#2| |#2| (-1173))) (-15 -3229 ((-2 (|:| |func| |#2|) (|:| |kers| (-642 (-610 |#2|))) (|:| |vals| (-642 |#2|))) |#2| (-1173))) (-15 -2662 (|#2| |#2|)) (-15 -2662 (|#2| |#2| (-1173))) (-15 -1433 ((-3 |#2| "failed") (-642 (-610 |#2|)) |#2| (-1173))) (-15 -3829 (|#2| |#2| (-610 |#2|))) (-15 -2729 (|#2| (-407 (-564)) |#2|))) (-13 (-556) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -277))
+((-2729 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-3829 (*1 *2 *2 *3) (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)))) (-1433 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-642 (-610 *2))) (-5 *4 (-1173)) (-4 *2 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *5 *2)))) (-2662 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) (-3229 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-642 (-610 *3))) (|:| |vals| (-642 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-3941 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))))
+(-10 -7 (-15 -3941 (|#2| |#2|)) (-15 -3941 (|#2| |#2| (-1173))) (-15 -3229 ((-2 (|:| |func| |#2|) (|:| |kers| (-642 (-610 |#2|))) (|:| |vals| (-642 |#2|))) |#2| (-1173))) (-15 -2662 (|#2| |#2|)) (-15 -2662 (|#2| |#2| (-1173))) (-15 -1433 ((-3 |#2| "failed") (-642 (-610 |#2|)) |#2| (-1173))) (-15 -3829 (|#2| |#2| (-610 |#2|))) (-15 -2729 (|#2| (-407 (-564)) |#2|)))
+((-2788 (((-3 |#3| "failed") |#3|) 121)) (-3851 ((|#3| |#3|) 143)) (-1851 (((-3 |#3| "failed") |#3|) 89)) (-3704 ((|#3| |#3|) 133)) (-3975 (((-3 |#3| "failed") |#3|) 65)) (-3827 ((|#3| |#3|) 141)) (-3244 (((-3 |#3| "failed") |#3|) 53)) (-3679 ((|#3| |#3|) 131)) (-4064 (((-3 |#3| "failed") |#3|) 123)) (-3875 ((|#3| |#3|) 145)) (-3225 (((-3 |#3| "failed") |#3|) 91)) (-3727 ((|#3| |#3|) 135)) (-2334 (((-3 |#3| "failed") |#3| (-769)) 41)) (-3425 (((-3 |#3| "failed") |#3|) 81)) (-3612 ((|#3| |#3|) 130)) (-1633 (((-3 |#3| "failed") |#3|) 51)) (-1723 ((|#3| |#3|) 129)) (-2624 (((-3 |#3| "failed") |#3|) 124)) (-3888 ((|#3| |#3|) 146)) (-4228 (((-3 |#3| "failed") |#3|) 92)) (-3739 ((|#3| |#3|) 136)) (-1963 (((-3 |#3| "failed") |#3|) 122)) (-3863 ((|#3| |#3|) 144)) (-1603 (((-3 |#3| "failed") |#3|) 90)) (-3716 ((|#3| |#3|) 134)) (-1331 (((-3 |#3| "failed") |#3|) 67)) (-3839 ((|#3| |#3|) 142)) (-2500 (((-3 |#3| "failed") |#3|) 55)) (-3693 ((|#3| |#3|) 132)) (-4259 (((-3 |#3| "failed") |#3|) 73)) (-3926 ((|#3| |#3|) 149)) (-3113 (((-3 |#3| "failed") |#3|) 115)) (-3776 ((|#3| |#3|) 155)) (-3785 (((-3 |#3| "failed") |#3|) 69)) (-3900 ((|#3| |#3|) 147)) (-3630 (((-3 |#3| "failed") |#3|) 57)) (-3750 ((|#3| |#3|) 137)) (-4026 (((-3 |#3| "failed") |#3|) 77)) (-3951 ((|#3| |#3|) 151)) (-3922 (((-3 |#3| "failed") |#3|) 61)) (-3803 ((|#3| |#3|) 139)) (-2288 (((-3 |#3| "failed") |#3|) 79)) (-2683 ((|#3| |#3|) 152)) (-1458 (((-3 |#3| "failed") |#3|) 63)) (-3816 ((|#3| |#3|) 140)) (-2717 (((-3 |#3| "failed") |#3|) 75)) (-3938 ((|#3| |#3|) 150)) (-1325 (((-3 |#3| "failed") |#3|) 118)) (-3791 ((|#3| |#3|) 156)) (-2940 (((-3 |#3| "failed") |#3|) 71)) (-3913 ((|#3| |#3|) 148)) (-2705 (((-3 |#3| "failed") |#3|) 59)) (-3763 ((|#3| |#3|) 138)) (** ((|#3| |#3| (-407 (-564))) 47 (|has| |#1| (-363)))))
+(((-278 |#1| |#2| |#3|) (-13 (-981 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -1723 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3679 (|#3| |#3|)) (-15 -3693 (|#3| |#3|)) (-15 -3704 (|#3| |#3|)) (-15 -3716 (|#3| |#3|)) (-15 -3727 (|#3| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3750 (|#3| |#3|)) (-15 -3763 (|#3| |#3|)) (-15 -3776 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3875 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -2683 (|#3| |#3|)))) (-38 (-407 (-564))) (-1253 |#1|) (-1224 |#1| |#2|)) (T -278))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1253 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1224 *4 *5)))) (-1723 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3679 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3704 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3763 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))) (-2683 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4)))))
+(-13 (-981 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -1723 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3679 (|#3| |#3|)) (-15 -3693 (|#3| |#3|)) (-15 -3704 (|#3| |#3|)) (-15 -3716 (|#3| |#3|)) (-15 -3727 (|#3| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3750 (|#3| |#3|)) (-15 -3763 (|#3| |#3|)) (-15 -3776 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3875 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -2683 (|#3| |#3|))))
+((-2788 (((-3 |#3| "failed") |#3|) 70)) (-3851 ((|#3| |#3|) 137)) (-1851 (((-3 |#3| "failed") |#3|) 54)) (-3704 ((|#3| |#3|) 125)) (-3975 (((-3 |#3| "failed") |#3|) 66)) (-3827 ((|#3| |#3|) 135)) (-3244 (((-3 |#3| "failed") |#3|) 50)) (-3679 ((|#3| |#3|) 123)) (-4064 (((-3 |#3| "failed") |#3|) 74)) (-3875 ((|#3| |#3|) 139)) (-3225 (((-3 |#3| "failed") |#3|) 58)) (-3727 ((|#3| |#3|) 127)) (-2334 (((-3 |#3| "failed") |#3| (-769)) 38)) (-3425 (((-3 |#3| "failed") |#3|) 48)) (-3612 ((|#3| |#3|) 111)) (-1633 (((-3 |#3| "failed") |#3|) 46)) (-1723 ((|#3| |#3|) 122)) (-2624 (((-3 |#3| "failed") |#3|) 76)) (-3888 ((|#3| |#3|) 140)) (-4228 (((-3 |#3| "failed") |#3|) 60)) (-3739 ((|#3| |#3|) 128)) (-1963 (((-3 |#3| "failed") |#3|) 72)) (-3863 ((|#3| |#3|) 138)) (-1603 (((-3 |#3| "failed") |#3|) 56)) (-3716 ((|#3| |#3|) 126)) (-1331 (((-3 |#3| "failed") |#3|) 68)) (-3839 ((|#3| |#3|) 136)) (-2500 (((-3 |#3| "failed") |#3|) 52)) (-3693 ((|#3| |#3|) 124)) (-4259 (((-3 |#3| "failed") |#3|) 78)) (-3926 ((|#3| |#3|) 143)) (-3113 (((-3 |#3| "failed") |#3|) 62)) (-3776 ((|#3| |#3|) 131)) (-3785 (((-3 |#3| "failed") |#3|) 112)) (-3900 ((|#3| |#3|) 141)) (-3630 (((-3 |#3| "failed") |#3|) 100)) (-3750 ((|#3| |#3|) 129)) (-4026 (((-3 |#3| "failed") |#3|) 116)) (-3951 ((|#3| |#3|) 145)) (-3922 (((-3 |#3| "failed") |#3|) 107)) (-3803 ((|#3| |#3|) 133)) (-2288 (((-3 |#3| "failed") |#3|) 117)) (-2683 ((|#3| |#3|) 146)) (-1458 (((-3 |#3| "failed") |#3|) 109)) (-3816 ((|#3| |#3|) 134)) (-2717 (((-3 |#3| "failed") |#3|) 80)) (-3938 ((|#3| |#3|) 144)) (-1325 (((-3 |#3| "failed") |#3|) 64)) (-3791 ((|#3| |#3|) 132)) (-2940 (((-3 |#3| "failed") |#3|) 113)) (-3913 ((|#3| |#3|) 142)) (-2705 (((-3 |#3| "failed") |#3|) 103)) (-3763 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-407 (-564))) 44 (|has| |#1| (-363)))))
+(((-279 |#1| |#2| |#3| |#4|) (-13 (-981 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -1723 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3679 (|#3| |#3|)) (-15 -3693 (|#3| |#3|)) (-15 -3704 (|#3| |#3|)) (-15 -3716 (|#3| |#3|)) (-15 -3727 (|#3| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3750 (|#3| |#3|)) (-15 -3763 (|#3| |#3|)) (-15 -3776 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3875 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -2683 (|#3| |#3|)))) (-38 (-407 (-564))) (-1222 |#1|) (-1245 |#1| |#2|) (-981 |#2|)) (T -279))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1222 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1245 *4 *5)) (-4 *6 (-981 *5)))) (-1723 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3679 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3704 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3763 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))) (-2683 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4)))))
+(-13 (-981 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -1723 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3679 (|#3| |#3|)) (-15 -3693 (|#3| |#3|)) (-15 -3704 (|#3| |#3|)) (-15 -3716 (|#3| |#3|)) (-15 -3727 (|#3| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3750 (|#3| |#3|)) (-15 -3763 (|#3| |#3|)) (-15 -3776 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3875 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3926 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -2683 (|#3| |#3|))))
+((-1397 (((-112) $) 20)) (-2890 (((-183) $) 7)) (-4382 (((-3 (-506) "failed") $) 14)) (-3006 (((-3 (-642 $) "failed") $) NIL)) (-2552 (((-3 (-506) "failed") $) 21)) (-3740 (((-3 (-1101) "failed") $) 18)) (-1563 (((-112) $) 16)) (-2327 (((-860) $) NIL)) (-2630 (((-112) $) 9)))
+(((-280) (-13 (-611 (-860)) (-10 -8 (-15 -2890 ((-183) $)) (-15 -1563 ((-112) $)) (-15 -3740 ((-3 (-1101) "failed") $)) (-15 -1397 ((-112) $)) (-15 -2552 ((-3 (-506) "failed") $)) (-15 -2630 ((-112) $)) (-15 -4382 ((-3 (-506) "failed") $)) (-15 -3006 ((-3 (-642 $) "failed") $))))) (T -280))
+((-2890 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3740 (*1 *2 *1) (|partial| -12 (-5 *2 (-1101)) (-5 *1 (-280)))) (-1397 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2552 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-4382 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-3006 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 (-280))) (-5 *1 (-280)))))
+(-13 (-611 (-860)) (-10 -8 (-15 -2890 ((-183) $)) (-15 -1563 ((-112) $)) (-15 -3740 ((-3 (-1101) "failed") $)) (-15 -1397 ((-112) $)) (-15 -2552 ((-3 (-506) "failed") $)) (-15 -2630 ((-112) $)) (-15 -4382 ((-3 (-506) "failed") $)) (-15 -3006 ((-3 (-642 $) "failed") $))))
+((-1700 (($ (-1 (-112) |#2|) $) 24)) (-2595 (($ $) 38)) (-2265 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2490 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3427 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4238 (($ |#2| $ (-564)) 20) (($ $ $ (-564)) 22)) (-2073 (($ $ (-564)) 11) (($ $ (-1229 (-564))) 14)) (-2582 (($ $ |#2|) 32) (($ $ $) NIL)) (-3651 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-642 $)) NIL)))
+(((-281 |#1| |#2|) (-10 -8 (-15 -3427 (|#1| |#1| |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -3427 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2582 (|#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| |#2|)) (-15 -4238 (|#1| |#1| |#1| (-564))) (-15 -4238 (|#1| |#2| |#1| (-564))) (-15 -2073 (|#1| |#1| (-1229 (-564)))) (-15 -2073 (|#1| |#1| (-564))) (-15 -3651 (|#1| (-642 |#1|))) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#2|)) (-15 -2490 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1700 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2490 (|#1| |#2| |#1|)) (-15 -2595 (|#1| |#1|))) (-282 |#2|) (-1212)) (T -281))
+NIL
+(-10 -8 (-15 -3427 (|#1| |#1| |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -3427 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2582 (|#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| |#2|)) (-15 -4238 (|#1| |#1| |#1| (-564))) (-15 -4238 (|#1| |#2| |#1| (-564))) (-15 -2073 (|#1| |#1| (-1229 (-564)))) (-15 -2073 (|#1| |#1| (-564))) (-15 -3651 (|#1| (-642 |#1|))) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#2|)) (-15 -2490 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1700 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2490 (|#1| |#2| |#1|)) (-15 -2595 (|#1| |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-1765 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) 8)) (-3877 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-2462 (($ (-1 (-112) |#1|) $) 86)) (-1700 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-1938 (($ $) 84 (|has| |#1| (-1097)))) (-2595 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2265 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1097)))) (-2490 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 52)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-4227 (($ (-769) |#1|) 70)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 44 (|has| (-564) (-848)))) (-3427 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 45 (|has| (-564) (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-3183 (($ |#1| $ (-564)) 89) (($ $ $ (-564)) 88)) (-4238 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3997 (((-642 (-564)) $) 47)) (-4145 (((-112) (-564) $) 48)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2557 ((|#1| $) 43 (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2696 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-3184 (($ $ (-564)) 92) (($ $ (-1229 (-564))) 91)) (-2073 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 71)) (-2582 (($ $ |#1|) 94) (($ $ $) 93)) (-3651 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-282 |#1|) (-140) (-1212)) (T -282))
+((-2582 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)))) (-2582 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-3183 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1212)))) (-3183 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-3427 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-2462 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))) (-2265 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-1097)))) (-1938 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-1097)))) (-3427 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-848)))))
+(-13 (-649 |t#1|) (-10 -8 (-6 -4411) (-15 -2582 ($ $ |t#1|)) (-15 -2582 ($ $ $)) (-15 -3184 ($ $ (-564))) (-15 -3184 ($ $ (-1229 (-564)))) (-15 -2265 ($ (-1 (-112) |t#1|) $)) (-15 -3183 ($ |t#1| $ (-564))) (-15 -3183 ($ $ $ (-564))) (-15 -3427 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2462 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1097)) (PROGN (-15 -2265 ($ |t#1| $)) (-15 -1938 ($ $))) |%noBranch|) (IF (|has| |t#1| (-848)) (-15 -3427 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
((** (($ $ $) 10)))
(((-283 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-284)) (T -283))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-3657 (($ $) 6)) (-1689 (($ $) 7)) (** (($ $ $) 8)))
+((-3612 (($ $) 6)) (-1723 (($ $) 7)) (** (($ $ $) 8)))
(((-284) (-140)) (T -284))
-((** (*1 *1 *1 *1) (-4 *1 (-284))) (-1689 (*1 *1 *1) (-4 *1 (-284))) (-3657 (*1 *1 *1) (-4 *1 (-284))))
-(-13 (-10 -8 (-15 -3657 ($ $)) (-15 -1689 ($ $)) (-15 ** ($ $ $))))
-((-4056 (((-641 (-1150 |#1|)) (-1150 |#1|) |#1|) 35)) (-2708 ((|#2| |#2| |#1|) 39)) (-1655 ((|#2| |#2| |#1|) 41)) (-3863 ((|#2| |#2| |#1|) 40)))
-(((-285 |#1| |#2|) (-10 -7 (-15 -2708 (|#2| |#2| |#1|)) (-15 -3863 (|#2| |#2| |#1|)) (-15 -1655 (|#2| |#2| |#1|)) (-15 -4056 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|))) (-363) (-1250 |#1|)) (T -285))
-((-4056 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4)))) (-1655 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-3863 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-2708 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
-(-10 -7 (-15 -2708 (|#2| |#2| |#1|)) (-15 -3863 (|#2| |#2| |#1|)) (-15 -1655 (|#2| |#2| |#1|)) (-15 -4056 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|)))
-((-4366 ((|#2| $ |#1|) 6)))
-(((-286 |#1| |#2|) (-140) (-1094) (-1209)) (T -286))
-((-4366 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))))
-(-13 (-10 -8 (-15 -4366 (|t#2| $ |t#1|))))
-((-2726 ((|#3| $ |#2| |#3|) 12)) (-2652 ((|#3| $ |#2|) 10)))
-(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -2726 (|#3| |#1| |#2| |#3|)) (-15 -2652 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1094) (-1209)) (T -287))
-NIL
-(-10 -8 (-15 -2726 (|#3| |#1| |#2| |#3|)) (-15 -2652 (|#3| |#1| |#2|)))
-((-3904 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4408)))) (-2726 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) 11)) (-4366 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-288 |#1| |#2|) (-140) (-1094) (-1209)) (T -288))
-((-4366 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-2652 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-3904 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-2726 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))))
-(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -4366 (|t#2| $ |t#1| |t#2|)) (-15 -2652 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3904 (|t#2| $ |t#1| |t#2|)) (-15 -2726 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-284))) (-1723 (*1 *1 *1) (-4 *1 (-284))) (-3612 (*1 *1 *1) (-4 *1 (-284))))
+(-13 (-10 -8 (-15 -3612 ($ $)) (-15 -1723 ($ $)) (-15 ** ($ $ $))))
+((-3646 (((-642 (-1153 |#1|)) (-1153 |#1|) |#1|) 35)) (-2801 ((|#2| |#2| |#1|) 39)) (-3191 ((|#2| |#2| |#1|) 41)) (-3833 ((|#2| |#2| |#1|) 40)))
+(((-285 |#1| |#2|) (-10 -7 (-15 -2801 (|#2| |#2| |#1|)) (-15 -3833 (|#2| |#2| |#1|)) (-15 -3191 (|#2| |#2| |#1|)) (-15 -3646 ((-642 (-1153 |#1|)) (-1153 |#1|) |#1|))) (-363) (-1253 |#1|)) (T -285))
+((-3646 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-642 (-1153 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1153 *4)) (-4 *5 (-1253 *4)))) (-3191 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3)))) (-3833 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3)))) (-2801 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3)))))
+(-10 -7 (-15 -2801 (|#2| |#2| |#1|)) (-15 -3833 (|#2| |#2| |#1|)) (-15 -3191 (|#2| |#2| |#1|)) (-15 -3646 ((-642 (-1153 |#1|)) (-1153 |#1|) |#1|)))
+((-4368 ((|#2| $ |#1|) 6)))
+(((-286 |#1| |#2|) (-140) (-1097) (-1212)) (T -286))
+((-4368 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))))
+(-13 (-10 -8 (-15 -4368 (|t#2| $ |t#1|))))
+((-2625 ((|#3| $ |#2| |#3|) 12)) (-2551 ((|#3| $ |#2|) 10)))
+(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -2625 (|#3| |#1| |#2| |#3|)) (-15 -2551 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1097) (-1212)) (T -287))
+NIL
+(-10 -8 (-15 -2625 (|#3| |#1| |#2| |#3|)) (-15 -2551 (|#3| |#1| |#2|)))
+((-3877 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4411)))) (-2625 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) 11)) (-4368 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-288 |#1| |#2|) (-140) (-1097) (-1212)) (T -288))
+((-4368 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) (-2551 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) (-3877 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) (-2625 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))))
+(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -4368 (|t#2| $ |t#1| |t#2|)) (-15 -2551 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4411)) (PROGN (-15 -3877 (|t#2| $ |t#1| |t#2|)) (-15 -2625 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-286 |#1| |#2|) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 38)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 45)) (-3063 (($ $) 42)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3162 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-2946 (($ $ $) 36)) (-1316 (($ |#2| |#3|) 18)) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-4112 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3056 ((|#3| $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 19)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2296 (((-3 $ "failed") $ $) NIL)) (-1700 (((-767) $) 37)) (-4366 ((|#2| $ |#2|) 47)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 23)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-2403 (($) 32 T CONST)) (-2417 (($) 40 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 41)))
-(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -3056 (|#3| $)) (-15 -2423 (|#2| $)) (-15 -1316 ($ |#2| |#3|)) (-15 -2296 ((-3 $ "failed") $ $)) (-15 -3293 ((-3 $ "failed") $)) (-15 -3936 ($ $)) (-15 -4366 (|#2| $ |#2|)))) (-172) (-1235 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289))
-((-3293 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3056 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2423 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1316 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2296 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3936 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4366 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1235 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-307) (-10 -8 (-15 -3056 (|#3| $)) (-15 -2423 (|#2| $)) (-15 -1316 ($ |#2| |#3|)) (-15 -2296 ((-3 $ "failed") $ $)) (-15 -3293 ((-3 $ "failed") $)) (-15 -3936 ($ $)) (-15 -4366 (|#2| $ |#2|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 38)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 45)) (-1387 (($ $) 42)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4010 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-2845 (($ $ $) 36)) (-1320 (($ |#2| |#3|) 18)) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-3953 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1472 ((|#3| $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 19)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2752 (((-3 $ "failed") $ $) NIL)) (-2048 (((-769) $) 37)) (-4368 ((|#2| $ |#2|) 47)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 23)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-2312 (($) 32 T CONST)) (-2322 (($) 40 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 41)))
+(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -1472 (|#3| $)) (-15 -2327 (|#2| $)) (-15 -1320 ($ |#2| |#3|)) (-15 -2752 ((-3 $ "failed") $ $)) (-15 -3104 ((-3 $ "failed") $)) (-15 -3911 ($ $)) (-15 -4368 (|#2| $ |#2|)))) (-172) (-1238 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289))
+((-3104 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1472 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1238 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2327 (*1 *2 *1) (-12 (-4 *2 (-1238 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1320 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1238 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2752 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3911 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4368 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1238 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-307) (-10 -8 (-15 -1472 (|#3| $)) (-15 -2327 (|#2| $)) (-15 -1320 ($ |#2| |#3|)) (-15 -2752 ((-3 $ "failed") $ $)) (-15 -3104 ((-3 $ "failed") $)) (-15 -3911 ($ $)) (-15 -4368 (|#2| $ |#2|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
(((-290) (-140)) (T -290))
NIL
-(-13 (-1045) (-111 $ $) (-10 -7 (-6 -4400)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-4346 (($ (-506) (-506) (-1098) $) 19)) (-2772 (($ (-506) (-641 (-961)) $) 23)) (-3931 (((-641 (-1079)) $) 10)) (-1610 (($) 25)) (-3136 (((-687 (-1098)) (-506) (-506) $) 18)) (-3190 (((-641 (-961)) (-506) $) 22)) (-2994 (($) 7)) (-4367 (($) 24)) (-2423 (((-858) $) 29)) (-2530 (($) 26)))
-(((-291) (-13 (-611 (-858)) (-10 -8 (-15 -2994 ($)) (-15 -3931 ((-641 (-1079)) $)) (-15 -3136 ((-687 (-1098)) (-506) (-506) $)) (-15 -4346 ($ (-506) (-506) (-1098) $)) (-15 -3190 ((-641 (-961)) (-506) $)) (-15 -2772 ($ (-506) (-641 (-961)) $)) (-15 -4367 ($)) (-15 -1610 ($)) (-15 -2530 ($))))) (T -291))
-((-2994 (*1 *1) (-5 *1 (-291))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291)))) (-3136 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-1098))) (-5 *1 (-291)))) (-4346 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-506)) (-5 *3 (-1098)) (-5 *1 (-291)))) (-3190 (*1 *2 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-641 (-961))) (-5 *1 (-291)))) (-2772 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-506)) (-5 *3 (-641 (-961))) (-5 *1 (-291)))) (-4367 (*1 *1) (-5 *1 (-291))) (-1610 (*1 *1) (-5 *1 (-291))) (-2530 (*1 *1) (-5 *1 (-291))))
-(-13 (-611 (-858)) (-10 -8 (-15 -2994 ($)) (-15 -3931 ((-641 (-1079)) $)) (-15 -3136 ((-687 (-1098)) (-506) (-506) $)) (-15 -4346 ($ (-506) (-506) (-1098) $)) (-15 -3190 ((-641 (-961)) (-506) $)) (-15 -2772 ($ (-506) (-641 (-961)) $)) (-15 -4367 ($)) (-15 -1610 ($)) (-15 -2530 ($))))
-((-2725 (((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|)))) 105)) (-1331 (((-641 (-685 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|)))))) (-685 (-407 (-948 |#1|)))) 100) (((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|))) (-767) (-767)) 41)) (-2293 (((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|)))) 102)) (-1748 (((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|)))) 77)) (-3897 (((-641 (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (-685 (-407 (-948 |#1|)))) 76)) (-2134 (((-948 |#1|) (-685 (-407 (-948 |#1|)))) 57) (((-948 |#1|) (-685 (-407 (-948 |#1|))) (-1170)) 58)))
-(((-292 |#1|) (-10 -7 (-15 -2134 ((-948 |#1|) (-685 (-407 (-948 |#1|))) (-1170))) (-15 -2134 ((-948 |#1|) (-685 (-407 (-948 |#1|))))) (-15 -3897 ((-641 (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (-685 (-407 (-948 |#1|))))) (-15 -1748 ((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|))))) (-15 -1331 ((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|))) (-767) (-767))) (-15 -1331 ((-641 (-685 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|)))))) (-685 (-407 (-948 |#1|))))) (-15 -2725 ((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|))))) (-15 -2293 ((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|)))))) (-452)) (T -292))
-((-2293 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-948 *4)))))) (-2725 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4)))) (|:| |geneigvec| (-641 (-685 (-407 (-948 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-948 *4)))))) (-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-948 *5)) (-1159 (-1170) (-948 *5)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 *4)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-948 *5)))))) (-1331 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-948 *6)) (-1159 (-1170) (-948 *6)))) (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-948 *6)))))) (-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-948 *5)) (-1159 (-1170) (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-948 *5)))))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-948 *4)))) (-4 *4 (-452)) (-5 *2 (-641 (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4))))) (-5 *1 (-292 *4)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-948 *4)))) (-5 *2 (-948 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-2134 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-948 *5)))) (-5 *4 (-1170)) (-5 *2 (-948 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))))
-(-10 -7 (-15 -2134 ((-948 |#1|) (-685 (-407 (-948 |#1|))) (-1170))) (-15 -2134 ((-948 |#1|) (-685 (-407 (-948 |#1|))))) (-15 -3897 ((-641 (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (-685 (-407 (-948 |#1|))))) (-15 -1748 ((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|))))) (-15 -1331 ((-641 (-685 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|))) (-685 (-407 (-948 |#1|))) (-767) (-767))) (-15 -1331 ((-641 (-685 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|)))))) (-685 (-407 (-948 |#1|))))) (-15 -2725 ((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|))))) (-15 -2293 ((-641 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1159 (-1170) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-641 (-685 (-407 (-948 |#1|))))))) (-685 (-407 (-948 |#1|))))))
-((-4357 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14)))
-(((-293 |#1| |#2|) (-10 -7 (-15 -4357 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1209) (-1209)) (T -293))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6)))))
-(-10 -7 (-15 -4357 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1494 (((-112) $) NIL (|has| |#1| (-21)))) (-2608 (($ $) 12)) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2559 (($ $ $) 95 (|has| |#1| (-302)))) (-4080 (($) NIL (-2807 (|has| |#1| (-21)) (|has| |#1| (-722))) CONST)) (-2001 (($ $) 51 (|has| |#1| (-21)))) (-3446 (((-3 $ "failed") $) 62 (|has| |#1| (-722)))) (-1827 ((|#1| $) 11)) (-3293 (((-3 $ "failed") $) 60 (|has| |#1| (-722)))) (-4112 (((-112) $) NIL (|has| |#1| (-722)))) (-4357 (($ (-1 |#1| |#1|) $) 14)) (-1813 ((|#1| $) 10)) (-2218 (($ $) 50 (|has| |#1| (-21)))) (-1307 (((-3 $ "failed") $) 61 (|has| |#1| (-722)))) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3936 (($ $) 64 (-2807 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1802 (((-641 $) $) 85 (|has| |#1| (-556)))) (-3291 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 21 (|has| |#1| (-514 (-1170) |#1|)))) (-3796 (($ |#1| |#1|) 9)) (-4327 (((-134)) 90 (|has| |#1| (-363)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) 87 (|has| |#1| (-896 (-1170))))) (-3185 (($ $ $) NIL (|has| |#1| (-473)))) (-1542 (($ $ $) NIL (|has| |#1| (-473)))) (-2423 (($ (-564)) NIL (|has| |#1| (-1045))) (((-112) $) 37 (|has| |#1| (-1094))) (((-858) $) 36 (|has| |#1| (-1094)))) (-3719 (((-767)) 67 (|has| |#1| (-1045)) CONST)) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2403 (($) 47 (|has| |#1| (-21)) CONST)) (-2417 (($) 57 (|has| |#1| (-722)) CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170))))) (-2974 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1094)))) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (-2807 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-3082 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3070 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-564)) NIL (|has| |#1| (-473))) (($ $ (-767)) NIL (|has| |#1| (-722))) (($ $ (-917)) NIL (|has| |#1| (-1106)))) (* (($ $ |#1|) 55 (|has| |#1| (-1106))) (($ |#1| $) 54 (|has| |#1| (-1106))) (($ $ $) 53 (|has| |#1| (-1106))) (($ (-564) $) 70 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-25)))))
-(((-294 |#1|) (-13 (-1209) (-10 -8 (-15 -2974 ($ |#1| |#1|)) (-15 -3796 ($ |#1| |#1|)) (-15 -2608 ($ $)) (-15 -1813 (|#1| $)) (-15 -1827 (|#1| $)) (-15 -4357 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -3291 ($ $ $)) (-15 -3291 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3070 ($ |#1| $)) (-15 -3070 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2218 ($ $)) (-15 -2001 ($ $)) (-15 -3082 ($ |#1| $)) (-15 -3082 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -1307 ((-3 $ "failed") $)) (-15 -3446 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -1307 ((-3 $ "failed") $)) (-15 -3446 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -1802 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1170))) (-6 (-896 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -3092 ($ $ $)) (-15 -3936 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -2559 ($ $ $)) |%noBranch|))) (-1209)) (T -294))
-((-2974 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3796 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2608 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-1813 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-1827 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-3291 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)) (-5 *1 (-294 *2)))) (-3291 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-3070 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-3070 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-2218 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-2001 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-3082 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-3082 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-1307 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1209)))) (-3446 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1209)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) (-4 *3 (-1209)))) (-2559 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (-3092 (*1 *1 *1 *1) (-2807 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) (-3936 (*1 *1 *1) (-2807 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))))
-(-13 (-1209) (-10 -8 (-15 -2974 ($ |#1| |#1|)) (-15 -3796 ($ |#1| |#1|)) (-15 -2608 ($ $)) (-15 -1813 (|#1| $)) (-15 -1827 (|#1| $)) (-15 -4357 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -3291 ($ $ $)) (-15 -3291 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3070 ($ |#1| $)) (-15 -3070 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2218 ($ $)) (-15 -2001 ($ $)) (-15 -3082 ($ |#1| $)) (-15 -3082 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -1307 ((-3 $ "failed") $)) (-15 -3446 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -1307 ((-3 $ "failed") $)) (-15 -3446 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -1802 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1170))) (-6 (-896 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -3092 ($ $ $)) (-15 -3936 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -2559 ($ $ $)) |%noBranch|)))
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-3236 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#2| $ |#1| |#2|) NIL)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2327 (((-3 |#2| "failed") |#1| $) NIL)) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-1945 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) NIL)) (-2591 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) NIL)) (-3035 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 ((|#1| $) NIL (|has| |#1| (-846)))) (-1554 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2898 ((|#1| $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3454 (((-641 |#1|) $) NIL)) (-3565 (((-112) |#1| $) NIL)) (-3149 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-2566 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-3050 (((-641 |#1|) $) NIL)) (-1563 (((-112) |#1| $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2658 ((|#2| $) NIL (|has| |#1| (-846)))) (-2139 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL)) (-1592 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3853 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-2423 (((-858) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1860 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-295 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4407))) (-1094) (-1094)) (T -295))
-NIL
-(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4407)))
-((-1433 (((-312) (-1152) (-641 (-1152))) 17) (((-312) (-1152) (-1152)) 16) (((-312) (-641 (-1152))) 15) (((-312) (-1152)) 14)))
-(((-296) (-10 -7 (-15 -1433 ((-312) (-1152))) (-15 -1433 ((-312) (-641 (-1152)))) (-15 -1433 ((-312) (-1152) (-1152))) (-15 -1433 ((-312) (-1152) (-641 (-1152)))))) (T -296))
-((-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-1433 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))))
-(-10 -7 (-15 -1433 ((-312) (-1152))) (-15 -1433 ((-312) (-641 (-1152)))) (-15 -1433 ((-312) (-1152) (-1152))) (-15 -1433 ((-312) (-1152) (-641 (-1152)))))
-((-4357 ((|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)) 18)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -4357 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)))) (-302) (-1209)) (T -297))
-((-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1152)) (-5 *5 (-610 *6)) (-4 *6 (-302)) (-4 *2 (-1209)) (-5 *1 (-297 *6 *2)))))
-(-10 -7 (-15 -4357 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|))))
-((-4357 ((|#2| (-1 |#2| |#1|) (-610 |#1|)) 17)))
-(((-298 |#1| |#2|) (-10 -7 (-15 -4357 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) (-302) (-302)) (T -298))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2)))))
-(-10 -7 (-15 -4357 (|#2| (-1 |#2| |#1|) (-610 |#1|))))
-((-3314 (((-112) (-225)) 12)))
-(((-299 |#1| |#2|) (-10 -7 (-15 -3314 ((-112) (-225)))) (-225) (-225)) (T -299))
-((-3314 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -3314 ((-112) (-225))))
-((-4119 (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225)))) 118)) (-1909 (((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-839 (-225)))) 135) (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225)))) 72)) (-3267 (((-641 (-1152)) (-1150 (-225))) NIL)) (-2310 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225)))) 69)) (-2442 (((-641 (-225)) (-948 (-407 (-564))) (-1170) (-1088 (-839 (-225)))) 59)) (-1577 (((-641 (-1152)) (-641 (-225))) NIL)) (-1941 (((-225) (-1088 (-839 (-225)))) 29)) (-3414 (((-225) (-1088 (-839 (-225)))) 30)) (-2516 (((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-3017 (((-1152) (-225)) NIL)))
-(((-300) (-10 -7 (-15 -1941 ((-225) (-1088 (-839 (-225))))) (-15 -3414 ((-225) (-1088 (-839 (-225))))) (-15 -2516 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2310 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225))))) (-15 -4119 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -1909 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -1909 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -2442 ((-641 (-225)) (-948 (-407 (-564))) (-1170) (-1088 (-839 (-225))))) (-15 -3017 ((-1152) (-225))) (-15 -1577 ((-641 (-1152)) (-641 (-225)))) (-15 -3267 ((-641 (-1152)) (-1150 (-225)))))) (T -300))
-((-3267 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300)))) (-2442 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *4 (-1170)) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-1909 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-1909 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-4119 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-2310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))))
-(-10 -7 (-15 -1941 ((-225) (-1088 (-839 (-225))))) (-15 -3414 ((-225) (-1088 (-839 (-225))))) (-15 -2516 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2310 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-839 (-225))))) (-15 -4119 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -1909 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -1909 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-839 (-225))))) (-15 -2442 ((-641 (-225)) (-948 (-407 (-564))) (-1170) (-1088 (-839 (-225))))) (-15 -3017 ((-1152) (-225))) (-15 -1577 ((-641 (-1152)) (-641 (-225)))) (-15 -3267 ((-641 (-1152)) (-1150 (-225)))))
-((-3577 (((-641 (-610 $)) $) 27)) (-2559 (($ $ (-294 $)) 79) (($ $ (-641 (-294 $))) 140) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-4284 (((-3 (-610 $) "failed") $) 128)) (-3120 (((-610 $) $) 127)) (-1387 (($ $) 17) (($ (-641 $)) 54)) (-3782 (((-641 (-114)) $) 35)) (-4232 (((-114) (-114)) 89)) (-3177 (((-112) $) 151)) (-4357 (($ (-1 $ $) (-610 $)) 87)) (-3521 (((-3 (-610 $) "failed") $) 95)) (-4309 (($ (-114) $) 59) (($ (-114) (-641 $)) 111)) (-3679 (((-112) $ (-114)) 133) (((-112) $ (-1170)) 132)) (-1292 (((-767) $) 44)) (-3817 (((-112) $ $) 57) (((-112) $ (-1170)) 49)) (-2663 (((-112) $) 149)) (-3291 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) 138) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 82) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) 67) (($ $ (-1170) (-1 $ $)) 73) (($ $ (-641 (-114)) (-641 (-1 $ $))) 81) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 83) (($ $ (-114) (-1 $ (-641 $))) 69) (($ $ (-114) (-1 $ $)) 75)) (-4366 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-641 $)) 124)) (-3973 (($ $) 51) (($ $ $) 136)) (-2180 (($ $) 15) (($ (-641 $)) 53)) (-3263 (((-112) (-114)) 21)))
-(((-301 |#1|) (-10 -8 (-15 -3177 ((-112) |#1|)) (-15 -2663 ((-112) |#1|)) (-15 -3291 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3291 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3291 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -3291 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -3291 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -3817 ((-112) |#1| (-1170))) (-15 -3817 ((-112) |#1| |#1|)) (-15 -4357 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -4309 (|#1| (-114) (-641 |#1|))) (-15 -4309 (|#1| (-114) |#1|)) (-15 -3679 ((-112) |#1| (-1170))) (-15 -3679 ((-112) |#1| (-114))) (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 -3782 ((-641 (-114)) |#1|)) (-15 -3577 ((-641 (-610 |#1|)) |#1|)) (-15 -3521 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1292 ((-767) |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -1387 (|#1| (-641 |#1|))) (-15 -1387 (|#1| |#1|)) (-15 -2180 (|#1| (-641 |#1|))) (-15 -2180 (|#1| |#1|)) (-15 -2559 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2559 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2559 (|#1| |#1| (-294 |#1|))) (-15 -4366 (|#1| (-114) (-641 |#1|))) (-15 -4366 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1|)) (-15 -3291 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| (-294 |#1|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3291 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -4284 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3120 ((-610 |#1|) |#1|))) (-302)) (T -301))
-((-4232 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))))
-(-10 -8 (-15 -3177 ((-112) |#1|)) (-15 -2663 ((-112) |#1|)) (-15 -3291 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3291 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3291 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -3291 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -3291 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -3817 ((-112) |#1| (-1170))) (-15 -3817 ((-112) |#1| |#1|)) (-15 -4357 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -4309 (|#1| (-114) (-641 |#1|))) (-15 -4309 (|#1| (-114) |#1|)) (-15 -3679 ((-112) |#1| (-1170))) (-15 -3679 ((-112) |#1| (-114))) (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 -3782 ((-641 (-114)) |#1|)) (-15 -3577 ((-641 (-610 |#1|)) |#1|)) (-15 -3521 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1292 ((-767) |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -1387 (|#1| (-641 |#1|))) (-15 -1387 (|#1| |#1|)) (-15 -2180 (|#1| (-641 |#1|))) (-15 -2180 (|#1| |#1|)) (-15 -2559 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2559 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2559 (|#1| |#1| (-294 |#1|))) (-15 -4366 (|#1| (-114) (-641 |#1|))) (-15 -4366 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1|)) (-15 -3291 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| (-294 |#1|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3291 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -4284 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3120 ((-610 |#1|) |#1|)))
-((-3009 (((-112) $ $) 7)) (-3577 (((-641 (-610 $)) $) 39)) (-2559 (($ $ (-294 $)) 51) (($ $ (-641 (-294 $))) 50) (($ $ (-641 (-610 $)) (-641 $)) 49)) (-4284 (((-3 (-610 $) "failed") $) 64)) (-3120 (((-610 $) $) 65)) (-1387 (($ $) 46) (($ (-641 $)) 45)) (-3782 (((-641 (-114)) $) 38)) (-4232 (((-114) (-114)) 37)) (-3177 (((-112) $) 17 (|has| $ (-1034 (-564))))) (-1940 (((-1166 $) (-610 $)) 20 (|has| $ (-1045)))) (-4357 (($ (-1 $ $) (-610 $)) 31)) (-3521 (((-3 (-610 $) "failed") $) 41)) (-2766 (((-1152) $) 10)) (-3648 (((-641 (-610 $)) $) 40)) (-4309 (($ (-114) $) 33) (($ (-114) (-641 $)) 32)) (-3679 (((-112) $ (-114)) 35) (((-112) $ (-1170)) 34)) (-1292 (((-767) $) 42)) (-4052 (((-1114) $) 11)) (-3817 (((-112) $ $) 30) (((-112) $ (-1170)) 29)) (-2663 (((-112) $) 18 (|has| $ (-1034 (-564))))) (-3291 (($ $ (-610 $) $) 62) (($ $ (-641 (-610 $)) (-641 $)) 61) (($ $ (-641 (-294 $))) 60) (($ $ (-294 $)) 59) (($ $ $ $) 58) (($ $ (-641 $) (-641 $)) 57) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 28) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 27) (($ $ (-1170) (-1 $ (-641 $))) 26) (($ $ (-1170) (-1 $ $)) 25) (($ $ (-641 (-114)) (-641 (-1 $ $))) 24) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 23) (($ $ (-114) (-1 $ (-641 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-4366 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-641 $)) 52)) (-3973 (($ $) 44) (($ $ $) 43)) (-3721 (($ $) 19 (|has| $ (-1045)))) (-2423 (((-858) $) 12) (($ (-610 $)) 63)) (-2180 (($ $) 48) (($ (-641 $)) 47)) (-3263 (((-112) (-114)) 36)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
+(-13 (-1047) (-111 $ $) (-10 -7 (-6 -4403)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-1722 (($ (-506) (-506) (-1101) $) 19)) (-2744 (($ (-506) (-642 (-963)) $) 23)) (-2966 (((-642 (-1082)) $) 10)) (-3293 (($) 25)) (-3765 (((-689 (-1101)) (-506) (-506) $) 18)) (-1855 (((-642 (-963)) (-506) $) 22)) (-2972 (($) 7)) (-4373 (($) 24)) (-2327 (((-860) $) 29)) (-3854 (($) 26)))
+(((-291) (-13 (-611 (-860)) (-10 -8 (-15 -2972 ($)) (-15 -2966 ((-642 (-1082)) $)) (-15 -3765 ((-689 (-1101)) (-506) (-506) $)) (-15 -1722 ($ (-506) (-506) (-1101) $)) (-15 -1855 ((-642 (-963)) (-506) $)) (-15 -2744 ($ (-506) (-642 (-963)) $)) (-15 -4373 ($)) (-15 -3293 ($)) (-15 -3854 ($))))) (T -291))
+((-2972 (*1 *1) (-5 *1 (-291))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-642 (-1082))) (-5 *1 (-291)))) (-3765 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-1101))) (-5 *1 (-291)))) (-1722 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-506)) (-5 *3 (-1101)) (-5 *1 (-291)))) (-1855 (*1 *2 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-642 (-963))) (-5 *1 (-291)))) (-2744 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-506)) (-5 *3 (-642 (-963))) (-5 *1 (-291)))) (-4373 (*1 *1) (-5 *1 (-291))) (-3293 (*1 *1) (-5 *1 (-291))) (-3854 (*1 *1) (-5 *1 (-291))))
+(-13 (-611 (-860)) (-10 -8 (-15 -2972 ($)) (-15 -2966 ((-642 (-1082)) $)) (-15 -3765 ((-689 (-1101)) (-506) (-506) $)) (-15 -1722 ($ (-506) (-506) (-1101) $)) (-15 -1855 ((-642 (-963)) (-506) $)) (-15 -2744 ($ (-506) (-642 (-963)) $)) (-15 -4373 ($)) (-15 -3293 ($)) (-15 -3854 ($))))
+((-4014 (((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |geneigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|)))) 105)) (-2113 (((-642 (-687 (-407 (-950 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|)))))) (-687 (-407 (-950 |#1|)))) 100) (((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|))) (-769) (-769)) 41)) (-3439 (((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|)))) 102)) (-1642 (((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|)))) 77)) (-3339 (((-642 (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (-687 (-407 (-950 |#1|)))) 76)) (-3011 (((-950 |#1|) (-687 (-407 (-950 |#1|)))) 57) (((-950 |#1|) (-687 (-407 (-950 |#1|))) (-1173)) 58)))
+(((-292 |#1|) (-10 -7 (-15 -3011 ((-950 |#1|) (-687 (-407 (-950 |#1|))) (-1173))) (-15 -3011 ((-950 |#1|) (-687 (-407 (-950 |#1|))))) (-15 -3339 ((-642 (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (-687 (-407 (-950 |#1|))))) (-15 -1642 ((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|))))) (-15 -2113 ((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|))) (-769) (-769))) (-15 -2113 ((-642 (-687 (-407 (-950 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|)))))) (-687 (-407 (-950 |#1|))))) (-15 -4014 ((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |geneigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|))))) (-15 -3439 ((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|)))))) (-452)) (T -292))
+((-3439 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-642 (-2 (|:| |eigval| (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-687 (-407 (-950 *4)))))) (-4014 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-642 (-2 (|:| |eigval| (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4)))) (|:| |geneigvec| (-642 (-687 (-407 (-950 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-687 (-407 (-950 *4)))))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-950 *5)) (-1162 (-1173) (-950 *5)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 *4)))) (-4 *5 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-687 (-407 (-950 *5)))))) (-2113 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-950 *6)) (-1162 (-1173) (-950 *6)))) (-5 *5 (-769)) (-4 *6 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-687 (-407 (-950 *6)))))) (-1642 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-950 *5)) (-1162 (-1173) (-950 *5)))) (-4 *5 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-687 (-407 (-950 *5)))))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-950 *4)))) (-4 *4 (-452)) (-5 *2 (-642 (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4))))) (-5 *1 (-292 *4)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-950 *4)))) (-5 *2 (-950 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-407 (-950 *5)))) (-5 *4 (-1173)) (-5 *2 (-950 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))))
+(-10 -7 (-15 -3011 ((-950 |#1|) (-687 (-407 (-950 |#1|))) (-1173))) (-15 -3011 ((-950 |#1|) (-687 (-407 (-950 |#1|))))) (-15 -3339 ((-642 (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (-687 (-407 (-950 |#1|))))) (-15 -1642 ((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|))))) (-15 -2113 ((-642 (-687 (-407 (-950 |#1|)))) (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|))) (-687 (-407 (-950 |#1|))) (-769) (-769))) (-15 -2113 ((-642 (-687 (-407 (-950 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|)))))) (-687 (-407 (-950 |#1|))))) (-15 -4014 ((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |geneigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|))))) (-15 -3439 ((-642 (-2 (|:| |eigval| (-3 (-407 (-950 |#1|)) (-1162 (-1173) (-950 |#1|)))) (|:| |eigmult| (-769)) (|:| |eigvec| (-642 (-687 (-407 (-950 |#1|))))))) (-687 (-407 (-950 |#1|))))))
+((-4358 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14)))
+(((-293 |#1| |#2|) (-10 -7 (-15 -4358 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1212) (-1212)) (T -293))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6)))))
+(-10 -7 (-15 -4358 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2952 (((-112) $) NIL (|has| |#1| (-21)))) (-3395 (($ $) 12)) (-1532 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2458 (($ $ $) 95 (|has| |#1| (-302)))) (-1976 (($) NIL (-2706 (|has| |#1| (-21)) (|has| |#1| (-724))) CONST)) (-2415 (($ $) 51 (|has| |#1| (-21)))) (-4089 (((-3 $ "failed") $) 62 (|has| |#1| (-724)))) (-1843 ((|#1| $) 11)) (-3104 (((-3 $ "failed") $) 60 (|has| |#1| (-724)))) (-3953 (((-112) $) NIL (|has| |#1| (-724)))) (-4358 (($ (-1 |#1| |#1|) $) 14)) (-1833 ((|#1| $) 10)) (-3155 (($ $) 50 (|has| |#1| (-21)))) (-1681 (((-3 $ "failed") $) 61 (|has| |#1| (-724)))) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3911 (($ $) 64 (-2706 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2984 (((-642 $) $) 85 (|has| |#1| (-556)))) (-3215 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-1173) |#1|) 17 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 21 (|has| |#1| (-514 (-1173) |#1|)))) (-3761 (($ |#1| |#1|) 9)) (-3474 (((-134)) 90 (|has| |#1| (-363)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) 87 (|has| |#1| (-898 (-1173))))) (-1389 (($ $ $) NIL (|has| |#1| (-473)))) (-3759 (($ $ $) NIL (|has| |#1| (-473)))) (-2327 (($ (-564)) NIL (|has| |#1| (-1047))) (((-112) $) 37 (|has| |#1| (-1097))) (((-860) $) 36 (|has| |#1| (-1097)))) (-2756 (((-769)) 67 (|has| |#1| (-1047)) CONST)) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2312 (($) 47 (|has| |#1| (-21)) CONST)) (-2322 (($) 57 (|has| |#1| (-724)) CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173))))) (-2872 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1097)))) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (-2706 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-2987 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-2974 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-564)) NIL (|has| |#1| (-473))) (($ $ (-769)) NIL (|has| |#1| (-724))) (($ $ (-919)) NIL (|has| |#1| (-1109)))) (* (($ $ |#1|) 55 (|has| |#1| (-1109))) (($ |#1| $) 54 (|has| |#1| (-1109))) (($ $ $) 53 (|has| |#1| (-1109))) (($ (-564) $) 70 (|has| |#1| (-21))) (($ (-769) $) NIL (|has| |#1| (-21))) (($ (-919) $) NIL (|has| |#1| (-25)))))
+(((-294 |#1|) (-13 (-1212) (-10 -8 (-15 -2872 ($ |#1| |#1|)) (-15 -3761 ($ |#1| |#1|)) (-15 -3395 ($ $)) (-15 -1833 (|#1| $)) (-15 -1843 (|#1| $)) (-15 -4358 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1173) |#1|)) (-6 (-514 (-1173) |#1|)) |%noBranch|) (IF (|has| |#1| (-1097)) (PROGN (-6 (-1097)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -3215 ($ $ $)) (-15 -3215 ($ $ (-642 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2974 ($ |#1| $)) (-15 -2974 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3155 ($ $)) (-15 -2415 ($ $)) (-15 -2987 ($ |#1| $)) (-15 -2987 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1109)) (PROGN (-6 (-1109)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-724)) (PROGN (-6 (-724)) (-15 -1681 ((-3 $ "failed") $)) (-15 -4089 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -1681 ((-3 $ "failed") $)) (-15 -4089 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-6 (-1047)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-715 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2984 ((-642 $) $)) |%noBranch|) (IF (|has| |#1| (-898 (-1173))) (-6 (-898 (-1173))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1269 |#1|)) (-15 -2998 ($ $ $)) (-15 -3911 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -2458 ($ $ $)) |%noBranch|))) (-1212)) (T -294))
+((-2872 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) (-3761 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) (-3395 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) (-1833 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) (-1843 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))) (-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-294 *3)))) (-3215 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)) (-5 *1 (-294 *2)))) (-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1097)) (-4 *3 (-1212)) (-5 *1 (-294 *3)))) (-2974 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1212)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1212)))) (-3155 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))) (-2415 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))) (-2987 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))) (-1681 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-724)) (-4 *2 (-1212)))) (-4089 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-724)) (-4 *2 (-1212)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-642 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) (-4 *3 (-1212)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1212)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1109)) (-4 *2 (-1212)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1109)) (-4 *2 (-1212)))) (-2998 (*1 *1 *1 *1) (-2706 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1212))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1212))))) (-3911 (*1 *1 *1) (-2706 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1212))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1212))))))
+(-13 (-1212) (-10 -8 (-15 -2872 ($ |#1| |#1|)) (-15 -3761 ($ |#1| |#1|)) (-15 -3395 ($ $)) (-15 -1833 (|#1| $)) (-15 -1843 (|#1| $)) (-15 -4358 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1173) |#1|)) (-6 (-514 (-1173) |#1|)) |%noBranch|) (IF (|has| |#1| (-1097)) (PROGN (-6 (-1097)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -3215 ($ $ $)) (-15 -3215 ($ $ (-642 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2974 ($ |#1| $)) (-15 -2974 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3155 ($ $)) (-15 -2415 ($ $)) (-15 -2987 ($ |#1| $)) (-15 -2987 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1109)) (PROGN (-6 (-1109)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-724)) (PROGN (-6 (-724)) (-15 -1681 ((-3 $ "failed") $)) (-15 -4089 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -1681 ((-3 $ "failed") $)) (-15 -4089 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-6 (-1047)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-715 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2984 ((-642 $) $)) |%noBranch|) (IF (|has| |#1| (-898 (-1173))) (-6 (-898 (-1173))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1269 |#1|)) (-15 -2998 ($ $ $)) (-15 -3911 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -2458 ($ $ $)) |%noBranch|)))
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-1765 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#2| $ |#1| |#2|) NIL)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2248 (((-3 |#2| "failed") |#1| $) NIL)) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2265 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) NIL)) (-2490 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) NIL)) (-2936 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 ((|#1| $) NIL (|has| |#1| (-848)))) (-3234 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3421 ((|#1| $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3393 (((-642 |#1|) $) NIL)) (-2835 (((-112) |#1| $) NIL)) (-2730 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3183 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3997 (((-642 |#1|) $) NIL)) (-4145 (((-112) |#1| $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2557 ((|#2| $) NIL (|has| |#1| (-848)))) (-3254 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL)) (-2696 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2593 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2327 (((-860) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1648 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-295 |#1| |#2|) (-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) (-1097) (-1097)) (T -295))
+NIL
+(-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410)))
+((-1449 (((-312) (-1155) (-642 (-1155))) 17) (((-312) (-1155) (-1155)) 16) (((-312) (-642 (-1155))) 15) (((-312) (-1155)) 14)))
+(((-296) (-10 -7 (-15 -1449 ((-312) (-1155))) (-15 -1449 ((-312) (-642 (-1155)))) (-15 -1449 ((-312) (-1155) (-1155))) (-15 -1449 ((-312) (-1155) (-642 (-1155)))))) (T -296))
+((-1449 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-1155))) (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-296)))) (-1449 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-296)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-312)) (-5 *1 (-296)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-296)))))
+(-10 -7 (-15 -1449 ((-312) (-1155))) (-15 -1449 ((-312) (-642 (-1155)))) (-15 -1449 ((-312) (-1155) (-1155))) (-15 -1449 ((-312) (-1155) (-642 (-1155)))))
+((-4358 ((|#2| (-1 |#2| |#1|) (-1155) (-610 |#1|)) 18)))
+(((-297 |#1| |#2|) (-10 -7 (-15 -4358 (|#2| (-1 |#2| |#1|) (-1155) (-610 |#1|)))) (-302) (-1212)) (T -297))
+((-4358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1155)) (-5 *5 (-610 *6)) (-4 *6 (-302)) (-4 *2 (-1212)) (-5 *1 (-297 *6 *2)))))
+(-10 -7 (-15 -4358 (|#2| (-1 |#2| |#1|) (-1155) (-610 |#1|))))
+((-4358 ((|#2| (-1 |#2| |#1|) (-610 |#1|)) 17)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -4358 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) (-302) (-302)) (T -298))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2)))))
+(-10 -7 (-15 -4358 (|#2| (-1 |#2| |#1|) (-610 |#1|))))
+((-4003 (((-112) (-225)) 12)))
+(((-299 |#1| |#2|) (-10 -7 (-15 -4003 ((-112) (-225)))) (-225) (-225)) (T -299))
+((-4003 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -4003 ((-112) (-225))))
+((-4098 (((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225)))) 118)) (-1316 (((-1153 (-225)) (-1262 (-316 (-225))) (-642 (-1173)) (-1091 (-841 (-225)))) 135) (((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225)))) 72)) (-2105 (((-642 (-1155)) (-1153 (-225))) NIL)) (-3895 (((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225)))) 69)) (-2222 (((-642 (-225)) (-950 (-407 (-564))) (-1173) (-1091 (-841 (-225)))) 59)) (-3178 (((-642 (-1155)) (-642 (-225))) NIL)) (-3362 (((-225) (-1091 (-841 (-225)))) 29)) (-3197 (((-225) (-1091 (-841 (-225)))) 30)) (-3105 (((-112) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-4387 (((-1155) (-225)) NIL)))
+(((-300) (-10 -7 (-15 -3362 ((-225) (-1091 (-841 (-225))))) (-15 -3197 ((-225) (-1091 (-841 (-225))))) (-15 -3105 ((-112) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3895 ((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225))))) (-15 -4098 ((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -1316 ((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -1316 ((-1153 (-225)) (-1262 (-316 (-225))) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -2222 ((-642 (-225)) (-950 (-407 (-564))) (-1173) (-1091 (-841 (-225))))) (-15 -4387 ((-1155) (-225))) (-15 -3178 ((-642 (-1155)) (-642 (-225)))) (-15 -2105 ((-642 (-1155)) (-1153 (-225)))))) (T -300))
+((-2105 (*1 *2 *3) (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-300)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-300)))) (-4387 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-300)))) (-2222 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *4 (-1173)) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-300)))) (-1316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *4 (-642 (-1173))) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300)))) (-1316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-642 (-1173))) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300)))) (-4098 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-642 (-1173))) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300)))) (-3895 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1173)) (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-300)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))))
+(-10 -7 (-15 -3362 ((-225) (-1091 (-841 (-225))))) (-15 -3197 ((-225) (-1091 (-841 (-225))))) (-15 -3105 ((-112) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3895 ((-642 (-225)) (-316 (-225)) (-1173) (-1091 (-841 (-225))))) (-15 -4098 ((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -1316 ((-1153 (-225)) (-316 (-225)) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -1316 ((-1153 (-225)) (-1262 (-316 (-225))) (-642 (-1173)) (-1091 (-841 (-225))))) (-15 -2222 ((-642 (-225)) (-950 (-407 (-564))) (-1173) (-1091 (-841 (-225))))) (-15 -4387 ((-1155) (-225))) (-15 -3178 ((-642 (-1155)) (-642 (-225)))) (-15 -2105 ((-642 (-1155)) (-1153 (-225)))))
+((-3530 (((-642 (-610 $)) $) 27)) (-2458 (($ $ (-294 $)) 79) (($ $ (-642 (-294 $))) 140) (($ $ (-642 (-610 $)) (-642 $)) NIL)) (-4278 (((-3 (-610 $) "failed") $) 128)) (-3027 (((-610 $) $) 127)) (-1301 (($ $) 17) (($ (-642 $)) 54)) (-3332 (((-642 (-114)) $) 35)) (-3307 (((-114) (-114)) 89)) (-3076 (((-112) $) 151)) (-4358 (($ (-1 $ $) (-610 $)) 87)) (-2953 (((-3 (-610 $) "failed") $) 95)) (-4305 (($ (-114) $) 59) (($ (-114) (-642 $)) 111)) (-1523 (((-112) $ (-114)) 133) (((-112) $ (-1173)) 132)) (-1295 (((-769) $) 44)) (-2539 (((-112) $ $) 57) (((-112) $ (-1173)) 49)) (-2519 (((-112) $) 149)) (-3215 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL) (($ $ (-642 (-294 $))) 138) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) 82) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-1173) (-1 $ (-642 $))) 67) (($ $ (-1173) (-1 $ $)) 73) (($ $ (-642 (-114)) (-642 (-1 $ $))) 81) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) 83) (($ $ (-114) (-1 $ (-642 $))) 69) (($ $ (-114) (-1 $ $)) 75)) (-4368 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-642 $)) 124)) (-3238 (($ $) 51) (($ $ $) 136)) (-2181 (($ $) 15) (($ (-642 $)) 53)) (-2357 (((-112) (-114)) 21)))
+(((-301 |#1|) (-10 -8 (-15 -3076 ((-112) |#1|)) (-15 -2519 ((-112) |#1|)) (-15 -3215 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3215 (|#1| |#1| (-114) (-1 |#1| (-642 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3215 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| |#1|)))) (-15 -3215 (|#1| |#1| (-1173) (-1 |#1| |#1|))) (-15 -3215 (|#1| |#1| (-1173) (-1 |#1| (-642 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| |#1|)))) (-15 -2539 ((-112) |#1| (-1173))) (-15 -2539 ((-112) |#1| |#1|)) (-15 -4358 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -4305 (|#1| (-114) (-642 |#1|))) (-15 -4305 (|#1| (-114) |#1|)) (-15 -1523 ((-112) |#1| (-1173))) (-15 -1523 ((-112) |#1| (-114))) (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 -3332 ((-642 (-114)) |#1|)) (-15 -3530 ((-642 (-610 |#1|)) |#1|)) (-15 -2953 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1295 ((-769) |#1|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -1301 (|#1| (-642 |#1|))) (-15 -1301 (|#1| |#1|)) (-15 -2181 (|#1| (-642 |#1|))) (-15 -2181 (|#1| |#1|)) (-15 -2458 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -2458 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -2458 (|#1| |#1| (-294 |#1|))) (-15 -4368 (|#1| (-114) (-642 |#1|))) (-15 -4368 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1|)) (-15 -3215 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| (-294 |#1|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -3215 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -4278 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3027 ((-610 |#1|) |#1|))) (-302)) (T -301))
+((-3307 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))))
+(-10 -8 (-15 -3076 ((-112) |#1|)) (-15 -2519 ((-112) |#1|)) (-15 -3215 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3215 (|#1| |#1| (-114) (-1 |#1| (-642 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3215 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| |#1|)))) (-15 -3215 (|#1| |#1| (-1173) (-1 |#1| |#1|))) (-15 -3215 (|#1| |#1| (-1173) (-1 |#1| (-642 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| |#1|)))) (-15 -2539 ((-112) |#1| (-1173))) (-15 -2539 ((-112) |#1| |#1|)) (-15 -4358 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -4305 (|#1| (-114) (-642 |#1|))) (-15 -4305 (|#1| (-114) |#1|)) (-15 -1523 ((-112) |#1| (-1173))) (-15 -1523 ((-112) |#1| (-114))) (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 -3332 ((-642 (-114)) |#1|)) (-15 -3530 ((-642 (-610 |#1|)) |#1|)) (-15 -2953 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1295 ((-769) |#1|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -1301 (|#1| (-642 |#1|))) (-15 -1301 (|#1| |#1|)) (-15 -2181 (|#1| (-642 |#1|))) (-15 -2181 (|#1| |#1|)) (-15 -2458 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -2458 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -2458 (|#1| |#1| (-294 |#1|))) (-15 -4368 (|#1| (-114) (-642 |#1|))) (-15 -4368 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1|)) (-15 -3215 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| (-294 |#1|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -3215 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -4278 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3027 ((-610 |#1|) |#1|)))
+((-2907 (((-112) $ $) 7)) (-3530 (((-642 (-610 $)) $) 39)) (-2458 (($ $ (-294 $)) 51) (($ $ (-642 (-294 $))) 50) (($ $ (-642 (-610 $)) (-642 $)) 49)) (-4278 (((-3 (-610 $) "failed") $) 64)) (-3027 (((-610 $) $) 65)) (-1301 (($ $) 46) (($ (-642 $)) 45)) (-3332 (((-642 (-114)) $) 38)) (-3307 (((-114) (-114)) 37)) (-3076 (((-112) $) 17 (|has| $ (-1036 (-564))))) (-2666 (((-1169 $) (-610 $)) 20 (|has| $ (-1047)))) (-4358 (($ (-1 $ $) (-610 $)) 31)) (-2953 (((-3 (-610 $) "failed") $) 41)) (-3315 (((-1155) $) 10)) (-3603 (((-642 (-610 $)) $) 40)) (-4305 (($ (-114) $) 33) (($ (-114) (-642 $)) 32)) (-1523 (((-112) $ (-114)) 35) (((-112) $ (-1173)) 34)) (-1295 (((-769) $) 42)) (-4033 (((-1117) $) 11)) (-2539 (((-112) $ $) 30) (((-112) $ (-1173)) 29)) (-2519 (((-112) $) 18 (|has| $ (-1036 (-564))))) (-3215 (($ $ (-610 $) $) 62) (($ $ (-642 (-610 $)) (-642 $)) 61) (($ $ (-642 (-294 $))) 60) (($ $ (-294 $)) 59) (($ $ $ $) 58) (($ $ (-642 $) (-642 $)) 57) (($ $ (-642 (-1173)) (-642 (-1 $ $))) 28) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) 27) (($ $ (-1173) (-1 $ (-642 $))) 26) (($ $ (-1173) (-1 $ $)) 25) (($ $ (-642 (-114)) (-642 (-1 $ $))) 24) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) 23) (($ $ (-114) (-1 $ (-642 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-4368 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-642 $)) 52)) (-3238 (($ $) 44) (($ $ $) 43)) (-3280 (($ $) 19 (|has| $ (-1047)))) (-2327 (((-860) $) 12) (($ (-610 $)) 63)) (-2181 (($ $) 48) (($ (-642 $)) 47)) (-2357 (((-112) (-114)) 36)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
(((-302) (-140)) (T -302))
-((-4366 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4366 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4366 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4366 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4366 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-2559 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-2559 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302)))) (-2559 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-2180 (*1 *1 *1) (-4 *1 (-302))) (-2180 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-1387 (*1 *1 *1) (-4 *1 (-302))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-3973 (*1 *1 *1) (-4 *1 (-302))) (-3973 (*1 *1 *1 *1) (-4 *1 (-302))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-767)))) (-3521 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114))))) (-4232 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-3263 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3679 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3679 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-4309 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4309 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-4357 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) (-3817 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-3817 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-3291 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-3291 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-3291 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-3291 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-3291 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-3291 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-3291 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-3291 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-1045)) (-4 *1 (-302)) (-5 *2 (-1166 *1)))) (-3721 (*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-302)))) (-2663 (*1 *2 *1) (-12 (-4 *1 (-1034 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-1034 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))))
-(-13 (-1094) (-1034 (-610 $)) (-514 (-610 $) $) (-309 $) (-10 -8 (-15 -4366 ($ (-114) $)) (-15 -4366 ($ (-114) $ $)) (-15 -4366 ($ (-114) $ $ $)) (-15 -4366 ($ (-114) $ $ $ $)) (-15 -4366 ($ (-114) (-641 $))) (-15 -2559 ($ $ (-294 $))) (-15 -2559 ($ $ (-641 (-294 $)))) (-15 -2559 ($ $ (-641 (-610 $)) (-641 $))) (-15 -2180 ($ $)) (-15 -2180 ($ (-641 $))) (-15 -1387 ($ $)) (-15 -1387 ($ (-641 $))) (-15 -3973 ($ $)) (-15 -3973 ($ $ $)) (-15 -1292 ((-767) $)) (-15 -3521 ((-3 (-610 $) "failed") $)) (-15 -3648 ((-641 (-610 $)) $)) (-15 -3577 ((-641 (-610 $)) $)) (-15 -3782 ((-641 (-114)) $)) (-15 -4232 ((-114) (-114))) (-15 -3263 ((-112) (-114))) (-15 -3679 ((-112) $ (-114))) (-15 -3679 ((-112) $ (-1170))) (-15 -4309 ($ (-114) $)) (-15 -4309 ($ (-114) (-641 $))) (-15 -4357 ($ (-1 $ $) (-610 $))) (-15 -3817 ((-112) $ $)) (-15 -3817 ((-112) $ (-1170))) (-15 -3291 ($ $ (-641 (-1170)) (-641 (-1 $ $)))) (-15 -3291 ($ $ (-641 (-1170)) (-641 (-1 $ (-641 $))))) (-15 -3291 ($ $ (-1170) (-1 $ (-641 $)))) (-15 -3291 ($ $ (-1170) (-1 $ $))) (-15 -3291 ($ $ (-641 (-114)) (-641 (-1 $ $)))) (-15 -3291 ($ $ (-641 (-114)) (-641 (-1 $ (-641 $))))) (-15 -3291 ($ $ (-114) (-1 $ (-641 $)))) (-15 -3291 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1045)) (PROGN (-15 -1940 ((-1166 $) (-610 $))) (-15 -3721 ($ $))) |%noBranch|) (IF (|has| $ (-1034 (-564))) (PROGN (-15 -2663 ((-112) $)) (-15 -3177 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-614 #0=(-610 $)) . T) ((-611 (-858)) . T) ((-309 $) . T) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-1034 #0#) . T) ((-1094) . T))
-((-2728 (((-641 |#1|) (-641 |#1|)) 10)))
-(((-303 |#1|) (-10 -7 (-15 -2728 ((-641 |#1|) (-641 |#1|)))) (-844)) (T -303))
-((-2728 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-844)) (-5 *1 (-303 *3)))))
-(-10 -7 (-15 -2728 ((-641 |#1|) (-641 |#1|))))
-((-4357 (((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)) 17)))
-(((-304 |#1| |#2|) (-10 -7 (-15 -4357 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)))) (-1045) (-1045)) (T -304))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-685 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-685 *6)) (-5 *1 (-304 *5 *6)))))
-(-10 -7 (-15 -4357 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|))))
-((-3859 (((-1259 (-316 (-379))) (-1259 (-316 (-225)))) 112)) (-2157 (((-1088 (-839 (-225))) (-1088 (-839 (-379)))) 45)) (-3267 (((-641 (-1152)) (-1150 (-225))) 94)) (-3031 (((-316 (-379)) (-948 (-225))) 55)) (-2874 (((-225) (-948 (-225))) 51)) (-3760 (((-1152) (-379)) 196)) (-4078 (((-839 (-225)) (-839 (-379))) 39)) (-2883 (((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225)))) 165)) (-2539 (((-1031) (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) 208) (((-1031) (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))))) 206)) (-2511 (((-685 (-225)) (-641 (-225)) (-767)) 21)) (-1889 (((-1259 (-695)) (-641 (-225))) 101)) (-1577 (((-641 (-1152)) (-641 (-225))) 81)) (-4338 (((-3 (-316 (-225)) "failed") (-316 (-225))) 129)) (-3314 (((-112) (-225) (-1088 (-839 (-225)))) 118)) (-4307 (((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 225)) (-1941 (((-225) (-1088 (-839 (-225)))) 114)) (-3414 (((-225) (-1088 (-839 (-225)))) 115)) (-1681 (((-225) (-407 (-564))) 33)) (-4009 (((-1152) (-379)) 79)) (-4066 (((-225) (-379)) 24)) (-3832 (((-379) (-1259 (-316 (-225)))) 178)) (-1574 (((-316 (-225)) (-316 (-379))) 30)) (-1900 (((-407 (-564)) (-316 (-225))) 58)) (-2812 (((-316 (-407 (-564))) (-316 (-225))) 75)) (-4109 (((-316 (-379)) (-316 (-225))) 105)) (-3855 (((-225) (-316 (-225))) 59)) (-3623 (((-641 (-225)) (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) 70)) (-2870 (((-1088 (-839 (-225))) (-1088 (-839 (-225)))) 67)) (-3017 (((-1152) (-225)) 78)) (-3260 (((-695) (-225)) 97)) (-3155 (((-407 (-564)) (-225)) 60)) (-2247 (((-316 (-379)) (-225)) 54)) (-1311 (((-641 (-1088 (-839 (-225)))) (-641 (-1088 (-839 (-379))))) 48)) (-3696 (((-1031) (-641 (-1031))) 192) (((-1031) (-1031) (-1031)) 186)) (-3699 (((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 222)))
-(((-305) (-10 -7 (-15 -4066 ((-225) (-379))) (-15 -1574 ((-316 (-225)) (-316 (-379)))) (-15 -4078 ((-839 (-225)) (-839 (-379)))) (-15 -2157 ((-1088 (-839 (-225))) (-1088 (-839 (-379))))) (-15 -1311 ((-641 (-1088 (-839 (-225)))) (-641 (-1088 (-839 (-379)))))) (-15 -3155 ((-407 (-564)) (-225))) (-15 -1900 ((-407 (-564)) (-316 (-225)))) (-15 -3855 ((-225) (-316 (-225)))) (-15 -4338 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3832 ((-379) (-1259 (-316 (-225))))) (-15 -2883 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -2812 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -2870 ((-1088 (-839 (-225))) (-1088 (-839 (-225))))) (-15 -3623 ((-641 (-225)) (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))) (-15 -3260 ((-695) (-225))) (-15 -1889 ((-1259 (-695)) (-641 (-225)))) (-15 -4109 ((-316 (-379)) (-316 (-225)))) (-15 -3859 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -3314 ((-112) (-225) (-1088 (-839 (-225))))) (-15 -3017 ((-1152) (-225))) (-15 -4009 ((-1152) (-379))) (-15 -1577 ((-641 (-1152)) (-641 (-225)))) (-15 -3267 ((-641 (-1152)) (-1150 (-225)))) (-15 -1941 ((-225) (-1088 (-839 (-225))))) (-15 -3414 ((-225) (-1088 (-839 (-225))))) (-15 -3696 ((-1031) (-1031) (-1031))) (-15 -3696 ((-1031) (-641 (-1031)))) (-15 -3760 ((-1152) (-379))) (-15 -2539 ((-1031) (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -2539 ((-1031) (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))))) (-15 -3699 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4307 ((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3031 ((-316 (-379)) (-948 (-225)))) (-15 -2874 ((-225) (-948 (-225)))) (-15 -2247 ((-316 (-379)) (-225))) (-15 -1681 ((-225) (-407 (-564)))) (-15 -2511 ((-685 (-225)) (-641 (-225)) (-767))))) (T -305))
-((-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-767)) (-5 *2 (-685 (-225))) (-5 *1 (-305)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-4307 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-641 (-1031))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-3696 (*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-305)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-3314 (*1 *2 *3 *4) (-12 (-5 *4 (-1088 (-839 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379)))) (-5 *1 (-305)))) (-4109 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-5 *2 (-641 (-225))) (-5 *1 (-305)))) (-2870 (*1 *2 *2) (-12 (-5 *2 (-1088 (-839 (-225)))) (-5 *1 (-305)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) (-5 *1 (-305)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) (-5 *1 (-305)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-4338 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-641 (-1088 (-839 (-379))))) (-5 *2 (-641 (-1088 (-839 (-225))))) (-5 *1 (-305)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-1088 (-839 (-379)))) (-5 *2 (-1088 (-839 (-225)))) (-5 *1 (-305)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-839 (-379))) (-5 *2 (-839 (-225))) (-5 *1 (-305)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305)))))
-(-10 -7 (-15 -4066 ((-225) (-379))) (-15 -1574 ((-316 (-225)) (-316 (-379)))) (-15 -4078 ((-839 (-225)) (-839 (-379)))) (-15 -2157 ((-1088 (-839 (-225))) (-1088 (-839 (-379))))) (-15 -1311 ((-641 (-1088 (-839 (-225)))) (-641 (-1088 (-839 (-379)))))) (-15 -3155 ((-407 (-564)) (-225))) (-15 -1900 ((-407 (-564)) (-316 (-225)))) (-15 -3855 ((-225) (-316 (-225)))) (-15 -4338 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3832 ((-379) (-1259 (-316 (-225))))) (-15 -2883 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -2812 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -2870 ((-1088 (-839 (-225))) (-1088 (-839 (-225))))) (-15 -3623 ((-641 (-225)) (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))) (-15 -3260 ((-695) (-225))) (-15 -1889 ((-1259 (-695)) (-641 (-225)))) (-15 -4109 ((-316 (-379)) (-316 (-225)))) (-15 -3859 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -3314 ((-112) (-225) (-1088 (-839 (-225))))) (-15 -3017 ((-1152) (-225))) (-15 -4009 ((-1152) (-379))) (-15 -1577 ((-641 (-1152)) (-641 (-225)))) (-15 -3267 ((-641 (-1152)) (-1150 (-225)))) (-15 -1941 ((-225) (-1088 (-839 (-225))))) (-15 -3414 ((-225) (-1088 (-839 (-225))))) (-15 -3696 ((-1031) (-1031) (-1031))) (-15 -3696 ((-1031) (-641 (-1031)))) (-15 -3760 ((-1152) (-379))) (-15 -2539 ((-1031) (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -2539 ((-1031) (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))))) (-15 -3699 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4307 ((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3031 ((-316 (-379)) (-948 (-225)))) (-15 -2874 ((-225) (-948 (-225)))) (-15 -2247 ((-316 (-379)) (-225))) (-15 -1681 ((-225) (-407 (-564)))) (-15 -2511 ((-685 (-225)) (-641 (-225)) (-767))))
-((-3162 (((-112) $ $) 14)) (-2946 (($ $ $) 18)) (-2960 (($ $ $) 17)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 50)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 65)) (-2123 (($ $ $) 25) (($ (-641 $)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2998 (((-3 $ "failed") $ $) 21)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 53)))
-(((-306 |#1|) (-10 -8 (-15 -1308 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -3274 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3274 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2249 |#1|)) |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -3162 ((-112) |#1| |#1|)) (-15 -1820 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -1583 ((-2 (|:| -4376 (-641 |#1|)) (|:| -2249 |#1|)) (-641 |#1|))) (-15 -2123 (|#1| (-641 |#1|))) (-15 -2123 (|#1| |#1| |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306))
-NIL
-(-10 -8 (-15 -1308 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -3274 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3274 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2249 |#1|)) |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -3162 ((-112) |#1| |#1|)) (-15 -1820 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -1583 ((-2 (|:| -4376 (-641 |#1|)) (|:| -2249 |#1|)) (-641 |#1|))) (-15 -2123 (|#1| (-641 |#1|))) (-15 -2123 (|#1| |#1| |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-3162 (((-112) $ $) 61)) (-4080 (($) 18 T CONST)) (-2946 (($ $ $) 57)) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-4112 (((-112) $) 32)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-1700 (((-767) $) 60)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
+((-4368 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4368 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4368 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4368 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4368 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 *1)) (-4 *1 (-302)))) (-2458 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-2458 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-294 *1))) (-4 *1 (-302)))) (-2458 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-610 *1))) (-5 *3 (-642 *1)) (-4 *1 (-302)))) (-2181 (*1 *1 *1) (-4 *1 (-302))) (-2181 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-302)))) (-1301 (*1 *1 *1) (-4 *1 (-302))) (-1301 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-302)))) (-3238 (*1 *1 *1) (-4 *1 (-302))) (-3238 (*1 *1 *1 *1) (-4 *1 (-302))) (-1295 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-769)))) (-2953 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-642 (-610 *1))) (-4 *1 (-302)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-642 (-610 *1))) (-4 *1 (-302)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-642 (-114))))) (-3307 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2357 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1523 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1523 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1173)) (-5 *2 (-112)))) (-4305 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4305 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 *1)) (-4 *1 (-302)))) (-4358 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) (-2539 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-2539 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1173)) (-5 *2 (-112)))) (-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-1 *1 *1))) (-4 *1 (-302)))) (-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-1 *1 (-642 *1)))) (-4 *1 (-302)))) (-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1 *1 (-642 *1))) (-4 *1 (-302)))) (-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 (-1 *1 *1))) (-4 *1 (-302)))) (-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 (-1 *1 (-642 *1)))) (-4 *1 (-302)))) (-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-642 *1))) (-4 *1 (-302)))) (-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-1047)) (-4 *1 (-302)) (-5 *2 (-1169 *1)))) (-3280 (*1 *1 *1) (-12 (-4 *1 (-1047)) (-4 *1 (-302)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1036 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-1036 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))))
+(-13 (-1097) (-1036 (-610 $)) (-514 (-610 $) $) (-309 $) (-10 -8 (-15 -4368 ($ (-114) $)) (-15 -4368 ($ (-114) $ $)) (-15 -4368 ($ (-114) $ $ $)) (-15 -4368 ($ (-114) $ $ $ $)) (-15 -4368 ($ (-114) (-642 $))) (-15 -2458 ($ $ (-294 $))) (-15 -2458 ($ $ (-642 (-294 $)))) (-15 -2458 ($ $ (-642 (-610 $)) (-642 $))) (-15 -2181 ($ $)) (-15 -2181 ($ (-642 $))) (-15 -1301 ($ $)) (-15 -1301 ($ (-642 $))) (-15 -3238 ($ $)) (-15 -3238 ($ $ $)) (-15 -1295 ((-769) $)) (-15 -2953 ((-3 (-610 $) "failed") $)) (-15 -3603 ((-642 (-610 $)) $)) (-15 -3530 ((-642 (-610 $)) $)) (-15 -3332 ((-642 (-114)) $)) (-15 -3307 ((-114) (-114))) (-15 -2357 ((-112) (-114))) (-15 -1523 ((-112) $ (-114))) (-15 -1523 ((-112) $ (-1173))) (-15 -4305 ($ (-114) $)) (-15 -4305 ($ (-114) (-642 $))) (-15 -4358 ($ (-1 $ $) (-610 $))) (-15 -2539 ((-112) $ $)) (-15 -2539 ((-112) $ (-1173))) (-15 -3215 ($ $ (-642 (-1173)) (-642 (-1 $ $)))) (-15 -3215 ($ $ (-642 (-1173)) (-642 (-1 $ (-642 $))))) (-15 -3215 ($ $ (-1173) (-1 $ (-642 $)))) (-15 -3215 ($ $ (-1173) (-1 $ $))) (-15 -3215 ($ $ (-642 (-114)) (-642 (-1 $ $)))) (-15 -3215 ($ $ (-642 (-114)) (-642 (-1 $ (-642 $))))) (-15 -3215 ($ $ (-114) (-1 $ (-642 $)))) (-15 -3215 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1047)) (PROGN (-15 -2666 ((-1169 $) (-610 $))) (-15 -3280 ($ $))) |%noBranch|) (IF (|has| $ (-1036 (-564))) (PROGN (-15 -2519 ((-112) $)) (-15 -3076 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-614 #0=(-610 $)) . T) ((-611 (-860)) . T) ((-309 $) . T) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-1036 #0#) . T) ((-1097) . T))
+((-3201 (((-642 |#1|) (-642 |#1|)) 10)))
+(((-303 |#1|) (-10 -7 (-15 -3201 ((-642 |#1|) (-642 |#1|)))) (-846)) (T -303))
+((-3201 (*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-846)) (-5 *1 (-303 *3)))))
+(-10 -7 (-15 -3201 ((-642 |#1|) (-642 |#1|))))
+((-4358 (((-687 |#2|) (-1 |#2| |#1|) (-687 |#1|)) 17)))
+(((-304 |#1| |#2|) (-10 -7 (-15 -4358 ((-687 |#2|) (-1 |#2| |#1|) (-687 |#1|)))) (-1047) (-1047)) (T -304))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-687 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-687 *6)) (-5 *1 (-304 *5 *6)))))
+(-10 -7 (-15 -4358 ((-687 |#2|) (-1 |#2| |#1|) (-687 |#1|))))
+((-1732 (((-1262 (-316 (-379))) (-1262 (-316 (-225)))) 112)) (-2198 (((-1091 (-841 (-225))) (-1091 (-841 (-379)))) 45)) (-2105 (((-642 (-1155)) (-1153 (-225))) 94)) (-3514 (((-316 (-379)) (-950 (-225))) 55)) (-3389 (((-225) (-950 (-225))) 51)) (-2948 (((-1155) (-379)) 196)) (-1796 (((-841 (-225)) (-841 (-379))) 39)) (-2985 (((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1262 (-316 (-225)))) 165)) (-3324 (((-1033) (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) 208) (((-1033) (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))))) 206)) (-1780 (((-687 (-225)) (-642 (-225)) (-769)) 21)) (-1688 (((-1262 (-697)) (-642 (-225))) 101)) (-3178 (((-642 (-1155)) (-642 (-225))) 81)) (-4339 (((-3 (-316 (-225)) "failed") (-316 (-225))) 129)) (-4003 (((-112) (-225) (-1091 (-841 (-225)))) 118)) (-1874 (((-1033) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 225)) (-3362 (((-225) (-1091 (-841 (-225)))) 114)) (-3197 (((-225) (-1091 (-841 (-225)))) 115)) (-4330 (((-225) (-407 (-564))) 33)) (-1641 (((-1155) (-379)) 79)) (-3086 (((-225) (-379)) 24)) (-3476 (((-379) (-1262 (-316 (-225)))) 178)) (-3856 (((-316 (-225)) (-316 (-379))) 30)) (-2607 (((-407 (-564)) (-316 (-225))) 58)) (-4349 (((-316 (-407 (-564))) (-316 (-225))) 75)) (-2014 (((-316 (-379)) (-316 (-225))) 105)) (-2477 (((-225) (-316 (-225))) 59)) (-2806 (((-642 (-225)) (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) 70)) (-1766 (((-1091 (-841 (-225))) (-1091 (-841 (-225)))) 67)) (-4387 (((-1155) (-225)) 78)) (-2880 (((-697) (-225)) 97)) (-2402 (((-407 (-564)) (-225)) 60)) (-1678 (((-316 (-379)) (-225)) 54)) (-1314 (((-642 (-1091 (-841 (-225)))) (-642 (-1091 (-841 (-379))))) 48)) (-3651 (((-1033) (-642 (-1033))) 192) (((-1033) (-1033) (-1033)) 186)) (-2884 (((-1033) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 222)))
+(((-305) (-10 -7 (-15 -3086 ((-225) (-379))) (-15 -3856 ((-316 (-225)) (-316 (-379)))) (-15 -1796 ((-841 (-225)) (-841 (-379)))) (-15 -2198 ((-1091 (-841 (-225))) (-1091 (-841 (-379))))) (-15 -1314 ((-642 (-1091 (-841 (-225)))) (-642 (-1091 (-841 (-379)))))) (-15 -2402 ((-407 (-564)) (-225))) (-15 -2607 ((-407 (-564)) (-316 (-225)))) (-15 -2477 ((-225) (-316 (-225)))) (-15 -4339 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3476 ((-379) (-1262 (-316 (-225))))) (-15 -2985 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1262 (-316 (-225))))) (-15 -4349 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -1766 ((-1091 (-841 (-225))) (-1091 (-841 (-225))))) (-15 -2806 ((-642 (-225)) (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))) (-15 -2880 ((-697) (-225))) (-15 -1688 ((-1262 (-697)) (-642 (-225)))) (-15 -2014 ((-316 (-379)) (-316 (-225)))) (-15 -1732 ((-1262 (-316 (-379))) (-1262 (-316 (-225))))) (-15 -4003 ((-112) (-225) (-1091 (-841 (-225))))) (-15 -4387 ((-1155) (-225))) (-15 -1641 ((-1155) (-379))) (-15 -3178 ((-642 (-1155)) (-642 (-225)))) (-15 -2105 ((-642 (-1155)) (-1153 (-225)))) (-15 -3362 ((-225) (-1091 (-841 (-225))))) (-15 -3197 ((-225) (-1091 (-841 (-225))))) (-15 -3651 ((-1033) (-1033) (-1033))) (-15 -3651 ((-1033) (-642 (-1033)))) (-15 -2948 ((-1155) (-379))) (-15 -3324 ((-1033) (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))))) (-15 -3324 ((-1033) (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))))) (-15 -2884 ((-1033) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1874 ((-1033) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3514 ((-316 (-379)) (-950 (-225)))) (-15 -3389 ((-225) (-950 (-225)))) (-15 -1678 ((-316 (-379)) (-225))) (-15 -4330 ((-225) (-407 (-564)))) (-15 -1780 ((-687 (-225)) (-642 (-225)) (-769))))) (T -305))
+((-1780 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-225))) (-5 *4 (-769)) (-5 *2 (-687 (-225))) (-5 *1 (-305)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-950 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-950 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1033)) (-5 *1 (-305)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1033)) (-5 *1 (-305)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) (-5 *2 (-1033)) (-5 *1 (-305)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *2 (-1033)) (-5 *1 (-305)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1155)) (-5 *1 (-305)))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-642 (-1033))) (-5 *2 (-1033)) (-5 *1 (-305)))) (-3651 (*1 *2 *2 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-305)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-305)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-305)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1155)) (-5 *1 (-305)))) (-4387 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-305)))) (-4003 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-841 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *2 (-1262 (-316 (-379)))) (-5 *1 (-305)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1262 (-697))) (-5 *1 (-305)))) (-2880 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-697)) (-5 *1 (-305)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-5 *2 (-642 (-225))) (-5 *1 (-305)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-1091 (-841 (-225)))) (-5 *1 (-305)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) (-5 *1 (-305)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) (-5 *1 (-305)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-4339 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-642 (-1091 (-841 (-379))))) (-5 *2 (-642 (-1091 (-841 (-225))))) (-5 *1 (-305)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-1091 (-841 (-379)))) (-5 *2 (-1091 (-841 (-225)))) (-5 *1 (-305)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-841 (-379))) (-5 *2 (-841 (-225))) (-5 *1 (-305)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305)))))
+(-10 -7 (-15 -3086 ((-225) (-379))) (-15 -3856 ((-316 (-225)) (-316 (-379)))) (-15 -1796 ((-841 (-225)) (-841 (-379)))) (-15 -2198 ((-1091 (-841 (-225))) (-1091 (-841 (-379))))) (-15 -1314 ((-642 (-1091 (-841 (-225)))) (-642 (-1091 (-841 (-379)))))) (-15 -2402 ((-407 (-564)) (-225))) (-15 -2607 ((-407 (-564)) (-316 (-225)))) (-15 -2477 ((-225) (-316 (-225)))) (-15 -4339 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3476 ((-379) (-1262 (-316 (-225))))) (-15 -2985 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1262 (-316 (-225))))) (-15 -4349 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -1766 ((-1091 (-841 (-225))) (-1091 (-841 (-225))))) (-15 -2806 ((-642 (-225)) (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))) (-15 -2880 ((-697) (-225))) (-15 -1688 ((-1262 (-697)) (-642 (-225)))) (-15 -2014 ((-316 (-379)) (-316 (-225)))) (-15 -1732 ((-1262 (-316 (-379))) (-1262 (-316 (-225))))) (-15 -4003 ((-112) (-225) (-1091 (-841 (-225))))) (-15 -4387 ((-1155) (-225))) (-15 -1641 ((-1155) (-379))) (-15 -3178 ((-642 (-1155)) (-642 (-225)))) (-15 -2105 ((-642 (-1155)) (-1153 (-225)))) (-15 -3362 ((-225) (-1091 (-841 (-225))))) (-15 -3197 ((-225) (-1091 (-841 (-225))))) (-15 -3651 ((-1033) (-1033) (-1033))) (-15 -3651 ((-1033) (-642 (-1033)))) (-15 -2948 ((-1155) (-379))) (-15 -3324 ((-1033) (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))))) (-15 -3324 ((-1033) (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))))) (-15 -2884 ((-1033) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1874 ((-1033) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3514 ((-316 (-379)) (-950 (-225)))) (-15 -3389 ((-225) (-950 (-225)))) (-15 -1678 ((-316 (-379)) (-225))) (-15 -4330 ((-225) (-407 (-564)))) (-15 -1780 ((-687 (-225)) (-642 (-225)) (-769))))
+((-4010 (((-112) $ $) 14)) (-2845 (($ $ $) 18)) (-2859 (($ $ $) 17)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 50)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 65)) (-2080 (($ $ $) 25) (($ (-642 $)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2896 (((-3 $ "failed") $ $) 21)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 53)))
+(((-306 |#1|) (-10 -8 (-15 -1854 ((-3 (-642 |#1|) "failed") (-642 |#1|) |#1|)) (-15 -3883 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3883 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2185 |#1|)) |#1| |#1|)) (-15 -2845 (|#1| |#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -4010 ((-112) |#1| |#1|)) (-15 -1542 ((-3 (-642 |#1|) "failed") (-642 |#1|) |#1|)) (-15 -1315 ((-2 (|:| -4378 (-642 |#1|)) (|:| -2185 |#1|)) (-642 |#1|))) (-15 -2080 (|#1| (-642 |#1|))) (-15 -2080 (|#1| |#1| |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306))
+NIL
+(-10 -8 (-15 -1854 ((-3 (-642 |#1|) "failed") (-642 |#1|) |#1|)) (-15 -3883 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3883 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2185 |#1|)) |#1| |#1|)) (-15 -2845 (|#1| |#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -4010 ((-112) |#1| |#1|)) (-15 -1542 ((-3 (-642 |#1|) "failed") (-642 |#1|) |#1|)) (-15 -1315 ((-2 (|:| -4378 (-642 |#1|)) (|:| -2185 |#1|)) (-642 |#1|))) (-15 -2080 (|#1| (-642 |#1|))) (-15 -2080 (|#1| |#1| |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-4010 (((-112) $ $) 65)) (-1976 (($) 18 T CONST)) (-2845 (($ $ $) 61)) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-3953 (((-112) $) 35)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2048 (((-769) $) 64)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
(((-307) (-140)) (T -307))
-((-3162 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767)))) (-1389 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-307)))) (-2960 (*1 *1 *1 *1) (-4 *1 (-307))) (-2946 (*1 *1 *1 *1) (-4 *1 (-307))) (-3274 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2249 *1))) (-4 *1 (-307)))) (-3274 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-1308 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307)))))
-(-13 (-916) (-10 -8 (-15 -3162 ((-112) $ $)) (-15 -1700 ((-767) $)) (-15 -1389 ((-2 (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -2960 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -3274 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $)) (-15 -3274 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1308 ((-3 (-641 $) "failed") (-641 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3291 (($ $ (-641 |#2|) (-641 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-641 (-294 |#2|))) NIL)))
-(((-308 |#1| |#2|) (-10 -8 (-15 -3291 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3291 (|#1| |#1| (-294 |#2|))) (-15 -3291 (|#1| |#1| |#2| |#2|)) (-15 -3291 (|#1| |#1| (-641 |#2|) (-641 |#2|)))) (-309 |#2|) (-1094)) (T -308))
-NIL
-(-10 -8 (-15 -3291 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3291 (|#1| |#1| (-294 |#2|))) (-15 -3291 (|#1| |#1| |#2| |#2|)) (-15 -3291 (|#1| |#1| (-641 |#2|) (-641 |#2|))))
-((-3291 (($ $ (-641 |#1|) (-641 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-641 (-294 |#1|))) 10)))
-(((-309 |#1|) (-140) (-1094)) (T -309))
-((-3291 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) (-3291 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094)))))
-(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -3291 ($ $ (-294 |t#1|))) (-15 -3291 ($ $ (-641 (-294 |t#1|))))))
+((-4010 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-769)))) (-4376 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-307)))) (-2859 (*1 *1 *1 *1) (-4 *1 (-307))) (-2845 (*1 *1 *1 *1) (-4 *1 (-307))) (-3883 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2185 *1))) (-4 *1 (-307)))) (-3883 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-1854 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-642 *1)) (-4 *1 (-307)))))
+(-13 (-918) (-10 -8 (-15 -4010 ((-112) $ $)) (-15 -2048 ((-769) $)) (-15 -4376 ((-2 (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -2859 ($ $ $)) (-15 -2845 ($ $ $)) (-15 -3883 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $)) (-15 -3883 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1854 ((-3 (-642 $) "failed") (-642 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-3215 (($ $ (-642 |#2|) (-642 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-642 (-294 |#2|))) NIL)))
+(((-308 |#1| |#2|) (-10 -8 (-15 -3215 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -3215 (|#1| |#1| (-294 |#2|))) (-15 -3215 (|#1| |#1| |#2| |#2|)) (-15 -3215 (|#1| |#1| (-642 |#2|) (-642 |#2|)))) (-309 |#2|) (-1097)) (T -308))
+NIL
+(-10 -8 (-15 -3215 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -3215 (|#1| |#1| (-294 |#2|))) (-15 -3215 (|#1| |#1| |#2| |#2|)) (-15 -3215 (|#1| |#1| (-642 |#2|) (-642 |#2|))))
+((-3215 (($ $ (-642 |#1|) (-642 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-642 (-294 |#1|))) 10)))
+(((-309 |#1|) (-140) (-1097)) (T -309))
+((-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1097)))) (-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1097)))))
+(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -3215 ($ $ (-294 |t#1|))) (-15 -3215 ($ $ (-642 (-294 |t#1|))))))
(((-514 |#1| |#1|) . T))
-((-3291 ((|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))) 25)))
-(((-310 |#1|) (-10 -7 (-15 -3291 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))))) (-38 (-407 (-564)))) (T -310))
-((-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1172 (-407 (-564)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564)))))))
-(-10 -7 (-15 -3291 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564))))))
-((-3009 (((-112) $ $) NIL)) (-2278 (((-564) $) 12)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1350 (((-1129) $) 9)) (-2423 (((-858) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-311) (-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $)) (-15 -2278 ((-564) $))))) (T -311))
-((-1350 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311)))))
-(-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $)) (-15 -2278 ((-564) $))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 7)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 9)))
-(((-312) (-1094)) (T -312))
-NIL
-(-1094)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 67)) (-4198 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-905)))) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-905)))) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-816)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-1245 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-564)))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 26)) (-3120 (((-1245 |#1| |#2| |#3| |#4|) $) NIL) (((-1170) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-564)))) (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-564)))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-2946 (($ $ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-1245 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1259 (-1245 |#1| |#2| |#3| |#4|)))) (-685 $) (-1259 $)) NIL) (((-685 (-1245 |#1| |#2| |#3| |#4|)) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2384 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-816)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-882 (-379))))) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL)) (-2323 (((-1245 |#1| |#2| |#3| |#4|) $) 22)) (-1846 (((-3 $ "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)))) (-3326 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-816)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-1497 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-4357 (($ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) $) NIL)) (-4120 (((-3 (-839 |#2|) "failed") $) 87)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-2882 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-905)))) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3291 (($ $ (-641 (-1245 |#1| |#2| |#3| |#4|)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-294 (-1245 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-1170)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1170) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|))))) (-1700 (((-767) $) NIL)) (-4366 (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-286 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-2827 (($ $) NIL)) (-2336 (((-1245 |#1| |#2| |#3| |#4|) $) 19)) (-1311 (((-888 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-536)))) (((-379) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1018))) (((-225) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1018)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-1245 |#1| |#2| |#3| |#4|)) 30) (($ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1034 (-1170)))) (($ (-1244 |#2| |#3| |#4|)) 37)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-905))) (|has| (-1245 |#1| |#2| |#3| |#4|) (-145))))) (-3719 (((-767)) NIL T CONST)) (-3448 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3673 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-816)))) (-2403 (($) 42 T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-896 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-3034 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-2999 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-846)))) (-3092 (($ $ $) 35) (($ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) 32)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-1245 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL)))
-(((-313 |#1| |#2| |#3| |#4|) (-13 (-988 (-1245 |#1| |#2| |#3| |#4|)) (-1034 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -4120 ((-3 (-839 |#2|) "failed") $)) (-15 -2423 ($ (-1244 |#2| |#3| |#4|))))) (-13 (-1034 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -313))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4) (-4 *3 (-13 (-1034 (-564)) (-637 (-564)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-4120 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1034 (-564)) (-637 (-564)) (-452))) (-5 *2 (-839 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))))
-(-13 (-988 (-1245 |#1| |#2| |#3| |#4|)) (-1034 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -4120 ((-3 (-839 |#2|) "failed") $)) (-15 -2423 ($ (-1244 |#2| |#3| |#4|)))))
-((-4357 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13)))
-(((-314 |#1| |#2|) (-10 -7 (-15 -4357 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-1094) (-1094)) (T -314))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))))
-(-10 -7 (-15 -4357 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|))))
-((-3892 (((-52) |#2| (-294 |#2|) (-767)) 40) (((-52) |#2| (-294 |#2|)) 32) (((-52) |#2| (-767)) 35) (((-52) |#2|) 33) (((-52) (-1170)) 26)) (-2808 (((-52) |#2| (-294 |#2|) (-407 (-564))) 59) (((-52) |#2| (-294 |#2|)) 56) (((-52) |#2| (-407 (-564))) 58) (((-52) |#2|) 57) (((-52) (-1170)) 55)) (-3915 (((-52) |#2| (-294 |#2|) (-407 (-564))) 54) (((-52) |#2| (-294 |#2|)) 51) (((-52) |#2| (-407 (-564))) 53) (((-52) |#2|) 52) (((-52) (-1170)) 50)) (-3903 (((-52) |#2| (-294 |#2|) (-564)) 47) (((-52) |#2| (-294 |#2|)) 44) (((-52) |#2| (-564)) 46) (((-52) |#2|) 45) (((-52) (-1170)) 43)))
-(((-315 |#1| |#2|) (-10 -7 (-15 -3892 ((-52) (-1170))) (-15 -3892 ((-52) |#2|)) (-15 -3892 ((-52) |#2| (-767))) (-15 -3892 ((-52) |#2| (-294 |#2|))) (-15 -3892 ((-52) |#2| (-294 |#2|) (-767))) (-15 -3903 ((-52) (-1170))) (-15 -3903 ((-52) |#2|)) (-15 -3903 ((-52) |#2| (-564))) (-15 -3903 ((-52) |#2| (-294 |#2|))) (-15 -3903 ((-52) |#2| (-294 |#2|) (-564))) (-15 -3915 ((-52) (-1170))) (-15 -3915 ((-52) |#2|)) (-15 -3915 ((-52) |#2| (-407 (-564)))) (-15 -3915 ((-52) |#2| (-294 |#2|))) (-15 -3915 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -2808 ((-52) (-1170))) (-15 -2808 ((-52) |#2|)) (-15 -2808 ((-52) |#2| (-407 (-564)))) (-15 -2808 ((-52) |#2| (-294 |#2|))) (-15 -2808 ((-52) |#2| (-294 |#2|) (-407 (-564))))) (-13 (-452) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -315))
-((-2808 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2808 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-3915 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3915 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-3903 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-1034 *5) (-637 *5))) (-5 *5 (-564)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3903 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3903 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-1034 *4) (-637 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3903 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-3892 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-767)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3892 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))))
-(-10 -7 (-15 -3892 ((-52) (-1170))) (-15 -3892 ((-52) |#2|)) (-15 -3892 ((-52) |#2| (-767))) (-15 -3892 ((-52) |#2| (-294 |#2|))) (-15 -3892 ((-52) |#2| (-294 |#2|) (-767))) (-15 -3903 ((-52) (-1170))) (-15 -3903 ((-52) |#2|)) (-15 -3903 ((-52) |#2| (-564))) (-15 -3903 ((-52) |#2| (-294 |#2|))) (-15 -3903 ((-52) |#2| (-294 |#2|) (-564))) (-15 -3915 ((-52) (-1170))) (-15 -3915 ((-52) |#2|)) (-15 -3915 ((-52) |#2| (-407 (-564)))) (-15 -3915 ((-52) |#2| (-294 |#2|))) (-15 -3915 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -2808 ((-52) (-1170))) (-15 -2808 ((-52) |#2|)) (-15 -2808 ((-52) |#2| (-407 (-564)))) (-15 -2808 ((-52) |#2| (-294 |#2|))) (-15 -2808 ((-52) |#2| (-294 |#2|) (-407 (-564)))))
-((-3009 (((-112) $ $) NIL)) (-4119 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-948 $)) NIL (|has| |#1| (-556)))) (-4029 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-948 $)) NIL (|has| |#1| (-556)))) (-1494 (((-112) $) 27 (-2807 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))) (-3836 (((-641 (-1170)) $) 368)) (-3660 (((-407 (-1166 $)) $ (-610 $)) NIL (|has| |#1| (-556)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-3577 (((-641 (-610 $)) $) NIL)) (-3880 (($ $) 171 (|has| |#1| (-556)))) (-3745 (($ $) 147 (|has| |#1| (-556)))) (-3250 (($ $ (-1086 $)) 232 (|has| |#1| (-556))) (($ $ (-1170)) 228 (|has| |#1| (-556)))) (-4012 (((-3 $ "failed") $ $) NIL (-2807 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))) (-2559 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) 386) (($ $ (-641 (-610 $)) (-641 $)) 430)) (-4199 (((-418 (-1166 $)) (-1166 $)) 308 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-2683 (($ $) NIL (|has| |#1| (-556)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-556)))) (-3700 (($ $) NIL (|has| |#1| (-556)))) (-3162 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3858 (($ $) 167 (|has| |#1| (-556)))) (-3722 (($ $) 143 (|has| |#1| (-556)))) (-3909 (($ $ (-564)) 73 (|has| |#1| (-556)))) (-3902 (($ $) 175 (|has| |#1| (-556)))) (-3766 (($ $) 151 (|has| |#1| (-556)))) (-4080 (($) NIL (-2807 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106))) CONST)) (-3442 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-948 $)) NIL (|has| |#1| (-556)))) (-2930 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) 134 (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-948 $)) NIL (|has| |#1| (-556)))) (-4284 (((-3 (-610 $) "failed") $) 18) (((-3 (-1170) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-948 |#1|)) "failed") $) NIL (|has| |#1| (-556))) (((-3 (-948 |#1|) "failed") $) NIL (|has| |#1| (-1045))) (((-3 (-407 (-564)) "failed") $) 46 (-2807 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-3120 (((-610 $) $) 12) (((-1170) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-948 |#1|)) $) NIL (|has| |#1| (-556))) (((-948 |#1|) $) NIL (|has| |#1| (-1045))) (((-407 (-564)) $) 319 (-2807 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-2946 (($ $ $) NIL (|has| |#1| (-556)))) (-4277 (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 125 (|has| |#1| (-1045))) (((-685 |#1|) (-685 $)) 115 (|has| |#1| (-1045))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))) (-1316 (($ $) 96 (|has| |#1| (-556)))) (-3293 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106))))) (-2960 (($ $ $) NIL (|has| |#1| (-556)))) (-2897 (($ $ (-1086 $)) 236 (|has| |#1| (-556))) (($ $ (-1170)) 234 (|has| |#1| (-556)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-556)))) (-1339 (((-112) $) NIL (|has| |#1| (-556)))) (-3377 (($ $ $) 202 (|has| |#1| (-556)))) (-4274 (($) 137 (|has| |#1| (-556)))) (-3737 (($ $ $) 222 (|has| |#1| (-556)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 392 (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 399 (|has| |#1| (-882 (-379))))) (-1387 (($ $) NIL) (($ (-641 $)) NIL)) (-3782 (((-641 (-114)) $) NIL)) (-4232 (((-114) (-114)) 276)) (-4112 (((-112) $) 25 (-2807 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106))))) (-3177 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-1717 (($ $) 72 (|has| |#1| (-1045)))) (-2323 (((-1119 |#1| (-610 $)) $) 91 (|has| |#1| (-1045)))) (-3932 (((-112) $) 62 (|has| |#1| (-556)))) (-3614 (($ $ (-564)) NIL (|has| |#1| (-556)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-1940 (((-1166 $) (-610 $)) 277 (|has| $ (-1045)))) (-4357 (($ (-1 $ $) (-610 $)) 426)) (-3521 (((-3 (-610 $) "failed") $) NIL)) (-3657 (($ $) 141 (|has| |#1| (-556)))) (-1488 (($ $) 247 (|has| |#1| (-556)))) (-2084 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2766 (((-1152) $) NIL)) (-3648 (((-641 (-610 $)) $) 49)) (-4309 (($ (-114) $) NIL) (($ (-114) (-641 $)) 431)) (-1958 (((-3 (-641 $) "failed") $) NIL (|has| |#1| (-1106)))) (-4193 (((-3 (-2 (|:| |val| $) (|:| -1838 (-564))) "failed") $) NIL (|has| |#1| (-1045)))) (-1301 (((-3 (-641 $) "failed") $) 436 (|has| |#1| (-25)))) (-2290 (((-3 (-2 (|:| -4376 (-564)) (|:| |var| (-610 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3401 (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $) NIL (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $ (-114)) NIL (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $ (-1170)) NIL (|has| |#1| (-1045)))) (-3679 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) 51)) (-3936 (($ $) NIL (-2807 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1548 (($ $ (-1170)) 251 (|has| |#1| (-556))) (($ $ (-1086 $)) 253 (|has| |#1| (-556)))) (-1292 (((-767) $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) 43)) (-3954 ((|#1| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 301 (|has| |#1| (-556)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3817 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-2771 (($ $ (-1170)) 226 (|has| |#1| (-556))) (($ $) 224 (|has| |#1| (-556)))) (-1986 (($ $) 218 (|has| |#1| (-556)))) (-1348 (((-418 (-1166 $)) (-1166 $)) 306 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-3688 (((-418 $) $) NIL (|has| |#1| (-556)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-556)))) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-1689 (($ $) 139 (|has| |#1| (-556)))) (-2663 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-3291 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 425) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) 379) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) NIL (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-612 (-536)))) (($ $) NIL (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 366 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 365 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ $))) NIL (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ (-641 $)))) NIL (|has| |#1| (-1045))) (($ $ (-1170) (-767) (-1 $ (-641 $))) NIL (|has| |#1| (-1045))) (($ $ (-1170) (-767) (-1 $ $)) NIL (|has| |#1| (-1045)))) (-1700 (((-767) $) NIL (|has| |#1| (-556)))) (-3680 (($ $) 239 (|has| |#1| (-556)))) (-4366 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-556)))) (-3973 (($ $) NIL) (($ $ $) NIL)) (-3711 (($ $) 249 (|has| |#1| (-556)))) (-2369 (($ $) 200 (|has| |#1| (-556)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1045))) (($ $ (-1170)) NIL (|has| |#1| (-1045)))) (-2827 (($ $) 74 (|has| |#1| (-556)))) (-2336 (((-1119 |#1| (-610 $)) $) 93 (|has| |#1| (-556)))) (-3721 (($ $) 317 (|has| $ (-1045)))) (-3914 (($ $) 177 (|has| |#1| (-556)))) (-3777 (($ $) 153 (|has| |#1| (-556)))) (-3891 (($ $) 173 (|has| |#1| (-556)))) (-3756 (($ $) 149 (|has| |#1| (-556)))) (-3869 (($ $) 169 (|has| |#1| (-556)))) (-3735 (($ $) 145 (|has| |#1| (-556)))) (-1311 (((-888 (-564)) $) NIL (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| |#1| (-612 (-888 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-556))) (((-536) $) 363 (|has| |#1| (-612 (-536))))) (-3185 (($ $ $) NIL (|has| |#1| (-473)))) (-1542 (($ $ $) NIL (|has| |#1| (-473)))) (-2423 (((-858) $) 424) (($ (-610 $)) 415) (($ (-1170)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-556))) (($ (-48)) 312 (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))))) (($ (-1119 |#1| (-610 $))) 95 (|has| |#1| (-1045))) (($ (-407 |#1|)) NIL (|has| |#1| (-556))) (($ (-948 (-407 |#1|))) NIL (|has| |#1| (-556))) (($ (-407 (-948 (-407 |#1|)))) NIL (|has| |#1| (-556))) (($ (-407 (-948 |#1|))) NIL (|has| |#1| (-556))) (($ (-948 |#1|)) NIL (|has| |#1| (-1045))) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-556)) (|has| |#1| (-1034 (-407 (-564)))))) (($ (-564)) 34 (-2807 (|has| |#1| (-1034 (-564))) (|has| |#1| (-1045))))) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL (|has| |#1| (-1045)) CONST)) (-2180 (($ $) NIL) (($ (-641 $)) NIL)) (-2020 (($ $ $) 220 (|has| |#1| (-556)))) (-2604 (($ $ $) 206 (|has| |#1| (-556)))) (-3042 (($ $ $) 210 (|has| |#1| (-556)))) (-1801 (($ $ $) 204 (|has| |#1| (-556)))) (-1845 (($ $ $) 208 (|has| |#1| (-556)))) (-3263 (((-112) (-114)) 10)) (-1860 (((-112) $ $) 86)) (-3949 (($ $) 183 (|has| |#1| (-556)))) (-3811 (($ $) 159 (|has| |#1| (-556)))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) 179 (|has| |#1| (-556)))) (-3787 (($ $) 155 (|has| |#1| (-556)))) (-3972 (($ $) 187 (|has| |#1| (-556)))) (-3837 (($ $) 163 (|has| |#1| (-556)))) (-2750 (($ (-1170) $) NIL) (($ (-1170) $ $) NIL) (($ (-1170) $ $ $) NIL) (($ (-1170) $ $ $ $) NIL) (($ (-1170) (-641 $)) NIL)) (-2419 (($ $) 214 (|has| |#1| (-556)))) (-3248 (($ $) 212 (|has| |#1| (-556)))) (-2784 (($ $) 189 (|has| |#1| (-556)))) (-3848 (($ $) 165 (|has| |#1| (-556)))) (-3960 (($ $) 185 (|has| |#1| (-556)))) (-3825 (($ $) 161 (|has| |#1| (-556)))) (-3937 (($ $) 181 (|has| |#1| (-556)))) (-3799 (($ $) 157 (|has| |#1| (-556)))) (-3673 (($ $) 192 (|has| |#1| (-556)))) (-2403 (($) 21 (-2807 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))) CONST)) (-3349 (($ $) 243 (|has| |#1| (-556)))) (-2417 (($) 23 (-2807 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106))) CONST)) (-3727 (($ $) 194 (|has| |#1| (-556))) (($ $ $) 196 (|has| |#1| (-556)))) (-3020 (($ $) 241 (|has| |#1| (-556)))) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1045))) (($ $ (-1170)) NIL (|has| |#1| (-1045)))) (-3581 (($ $) 245 (|has| |#1| (-556)))) (-1731 (($ $ $) 198 (|has| |#1| (-556)))) (-2974 (((-112) $ $) 88)) (-3092 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 106 (|has| |#1| (-556))) (($ $ $) 42 (-2807 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3082 (($ $ $) 40 (-2807 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))) (($ $) 29 (-2807 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))) (-3070 (($ $ $) 38 (-2807 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))) (** (($ $ $) 64 (|has| |#1| (-556))) (($ $ (-407 (-564))) 314 (|has| |#1| (-556))) (($ $ (-564)) 80 (-2807 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-767)) 75 (-2807 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106)))) (($ $ (-917)) 84 (-2807 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106))))) (* (($ (-407 (-564)) $) NIL (|has| |#1| (-556))) (($ $ (-407 (-564))) NIL (|has| |#1| (-556))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2807 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) (|has| |#1| (-1106)))) (($ (-564) $) 32 (-2807 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))) (($ (-767) $) NIL (-2807 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))))) (($ (-917) $) NIL (-2807 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))))))
-(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -1316 ($ $)) (-15 -3932 ((-112) $)) (-15 -3909 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -1348 ((-418 (-1166 $)) (-1166 $))) (-15 -4199 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-564))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|))) (-1094)) (T -316))
-((-1316 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-1094)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1094)))) (-3909 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1094)))) (-1348 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1094)))) (-4199 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1094)))))
-(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -1316 ($ $)) (-15 -3932 ((-112) $)) (-15 -3909 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -1348 ((-418 (-1166 $)) (-1166 $))) (-15 -4199 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-564))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|)))
-((-3517 (((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)) 92) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 88) (((-52) |#2| (-114) (-294 |#2|) |#2|) 90) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 91) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 84) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 86) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 87) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 85) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 93) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 89)))
-(((-317 |#1| |#2|) (-10 -7 (-15 -3517 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -3517 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -3517 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -3517 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -3517 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -3517 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -3517 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -3517 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -3517 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -3517 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-556) (-612 (-536))) (-430 |#1|)) (T -317))
-((-3517 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-3517 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-3517 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-3517 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-3517 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-3517 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-3517 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-641 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-3517 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-3517 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-3517 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6)))))
-(-10 -7 (-15 -3517 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -3517 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -3517 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -3517 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -3517 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -3517 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -3517 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -3517 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -3517 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -3517 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|))))
-((-2556 (((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152)) 68) (((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564)) 69) (((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152)) 65) (((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564)) 66)) (-2343 (((-1 (-225) (-225)) (-225)) 67)))
-(((-318) (-10 -7 (-15 -2343 ((-1 (-225) (-225)) (-225))) (-15 -2556 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -2556 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -2556 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -2556 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152))))) (T -318))
-((-2556 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152)) (-5 *2 (-1204 (-922))) (-5 *1 (-318)))) (-2556 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *2 (-1204 (-922))) (-5 *1 (-318)))) (-2556 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152)) (-5 *2 (-1204 (-922))) (-5 *1 (-318)))) (-2556 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-922))) (-5 *1 (-318)))) (-2343 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
-(-10 -7 (-15 -2343 ((-1 (-225) (-225)) (-225))) (-15 -2556 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -2556 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -2556 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -2556 ((-1204 (-922)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 26)) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1709 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4289 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 20)) (-3880 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-363)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3858 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) 35)) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1339 (((-112) $) NIL (|has| |#1| (-363)))) (-4243 (((-112) $) NIL)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) 16)) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1747 (($ $ (-917)) NIL) (($ $ (-407 (-564))) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-363)))) (-2070 (($ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194)))))) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4016 (($ $ (-407 (-564))) NIL)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3271 (((-407 (-564)) $) 17)) (-3457 (($ (-1244 |#1| |#2| |#3|)) 11)) (-1838 (((-1244 |#1| |#2| |#3|) $) 12)) (-1689 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1568 (((-407 (-564)) $) NIL)) (-3914 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) 10)) (-2423 (((-858) $) 41) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2007 ((|#1| $ (-407 (-564))) 33)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-3639 ((|#1| $) NIL)) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 28)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 36)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-319 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-788) (-10 -8 (-15 -3457 ($ (-1244 |#1| |#2| |#3|))) (-15 -1838 ((-1244 |#1| |#2| |#3|) $)) (-15 -3271 ((-407 (-564)) $)))) (-363) (-1170) |#1|) (T -319))
-((-3457 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1170)) (-14 *5 *3))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1170)) (-14 *5 *3))))
-(-13 (-1240 |#1|) (-788) (-10 -8 (-15 -3457 ($ (-1244 |#1| |#2| |#3|))) (-15 -1838 ((-1244 |#1| |#2| |#3|) $)) (-15 -3271 ((-407 (-564)) $))))
-((-3614 (((-2 (|:| -1838 (-767)) (|:| -4376 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-767)) 35)) (-3657 (((-641 (-2 (|:| -4376 (-767)) (|:| |logand| |#1|))) (-418 |#1|)) 40)))
-(((-320 |#1|) (-10 -7 (-15 -3614 ((-2 (|:| -1838 (-767)) (|:| -4376 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-767))) (-15 -3657 ((-641 (-2 (|:| -4376 (-767)) (|:| |logand| |#1|))) (-418 |#1|)))) (-556)) (T -320))
-((-3657 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) (-5 *2 (-641 (-2 (|:| -4376 (-767)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-3614 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) (-5 *2 (-2 (|:| -1838 (-767)) (|:| -4376 *5) (|:| |radicand| (-641 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-767)))))
-(-10 -7 (-15 -3614 ((-2 (|:| -1838 (-767)) (|:| -4376 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-767))) (-15 -3657 ((-641 (-2 (|:| -4376 (-767)) (|:| |logand| |#1|))) (-418 |#1|))))
-((-3836 (((-641 |#2|) (-1166 |#4|)) 44)) (-3860 ((|#3| (-564)) 47)) (-2235 (((-1166 |#4|) (-1166 |#3|)) 30)) (-2440 (((-1166 |#4|) (-1166 |#4|) (-564)) 65)) (-4072 (((-1166 |#3|) (-1166 |#4|)) 21)) (-1568 (((-641 (-767)) (-1166 |#4|) (-641 |#2|)) 41)) (-1356 (((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|)) 35)))
-(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1356 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -1568 ((-641 (-767)) (-1166 |#4|) (-641 |#2|))) (-15 -3836 ((-641 |#2|) (-1166 |#4|))) (-15 -4072 ((-1166 |#3|) (-1166 |#4|))) (-15 -2235 ((-1166 |#4|) (-1166 |#3|))) (-15 -2440 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -3860 (|#3| (-564)))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|)) (T -321))
-((-3860 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-945 *2 *4 *5)))) (-2440 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1166 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-641 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-1568 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *8)) (-5 *4 (-641 *6)) (-4 *6 (-846)) (-4 *8 (-945 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045)) (-5 *2 (-641 (-767))) (-5 *1 (-321 *5 *6 *7 *8)))) (-1356 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1356 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -1568 ((-641 (-767)) (-1166 |#4|) (-641 |#2|))) (-15 -3836 ((-641 |#2|) (-1166 |#4|))) (-15 -4072 ((-1166 |#3|) (-1166 |#4|))) (-15 -2235 ((-1166 |#4|) (-1166 |#3|))) (-15 -2440 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -3860 (|#3| (-564))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 19)) (-4289 (((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-564)))) $) 23)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2622 (((-767) $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-4375 ((|#1| $ (-564)) NIL)) (-1529 (((-564) $ (-564)) NIL)) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2700 (($ (-1 |#1| |#1|) $) NIL)) (-1670 (($ (-1 (-564) (-564)) $) 11)) (-2766 (((-1152) $) NIL)) (-3966 (($ $ $) NIL (|has| (-564) (-788)))) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL) (($ |#1|) NIL)) (-2007 (((-564) |#1| $) NIL)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 21 T CONST)) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) 28 (|has| |#1| (-846)))) (-3082 (($ $) 12) (($ $ $) 27)) (-3070 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL) (($ (-564) |#1|) 26)))
-(((-322 |#1|) (-13 (-21) (-713 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1094)) (T -322))
-NIL
-(-13 (-21) (-713 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4289 (((-641 (-2 (|:| |gen| |#1|) (|:| -1689 |#2|))) $) 28)) (-4012 (((-3 $ "failed") $ $) 20)) (-2622 (((-767) $) 29)) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#1| "failed") $) 33)) (-3120 ((|#1| $) 34)) (-4375 ((|#1| $ (-564)) 26)) (-1529 ((|#2| $ (-564)) 27)) (-2700 (($ (-1 |#1| |#1|) $) 23)) (-1670 (($ (-1 |#2| |#2|) $) 24)) (-2766 (((-1152) $) 10)) (-3966 (($ $ $) 22 (|has| |#2| (-788)))) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ |#1|) 32)) (-2007 ((|#2| |#1| $) 25)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3070 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ |#2| |#1|) 30)))
-(((-323 |#1| |#2|) (-140) (-1094) (-131)) (T -323))
-((-3070 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-767)))) (-4289 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 *4)))))) (-1529 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) (-4 *2 (-131)))) (-4375 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1094)))) (-2007 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-1670 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-2700 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-3966 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) (-4 *3 (-788)))))
-(-13 (-131) (-1034 |t#1|) (-10 -8 (-15 -3070 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2622 ((-767) $)) (-15 -4289 ((-641 (-2 (|:| |gen| |t#1|) (|:| -1689 |t#2|))) $)) (-15 -1529 (|t#2| $ (-564))) (-15 -4375 (|t#1| $ (-564))) (-15 -2007 (|t#2| |t#1| $)) (-15 -1670 ($ (-1 |t#2| |t#2|) $)) (-15 -2700 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-788)) (-15 -3966 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-1034 |#1|) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4289 (((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-767)))) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2622 (((-767) $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-4375 ((|#1| $ (-564)) NIL)) (-1529 (((-767) $ (-564)) NIL)) (-2700 (($ (-1 |#1| |#1|) $) NIL)) (-1670 (($ (-1 (-767) (-767)) $) NIL)) (-2766 (((-1152) $) NIL)) (-3966 (($ $ $) NIL (|has| (-767) (-788)))) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL) (($ |#1|) NIL)) (-2007 (((-767) |#1| $) NIL)) (-1860 (((-112) $ $) NIL)) (-2403 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3070 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-767) |#1|) NIL)))
-(((-324 |#1|) (-323 |#1| (-767)) (-1094)) (T -324))
-NIL
-(-323 |#1| (-767))
-((-2571 (($ $) 72)) (-3850 (($ $ |#2| |#3| $) 14)) (-1948 (($ (-1 |#3| |#3|) $) 51)) (-3944 (((-112) $) 42)) (-3954 ((|#2| $) 44)) (-2998 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-4090 ((|#2| $) 68)) (-3191 (((-641 |#2|) $) 56)) (-3242 (($ $ $ (-767)) 37)) (-3092 (($ $ |#2|) 60)))
-(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -2571 (|#1| |#1|)) (-15 -4090 (|#2| |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3242 (|#1| |#1| |#1| (-767))) (-15 -3850 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1948 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3191 ((-641 |#2|) |#1|)) (-15 -3954 (|#2| |#1|)) (-15 -3944 ((-112) |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3092 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1045) (-788)) (T -325))
-NIL
-(-10 -8 (-15 -2571 (|#1| |#1|)) (-15 -4090 (|#2| |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3242 (|#1| |#1| |#1| (-767))) (-15 -3850 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1948 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3191 ((-641 |#2|) |#1|)) (-15 -3954 (|#2| |#1|)) (-15 -3944 ((-112) |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3092 (|#1| |#1| |#2|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 55 (|has| |#1| (-556)))) (-3063 (($ $) 56 (|has| |#1| (-556)))) (-3330 (((-112) $) 58 (|has| |#1| (-556)))) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-4284 (((-3 (-564) "failed") $) 92 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 90 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 87)) (-3120 (((-564) $) 91 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 89 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 88)) (-1684 (($ $) 64)) (-3293 (((-3 $ "failed") $) 34)) (-2571 (($ $) 76 (|has| |#1| (-452)))) (-3850 (($ $ |#1| |#2| $) 80)) (-4112 (((-112) $) 32)) (-2497 (((-767) $) 83)) (-4003 (((-112) $) 66)) (-3810 (($ |#1| |#2|) 65)) (-2043 ((|#2| $) 82)) (-1948 (($ (-1 |#2| |#2|) $) 81)) (-4357 (($ (-1 |#1| |#1|) $) 67)) (-3971 (($ $) 69)) (-3982 ((|#1| $) 70)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-3944 (((-112) $) 86)) (-3954 ((|#1| $) 85)) (-2998 (((-3 $ "failed") $ $) 54 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 78 (|has| |#1| (-556)))) (-1568 ((|#2| $) 68)) (-4090 ((|#1| $) 77 (|has| |#1| (-452)))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 53 (|has| |#1| (-556))) (($ |#1|) 51) (($ (-407 (-564))) 61 (-2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-3191 (((-641 |#1|) $) 84)) (-2007 ((|#1| $ |#2|) 63)) (-2420 (((-3 $ "failed") $) 52 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-3242 (($ $ $ (-767)) 79 (|has| |#1| (-172)))) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 57 (|has| |#1| (-556)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 62 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 72) (($ |#1| $) 71) (($ (-407 (-564)) $) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 59 (|has| |#1| (-38 (-407 (-564)))))))
-(((-326 |#1| |#2|) (-140) (-1045) (-788)) (T -326))
-((-3944 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-641 *3)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-767)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1948 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-3850 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-3242 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *3 (-172)))) (-2998 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-556)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-2571 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-452)))))
-(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -3944 ((-112) $)) (-15 -3954 (|t#1| $)) (-15 -3191 ((-641 |t#1|) $)) (-15 -2497 ((-767) $)) (-15 -2043 (|t#2| $)) (-15 -1948 ($ (-1 |t#2| |t#2|) $)) (-15 -3850 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -3242 ($ $ $ (-767))) |%noBranch|) (IF (|has| |t#1| (-556)) (-15 -2998 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -4090 (|t#1| $)) (-15 -2571 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-411 |#1|) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-2853 (((-112) (-112)) NIL)) (-3904 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408)))) (-1466 (($ (-1 (-112) |#1|) $) NIL)) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2679 (($ $) NIL (|has| |#1| (-1094)))) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1945 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) NIL)) (-3998 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-2717 (($ $ (-564)) NIL)) (-3693 (((-767) $) NIL)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-4238 (($ (-767) |#1|) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-2087 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2566 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4248 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1651 (($ (-641 |#1|)) NIL)) (-2658 ((|#1| $) NIL (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2251 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) NIL)) (-3634 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3696 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1651 ($ (-641 |#1|))) (-15 -3693 ((-767) $)) (-15 -2717 ($ $ (-564))) (-15 -2853 ((-112) (-112))))) (-1209)) (T -327))
-((-1651 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-2717 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))))
-(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1651 ($ (-641 |#1|))) (-15 -3693 ((-767) $)) (-15 -2717 ($ $ (-564))) (-15 -2853 ((-112) (-112)))))
-((-1872 (((-112) $) 50)) (-3497 (((-767)) 26)) (-3847 ((|#2| $) 54) (($ $ (-917)) 124)) (-2622 (((-767)) 125)) (-3474 (($ (-1259 |#2|)) 23)) (-3164 (((-112) $) 138)) (-2499 ((|#2| $) 56) (($ $ (-917)) 121)) (-3514 (((-1166 |#2|) $) NIL) (((-1166 $) $ (-917)) 112)) (-2820 (((-1166 |#2|) $) 98)) (-4372 (((-1166 |#2|) $) 94) (((-3 (-1166 |#2|) "failed") $ $) 91)) (-3606 (($ $ (-1166 |#2|)) 62)) (-1967 (((-829 (-917))) 33) (((-917)) 51)) (-4327 (((-134)) 30)) (-1568 (((-829 (-917)) $) 35) (((-917) $) 141)) (-1930 (($) 131)) (-4225 (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $)) 45)) (-2420 (($ $) NIL) (((-3 $ "failed") $) 101)) (-1816 (((-112) $) 48)))
-(((-328 |#1| |#2|) (-10 -8 (-15 -2420 ((-3 |#1| "failed") |#1|)) (-15 -2622 ((-767))) (-15 -2420 (|#1| |#1|)) (-15 -4372 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -4372 ((-1166 |#2|) |#1|)) (-15 -2820 ((-1166 |#2|) |#1|)) (-15 -3606 (|#1| |#1| (-1166 |#2|))) (-15 -3164 ((-112) |#1|)) (-15 -1930 (|#1|)) (-15 -3847 (|#1| |#1| (-917))) (-15 -2499 (|#1| |#1| (-917))) (-15 -3514 ((-1166 |#1|) |#1| (-917))) (-15 -3847 (|#2| |#1|)) (-15 -2499 (|#2| |#1|)) (-15 -1568 ((-917) |#1|)) (-15 -1967 ((-917))) (-15 -3514 ((-1166 |#2|) |#1|)) (-15 -3474 (|#1| (-1259 |#2|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1|)) (-15 -3497 ((-767))) (-15 -1967 ((-829 (-917)))) (-15 -1568 ((-829 (-917)) |#1|)) (-15 -1872 ((-112) |#1|)) (-15 -1816 ((-112) |#1|)) (-15 -4327 ((-134)))) (-329 |#2|) (-363)) (T -328))
-((-4327 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1967 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-829 (-917))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3497 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1967 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-917)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-2622 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))))
-(-10 -8 (-15 -2420 ((-3 |#1| "failed") |#1|)) (-15 -2622 ((-767))) (-15 -2420 (|#1| |#1|)) (-15 -4372 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -4372 ((-1166 |#2|) |#1|)) (-15 -2820 ((-1166 |#2|) |#1|)) (-15 -3606 (|#1| |#1| (-1166 |#2|))) (-15 -3164 ((-112) |#1|)) (-15 -1930 (|#1|)) (-15 -3847 (|#1| |#1| (-917))) (-15 -2499 (|#1| |#1| (-917))) (-15 -3514 ((-1166 |#1|) |#1| (-917))) (-15 -3847 (|#2| |#1|)) (-15 -2499 (|#2| |#1|)) (-15 -1568 ((-917) |#1|)) (-15 -1967 ((-917))) (-15 -3514 ((-1166 |#2|) |#1|)) (-15 -3474 (|#1| (-1259 |#2|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1|)) (-15 -3497 ((-767))) (-15 -1967 ((-829 (-917)))) (-15 -1568 ((-829 (-917)) |#1|)) (-15 -1872 ((-112) |#1|)) (-15 -1816 ((-112) |#1|)) (-15 -4327 ((-134))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-1872 (((-112) $) 96)) (-3497 (((-767)) 92)) (-3847 ((|#1| $) 142) (($ $ (-917)) 139 (|has| |#1| (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) 124 (|has| |#1| (-368)))) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 75)) (-2753 (((-418 $) $) 74)) (-3162 (((-112) $ $) 61)) (-2622 (((-767)) 114 (|has| |#1| (-368)))) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#1| "failed") $) 103)) (-3120 ((|#1| $) 104)) (-3474 (($ (-1259 |#1|)) 148)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) 130 (|has| |#1| (-368)))) (-2946 (($ $ $) 57)) (-3293 (((-3 $ "failed") $) 34)) (-2534 (($) 111 (|has| |#1| (-368)))) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-1471 (($) 126 (|has| |#1| (-368)))) (-1436 (((-112) $) 127 (|has| |#1| (-368)))) (-3456 (($ $ (-767)) 89 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 88 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1339 (((-112) $) 73)) (-3744 (((-917) $) 129 (|has| |#1| (-368))) (((-829 (-917)) $) 86 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4112 (((-112) $) 32)) (-2908 (($) 137 (|has| |#1| (-368)))) (-3164 (((-112) $) 136 (|has| |#1| (-368)))) (-2499 ((|#1| $) 143) (($ $ (-917)) 140 (|has| |#1| (-368)))) (-1846 (((-3 $ "failed") $) 115 (|has| |#1| (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-3514 (((-1166 |#1|) $) 147) (((-1166 $) $ (-917)) 141 (|has| |#1| (-368)))) (-3256 (((-917) $) 112 (|has| |#1| (-368)))) (-2820 (((-1166 |#1|) $) 133 (|has| |#1| (-368)))) (-4372 (((-1166 |#1|) $) 132 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 131 (|has| |#1| (-368)))) (-3606 (($ $ (-1166 |#1|)) 134 (|has| |#1| (-368)))) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 72)) (-3431 (($) 116 (|has| |#1| (-368)) CONST)) (-2083 (($ (-917)) 113 (|has| |#1| (-368)))) (-2695 (((-112) $) 95)) (-4052 (((-1114) $) 11)) (-2249 (($) 135 (|has| |#1| (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) 123 (|has| |#1| (-368)))) (-3688 (((-418 $) $) 76)) (-1967 (((-829 (-917))) 93) (((-917)) 145)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-1700 (((-767) $) 60)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-4255 (((-767) $) 128 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 87 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4327 (((-134)) 101)) (-3254 (($ $) 120 (|has| |#1| (-368))) (($ $ (-767)) 118 (|has| |#1| (-368)))) (-1568 (((-829 (-917)) $) 94) (((-917) $) 144)) (-3721 (((-1166 |#1|)) 146)) (-3826 (($) 125 (|has| |#1| (-368)))) (-1930 (($) 138 (|has| |#1| (-368)))) (-4225 (((-1259 |#1|) $) 150) (((-685 |#1|) (-1259 $)) 149)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 122 (|has| |#1| (-368)))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-407 (-564))) 68) (($ |#1|) 102)) (-2420 (($ $) 121 (|has| |#1| (-368))) (((-3 $ "failed") $) 85 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2047 (((-1259 $)) 152) (((-1259 $) (-917)) 151)) (-2119 (((-112) $ $) 41)) (-1816 (((-112) $) 97)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-3037 (($ $) 91 (|has| |#1| (-368))) (($ $ (-767)) 90 (|has| |#1| (-368)))) (-4063 (($ $) 119 (|has| |#1| (-368))) (($ $ (-767)) 117 (|has| |#1| (-368)))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 67) (($ $ |#1|) 100)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 70) (($ (-407 (-564)) $) 69) (($ $ |#1|) 99) (($ |#1| $) 98)))
+((-3215 ((|#1| (-1 |#1| (-564)) (-1175 (-407 (-564)))) 25)))
+(((-310 |#1|) (-10 -7 (-15 -3215 (|#1| (-1 |#1| (-564)) (-1175 (-407 (-564)))))) (-38 (-407 (-564)))) (T -310))
+((-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1175 (-407 (-564)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564)))))))
+(-10 -7 (-15 -3215 (|#1| (-1 |#1| (-564)) (-1175 (-407 (-564))))))
+((-2907 (((-112) $ $) NIL)) (-2209 (((-564) $) 12)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1357 (((-1132) $) 9)) (-2327 (((-860) $) 19) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-311) (-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $)) (-15 -2209 ((-564) $))))) (T -311))
+((-1357 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-311)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311)))))
+(-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $)) (-15 -2209 ((-564) $))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 7)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 9)))
+(((-312) (-1097)) (T -312))
+NIL
+(-1097)
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 67)) (-3703 (((-1248 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-307)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-907)))) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-907)))) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-818)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-1248 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-564)))) (((-3 (-1247 |#2| |#3| |#4|) "failed") $) 26)) (-3027 (((-1248 |#1| |#2| |#3| |#4|) $) NIL) (((-1173) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-564)))) (((-564) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-564)))) (((-1247 |#2| |#3| |#4|) $) NIL)) (-2845 (($ $ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-1248 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1262 (-1248 |#1| |#2| |#3| |#4|)))) (-687 $) (-1262 $)) NIL) (((-687 (-1248 |#1| |#2| |#3| |#4|)) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-545)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2538 (((-112) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-818)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-884 (-379))))) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2245 (((-1248 |#1| |#2| |#3| |#4|) $) 22)) (-3157 (((-3 $ "failed") $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1148)))) (-3333 (((-112) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-818)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-1520 (($ $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-4358 (($ (-1 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|)) $) NIL)) (-2410 (((-3 (-841 |#2|) "failed") $) 87)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-307)))) (-2759 (((-1248 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-545)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-907)))) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3215 (($ $ (-642 (-1248 |#1| |#2| |#3| |#4|)) (-642 (-1248 |#1| |#2| |#3| |#4|))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-309 (-1248 |#1| |#2| |#3| |#4|)))) (($ $ (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-309 (-1248 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1248 |#1| |#2| |#3| |#4|))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-309 (-1248 |#1| |#2| |#3| |#4|)))) (($ $ (-642 (-294 (-1248 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-309 (-1248 |#1| |#2| |#3| |#4|)))) (($ $ (-642 (-1173)) (-642 (-1248 |#1| |#2| |#3| |#4|))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-514 (-1173) (-1248 |#1| |#2| |#3| |#4|)))) (($ $ (-1173) (-1248 |#1| |#2| |#3| |#4|)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-514 (-1173) (-1248 |#1| |#2| |#3| |#4|))))) (-2048 (((-769) $) NIL)) (-4368 (($ $ (-1248 |#1| |#2| |#3| |#4|)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-286 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-769)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1173)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-1 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|)) (-769)) NIL) (($ $ (-1 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|))) NIL)) (-2618 (($ $) NIL)) (-2255 (((-1248 |#1| |#2| |#3| |#4|) $) 19)) (-1314 (((-890 (-564)) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-612 (-536)))) (((-379) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1020))) (((-225) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1020)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-1248 |#1| |#2| |#3| |#4|) (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-1248 |#1| |#2| |#3| |#4|)) 30) (($ (-1173)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-1036 (-1173)))) (($ (-1247 |#2| |#3| |#4|)) 37)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| (-1248 |#1| |#2| |#3| |#4|) (-907))) (|has| (-1248 |#1| |#2| |#3| |#4|) (-145))))) (-2756 (((-769)) NIL T CONST)) (-3264 (((-1248 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-545)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-1381 (($ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-818)))) (-2312 (($) 42 T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-769)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1173)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-898 (-1173)))) (($ $ (-1 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|)) (-769)) NIL) (($ $ (-1 (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|))) NIL)) (-2934 (((-112) $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-2897 (((-112) $ $) NIL (|has| (-1248 |#1| |#2| |#3| |#4|) (-848)))) (-2998 (($ $ $) 35) (($ (-1248 |#1| |#2| |#3| |#4|) (-1248 |#1| |#2| |#3| |#4|)) 32)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-1248 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1248 |#1| |#2| |#3| |#4|)) NIL)))
+(((-313 |#1| |#2| |#3| |#4|) (-13 (-990 (-1248 |#1| |#2| |#3| |#4|)) (-1036 (-1247 |#2| |#3| |#4|)) (-10 -8 (-15 -2410 ((-3 (-841 |#2|) "failed") $)) (-15 -2327 ($ (-1247 |#2| |#3| |#4|))))) (-13 (-1036 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1197) (-430 |#1|)) (-1173) |#2|) (T -313))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1247 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173)) (-14 *6 *4) (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-2410 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) (-5 *2 (-841 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173)) (-14 *6 *4))))
+(-13 (-990 (-1248 |#1| |#2| |#3| |#4|)) (-1036 (-1247 |#2| |#3| |#4|)) (-10 -8 (-15 -2410 ((-3 (-841 |#2|) "failed") $)) (-15 -2327 ($ (-1247 |#2| |#3| |#4|)))))
+((-4358 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13)))
+(((-314 |#1| |#2|) (-10 -7 (-15 -4358 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-1097) (-1097)) (T -314))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))))
+(-10 -7 (-15 -4358 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|))))
+((-3864 (((-52) |#2| (-294 |#2|) (-769)) 40) (((-52) |#2| (-294 |#2|)) 32) (((-52) |#2| (-769)) 35) (((-52) |#2|) 33) (((-52) (-1173)) 26)) (-2707 (((-52) |#2| (-294 |#2|) (-407 (-564))) 59) (((-52) |#2| (-294 |#2|)) 56) (((-52) |#2| (-407 (-564))) 58) (((-52) |#2|) 57) (((-52) (-1173)) 55)) (-3889 (((-52) |#2| (-294 |#2|) (-407 (-564))) 54) (((-52) |#2| (-294 |#2|)) 51) (((-52) |#2| (-407 (-564))) 53) (((-52) |#2|) 52) (((-52) (-1173)) 50)) (-3876 (((-52) |#2| (-294 |#2|) (-564)) 47) (((-52) |#2| (-294 |#2|)) 44) (((-52) |#2| (-564)) 46) (((-52) |#2|) 45) (((-52) (-1173)) 43)))
+(((-315 |#1| |#2|) (-10 -7 (-15 -3864 ((-52) (-1173))) (-15 -3864 ((-52) |#2|)) (-15 -3864 ((-52) |#2| (-769))) (-15 -3864 ((-52) |#2| (-294 |#2|))) (-15 -3864 ((-52) |#2| (-294 |#2|) (-769))) (-15 -3876 ((-52) (-1173))) (-15 -3876 ((-52) |#2|)) (-15 -3876 ((-52) |#2| (-564))) (-15 -3876 ((-52) |#2| (-294 |#2|))) (-15 -3876 ((-52) |#2| (-294 |#2|) (-564))) (-15 -3889 ((-52) (-1173))) (-15 -3889 ((-52) |#2|)) (-15 -3889 ((-52) |#2| (-407 (-564)))) (-15 -3889 ((-52) |#2| (-294 |#2|))) (-15 -3889 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -2707 ((-52) (-1173))) (-15 -2707 ((-52) |#2|)) (-15 -2707 ((-52) |#2| (-407 (-564)))) (-15 -2707 ((-52) |#2| (-294 |#2|))) (-15 -2707 ((-52) |#2| (-294 |#2|) (-407 (-564))))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -315))
+((-2707 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-2707 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))) (-3889 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3889 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3889 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))) (-3876 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-1036 *5) (-637 *5))) (-5 *5 (-564)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3876 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3876 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-1036 *4) (-637 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-3876 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))) (-3864 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-769)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3864 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3864 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-3864 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4))))))
+(-10 -7 (-15 -3864 ((-52) (-1173))) (-15 -3864 ((-52) |#2|)) (-15 -3864 ((-52) |#2| (-769))) (-15 -3864 ((-52) |#2| (-294 |#2|))) (-15 -3864 ((-52) |#2| (-294 |#2|) (-769))) (-15 -3876 ((-52) (-1173))) (-15 -3876 ((-52) |#2|)) (-15 -3876 ((-52) |#2| (-564))) (-15 -3876 ((-52) |#2| (-294 |#2|))) (-15 -3876 ((-52) |#2| (-294 |#2|) (-564))) (-15 -3889 ((-52) (-1173))) (-15 -3889 ((-52) |#2|)) (-15 -3889 ((-52) |#2| (-407 (-564)))) (-15 -3889 ((-52) |#2| (-294 |#2|))) (-15 -3889 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -2707 ((-52) (-1173))) (-15 -2707 ((-52) |#2|)) (-15 -2707 ((-52) |#2| (-407 (-564)))) (-15 -2707 ((-52) |#2| (-294 |#2|))) (-15 -2707 ((-52) |#2| (-294 |#2|) (-407 (-564)))))
+((-2907 (((-112) $ $) NIL)) (-4098 (((-642 $) $ (-1173)) NIL (|has| |#1| (-556))) (((-642 $) $) NIL (|has| |#1| (-556))) (((-642 $) (-1169 $) (-1173)) NIL (|has| |#1| (-556))) (((-642 $) (-1169 $)) NIL (|has| |#1| (-556))) (((-642 $) (-950 $)) NIL (|has| |#1| (-556)))) (-2946 (($ $ (-1173)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1169 $) (-1173)) NIL (|has| |#1| (-556))) (($ (-1169 $)) NIL (|has| |#1| (-556))) (($ (-950 $)) NIL (|has| |#1| (-556)))) (-2952 (((-112) $) 27 (-2706 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))) (-3802 (((-642 (-1173)) $) 368)) (-3615 (((-407 (-1169 $)) $ (-610 $)) NIL (|has| |#1| (-556)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-3530 (((-642 (-610 $)) $) NIL)) (-3851 (($ $) 171 (|has| |#1| (-556)))) (-3704 (($ $) 147 (|has| |#1| (-556)))) (-4012 (($ $ (-1089 $)) 232 (|has| |#1| (-556))) (($ $ (-1173)) 228 (|has| |#1| (-556)))) (-1532 (((-3 $ "failed") $ $) NIL (-2706 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))) (-2458 (($ $ (-294 $)) NIL) (($ $ (-642 (-294 $))) 386) (($ $ (-642 (-610 $)) (-642 $)) 430)) (-2951 (((-418 (-1169 $)) (-1169 $)) 308 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-4316 (($ $) NIL (|has| |#1| (-556)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-556)))) (-3655 (($ $) NIL (|has| |#1| (-556)))) (-4010 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3827 (($ $) 167 (|has| |#1| (-556)))) (-3679 (($ $) 143 (|has| |#1| (-556)))) (-3057 (($ $ (-564)) 73 (|has| |#1| (-556)))) (-3875 (($ $) 175 (|has| |#1| (-556)))) (-3727 (($ $) 151 (|has| |#1| (-556)))) (-1976 (($) NIL (-2706 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109))) CONST)) (-3443 (((-642 $) $ (-1173)) NIL (|has| |#1| (-556))) (((-642 $) $) NIL (|has| |#1| (-556))) (((-642 $) (-1169 $) (-1173)) NIL (|has| |#1| (-556))) (((-642 $) (-1169 $)) NIL (|has| |#1| (-556))) (((-642 $) (-950 $)) NIL (|has| |#1| (-556)))) (-2525 (($ $ (-1173)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1169 $) (-1173)) 134 (|has| |#1| (-556))) (($ (-1169 $)) NIL (|has| |#1| (-556))) (($ (-950 $)) NIL (|has| |#1| (-556)))) (-4278 (((-3 (-610 $) "failed") $) 18) (((-3 (-1173) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-950 |#1|)) "failed") $) NIL (|has| |#1| (-556))) (((-3 (-950 |#1|) "failed") $) NIL (|has| |#1| (-1047))) (((-3 (-407 (-564)) "failed") $) 46 (-2706 (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-3027 (((-610 $) $) 12) (((-1173) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-950 |#1|)) $) NIL (|has| |#1| (-556))) (((-950 |#1|) $) NIL (|has| |#1| (-1047))) (((-407 (-564)) $) 319 (-2706 (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-2845 (($ $ $) NIL (|has| |#1| (-556)))) (-4315 (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 125 (|has| |#1| (-1047))) (((-687 |#1|) (-687 $)) 115 (|has| |#1| (-1047))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))) (-1320 (($ $) 96 (|has| |#1| (-556)))) (-3104 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109))))) (-2859 (($ $ $) NIL (|has| |#1| (-556)))) (-1739 (($ $ (-1089 $)) 236 (|has| |#1| (-556))) (($ $ (-1173)) 234 (|has| |#1| (-556)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-556)))) (-1469 (((-112) $) NIL (|has| |#1| (-556)))) (-2056 (($ $ $) 202 (|has| |#1| (-556)))) (-4265 (($) 137 (|has| |#1| (-556)))) (-1588 (($ $ $) 222 (|has| |#1| (-556)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 392 (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 399 (|has| |#1| (-884 (-379))))) (-1301 (($ $) NIL) (($ (-642 $)) NIL)) (-3332 (((-642 (-114)) $) NIL)) (-3307 (((-114) (-114)) 276)) (-3953 (((-112) $) 25 (-2706 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109))))) (-3076 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-3071 (($ $) 72 (|has| |#1| (-1047)))) (-2245 (((-1122 |#1| (-610 $)) $) 91 (|has| |#1| (-1047)))) (-1657 (((-112) $) 62 (|has| |#1| (-556)))) (-1772 (($ $ (-564)) NIL (|has| |#1| (-556)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-556)))) (-2666 (((-1169 $) (-610 $)) 277 (|has| $ (-1047)))) (-4358 (($ (-1 $ $) (-610 $)) 426)) (-2953 (((-3 (-610 $) "failed") $) NIL)) (-3612 (($ $) 141 (|has| |#1| (-556)))) (-1511 (($ $) 247 (|has| |#1| (-556)))) (-2049 (($ (-642 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3315 (((-1155) $) NIL)) (-3603 (((-642 (-610 $)) $) 49)) (-4305 (($ (-114) $) NIL) (($ (-114) (-642 $)) 431)) (-1572 (((-3 (-642 $) "failed") $) NIL (|has| |#1| (-1109)))) (-4310 (((-3 (-2 (|:| |val| $) (|:| -2700 (-564))) "failed") $) NIL (|has| |#1| (-1047)))) (-1802 (((-3 (-642 $) "failed") $) 436 (|has| |#1| (-25)))) (-4216 (((-3 (-2 (|:| -4378 (-564)) (|:| |var| (-610 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3611 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $) NIL (|has| |#1| (-1109))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $ (-114)) NIL (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $ (-1173)) NIL (|has| |#1| (-1047)))) (-1523 (((-112) $ (-114)) NIL) (((-112) $ (-1173)) 51)) (-3911 (($ $) NIL (-2706 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-4223 (($ $ (-1173)) 251 (|has| |#1| (-556))) (($ $ (-1089 $)) 253 (|has| |#1| (-556)))) (-1295 (((-769) $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) 43)) (-3932 ((|#1| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 301 (|has| |#1| (-556)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2539 (((-112) $ $) NIL) (((-112) $ (-1173)) NIL)) (-3675 (($ $ (-1173)) 226 (|has| |#1| (-556))) (($ $) 224 (|has| |#1| (-556)))) (-4303 (($ $) 218 (|has| |#1| (-556)))) (-2923 (((-418 (-1169 $)) (-1169 $)) 306 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-3643 (((-418 $) $) NIL (|has| |#1| (-556)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-556)))) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-556)))) (-1723 (($ $) 139 (|has| |#1| (-556)))) (-2519 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-3215 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) 425) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-1173) (-1 $ (-642 $))) NIL) (($ $ (-1173) (-1 $ $)) NIL) (($ $ (-642 (-114)) (-642 (-1 $ $))) 379) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-114) (-1 $ (-642 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1173)) NIL (|has| |#1| (-612 (-536)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-612 (-536)))) (($ $) NIL (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1173)) 366 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-114)) (-642 $) (-1173)) 365 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ $))) NIL (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ (-642 $)))) NIL (|has| |#1| (-1047))) (($ $ (-1173) (-769) (-1 $ (-642 $))) NIL (|has| |#1| (-1047))) (($ $ (-1173) (-769) (-1 $ $)) NIL (|has| |#1| (-1047)))) (-2048 (((-769) $) NIL (|has| |#1| (-556)))) (-3635 (($ $) 239 (|has| |#1| (-556)))) (-4368 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-642 $)) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-556)))) (-3238 (($ $) NIL) (($ $ $) NIL)) (-3663 (($ $) 249 (|has| |#1| (-556)))) (-1771 (($ $) 200 (|has| |#1| (-556)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-1047))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-1047))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-1047))) (($ $ (-1173)) NIL (|has| |#1| (-1047)))) (-2618 (($ $) 74 (|has| |#1| (-556)))) (-2255 (((-1122 |#1| (-610 $)) $) 93 (|has| |#1| (-556)))) (-3280 (($ $) 317 (|has| $ (-1047)))) (-3888 (($ $) 177 (|has| |#1| (-556)))) (-3739 (($ $) 153 (|has| |#1| (-556)))) (-3863 (($ $) 173 (|has| |#1| (-556)))) (-3716 (($ $) 149 (|has| |#1| (-556)))) (-3839 (($ $) 169 (|has| |#1| (-556)))) (-3693 (($ $) 145 (|has| |#1| (-556)))) (-1314 (((-890 (-564)) $) NIL (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| |#1| (-612 (-890 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-556))) (((-536) $) 363 (|has| |#1| (-612 (-536))))) (-1389 (($ $ $) NIL (|has| |#1| (-473)))) (-3759 (($ $ $) NIL (|has| |#1| (-473)))) (-2327 (((-860) $) 424) (($ (-610 $)) 415) (($ (-1173)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-556))) (($ (-48)) 312 (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))))) (($ (-1122 |#1| (-610 $))) 95 (|has| |#1| (-1047))) (($ (-407 |#1|)) NIL (|has| |#1| (-556))) (($ (-950 (-407 |#1|))) NIL (|has| |#1| (-556))) (($ (-407 (-950 (-407 |#1|)))) NIL (|has| |#1| (-556))) (($ (-407 (-950 |#1|))) NIL (|has| |#1| (-556))) (($ (-950 |#1|)) NIL (|has| |#1| (-1047))) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-556)) (|has| |#1| (-1036 (-407 (-564)))))) (($ (-564)) 34 (-2706 (|has| |#1| (-1036 (-564))) (|has| |#1| (-1047))))) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL (|has| |#1| (-1047)) CONST)) (-2181 (($ $) NIL) (($ (-642 $)) NIL)) (-3310 (($ $ $) 220 (|has| |#1| (-556)))) (-3657 (($ $ $) 206 (|has| |#1| (-556)))) (-2996 (($ $ $) 210 (|has| |#1| (-556)))) (-3718 (($ $ $) 204 (|has| |#1| (-556)))) (-1484 (($ $ $) 208 (|has| |#1| (-556)))) (-2357 (((-112) (-114)) 10)) (-1648 (((-112) $ $) 86)) (-3926 (($ $) 183 (|has| |#1| (-556)))) (-3776 (($ $) 159 (|has| |#1| (-556)))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) 179 (|has| |#1| (-556)))) (-3750 (($ $) 155 (|has| |#1| (-556)))) (-3951 (($ $) 187 (|has| |#1| (-556)))) (-3803 (($ $) 163 (|has| |#1| (-556)))) (-2647 (($ (-1173) $) NIL) (($ (-1173) $ $) NIL) (($ (-1173) $ $ $) NIL) (($ (-1173) $ $ $ $) NIL) (($ (-1173) (-642 $)) NIL)) (-2283 (($ $) 214 (|has| |#1| (-556)))) (-2372 (($ $) 212 (|has| |#1| (-556)))) (-2683 (($ $) 189 (|has| |#1| (-556)))) (-3816 (($ $) 165 (|has| |#1| (-556)))) (-3938 (($ $) 185 (|has| |#1| (-556)))) (-3791 (($ $) 161 (|has| |#1| (-556)))) (-3913 (($ $) 181 (|has| |#1| (-556)))) (-3763 (($ $) 157 (|has| |#1| (-556)))) (-1381 (($ $) 192 (|has| |#1| (-556)))) (-2312 (($) 21 (-2706 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))) CONST)) (-1383 (($ $) 243 (|has| |#1| (-556)))) (-2322 (($) 23 (-2706 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109))) CONST)) (-4035 (($ $) 194 (|has| |#1| (-556))) (($ $ $) 196 (|has| |#1| (-556)))) (-4040 (($ $) 241 (|has| |#1| (-556)))) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-1047))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-1047))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-1047))) (($ $ (-1173)) NIL (|has| |#1| (-1047)))) (-2409 (($ $) 245 (|has| |#1| (-556)))) (-2003 (($ $ $) 198 (|has| |#1| (-556)))) (-2872 (((-112) $ $) 88)) (-2998 (($ (-1122 |#1| (-610 $)) (-1122 |#1| (-610 $))) 106 (|has| |#1| (-556))) (($ $ $) 42 (-2706 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-2987 (($ $ $) 40 (-2706 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))) (($ $) 29 (-2706 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))) (-2974 (($ $ $) 38 (-2706 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))) (** (($ $ $) 64 (|has| |#1| (-556))) (($ $ (-407 (-564))) 314 (|has| |#1| (-556))) (($ $ (-564)) 80 (-2706 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-769)) 75 (-2706 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109)))) (($ $ (-919)) 84 (-2706 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109))))) (* (($ (-407 (-564)) $) NIL (|has| |#1| (-556))) (($ $ (-407 (-564))) NIL (|has| |#1| (-556))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2706 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) (|has| |#1| (-1109)))) (($ (-564) $) 32 (-2706 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))) (($ (-769) $) NIL (-2706 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))))) (($ (-919) $) NIL (-2706 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))))))
+(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1197)) (-6 (-160)) (-6 (-627)) (-6 (-1136)) (-15 -1320 ($ $)) (-15 -1657 ((-112) $)) (-15 -3057 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -2923 ((-418 (-1169 $)) (-1169 $))) (-15 -2951 ((-418 (-1169 $)) (-1169 $)))) |%noBranch|) (IF (|has| |#1| (-1036 (-564))) (-6 (-1036 (-48))) |%noBranch|)) |%noBranch|))) (-1097)) (T -316))
+((-1320 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-1097)))) (-1657 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1097)))) (-3057 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1097)))) (-2923 (*1 *2 *3) (-12 (-5 *2 (-418 (-1169 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1097)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-418 (-1169 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1097)))))
+(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1197)) (-6 (-160)) (-6 (-627)) (-6 (-1136)) (-15 -1320 ($ $)) (-15 -1657 ((-112) $)) (-15 -3057 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -2923 ((-418 (-1169 $)) (-1169 $))) (-15 -2951 ((-418 (-1169 $)) (-1169 $)))) |%noBranch|) (IF (|has| |#1| (-1036 (-564))) (-6 (-1036 (-48))) |%noBranch|)) |%noBranch|)))
+((-2381 (((-52) |#2| (-114) (-294 |#2|) (-642 |#2|)) 92) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 88) (((-52) |#2| (-114) (-294 |#2|) |#2|) 90) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 91) (((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|))) 84) (((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 |#2|)) 86) (((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 |#2|)) 87) (((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|))) 85) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|)) 93) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 89)))
+(((-317 |#1| |#2|) (-10 -7 (-15 -2381 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -2381 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|))) (-15 -2381 ((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|)))) (-15 -2381 ((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 |#2|))) (-15 -2381 ((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 |#2|))) (-15 -2381 ((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|)))) (-15 -2381 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -2381 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -2381 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -2381 ((-52) |#2| (-114) (-294 |#2|) (-642 |#2|)))) (-13 (-556) (-612 (-536))) (-430 |#1|)) (T -317))
+((-2381 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-642 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-2381 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-2381 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-2381 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-2381 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 (-114))) (-5 *6 (-642 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-2381 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-642 *7)) (-5 *4 (-642 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2381 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-642 (-294 *8))) (-5 *4 (-642 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-642 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-2381 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-642 (-294 *7))) (-5 *4 (-642 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2381 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-642 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2381 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6)))))
+(-10 -7 (-15 -2381 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -2381 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|))) (-15 -2381 ((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|)))) (-15 -2381 ((-52) (-642 (-294 |#2|)) (-642 (-114)) (-294 |#2|) (-642 |#2|))) (-15 -2381 ((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 |#2|))) (-15 -2381 ((-52) (-642 |#2|) (-642 (-114)) (-294 |#2|) (-642 (-294 |#2|)))) (-15 -2381 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -2381 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -2381 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -2381 ((-52) |#2| (-114) (-294 |#2|) (-642 |#2|))))
+((-3552 (((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564) (-1155)) 68) (((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564)) 69) (((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564) (-1155)) 65) (((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564)) 66)) (-3931 (((-1 (-225) (-225)) (-225)) 67)))
+(((-318) (-10 -7 (-15 -3931 ((-1 (-225) (-225)) (-225))) (-15 -3552 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564))) (-15 -3552 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564) (-1155))) (-15 -3552 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564))) (-15 -3552 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564) (-1155))))) (T -318))
+((-3552 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1091 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1155)) (-5 *2 (-1207 (-924))) (-5 *1 (-318)))) (-3552 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1091 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *2 (-1207 (-924))) (-5 *1 (-318)))) (-3552 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1091 (-225))) (-5 *6 (-564)) (-5 *7 (-1155)) (-5 *2 (-1207 (-924))) (-5 *1 (-318)))) (-3552 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1091 (-225))) (-5 *6 (-564)) (-5 *2 (-1207 (-924))) (-5 *1 (-318)))) (-3931 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
+(-10 -7 (-15 -3931 ((-1 (-225) (-225)) (-225))) (-15 -3552 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564))) (-15 -3552 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-1 (-225) (-225)) (-564) (-1155))) (-15 -3552 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564))) (-15 -3552 ((-1207 (-924)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-225) (-564) (-1155))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 26)) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1726 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-2674 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 20)) (-3851 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL (|has| |#1| (-363)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3875 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) 35)) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1469 (((-112) $) NIL (|has| |#1| (-363)))) (-1941 (((-112) $) NIL)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) 16)) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3267 (($ $ (-919)) NIL) (($ $ (-407 (-564))) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-407 (-564))) NIL) (($ $ (-1079) (-407 (-564))) NIL) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| |#1| (-363)))) (-4107 (($ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197)))))) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3804 (($ $ (-407 (-564))) NIL)) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-4333 (((-407 (-564)) $) 17)) (-2795 (($ (-1247 |#1| |#2| |#3|)) 11)) (-2700 (((-1247 |#1| |#2| |#3|) $) 12)) (-1723 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1109)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2775 (((-407 (-564)) $) NIL)) (-3888 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) 10)) (-2327 (((-860) $) 41) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2102 ((|#1| $ (-407 (-564))) 33)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-3594 ((|#1| $) NIL)) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 28)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 36)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-319 |#1| |#2| |#3|) (-13 (-1243 |#1|) (-790) (-10 -8 (-15 -2795 ($ (-1247 |#1| |#2| |#3|))) (-15 -2700 ((-1247 |#1| |#2| |#3|) $)) (-15 -4333 ((-407 (-564)) $)))) (-363) (-1173) |#1|) (T -319))
+((-2795 (*1 *1 *2) (-12 (-5 *2 (-1247 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1173)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1173)) (-14 *5 *3))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1173)) (-14 *5 *3))))
+(-13 (-1243 |#1|) (-790) (-10 -8 (-15 -2795 ($ (-1247 |#1| |#2| |#3|))) (-15 -2700 ((-1247 |#1| |#2| |#3|) $)) (-15 -4333 ((-407 (-564)) $))))
+((-1772 (((-2 (|:| -2700 (-769)) (|:| -4378 |#1|) (|:| |radicand| (-642 |#1|))) (-418 |#1|) (-769)) 35)) (-3612 (((-642 (-2 (|:| -4378 (-769)) (|:| |logand| |#1|))) (-418 |#1|)) 40)))
+(((-320 |#1|) (-10 -7 (-15 -1772 ((-2 (|:| -2700 (-769)) (|:| -4378 |#1|) (|:| |radicand| (-642 |#1|))) (-418 |#1|) (-769))) (-15 -3612 ((-642 (-2 (|:| -4378 (-769)) (|:| |logand| |#1|))) (-418 |#1|)))) (-556)) (T -320))
+((-3612 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) (-5 *2 (-642 (-2 (|:| -4378 (-769)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-1772 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) (-5 *2 (-2 (|:| -2700 (-769)) (|:| -4378 *5) (|:| |radicand| (-642 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-769)))))
+(-10 -7 (-15 -1772 ((-2 (|:| -2700 (-769)) (|:| -4378 |#1|) (|:| |radicand| (-642 |#1|))) (-418 |#1|) (-769))) (-15 -3612 ((-642 (-2 (|:| -4378 (-769)) (|:| |logand| |#1|))) (-418 |#1|))))
+((-3802 (((-642 |#2|) (-1169 |#4|)) 44)) (-2887 ((|#3| (-564)) 47)) (-1528 (((-1169 |#4|) (-1169 |#3|)) 30)) (-2793 (((-1169 |#4|) (-1169 |#4|) (-564)) 65)) (-3456 (((-1169 |#3|) (-1169 |#4|)) 21)) (-2775 (((-642 (-769)) (-1169 |#4|) (-642 |#2|)) 41)) (-1450 (((-1169 |#3|) (-1169 |#4|) (-642 |#2|) (-642 |#3|)) 35)))
+(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1450 ((-1169 |#3|) (-1169 |#4|) (-642 |#2|) (-642 |#3|))) (-15 -2775 ((-642 (-769)) (-1169 |#4|) (-642 |#2|))) (-15 -3802 ((-642 |#2|) (-1169 |#4|))) (-15 -3456 ((-1169 |#3|) (-1169 |#4|))) (-15 -1528 ((-1169 |#4|) (-1169 |#3|))) (-15 -2793 ((-1169 |#4|) (-1169 |#4|) (-564))) (-15 -2887 (|#3| (-564)))) (-791) (-848) (-1047) (-947 |#3| |#1| |#2|)) (T -321))
+((-2887 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1047)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-947 *2 *4 *5)))) (-2793 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *7)) (-5 *3 (-564)) (-4 *7 (-947 *6 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-5 *1 (-321 *4 *5 *6 *7)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-1169 *6)) (-4 *6 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-1169 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-1169 *7)) (-4 *7 (-947 *6 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-5 *2 (-1169 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-1169 *7)) (-4 *7 (-947 *6 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-5 *2 (-642 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2775 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *8)) (-5 *4 (-642 *6)) (-4 *6 (-848)) (-4 *8 (-947 *7 *5 *6)) (-4 *5 (-791)) (-4 *7 (-1047)) (-5 *2 (-642 (-769))) (-5 *1 (-321 *5 *6 *7 *8)))) (-1450 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-5 *5 (-642 *8)) (-4 *7 (-848)) (-4 *8 (-1047)) (-4 *9 (-947 *8 *6 *7)) (-4 *6 (-791)) (-5 *2 (-1169 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1450 ((-1169 |#3|) (-1169 |#4|) (-642 |#2|) (-642 |#3|))) (-15 -2775 ((-642 (-769)) (-1169 |#4|) (-642 |#2|))) (-15 -3802 ((-642 |#2|) (-1169 |#4|))) (-15 -3456 ((-1169 |#3|) (-1169 |#4|))) (-15 -1528 ((-1169 |#4|) (-1169 |#3|))) (-15 -2793 ((-1169 |#4|) (-1169 |#4|) (-564))) (-15 -2887 (|#3| (-564))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 19)) (-2674 (((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-564)))) $) 23)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2521 (((-769) $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-2123 ((|#1| $ (-564)) NIL)) (-2346 (((-564) $ (-564)) NIL)) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-4317 (($ (-1 |#1| |#1|) $) NIL)) (-2012 (($ (-1 (-564) (-564)) $) 11)) (-3315 (((-1155) $) NIL)) (-4169 (($ $ $) NIL (|has| (-564) (-790)))) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL) (($ |#1|) NIL)) (-2102 (((-564) |#1| $) NIL)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 21 T CONST)) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) 28 (|has| |#1| (-848)))) (-2987 (($ $) 12) (($ $ $) 27)) (-2974 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL) (($ (-564) |#1|) 26)))
+(((-322 |#1|) (-13 (-21) (-715 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|))) (-1097)) (T -322))
+NIL
+(-13 (-21) (-715 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-2674 (((-642 (-2 (|:| |gen| |#1|) (|:| -1723 |#2|))) $) 28)) (-1532 (((-3 $ "failed") $ $) 20)) (-2521 (((-769) $) 29)) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#1| "failed") $) 33)) (-3027 ((|#1| $) 34)) (-2123 ((|#1| $ (-564)) 26)) (-2346 ((|#2| $ (-564)) 27)) (-4317 (($ (-1 |#1| |#1|) $) 23)) (-2012 (($ (-1 |#2| |#2|) $) 24)) (-3315 (((-1155) $) 10)) (-4169 (($ $ $) 22 (|has| |#2| (-790)))) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ |#1|) 32)) (-2102 ((|#2| |#1| $) 25)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2974 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ |#2| |#1|) 30)))
+(((-323 |#1| |#2|) (-140) (-1097) (-131)) (T -323))
+((-2974 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-131)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131)) (-5 *2 (-769)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131)) (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 *4)))))) (-2346 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1097)) (-4 *2 (-131)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1097)))) (-2102 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-131)))) (-2012 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131)))) (-4317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131)))) (-4169 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-131)) (-4 *3 (-790)))))
+(-13 (-131) (-1036 |t#1|) (-10 -8 (-15 -2974 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2521 ((-769) $)) (-15 -2674 ((-642 (-2 (|:| |gen| |t#1|) (|:| -1723 |t#2|))) $)) (-15 -2346 (|t#2| $ (-564))) (-15 -2123 (|t#1| $ (-564))) (-15 -2102 (|t#2| |t#1| $)) (-15 -2012 ($ (-1 |t#2| |t#2|) $)) (-15 -4317 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-790)) (-15 -4169 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-1036 |#1|) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2674 (((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-769)))) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2521 (((-769) $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-2123 ((|#1| $ (-564)) NIL)) (-2346 (((-769) $ (-564)) NIL)) (-4317 (($ (-1 |#1| |#1|) $) NIL)) (-2012 (($ (-1 (-769) (-769)) $) NIL)) (-3315 (((-1155) $) NIL)) (-4169 (($ $ $) NIL (|has| (-769) (-790)))) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL) (($ |#1|) NIL)) (-2102 (((-769) |#1| $) NIL)) (-1648 (((-112) $ $) NIL)) (-2312 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2974 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-769) |#1|) NIL)))
+(((-324 |#1|) (-323 |#1| (-769)) (-1097)) (T -324))
+NIL
+(-323 |#1| (-769))
+((-3246 (($ $) 72)) (-2575 (($ $ |#2| |#3| $) 14)) (-2026 (($ (-1 |#3| |#3|) $) 51)) (-3921 (((-112) $) 42)) (-3932 ((|#2| $) 44)) (-2896 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-4028 ((|#2| $) 68)) (-3849 (((-642 |#2|) $) 56)) (-1967 (($ $ $ (-769)) 37)) (-2998 (($ $ |#2|) 60)))
+(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -3246 (|#1| |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1967 (|#1| |#1| |#1| (-769))) (-15 -2575 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2026 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3849 ((-642 |#2|) |#1|)) (-15 -3932 (|#2| |#1|)) (-15 -3921 ((-112) |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2998 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1047) (-790)) (T -325))
+NIL
+(-10 -8 (-15 -3246 (|#1| |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1967 (|#1| |#1| |#1| (-769))) (-15 -2575 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2026 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3849 ((-642 |#2|) |#1|)) (-15 -3932 (|#2| |#1|)) (-15 -3921 ((-112) |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2998 (|#1| |#1| |#2|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-1387 (($ $) 64 (|has| |#1| (-556)))) (-2037 (((-112) $) 66 (|has| |#1| (-556)))) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-4278 (((-3 (-564) "failed") $) 100 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 98 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 95)) (-3027 (((-564) $) 99 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 97 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 96)) (-1718 (($ $) 72)) (-3104 (((-3 $ "failed") $) 37)) (-3246 (($ $) 84 (|has| |#1| (-452)))) (-2575 (($ $ |#1| |#2| $) 88)) (-3953 (((-112) $) 35)) (-3934 (((-769) $) 91)) (-2316 (((-112) $) 74)) (-3774 (($ |#1| |#2|) 73)) (-1398 ((|#2| $) 90)) (-2026 (($ (-1 |#2| |#2|) $) 89)) (-4358 (($ (-1 |#1| |#1|) $) 75)) (-3950 (($ $) 77)) (-3962 ((|#1| $) 78)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3921 (((-112) $) 94)) (-3932 ((|#1| $) 93)) (-2896 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-556)))) (-2775 ((|#2| $) 76)) (-4028 ((|#1| $) 85 (|has| |#1| (-452)))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 61 (|has| |#1| (-556))) (($ |#1|) 59) (($ (-407 (-564))) 69 (-2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-3849 (((-642 |#1|) $) 92)) (-2102 ((|#1| $ |#2|) 71)) (-2439 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-1967 (($ $ $ (-769)) 87 (|has| |#1| (-172)))) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 65 (|has| |#1| (-556)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 70 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564)))))))
+(((-326 |#1| |#2|) (-140) (-1047) (-790)) (T -326))
+((-3921 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-112)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-642 *3)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-769)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-2026 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)))) (-2575 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))) (-1967 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-4 *3 (-172)))) (-2896 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)) (-4 *2 (-556)))) (-4028 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)) (-4 *2 (-452)))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)) (-4 *2 (-452)))))
+(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -3921 ((-112) $)) (-15 -3932 (|t#1| $)) (-15 -3849 ((-642 |t#1|) $)) (-15 -3934 ((-769) $)) (-15 -1398 (|t#2| $)) (-15 -2026 ($ (-1 |t#2| |t#2|) $)) (-15 -2575 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -1967 ($ $ $ (-769))) |%noBranch|) (IF (|has| |t#1| (-556)) (-15 -2896 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -4028 (|t#1| $)) (-15 -3246 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-411 |#1|) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3952 (((-112) (-112)) NIL)) (-3877 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-2462 (($ (-1 (-112) |#1|) $) NIL)) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-1938 (($ $) NIL (|has| |#1| (-1097)))) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) NIL)) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) NIL)) (-3979 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-4321 (($ $ (-564)) NIL)) (-4206 (((-769) $) NIL)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-4227 (($ (-769) |#1|) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-3427 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3183 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4238 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3287 (($ (-642 |#1|)) NIL)) (-2557 ((|#1| $) NIL (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-3184 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) NIL)) (-2582 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3651 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3287 ($ (-642 |#1|))) (-15 -4206 ((-769) $)) (-15 -4321 ($ $ (-564))) (-15 -3952 ((-112) (-112))))) (-1212)) (T -327))
+((-3287 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-327 *3)))) (-4206 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-327 *3)) (-4 *3 (-1212)))) (-4321 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1212)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1212)))))
+(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3287 ($ (-642 |#1|))) (-15 -4206 ((-769) $)) (-15 -4321 ($ $ (-564))) (-15 -3952 ((-112) (-112)))))
+((-2988 (((-112) $) 50)) (-3237 (((-769)) 26)) (-3815 ((|#2| $) 54) (($ $ (-919)) 124)) (-2521 (((-769)) 125)) (-4221 (($ (-1262 |#2|)) 23)) (-3563 (((-112) $) 138)) (-2218 ((|#2| $) 56) (($ $ (-919)) 121)) (-3947 (((-1169 |#2|) $) NIL) (((-1169 $) $ (-919)) 112)) (-4157 (((-1169 |#2|) $) 98)) (-2891 (((-1169 |#2|) $) 94) (((-3 (-1169 |#2|) "failed") $ $) 91)) (-2393 (($ $ (-1169 |#2|)) 62)) (-1524 (((-831 (-919))) 33) (((-919)) 51)) (-3474 (((-134)) 30)) (-2775 (((-831 (-919)) $) 35) (((-919) $) 141)) (-1627 (($) 131)) (-2067 (((-1262 |#2|) $) NIL) (((-687 |#2|) (-1262 $)) 45)) (-2439 (($ $) NIL) (((-3 $ "failed") $) 101)) (-1362 (((-112) $) 48)))
+(((-328 |#1| |#2|) (-10 -8 (-15 -2439 ((-3 |#1| "failed") |#1|)) (-15 -2521 ((-769))) (-15 -2439 (|#1| |#1|)) (-15 -2891 ((-3 (-1169 |#2|) "failed") |#1| |#1|)) (-15 -2891 ((-1169 |#2|) |#1|)) (-15 -4157 ((-1169 |#2|) |#1|)) (-15 -2393 (|#1| |#1| (-1169 |#2|))) (-15 -3563 ((-112) |#1|)) (-15 -1627 (|#1|)) (-15 -3815 (|#1| |#1| (-919))) (-15 -2218 (|#1| |#1| (-919))) (-15 -3947 ((-1169 |#1|) |#1| (-919))) (-15 -3815 (|#2| |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -2775 ((-919) |#1|)) (-15 -1524 ((-919))) (-15 -3947 ((-1169 |#2|) |#1|)) (-15 -4221 (|#1| (-1262 |#2|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1|)) (-15 -3237 ((-769))) (-15 -1524 ((-831 (-919)))) (-15 -2775 ((-831 (-919)) |#1|)) (-15 -2988 ((-112) |#1|)) (-15 -1362 ((-112) |#1|)) (-15 -3474 ((-134)))) (-329 |#2|) (-363)) (T -328))
+((-3474 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1524 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-831 (-919))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3237 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-769)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1524 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-919)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-2521 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-769)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))))
+(-10 -8 (-15 -2439 ((-3 |#1| "failed") |#1|)) (-15 -2521 ((-769))) (-15 -2439 (|#1| |#1|)) (-15 -2891 ((-3 (-1169 |#2|) "failed") |#1| |#1|)) (-15 -2891 ((-1169 |#2|) |#1|)) (-15 -4157 ((-1169 |#2|) |#1|)) (-15 -2393 (|#1| |#1| (-1169 |#2|))) (-15 -3563 ((-112) |#1|)) (-15 -1627 (|#1|)) (-15 -3815 (|#1| |#1| (-919))) (-15 -2218 (|#1| |#1| (-919))) (-15 -3947 ((-1169 |#1|) |#1| (-919))) (-15 -3815 (|#2| |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -2775 ((-919) |#1|)) (-15 -1524 ((-919))) (-15 -3947 ((-1169 |#2|) |#1|)) (-15 -4221 (|#1| (-1262 |#2|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1|)) (-15 -3237 ((-769))) (-15 -1524 ((-831 (-919)))) (-15 -2775 ((-831 (-919)) |#1|)) (-15 -2988 ((-112) |#1|)) (-15 -1362 ((-112) |#1|)) (-15 -3474 ((-134))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-2988 (((-112) $) 104)) (-3237 (((-769)) 100)) (-3815 ((|#1| $) 150) (($ $ (-919)) 147 (|has| |#1| (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) 132 (|has| |#1| (-368)))) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 81)) (-1978 (((-418 $) $) 80)) (-4010 (((-112) $ $) 65)) (-2521 (((-769)) 122 (|has| |#1| (-368)))) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#1| "failed") $) 111)) (-3027 ((|#1| $) 112)) (-4221 (($ (-1262 |#1|)) 156)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-368)))) (-2845 (($ $ $) 61)) (-3104 (((-3 $ "failed") $) 37)) (-2433 (($) 119 (|has| |#1| (-368)))) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-1363 (($) 134 (|has| |#1| (-368)))) (-3424 (((-112) $) 135 (|has| |#1| (-368)))) (-3607 (($ $ (-769)) 97 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 96 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1469 (((-112) $) 79)) (-1427 (((-919) $) 137 (|has| |#1| (-368))) (((-831 (-919)) $) 94 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3953 (((-112) $) 35)) (-3289 (($) 145 (|has| |#1| (-368)))) (-3563 (((-112) $) 144 (|has| |#1| (-368)))) (-2218 ((|#1| $) 151) (($ $ (-919)) 148 (|has| |#1| (-368)))) (-3157 (((-3 $ "failed") $) 123 (|has| |#1| (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-3947 (((-1169 |#1|) $) 155) (((-1169 $) $ (-919)) 149 (|has| |#1| (-368)))) (-1945 (((-919) $) 120 (|has| |#1| (-368)))) (-4157 (((-1169 |#1|) $) 141 (|has| |#1| (-368)))) (-2891 (((-1169 |#1|) $) 140 (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) 139 (|has| |#1| (-368)))) (-2393 (($ $ (-1169 |#1|)) 142 (|has| |#1| (-368)))) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 78)) (-3366 (($) 124 (|has| |#1| (-368)) CONST)) (-2047 (($ (-919)) 121 (|has| |#1| (-368)))) (-2843 (((-112) $) 103)) (-4033 (((-1117) $) 11)) (-2185 (($) 143 (|has| |#1| (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) 131 (|has| |#1| (-368)))) (-3643 (((-418 $) $) 82)) (-1524 (((-831 (-919))) 101) (((-919)) 153)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2048 (((-769) $) 64)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-2136 (((-769) $) 136 (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) 95 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3474 (((-134)) 109)) (-3175 (($ $) 128 (|has| |#1| (-368))) (($ $ (-769)) 126 (|has| |#1| (-368)))) (-2775 (((-831 (-919)) $) 102) (((-919) $) 152)) (-3280 (((-1169 |#1|)) 154)) (-2668 (($) 133 (|has| |#1| (-368)))) (-1627 (($) 146 (|has| |#1| (-368)))) (-2067 (((-1262 |#1|) $) 158) (((-687 |#1|) (-1262 $)) 157)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 130 (|has| |#1| (-368)))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ |#1|) 110)) (-2439 (($ $) 129 (|has| |#1| (-368))) (((-3 $ "failed") $) 93 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-4263 (((-1262 $)) 160) (((-1262 $) (-919)) 159)) (-2103 (((-112) $ $) 45)) (-1362 (((-112) $) 105)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-3623 (($ $) 99 (|has| |#1| (-368))) (($ $ (-769)) 98 (|has| |#1| (-368)))) (-4044 (($ $) 127 (|has| |#1| (-368))) (($ $ (-769)) 125 (|has| |#1| (-368)))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 73) (($ $ |#1|) 108)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
(((-329 |#1|) (-140) (-363)) (T -329))
-((-2047 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3)))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *4)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-3721 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-1967 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3514 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1)) (-4 *1 (-329 *4)))) (-2499 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3847 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-1930 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2908 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3164 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-2249 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3606 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-4372 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-4372 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))))
-(-13 (-1278 |t#1|) (-1034 |t#1|) (-10 -8 (-15 -2047 ((-1259 $))) (-15 -2047 ((-1259 $) (-917))) (-15 -4225 ((-1259 |t#1|) $)) (-15 -4225 ((-685 |t#1|) (-1259 $))) (-15 -3474 ($ (-1259 |t#1|))) (-15 -3514 ((-1166 |t#1|) $)) (-15 -3721 ((-1166 |t#1|))) (-15 -1967 ((-917))) (-15 -1568 ((-917) $)) (-15 -2499 (|t#1| $)) (-15 -3847 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -3514 ((-1166 $) $ (-917))) (-15 -2499 ($ $ (-917))) (-15 -3847 ($ $ (-917))) (-15 -1930 ($)) (-15 -2908 ($)) (-15 -3164 ((-112) $)) (-15 -2249 ($)) (-15 -3606 ($ $ (-1166 |t#1|))) (-15 -2820 ((-1166 |t#1|) $)) (-15 -4372 ((-1166 |t#1|) $)) (-15 -4372 ((-3 (-1166 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2807 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1278 |#1|) . T) ((-363) . T) ((-402) -2807 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-368)) ((-1213) . T) ((-1266 |#1|) . T))
-((-3009 (((-112) $ $) NIL)) (-1721 (($ (-1169) $) 104)) (-1759 (($) 93)) (-3805 (((-1114) (-1114)) 9)) (-2186 (($) 94)) (-3789 (($) 108) (($ (-316 (-695))) 116) (($ (-316 (-697))) 112) (($ (-316 (-690))) 120) (($ (-316 (-379))) 127) (($ (-316 (-564))) 123) (($ (-316 (-169 (-379)))) 131)) (-1319 (($ (-1169) $) 105)) (-2867 (($ (-641 (-858))) 95)) (-1342 (((-1264) $) 91)) (-3481 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3406 (($ (-1114)) 60)) (-1435 (((-1098) $) 32)) (-1695 (($ (-1086 (-948 (-564))) $) 101) (($ (-1086 (-948 (-564))) (-948 (-564)) $) 102)) (-2496 (($ (-1114)) 103)) (-1934 (($ (-1169) $) 133) (($ (-1169) $ $) 134)) (-3321 (($ (-1170) (-641 (-1170))) 92)) (-2258 (($ (-1152)) 98) (($ (-641 (-1152))) 96)) (-2423 (((-858) $) 136)) (-3228 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-948 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3354 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1976 (-112)) (|:| -2128 (-2 (|:| |ints2Floats?| (-112)) (|:| -3354 (-858)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -2141 (-1086 (-948 (-564)))) (|:| |span| (-948 (-564))) (|:| -2575 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -2575 $))) (|:| |commonBranch| (-2 (|:| -2562 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-858)))) $) 51)) (-2010 (($ (-1152)) 205)) (-2268 (($ (-641 $)) 132)) (-1860 (((-112) $ $) NIL)) (-4288 (($ (-1170) (-1152)) 138) (($ (-1170) (-316 (-697))) 178) (($ (-1170) (-316 (-695))) 179) (($ (-1170) (-316 (-690))) 180) (($ (-1170) (-685 (-697))) 141) (($ (-1170) (-685 (-695))) 144) (($ (-1170) (-685 (-690))) 147) (($ (-1170) (-1259 (-697))) 150) (($ (-1170) (-1259 (-695))) 153) (($ (-1170) (-1259 (-690))) 156) (($ (-1170) (-685 (-316 (-697)))) 159) (($ (-1170) (-685 (-316 (-695)))) 162) (($ (-1170) (-685 (-316 (-690)))) 165) (($ (-1170) (-1259 (-316 (-697)))) 168) (($ (-1170) (-1259 (-316 (-695)))) 171) (($ (-1170) (-1259 (-316 (-690)))) 174) (($ (-1170) (-641 (-948 (-564))) (-316 (-697))) 175) (($ (-1170) (-641 (-948 (-564))) (-316 (-695))) 176) (($ (-1170) (-641 (-948 (-564))) (-316 (-690))) 177) (($ (-1170) (-316 (-564))) 202) (($ (-1170) (-316 (-379))) 203) (($ (-1170) (-316 (-169 (-379)))) 204) (($ (-1170) (-685 (-316 (-564)))) 183) (($ (-1170) (-685 (-316 (-379)))) 186) (($ (-1170) (-685 (-316 (-169 (-379))))) 189) (($ (-1170) (-1259 (-316 (-564)))) 192) (($ (-1170) (-1259 (-316 (-379)))) 195) (($ (-1170) (-1259 (-316 (-169 (-379))))) 198) (($ (-1170) (-641 (-948 (-564))) (-316 (-564))) 199) (($ (-1170) (-641 (-948 (-564))) (-316 (-379))) 200) (($ (-1170) (-641 (-948 (-564))) (-316 (-169 (-379)))) 201)) (-2974 (((-112) $ $) NIL)))
-(((-330) (-13 (-1094) (-10 -8 (-15 -1695 ($ (-1086 (-948 (-564))) $)) (-15 -1695 ($ (-1086 (-948 (-564))) (-948 (-564)) $)) (-15 -1721 ($ (-1169) $)) (-15 -1319 ($ (-1169) $)) (-15 -3406 ($ (-1114))) (-15 -2496 ($ (-1114))) (-15 -2258 ($ (-1152))) (-15 -2258 ($ (-641 (-1152)))) (-15 -2010 ($ (-1152))) (-15 -3789 ($)) (-15 -3789 ($ (-316 (-695)))) (-15 -3789 ($ (-316 (-697)))) (-15 -3789 ($ (-316 (-690)))) (-15 -3789 ($ (-316 (-379)))) (-15 -3789 ($ (-316 (-564)))) (-15 -3789 ($ (-316 (-169 (-379))))) (-15 -1934 ($ (-1169) $)) (-15 -1934 ($ (-1169) $ $)) (-15 -4288 ($ (-1170) (-1152))) (-15 -4288 ($ (-1170) (-316 (-697)))) (-15 -4288 ($ (-1170) (-316 (-695)))) (-15 -4288 ($ (-1170) (-316 (-690)))) (-15 -4288 ($ (-1170) (-685 (-697)))) (-15 -4288 ($ (-1170) (-685 (-695)))) (-15 -4288 ($ (-1170) (-685 (-690)))) (-15 -4288 ($ (-1170) (-1259 (-697)))) (-15 -4288 ($ (-1170) (-1259 (-695)))) (-15 -4288 ($ (-1170) (-1259 (-690)))) (-15 -4288 ($ (-1170) (-685 (-316 (-697))))) (-15 -4288 ($ (-1170) (-685 (-316 (-695))))) (-15 -4288 ($ (-1170) (-685 (-316 (-690))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-697))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-695))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-690))))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-697)))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-695)))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-690)))) (-15 -4288 ($ (-1170) (-316 (-564)))) (-15 -4288 ($ (-1170) (-316 (-379)))) (-15 -4288 ($ (-1170) (-316 (-169 (-379))))) (-15 -4288 ($ (-1170) (-685 (-316 (-564))))) (-15 -4288 ($ (-1170) (-685 (-316 (-379))))) (-15 -4288 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-564))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-379))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-564)))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-379)))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-169 (-379))))) (-15 -2268 ($ (-641 $))) (-15 -1759 ($)) (-15 -2186 ($)) (-15 -2867 ($ (-641 (-858)))) (-15 -3321 ($ (-1170) (-641 (-1170)))) (-15 -3481 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3228 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-948 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3354 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1976 (-112)) (|:| -2128 (-2 (|:| |ints2Floats?| (-112)) (|:| -3354 (-858)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -2141 (-1086 (-948 (-564)))) (|:| |span| (-948 (-564))) (|:| -2575 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -2575 $))) (|:| |commonBranch| (-2 (|:| -2562 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-858)))) $)) (-15 -1342 ((-1264) $)) (-15 -1435 ((-1098) $)) (-15 -3805 ((-1114) (-1114)))))) (T -330))
-((-1695 (*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-948 (-564)))) (-5 *1 (-330)))) (-1695 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1086 (-948 (-564)))) (-5 *3 (-948 (-564))) (-5 *1 (-330)))) (-1721 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-1319 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-3789 (*1 *1) (-5 *1 (-330))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330)))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330)))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-1934 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-1934 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-697))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-695))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-690))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-564))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-4288 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330)))) (-1759 (*1 *1) (-5 *1 (-330))) (-2186 (*1 *1) (-5 *1 (-330))) (-2867 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-330)))) (-3321 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-948 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3354 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -1976 (-112)) (|:| -2128 (-2 (|:| |ints2Floats?| (-112)) (|:| -3354 (-858)))))) (|:| |blockBranch| (-641 (-330))) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -2141 (-1086 (-948 (-564)))) (|:| |span| (-948 (-564))) (|:| -2575 (-330)))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -2575 (-330)))) (|:| |commonBranch| (-2 (|:| -2562 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-858))))) (-5 *1 (-330)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
-(-13 (-1094) (-10 -8 (-15 -1695 ($ (-1086 (-948 (-564))) $)) (-15 -1695 ($ (-1086 (-948 (-564))) (-948 (-564)) $)) (-15 -1721 ($ (-1169) $)) (-15 -1319 ($ (-1169) $)) (-15 -3406 ($ (-1114))) (-15 -2496 ($ (-1114))) (-15 -2258 ($ (-1152))) (-15 -2258 ($ (-641 (-1152)))) (-15 -2010 ($ (-1152))) (-15 -3789 ($)) (-15 -3789 ($ (-316 (-695)))) (-15 -3789 ($ (-316 (-697)))) (-15 -3789 ($ (-316 (-690)))) (-15 -3789 ($ (-316 (-379)))) (-15 -3789 ($ (-316 (-564)))) (-15 -3789 ($ (-316 (-169 (-379))))) (-15 -1934 ($ (-1169) $)) (-15 -1934 ($ (-1169) $ $)) (-15 -4288 ($ (-1170) (-1152))) (-15 -4288 ($ (-1170) (-316 (-697)))) (-15 -4288 ($ (-1170) (-316 (-695)))) (-15 -4288 ($ (-1170) (-316 (-690)))) (-15 -4288 ($ (-1170) (-685 (-697)))) (-15 -4288 ($ (-1170) (-685 (-695)))) (-15 -4288 ($ (-1170) (-685 (-690)))) (-15 -4288 ($ (-1170) (-1259 (-697)))) (-15 -4288 ($ (-1170) (-1259 (-695)))) (-15 -4288 ($ (-1170) (-1259 (-690)))) (-15 -4288 ($ (-1170) (-685 (-316 (-697))))) (-15 -4288 ($ (-1170) (-685 (-316 (-695))))) (-15 -4288 ($ (-1170) (-685 (-316 (-690))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-697))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-695))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-690))))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-697)))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-695)))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-690)))) (-15 -4288 ($ (-1170) (-316 (-564)))) (-15 -4288 ($ (-1170) (-316 (-379)))) (-15 -4288 ($ (-1170) (-316 (-169 (-379))))) (-15 -4288 ($ (-1170) (-685 (-316 (-564))))) (-15 -4288 ($ (-1170) (-685 (-316 (-379))))) (-15 -4288 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-564))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-379))))) (-15 -4288 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-564)))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-379)))) (-15 -4288 ($ (-1170) (-641 (-948 (-564))) (-316 (-169 (-379))))) (-15 -2268 ($ (-641 $))) (-15 -1759 ($)) (-15 -2186 ($)) (-15 -2867 ($ (-641 (-858)))) (-15 -3321 ($ (-1170) (-641 (-1170)))) (-15 -3481 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3228 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-948 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3354 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1976 (-112)) (|:| -2128 (-2 (|:| |ints2Floats?| (-112)) (|:| -3354 (-858)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -2141 (-1086 (-948 (-564)))) (|:| |span| (-948 (-564))) (|:| -2575 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -2575 $))) (|:| |commonBranch| (-2 (|:| -2562 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-858)))) $)) (-15 -1342 ((-1264) $)) (-15 -1435 ((-1098) $)) (-15 -3805 ((-1114) (-1114)))))
-((-3009 (((-112) $ $) NIL)) (-2547 (((-112) $) 13)) (-3722 (($ |#1|) 10)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3735 (($ |#1|) 12)) (-2423 (((-858) $) 19)) (-1860 (((-112) $ $) NIL)) (-3862 ((|#1| $) 14)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 21)))
-(((-331 |#1|) (-13 (-846) (-10 -8 (-15 -3722 ($ |#1|)) (-15 -3735 ($ |#1|)) (-15 -2547 ((-112) $)) (-15 -3862 (|#1| $)))) (-846)) (T -331))
-((-3722 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-3735 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846)))) (-3862 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))))
-(-13 (-846) (-10 -8 (-15 -3722 ($ |#1|)) (-15 -3735 ($ |#1|)) (-15 -2547 ((-112) $)) (-15 -3862 (|#1| $))))
-((-3100 (((-330) (-1170) (-948 (-564))) 23)) (-1362 (((-330) (-1170) (-948 (-564))) 27)) (-3794 (((-330) (-1170) (-1086 (-948 (-564))) (-1086 (-948 (-564)))) 26) (((-330) (-1170) (-948 (-564)) (-948 (-564))) 24)) (-3898 (((-330) (-1170) (-948 (-564))) 31)))
-(((-332) (-10 -7 (-15 -3100 ((-330) (-1170) (-948 (-564)))) (-15 -3794 ((-330) (-1170) (-948 (-564)) (-948 (-564)))) (-15 -3794 ((-330) (-1170) (-1086 (-948 (-564))) (-1086 (-948 (-564))))) (-15 -1362 ((-330) (-1170) (-948 (-564)))) (-15 -3898 ((-330) (-1170) (-948 (-564)))))) (T -332))
-((-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1362 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3794 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-948 (-564)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3794 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3100 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))))
-(-10 -7 (-15 -3100 ((-330) (-1170) (-948 (-564)))) (-15 -3794 ((-330) (-1170) (-948 (-564)) (-948 (-564)))) (-15 -3794 ((-330) (-1170) (-1086 (-948 (-564))) (-1086 (-948 (-564))))) (-15 -1362 ((-330) (-1170) (-948 (-564)))) (-15 -3898 ((-330) (-1170) (-948 (-564)))))
-((-4357 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33)))
-(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4357 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1235 *9)) (-4 *11 (-1235 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11)))))
-(-10 -7 (-15 -4357 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|))))
-((-2204 (((-112) $) 14)))
-(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2204 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334))
-NIL
-(-10 -8 (-15 -2204 ((-112) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-1316 (($ $) 27)) (-2204 (((-112) $) 26)) (-2766 (((-1152) $) 10)) (-4025 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 33)) (-4052 (((-1114) $) 11)) (-2249 (((-3 |#4| "failed") $) 25)) (-1761 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 32) (($ |#4|) 31) (($ |#1| |#1|) 30) (($ |#1| |#1| (-564)) 29) (($ |#4| |#2| |#2| |#2| |#1|) 24)) (-3384 (((-2 (|:| -4215 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 28)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21)))
-(((-335 |#1| |#2| |#3| |#4|) (-140) (-363) (-1235 |t#1|) (-1235 (-407 |t#2|)) (-342 |t#1| |t#2| |t#3|)) (T -335))
-((-4025 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-1761 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-1761 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-1761 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -4215 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-1316 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-2204 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-2249 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-1761 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -4025 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -1761 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -1761 ($ |t#4|)) (-15 -1761 ($ |t#1| |t#1|)) (-15 -1761 ($ |t#1| |t#1| (-564))) (-15 -3384 ((-2 (|:| -4215 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1316 ($ $)) (-15 -2204 ((-112) $)) (-15 -2249 ((-3 |t#4| "failed") $)) (-15 -1761 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1316 (($ $) 33)) (-2204 (((-112) $) NIL)) (-2766 (((-1152) $) NIL)) (-3772 (((-1259 |#4|) $) 135)) (-4025 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-4052 (((-1114) $) NIL)) (-2249 (((-3 |#4| "failed") $) 36)) (-2824 (((-1259 |#4|) $) 127)) (-1761 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-564)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3384 (((-2 (|:| -4215 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2423 (((-858) $) 17)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 14 T CONST)) (-2974 (((-112) $ $) 20)) (-3082 (($ $) 27) (($ $ $) NIL)) (-3070 (($ $ $) 25)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 23)))
-(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2824 ((-1259 |#4|) $)) (-15 -3772 ((-1259 |#4|) $)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336))
-((-2824 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-3772 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))))
-(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2824 ((-1259 |#4|) $)) (-15 -3772 ((-1259 |#4|) $))))
-((-3291 (($ $ (-1170) |#2|) NIL) (($ $ (-641 (-1170)) (-641 |#2|)) 20) (($ $ (-641 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-4366 (($ $ |#2|) 11)))
-(((-337 |#1| |#2|) (-10 -8 (-15 -4366 (|#1| |#1| |#2|)) (-15 -3291 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -3291 (|#1| |#1| |#2| |#2|)) (-15 -3291 (|#1| |#1| (-294 |#2|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -3291 (|#1| |#1| (-1170) |#2|))) (-338 |#2|) (-1094)) (T -337))
-NIL
-(-10 -8 (-15 -4366 (|#1| |#1| |#2|)) (-15 -3291 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -3291 (|#1| |#1| |#2| |#2|)) (-15 -3291 (|#1| |#1| (-294 |#2|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -3291 (|#1| |#1| (-1170) |#2|)))
-((-4357 (($ (-1 |#1| |#1|) $) 6)) (-3291 (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 16 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-641 |#1|) (-641 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-4366 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|)))))
-(((-338 |#1|) (-140) (-1094)) (T -338))
-((-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1094)))))
-(-13 (-10 -8 (-15 -4357 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1170) |t#1|)) (-6 (-514 (-1170) |t#1|)) |%noBranch|)))
-(((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-1170)) $) NIL)) (-2348 (((-112)) 99) (((-112) (-112)) 100)) (-3577 (((-641 (-610 $)) $) NIL)) (-3880 (($ $) NIL)) (-3745 (($ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2559 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-3700 (($ $) NIL)) (-3858 (($ $) NIL)) (-3722 (($ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-610 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 79) (((-3 $ "failed") (-1170)) 105) (((-3 $ "failed") (-316 (-564))) 67 (|has| |#3| (-1034 (-564)))) (((-3 $ "failed") (-407 (-948 (-564)))) 73 (|has| |#3| (-1034 (-564)))) (((-3 $ "failed") (-948 (-564))) 68 (|has| |#3| (-1034 (-564)))) (((-3 $ "failed") (-316 (-379))) 97 (|has| |#3| (-1034 (-379)))) (((-3 $ "failed") (-407 (-948 (-379)))) 91 (|has| |#3| (-1034 (-379)))) (((-3 $ "failed") (-948 (-379))) 86 (|has| |#3| (-1034 (-379))))) (-3120 (((-610 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 80) (($ (-1170)) 106) (($ (-316 (-564))) 69 (|has| |#3| (-1034 (-564)))) (($ (-407 (-948 (-564)))) 74 (|has| |#3| (-1034 (-564)))) (($ (-948 (-564))) 70 (|has| |#3| (-1034 (-564)))) (($ (-316 (-379))) 98 (|has| |#3| (-1034 (-379)))) (($ (-407 (-948 (-379)))) 92 (|has| |#3| (-1034 (-379)))) (($ (-948 (-379))) 88 (|has| |#3| (-1034 (-379))))) (-3293 (((-3 $ "failed") $) NIL)) (-4274 (($) 10)) (-1387 (($ $) NIL) (($ (-641 $)) NIL)) (-3782 (((-641 (-114)) $) NIL)) (-4232 (((-114) (-114)) NIL)) (-4112 (((-112) $) NIL)) (-3177 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-1940 (((-1166 $) (-610 $)) NIL (|has| $ (-1045)))) (-4357 (($ (-1 $ $) (-610 $)) NIL)) (-3521 (((-3 (-610 $) "failed") $) NIL)) (-2262 (($ $) 102)) (-3657 (($ $) NIL)) (-2766 (((-1152) $) NIL)) (-3648 (((-641 (-610 $)) $) NIL)) (-4309 (($ (-114) $) 101) (($ (-114) (-641 $)) NIL)) (-3679 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-1292 (((-767) $) NIL)) (-4052 (((-1114) $) NIL)) (-3817 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-1689 (($ $) NIL)) (-2663 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-3291 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4366 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-3973 (($ $) NIL) (($ $ $) NIL)) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-3721 (($ $) NIL (|has| $ (-1045)))) (-3869 (($ $) NIL)) (-3735 (($ $) NIL)) (-2423 (((-858) $) NIL) (($ (-610 $)) NIL) (($ |#3|) NIL) (($ (-564)) NIL) (((-316 |#3|) $) 104)) (-3719 (((-767)) NIL T CONST)) (-2180 (($ $) NIL) (($ (-641 $)) NIL)) (-3263 (((-112) (-114)) NIL)) (-1860 (((-112) $ $) NIL)) (-3811 (($ $) NIL)) (-3787 (($ $) NIL)) (-3799 (($ $) NIL)) (-3673 (($ $) NIL)) (-2403 (($) 103 T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $ $) NIL) (($ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL)))
-(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1034 |#3|) (-896 (-1170)) (-10 -8 (-15 -3120 ($ (-316 |#3|))) (-15 -4284 ((-3 $ "failed") (-316 |#3|))) (-15 -3120 ($ (-1170))) (-15 -4284 ((-3 $ "failed") (-1170))) (-15 -2423 ((-316 |#3|) $)) (IF (|has| |#3| (-1034 (-564))) (PROGN (-15 -3120 ($ (-316 (-564)))) (-15 -4284 ((-3 $ "failed") (-316 (-564)))) (-15 -3120 ($ (-407 (-948 (-564))))) (-15 -4284 ((-3 $ "failed") (-407 (-948 (-564))))) (-15 -3120 ($ (-948 (-564)))) (-15 -4284 ((-3 $ "failed") (-948 (-564))))) |%noBranch|) (IF (|has| |#3| (-1034 (-379))) (PROGN (-15 -3120 ($ (-316 (-379)))) (-15 -4284 ((-3 $ "failed") (-316 (-379)))) (-15 -3120 ($ (-407 (-948 (-379))))) (-15 -4284 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -3120 ($ (-948 (-379)))) (-15 -4284 ((-3 $ "failed") (-948 (-379))))) |%noBranch|) (-15 -3673 ($ $)) (-15 -3700 ($ $)) (-15 -1689 ($ $)) (-15 -3657 ($ $)) (-15 -2262 ($ $)) (-15 -3722 ($ $)) (-15 -3735 ($ $)) (-15 -3745 ($ $)) (-15 -3787 ($ $)) (-15 -3799 ($ $)) (-15 -3811 ($ $)) (-15 -3858 ($ $)) (-15 -3869 ($ $)) (-15 -3880 ($ $)) (-15 -4274 ($)) (-15 -3836 ((-641 (-1170)) $)) (-15 -2348 ((-112))) (-15 -2348 ((-112) (-112))))) (-641 (-1170)) (-641 (-1170)) (-387)) (T -339))
-((-3120 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-948 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3673 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3700 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-1689 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3657 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2262 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3722 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3735 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3745 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3787 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3858 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3869 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3880 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4274 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-2348 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))))
-(-13 (-302) (-38 |#3|) (-1034 |#3|) (-896 (-1170)) (-10 -8 (-15 -3120 ($ (-316 |#3|))) (-15 -4284 ((-3 $ "failed") (-316 |#3|))) (-15 -3120 ($ (-1170))) (-15 -4284 ((-3 $ "failed") (-1170))) (-15 -2423 ((-316 |#3|) $)) (IF (|has| |#3| (-1034 (-564))) (PROGN (-15 -3120 ($ (-316 (-564)))) (-15 -4284 ((-3 $ "failed") (-316 (-564)))) (-15 -3120 ($ (-407 (-948 (-564))))) (-15 -4284 ((-3 $ "failed") (-407 (-948 (-564))))) (-15 -3120 ($ (-948 (-564)))) (-15 -4284 ((-3 $ "failed") (-948 (-564))))) |%noBranch|) (IF (|has| |#3| (-1034 (-379))) (PROGN (-15 -3120 ($ (-316 (-379)))) (-15 -4284 ((-3 $ "failed") (-316 (-379)))) (-15 -3120 ($ (-407 (-948 (-379))))) (-15 -4284 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -3120 ($ (-948 (-379)))) (-15 -4284 ((-3 $ "failed") (-948 (-379))))) |%noBranch|) (-15 -3673 ($ $)) (-15 -3700 ($ $)) (-15 -1689 ($ $)) (-15 -3657 ($ $)) (-15 -2262 ($ $)) (-15 -3722 ($ $)) (-15 -3735 ($ $)) (-15 -3745 ($ $)) (-15 -3787 ($ $)) (-15 -3799 ($ $)) (-15 -3811 ($ $)) (-15 -3858 ($ $)) (-15 -3869 ($ $)) (-15 -3880 ($ $)) (-15 -4274 ($)) (-15 -3836 ((-641 (-1170)) $)) (-15 -2348 ((-112))) (-15 -2348 ((-112) (-112)))))
-((-4357 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4357 (|#8| (-1 |#5| |#1|) |#4|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1213)) (-4 *8 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *9 (-1235 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1235 (-407 *9))))))
-(-10 -7 (-15 -4357 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2729 (((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) $) 40)) (-3474 (($ (-1259 (-407 |#3|)) (-1259 $)) NIL) (($ (-1259 (-407 |#3|))) NIL) (($ (-1259 |#3|) |#3|) 177)) (-3424 (((-1259 $) (-1259 $)) 161)) (-1932 (((-641 (-641 |#2|))) 130)) (-2549 (((-112) |#2| |#2|) 77)) (-2571 (($ $) 152)) (-1975 (((-767)) 33)) (-2101 (((-1259 $) (-1259 $)) 223)) (-1508 (((-641 (-948 |#2|)) (-1170)) 119)) (-1646 (((-112) $) 174)) (-2179 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 227)) (-1410 (((-3 |#3| "failed")) 53)) (-3827 (((-767)) 188)) (-4366 ((|#2| $ |#2| |#2|) 144)) (-2542 (((-3 |#3| "failed")) 72)) (-3254 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-767)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 231) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2073 (((-1259 $) (-1259 $)) 167)) (-1399 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-3790 (((-112)) 35)))
-(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1932 ((-641 (-641 |#2|)))) (-15 -1508 ((-641 (-948 |#2|)) (-1170))) (-15 -1399 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1410 ((-3 |#3| "failed"))) (-15 -2542 ((-3 |#3| "failed"))) (-15 -4366 (|#2| |#1| |#2| |#2|)) (-15 -2571 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2179 ((-112) |#1| |#3|)) (-15 -2179 ((-112) |#1| |#2|)) (-15 -3474 (|#1| (-1259 |#3|) |#3|)) (-15 -2729 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3424 ((-1259 |#1|) (-1259 |#1|))) (-15 -2101 ((-1259 |#1|) (-1259 |#1|))) (-15 -2073 ((-1259 |#1|) (-1259 |#1|))) (-15 -2179 ((-112) |#1|)) (-15 -1646 ((-112) |#1|)) (-15 -2549 ((-112) |#2| |#2|)) (-15 -3790 ((-112))) (-15 -3827 ((-767))) (-15 -1975 ((-767))) (-15 -3254 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -3254 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -3474 (|#1| (-1259 (-407 |#3|)))) (-15 -3474 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|)))) (-342 |#2| |#3| |#4|) (-1213) (-1235 |#2|) (-1235 (-407 |#3|))) (T -341))
-((-1975 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3827 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3790 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-2549 (*1 *2 *3 *3) (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-2542 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-1410 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-948 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-1932 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))))
-(-10 -8 (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -1932 ((-641 (-641 |#2|)))) (-15 -1508 ((-641 (-948 |#2|)) (-1170))) (-15 -1399 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1410 ((-3 |#3| "failed"))) (-15 -2542 ((-3 |#3| "failed"))) (-15 -4366 (|#2| |#1| |#2| |#2|)) (-15 -2571 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2179 ((-112) |#1| |#3|)) (-15 -2179 ((-112) |#1| |#2|)) (-15 -3474 (|#1| (-1259 |#3|) |#3|)) (-15 -2729 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3424 ((-1259 |#1|) (-1259 |#1|))) (-15 -2101 ((-1259 |#1|) (-1259 |#1|))) (-15 -2073 ((-1259 |#1|) (-1259 |#1|))) (-15 -2179 ((-112) |#1|)) (-15 -1646 ((-112) |#1|)) (-15 -2549 ((-112) |#2| |#2|)) (-15 -3790 ((-112))) (-15 -3827 ((-767))) (-15 -1975 ((-767))) (-15 -3254 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -3254 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -3474 (|#1| (-1259 (-407 |#3|)))) (-15 -3474 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-2729 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 196)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 94 (|has| (-407 |#2|) (-363)))) (-3063 (($ $) 95 (|has| (-407 |#2|) (-363)))) (-3330 (((-112) $) 97 (|has| (-407 |#2|) (-363)))) (-2270 (((-685 (-407 |#2|)) (-1259 $)) 48) (((-685 (-407 |#2|))) 63)) (-3847 (((-407 |#2|) $) 54)) (-4373 (((-1182 (-917) (-767)) (-564)) 147 (|has| (-407 |#2|) (-349)))) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 114 (|has| (-407 |#2|) (-363)))) (-2753 (((-418 $) $) 115 (|has| (-407 |#2|) (-363)))) (-3162 (((-112) $ $) 105 (|has| (-407 |#2|) (-363)))) (-2622 (((-767)) 88 (|has| (-407 |#2|) (-368)))) (-2703 (((-112)) 213)) (-2408 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-4080 (($) 18 T CONST)) (-4284 (((-3 (-564) "failed") $) 170 (|has| (-407 |#2|) (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 168 (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) 165)) (-3120 (((-564) $) 169 (|has| (-407 |#2|) (-1034 (-564)))) (((-407 (-564)) $) 167 (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-407 |#2|) $) 166)) (-3474 (($ (-1259 (-407 |#2|)) (-1259 $)) 50) (($ (-1259 (-407 |#2|))) 66) (($ (-1259 |#2|) |#2|) 195)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-407 |#2|) (-349)))) (-2946 (($ $ $) 109 (|has| (-407 |#2|) (-363)))) (-4057 (((-685 (-407 |#2|)) $ (-1259 $)) 55) (((-685 (-407 |#2|)) $) 61)) (-4277 (((-685 (-564)) (-685 $)) 164 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 163 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) 162) (((-685 (-407 |#2|)) (-685 $)) 161)) (-3424 (((-1259 $) (-1259 $)) 201)) (-1316 (($ |#3|) 158) (((-3 $ "failed") (-407 |#3|)) 155 (|has| (-407 |#2|) (-363)))) (-3293 (((-3 $ "failed") $) 34)) (-1932 (((-641 (-641 |#1|))) 182 (|has| |#1| (-368)))) (-2549 (((-112) |#1| |#1|) 217)) (-2514 (((-917)) 56)) (-2534 (($) 91 (|has| (-407 |#2|) (-368)))) (-2872 (((-112)) 210)) (-3988 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-2960 (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 103 (|has| (-407 |#2|) (-363)))) (-2571 (($ $) 188)) (-1471 (($) 149 (|has| (-407 |#2|) (-349)))) (-1436 (((-112) $) 150 (|has| (-407 |#2|) (-349)))) (-3456 (($ $ (-767)) 141 (|has| (-407 |#2|) (-349))) (($ $) 140 (|has| (-407 |#2|) (-349)))) (-1339 (((-112) $) 116 (|has| (-407 |#2|) (-363)))) (-3744 (((-917) $) 152 (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) 138 (|has| (-407 |#2|) (-349)))) (-4112 (((-112) $) 32)) (-1975 (((-767)) 220)) (-2101 (((-1259 $) (-1259 $)) 202)) (-2499 (((-407 |#2|) $) 53)) (-1508 (((-641 (-948 |#1|)) (-1170)) 183 (|has| |#1| (-363)))) (-1846 (((-3 $ "failed") $) 142 (|has| (-407 |#2|) (-349)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 112 (|has| (-407 |#2|) (-363)))) (-3514 ((|#3| $) 46 (|has| (-407 |#2|) (-363)))) (-3256 (((-917) $) 90 (|has| (-407 |#2|) (-368)))) (-1305 ((|#3| $) 156)) (-2084 (($ (-641 $)) 101 (|has| (-407 |#2|) (-363))) (($ $ $) 100 (|has| (-407 |#2|) (-363)))) (-2766 (((-1152) $) 10)) (-1878 (((-685 (-407 |#2|))) 197)) (-4148 (((-685 (-407 |#2|))) 199)) (-3936 (($ $) 117 (|has| (-407 |#2|) (-363)))) (-3131 (($ (-1259 |#2|) |#2|) 193)) (-3029 (((-685 (-407 |#2|))) 198)) (-2334 (((-685 (-407 |#2|))) 200)) (-2798 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 192)) (-3851 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 194)) (-2002 (((-1259 $)) 206)) (-2457 (((-1259 $)) 207)) (-1646 (((-112) $) 205)) (-2179 (((-112) $) 204) (((-112) $ |#1|) 191) (((-112) $ |#2|) 190)) (-3431 (($) 143 (|has| (-407 |#2|) (-349)) CONST)) (-2083 (($ (-917)) 89 (|has| (-407 |#2|) (-368)))) (-1410 (((-3 |#2| "failed")) 185)) (-4052 (((-1114) $) 11)) (-3827 (((-767)) 219)) (-2249 (($) 160)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 102 (|has| (-407 |#2|) (-363)))) (-2123 (($ (-641 $)) 99 (|has| (-407 |#2|) (-363))) (($ $ $) 98 (|has| (-407 |#2|) (-363)))) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) 146 (|has| (-407 |#2|) (-349)))) (-3688 (((-418 $) $) 113 (|has| (-407 |#2|) (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 111 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 110 (|has| (-407 |#2|) (-363)))) (-2998 (((-3 $ "failed") $ $) 93 (|has| (-407 |#2|) (-363)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 104 (|has| (-407 |#2|) (-363)))) (-1700 (((-767) $) 106 (|has| (-407 |#2|) (-363)))) (-4366 ((|#1| $ |#1| |#1|) 187)) (-2542 (((-3 |#2| "failed")) 186)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 107 (|has| (-407 |#2|) (-363)))) (-1330 (((-407 |#2|) (-1259 $)) 49) (((-407 |#2|)) 62)) (-4255 (((-767) $) 151 (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) 139 (|has| (-407 |#2|) (-349)))) (-3254 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 123 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 122 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 189) (($ $ (-641 (-1170)) (-641 (-767))) 130 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2358 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-767)) 131 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2358 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 132 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2358 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 133 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2358 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 135 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2358 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 137 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2358 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1942 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) 154 (|has| (-407 |#2|) (-363)))) (-3721 ((|#3|) 159)) (-3826 (($) 148 (|has| (-407 |#2|) (-349)))) (-4225 (((-1259 (-407 |#2|)) $ (-1259 $)) 52) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) 51) (((-1259 (-407 |#2|)) $) 68) (((-685 (-407 |#2|)) (-1259 $)) 67)) (-1311 (((-1259 (-407 |#2|)) $) 65) (($ (-1259 (-407 |#2|))) 64) ((|#3| $) 171) (($ |#3|) 157)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 145 (|has| (-407 |#2|) (-349)))) (-2073 (((-1259 $) (-1259 $)) 203)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ (-407 |#2|)) 39) (($ (-407 (-564))) 87 (-2807 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1034 (-407 (-564)))))) (($ $) 92 (|has| (-407 |#2|) (-363)))) (-2420 (($ $) 144 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 45 (|has| (-407 |#2|) (-145)))) (-2134 ((|#3| $) 47)) (-3719 (((-767)) 29 T CONST)) (-3724 (((-112)) 216)) (-2399 (((-112) |#1|) 215) (((-112) |#2|) 214)) (-1860 (((-112) $ $) 9)) (-2047 (((-1259 $)) 69)) (-2119 (((-112) $ $) 96 (|has| (-407 |#2|) (-363)))) (-1399 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-3790 (((-112)) 218)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 125 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 124 (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-767))) 126 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2358 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-767)) 127 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2358 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 128 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2358 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 129 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) (-2358 (|has| (-407 |#2|) (-896 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 134 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2358 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 136 (-2807 (-2358 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2358 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 121 (|has| (-407 |#2|) (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 118 (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 |#2|)) 41) (($ (-407 |#2|) $) 40) (($ (-407 (-564)) $) 120 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) 119 (|has| (-407 |#2|) (-363)))))
-(((-342 |#1| |#2| |#3|) (-140) (-1213) (-1235 |t#1|) (-1235 (-407 |t#2|))) (T -342))
-((-1975 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-767)))) (-3827 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-767)))) (-3790 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2549 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3724 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2399 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2399 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-2703 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2408 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2408 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-2872 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3988 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3988 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-2457 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2002 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2073 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-2334 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-4148 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-3029 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-1878 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-3474 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-3851 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-3131 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5))))) (-2179 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2179 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-2571 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-4366 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-2542 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-1410 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-1399 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-641 (-948 *4))))) (-1932 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3))))))
-(-13 (-720 (-407 |t#2|) |t#3|) (-10 -8 (-15 -1975 ((-767))) (-15 -3827 ((-767))) (-15 -3790 ((-112))) (-15 -2549 ((-112) |t#1| |t#1|)) (-15 -3724 ((-112))) (-15 -2399 ((-112) |t#1|)) (-15 -2399 ((-112) |t#2|)) (-15 -2703 ((-112))) (-15 -2408 ((-112) |t#1|)) (-15 -2408 ((-112) |t#2|)) (-15 -2872 ((-112))) (-15 -3988 ((-112) |t#1|)) (-15 -3988 ((-112) |t#2|)) (-15 -2457 ((-1259 $))) (-15 -2002 ((-1259 $))) (-15 -1646 ((-112) $)) (-15 -2179 ((-112) $)) (-15 -2073 ((-1259 $) (-1259 $))) (-15 -2101 ((-1259 $) (-1259 $))) (-15 -3424 ((-1259 $) (-1259 $))) (-15 -2334 ((-685 (-407 |t#2|)))) (-15 -4148 ((-685 (-407 |t#2|)))) (-15 -3029 ((-685 (-407 |t#2|)))) (-15 -1878 ((-685 (-407 |t#2|)))) (-15 -2729 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3474 ($ (-1259 |t#2|) |t#2|)) (-15 -3851 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3131 ($ (-1259 |t#2|) |t#2|)) (-15 -2798 ((-2 (|:| |num| (-685 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2179 ((-112) $ |t#1|)) (-15 -2179 ((-112) $ |t#2|)) (-15 -3254 ($ $ (-1 |t#2| |t#2|))) (-15 -2571 ($ $)) (-15 -4366 (|t#1| $ |t#1| |t#1|)) (-15 -2542 ((-3 |t#2| "failed"))) (-15 -1410 ((-3 |t#2| "failed"))) (-15 -1399 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -1508 ((-641 (-948 |t#1|)) (-1170))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -1932 ((-641 (-641 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-614 #0#) -2807 (|has| (-407 |#2|) (-1034 (-407 (-564)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-614 #1#) . T) ((-614 (-564)) . T) ((-614 $) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-611 (-858)) . T) ((-172) . T) ((-612 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -2807 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -2807 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-556) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #0#) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #1#) . T) ((-644 $) . T) ((-637 #1#) . T) ((-637 (-564)) |has| (-407 |#2|) (-637 (-564))) ((-713 #0#) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-713 #1#) . T) ((-713 $) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-720 #1# |#3|) . T) ((-722) . T) ((-896 (-1170)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170)))) ((-916) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1034 (-407 (-564))) |has| (-407 |#2|) (-1034 (-407 (-564)))) ((-1034 #1#) . T) ((-1034 (-564)) |has| (-407 |#2|) (-1034 (-564))) ((-1051 #0#) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| (-407 |#2|) (-349)) ((-1213) -2807 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-906 |#1|) (-368)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-906 |#1|) "failed") $) NIL)) (-3120 (((-906 |#1|) $) NIL)) (-3474 (($ (-1259 (-906 |#1|))) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-906 |#1|) (-368)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) NIL (|has| (-906 |#1|) (-368)))) (-1436 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3456 (($ $ (-767)) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1339 (((-112) $) NIL)) (-3744 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-4112 (((-112) $) NIL)) (-2908 (($) NIL (|has| (-906 |#1|) (-368)))) (-3164 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2499 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1846 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 (-906 |#1|)) $) NIL) (((-1166 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3256 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2820 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-4372 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1166 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-3606 (($ $ (-1166 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-2083 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2695 (((-112) $) NIL)) (-4052 (((-1114) $) NIL)) (-2017 (((-954 (-1114))) NIL)) (-2249 (($) NIL (|has| (-906 |#1|) (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| (-906 |#1|) (-368)))) (-3688 (((-418 $) $) NIL)) (-1967 (((-829 (-917))) NIL) (((-917)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-4327 (((-134)) NIL)) (-3254 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1568 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3721 (((-1166 (-906 |#1|))) NIL)) (-3826 (($) NIL (|has| (-906 |#1|) (-368)))) (-1930 (($) NIL (|has| (-906 |#1|) (-368)))) (-4225 (((-1259 (-906 |#1|)) $) NIL) (((-685 (-906 |#1|)) (-1259 $)) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-906 |#1|) (-368)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-906 |#1|)) NIL)) (-2420 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-3037 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-4063 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL)))
-(((-343 |#1| |#2|) (-13 (-329 (-906 |#1|)) (-10 -7 (-15 -2017 ((-954 (-1114)))))) (-917) (-917)) (T -343))
-((-2017 (*1 *2) (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))))
-(-13 (-329 (-906 |#1|)) (-10 -7 (-15 -2017 ((-954 (-1114))))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 59)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) 57 (|has| |#1| (-368)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) NIL (|has| |#1| (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) 145)) (-3120 ((|#1| $) 116)) (-3474 (($ (-1259 |#1|)) 133)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) 124 (|has| |#1| (-368)))) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) 127 (|has| |#1| (-368)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) 163 (|has| |#1| (-368)))) (-1436 (((-112) $) 67 (|has| |#1| (-368)))) (-3456 (($ $ (-767)) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1339 (((-112) $) NIL)) (-3744 (((-917) $) 61 (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4112 (((-112) $) 63)) (-2908 (($) 165 (|has| |#1| (-368)))) (-3164 (((-112) $) NIL (|has| |#1| (-368)))) (-2499 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 |#1|) $) 120) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3256 (((-917) $) 174 (|has| |#1| (-368)))) (-2820 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-4372 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3606 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 181)) (-3431 (($) NIL (|has| |#1| (-368)) CONST)) (-2083 (($ (-917)) 99 (|has| |#1| (-368)))) (-2695 (((-112) $) 150)) (-4052 (((-1114) $) NIL)) (-2017 (((-954 (-1114))) 58)) (-2249 (($) 161 (|has| |#1| (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) 122 (|has| |#1| (-368)))) (-3688 (((-418 $) $) NIL)) (-1967 (((-829 (-917))) 93) (((-917)) 94)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-767) $) 164 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 157 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4327 (((-134)) NIL)) (-3254 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1568 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3721 (((-1166 |#1|)) 125)) (-3826 (($) 162 (|has| |#1| (-368)))) (-1930 (($) 170 (|has| |#1| (-368)))) (-4225 (((-1259 |#1|) $) 78) (((-685 |#1|) (-1259 $)) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2423 (((-858) $) 177) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-2420 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3719 (((-767)) 158 T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) 147) (((-1259 $) (-917)) 101)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) 68 T CONST)) (-2417 (($) 106 T CONST)) (-3037 (($ $) 110 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4063 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2974 (((-112) $ $) 66)) (-3092 (($ $ $) 179) (($ $ |#1|) 180)) (-3082 (($ $) 160) (($ $ $) NIL)) (-3070 (($ $ $) 87)) (** (($ $ (-917)) 183) (($ $ (-767)) 184) (($ $ (-564)) 182)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 105) (($ $ $) 104) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 178)))
-(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2017 ((-954 (-1114)))))) (-349) (-1166 |#1|)) (T -344))
-((-2017 (*1 *2) (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1166 *3)))))
-(-13 (-329 |#1|) (-10 -7 (-15 -2017 ((-954 (-1114))))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| |#1| (-368)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) NIL (|has| |#1| (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-3474 (($ (-1259 |#1|)) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| |#1| (-368)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) NIL (|has| |#1| (-368)))) (-1436 (((-112) $) NIL (|has| |#1| (-368)))) (-3456 (($ $ (-767)) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1339 (((-112) $) NIL)) (-3744 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4112 (((-112) $) NIL)) (-2908 (($) NIL (|has| |#1| (-368)))) (-3164 (((-112) $) NIL (|has| |#1| (-368)))) (-2499 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3256 (((-917) $) NIL (|has| |#1| (-368)))) (-2820 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-4372 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3606 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| |#1| (-368)) CONST)) (-2083 (($ (-917)) NIL (|has| |#1| (-368)))) (-2695 (((-112) $) NIL)) (-4052 (((-1114) $) NIL)) (-2017 (((-954 (-1114))) NIL)) (-2249 (($) NIL (|has| |#1| (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| |#1| (-368)))) (-3688 (((-418 $) $) NIL)) (-1967 (((-829 (-917))) NIL) (((-917)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4327 (((-134)) NIL)) (-3254 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1568 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3721 (((-1166 |#1|)) NIL)) (-3826 (($) NIL (|has| |#1| (-368)))) (-1930 (($) NIL (|has| |#1| (-368)))) (-4225 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2420 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-3037 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4063 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2017 ((-954 (-1114)))))) (-349) (-917)) (T -345))
-((-2017 (*1 *2) (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))))
-(-13 (-329 |#1|) (-10 -7 (-15 -2017 ((-954 (-1114))))))
-((-3920 (((-767) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114)))))) 61)) (-3365 (((-954 (-1114)) (-1166 |#1|)) 113)) (-2239 (((-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))) (-1166 |#1|)) 105)) (-3671 (((-685 |#1|) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114)))))) 115)) (-4083 (((-3 (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))) "failed") (-917)) 13)) (-2504 (((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114)))))) (-917)) 18)))
-(((-346 |#1|) (-10 -7 (-15 -3365 ((-954 (-1114)) (-1166 |#1|))) (-15 -2239 ((-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))) (-1166 |#1|))) (-15 -3671 ((-685 |#1|) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))))) (-15 -3920 ((-767) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))))) (-15 -4083 ((-3 (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))) "failed") (-917))) (-15 -2504 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114)))))) (-917)))) (-349)) (T -346))
-((-2504 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-3 (-1166 *4) (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-4083 (*1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-5 *2 (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-767)) (-5 *1 (-346 *4)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114)))))) (-5 *1 (-346 *4)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-954 (-1114))) (-5 *1 (-346 *4)))))
-(-10 -7 (-15 -3365 ((-954 (-1114)) (-1166 |#1|))) (-15 -2239 ((-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))) (-1166 |#1|))) (-15 -3671 ((-685 |#1|) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))))) (-15 -3920 ((-767) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))))) (-15 -4083 ((-3 (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))) "failed") (-917))) (-15 -2504 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114)))))) (-917))))
-((-2423 ((|#1| |#3|) 105) ((|#3| |#1|) 88)))
-(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -2423 (|#3| |#1|)) (-15 -2423 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347))
-((-2423 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4)))))
-(-10 -7 (-15 -2423 (|#3| |#1|)) (-15 -2423 (|#1| |#3|)))
-((-1436 (((-112) $) 60)) (-3744 (((-829 (-917)) $) 23) (((-917) $) 66)) (-1846 (((-3 $ "failed") $) 18)) (-3431 (($) 9)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 116)) (-4255 (((-3 (-767) "failed") $ $) 94) (((-767) $) 81)) (-3254 (($ $ (-767)) NIL) (($ $) 8)) (-3826 (($) 53)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 38)) (-2420 (((-3 $ "failed") $) 45) (($ $) 44)))
-(((-348 |#1|) (-10 -8 (-15 -3744 ((-917) |#1|)) (-15 -4255 ((-767) |#1|)) (-15 -1436 ((-112) |#1|)) (-15 -3826 (|#1|)) (-15 -3895 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2420 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -3431 (|#1|)) (-15 -1846 ((-3 |#1| "failed") |#1|)) (-15 -4255 ((-3 (-767) "failed") |#1| |#1|)) (-15 -3744 ((-829 (-917)) |#1|)) (-15 -2420 ((-3 |#1| "failed") |#1|)) (-15 -2805 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-349)) (T -348))
-NIL
-(-10 -8 (-15 -3744 ((-917) |#1|)) (-15 -4255 ((-767) |#1|)) (-15 -1436 ((-112) |#1|)) (-15 -3826 (|#1|)) (-15 -3895 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2420 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -3431 (|#1|)) (-15 -1846 ((-3 |#1| "failed") |#1|)) (-15 -4255 ((-3 (-767) "failed") |#1| |#1|)) (-15 -3744 ((-829 (-917)) |#1|)) (-15 -2420 ((-3 |#1| "failed") |#1|)) (-15 -2805 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4373 (((-1182 (-917) (-767)) (-564)) 95)) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 75)) (-2753 (((-418 $) $) 74)) (-3162 (((-112) $ $) 61)) (-2622 (((-767)) 105)) (-4080 (($) 18 T CONST)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) 89)) (-2946 (($ $ $) 57)) (-3293 (((-3 $ "failed") $) 34)) (-2534 (($) 108)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-1471 (($) 93)) (-1436 (((-112) $) 92)) (-3456 (($ $) 81) (($ $ (-767)) 80)) (-1339 (((-112) $) 73)) (-3744 (((-829 (-917)) $) 83) (((-917) $) 90)) (-4112 (((-112) $) 32)) (-1846 (((-3 $ "failed") $) 104)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-3256 (((-917) $) 107)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 72)) (-3431 (($) 103 T CONST)) (-2083 (($ (-917)) 106)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) 96)) (-3688 (((-418 $) $) 76)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-1700 (((-767) $) 60)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-4255 (((-3 (-767) "failed") $ $) 82) (((-767) $) 91)) (-3254 (($ $ (-767)) 101) (($ $) 99)) (-3826 (($) 94)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 97)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-407 (-564))) 68)) (-2420 (((-3 $ "failed") $) 84) (($ $) 98)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-767)) 102) (($ $) 100)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 67)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 70) (($ (-407 (-564)) $) 69)))
+((-4263 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1262 *1)) (-4 *1 (-329 *3)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-919)) (-4 *4 (-363)) (-5 *2 (-1262 *1)) (-4 *1 (-329 *4)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1262 *3)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-687 *4)))) (-4221 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1169 *3)))) (-3280 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1169 *3)))) (-1524 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-919)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-919)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-919)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1169 *1)) (-4 *1 (-329 *4)))) (-2218 (*1 *1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-1627 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3289 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-2185 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-4157 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1169 *3)))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1169 *3)))) (-2891 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1169 *3)))))
+(-13 (-1281 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -4263 ((-1262 $))) (-15 -4263 ((-1262 $) (-919))) (-15 -2067 ((-1262 |t#1|) $)) (-15 -2067 ((-687 |t#1|) (-1262 $))) (-15 -4221 ($ (-1262 |t#1|))) (-15 -3947 ((-1169 |t#1|) $)) (-15 -3280 ((-1169 |t#1|))) (-15 -1524 ((-919))) (-15 -2775 ((-919) $)) (-15 -2218 (|t#1| $)) (-15 -3815 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -3947 ((-1169 $) $ (-919))) (-15 -2218 ($ $ (-919))) (-15 -3815 ($ $ (-919))) (-15 -1627 ($)) (-15 -3289 ($)) (-15 -3563 ((-112) $)) (-15 -2185 ($)) (-15 -2393 ($ $ (-1169 |t#1|))) (-15 -4157 ((-1169 |t#1|) $)) (-15 -2891 ((-1169 |t#1|) $)) (-15 -2891 ((-3 (-1169 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2706 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1281 |#1|) . T) ((-363) . T) ((-402) -2706 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 |#1|) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1036 |#1|) . T) ((-1049 #0#) . T) ((-1049 |#1|) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| |#1| (-368)) ((-1216) . T) ((-1269 |#1|) . T))
+((-2907 (((-112) $ $) NIL)) (-2411 (($ (-1172) $) 104)) (-1787 (($) 93)) (-3528 (((-1117) (-1117)) 9)) (-2132 (($) 94)) (-4190 (($) 108) (($ (-316 (-697))) 116) (($ (-316 (-699))) 112) (($ (-316 (-692))) 120) (($ (-316 (-379))) 127) (($ (-316 (-564))) 123) (($ (-316 (-169 (-379)))) 131)) (-3075 (($ (-1172) $) 105)) (-3068 (($ (-642 (-860))) 95)) (-2652 (((-1267) $) 91)) (-3423 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-4106 (($ (-1117)) 60)) (-3743 (((-1101) $) 32)) (-2760 (($ (-1089 (-950 (-564))) $) 101) (($ (-1089 (-950 (-564))) (-950 (-564)) $) 102)) (-2395 (($ (-1117)) 103)) (-1935 (($ (-1172) $) 133) (($ (-1172) $ $) 134)) (-3248 (($ (-1173) (-642 (-1173))) 92)) (-2190 (($ (-1155)) 98) (($ (-642 (-1155))) 96)) (-2327 (((-860) $) 136)) (-3146 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1173)) (|:| |arrayIndex| (-642 (-950 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3284 (-860)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1173)) (|:| |rand| (-860)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1172)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3719 (-112)) (|:| -2085 (-2 (|:| |ints2Floats?| (-112)) (|:| -3284 (-860)))))) (|:| |blockBranch| (-642 $)) (|:| |commentBranch| (-642 (-1155))) (|:| |callBranch| (-1155)) (|:| |forBranch| (-2 (|:| -3894 (-1089 (-950 (-564)))) (|:| |span| (-950 (-564))) (|:| -2474 $))) (|:| |labelBranch| (-1117)) (|:| |loopBranch| (-2 (|:| |switch| (-1172)) (|:| -2474 $))) (|:| |commonBranch| (-2 (|:| -2461 (-1173)) (|:| |contents| (-642 (-1173))))) (|:| |printBranch| (-642 (-860)))) $) 51)) (-1992 (($ (-1155)) 205)) (-4380 (($ (-642 $)) 132)) (-1648 (((-112) $ $) NIL)) (-3525 (($ (-1173) (-1155)) 138) (($ (-1173) (-316 (-699))) 178) (($ (-1173) (-316 (-697))) 179) (($ (-1173) (-316 (-692))) 180) (($ (-1173) (-687 (-699))) 141) (($ (-1173) (-687 (-697))) 144) (($ (-1173) (-687 (-692))) 147) (($ (-1173) (-1262 (-699))) 150) (($ (-1173) (-1262 (-697))) 153) (($ (-1173) (-1262 (-692))) 156) (($ (-1173) (-687 (-316 (-699)))) 159) (($ (-1173) (-687 (-316 (-697)))) 162) (($ (-1173) (-687 (-316 (-692)))) 165) (($ (-1173) (-1262 (-316 (-699)))) 168) (($ (-1173) (-1262 (-316 (-697)))) 171) (($ (-1173) (-1262 (-316 (-692)))) 174) (($ (-1173) (-642 (-950 (-564))) (-316 (-699))) 175) (($ (-1173) (-642 (-950 (-564))) (-316 (-697))) 176) (($ (-1173) (-642 (-950 (-564))) (-316 (-692))) 177) (($ (-1173) (-316 (-564))) 202) (($ (-1173) (-316 (-379))) 203) (($ (-1173) (-316 (-169 (-379)))) 204) (($ (-1173) (-687 (-316 (-564)))) 183) (($ (-1173) (-687 (-316 (-379)))) 186) (($ (-1173) (-687 (-316 (-169 (-379))))) 189) (($ (-1173) (-1262 (-316 (-564)))) 192) (($ (-1173) (-1262 (-316 (-379)))) 195) (($ (-1173) (-1262 (-316 (-169 (-379))))) 198) (($ (-1173) (-642 (-950 (-564))) (-316 (-564))) 199) (($ (-1173) (-642 (-950 (-564))) (-316 (-379))) 200) (($ (-1173) (-642 (-950 (-564))) (-316 (-169 (-379)))) 201)) (-2872 (((-112) $ $) NIL)))
+(((-330) (-13 (-1097) (-10 -8 (-15 -2760 ($ (-1089 (-950 (-564))) $)) (-15 -2760 ($ (-1089 (-950 (-564))) (-950 (-564)) $)) (-15 -2411 ($ (-1172) $)) (-15 -3075 ($ (-1172) $)) (-15 -4106 ($ (-1117))) (-15 -2395 ($ (-1117))) (-15 -2190 ($ (-1155))) (-15 -2190 ($ (-642 (-1155)))) (-15 -1992 ($ (-1155))) (-15 -4190 ($)) (-15 -4190 ($ (-316 (-697)))) (-15 -4190 ($ (-316 (-699)))) (-15 -4190 ($ (-316 (-692)))) (-15 -4190 ($ (-316 (-379)))) (-15 -4190 ($ (-316 (-564)))) (-15 -4190 ($ (-316 (-169 (-379))))) (-15 -1935 ($ (-1172) $)) (-15 -1935 ($ (-1172) $ $)) (-15 -3525 ($ (-1173) (-1155))) (-15 -3525 ($ (-1173) (-316 (-699)))) (-15 -3525 ($ (-1173) (-316 (-697)))) (-15 -3525 ($ (-1173) (-316 (-692)))) (-15 -3525 ($ (-1173) (-687 (-699)))) (-15 -3525 ($ (-1173) (-687 (-697)))) (-15 -3525 ($ (-1173) (-687 (-692)))) (-15 -3525 ($ (-1173) (-1262 (-699)))) (-15 -3525 ($ (-1173) (-1262 (-697)))) (-15 -3525 ($ (-1173) (-1262 (-692)))) (-15 -3525 ($ (-1173) (-687 (-316 (-699))))) (-15 -3525 ($ (-1173) (-687 (-316 (-697))))) (-15 -3525 ($ (-1173) (-687 (-316 (-692))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-699))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-697))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-692))))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-699)))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-697)))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-692)))) (-15 -3525 ($ (-1173) (-316 (-564)))) (-15 -3525 ($ (-1173) (-316 (-379)))) (-15 -3525 ($ (-1173) (-316 (-169 (-379))))) (-15 -3525 ($ (-1173) (-687 (-316 (-564))))) (-15 -3525 ($ (-1173) (-687 (-316 (-379))))) (-15 -3525 ($ (-1173) (-687 (-316 (-169 (-379)))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-564))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-379))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-169 (-379)))))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-564)))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-379)))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-169 (-379))))) (-15 -4380 ($ (-642 $))) (-15 -1787 ($)) (-15 -2132 ($)) (-15 -3068 ($ (-642 (-860)))) (-15 -3248 ($ (-1173) (-642 (-1173)))) (-15 -3423 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3146 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1173)) (|:| |arrayIndex| (-642 (-950 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3284 (-860)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1173)) (|:| |rand| (-860)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1172)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3719 (-112)) (|:| -2085 (-2 (|:| |ints2Floats?| (-112)) (|:| -3284 (-860)))))) (|:| |blockBranch| (-642 $)) (|:| |commentBranch| (-642 (-1155))) (|:| |callBranch| (-1155)) (|:| |forBranch| (-2 (|:| -3894 (-1089 (-950 (-564)))) (|:| |span| (-950 (-564))) (|:| -2474 $))) (|:| |labelBranch| (-1117)) (|:| |loopBranch| (-2 (|:| |switch| (-1172)) (|:| -2474 $))) (|:| |commonBranch| (-2 (|:| -2461 (-1173)) (|:| |contents| (-642 (-1173))))) (|:| |printBranch| (-642 (-860)))) $)) (-15 -2652 ((-1267) $)) (-15 -3743 ((-1101) $)) (-15 -3528 ((-1117) (-1117)))))) (T -330))
+((-2760 (*1 *1 *2 *1) (-12 (-5 *2 (-1089 (-950 (-564)))) (-5 *1 (-330)))) (-2760 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1089 (-950 (-564)))) (-5 *3 (-950 (-564))) (-5 *1 (-330)))) (-2411 (*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))) (-3075 (*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))) (-4106 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330)))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-330)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-330)))) (-1992 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-330)))) (-4190 (*1 *1) (-5 *1 (-330))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-316 (-699))) (-5 *1 (-330)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-316 (-692))) (-5 *1 (-330)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-1935 (*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))) (-1935 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1155)) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-699))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-692))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-699))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-697))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-692))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-699))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-697))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-692))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-699)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-697)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-692)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-699)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-697)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-692)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-699))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-697))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-692))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-564)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-379)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-564)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-379)))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-564))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-3525 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-4380 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-5 *1 (-330)))) (-1787 (*1 *1) (-5 *1 (-330))) (-2132 (*1 *1) (-5 *1 (-330))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-330)))) (-3248 (*1 *1 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1173)) (-5 *1 (-330)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1173)) (|:| |arrayIndex| (-642 (-950 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3284 (-860)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1173)) (|:| |rand| (-860)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1172)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -3719 (-112)) (|:| -2085 (-2 (|:| |ints2Floats?| (-112)) (|:| -3284 (-860)))))) (|:| |blockBranch| (-642 (-330))) (|:| |commentBranch| (-642 (-1155))) (|:| |callBranch| (-1155)) (|:| |forBranch| (-2 (|:| -3894 (-1089 (-950 (-564)))) (|:| |span| (-950 (-564))) (|:| -2474 (-330)))) (|:| |labelBranch| (-1117)) (|:| |loopBranch| (-2 (|:| |switch| (-1172)) (|:| -2474 (-330)))) (|:| |commonBranch| (-2 (|:| -2461 (-1173)) (|:| |contents| (-642 (-1173))))) (|:| |printBranch| (-642 (-860))))) (-5 *1 (-330)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-330)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-330)))) (-3528 (*1 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330)))))
+(-13 (-1097) (-10 -8 (-15 -2760 ($ (-1089 (-950 (-564))) $)) (-15 -2760 ($ (-1089 (-950 (-564))) (-950 (-564)) $)) (-15 -2411 ($ (-1172) $)) (-15 -3075 ($ (-1172) $)) (-15 -4106 ($ (-1117))) (-15 -2395 ($ (-1117))) (-15 -2190 ($ (-1155))) (-15 -2190 ($ (-642 (-1155)))) (-15 -1992 ($ (-1155))) (-15 -4190 ($)) (-15 -4190 ($ (-316 (-697)))) (-15 -4190 ($ (-316 (-699)))) (-15 -4190 ($ (-316 (-692)))) (-15 -4190 ($ (-316 (-379)))) (-15 -4190 ($ (-316 (-564)))) (-15 -4190 ($ (-316 (-169 (-379))))) (-15 -1935 ($ (-1172) $)) (-15 -1935 ($ (-1172) $ $)) (-15 -3525 ($ (-1173) (-1155))) (-15 -3525 ($ (-1173) (-316 (-699)))) (-15 -3525 ($ (-1173) (-316 (-697)))) (-15 -3525 ($ (-1173) (-316 (-692)))) (-15 -3525 ($ (-1173) (-687 (-699)))) (-15 -3525 ($ (-1173) (-687 (-697)))) (-15 -3525 ($ (-1173) (-687 (-692)))) (-15 -3525 ($ (-1173) (-1262 (-699)))) (-15 -3525 ($ (-1173) (-1262 (-697)))) (-15 -3525 ($ (-1173) (-1262 (-692)))) (-15 -3525 ($ (-1173) (-687 (-316 (-699))))) (-15 -3525 ($ (-1173) (-687 (-316 (-697))))) (-15 -3525 ($ (-1173) (-687 (-316 (-692))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-699))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-697))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-692))))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-699)))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-697)))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-692)))) (-15 -3525 ($ (-1173) (-316 (-564)))) (-15 -3525 ($ (-1173) (-316 (-379)))) (-15 -3525 ($ (-1173) (-316 (-169 (-379))))) (-15 -3525 ($ (-1173) (-687 (-316 (-564))))) (-15 -3525 ($ (-1173) (-687 (-316 (-379))))) (-15 -3525 ($ (-1173) (-687 (-316 (-169 (-379)))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-564))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-379))))) (-15 -3525 ($ (-1173) (-1262 (-316 (-169 (-379)))))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-564)))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-379)))) (-15 -3525 ($ (-1173) (-642 (-950 (-564))) (-316 (-169 (-379))))) (-15 -4380 ($ (-642 $))) (-15 -1787 ($)) (-15 -2132 ($)) (-15 -3068 ($ (-642 (-860)))) (-15 -3248 ($ (-1173) (-642 (-1173)))) (-15 -3423 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3146 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1173)) (|:| |arrayIndex| (-642 (-950 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3284 (-860)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1173)) (|:| |rand| (-860)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1172)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3719 (-112)) (|:| -2085 (-2 (|:| |ints2Floats?| (-112)) (|:| -3284 (-860)))))) (|:| |blockBranch| (-642 $)) (|:| |commentBranch| (-642 (-1155))) (|:| |callBranch| (-1155)) (|:| |forBranch| (-2 (|:| -3894 (-1089 (-950 (-564)))) (|:| |span| (-950 (-564))) (|:| -2474 $))) (|:| |labelBranch| (-1117)) (|:| |loopBranch| (-2 (|:| |switch| (-1172)) (|:| -2474 $))) (|:| |commonBranch| (-2 (|:| -2461 (-1173)) (|:| |contents| (-642 (-1173))))) (|:| |printBranch| (-642 (-860)))) $)) (-15 -2652 ((-1267) $)) (-15 -3743 ((-1101) $)) (-15 -3528 ((-1117) (-1117)))))
+((-2907 (((-112) $ $) NIL)) (-3062 (((-112) $) 13)) (-3679 (($ |#1|) 10)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3693 (($ |#1|) 12)) (-2327 (((-860) $) 19)) (-1648 (((-112) $ $) NIL)) (-3417 ((|#1| $) 14)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 21)))
+(((-331 |#1|) (-13 (-848) (-10 -8 (-15 -3679 ($ |#1|)) (-15 -3693 ($ |#1|)) (-15 -3062 ((-112) $)) (-15 -3417 (|#1| $)))) (-848)) (T -331))
+((-3679 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848)))) (-3693 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-848)))) (-3417 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848)))))
+(-13 (-848) (-10 -8 (-15 -3679 ($ |#1|)) (-15 -3693 ($ |#1|)) (-15 -3062 ((-112) $)) (-15 -3417 (|#1| $))))
+((-3319 (((-330) (-1173) (-950 (-564))) 23)) (-4226 (((-330) (-1173) (-950 (-564))) 27)) (-2720 (((-330) (-1173) (-1089 (-950 (-564))) (-1089 (-950 (-564)))) 26) (((-330) (-1173) (-950 (-564)) (-950 (-564))) 24)) (-3946 (((-330) (-1173) (-950 (-564))) 31)))
+(((-332) (-10 -7 (-15 -3319 ((-330) (-1173) (-950 (-564)))) (-15 -2720 ((-330) (-1173) (-950 (-564)) (-950 (-564)))) (-15 -2720 ((-330) (-1173) (-1089 (-950 (-564))) (-1089 (-950 (-564))))) (-15 -4226 ((-330) (-1173) (-950 (-564)))) (-15 -3946 ((-330) (-1173) (-950 (-564)))))) (T -332))
+((-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-4226 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2720 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-1089 (-950 (-564)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2720 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))))
+(-10 -7 (-15 -3319 ((-330) (-1173) (-950 (-564)))) (-15 -2720 ((-330) (-1173) (-950 (-564)) (-950 (-564)))) (-15 -2720 ((-330) (-1173) (-1089 (-950 (-564))) (-1089 (-950 (-564))))) (-15 -4226 ((-330) (-1173) (-950 (-564)))) (-15 -3946 ((-330) (-1173) (-950 (-564)))))
+((-4358 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33)))
+(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4358 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1238 |#5|) (-1238 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1238 *9)) (-4 *11 (-1238 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11)))))
+(-10 -7 (-15 -4358 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|))))
+((-3595 (((-112) $) 14)))
+(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3595 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1238 |#2|) (-1238 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334))
+NIL
+(-10 -8 (-15 -3595 ((-112) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-1320 (($ $) 29)) (-3595 (((-112) $) 28)) (-3315 (((-1155) $) 10)) (-3279 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 35)) (-4033 (((-1117) $) 11)) (-2185 (((-3 |#4| "failed") $) 27)) (-2258 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-564)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3412 (((-2 (|:| -4199 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24)))
+(((-335 |#1| |#2| |#3| |#4|) (-140) (-363) (-1238 |t#1|) (-1238 (-407 |t#2|)) (-342 |t#1| |t#2| |t#3|)) (T -335))
+((-3279 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-2258 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-2258 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1238 *2)) (-4 *4 (-1238 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-2258 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1238 *2)) (-4 *5 (-1238 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -4199 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-1320 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1238 *2)) (-4 *4 (-1238 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-2185 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-2258 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -3279 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -2258 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -2258 ($ |t#4|)) (-15 -2258 ($ |t#1| |t#1|)) (-15 -2258 ($ |t#1| |t#1| (-564))) (-15 -3412 ((-2 (|:| -4199 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1320 ($ $)) (-15 -3595 ((-112) $)) (-15 -2185 ((-3 |t#4| "failed") $)) (-15 -2258 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-1320 (($ $) 33)) (-3595 (((-112) $) NIL)) (-3315 (((-1155) $) NIL)) (-2769 (((-1262 |#4|) $) 135)) (-3279 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-4033 (((-1117) $) NIL)) (-2185 (((-3 |#4| "failed") $) 36)) (-3488 (((-1262 |#4|) $) 127)) (-2258 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-564)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3412 (((-2 (|:| -4199 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2327 (((-860) $) 17)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 14 T CONST)) (-2872 (((-112) $ $) 20)) (-2987 (($ $) 27) (($ $ $) NIL)) (-2974 (($ $ $) 25)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 23)))
+(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3488 ((-1262 |#4|) $)) (-15 -2769 ((-1262 |#4|) $)))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336))
+((-3488 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-1262 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-2769 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-1262 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))))
+(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3488 ((-1262 |#4|) $)) (-15 -2769 ((-1262 |#4|) $))))
+((-3215 (($ $ (-1173) |#2|) NIL) (($ $ (-642 (-1173)) (-642 |#2|)) 20) (($ $ (-642 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-642 |#2|) (-642 |#2|)) NIL)) (-4368 (($ $ |#2|) 11)))
+(((-337 |#1| |#2|) (-10 -8 (-15 -4368 (|#1| |#1| |#2|)) (-15 -3215 (|#1| |#1| (-642 |#2|) (-642 |#2|))) (-15 -3215 (|#1| |#1| |#2| |#2|)) (-15 -3215 (|#1| |#1| (-294 |#2|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 |#2|))) (-15 -3215 (|#1| |#1| (-1173) |#2|))) (-338 |#2|) (-1097)) (T -337))
+NIL
+(-10 -8 (-15 -4368 (|#1| |#1| |#2|)) (-15 -3215 (|#1| |#1| (-642 |#2|) (-642 |#2|))) (-15 -3215 (|#1| |#1| |#2| |#2|)) (-15 -3215 (|#1| |#1| (-294 |#2|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 |#2|))) (-15 -3215 (|#1| |#1| (-1173) |#2|)))
+((-4358 (($ (-1 |#1| |#1|) $) 6)) (-3215 (($ $ (-1173) |#1|) 17 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 16 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-642 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-642 |#1|) (-642 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-4368 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|)))))
+(((-338 |#1|) (-140) (-1097)) (T -338))
+((-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1097)))))
+(-13 (-10 -8 (-15 -4358 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1173) |t#1|)) (-6 (-514 (-1173) |t#1|)) |%noBranch|)))
+(((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-514 (-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-1173)) $) NIL)) (-3746 (((-112)) 99) (((-112) (-112)) 100)) (-3530 (((-642 (-610 $)) $) NIL)) (-3851 (($ $) NIL)) (-3704 (($ $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2458 (($ $ (-294 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL)) (-3655 (($ $) NIL)) (-3827 (($ $) NIL)) (-3679 (($ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-610 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 79) (((-3 $ "failed") (-1173)) 105) (((-3 $ "failed") (-316 (-564))) 67 (|has| |#3| (-1036 (-564)))) (((-3 $ "failed") (-407 (-950 (-564)))) 73 (|has| |#3| (-1036 (-564)))) (((-3 $ "failed") (-950 (-564))) 68 (|has| |#3| (-1036 (-564)))) (((-3 $ "failed") (-316 (-379))) 97 (|has| |#3| (-1036 (-379)))) (((-3 $ "failed") (-407 (-950 (-379)))) 91 (|has| |#3| (-1036 (-379)))) (((-3 $ "failed") (-950 (-379))) 86 (|has| |#3| (-1036 (-379))))) (-3027 (((-610 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 80) (($ (-1173)) 106) (($ (-316 (-564))) 69 (|has| |#3| (-1036 (-564)))) (($ (-407 (-950 (-564)))) 74 (|has| |#3| (-1036 (-564)))) (($ (-950 (-564))) 70 (|has| |#3| (-1036 (-564)))) (($ (-316 (-379))) 98 (|has| |#3| (-1036 (-379)))) (($ (-407 (-950 (-379)))) 92 (|has| |#3| (-1036 (-379)))) (($ (-950 (-379))) 88 (|has| |#3| (-1036 (-379))))) (-3104 (((-3 $ "failed") $) NIL)) (-4265 (($) 10)) (-1301 (($ $) NIL) (($ (-642 $)) NIL)) (-3332 (((-642 (-114)) $) NIL)) (-3307 (((-114) (-114)) NIL)) (-3953 (((-112) $) NIL)) (-3076 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-2666 (((-1169 $) (-610 $)) NIL (|has| $ (-1047)))) (-4358 (($ (-1 $ $) (-610 $)) NIL)) (-2953 (((-3 (-610 $) "failed") $) NIL)) (-2195 (($ $) 102)) (-3612 (($ $) NIL)) (-3315 (((-1155) $) NIL)) (-3603 (((-642 (-610 $)) $) NIL)) (-4305 (($ (-114) $) 101) (($ (-114) (-642 $)) NIL)) (-1523 (((-112) $ (-114)) NIL) (((-112) $ (-1173)) NIL)) (-1295 (((-769) $) NIL)) (-4033 (((-1117) $) NIL)) (-2539 (((-112) $ $) NIL) (((-112) $ (-1173)) NIL)) (-1723 (($ $) NIL)) (-2519 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-3215 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-1173) (-1 $ (-642 $))) NIL) (($ $ (-1173) (-1 $ $)) NIL) (($ $ (-642 (-114)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-114) (-1 $ (-642 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4368 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-642 $)) NIL)) (-3238 (($ $) NIL) (($ $ $) NIL)) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL)) (-3280 (($ $) NIL (|has| $ (-1047)))) (-3839 (($ $) NIL)) (-3693 (($ $) NIL)) (-2327 (((-860) $) NIL) (($ (-610 $)) NIL) (($ |#3|) NIL) (($ (-564)) NIL) (((-316 |#3|) $) 104)) (-2756 (((-769)) NIL T CONST)) (-2181 (($ $) NIL) (($ (-642 $)) NIL)) (-2357 (((-112) (-114)) NIL)) (-1648 (((-112) $ $) NIL)) (-3776 (($ $) NIL)) (-3750 (($ $) NIL)) (-3763 (($ $) NIL)) (-1381 (($ $) NIL)) (-2312 (($) 103 T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $ $) NIL) (($ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL)))
+(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1036 |#3|) (-898 (-1173)) (-10 -8 (-15 -3027 ($ (-316 |#3|))) (-15 -4278 ((-3 $ "failed") (-316 |#3|))) (-15 -3027 ($ (-1173))) (-15 -4278 ((-3 $ "failed") (-1173))) (-15 -2327 ((-316 |#3|) $)) (IF (|has| |#3| (-1036 (-564))) (PROGN (-15 -3027 ($ (-316 (-564)))) (-15 -4278 ((-3 $ "failed") (-316 (-564)))) (-15 -3027 ($ (-407 (-950 (-564))))) (-15 -4278 ((-3 $ "failed") (-407 (-950 (-564))))) (-15 -3027 ($ (-950 (-564)))) (-15 -4278 ((-3 $ "failed") (-950 (-564))))) |%noBranch|) (IF (|has| |#3| (-1036 (-379))) (PROGN (-15 -3027 ($ (-316 (-379)))) (-15 -4278 ((-3 $ "failed") (-316 (-379)))) (-15 -3027 ($ (-407 (-950 (-379))))) (-15 -4278 ((-3 $ "failed") (-407 (-950 (-379))))) (-15 -3027 ($ (-950 (-379)))) (-15 -4278 ((-3 $ "failed") (-950 (-379))))) |%noBranch|) (-15 -1381 ($ $)) (-15 -3655 ($ $)) (-15 -1723 ($ $)) (-15 -3612 ($ $)) (-15 -2195 ($ $)) (-15 -3679 ($ $)) (-15 -3693 ($ $)) (-15 -3704 ($ $)) (-15 -3750 ($ $)) (-15 -3763 ($ $)) (-15 -3776 ($ $)) (-15 -3827 ($ $)) (-15 -3839 ($ $)) (-15 -3851 ($ $)) (-15 -4265 ($)) (-15 -3802 ((-642 (-1173)) $)) (-15 -3746 ((-112))) (-15 -3746 ((-112) (-112))))) (-642 (-1173)) (-642 (-1173)) (-387)) (T -339))
+((-3027 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 *2)) (-14 *4 (-642 *2)) (-4 *5 (-387)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 *2)) (-14 *4 (-642 *2)) (-4 *5 (-387)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-950 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-950 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-950 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-950 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-1381 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3655 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-1723 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3612 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-2195 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3679 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3693 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3704 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3750 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3763 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3776 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3827 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3839 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3851 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-4265 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173))) (-14 *3 (-642 (-1173))) (-4 *4 (-387)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-3746 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387)))))
+(-13 (-302) (-38 |#3|) (-1036 |#3|) (-898 (-1173)) (-10 -8 (-15 -3027 ($ (-316 |#3|))) (-15 -4278 ((-3 $ "failed") (-316 |#3|))) (-15 -3027 ($ (-1173))) (-15 -4278 ((-3 $ "failed") (-1173))) (-15 -2327 ((-316 |#3|) $)) (IF (|has| |#3| (-1036 (-564))) (PROGN (-15 -3027 ($ (-316 (-564)))) (-15 -4278 ((-3 $ "failed") (-316 (-564)))) (-15 -3027 ($ (-407 (-950 (-564))))) (-15 -4278 ((-3 $ "failed") (-407 (-950 (-564))))) (-15 -3027 ($ (-950 (-564)))) (-15 -4278 ((-3 $ "failed") (-950 (-564))))) |%noBranch|) (IF (|has| |#3| (-1036 (-379))) (PROGN (-15 -3027 ($ (-316 (-379)))) (-15 -4278 ((-3 $ "failed") (-316 (-379)))) (-15 -3027 ($ (-407 (-950 (-379))))) (-15 -4278 ((-3 $ "failed") (-407 (-950 (-379))))) (-15 -3027 ($ (-950 (-379)))) (-15 -4278 ((-3 $ "failed") (-950 (-379))))) |%noBranch|) (-15 -1381 ($ $)) (-15 -3655 ($ $)) (-15 -1723 ($ $)) (-15 -3612 ($ $)) (-15 -2195 ($ $)) (-15 -3679 ($ $)) (-15 -3693 ($ $)) (-15 -3704 ($ $)) (-15 -3750 ($ $)) (-15 -3763 ($ $)) (-15 -3776 ($ $)) (-15 -3827 ($ $)) (-15 -3839 ($ $)) (-15 -3851 ($ $)) (-15 -4265 ($)) (-15 -3802 ((-642 (-1173)) $)) (-15 -3746 ((-112))) (-15 -3746 ((-112) (-112)))))
+((-4358 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4358 (|#8| (-1 |#5| |#1|) |#4|))) (-1216) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1216) (-1238 |#5|) (-1238 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1216)) (-4 *8 (-1216)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *9 (-1238 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1238 (-407 *9))))))
+(-10 -7 (-15 -4358 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2230 (((-2 (|:| |num| (-1262 |#3|)) (|:| |den| |#3|)) $) 40)) (-4221 (($ (-1262 (-407 |#3|)) (-1262 $)) NIL) (($ (-1262 (-407 |#3|))) NIL) (($ (-1262 |#3|) |#3|) 177)) (-4335 (((-1262 $) (-1262 $)) 161)) (-4170 (((-642 (-642 |#2|))) 130)) (-2504 (((-112) |#2| |#2|) 77)) (-3246 (($ $) 152)) (-4153 (((-769)) 33)) (-3453 (((-1262 $) (-1262 $)) 223)) (-1834 (((-642 (-950 |#2|)) (-1173)) 119)) (-3454 (((-112) $) 174)) (-4074 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 227)) (-3708 (((-3 |#3| "failed")) 53)) (-3129 (((-769)) 188)) (-4368 ((|#2| $ |#2| |#2|) 144)) (-1957 (((-3 |#3| "failed")) 72)) (-3175 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-769)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 231) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)) (-4133 (((-1262 $) (-1262 $)) 167)) (-2328 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-3127 (((-112)) 35)))
+(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -4170 ((-642 (-642 |#2|)))) (-15 -1834 ((-642 (-950 |#2|)) (-1173))) (-15 -2328 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3708 ((-3 |#3| "failed"))) (-15 -1957 ((-3 |#3| "failed"))) (-15 -4368 (|#2| |#1| |#2| |#2|)) (-15 -3246 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4074 ((-112) |#1| |#3|)) (-15 -4074 ((-112) |#1| |#2|)) (-15 -4221 (|#1| (-1262 |#3|) |#3|)) (-15 -2230 ((-2 (|:| |num| (-1262 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4335 ((-1262 |#1|) (-1262 |#1|))) (-15 -3453 ((-1262 |#1|) (-1262 |#1|))) (-15 -4133 ((-1262 |#1|) (-1262 |#1|))) (-15 -4074 ((-112) |#1|)) (-15 -3454 ((-112) |#1|)) (-15 -2504 ((-112) |#2| |#2|)) (-15 -3127 ((-112))) (-15 -3129 ((-769))) (-15 -4153 ((-769))) (-15 -3175 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -3175 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-769))) (-15 -4221 (|#1| (-1262 (-407 |#3|)))) (-15 -4221 (|#1| (-1262 (-407 |#3|)) (-1262 |#1|)))) (-342 |#2| |#3| |#4|) (-1216) (-1238 |#2|) (-1238 (-407 |#3|))) (T -341))
+((-4153 (*1 *2) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-769)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3129 (*1 *2) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-769)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3127 (*1 *2) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-2504 (*1 *2 *3 *3) (-12 (-4 *3 (-1216)) (-4 *5 (-1238 *3)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-1957 (*1 *2) (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 (-407 *2))) (-4 *2 (-1238 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-3708 (*1 *2) (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 (-407 *2))) (-4 *2 (-1238 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *5 (-1216)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-5 *2 (-642 (-950 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-4170 (*1 *2) (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-642 (-642 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))))
+(-10 -8 (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -4170 ((-642 (-642 |#2|)))) (-15 -1834 ((-642 (-950 |#2|)) (-1173))) (-15 -2328 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3708 ((-3 |#3| "failed"))) (-15 -1957 ((-3 |#3| "failed"))) (-15 -4368 (|#2| |#1| |#2| |#2|)) (-15 -3246 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4074 ((-112) |#1| |#3|)) (-15 -4074 ((-112) |#1| |#2|)) (-15 -4221 (|#1| (-1262 |#3|) |#3|)) (-15 -2230 ((-2 (|:| |num| (-1262 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4335 ((-1262 |#1|) (-1262 |#1|))) (-15 -3453 ((-1262 |#1|) (-1262 |#1|))) (-15 -4133 ((-1262 |#1|) (-1262 |#1|))) (-15 -4074 ((-112) |#1|)) (-15 -3454 ((-112) |#1|)) (-15 -2504 ((-112) |#2| |#2|)) (-15 -3127 ((-112))) (-15 -3129 ((-769))) (-15 -4153 ((-769))) (-15 -3175 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -3175 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-769))) (-15 -4221 (|#1| (-1262 (-407 |#3|)))) (-15 -4221 (|#1| (-1262 (-407 |#3|)) (-1262 |#1|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-2230 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) 204)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 102 (|has| (-407 |#2|) (-363)))) (-1387 (($ $) 103 (|has| (-407 |#2|) (-363)))) (-2037 (((-112) $) 105 (|has| (-407 |#2|) (-363)))) (-3166 (((-687 (-407 |#2|)) (-1262 $)) 53) (((-687 (-407 |#2|))) 68)) (-3815 (((-407 |#2|) $) 59)) (-1964 (((-1185 (-919) (-769)) (-564)) 155 (|has| (-407 |#2|) (-349)))) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 122 (|has| (-407 |#2|) (-363)))) (-1978 (((-418 $) $) 123 (|has| (-407 |#2|) (-363)))) (-4010 (((-112) $ $) 113 (|has| (-407 |#2|) (-363)))) (-2521 (((-769)) 96 (|has| (-407 |#2|) (-368)))) (-4351 (((-112)) 221)) (-3700 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-1976 (($) 18 T CONST)) (-4278 (((-3 (-564) "failed") $) 178 (|has| (-407 |#2|) (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 176 (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) 173)) (-3027 (((-564) $) 177 (|has| (-407 |#2|) (-1036 (-564)))) (((-407 (-564)) $) 175 (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-407 |#2|) $) 174)) (-4221 (($ (-1262 (-407 |#2|)) (-1262 $)) 55) (($ (-1262 (-407 |#2|))) 71) (($ (-1262 |#2|) |#2|) 203)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-407 |#2|) (-349)))) (-2845 (($ $ $) 117 (|has| (-407 |#2|) (-363)))) (-1984 (((-687 (-407 |#2|)) $ (-1262 $)) 60) (((-687 (-407 |#2|)) $) 66)) (-4315 (((-687 (-564)) (-687 $)) 172 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 171 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-407 |#2|))) (|:| |vec| (-1262 (-407 |#2|)))) (-687 $) (-1262 $)) 170) (((-687 (-407 |#2|)) (-687 $)) 169)) (-4335 (((-1262 $) (-1262 $)) 209)) (-1320 (($ |#3|) 166) (((-3 $ "failed") (-407 |#3|)) 163 (|has| (-407 |#2|) (-363)))) (-3104 (((-3 $ "failed") $) 37)) (-4170 (((-642 (-642 |#1|))) 190 (|has| |#1| (-368)))) (-2504 (((-112) |#1| |#1|) 225)) (-2414 (((-919)) 61)) (-2433 (($) 99 (|has| (-407 |#2|) (-368)))) (-3616 (((-112)) 218)) (-4237 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2859 (($ $ $) 116 (|has| (-407 |#2|) (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 111 (|has| (-407 |#2|) (-363)))) (-3246 (($ $) 196)) (-1363 (($) 157 (|has| (-407 |#2|) (-349)))) (-3424 (((-112) $) 158 (|has| (-407 |#2|) (-349)))) (-3607 (($ $ (-769)) 149 (|has| (-407 |#2|) (-349))) (($ $) 148 (|has| (-407 |#2|) (-349)))) (-1469 (((-112) $) 124 (|has| (-407 |#2|) (-363)))) (-1427 (((-919) $) 160 (|has| (-407 |#2|) (-349))) (((-831 (-919)) $) 146 (|has| (-407 |#2|) (-349)))) (-3953 (((-112) $) 35)) (-4153 (((-769)) 228)) (-3453 (((-1262 $) (-1262 $)) 210)) (-2218 (((-407 |#2|) $) 58)) (-1834 (((-642 (-950 |#1|)) (-1173)) 191 (|has| |#1| (-363)))) (-3157 (((-3 $ "failed") $) 150 (|has| (-407 |#2|) (-349)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 120 (|has| (-407 |#2|) (-363)))) (-3947 ((|#3| $) 51 (|has| (-407 |#2|) (-363)))) (-1945 (((-919) $) 98 (|has| (-407 |#2|) (-368)))) (-1308 ((|#3| $) 164)) (-2049 (($ (-642 $)) 109 (|has| (-407 |#2|) (-363))) (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-3315 (((-1155) $) 10)) (-3658 (((-687 (-407 |#2|))) 205)) (-3353 (((-687 (-407 |#2|))) 207)) (-3911 (($ $) 125 (|has| (-407 |#2|) (-363)))) (-1922 (($ (-1262 |#2|) |#2|) 201)) (-4147 (((-687 (-407 |#2|))) 206)) (-2917 (((-687 (-407 |#2|))) 208)) (-1577 (((-2 (|:| |num| (-687 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-2071 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) 202)) (-2253 (((-1262 $)) 214)) (-3620 (((-1262 $)) 215)) (-3454 (((-112) $) 213)) (-4074 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-3366 (($) 151 (|has| (-407 |#2|) (-349)) CONST)) (-2047 (($ (-919)) 97 (|has| (-407 |#2|) (-368)))) (-3708 (((-3 |#2| "failed")) 193)) (-4033 (((-1117) $) 11)) (-3129 (((-769)) 227)) (-2185 (($) 168)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 110 (|has| (-407 |#2|) (-363)))) (-2080 (($ (-642 $)) 107 (|has| (-407 |#2|) (-363))) (($ $ $) 106 (|has| (-407 |#2|) (-363)))) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) 154 (|has| (-407 |#2|) (-349)))) (-3643 (((-418 $) $) 121 (|has| (-407 |#2|) (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 118 (|has| (-407 |#2|) (-363)))) (-2896 (((-3 $ "failed") $ $) 101 (|has| (-407 |#2|) (-363)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 112 (|has| (-407 |#2|) (-363)))) (-2048 (((-769) $) 114 (|has| (-407 |#2|) (-363)))) (-4368 ((|#1| $ |#1| |#1|) 195)) (-1957 (((-3 |#2| "failed")) 194)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 115 (|has| (-407 |#2|) (-363)))) (-1846 (((-407 |#2|) (-1262 $)) 54) (((-407 |#2|)) 67)) (-2136 (((-769) $) 159 (|has| (-407 |#2|) (-349))) (((-3 (-769) "failed") $ $) 147 (|has| (-407 |#2|) (-349)))) (-3175 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) 131 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 130 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-642 (-1173)) (-642 (-769))) 138 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2275 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-1173) (-769)) 139 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2275 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-642 (-1173))) 140 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2275 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-1173)) 141 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2275 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-769)) 143 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2275 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 145 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2275 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2382 (((-687 (-407 |#2|)) (-1262 $) (-1 (-407 |#2|) (-407 |#2|))) 162 (|has| (-407 |#2|) (-363)))) (-3280 ((|#3|) 167)) (-2668 (($) 156 (|has| (-407 |#2|) (-349)))) (-2067 (((-1262 (-407 |#2|)) $ (-1262 $)) 57) (((-687 (-407 |#2|)) (-1262 $) (-1262 $)) 56) (((-1262 (-407 |#2|)) $) 73) (((-687 (-407 |#2|)) (-1262 $)) 72)) (-1314 (((-1262 (-407 |#2|)) $) 70) (($ (-1262 (-407 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 153 (|has| (-407 |#2|) (-349)))) (-4133 (((-1262 $) (-1262 $)) 211)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ (-407 |#2|)) 44) (($ (-407 (-564))) 95 (-2706 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1036 (-407 (-564)))))) (($ $) 100 (|has| (-407 |#2|) (-363)))) (-2439 (($ $) 152 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 50 (|has| (-407 |#2|) (-145)))) (-3011 ((|#3| $) 52)) (-2756 (((-769)) 32 T CONST)) (-3676 (((-112)) 224)) (-1326 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-1648 (((-112) $ $) 9)) (-4263 (((-1262 $)) 74)) (-2103 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-2328 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-3127 (((-112)) 226)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) 133 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 132 (|has| (-407 |#2|) (-363))) (($ $ (-642 (-1173)) (-642 (-769))) 134 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2275 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-1173) (-769)) 135 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2275 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-642 (-1173))) 136 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2275 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-1173)) 137 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) (-2275 (|has| (-407 |#2|) (-898 (-1173))) (|has| (-407 |#2|) (-363))))) (($ $ (-769)) 142 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2275 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 144 (-2706 (-2275 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2275 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 129 (|has| (-407 |#2|) (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 126 (|has| (-407 |#2|) (-363)))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 |#2|)) 46) (($ (-407 |#2|) $) 45) (($ (-407 (-564)) $) 128 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) 127 (|has| (-407 |#2|) (-363)))))
+(((-342 |#1| |#2| |#3|) (-140) (-1216) (-1238 |t#1|) (-1238 (-407 |t#2|))) (T -342))
+((-4153 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-769)))) (-3129 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-769)))) (-3127 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-2504 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-3676 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-1326 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-1326 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) (-4351 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-3700 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-3700 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) (-3616 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-4237 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-4237 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) (-3620 (*1 *2) (-12 (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2253 (*1 *2) (-12 (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-4133 (*1 *2 *2) (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))) (-4335 (*1 *2 *2) (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))) (-2917 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))) (-3353 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))) (-4147 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))) (-3658 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))) (-2230 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1262 *4)) (|:| |den| *4))))) (-4221 (*1 *1 *2 *3) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1238 *4)) (-4 *4 (-1216)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1238 (-407 *3))))) (-2071 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1262 *4)) (|:| |den| *4))))) (-1922 (*1 *1 *2 *3) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1238 *4)) (-4 *4 (-1216)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1238 (-407 *3))))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-2 (|:| |num| (-687 *5)) (|:| |den| *5))))) (-4074 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))) (-4074 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1216)) (-4 *3 (-1238 *2)) (-4 *4 (-1238 (-407 *3))))) (-4368 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1216)) (-4 *3 (-1238 *2)) (-4 *4 (-1238 (-407 *3))))) (-1957 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1216)) (-4 *4 (-1238 (-407 *2))) (-4 *2 (-1238 *3)))) (-3708 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1216)) (-4 *4 (-1238 (-407 *2))) (-4 *2 (-1238 *3)))) (-2328 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-1216)) (-4 *6 (-1238 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-642 (-950 *4))))) (-4170 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-642 (-642 *3))))))
+(-13 (-722 (-407 |t#2|) |t#3|) (-10 -8 (-15 -4153 ((-769))) (-15 -3129 ((-769))) (-15 -3127 ((-112))) (-15 -2504 ((-112) |t#1| |t#1|)) (-15 -3676 ((-112))) (-15 -1326 ((-112) |t#1|)) (-15 -1326 ((-112) |t#2|)) (-15 -4351 ((-112))) (-15 -3700 ((-112) |t#1|)) (-15 -3700 ((-112) |t#2|)) (-15 -3616 ((-112))) (-15 -4237 ((-112) |t#1|)) (-15 -4237 ((-112) |t#2|)) (-15 -3620 ((-1262 $))) (-15 -2253 ((-1262 $))) (-15 -3454 ((-112) $)) (-15 -4074 ((-112) $)) (-15 -4133 ((-1262 $) (-1262 $))) (-15 -3453 ((-1262 $) (-1262 $))) (-15 -4335 ((-1262 $) (-1262 $))) (-15 -2917 ((-687 (-407 |t#2|)))) (-15 -3353 ((-687 (-407 |t#2|)))) (-15 -4147 ((-687 (-407 |t#2|)))) (-15 -3658 ((-687 (-407 |t#2|)))) (-15 -2230 ((-2 (|:| |num| (-1262 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4221 ($ (-1262 |t#2|) |t#2|)) (-15 -2071 ((-2 (|:| |num| (-1262 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1922 ($ (-1262 |t#2|) |t#2|)) (-15 -1577 ((-2 (|:| |num| (-687 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4074 ((-112) $ |t#1|)) (-15 -4074 ((-112) $ |t#2|)) (-15 -3175 ($ $ (-1 |t#2| |t#2|))) (-15 -3246 ($ $)) (-15 -4368 (|t#1| $ |t#1| |t#1|)) (-15 -1957 ((-3 |t#2| "failed"))) (-15 -3708 ((-3 |t#2| "failed"))) (-15 -2328 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -1834 ((-642 (-950 |t#1|)) (-1173))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -4170 ((-642 (-642 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-614 #0#) -2706 (|has| (-407 |#2|) (-1036 (-407 (-564)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-614 #1#) . T) ((-614 (-564)) . T) ((-614 $) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-611 (-860)) . T) ((-172) . T) ((-612 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -2706 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -2706 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-556) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #0#) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #1#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-646 #1#) . T) ((-646 $) . T) ((-638 #0#) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-638 #1#) . T) ((-638 $) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-637 #1#) . T) ((-637 (-564)) |has| (-407 |#2|) (-637 (-564))) ((-715 #0#) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-715 #1#) . T) ((-715 $) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-722 #1# |#3|) . T) ((-724) . T) ((-898 (-1173)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173)))) ((-918) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1036 (-407 (-564))) |has| (-407 |#2|) (-1036 (-407 (-564)))) ((-1036 #1#) . T) ((-1036 (-564)) |has| (-407 |#2|) (-1036 (-564))) ((-1049 #0#) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1049 #1#) . T) ((-1049 $) . T) ((-1054 #0#) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1054 #1#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| (-407 |#2|) (-349)) ((-1216) -2706 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-908 |#1|) (-368)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) NIL (|has| (-908 |#1|) (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-908 |#1|) "failed") $) NIL)) (-3027 (((-908 |#1|) $) NIL)) (-4221 (($ (-1262 (-908 |#1|))) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-908 |#1|) (-368)))) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-908 |#1|) (-368)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) NIL (|has| (-908 |#1|) (-368)))) (-3424 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-3607 (($ $ (-769)) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368)))) (($ $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-1469 (((-112) $) NIL)) (-1427 (((-919) $) NIL (|has| (-908 |#1|) (-368))) (((-831 (-919)) $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3953 (((-112) $) NIL)) (-3289 (($) NIL (|has| (-908 |#1|) (-368)))) (-3563 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-2218 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-3157 (((-3 $ "failed") $) NIL (|has| (-908 |#1|) (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 (-908 |#1|)) $) NIL) (((-1169 $) $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-1945 (((-919) $) NIL (|has| (-908 |#1|) (-368)))) (-4157 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368)))) (-2891 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-1169 (-908 |#1|)) "failed") $ $) NIL (|has| (-908 |#1|) (-368)))) (-2393 (($ $ (-1169 (-908 |#1|))) NIL (|has| (-908 |#1|) (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-908 |#1|) (-368)) CONST)) (-2047 (($ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-2843 (((-112) $) NIL)) (-4033 (((-1117) $) NIL)) (-1327 (((-956 (-1117))) NIL)) (-2185 (($) NIL (|has| (-908 |#1|) (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| (-908 |#1|) (-368)))) (-3643 (((-418 $) $) NIL)) (-1524 (((-831 (-919))) NIL) (((-919)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-769) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-769) "failed") $ $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3474 (((-134)) NIL)) (-3175 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2775 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3280 (((-1169 (-908 |#1|))) NIL)) (-2668 (($) NIL (|has| (-908 |#1|) (-368)))) (-1627 (($) NIL (|has| (-908 |#1|) (-368)))) (-2067 (((-1262 (-908 |#1|)) $) NIL) (((-687 (-908 |#1|)) (-1262 $)) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-908 |#1|) (-368)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-908 |#1|)) NIL)) (-2439 (($ $) NIL (|has| (-908 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-3623 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-4044 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL) (($ $ (-908 |#1|)) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-908 |#1|)) NIL) (($ (-908 |#1|) $) NIL)))
+(((-343 |#1| |#2|) (-13 (-329 (-908 |#1|)) (-10 -7 (-15 -1327 ((-956 (-1117)))))) (-919) (-919)) (T -343))
+((-1327 (*1 *2) (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-343 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))))
+(-13 (-329 (-908 |#1|)) (-10 -7 (-15 -1327 ((-956 (-1117))))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 59)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) 57 (|has| |#1| (-368)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) NIL (|has| |#1| (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) 145)) (-3027 ((|#1| $) 116)) (-4221 (($ (-1262 |#1|)) 133)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) 124 (|has| |#1| (-368)))) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) 127 (|has| |#1| (-368)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) 163 (|has| |#1| (-368)))) (-3424 (((-112) $) 67 (|has| |#1| (-368)))) (-3607 (($ $ (-769)) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1469 (((-112) $) NIL)) (-1427 (((-919) $) 61 (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3953 (((-112) $) 63)) (-3289 (($) 165 (|has| |#1| (-368)))) (-3563 (((-112) $) NIL (|has| |#1| (-368)))) (-2218 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 |#1|) $) 120) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-1945 (((-919) $) 174 (|has| |#1| (-368)))) (-4157 (((-1169 |#1|) $) NIL (|has| |#1| (-368)))) (-2891 (((-1169 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2393 (($ $ (-1169 |#1|)) NIL (|has| |#1| (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 181)) (-3366 (($) NIL (|has| |#1| (-368)) CONST)) (-2047 (($ (-919)) 99 (|has| |#1| (-368)))) (-2843 (((-112) $) 150)) (-4033 (((-1117) $) NIL)) (-1327 (((-956 (-1117))) 58)) (-2185 (($) 161 (|has| |#1| (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) 122 (|has| |#1| (-368)))) (-3643 (((-418 $) $) NIL)) (-1524 (((-831 (-919))) 93) (((-919)) 94)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-769) $) 164 (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) 157 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3474 (((-134)) NIL)) (-3175 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2775 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3280 (((-1169 |#1|)) 125)) (-2668 (($) 162 (|has| |#1| (-368)))) (-1627 (($) 170 (|has| |#1| (-368)))) (-2067 (((-1262 |#1|) $) 78) (((-687 |#1|) (-1262 $)) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2327 (((-860) $) 177) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-2439 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2756 (((-769)) 158 T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) 147) (((-1262 $) (-919)) 101)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) 68 T CONST)) (-2322 (($) 106 T CONST)) (-3623 (($ $) 110 (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-4044 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2872 (((-112) $ $) 66)) (-2998 (($ $ $) 179) (($ $ |#1|) 180)) (-2987 (($ $) 160) (($ $ $) NIL)) (-2974 (($ $ $) 87)) (** (($ $ (-919)) 183) (($ $ (-769)) 184) (($ $ (-564)) 182)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 105) (($ $ $) 104) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 178)))
+(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1327 ((-956 (-1117)))))) (-349) (-1169 |#1|)) (T -344))
+((-1327 (*1 *2) (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1169 *3)))))
+(-13 (-329 |#1|) (-10 -7 (-15 -1327 ((-956 (-1117))))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| |#1| (-368)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) NIL (|has| |#1| (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-4221 (($ (-1262 |#1|)) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| |#1| (-368)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) NIL (|has| |#1| (-368)))) (-3424 (((-112) $) NIL (|has| |#1| (-368)))) (-3607 (($ $ (-769)) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1469 (((-112) $) NIL)) (-1427 (((-919) $) NIL (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3953 (((-112) $) NIL)) (-3289 (($) NIL (|has| |#1| (-368)))) (-3563 (((-112) $) NIL (|has| |#1| (-368)))) (-2218 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 |#1|) $) NIL) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-1945 (((-919) $) NIL (|has| |#1| (-368)))) (-4157 (((-1169 |#1|) $) NIL (|has| |#1| (-368)))) (-2891 (((-1169 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2393 (($ $ (-1169 |#1|)) NIL (|has| |#1| (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| |#1| (-368)) CONST)) (-2047 (($ (-919)) NIL (|has| |#1| (-368)))) (-2843 (((-112) $) NIL)) (-4033 (((-1117) $) NIL)) (-1327 (((-956 (-1117))) NIL)) (-2185 (($) NIL (|has| |#1| (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| |#1| (-368)))) (-3643 (((-418 $) $) NIL)) (-1524 (((-831 (-919))) NIL) (((-919)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-769) $) NIL (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3474 (((-134)) NIL)) (-3175 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2775 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3280 (((-1169 |#1|)) NIL)) (-2668 (($) NIL (|has| |#1| (-368)))) (-1627 (($) NIL (|has| |#1| (-368)))) (-2067 (((-1262 |#1|) $) NIL) (((-687 |#1|) (-1262 $)) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2439 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-3623 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-4044 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1327 ((-956 (-1117)))))) (-349) (-919)) (T -345))
+((-1327 (*1 *2) (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-919)))))
+(-13 (-329 |#1|) (-10 -7 (-15 -1327 ((-956 (-1117))))))
+((-3212 (((-769) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117)))))) 61)) (-2472 (((-956 (-1117)) (-1169 |#1|)) 113)) (-2273 (((-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))) (-1169 |#1|)) 105)) (-3455 (((-687 |#1|) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117)))))) 115)) (-2646 (((-3 (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))) "failed") (-919)) 13)) (-3151 (((-3 (-1169 |#1|) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117)))))) (-919)) 18)))
+(((-346 |#1|) (-10 -7 (-15 -2472 ((-956 (-1117)) (-1169 |#1|))) (-15 -2273 ((-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))) (-1169 |#1|))) (-15 -3455 ((-687 |#1|) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))))) (-15 -3212 ((-769) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))))) (-15 -2646 ((-3 (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))) "failed") (-919))) (-15 -3151 ((-3 (-1169 |#1|) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117)))))) (-919)))) (-349)) (T -346))
+((-3151 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-3 (-1169 *4) (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-2646 (*1 *2 *3) (|partial| -12 (-5 *3 (-919)) (-5 *2 (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117)))))) (-4 *4 (-349)) (-5 *2 (-769)) (-5 *1 (-346 *4)))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117)))))) (-4 *4 (-349)) (-5 *2 (-687 *4)) (-5 *1 (-346 *4)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117)))))) (-5 *1 (-346 *4)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-956 (-1117))) (-5 *1 (-346 *4)))))
+(-10 -7 (-15 -2472 ((-956 (-1117)) (-1169 |#1|))) (-15 -2273 ((-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))) (-1169 |#1|))) (-15 -3455 ((-687 |#1|) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))))) (-15 -3212 ((-769) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))))) (-15 -2646 ((-3 (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))) "failed") (-919))) (-15 -3151 ((-3 (-1169 |#1|) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117)))))) (-919))))
+((-2327 ((|#1| |#3|) 105) ((|#3| |#1|) 88)))
+(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -2327 (|#3| |#1|)) (-15 -2327 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347))
+((-2327 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-2327 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4)))))
+(-10 -7 (-15 -2327 (|#3| |#1|)) (-15 -2327 (|#1| |#3|)))
+((-3424 (((-112) $) 60)) (-1427 (((-831 (-919)) $) 23) (((-919) $) 66)) (-3157 (((-3 $ "failed") $) 18)) (-3366 (($) 9)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 116)) (-2136 (((-3 (-769) "failed") $ $) 94) (((-769) $) 81)) (-3175 (($ $ (-769)) NIL) (($ $) 8)) (-2668 (($) 53)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 38)) (-2439 (((-3 $ "failed") $) 45) (($ $) 44)))
+(((-348 |#1|) (-10 -8 (-15 -1427 ((-919) |#1|)) (-15 -2136 ((-769) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -2668 (|#1|)) (-15 -3637 ((-3 (-1262 |#1|) "failed") (-687 |#1|))) (-15 -2439 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -3366 (|#1|)) (-15 -3157 ((-3 |#1| "failed") |#1|)) (-15 -2136 ((-3 (-769) "failed") |#1| |#1|)) (-15 -1427 ((-831 (-919)) |#1|)) (-15 -2439 ((-3 |#1| "failed") |#1|)) (-15 -2351 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)))) (-349)) (T -348))
+NIL
+(-10 -8 (-15 -1427 ((-919) |#1|)) (-15 -2136 ((-769) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -2668 (|#1|)) (-15 -3637 ((-3 (-1262 |#1|) "failed") (-687 |#1|))) (-15 -2439 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -3366 (|#1|)) (-15 -3157 ((-3 |#1| "failed") |#1|)) (-15 -2136 ((-3 (-769) "failed") |#1| |#1|)) (-15 -1427 ((-831 (-919)) |#1|)) (-15 -2439 ((-3 |#1| "failed") |#1|)) (-15 -2351 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1964 (((-1185 (-919) (-769)) (-564)) 101)) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 81)) (-1978 (((-418 $) $) 80)) (-4010 (((-112) $ $) 65)) (-2521 (((-769)) 111)) (-1976 (($) 18 T CONST)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2845 (($ $ $) 61)) (-3104 (((-3 $ "failed") $) 37)) (-2433 (($) 114)) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-1363 (($) 99)) (-3424 (((-112) $) 98)) (-3607 (($ $) 87) (($ $ (-769)) 86)) (-1469 (((-112) $) 79)) (-1427 (((-831 (-919)) $) 89) (((-919) $) 96)) (-3953 (((-112) $) 35)) (-3157 (((-3 $ "failed") $) 110)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-1945 (((-919) $) 113)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 78)) (-3366 (($) 109 T CONST)) (-2047 (($ (-919)) 112)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) 102)) (-3643 (((-418 $) $) 82)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2048 (((-769) $) 64)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-2136 (((-3 (-769) "failed") $ $) 88) (((-769) $) 97)) (-3175 (($ $ (-769)) 107) (($ $) 105)) (-2668 (($) 100)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 103)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74)) (-2439 (((-3 $ "failed") $) 90) (($ $) 104)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-769)) 108) (($ $) 106)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 73)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75)))
(((-349) (-140)) (T -349))
-((-2420 (*1 *1 *1) (-4 *1 (-349))) (-3895 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1)))) (-2981 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))))) (-4373 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-917) (-767))))) (-3826 (*1 *1) (-4 *1 (-349))) (-1471 (*1 *1) (-4 *1 (-349))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-767)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-917)))) (-4334 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-402) (-368) (-1145) (-233) (-10 -8 (-15 -2420 ($ $)) (-15 -3895 ((-3 (-1259 $) "failed") (-685 $))) (-15 -2981 ((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564)))))) (-15 -4373 ((-1182 (-917) (-767)) (-564))) (-15 -3826 ($)) (-15 -1471 ($)) (-15 -1436 ((-112) $)) (-15 -4255 ((-767) $)) (-15 -3744 ((-917) $)) (-15 -4334 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) . T) ((-1213) . T))
-((-3838 (((-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|) 57)) (-2457 (((-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 55)))
-(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -2457 ((-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -3838 ((-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -350))
-((-3838 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2457 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(-10 -7 (-15 -2457 ((-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -3838 ((-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-906 |#1|) (-368)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3920 (((-767)) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-906 |#1|) "failed") $) NIL)) (-3120 (((-906 |#1|) $) NIL)) (-3474 (($ (-1259 (-906 |#1|))) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-906 |#1|) (-368)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) NIL (|has| (-906 |#1|) (-368)))) (-1436 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3456 (($ $ (-767)) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1339 (((-112) $) NIL)) (-3744 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-4112 (((-112) $) NIL)) (-2908 (($) NIL (|has| (-906 |#1|) (-368)))) (-3164 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2499 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1846 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 (-906 |#1|)) $) NIL) (((-1166 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3256 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2820 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-4372 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1166 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-3606 (($ $ (-1166 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-2083 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2695 (((-112) $) NIL)) (-4052 (((-1114) $) NIL)) (-3040 (((-1259 (-641 (-2 (|:| -2128 (-906 |#1|)) (|:| -2083 (-1114)))))) NIL)) (-2845 (((-685 (-906 |#1|))) NIL)) (-2249 (($) NIL (|has| (-906 |#1|) (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| (-906 |#1|) (-368)))) (-3688 (((-418 $) $) NIL)) (-1967 (((-829 (-917))) NIL) (((-917)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-4327 (((-134)) NIL)) (-3254 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1568 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3721 (((-1166 (-906 |#1|))) NIL)) (-3826 (($) NIL (|has| (-906 |#1|) (-368)))) (-1930 (($) NIL (|has| (-906 |#1|) (-368)))) (-4225 (((-1259 (-906 |#1|)) $) NIL) (((-685 (-906 |#1|)) (-1259 $)) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-906 |#1|) (-368)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-906 |#1|)) NIL)) (-2420 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-3037 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-4063 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL)))
-(((-351 |#1| |#2|) (-13 (-329 (-906 |#1|)) (-10 -7 (-15 -3040 ((-1259 (-641 (-2 (|:| -2128 (-906 |#1|)) (|:| -2083 (-1114))))))) (-15 -2845 ((-685 (-906 |#1|)))) (-15 -3920 ((-767))))) (-917) (-917)) (T -351))
-((-3040 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -2128 (-906 *3)) (|:| -2083 (-1114)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-2845 (*1 *2) (-12 (-5 *2 (-685 (-906 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-3920 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))))
-(-13 (-329 (-906 |#1|)) (-10 -7 (-15 -3040 ((-1259 (-641 (-2 (|:| -2128 (-906 |#1|)) (|:| -2083 (-1114))))))) (-15 -2845 ((-685 (-906 |#1|)))) (-15 -3920 ((-767)))))
-((-3009 (((-112) $ $) 76)) (-1494 (((-112) $) 90)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 ((|#1| $) 108) (($ $ (-917)) 106 (|has| |#1| (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) 177 (|has| |#1| (-368)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3920 (((-767)) 105)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) 193 (|has| |#1| (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) 130)) (-3120 ((|#1| $) 107)) (-3474 (($ (-1259 |#1|)) 74)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-368)))) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) 189 (|has| |#1| (-368)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) 178 (|has| |#1| (-368)))) (-1436 (((-112) $) NIL (|has| |#1| (-368)))) (-3456 (($ $ (-767)) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1339 (((-112) $) NIL)) (-3744 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4112 (((-112) $) NIL)) (-2908 (($) 116 (|has| |#1| (-368)))) (-3164 (((-112) $) 206 (|has| |#1| (-368)))) (-2499 ((|#1| $) 110) (($ $ (-917)) 109 (|has| |#1| (-368)))) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 |#1|) $) 220) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3256 (((-917) $) 154 (|has| |#1| (-368)))) (-2820 (((-1166 |#1|) $) 89 (|has| |#1| (-368)))) (-4372 (((-1166 |#1|) $) 86 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 98 (|has| |#1| (-368)))) (-3606 (($ $ (-1166 |#1|)) 85 (|has| |#1| (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 224)) (-3431 (($) NIL (|has| |#1| (-368)) CONST)) (-2083 (($ (-917)) 157 (|has| |#1| (-368)))) (-2695 (((-112) $) 126)) (-4052 (((-1114) $) NIL)) (-3040 (((-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114)))))) 99)) (-2845 (((-685 |#1|)) 103)) (-2249 (($) 112 (|has| |#1| (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) 180 (|has| |#1| (-368)))) (-3688 (((-418 $) $) NIL)) (-1967 (((-829 (-917))) NIL) (((-917)) 181)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4327 (((-134)) NIL)) (-3254 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1568 (((-829 (-917)) $) NIL) (((-917) $) 78)) (-3721 (((-1166 |#1|)) 182)) (-3826 (($) 153 (|has| |#1| (-368)))) (-1930 (($) NIL (|has| |#1| (-368)))) (-4225 (((-1259 |#1|) $) 124) (((-685 |#1|) (-1259 $)) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2423 (((-858) $) 146) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 73)) (-2420 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3719 (((-767)) 187 T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) 203) (((-1259 $) (-917)) 119)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) 140 T CONST)) (-2417 (($) 44 T CONST)) (-3037 (($ $) 125 (|has| |#1| (-368))) (($ $ (-767)) 117 (|has| |#1| (-368)))) (-4063 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2974 (((-112) $ $) 214)) (-3092 (($ $ $) 122) (($ $ |#1|) 123)) (-3082 (($ $) 208) (($ $ $) 212)) (-3070 (($ $ $) 210)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 159)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 217) (($ $ $) 171) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121)))
-(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3040 ((-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))))) (-15 -2845 ((-685 |#1|))) (-15 -3920 ((-767))))) (-349) (-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))))) (T -352))
-((-3040 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -2128 *3) (|:| -2083 (-1114)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2)))) (-2845 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -2128 *3) (|:| -2083 (-1114))))))))) (-3920 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -2128 *3) (|:| -2083 (-1114))))))))))
-(-13 (-329 |#1|) (-10 -7 (-15 -3040 ((-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))))) (-15 -2845 ((-685 |#1|))) (-15 -3920 ((-767)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| |#1| (-368)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3920 (((-767)) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) NIL (|has| |#1| (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-3474 (($ (-1259 |#1|)) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| |#1| (-368)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) NIL (|has| |#1| (-368)))) (-1436 (((-112) $) NIL (|has| |#1| (-368)))) (-3456 (($ $ (-767)) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1339 (((-112) $) NIL)) (-3744 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4112 (((-112) $) NIL)) (-2908 (($) NIL (|has| |#1| (-368)))) (-3164 (((-112) $) NIL (|has| |#1| (-368)))) (-2499 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3256 (((-917) $) NIL (|has| |#1| (-368)))) (-2820 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-4372 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3606 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| |#1| (-368)) CONST)) (-2083 (($ (-917)) NIL (|has| |#1| (-368)))) (-2695 (((-112) $) NIL)) (-4052 (((-1114) $) NIL)) (-3040 (((-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114)))))) NIL)) (-2845 (((-685 |#1|)) NIL)) (-2249 (($) NIL (|has| |#1| (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| |#1| (-368)))) (-3688 (((-418 $) $) NIL)) (-1967 (((-829 (-917))) NIL) (((-917)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4327 (((-134)) NIL)) (-3254 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1568 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3721 (((-1166 |#1|)) NIL)) (-3826 (($) NIL (|has| |#1| (-368)))) (-1930 (($) NIL (|has| |#1| (-368)))) (-4225 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2420 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-3037 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4063 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3040 ((-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))))) (-15 -2845 ((-685 |#1|))) (-15 -3920 ((-767))))) (-349) (-917)) (T -353))
-((-3040 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -2128 *3) (|:| -2083 (-1114)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))) (-2845 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))) (-3920 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))))
-(-13 (-329 |#1|) (-10 -7 (-15 -3040 ((-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))))) (-15 -2845 ((-685 |#1|))) (-15 -3920 ((-767)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-906 |#1|) (-368)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-906 |#1|) "failed") $) NIL)) (-3120 (((-906 |#1|) $) NIL)) (-3474 (($ (-1259 (-906 |#1|))) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-906 |#1|) (-368)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) NIL (|has| (-906 |#1|) (-368)))) (-1436 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3456 (($ $ (-767)) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1339 (((-112) $) NIL)) (-3744 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-4112 (((-112) $) NIL)) (-2908 (($) NIL (|has| (-906 |#1|) (-368)))) (-3164 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2499 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1846 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 (-906 |#1|)) $) NIL) (((-1166 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3256 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2820 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-4372 (((-1166 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1166 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-3606 (($ $ (-1166 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-2083 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2695 (((-112) $) NIL)) (-4052 (((-1114) $) NIL)) (-2249 (($) NIL (|has| (-906 |#1|) (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| (-906 |#1|) (-368)))) (-3688 (((-418 $) $) NIL)) (-1967 (((-829 (-917))) NIL) (((-917)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-4327 (((-134)) NIL)) (-3254 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1568 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3721 (((-1166 (-906 |#1|))) NIL)) (-3826 (($) NIL (|has| (-906 |#1|) (-368)))) (-1930 (($) NIL (|has| (-906 |#1|) (-368)))) (-4225 (((-1259 (-906 |#1|)) $) NIL) (((-685 (-906 |#1|)) (-1259 $)) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-906 |#1|) (-368)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-906 |#1|)) NIL)) (-2420 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2807 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-3037 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-4063 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL)))
-(((-354 |#1| |#2|) (-329 (-906 |#1|)) (-917) (-917)) (T -354))
-NIL
-(-329 (-906 |#1|))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) 135 (|has| |#1| (-368)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) 165 (|has| |#1| (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) 109)) (-3120 ((|#1| $) 106)) (-3474 (($ (-1259 |#1|)) 101)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-368)))) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) 98 (|has| |#1| (-368)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) 51 (|has| |#1| (-368)))) (-1436 (((-112) $) NIL (|has| |#1| (-368)))) (-3456 (($ $ (-767)) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1339 (((-112) $) NIL)) (-3744 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4112 (((-112) $) NIL)) (-2908 (($) 136 (|has| |#1| (-368)))) (-3164 (((-112) $) 90 (|has| |#1| (-368)))) (-2499 ((|#1| $) 47) (($ $ (-917)) 52 (|has| |#1| (-368)))) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 |#1|) $) 79) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3256 (((-917) $) 113 (|has| |#1| (-368)))) (-2820 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-4372 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3606 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| |#1| (-368)) CONST)) (-2083 (($ (-917)) 111 (|has| |#1| (-368)))) (-2695 (((-112) $) 167)) (-4052 (((-1114) $) NIL)) (-2249 (($) 44 (|has| |#1| (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) 130 (|has| |#1| (-368)))) (-3688 (((-418 $) $) NIL)) (-1967 (((-829 (-917))) NIL) (((-917)) 164)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4327 (((-134)) NIL)) (-3254 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1568 (((-829 (-917)) $) NIL) (((-917) $) 71)) (-3721 (((-1166 |#1|)) 104)) (-3826 (($) 141 (|has| |#1| (-368)))) (-1930 (($) NIL (|has| |#1| (-368)))) (-4225 (((-1259 |#1|) $) 66) (((-685 |#1|) (-1259 $)) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2423 (((-858) $) 163) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-2420 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3719 (((-767)) 169 T CONST)) (-1860 (((-112) $ $) 171)) (-2047 (((-1259 $)) 125) (((-1259 $) (-917)) 60)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) 127 T CONST)) (-2417 (($) 40 T CONST)) (-3037 (($ $) 82 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4063 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2974 (((-112) $ $) 123)) (-3092 (($ $ $) 115) (($ $ |#1|) 116)) (-3082 (($ $) 96) (($ $ $) 121)) (-3070 (($ $ $) 119)) (** (($ $ (-917)) NIL) (($ $ (-767)) 55) (($ $ (-564)) 146)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 94) (($ $ $) 68) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92)))
-(((-355 |#1| |#2|) (-329 |#1|) (-349) (-1166 |#1|)) (T -355))
+((-2439 (*1 *1 *1) (-4 *1 (-349))) (-3637 (*1 *2 *3) (|partial| -12 (-5 *3 (-687 *1)) (-4 *1 (-349)) (-5 *2 (-1262 *1)))) (-1952 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))))) (-1964 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1185 (-919) (-769))))) (-2668 (*1 *1) (-4 *1 (-349))) (-1363 (*1 *1) (-4 *1 (-349))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-769)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-919)))) (-3496 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-402) (-368) (-1148) (-233) (-10 -8 (-15 -2439 ($ $)) (-15 -3637 ((-3 (-1262 $) "failed") (-687 $))) (-15 -1952 ((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564)))))) (-15 -1964 ((-1185 (-919) (-769)) (-564))) (-15 -2668 ($)) (-15 -1363 ($)) (-15 -3424 ((-112) $)) (-15 -2136 ((-769) $)) (-15 -1427 ((-919) $)) (-15 -3496 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) . T) ((-1216) . T))
+((-3814 (((-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) |#1|) 57)) (-3620 (((-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|)))) 55)))
+(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -3620 ((-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))))) (-15 -3814 ((-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))) (-1238 |#1|) (-409 |#1| |#2|)) (T -350))
+((-3814 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *2 (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3620 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *2 (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(-10 -7 (-15 -3620 ((-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))))) (-15 -3814 ((-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-908 |#1|) (-368)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-3212 (((-769)) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) NIL (|has| (-908 |#1|) (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-908 |#1|) "failed") $) NIL)) (-3027 (((-908 |#1|) $) NIL)) (-4221 (($ (-1262 (-908 |#1|))) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-908 |#1|) (-368)))) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-908 |#1|) (-368)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) NIL (|has| (-908 |#1|) (-368)))) (-3424 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-3607 (($ $ (-769)) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368)))) (($ $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-1469 (((-112) $) NIL)) (-1427 (((-919) $) NIL (|has| (-908 |#1|) (-368))) (((-831 (-919)) $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3953 (((-112) $) NIL)) (-3289 (($) NIL (|has| (-908 |#1|) (-368)))) (-3563 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-2218 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-3157 (((-3 $ "failed") $) NIL (|has| (-908 |#1|) (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 (-908 |#1|)) $) NIL) (((-1169 $) $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-1945 (((-919) $) NIL (|has| (-908 |#1|) (-368)))) (-4157 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368)))) (-2891 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-1169 (-908 |#1|)) "failed") $ $) NIL (|has| (-908 |#1|) (-368)))) (-2393 (($ $ (-1169 (-908 |#1|))) NIL (|has| (-908 |#1|) (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-908 |#1|) (-368)) CONST)) (-2047 (($ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-2843 (((-112) $) NIL)) (-4033 (((-1117) $) NIL)) (-3546 (((-1262 (-642 (-2 (|:| -2085 (-908 |#1|)) (|:| -2047 (-1117)))))) NIL)) (-1541 (((-687 (-908 |#1|))) NIL)) (-2185 (($) NIL (|has| (-908 |#1|) (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| (-908 |#1|) (-368)))) (-3643 (((-418 $) $) NIL)) (-1524 (((-831 (-919))) NIL) (((-919)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-769) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-769) "failed") $ $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3474 (((-134)) NIL)) (-3175 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2775 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3280 (((-1169 (-908 |#1|))) NIL)) (-2668 (($) NIL (|has| (-908 |#1|) (-368)))) (-1627 (($) NIL (|has| (-908 |#1|) (-368)))) (-2067 (((-1262 (-908 |#1|)) $) NIL) (((-687 (-908 |#1|)) (-1262 $)) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-908 |#1|) (-368)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-908 |#1|)) NIL)) (-2439 (($ $) NIL (|has| (-908 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-3623 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-4044 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL) (($ $ (-908 |#1|)) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-908 |#1|)) NIL) (($ (-908 |#1|) $) NIL)))
+(((-351 |#1| |#2|) (-13 (-329 (-908 |#1|)) (-10 -7 (-15 -3546 ((-1262 (-642 (-2 (|:| -2085 (-908 |#1|)) (|:| -2047 (-1117))))))) (-15 -1541 ((-687 (-908 |#1|)))) (-15 -3212 ((-769))))) (-919) (-919)) (T -351))
+((-3546 (*1 *2) (-12 (-5 *2 (-1262 (-642 (-2 (|:| -2085 (-908 *3)) (|:| -2047 (-1117)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) (-1541 (*1 *2) (-12 (-5 *2 (-687 (-908 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) (-3212 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-351 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))))
+(-13 (-329 (-908 |#1|)) (-10 -7 (-15 -3546 ((-1262 (-642 (-2 (|:| -2085 (-908 |#1|)) (|:| -2047 (-1117))))))) (-15 -1541 ((-687 (-908 |#1|)))) (-15 -3212 ((-769)))))
+((-2907 (((-112) $ $) 76)) (-2952 (((-112) $) 90)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 ((|#1| $) 108) (($ $ (-919)) 106 (|has| |#1| (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) 177 (|has| |#1| (-368)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-3212 (((-769)) 105)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) 193 (|has| |#1| (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) 130)) (-3027 ((|#1| $) 107)) (-4221 (($ (-1262 |#1|)) 74)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-368)))) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) 189 (|has| |#1| (-368)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) 178 (|has| |#1| (-368)))) (-3424 (((-112) $) NIL (|has| |#1| (-368)))) (-3607 (($ $ (-769)) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1469 (((-112) $) NIL)) (-1427 (((-919) $) NIL (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3953 (((-112) $) NIL)) (-3289 (($) 116 (|has| |#1| (-368)))) (-3563 (((-112) $) 206 (|has| |#1| (-368)))) (-2218 ((|#1| $) 110) (($ $ (-919)) 109 (|has| |#1| (-368)))) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 |#1|) $) 220) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-1945 (((-919) $) 154 (|has| |#1| (-368)))) (-4157 (((-1169 |#1|) $) 89 (|has| |#1| (-368)))) (-2891 (((-1169 |#1|) $) 86 (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) 98 (|has| |#1| (-368)))) (-2393 (($ $ (-1169 |#1|)) 85 (|has| |#1| (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 224)) (-3366 (($) NIL (|has| |#1| (-368)) CONST)) (-2047 (($ (-919)) 157 (|has| |#1| (-368)))) (-2843 (((-112) $) 126)) (-4033 (((-1117) $) NIL)) (-3546 (((-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117)))))) 99)) (-1541 (((-687 |#1|)) 103)) (-2185 (($) 112 (|has| |#1| (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) 180 (|has| |#1| (-368)))) (-3643 (((-418 $) $) NIL)) (-1524 (((-831 (-919))) NIL) (((-919)) 181)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-769) $) NIL (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3474 (((-134)) NIL)) (-3175 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2775 (((-831 (-919)) $) NIL) (((-919) $) 78)) (-3280 (((-1169 |#1|)) 182)) (-2668 (($) 153 (|has| |#1| (-368)))) (-1627 (($) NIL (|has| |#1| (-368)))) (-2067 (((-1262 |#1|) $) 124) (((-687 |#1|) (-1262 $)) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2327 (((-860) $) 146) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 73)) (-2439 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2756 (((-769)) 187 T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) 203) (((-1262 $) (-919)) 119)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) 140 T CONST)) (-2322 (($) 44 T CONST)) (-3623 (($ $) 125 (|has| |#1| (-368))) (($ $ (-769)) 117 (|has| |#1| (-368)))) (-4044 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2872 (((-112) $ $) 214)) (-2998 (($ $ $) 122) (($ $ |#1|) 123)) (-2987 (($ $) 208) (($ $ $) 212)) (-2974 (($ $ $) 210)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 159)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 217) (($ $ $) 171) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121)))
+(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3546 ((-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))))) (-15 -1541 ((-687 |#1|))) (-15 -3212 ((-769))))) (-349) (-3 (-1169 |#1|) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))))) (T -352))
+((-3546 (*1 *2) (-12 (-5 *2 (-1262 (-642 (-2 (|:| -2085 *3) (|:| -2047 (-1117)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1169 *3) *2)))) (-1541 (*1 *2) (-12 (-5 *2 (-687 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1169 *3) (-1262 (-642 (-2 (|:| -2085 *3) (|:| -2047 (-1117))))))))) (-3212 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1169 *3) (-1262 (-642 (-2 (|:| -2085 *3) (|:| -2047 (-1117))))))))))
+(-13 (-329 |#1|) (-10 -7 (-15 -3546 ((-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))))) (-15 -1541 ((-687 |#1|))) (-15 -3212 ((-769)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| |#1| (-368)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-3212 (((-769)) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) NIL (|has| |#1| (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-4221 (($ (-1262 |#1|)) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| |#1| (-368)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) NIL (|has| |#1| (-368)))) (-3424 (((-112) $) NIL (|has| |#1| (-368)))) (-3607 (($ $ (-769)) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1469 (((-112) $) NIL)) (-1427 (((-919) $) NIL (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3953 (((-112) $) NIL)) (-3289 (($) NIL (|has| |#1| (-368)))) (-3563 (((-112) $) NIL (|has| |#1| (-368)))) (-2218 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 |#1|) $) NIL) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-1945 (((-919) $) NIL (|has| |#1| (-368)))) (-4157 (((-1169 |#1|) $) NIL (|has| |#1| (-368)))) (-2891 (((-1169 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2393 (($ $ (-1169 |#1|)) NIL (|has| |#1| (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| |#1| (-368)) CONST)) (-2047 (($ (-919)) NIL (|has| |#1| (-368)))) (-2843 (((-112) $) NIL)) (-4033 (((-1117) $) NIL)) (-3546 (((-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117)))))) NIL)) (-1541 (((-687 |#1|)) NIL)) (-2185 (($) NIL (|has| |#1| (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| |#1| (-368)))) (-3643 (((-418 $) $) NIL)) (-1524 (((-831 (-919))) NIL) (((-919)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-769) $) NIL (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3474 (((-134)) NIL)) (-3175 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2775 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3280 (((-1169 |#1|)) NIL)) (-2668 (($) NIL (|has| |#1| (-368)))) (-1627 (($) NIL (|has| |#1| (-368)))) (-2067 (((-1262 |#1|) $) NIL) (((-687 |#1|) (-1262 $)) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2439 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-3623 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-4044 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3546 ((-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))))) (-15 -1541 ((-687 |#1|))) (-15 -3212 ((-769))))) (-349) (-919)) (T -353))
+((-3546 (*1 *2) (-12 (-5 *2 (-1262 (-642 (-2 (|:| -2085 *3) (|:| -2047 (-1117)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-919)))) (-1541 (*1 *2) (-12 (-5 *2 (-687 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-919)))) (-3212 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-919)))))
+(-13 (-329 |#1|) (-10 -7 (-15 -3546 ((-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))))) (-15 -1541 ((-687 |#1|))) (-15 -3212 ((-769)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-908 |#1|) (-368)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) NIL (|has| (-908 |#1|) (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-908 |#1|) "failed") $) NIL)) (-3027 (((-908 |#1|) $) NIL)) (-4221 (($ (-1262 (-908 |#1|))) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-908 |#1|) (-368)))) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-908 |#1|) (-368)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) NIL (|has| (-908 |#1|) (-368)))) (-3424 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-3607 (($ $ (-769)) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368)))) (($ $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-1469 (((-112) $) NIL)) (-1427 (((-919) $) NIL (|has| (-908 |#1|) (-368))) (((-831 (-919)) $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3953 (((-112) $) NIL)) (-3289 (($) NIL (|has| (-908 |#1|) (-368)))) (-3563 (((-112) $) NIL (|has| (-908 |#1|) (-368)))) (-2218 (((-908 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-3157 (((-3 $ "failed") $) NIL (|has| (-908 |#1|) (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 (-908 |#1|)) $) NIL) (((-1169 $) $ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-1945 (((-919) $) NIL (|has| (-908 |#1|) (-368)))) (-4157 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368)))) (-2891 (((-1169 (-908 |#1|)) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-1169 (-908 |#1|)) "failed") $ $) NIL (|has| (-908 |#1|) (-368)))) (-2393 (($ $ (-1169 (-908 |#1|))) NIL (|has| (-908 |#1|) (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-908 |#1|) (-368)) CONST)) (-2047 (($ (-919)) NIL (|has| (-908 |#1|) (-368)))) (-2843 (((-112) $) NIL)) (-4033 (((-1117) $) NIL)) (-2185 (($) NIL (|has| (-908 |#1|) (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| (-908 |#1|) (-368)))) (-3643 (((-418 $) $) NIL)) (-1524 (((-831 (-919))) NIL) (((-919)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-769) $) NIL (|has| (-908 |#1|) (-368))) (((-3 (-769) "failed") $ $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-3474 (((-134)) NIL)) (-3175 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2775 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3280 (((-1169 (-908 |#1|))) NIL)) (-2668 (($) NIL (|has| (-908 |#1|) (-368)))) (-1627 (($) NIL (|has| (-908 |#1|) (-368)))) (-2067 (((-1262 (-908 |#1|)) $) NIL) (((-687 (-908 |#1|)) (-1262 $)) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-908 |#1|) (-368)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-908 |#1|)) NIL)) (-2439 (($ $) NIL (|has| (-908 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2706 (|has| (-908 |#1|) (-145)) (|has| (-908 |#1|) (-368))))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-3623 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-4044 (($ $) NIL (|has| (-908 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-908 |#1|) (-368)))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL) (($ $ (-908 |#1|)) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-908 |#1|)) NIL) (($ (-908 |#1|) $) NIL)))
+(((-354 |#1| |#2|) (-329 (-908 |#1|)) (-919) (-919)) (T -354))
+NIL
+(-329 (-908 |#1|))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) 135 (|has| |#1| (-368)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) 165 (|has| |#1| (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) 109)) (-3027 ((|#1| $) 106)) (-4221 (($ (-1262 |#1|)) 101)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-368)))) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) 98 (|has| |#1| (-368)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) 51 (|has| |#1| (-368)))) (-3424 (((-112) $) NIL (|has| |#1| (-368)))) (-3607 (($ $ (-769)) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1469 (((-112) $) NIL)) (-1427 (((-919) $) NIL (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3953 (((-112) $) NIL)) (-3289 (($) 136 (|has| |#1| (-368)))) (-3563 (((-112) $) 90 (|has| |#1| (-368)))) (-2218 ((|#1| $) 47) (($ $ (-919)) 52 (|has| |#1| (-368)))) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 |#1|) $) 79) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-1945 (((-919) $) 113 (|has| |#1| (-368)))) (-4157 (((-1169 |#1|) $) NIL (|has| |#1| (-368)))) (-2891 (((-1169 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2393 (($ $ (-1169 |#1|)) NIL (|has| |#1| (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| |#1| (-368)) CONST)) (-2047 (($ (-919)) 111 (|has| |#1| (-368)))) (-2843 (((-112) $) 167)) (-4033 (((-1117) $) NIL)) (-2185 (($) 44 (|has| |#1| (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) 130 (|has| |#1| (-368)))) (-3643 (((-418 $) $) NIL)) (-1524 (((-831 (-919))) NIL) (((-919)) 164)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-769) $) NIL (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3474 (((-134)) NIL)) (-3175 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2775 (((-831 (-919)) $) NIL) (((-919) $) 71)) (-3280 (((-1169 |#1|)) 104)) (-2668 (($) 141 (|has| |#1| (-368)))) (-1627 (($) NIL (|has| |#1| (-368)))) (-2067 (((-1262 |#1|) $) 66) (((-687 |#1|) (-1262 $)) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2327 (((-860) $) 163) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-2439 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2756 (((-769)) 169 T CONST)) (-1648 (((-112) $ $) 171)) (-4263 (((-1262 $)) 125) (((-1262 $) (-919)) 60)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) 127 T CONST)) (-2322 (($) 40 T CONST)) (-3623 (($ $) 82 (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-4044 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2872 (((-112) $ $) 123)) (-2998 (($ $ $) 115) (($ $ |#1|) 116)) (-2987 (($ $) 96) (($ $ $) 121)) (-2974 (($ $ $) 119)) (** (($ $ (-919)) NIL) (($ $ (-769)) 55) (($ $ (-564)) 146)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 94) (($ $ $) 68) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92)))
+(((-355 |#1| |#2|) (-329 |#1|) (-349) (-1169 |#1|)) (T -355))
NIL
(-329 |#1|)
-((-1824 ((|#1| (-1166 |#2|)) 64)))
-(((-356 |#1| |#2|) (-10 -7 (-15 -1824 (|#1| (-1166 |#2|)))) (-13 (-402) (-10 -7 (-15 -2423 (|#1| |#2|)) (-15 -3256 ((-917) |#1|)) (-15 -2047 ((-1259 |#1|) (-917))) (-15 -3037 (|#1| |#1|)))) (-349)) (T -356))
-((-1824 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -2423 (*2 *4)) (-15 -3256 ((-917) *2)) (-15 -2047 ((-1259 *2) (-917))) (-15 -3037 (*2 *2))))) (-5 *1 (-356 *2 *4)))))
-(-10 -7 (-15 -1824 (|#1| (-1166 |#2|))))
-((-1963 (((-954 (-1166 |#1|)) (-1166 |#1|)) 53)) (-2534 (((-1166 |#1|) (-917) (-917)) 165) (((-1166 |#1|) (-917)) 162)) (-1436 (((-112) (-1166 |#1|)) 119)) (-1365 (((-917) (-917)) 98)) (-1705 (((-917) (-917)) 105)) (-3318 (((-917) (-917)) 96)) (-3164 (((-112) (-1166 |#1|)) 123)) (-1688 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 147)) (-4314 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 152)) (-3684 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 151)) (-4058 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 150)) (-1621 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 143)) (-2841 (((-1166 |#1|) (-1166 |#1|)) 84)) (-2709 (((-1166 |#1|) (-917)) 157)) (-2676 (((-1166 |#1|) (-917)) 160)) (-1981 (((-1166 |#1|) (-917)) 159)) (-3488 (((-1166 |#1|) (-917)) 158)) (-1703 (((-1166 |#1|) (-917)) 155)))
-(((-357 |#1|) (-10 -7 (-15 -1436 ((-112) (-1166 |#1|))) (-15 -3164 ((-112) (-1166 |#1|))) (-15 -3318 ((-917) (-917))) (-15 -1365 ((-917) (-917))) (-15 -1705 ((-917) (-917))) (-15 -1703 ((-1166 |#1|) (-917))) (-15 -2709 ((-1166 |#1|) (-917))) (-15 -3488 ((-1166 |#1|) (-917))) (-15 -1981 ((-1166 |#1|) (-917))) (-15 -2676 ((-1166 |#1|) (-917))) (-15 -1621 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1688 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -4058 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -3684 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -4314 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2534 ((-1166 |#1|) (-917))) (-15 -2534 ((-1166 |#1|) (-917) (-917))) (-15 -2841 ((-1166 |#1|) (-1166 |#1|))) (-15 -1963 ((-954 (-1166 |#1|)) (-1166 |#1|)))) (-349)) (T -357))
-((-1963 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-954 (-1166 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1166 *4)))) (-2841 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2534 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4314 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3684 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-4058 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1688 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1621 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1705 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))))
-(-10 -7 (-15 -1436 ((-112) (-1166 |#1|))) (-15 -3164 ((-112) (-1166 |#1|))) (-15 -3318 ((-917) (-917))) (-15 -1365 ((-917) (-917))) (-15 -1705 ((-917) (-917))) (-15 -1703 ((-1166 |#1|) (-917))) (-15 -2709 ((-1166 |#1|) (-917))) (-15 -3488 ((-1166 |#1|) (-917))) (-15 -1981 ((-1166 |#1|) (-917))) (-15 -2676 ((-1166 |#1|) (-917))) (-15 -1621 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1688 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -4058 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -3684 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -4314 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2534 ((-1166 |#1|) (-917))) (-15 -2534 ((-1166 |#1|) (-917) (-917))) (-15 -2841 ((-1166 |#1|) (-1166 |#1|))) (-15 -1963 ((-954 (-1166 |#1|)) (-1166 |#1|))))
-((-4192 (((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|) 41)))
-(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -4192 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -358))
-((-4192 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))))
-(-10 -7 (-15 -4192 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| |#1| (-368)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) NIL (|has| |#1| (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-3474 (($ (-1259 |#1|)) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| |#1| (-368)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) NIL (|has| |#1| (-368)))) (-1436 (((-112) $) NIL (|has| |#1| (-368)))) (-3456 (($ $ (-767)) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1339 (((-112) $) NIL)) (-3744 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4112 (((-112) $) NIL)) (-2908 (($) NIL (|has| |#1| (-368)))) (-3164 (((-112) $) NIL (|has| |#1| (-368)))) (-2499 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3256 (((-917) $) NIL (|has| |#1| (-368)))) (-2820 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-4372 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3606 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| |#1| (-368)) CONST)) (-2083 (($ (-917)) NIL (|has| |#1| (-368)))) (-2695 (((-112) $) NIL)) (-4052 (((-1114) $) NIL)) (-2249 (($) NIL (|has| |#1| (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| |#1| (-368)))) (-3688 (((-418 $) $) NIL)) (-1967 (((-829 (-917))) NIL) (((-917)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4327 (((-134)) NIL)) (-3254 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1568 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3721 (((-1166 |#1|)) NIL)) (-3826 (($) NIL (|has| |#1| (-368)))) (-1930 (($) NIL (|has| |#1| (-368)))) (-4225 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2420 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-3037 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4063 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-359 |#1| |#2|) (-329 |#1|) (-349) (-917)) (T -359))
+((-4300 ((|#1| (-1169 |#2|)) 64)))
+(((-356 |#1| |#2|) (-10 -7 (-15 -4300 (|#1| (-1169 |#2|)))) (-13 (-402) (-10 -7 (-15 -2327 (|#1| |#2|)) (-15 -1945 ((-919) |#1|)) (-15 -4263 ((-1262 |#1|) (-919))) (-15 -3623 (|#1| |#1|)))) (-349)) (T -356))
+((-4300 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -2327 (*2 *4)) (-15 -1945 ((-919) *2)) (-15 -4263 ((-1262 *2) (-919))) (-15 -3623 (*2 *2))))) (-5 *1 (-356 *2 *4)))))
+(-10 -7 (-15 -4300 (|#1| (-1169 |#2|))))
+((-1334 (((-956 (-1169 |#1|)) (-1169 |#1|)) 53)) (-2433 (((-1169 |#1|) (-919) (-919)) 165) (((-1169 |#1|) (-919)) 162)) (-3424 (((-112) (-1169 |#1|)) 119)) (-2366 (((-919) (-919)) 98)) (-4379 (((-919) (-919)) 105)) (-3577 (((-919) (-919)) 96)) (-3563 (((-112) (-1169 |#1|)) 123)) (-1400 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 147)) (-2598 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 152)) (-1613 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 151)) (-2058 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 150)) (-3278 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 143)) (-4328 (((-1169 |#1|) (-1169 |#1|)) 84)) (-3382 (((-1169 |#1|) (-919)) 157)) (-2335 (((-1169 |#1|) (-919)) 160)) (-2027 (((-1169 |#1|) (-919)) 159)) (-2855 (((-1169 |#1|) (-919)) 158)) (-2941 (((-1169 |#1|) (-919)) 155)))
+(((-357 |#1|) (-10 -7 (-15 -3424 ((-112) (-1169 |#1|))) (-15 -3563 ((-112) (-1169 |#1|))) (-15 -3577 ((-919) (-919))) (-15 -2366 ((-919) (-919))) (-15 -4379 ((-919) (-919))) (-15 -2941 ((-1169 |#1|) (-919))) (-15 -3382 ((-1169 |#1|) (-919))) (-15 -2855 ((-1169 |#1|) (-919))) (-15 -2027 ((-1169 |#1|) (-919))) (-15 -2335 ((-1169 |#1|) (-919))) (-15 -3278 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -1400 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -2058 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -1613 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -2598 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -2433 ((-1169 |#1|) (-919))) (-15 -2433 ((-1169 |#1|) (-919) (-919))) (-15 -4328 ((-1169 |#1|) (-1169 |#1|))) (-15 -1334 ((-956 (-1169 |#1|)) (-1169 |#1|)))) (-349)) (T -357))
+((-1334 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-956 (-1169 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1169 *4)))) (-4328 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2433 (*1 *2 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2598 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1613 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2058 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1400 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3278 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4379 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))))
+(-10 -7 (-15 -3424 ((-112) (-1169 |#1|))) (-15 -3563 ((-112) (-1169 |#1|))) (-15 -3577 ((-919) (-919))) (-15 -2366 ((-919) (-919))) (-15 -4379 ((-919) (-919))) (-15 -2941 ((-1169 |#1|) (-919))) (-15 -3382 ((-1169 |#1|) (-919))) (-15 -2855 ((-1169 |#1|) (-919))) (-15 -2027 ((-1169 |#1|) (-919))) (-15 -2335 ((-1169 |#1|) (-919))) (-15 -3278 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -1400 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -2058 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -1613 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -2598 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -2433 ((-1169 |#1|) (-919))) (-15 -2433 ((-1169 |#1|) (-919) (-919))) (-15 -4328 ((-1169 |#1|) (-1169 |#1|))) (-15 -1334 ((-956 (-1169 |#1|)) (-1169 |#1|))))
+((-4094 (((-3 (-642 |#3|) "failed") (-642 |#3|) |#3|) 41)))
+(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -4094 ((-3 (-642 |#3|) "failed") (-642 |#3|) |#3|))) (-349) (-1238 |#1|) (-1238 |#2|)) (T -358))
+((-4094 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))))
+(-10 -7 (-15 -4094 ((-3 (-642 |#3|) "failed") (-642 |#3|) |#3|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| |#1| (-368)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) NIL (|has| |#1| (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-4221 (($ (-1262 |#1|)) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| |#1| (-368)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) NIL (|has| |#1| (-368)))) (-3424 (((-112) $) NIL (|has| |#1| (-368)))) (-3607 (($ $ (-769)) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1469 (((-112) $) NIL)) (-1427 (((-919) $) NIL (|has| |#1| (-368))) (((-831 (-919)) $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3953 (((-112) $) NIL)) (-3289 (($) NIL (|has| |#1| (-368)))) (-3563 (((-112) $) NIL (|has| |#1| (-368)))) (-2218 ((|#1| $) NIL) (($ $ (-919)) NIL (|has| |#1| (-368)))) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 |#1|) $) NIL) (((-1169 $) $ (-919)) NIL (|has| |#1| (-368)))) (-1945 (((-919) $) NIL (|has| |#1| (-368)))) (-4157 (((-1169 |#1|) $) NIL (|has| |#1| (-368)))) (-2891 (((-1169 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1169 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-2393 (($ $ (-1169 |#1|)) NIL (|has| |#1| (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| |#1| (-368)) CONST)) (-2047 (($ (-919)) NIL (|has| |#1| (-368)))) (-2843 (((-112) $) NIL)) (-4033 (((-1117) $) NIL)) (-2185 (($) NIL (|has| |#1| (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| |#1| (-368)))) (-3643 (((-418 $) $) NIL)) (-1524 (((-831 (-919))) NIL) (((-919)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-769) $) NIL (|has| |#1| (-368))) (((-3 (-769) "failed") $ $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3474 (((-134)) NIL)) (-3175 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2775 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3280 (((-1169 |#1|)) NIL)) (-2668 (($) NIL (|has| |#1| (-368)))) (-1627 (($) NIL (|has| |#1| (-368)))) (-2067 (((-1262 |#1|) $) NIL) (((-687 |#1|) (-1262 $)) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-368)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2439 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-3623 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-4044 (($ $) NIL (|has| |#1| (-368))) (($ $ (-769)) NIL (|has| |#1| (-368)))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-359 |#1| |#2|) (-329 |#1|) (-349) (-919)) (T -359))
NIL
(-329 |#1|)
-((-1622 (((-112) (-641 (-948 |#1|))) 41)) (-1520 (((-641 (-948 |#1|)) (-641 (-948 |#1|))) 53)) (-3008 (((-3 (-641 (-948 |#1|)) "failed") (-641 (-948 |#1|))) 48)))
-(((-360 |#1| |#2|) (-10 -7 (-15 -1622 ((-112) (-641 (-948 |#1|)))) (-15 -3008 ((-3 (-641 (-948 |#1|)) "failed") (-641 (-948 |#1|)))) (-15 -1520 ((-641 (-948 |#1|)) (-641 (-948 |#1|))))) (-452) (-641 (-1170))) (T -360))
-((-1520 (*1 *2 *2) (-12 (-5 *2 (-641 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-3008 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170))))))
-(-10 -7 (-15 -1622 ((-112) (-641 (-948 |#1|)))) (-15 -3008 ((-3 (-641 (-948 |#1|)) "failed") (-641 (-948 |#1|)))) (-15 -1520 ((-641 (-948 |#1|)) (-641 (-948 |#1|)))))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767) $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) 17)) (-4375 ((|#1| $ (-564)) NIL)) (-1325 (((-564) $ (-564)) NIL)) (-2700 (($ (-1 |#1| |#1|) $) 34)) (-2320 (($ (-1 (-564) (-564)) $) 26)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 28)) (-4052 (((-1114) $) NIL)) (-1572 (((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-564)))) $) 30)) (-3185 (($ $ $) NIL)) (-1542 (($ $ $) NIL)) (-2423 (((-858) $) 40) (($ |#1|) NIL)) (-1860 (((-112) $ $) NIL)) (-2417 (($) 11 T CONST)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL) (($ |#1| (-564)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
-(((-361 |#1|) (-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -2622 ((-767) $)) (-15 -1325 ((-564) $ (-564))) (-15 -4375 (|#1| $ (-564))) (-15 -2320 ($ (-1 (-564) (-564)) $)) (-15 -2700 ($ (-1 |#1| |#1|) $)) (-15 -1572 ((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-564)))) $)))) (-1094)) (T -361))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-1325 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-4375 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-2320 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-2700 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 (-564))))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))))
-(-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -2622 ((-767) $)) (-15 -1325 ((-564) $ (-564))) (-15 -4375 (|#1| $ (-564))) (-15 -2320 ($ (-1 (-564) (-564)) $)) (-15 -2700 ($ (-1 |#1| |#1|) $)) (-15 -1572 ((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-564)))) $))))
-((-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 13)) (-3063 (($ $) 14)) (-2753 (((-418 $) $) 34)) (-1339 (((-112) $) 30)) (-3936 (($ $) 19)) (-2123 (($ $ $) 25) (($ (-641 $)) NIL)) (-3688 (((-418 $) $) 35)) (-2998 (((-3 $ "failed") $ $) 24)) (-1700 (((-767) $) 28)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 39)) (-2119 (((-112) $ $) 16)) (-3092 (($ $ $) 37)))
-(((-362 |#1|) (-10 -8 (-15 -3092 (|#1| |#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -1339 ((-112) |#1|)) (-15 -2753 ((-418 |#1|) |#1|)) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -1389 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -1700 ((-767) |#1|)) (-15 -2123 (|#1| (-641 |#1|))) (-15 -2123 (|#1| |#1| |#1|)) (-15 -2119 ((-112) |#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -1660 ((-2 (|:| -2885 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362))
-NIL
-(-10 -8 (-15 -3092 (|#1| |#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -1339 ((-112) |#1|)) (-15 -2753 ((-418 |#1|) |#1|)) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -1389 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -1700 ((-767) |#1|)) (-15 -2123 (|#1| (-641 |#1|))) (-15 -2123 (|#1| |#1| |#1|)) (-15 -2119 ((-112) |#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -1660 ((-2 (|:| -2885 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 75)) (-2753 (((-418 $) $) 74)) (-3162 (((-112) $ $) 61)) (-4080 (($) 18 T CONST)) (-2946 (($ $ $) 57)) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-1339 (((-112) $) 73)) (-4112 (((-112) $) 32)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 72)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-3688 (((-418 $) $) 76)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-1700 (((-767) $) 60)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-407 (-564))) 68)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 67)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 70) (($ (-407 (-564)) $) 69)))
+((-4235 (((-112) (-642 (-950 |#1|))) 41)) (-2128 (((-642 (-950 |#1|)) (-642 (-950 |#1|))) 53)) (-1689 (((-3 (-642 (-950 |#1|)) "failed") (-642 (-950 |#1|))) 48)))
+(((-360 |#1| |#2|) (-10 -7 (-15 -4235 ((-112) (-642 (-950 |#1|)))) (-15 -1689 ((-3 (-642 (-950 |#1|)) "failed") (-642 (-950 |#1|)))) (-15 -2128 ((-642 (-950 |#1|)) (-642 (-950 |#1|))))) (-452) (-642 (-1173))) (T -360))
+((-2128 (*1 *2 *2) (-12 (-5 *2 (-642 (-950 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-642 (-1173))))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-642 (-950 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-642 (-1173))))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-642 (-1173))))))
+(-10 -7 (-15 -4235 ((-112) (-642 (-950 |#1|)))) (-15 -1689 ((-3 (-642 (-950 |#1|)) "failed") (-642 (-950 |#1|)))) (-15 -2128 ((-642 (-950 |#1|)) (-642 (-950 |#1|)))))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769) $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) 17)) (-2123 ((|#1| $ (-564)) NIL)) (-2659 (((-564) $ (-564)) NIL)) (-4317 (($ (-1 |#1| |#1|) $) 34)) (-2733 (($ (-1 (-564) (-564)) $) 26)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 28)) (-4033 (((-1117) $) NIL)) (-2649 (((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-564)))) $) 30)) (-1389 (($ $ $) NIL)) (-3759 (($ $ $) NIL)) (-2327 (((-860) $) 40) (($ |#1|) NIL)) (-1648 (((-112) $ $) NIL)) (-2322 (($) 11 T CONST)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL) (($ |#1| (-564)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
+(((-361 |#1|) (-13 (-473) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -2521 ((-769) $)) (-15 -2659 ((-564) $ (-564))) (-15 -2123 (|#1| $ (-564))) (-15 -2733 ($ (-1 (-564) (-564)) $)) (-15 -4317 ($ (-1 |#1| |#1|) $)) (-15 -2649 ((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-564)))) $)))) (-1097)) (T -361))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1097)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1097)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1097)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-361 *3)) (-4 *3 (-1097)))) (-2659 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1097)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1097)))) (-2733 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1097)))) (-4317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-361 *3)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 (-564))))) (-5 *1 (-361 *3)) (-4 *3 (-1097)))))
+(-13 (-473) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -2521 ((-769) $)) (-15 -2659 ((-564) $ (-564))) (-15 -2123 (|#1| $ (-564))) (-15 -2733 ($ (-1 (-564) (-564)) $)) (-15 -4317 ($ (-1 |#1| |#1|) $)) (-15 -2649 ((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-564)))) $))))
+((-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 13)) (-1387 (($ $) 14)) (-1978 (((-418 $) $) 34)) (-1469 (((-112) $) 30)) (-3911 (($ $) 19)) (-2080 (($ $ $) 25) (($ (-642 $)) NIL)) (-3643 (((-418 $) $) 35)) (-2896 (((-3 $ "failed") $ $) 24)) (-2048 (((-769) $) 28)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 39)) (-2103 (((-112) $ $) 16)) (-2998 (($ $ $) 37)))
+(((-362 |#1|) (-10 -8 (-15 -2998 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -1469 ((-112) |#1|)) (-15 -1978 ((-418 |#1|) |#1|)) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -4376 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -2048 ((-769) |#1|)) (-15 -2080 (|#1| (-642 |#1|))) (-15 -2080 (|#1| |#1| |#1|)) (-15 -2103 ((-112) |#1| |#1|)) (-15 -1387 (|#1| |#1|)) (-15 -4039 ((-2 (|:| -3587 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362))
+NIL
+(-10 -8 (-15 -2998 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -1469 ((-112) |#1|)) (-15 -1978 ((-418 |#1|) |#1|)) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -4376 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -2048 ((-769) |#1|)) (-15 -2080 (|#1| (-642 |#1|))) (-15 -2080 (|#1| |#1| |#1|)) (-15 -2103 ((-112) |#1| |#1|)) (-15 -1387 (|#1| |#1|)) (-15 -4039 ((-2 (|:| -3587 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 81)) (-1978 (((-418 $) $) 80)) (-4010 (((-112) $ $) 65)) (-1976 (($) 18 T CONST)) (-2845 (($ $ $) 61)) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-1469 (((-112) $) 79)) (-3953 (((-112) $) 35)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 78)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-3643 (((-418 $) $) 82)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2048 (((-769) $) 64)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 73)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75)))
(((-363) (-140)) (T -363))
-((-3092 (*1 *1 *1 *1) (-4 *1 (-363))))
-(-13 (-307) (-1213) (-243) (-10 -8 (-15 -3092 ($ $ $)) (-6 -4405) (-6 -4399)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-3009 (((-112) $ $) 7)) (-4079 ((|#2| $ |#2|) 14)) (-3871 (($ $ (-1152)) 19)) (-1676 ((|#2| $) 15)) (-2319 (($ |#1|) 21) (($ |#1| (-1152)) 20)) (-2562 ((|#1| $) 17)) (-2766 (((-1152) $) 10)) (-2058 (((-1152) $) 16)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-3179 (($ $) 18)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
-(((-364 |#1| |#2|) (-140) (-1094) (-1094)) (T -364))
-((-2319 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-2319 (*1 *1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094)) (-4 *4 (-1094)))) (-3871 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-2562 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-1152)))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-4079 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -2319 ($ |t#1|)) (-15 -2319 ($ |t#1| (-1152))) (-15 -3871 ($ $ (-1152))) (-15 -3179 ($ $)) (-15 -2562 (|t#1| $)) (-15 -2058 ((-1152) $)) (-15 -1676 (|t#2| $)) (-15 -4079 (|t#2| $ |t#2|))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-4079 ((|#1| $ |#1|) 31)) (-3871 (($ $ (-1152)) 23)) (-3687 (((-3 |#1| "failed") $) 30)) (-1676 ((|#1| $) 28)) (-2319 (($ (-388)) 22) (($ (-388) (-1152)) 21)) (-2562 (((-388) $) 25)) (-2766 (((-1152) $) NIL)) (-2058 (((-1152) $) 26)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 20)) (-3179 (($ $) 24)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 19)))
-(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -3687 ((-3 |#1| "failed") $)))) (-1094)) (T -365))
-((-3687 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094)))))
-(-13 (-364 (-388) |#1|) (-10 -8 (-15 -3687 ((-3 |#1| "failed") $))))
-((-1472 (((-1259 (-685 |#2|)) (-1259 $)) 70)) (-1955 (((-685 |#2|) (-1259 $)) 141)) (-1774 ((|#2| $) 39)) (-1765 (((-685 |#2|) $ (-1259 $)) 144)) (-4015 (((-3 $ "failed") $) 91)) (-2335 ((|#2| $) 42)) (-2140 (((-1166 |#2|) $) 99)) (-3216 ((|#2| (-1259 $)) 124)) (-2280 (((-1166 |#2|) $) 34)) (-1804 (((-112)) 118)) (-3474 (($ (-1259 |#2|) (-1259 $)) 134)) (-3293 (((-3 $ "failed") $) 95)) (-3502 (((-112)) 112)) (-1506 (((-112)) 107)) (-1873 (((-112)) 61)) (-3803 (((-685 |#2|) (-1259 $)) 139)) (-2415 ((|#2| $) 38)) (-2069 (((-685 |#2|) $ (-1259 $)) 143)) (-2378 (((-3 $ "failed") $) 89)) (-3188 ((|#2| $) 41)) (-2739 (((-1166 |#2|) $) 98)) (-1960 ((|#2| (-1259 $)) 122)) (-4254 (((-1166 |#2|) $) 32)) (-3172 (((-112)) 117)) (-4312 (((-112)) 109)) (-2654 (((-112)) 59)) (-3642 (((-112)) 104)) (-3353 (((-112)) 119)) (-4225 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 130)) (-2151 (((-112)) 115)) (-2363 (((-641 (-1259 |#2|))) 103)) (-2846 (((-112)) 116)) (-2620 (((-112)) 113)) (-2896 (((-112)) 54)) (-4103 (((-112)) 120)))
-(((-366 |#1| |#2|) (-10 -8 (-15 -2140 ((-1166 |#2|) |#1|)) (-15 -2739 ((-1166 |#2|) |#1|)) (-15 -2363 ((-641 (-1259 |#2|)))) (-15 -4015 ((-3 |#1| "failed") |#1|)) (-15 -2378 ((-3 |#1| "failed") |#1|)) (-15 -3293 ((-3 |#1| "failed") |#1|)) (-15 -1506 ((-112))) (-15 -4312 ((-112))) (-15 -3502 ((-112))) (-15 -2654 ((-112))) (-15 -1873 ((-112))) (-15 -3642 ((-112))) (-15 -4103 ((-112))) (-15 -3353 ((-112))) (-15 -1804 ((-112))) (-15 -3172 ((-112))) (-15 -2896 ((-112))) (-15 -2846 ((-112))) (-15 -2620 ((-112))) (-15 -2151 ((-112))) (-15 -2280 ((-1166 |#2|) |#1|)) (-15 -4254 ((-1166 |#2|) |#1|)) (-15 -1955 ((-685 |#2|) (-1259 |#1|))) (-15 -3803 ((-685 |#2|) (-1259 |#1|))) (-15 -3216 (|#2| (-1259 |#1|))) (-15 -1960 (|#2| (-1259 |#1|))) (-15 -3474 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2335 (|#2| |#1|)) (-15 -3188 (|#2| |#1|)) (-15 -1774 (|#2| |#1|)) (-15 -2415 (|#2| |#1|)) (-15 -1765 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2069 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1472 ((-1259 (-685 |#2|)) (-1259 |#1|)))) (-367 |#2|) (-172)) (T -366))
-((-2151 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2620 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2846 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2896 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3172 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1804 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3353 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4103 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3642 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1873 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2654 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3502 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4312 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1506 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2363 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))))
-(-10 -8 (-15 -2140 ((-1166 |#2|) |#1|)) (-15 -2739 ((-1166 |#2|) |#1|)) (-15 -2363 ((-641 (-1259 |#2|)))) (-15 -4015 ((-3 |#1| "failed") |#1|)) (-15 -2378 ((-3 |#1| "failed") |#1|)) (-15 -3293 ((-3 |#1| "failed") |#1|)) (-15 -1506 ((-112))) (-15 -4312 ((-112))) (-15 -3502 ((-112))) (-15 -2654 ((-112))) (-15 -1873 ((-112))) (-15 -3642 ((-112))) (-15 -4103 ((-112))) (-15 -3353 ((-112))) (-15 -1804 ((-112))) (-15 -3172 ((-112))) (-15 -2896 ((-112))) (-15 -2846 ((-112))) (-15 -2620 ((-112))) (-15 -2151 ((-112))) (-15 -2280 ((-1166 |#2|) |#1|)) (-15 -4254 ((-1166 |#2|) |#1|)) (-15 -1955 ((-685 |#2|) (-1259 |#1|))) (-15 -3803 ((-685 |#2|) (-1259 |#1|))) (-15 -3216 (|#2| (-1259 |#1|))) (-15 -1960 (|#2| (-1259 |#1|))) (-15 -3474 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2335 (|#2| |#1|)) (-15 -3188 (|#2| |#1|)) (-15 -1774 (|#2| |#1|)) (-15 -2415 (|#2| |#1|)) (-15 -1765 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2069 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1472 ((-1259 (-685 |#2|)) (-1259 |#1|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-2885 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-4012 (((-3 $ "failed") $ $) 20)) (-1472 (((-1259 (-685 |#1|)) (-1259 $)) 79)) (-1336 (((-1259 $)) 82)) (-4080 (($) 18 T CONST)) (-1441 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-3436 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-1955 (((-685 |#1|) (-1259 $)) 66)) (-1774 ((|#1| $) 75)) (-1765 (((-685 |#1|) $ (-1259 $)) 77)) (-4015 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-3232 (($ $ (-917)) 29)) (-2335 ((|#1| $) 73)) (-2140 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-3216 ((|#1| (-1259 $)) 68)) (-2280 (((-1166 |#1|) $) 64)) (-1804 (((-112)) 58)) (-3474 (($ (-1259 |#1|) (-1259 $)) 70)) (-3293 (((-3 $ "failed") $) 48 (|has| |#1| (-556)))) (-2514 (((-917)) 81)) (-3117 (((-112)) 55)) (-3532 (($ $ (-917)) 34)) (-3502 (((-112)) 51)) (-1506 (((-112)) 49)) (-1873 (((-112)) 53)) (-2330 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) 42 (|has| |#1| (-556)))) (-4005 (((-3 $ "failed")) 40 (|has| |#1| (-556)))) (-3803 (((-685 |#1|) (-1259 $)) 67)) (-2415 ((|#1| $) 76)) (-2069 (((-685 |#1|) $ (-1259 $)) 78)) (-2378 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-2105 (($ $ (-917)) 30)) (-3188 ((|#1| $) 74)) (-2739 (((-1166 |#1|) $) 44 (|has| |#1| (-556)))) (-1960 ((|#1| (-1259 $)) 69)) (-4254 (((-1166 |#1|) $) 65)) (-3172 (((-112)) 59)) (-2766 (((-1152) $) 10)) (-4312 (((-112)) 50)) (-2654 (((-112)) 52)) (-3642 (((-112)) 54)) (-4052 (((-1114) $) 11)) (-3353 (((-112)) 57)) (-4225 (((-1259 |#1|) $ (-1259 $)) 72) (((-685 |#1|) (-1259 $) (-1259 $)) 71)) (-3620 (((-641 (-948 |#1|)) (-1259 $)) 80)) (-1542 (($ $ $) 26)) (-2151 (((-112)) 63)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2363 (((-641 (-1259 |#1|))) 45 (|has| |#1| (-556)))) (-3099 (($ $ $ $) 27)) (-2846 (((-112)) 61)) (-3163 (($ $ $) 25)) (-2620 (((-112)) 62)) (-2896 (((-112)) 60)) (-4103 (((-112)) 56)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 31)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 28) (($ $ |#1|) 36) (($ |#1| $) 35)))
+((-2998 (*1 *1 *1 *1) (-4 *1 (-363))))
+(-13 (-307) (-1216) (-243) (-10 -8 (-15 -2998 ($ $ $)) (-6 -4408) (-6 -4402)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T))
+((-2907 (((-112) $ $) 7)) (-4143 ((|#2| $ |#2|) 14)) (-2371 (($ $ (-1155)) 19)) (-3213 ((|#2| $) 15)) (-2241 (($ |#1|) 21) (($ |#1| (-1155)) 20)) (-2461 ((|#1| $) 17)) (-3315 (((-1155) $) 10)) (-2446 (((-1155) $) 16)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-2528 (($ $) 18)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
+(((-364 |#1| |#2|) (-140) (-1097) (-1097)) (T -364))
+((-2241 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-2241 (*1 *1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1097)) (-4 *4 (-1097)))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1097)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-5 *2 (-1155)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))) (-4143 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))))
+(-13 (-1097) (-10 -8 (-15 -2241 ($ |t#1|)) (-15 -2241 ($ |t#1| (-1155))) (-15 -2371 ($ $ (-1155))) (-15 -2528 ($ $)) (-15 -2461 (|t#1| $)) (-15 -2446 ((-1155) $)) (-15 -3213 (|t#2| $)) (-15 -4143 (|t#2| $ |t#2|))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-4143 ((|#1| $ |#1|) 31)) (-2371 (($ $ (-1155)) 23)) (-2757 (((-3 |#1| "failed") $) 30)) (-3213 ((|#1| $) 28)) (-2241 (($ (-388)) 22) (($ (-388) (-1155)) 21)) (-2461 (((-388) $) 25)) (-3315 (((-1155) $) NIL)) (-2446 (((-1155) $) 26)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 20)) (-2528 (($ $) 24)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 19)))
+(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -2757 ((-3 |#1| "failed") $)))) (-1097)) (T -365))
+((-2757 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1097)))))
+(-13 (-364 (-388) |#1|) (-10 -8 (-15 -2757 ((-3 |#1| "failed") $))))
+((-4361 (((-1262 (-687 |#2|)) (-1262 $)) 70)) (-3043 (((-687 |#2|) (-1262 $)) 141)) (-4280 ((|#2| $) 39)) (-3636 (((-687 |#2|) $ (-1262 $)) 144)) (-2564 (((-3 $ "failed") $) 91)) (-3518 ((|#2| $) 42)) (-2640 (((-1169 |#2|) $) 99)) (-1933 ((|#2| (-1262 $)) 124)) (-3205 (((-1169 |#2|) $) 34)) (-3539 (((-112)) 118)) (-4221 (($ (-1262 |#2|) (-1262 $)) 134)) (-3104 (((-3 $ "failed") $) 95)) (-1734 (((-112)) 112)) (-4041 (((-112)) 107)) (-2289 (((-112)) 61)) (-1499 (((-687 |#2|) (-1262 $)) 139)) (-1490 ((|#2| $) 38)) (-4070 (((-687 |#2|) $ (-1262 $)) 143)) (-4125 (((-3 $ "failed") $) 89)) (-2034 ((|#2| $) 41)) (-3720 (((-1169 |#2|) $) 98)) (-1617 ((|#2| (-1262 $)) 122)) (-1769 (((-1169 |#2|) $) 32)) (-3573 (((-112)) 117)) (-2443 (((-112)) 109)) (-2038 (((-112)) 59)) (-2152 (((-112)) 104)) (-2682 (((-112)) 119)) (-2067 (((-1262 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) (-1262 $) (-1262 $)) 130)) (-1953 (((-112)) 115)) (-1309 (((-642 (-1262 |#2|))) 103)) (-1349 (((-112)) 116)) (-3459 (((-112)) 113)) (-4171 (((-112)) 54)) (-1579 (((-112)) 120)))
+(((-366 |#1| |#2|) (-10 -8 (-15 -2640 ((-1169 |#2|) |#1|)) (-15 -3720 ((-1169 |#2|) |#1|)) (-15 -1309 ((-642 (-1262 |#2|)))) (-15 -2564 ((-3 |#1| "failed") |#1|)) (-15 -4125 ((-3 |#1| "failed") |#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 -4041 ((-112))) (-15 -2443 ((-112))) (-15 -1734 ((-112))) (-15 -2038 ((-112))) (-15 -2289 ((-112))) (-15 -2152 ((-112))) (-15 -1579 ((-112))) (-15 -2682 ((-112))) (-15 -3539 ((-112))) (-15 -3573 ((-112))) (-15 -4171 ((-112))) (-15 -1349 ((-112))) (-15 -3459 ((-112))) (-15 -1953 ((-112))) (-15 -3205 ((-1169 |#2|) |#1|)) (-15 -1769 ((-1169 |#2|) |#1|)) (-15 -3043 ((-687 |#2|) (-1262 |#1|))) (-15 -1499 ((-687 |#2|) (-1262 |#1|))) (-15 -1933 (|#2| (-1262 |#1|))) (-15 -1617 (|#2| (-1262 |#1|))) (-15 -4221 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -3518 (|#2| |#1|)) (-15 -2034 (|#2| |#1|)) (-15 -4280 (|#2| |#1|)) (-15 -1490 (|#2| |#1|)) (-15 -3636 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -4070 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -4361 ((-1262 (-687 |#2|)) (-1262 |#1|)))) (-367 |#2|) (-172)) (T -366))
+((-1953 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3459 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1349 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4171 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3573 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3539 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2682 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1579 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2152 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2289 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2038 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1734 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2443 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4041 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1309 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-642 (-1262 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))))
+(-10 -8 (-15 -2640 ((-1169 |#2|) |#1|)) (-15 -3720 ((-1169 |#2|) |#1|)) (-15 -1309 ((-642 (-1262 |#2|)))) (-15 -2564 ((-3 |#1| "failed") |#1|)) (-15 -4125 ((-3 |#1| "failed") |#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 -4041 ((-112))) (-15 -2443 ((-112))) (-15 -1734 ((-112))) (-15 -2038 ((-112))) (-15 -2289 ((-112))) (-15 -2152 ((-112))) (-15 -1579 ((-112))) (-15 -2682 ((-112))) (-15 -3539 ((-112))) (-15 -3573 ((-112))) (-15 -4171 ((-112))) (-15 -1349 ((-112))) (-15 -3459 ((-112))) (-15 -1953 ((-112))) (-15 -3205 ((-1169 |#2|) |#1|)) (-15 -1769 ((-1169 |#2|) |#1|)) (-15 -3043 ((-687 |#2|) (-1262 |#1|))) (-15 -1499 ((-687 |#2|) (-1262 |#1|))) (-15 -1933 (|#2| (-1262 |#1|))) (-15 -1617 (|#2| (-1262 |#1|))) (-15 -4221 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -3518 (|#2| |#1|)) (-15 -2034 (|#2| |#1|)) (-15 -4280 (|#2| |#1|)) (-15 -1490 (|#2| |#1|)) (-15 -3636 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -4070 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -4361 ((-1262 (-687 |#2|)) (-1262 |#1|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3587 (((-3 $ "failed")) 42 (|has| |#1| (-556)))) (-1532 (((-3 $ "failed") $ $) 20)) (-4361 (((-1262 (-687 |#1|)) (-1262 $)) 83)) (-2954 (((-1262 $)) 86)) (-1976 (($) 18 T CONST)) (-2074 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) 45 (|has| |#1| (-556)))) (-2093 (((-3 $ "failed")) 43 (|has| |#1| (-556)))) (-3043 (((-687 |#1|) (-1262 $)) 70)) (-4280 ((|#1| $) 79)) (-3636 (((-687 |#1|) $ (-1262 $)) 81)) (-2564 (((-3 $ "failed") $) 50 (|has| |#1| (-556)))) (-2013 (($ $ (-919)) 31)) (-3518 ((|#1| $) 77)) (-2640 (((-1169 |#1|) $) 47 (|has| |#1| (-556)))) (-1933 ((|#1| (-1262 $)) 72)) (-3205 (((-1169 |#1|) $) 68)) (-3539 (((-112)) 62)) (-4221 (($ (-1262 |#1|) (-1262 $)) 74)) (-3104 (((-3 $ "failed") $) 52 (|has| |#1| (-556)))) (-2414 (((-919)) 85)) (-1422 (((-112)) 59)) (-3285 (($ $ (-919)) 38)) (-1734 (((-112)) 55)) (-4041 (((-112)) 53)) (-2289 (((-112)) 57)) (-3250 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) 46 (|has| |#1| (-556)))) (-1306 (((-3 $ "failed")) 44 (|has| |#1| (-556)))) (-1499 (((-687 |#1|) (-1262 $)) 71)) (-1490 ((|#1| $) 80)) (-4070 (((-687 |#1|) $ (-1262 $)) 82)) (-4125 (((-3 $ "failed") $) 51 (|has| |#1| (-556)))) (-1522 (($ $ (-919)) 32)) (-2034 ((|#1| $) 78)) (-3720 (((-1169 |#1|) $) 48 (|has| |#1| (-556)))) (-1617 ((|#1| (-1262 $)) 73)) (-1769 (((-1169 |#1|) $) 69)) (-3573 (((-112)) 63)) (-3315 (((-1155) $) 10)) (-2443 (((-112)) 54)) (-2038 (((-112)) 56)) (-2152 (((-112)) 58)) (-4033 (((-1117) $) 11)) (-2682 (((-112)) 61)) (-2067 (((-1262 |#1|) $ (-1262 $)) 76) (((-687 |#1|) (-1262 $) (-1262 $)) 75)) (-2815 (((-642 (-950 |#1|)) (-1262 $)) 84)) (-3759 (($ $ $) 28)) (-1953 (((-112)) 67)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-1309 (((-642 (-1262 |#1|))) 49 (|has| |#1| (-556)))) (-3088 (($ $ $ $) 29)) (-1349 (((-112)) 65)) (-2920 (($ $ $) 27)) (-3459 (((-112)) 66)) (-4171 (((-112)) 64)) (-1579 (((-112)) 60)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 33)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-367 |#1|) (-140) (-172)) (T -367))
-((-1336 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3)))) (-2514 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-917)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-641 (-948 *4))))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))))) (-2069 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-1765 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2335 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-4225 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 *4)))) (-4225 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-3474 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-2151 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2620 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2846 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2896 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3172 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1804 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3353 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4103 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3117 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3642 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1873 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2654 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3502 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4312 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1506 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3293 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2378 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-4015 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2363 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-641 (-1259 *3))))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-2330 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2047 (-641 *1)))) (-4 *1 (-367 *3)))) (-1441 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2047 (-641 *1)))) (-4 *1 (-367 *3)))) (-4005 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-3436 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-2885 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
-(-13 (-740 |t#1|) (-10 -8 (-15 -1336 ((-1259 $))) (-15 -2514 ((-917))) (-15 -3620 ((-641 (-948 |t#1|)) (-1259 $))) (-15 -1472 ((-1259 (-685 |t#1|)) (-1259 $))) (-15 -2069 ((-685 |t#1|) $ (-1259 $))) (-15 -1765 ((-685 |t#1|) $ (-1259 $))) (-15 -2415 (|t#1| $)) (-15 -1774 (|t#1| $)) (-15 -3188 (|t#1| $)) (-15 -2335 (|t#1| $)) (-15 -4225 ((-1259 |t#1|) $ (-1259 $))) (-15 -4225 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -3474 ($ (-1259 |t#1|) (-1259 $))) (-15 -1960 (|t#1| (-1259 $))) (-15 -3216 (|t#1| (-1259 $))) (-15 -3803 ((-685 |t#1|) (-1259 $))) (-15 -1955 ((-685 |t#1|) (-1259 $))) (-15 -4254 ((-1166 |t#1|) $)) (-15 -2280 ((-1166 |t#1|) $)) (-15 -2151 ((-112))) (-15 -2620 ((-112))) (-15 -2846 ((-112))) (-15 -2896 ((-112))) (-15 -3172 ((-112))) (-15 -1804 ((-112))) (-15 -3353 ((-112))) (-15 -4103 ((-112))) (-15 -3117 ((-112))) (-15 -3642 ((-112))) (-15 -1873 ((-112))) (-15 -2654 ((-112))) (-15 -3502 ((-112))) (-15 -4312 ((-112))) (-15 -1506 ((-112))) (IF (|has| |t#1| (-556)) (PROGN (-15 -3293 ((-3 $ "failed") $)) (-15 -2378 ((-3 $ "failed") $)) (-15 -4015 ((-3 $ "failed") $)) (-15 -2363 ((-641 (-1259 |t#1|)))) (-15 -2739 ((-1166 |t#1|) $)) (-15 -2140 ((-1166 |t#1|) $)) (-15 -2330 ((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed"))) (-15 -1441 ((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed"))) (-15 -4005 ((-3 $ "failed"))) (-15 -3436 ((-3 $ "failed"))) (-15 -2885 ((-3 $ "failed"))) (-6 -4404)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 7)) (-2622 (((-767)) 17)) (-2534 (($) 14)) (-3256 (((-917) $) 15)) (-2766 (((-1152) $) 10)) (-2083 (($ (-917)) 16)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
+((-2954 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1262 *1)) (-4 *1 (-367 *3)))) (-2414 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-919)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-642 (-950 *4))))) (-4361 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1262 (-687 *4))))) (-4070 (*1 *2 *1 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-3636 (*1 *2 *1 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2067 (*1 *2 *1 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1262 *4)))) (-2067 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-4221 (*1 *1 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1262 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1169 *3)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1169 *3)))) (-1953 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3459 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1349 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4171 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3573 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3539 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2682 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1579 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1422 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2152 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2289 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2038 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1734 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2443 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4041 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3104 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-4125 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2564 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1309 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-642 (-1262 *3))))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1169 *3)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1169 *3)))) (-3250 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4263 (-642 *1)))) (-4 *1 (-367 *3)))) (-2074 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4263 (-642 *1)))) (-4 *1 (-367 *3)))) (-1306 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-2093 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-3587 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
+(-13 (-742 |t#1|) (-10 -8 (-15 -2954 ((-1262 $))) (-15 -2414 ((-919))) (-15 -2815 ((-642 (-950 |t#1|)) (-1262 $))) (-15 -4361 ((-1262 (-687 |t#1|)) (-1262 $))) (-15 -4070 ((-687 |t#1|) $ (-1262 $))) (-15 -3636 ((-687 |t#1|) $ (-1262 $))) (-15 -1490 (|t#1| $)) (-15 -4280 (|t#1| $)) (-15 -2034 (|t#1| $)) (-15 -3518 (|t#1| $)) (-15 -2067 ((-1262 |t#1|) $ (-1262 $))) (-15 -2067 ((-687 |t#1|) (-1262 $) (-1262 $))) (-15 -4221 ($ (-1262 |t#1|) (-1262 $))) (-15 -1617 (|t#1| (-1262 $))) (-15 -1933 (|t#1| (-1262 $))) (-15 -1499 ((-687 |t#1|) (-1262 $))) (-15 -3043 ((-687 |t#1|) (-1262 $))) (-15 -1769 ((-1169 |t#1|) $)) (-15 -3205 ((-1169 |t#1|) $)) (-15 -1953 ((-112))) (-15 -3459 ((-112))) (-15 -1349 ((-112))) (-15 -4171 ((-112))) (-15 -3573 ((-112))) (-15 -3539 ((-112))) (-15 -2682 ((-112))) (-15 -1579 ((-112))) (-15 -1422 ((-112))) (-15 -2152 ((-112))) (-15 -2289 ((-112))) (-15 -2038 ((-112))) (-15 -1734 ((-112))) (-15 -2443 ((-112))) (-15 -4041 ((-112))) (IF (|has| |t#1| (-556)) (PROGN (-15 -3104 ((-3 $ "failed") $)) (-15 -4125 ((-3 $ "failed") $)) (-15 -2564 ((-3 $ "failed") $)) (-15 -1309 ((-642 (-1262 |t#1|)))) (-15 -3720 ((-1169 |t#1|) $)) (-15 -2640 ((-1169 |t#1|) $)) (-15 -3250 ((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed"))) (-15 -2074 ((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed"))) (-15 -1306 ((-3 $ "failed"))) (-15 -2093 ((-3 $ "failed"))) (-15 -3587 ((-3 $ "failed"))) (-6 -4407)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-718) . T) ((-742 |#1|) . T) ((-759) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 7)) (-2521 (((-769)) 17)) (-2433 (($) 14)) (-1945 (((-919) $) 15)) (-3315 (((-1155) $) 10)) (-2047 (($ (-919)) 16)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
(((-368) (-140)) (T -368))
-((-2622 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767)))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-368)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-917)))) (-2534 (*1 *1) (-4 *1 (-368))))
-(-13 (-1094) (-10 -8 (-15 -2622 ((-767))) (-15 -2083 ($ (-917))) (-15 -3256 ((-917) $)) (-15 -2534 ($))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-2270 (((-685 |#2|) (-1259 $)) 47)) (-3474 (($ (-1259 |#2|) (-1259 $)) 41)) (-4057 (((-685 |#2|) $ (-1259 $)) 49)) (-1330 ((|#2| (-1259 $)) 13)) (-4225 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 27)))
-(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -2270 ((-685 |#2|) (-1259 |#1|))) (-15 -1330 (|#2| (-1259 |#1|))) (-15 -3474 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -4057 ((-685 |#2|) |#1| (-1259 |#1|)))) (-370 |#2| |#3|) (-172) (-1235 |#2|)) (T -369))
-NIL
-(-10 -8 (-15 -2270 ((-685 |#2|) (-1259 |#1|))) (-15 -1330 (|#2| (-1259 |#1|))) (-15 -3474 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -4057 ((-685 |#2|) |#1| (-1259 |#1|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-2270 (((-685 |#1|) (-1259 $)) 48)) (-3847 ((|#1| $) 54)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3474 (($ (-1259 |#1|) (-1259 $)) 50)) (-4057 (((-685 |#1|) $ (-1259 $)) 55)) (-3293 (((-3 $ "failed") $) 34)) (-2514 (((-917)) 56)) (-4112 (((-112) $) 32)) (-2499 ((|#1| $) 53)) (-3514 ((|#2| $) 46 (|has| |#1| (-363)))) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1330 ((|#1| (-1259 $)) 49)) (-4225 (((-1259 |#1|) $ (-1259 $)) 52) (((-685 |#1|) (-1259 $) (-1259 $)) 51)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 39)) (-2420 (((-3 $ "failed") $) 45 (|has| |#1| (-145)))) (-2134 ((|#2| $) 47)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 41) (($ |#1| $) 40)))
-(((-370 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -370))
-((-2514 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-917)))) (-4057 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-4225 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4)))) (-4225 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3474 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2)) (-4 *2 (-172)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1235 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -2514 ((-917))) (-15 -4057 ((-685 |t#1|) $ (-1259 $))) (-15 -3847 (|t#1| $)) (-15 -2499 (|t#1| $)) (-15 -4225 ((-1259 |t#1|) $ (-1259 $))) (-15 -4225 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -3474 ($ (-1259 |t#1|) (-1259 $))) (-15 -1330 (|t#1| (-1259 $))) (-15 -2270 ((-685 |t#1|) (-1259 $))) (-15 -2134 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -3514 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-2903 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-1316 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4357 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4357 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1316 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2903 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1209) (-373 |#1|) (-1209) (-373 |#3|)) (T -371))
-((-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-1316 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5)))))
-(-10 -7 (-15 -4357 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1316 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2903 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3833 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3963 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2484 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3200 (($ $) 25)) (-3998 (((-564) (-1 (-112) |#2|) $) NIL) (((-564) |#2| $) 11) (((-564) |#2| $ (-564)) NIL)) (-3669 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-372 |#1| |#2|) (-10 -8 (-15 -3963 (|#1| |#1|)) (-15 -3963 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3833 ((-112) |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3669 (|#1| |#1| |#1|)) (-15 -3998 ((-564) |#2| |#1| (-564))) (-15 -3998 ((-564) |#2| |#1|)) (-15 -3998 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3833 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2484 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3669 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1209)) (T -372))
-NIL
-(-10 -8 (-15 -3963 (|#1| |#1|)) (-15 -3963 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3833 ((-112) |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3669 (|#1| |#1| |#1|)) (-15 -3998 ((-564) |#2| |#1| (-564))) (-15 -3998 ((-564) |#2| |#1|)) (-15 -3998 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3833 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2484 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -3669 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3236 (((-1264) $ (-564) (-564)) 41 (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4408))) (($ $) 89 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4408))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) 8)) (-3904 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) 59 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2563 (($ $) 91 (|has| $ (-6 -4408)))) (-3200 (($ $) 101)) (-2696 (($ $) 79 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#1| $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 52)) (-3998 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1094)))) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-4238 (($ (-767) |#1|) 70)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 44 (|has| (-564) (-846)))) (-2855 (($ $ $) 88 (|has| |#1| (-846)))) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 45 (|has| (-564) (-846)))) (-1497 (($ $ $) 87 (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3050 (((-641 (-564)) $) 47)) (-1563 (((-112) (-564) $) 48)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2658 ((|#1| $) 43 (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1592 (($ $ |#1|) 42 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1226 (-564))) 64)) (-2114 (($ $ (-564)) 63) (($ $ (-1226 (-564))) 62)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3806 (($ $ $ (-564)) 92 (|has| $ (-6 -4408)))) (-3926 (($ $) 13)) (-1311 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 71)) (-3696 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-641 $)) 66)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) 85 (|has| |#1| (-846)))) (-3011 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3023 (((-112) $ $) 86 (|has| |#1| (-846)))) (-2999 (((-112) $ $) 83 (|has| |#1| (-846)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-373 |#1|) (-140) (-1209)) (T -373))
-((-3669 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-3200 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-2484 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-3833 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3998 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-564)))) (-3998 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-564)))) (-3998 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)))) (-3669 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-846)))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-846)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-846)) (-5 *2 (-112)))) (-3806 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4408)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-2563 (*1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-3963 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4408)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-3963 (*1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-846)))))
-(-13 (-647 |t#1|) (-10 -8 (-6 -4407) (-15 -3669 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3200 ($ $)) (-15 -2484 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3833 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3998 ((-564) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3998 ((-564) |t#1| $)) (-15 -3998 ((-564) |t#1| $ (-564)))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-6 (-846)) (-15 -3669 ($ $ $)) (-15 -2484 ($ $)) (-15 -3833 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3806 ($ $ $ (-564))) (-15 -2563 ($ $)) (-15 -3963 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-846)) (-15 -3963 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1209) . T))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3058 (((-641 |#1|) $) 33)) (-1661 (($ $ (-767)) 34)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-1662 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 37)) (-4275 (($ $) 35)) (-4107 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 38)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-3291 (($ $ |#1| $) 32) (($ $ (-641 |#1|) (-641 $)) 31)) (-1568 (((-767) $) 39)) (-2435 (($ $ $) 30)) (-2423 (((-858) $) 12) (($ |#1|) 42) (((-1274 |#1| |#2|) $) 41) (((-1283 |#1| |#2|) $) 40)) (-4376 ((|#2| (-1283 |#1| |#2|) $) 43)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-3435 (($ (-668 |#1|)) 36)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#2|) 29 (|has| |#2| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ |#2| $) 24) (($ $ |#2|) 27)))
-(((-374 |#1| |#2|) (-140) (-846) (-172)) (T -374))
-((-4376 (*1 *2 *3 *1) (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846)) (-4 *2 (-172)))) (-2423 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1274 *3 *4)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1283 *3 *4)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-767)))) (-4107 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1662 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3435 (*1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-4275 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1661 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3058 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-641 *3)))) (-3291 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-3291 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-846)) (-4 *5 (-172)))))
-(-13 (-632 |t#2|) (-10 -8 (-15 -4376 (|t#2| (-1283 |t#1| |t#2|) $)) (-15 -2423 ($ |t#1|)) (-15 -2423 ((-1274 |t#1| |t#2|) $)) (-15 -2423 ((-1283 |t#1| |t#2|) $)) (-15 -1568 ((-767) $)) (-15 -4107 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -1662 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -3435 ($ (-668 |t#1|))) (-15 -4275 ($ $)) (-15 -1661 ($ $ (-767))) (-15 -3058 ((-641 |t#1|) $)) (-15 -3291 ($ $ |t#1| $)) (-15 -3291 ($ $ (-641 |t#1|) (-641 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#2|) . T) ((-632 |#2|) . T) ((-713 |#2|) . T) ((-1051 |#2|) . T) ((-1094) . T))
-((-1465 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 42)) (-1762 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1358 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
-(((-375 |#1| |#2|) (-10 -7 (-15 -1762 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1358 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1465 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1209) (-13 (-373 |#1|) (-10 -7 (-6 -4408)))) (T -375))
-((-1465 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))))) (-1358 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))))) (-1762 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))))))
-(-10 -7 (-15 -1762 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1358 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1465 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-4277 (((-685 |#2|) (-685 $)) NIL) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 22) (((-685 (-564)) (-685 $)) 14)))
-(((-376 |#1| |#2|) (-10 -8 (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-685 |#2|) (-685 |#1|)))) (-377 |#2|) (-1045)) (T -376))
-NIL
-(-10 -8 (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-685 |#2|) (-685 |#1|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-4277 (((-685 |#1|) (-685 $)) 37) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 36) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 44 (|has| |#1| (-637 (-564)))) (((-685 (-564)) (-685 $)) 43 (|has| |#1| (-637 (-564))))) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-377 |#1|) (-140) (-1045)) (T -377))
+((-2521 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-769)))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-368)))) (-1945 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-919)))) (-2433 (*1 *1) (-4 *1 (-368))))
+(-13 (-1097) (-10 -8 (-15 -2521 ((-769))) (-15 -2047 ($ (-919))) (-15 -1945 ((-919) $)) (-15 -2433 ($))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-3166 (((-687 |#2|) (-1262 $)) 47)) (-4221 (($ (-1262 |#2|) (-1262 $)) 41)) (-1984 (((-687 |#2|) $ (-1262 $)) 49)) (-1846 ((|#2| (-1262 $)) 13)) (-2067 (((-1262 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) (-1262 $) (-1262 $)) 27)))
+(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -3166 ((-687 |#2|) (-1262 |#1|))) (-15 -1846 (|#2| (-1262 |#1|))) (-15 -4221 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -1984 ((-687 |#2|) |#1| (-1262 |#1|)))) (-370 |#2| |#3|) (-172) (-1238 |#2|)) (T -369))
+NIL
+(-10 -8 (-15 -3166 ((-687 |#2|) (-1262 |#1|))) (-15 -1846 (|#2| (-1262 |#1|))) (-15 -4221 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -1984 ((-687 |#2|) |#1| (-1262 |#1|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3166 (((-687 |#1|) (-1262 $)) 53)) (-3815 ((|#1| $) 59)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-4221 (($ (-1262 |#1|) (-1262 $)) 55)) (-1984 (((-687 |#1|) $ (-1262 $)) 60)) (-3104 (((-3 $ "failed") $) 37)) (-2414 (((-919)) 61)) (-3953 (((-112) $) 35)) (-2218 ((|#1| $) 58)) (-3947 ((|#2| $) 51 (|has| |#1| (-363)))) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-1846 ((|#1| (-1262 $)) 54)) (-2067 (((-1262 |#1|) $ (-1262 $)) 57) (((-687 |#1|) (-1262 $) (-1262 $)) 56)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44)) (-2439 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3011 ((|#2| $) 52)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-370 |#1| |#2|) (-140) (-172) (-1238 |t#1|)) (T -370))
+((-2414 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-919)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172)))) (-2067 (*1 *2 *1 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-1262 *4)))) (-2067 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) (-4221 (*1 *1 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1262 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1238 *4)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1238 *2)) (-4 *2 (-172)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1238 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -2414 ((-919))) (-15 -1984 ((-687 |t#1|) $ (-1262 $))) (-15 -3815 (|t#1| $)) (-15 -2218 (|t#1| $)) (-15 -2067 ((-1262 |t#1|) $ (-1262 $))) (-15 -2067 ((-687 |t#1|) (-1262 $) (-1262 $))) (-15 -4221 ($ (-1262 |t#1|) (-1262 $))) (-15 -1846 (|t#1| (-1262 $))) (-15 -3166 ((-687 |t#1|) (-1262 $))) (-15 -3011 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -3947 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-724) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-1910 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-1320 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4358 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1320 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1910 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1212) (-373 |#1|) (-1212) (-373 |#3|)) (T -371))
+((-1910 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1212)) (-4 *5 (-1212)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-1320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5)))))
+(-10 -7 (-15 -4358 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1320 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1910 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1757 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2239 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2383 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3115 (($ $) 25)) (-3979 (((-564) (-1 (-112) |#2|) $) NIL) (((-564) |#2| $) 11) (((-564) |#2| $ (-564)) NIL)) (-2740 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-372 |#1| |#2|) (-10 -8 (-15 -2239 (|#1| |#1|)) (-15 -2239 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1757 ((-112) |#1|)) (-15 -2383 (|#1| |#1|)) (-15 -2740 (|#1| |#1| |#1|)) (-15 -3979 ((-564) |#2| |#1| (-564))) (-15 -3979 ((-564) |#2| |#1|)) (-15 -3979 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1757 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2383 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -2740 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1212)) (T -372))
+NIL
+(-10 -8 (-15 -2239 (|#1| |#1|)) (-15 -2239 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1757 ((-112) |#1|)) (-15 -2383 (|#1| |#1|)) (-15 -2740 (|#1| |#1| |#1|)) (-15 -3979 ((-564) |#2| |#1| (-564))) (-15 -3979 ((-564) |#2| |#1|)) (-15 -3979 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1757 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2383 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -2740 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-1765 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| |#1| (-848)) (|has| $ (-6 -4411))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) 8)) (-3877 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-2087 (($ $) 91 (|has| $ (-6 -4411)))) (-3115 (($ $) 101)) (-2595 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 52)) (-3979 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1097)))) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-4227 (($ (-769) |#1|) 70)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 44 (|has| (-564) (-848)))) (-2755 (($ $ $) 88 (|has| |#1| (-848)))) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 45 (|has| (-564) (-848)))) (-1520 (($ $ $) 87 (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3997 (((-642 (-564)) $) 47)) (-4145 (((-112) (-564) $) 48)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2557 ((|#1| $) 43 (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2696 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-2073 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2568 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3901 (($ $) 13)) (-1314 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 71)) (-3651 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) 85 (|has| |#1| (-848)))) (-2908 (((-112) $ $) 84 (|has| |#1| (-848)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2922 (((-112) $ $) 86 (|has| |#1| (-848)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-848)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-373 |#1|) (-140) (-1212)) (T -373))
+((-2740 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1212)))) (-3115 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)))) (-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1212)))) (-1757 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1212)) (-5 *2 (-112)))) (-3979 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1212)) (-5 *2 (-564)))) (-3979 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-564)))) (-3979 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)))) (-2740 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)) (-4 *2 (-848)))) (-2383 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)) (-4 *2 (-848)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1212)) (-4 *3 (-848)) (-5 *2 (-112)))) (-2568 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4411)) (-4 *1 (-373 *3)) (-4 *3 (-1212)))) (-2087 (*1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-373 *2)) (-4 *2 (-1212)))) (-2239 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4411)) (-4 *1 (-373 *3)) (-4 *3 (-1212)))) (-2239 (*1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-373 *2)) (-4 *2 (-1212)) (-4 *2 (-848)))))
+(-13 (-649 |t#1|) (-10 -8 (-6 -4410) (-15 -2740 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3115 ($ $)) (-15 -2383 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1757 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3979 ((-564) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1097)) (PROGN (-15 -3979 ((-564) |t#1| $)) (-15 -3979 ((-564) |t#1| $ (-564)))) |%noBranch|) (IF (|has| |t#1| (-848)) (PROGN (-6 (-848)) (-15 -2740 ($ $ $)) (-15 -2383 ($ $)) (-15 -1757 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4411)) (PROGN (-15 -2568 ($ $ $ (-564))) (-15 -2087 ($ $)) (-15 -2239 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-848)) (-15 -2239 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-848) |has| |#1| (-848)) ((-1097) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-1212) . T))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-2961 (((-642 |#1|) $) 37)) (-2526 (($ $ (-769)) 38)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3842 (((-1286 |#1| |#2|) (-1286 |#1| |#2|) $) 41)) (-3298 (($ $) 39)) (-4093 (((-1286 |#1| |#2|) (-1286 |#1| |#2|) $) 42)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3215 (($ $ |#1| $) 36) (($ $ (-642 |#1|) (-642 $)) 35)) (-2775 (((-769) $) 43)) (-2337 (($ $ $) 34)) (-2327 (((-860) $) 12) (($ |#1|) 46) (((-1277 |#1| |#2|) $) 45) (((-1286 |#1| |#2|) $) 44)) (-4378 ((|#2| (-1286 |#1| |#2|) $) 47)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-1737 (($ (-670 |#1|)) 40)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#2|) 33 (|has| |#2| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
+(((-374 |#1| |#2|) (-140) (-848) (-172)) (T -374))
+((-4378 (*1 *2 *3 *1) (-12 (-5 *3 (-1286 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-848)) (-4 *2 (-172)))) (-2327 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *2 (-1277 *3 *4)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *2 (-1286 *3 *4)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *2 (-769)))) (-4093 (*1 *2 *2 *1) (-12 (-5 *2 (-1286 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-3842 (*1 *2 *2 *1) (-12 (-5 *2 (-1286 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-3298 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172)))) (-2526 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *2 (-642 *3)))) (-3215 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172)))) (-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-848)) (-4 *5 (-172)))))
+(-13 (-632 |t#2|) (-10 -8 (-15 -4378 (|t#2| (-1286 |t#1| |t#2|) $)) (-15 -2327 ($ |t#1|)) (-15 -2327 ((-1277 |t#1| |t#2|) $)) (-15 -2327 ((-1286 |t#1| |t#2|) $)) (-15 -2775 ((-769) $)) (-15 -4093 ((-1286 |t#1| |t#2|) (-1286 |t#1| |t#2|) $)) (-15 -3842 ((-1286 |t#1| |t#2|) (-1286 |t#1| |t#2|) $)) (-15 -1737 ($ (-670 |t#1|))) (-15 -3298 ($ $)) (-15 -2526 ($ $ (-769))) (-15 -2961 ((-642 |t#1|) $)) (-15 -3215 ($ $ |t#1| $)) (-15 -3215 ($ $ (-642 |t#1|) (-642 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#2|) . T) ((-646 |#2|) . T) ((-632 |#2|) . T) ((-638 |#2|) . T) ((-715 |#2|) . T) ((-1049 |#2|) . T) ((-1054 |#2|) . T) ((-1097) . T))
+((-2482 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 42)) (-3695 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2811 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
+(((-375 |#1| |#2|) (-10 -7 (-15 -3695 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2811 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2482 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1212) (-13 (-373 |#1|) (-10 -7 (-6 -4411)))) (T -375))
+((-2482 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))))) (-2811 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))))) (-3695 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))))))
+(-10 -7 (-15 -3695 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2811 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2482 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-4315 (((-687 |#2|) (-687 $)) NIL) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 22) (((-687 (-564)) (-687 $)) 14)))
+(((-376 |#1| |#2|) (-10 -8 (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-687 |#2|) (-687 |#1|)))) (-377 |#2|) (-1047)) (T -376))
+NIL
+(-10 -8 (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-687 |#2|) (-687 |#1|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-4315 (((-687 |#1|) (-687 $)) 40) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 39) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 47 (|has| |#1| (-637 (-564)))) (((-687 (-564)) (-687 $)) 46 (|has| |#1| (-637 (-564))))) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-377 |#1|) (-140) (-1047)) (T -377))
NIL
(-13 (-637 |t#1|) (-10 -7 (IF (|has| |t#1| (-637 (-564))) (-6 (-637 (-564))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-1412 (((-641 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-564))))) |#1|) 51) (((-641 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-564)))) |#1|) 50) (((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-294 (-407 (-948 (-169 (-564)))))) |#1|) 47) (((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-407 (-948 (-169 (-564))))) |#1|) 41)) (-3560 (((-641 (-641 (-169 |#1|))) (-641 (-407 (-948 (-169 (-564))))) (-641 (-1170)) |#1|) 30) (((-641 (-169 |#1|)) (-407 (-948 (-169 (-564)))) |#1|) 18)))
-(((-378 |#1|) (-10 -7 (-15 -1412 ((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-407 (-948 (-169 (-564))))) |#1|)) (-15 -1412 ((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-294 (-407 (-948 (-169 (-564)))))) |#1|)) (-15 -1412 ((-641 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-564)))) |#1|)) (-15 -1412 ((-641 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-564))))) |#1|)) (-15 -3560 ((-641 (-169 |#1|)) (-407 (-948 (-169 (-564)))) |#1|)) (-15 -3560 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-948 (-169 (-564))))) (-641 (-1170)) |#1|))) (-13 (-363) (-844))) (T -378))
-((-3560 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-948 (-169 (-564)))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-844))))) (-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 (-169 (-564)))))) (-5 *2 (-641 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 (-564))))) (-5 *2 (-641 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-948 (-169 (-564))))))) (-5 *2 (-641 (-641 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 (-169 (-564)))))) (-5 *2 (-641 (-641 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))))
-(-10 -7 (-15 -1412 ((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-407 (-948 (-169 (-564))))) |#1|)) (-15 -1412 ((-641 (-641 (-294 (-948 (-169 |#1|))))) (-641 (-294 (-407 (-948 (-169 (-564)))))) |#1|)) (-15 -1412 ((-641 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-564)))) |#1|)) (-15 -1412 ((-641 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-564))))) |#1|)) (-15 -3560 ((-641 (-169 |#1|)) (-407 (-948 (-169 (-564)))) |#1|)) (-15 -3560 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-948 (-169 (-564))))) (-641 (-1170)) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 35)) (-4198 (((-564) $) 61)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1709 (($ $) 141)) (-3880 (($ $) 106)) (-3745 (($ $) 93)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3700 (($ $) 47)) (-3162 (((-112) $ $) NIL)) (-3858 (($ $) 104)) (-3722 (($ $) 87)) (-3249 (((-564) $) 80)) (-2410 (($ $ (-564)) 75)) (-3902 (($ $) NIL)) (-3766 (($ $) NIL)) (-4080 (($) NIL T CONST)) (-2192 (($ $) 143)) (-4284 (((-3 (-564) "failed") $) 238) (((-3 (-407 (-564)) "failed") $) 234)) (-3120 (((-564) $) 236) (((-407 (-564)) $) 232)) (-2946 (($ $ $) NIL)) (-1398 (((-564) $ $) 130)) (-3293 (((-3 $ "failed") $) 145)) (-1584 (((-407 (-564)) $ (-767)) 239) (((-407 (-564)) $ (-767) (-767)) 231)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2234 (((-917)) 95) (((-917) (-917)) 126 (|has| $ (-6 -4398)))) (-2384 (((-112) $) 135)) (-4274 (($) 41)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-2121 (((-1264) (-767)) 198)) (-2456 (((-1264)) 203) (((-1264) (-767)) 204)) (-4160 (((-1264)) 205) (((-1264) (-767)) 206)) (-2187 (((-1264)) 201) (((-1264) (-767)) 202)) (-3744 (((-564) $) 68)) (-4112 (((-112) $) 40)) (-3614 (($ $ (-564)) NIL)) (-2520 (($ $) 51)) (-2499 (($ $) NIL)) (-3326 (((-112) $) 37)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL) (($) NIL (-12 (-2351 (|has| $ (-6 -4390))) (-2351 (|has| $ (-6 -4398)))))) (-1497 (($ $ $) NIL) (($) 127 (-12 (-2351 (|has| $ (-6 -4390))) (-2351 (|has| $ (-6 -4398)))))) (-3725 (((-564) $) 17)) (-2376 (($) 113) (($ $) 119)) (-2262 (($) 118) (($ $) 120)) (-3657 (($ $) 108)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 147)) (-3549 (((-917) (-564)) 46 (|has| $ (-6 -4398)))) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) 59)) (-2882 (($ $) 140)) (-2962 (($ (-564) (-564)) 136) (($ (-564) (-564) (-917)) 137)) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1838 (((-564) $) 19)) (-1519 (($) 121)) (-1689 (($ $) 103)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-1982 (((-917)) 128) (((-917) (-917)) 129 (|has| $ (-6 -4398)))) (-3254 (($ $ (-767)) NIL) (($ $) 146)) (-2494 (((-917) (-564)) 50 (|has| $ (-6 -4398)))) (-3914 (($ $) NIL)) (-3777 (($ $) NIL)) (-3891 (($ $) NIL)) (-3756 (($ $) NIL)) (-3869 (($ $) 105)) (-3735 (($ $) 92)) (-1311 (((-379) $) 225) (((-225) $) 226) (((-888 (-379)) $) NIL) (((-1152) $) 209) (((-536) $) 223) (($ (-225)) 230)) (-2423 (((-858) $) 211) (($ (-564)) 235) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 235) (($ (-407 (-564))) NIL) (((-225) $) 227)) (-3719 (((-767)) NIL T CONST)) (-3448 (($ $) 142)) (-1987 (((-917)) 60) (((-917) (-917)) 82 (|has| $ (-6 -4398)))) (-1860 (((-112) $ $) NIL)) (-2648 (((-917)) 131)) (-3949 (($ $) 111)) (-3811 (($ $) 49) (($ $ $) 58)) (-2119 (((-112) $ $) NIL)) (-3925 (($ $) 109)) (-3787 (($ $) 39)) (-3972 (($ $) NIL)) (-3837 (($ $) NIL)) (-2784 (($ $) NIL)) (-3848 (($ $) NIL)) (-3960 (($ $) NIL)) (-3825 (($ $) NIL)) (-3937 (($ $) 110)) (-3799 (($ $) 52)) (-3673 (($ $) 57)) (-2403 (($) 36 T CONST)) (-2417 (($) 43 T CONST)) (-1613 (((-1152) $) 27) (((-1152) $ (-112)) 29) (((-1264) (-818) $) 30) (((-1264) (-818) $ (-112)) 31)) (-4063 (($ $ (-767)) NIL) (($ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 56)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 45)) (-3092 (($ $ $) 48) (($ $ (-564)) 42)) (-3082 (($ $) 38) (($ $ $) 53)) (-3070 (($ $ $) 74)) (** (($ $ (-917)) 85) (($ $ (-767)) NIL) (($ $ (-564)) 114) (($ $ (-407 (-564))) 157) (($ $ $) 149)) (* (($ (-917) $) 81) (($ (-767) $) NIL) (($ (-564) $) 86) (($ $ $) 73) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-379) (-13 (-404) (-233) (-612 (-1152)) (-824) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -3092 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2520 ($ $)) (-15 -1398 ((-564) $ $)) (-15 -2410 ($ $ (-564))) (-15 -1584 ((-407 (-564)) $ (-767))) (-15 -1584 ((-407 (-564)) $ (-767) (-767))) (-15 -2376 ($)) (-15 -2262 ($)) (-15 -1519 ($)) (-15 -3811 ($ $ $)) (-15 -2376 ($ $)) (-15 -2262 ($ $)) (-15 -4160 ((-1264))) (-15 -4160 ((-1264) (-767))) (-15 -2187 ((-1264))) (-15 -2187 ((-1264) (-767))) (-15 -2456 ((-1264))) (-15 -2456 ((-1264) (-767))) (-15 -2121 ((-1264) (-767))) (-6 -4398) (-6 -4390)))) (T -379))
-((** (*1 *1 *1 *1) (-5 *1 (-379))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2520 (*1 *1 *1) (-5 *1 (-379))) (-1398 (*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-1584 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-1584 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-2376 (*1 *1) (-5 *1 (-379))) (-2262 (*1 *1) (-5 *1 (-379))) (-1519 (*1 *1) (-5 *1 (-379))) (-3811 (*1 *1 *1 *1) (-5 *1 (-379))) (-2376 (*1 *1 *1) (-5 *1 (-379))) (-2262 (*1 *1 *1) (-5 *1 (-379))) (-4160 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-2187 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-2456 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))))
-(-13 (-404) (-233) (-612 (-1152)) (-824) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -3092 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2520 ($ $)) (-15 -1398 ((-564) $ $)) (-15 -2410 ($ $ (-564))) (-15 -1584 ((-407 (-564)) $ (-767))) (-15 -1584 ((-407 (-564)) $ (-767) (-767))) (-15 -2376 ($)) (-15 -2262 ($)) (-15 -1519 ($)) (-15 -3811 ($ $ $)) (-15 -2376 ($ $)) (-15 -2262 ($ $)) (-15 -4160 ((-1264))) (-15 -4160 ((-1264) (-767))) (-15 -2187 ((-1264))) (-15 -2187 ((-1264) (-767))) (-15 -2456 ((-1264))) (-15 -2456 ((-1264) (-767))) (-15 -2121 ((-1264) (-767))) (-6 -4398) (-6 -4390)))
-((-4256 (((-641 (-294 (-948 |#1|))) (-294 (-407 (-948 (-564)))) |#1|) 46) (((-641 (-294 (-948 |#1|))) (-407 (-948 (-564))) |#1|) 45) (((-641 (-641 (-294 (-948 |#1|)))) (-641 (-294 (-407 (-948 (-564))))) |#1|) 42) (((-641 (-641 (-294 (-948 |#1|)))) (-641 (-407 (-948 (-564)))) |#1|) 36)) (-2825 (((-641 |#1|) (-407 (-948 (-564))) |#1|) 20) (((-641 (-641 |#1|)) (-641 (-407 (-948 (-564)))) (-641 (-1170)) |#1|) 30)))
-(((-380 |#1|) (-10 -7 (-15 -4256 ((-641 (-641 (-294 (-948 |#1|)))) (-641 (-407 (-948 (-564)))) |#1|)) (-15 -4256 ((-641 (-641 (-294 (-948 |#1|)))) (-641 (-294 (-407 (-948 (-564))))) |#1|)) (-15 -4256 ((-641 (-294 (-948 |#1|))) (-407 (-948 (-564))) |#1|)) (-15 -4256 ((-641 (-294 (-948 |#1|))) (-294 (-407 (-948 (-564)))) |#1|)) (-15 -2825 ((-641 (-641 |#1|)) (-641 (-407 (-948 (-564)))) (-641 (-1170)) |#1|)) (-15 -2825 ((-641 |#1|) (-407 (-948 (-564))) |#1|))) (-13 (-844) (-363))) (T -380))
-((-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-2825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-948 (-564))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-844) (-363))))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 (-564))))) (-5 *2 (-641 (-294 (-948 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-564)))) (-5 *2 (-641 (-294 (-948 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-948 (-564)))))) (-5 *2 (-641 (-641 (-294 (-948 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 (-564))))) (-5 *2 (-641 (-641 (-294 (-948 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))))
-(-10 -7 (-15 -4256 ((-641 (-641 (-294 (-948 |#1|)))) (-641 (-407 (-948 (-564)))) |#1|)) (-15 -4256 ((-641 (-641 (-294 (-948 |#1|)))) (-641 (-294 (-407 (-948 (-564))))) |#1|)) (-15 -4256 ((-641 (-294 (-948 |#1|))) (-407 (-948 (-564))) |#1|)) (-15 -4256 ((-641 (-294 (-948 |#1|))) (-294 (-407 (-948 (-564)))) |#1|)) (-15 -2825 ((-641 (-641 |#1|)) (-641 (-407 (-948 (-564)))) (-641 (-1170)) |#1|)) (-15 -2825 ((-641 |#1|) (-407 (-948 (-564))) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) 30)) (-3120 ((|#2| $) 32)) (-1684 (($ $) NIL)) (-2497 (((-767) $) 11)) (-2210 (((-641 $) $) 23)) (-4003 (((-112) $) NIL)) (-3290 (($ |#2| |#1|) 21)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3171 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-3971 ((|#2| $) 18)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 51) (($ |#2|) 31)) (-3191 (((-641 |#1|) $) 20)) (-2007 ((|#1| $ |#2|) 55)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 33 T CONST)) (-2404 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
-(((-381 |#1| |#2|) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1045) (-846)) (T -381))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-1385 (((-642 (-294 (-950 (-169 |#1|)))) (-294 (-407 (-950 (-169 (-564))))) |#1|) 51) (((-642 (-294 (-950 (-169 |#1|)))) (-407 (-950 (-169 (-564)))) |#1|) 50) (((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-294 (-407 (-950 (-169 (-564)))))) |#1|) 47) (((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-407 (-950 (-169 (-564))))) |#1|) 41)) (-1386 (((-642 (-642 (-169 |#1|))) (-642 (-407 (-950 (-169 (-564))))) (-642 (-1173)) |#1|) 30) (((-642 (-169 |#1|)) (-407 (-950 (-169 (-564)))) |#1|) 18)))
+(((-378 |#1|) (-10 -7 (-15 -1385 ((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-407 (-950 (-169 (-564))))) |#1|)) (-15 -1385 ((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-294 (-407 (-950 (-169 (-564)))))) |#1|)) (-15 -1385 ((-642 (-294 (-950 (-169 |#1|)))) (-407 (-950 (-169 (-564)))) |#1|)) (-15 -1385 ((-642 (-294 (-950 (-169 |#1|)))) (-294 (-407 (-950 (-169 (-564))))) |#1|)) (-15 -1386 ((-642 (-169 |#1|)) (-407 (-950 (-169 (-564)))) |#1|)) (-15 -1386 ((-642 (-642 (-169 |#1|))) (-642 (-407 (-950 (-169 (-564))))) (-642 (-1173)) |#1|))) (-13 (-363) (-846))) (T -378))
+((-1386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-407 (-950 (-169 (-564)))))) (-5 *4 (-642 (-1173))) (-5 *2 (-642 (-642 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-846))))) (-1386 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 (-169 (-564))))) (-5 *2 (-642 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846))))) (-1385 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-950 (-169 (-564)))))) (-5 *2 (-642 (-294 (-950 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846))))) (-1385 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 (-169 (-564))))) (-5 *2 (-642 (-294 (-950 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846))))) (-1385 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-294 (-407 (-950 (-169 (-564))))))) (-5 *2 (-642 (-642 (-294 (-950 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846))))) (-1385 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 (-169 (-564)))))) (-5 *2 (-642 (-642 (-294 (-950 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846))))))
+(-10 -7 (-15 -1385 ((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-407 (-950 (-169 (-564))))) |#1|)) (-15 -1385 ((-642 (-642 (-294 (-950 (-169 |#1|))))) (-642 (-294 (-407 (-950 (-169 (-564)))))) |#1|)) (-15 -1385 ((-642 (-294 (-950 (-169 |#1|)))) (-407 (-950 (-169 (-564)))) |#1|)) (-15 -1385 ((-642 (-294 (-950 (-169 |#1|)))) (-294 (-407 (-950 (-169 (-564))))) |#1|)) (-15 -1386 ((-642 (-169 |#1|)) (-407 (-950 (-169 (-564)))) |#1|)) (-15 -1386 ((-642 (-642 (-169 |#1|))) (-642 (-407 (-950 (-169 (-564))))) (-642 (-1173)) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 35)) (-3703 (((-564) $) 61)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1726 (($ $) 141)) (-3851 (($ $) 106)) (-3704 (($ $) 93)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-3655 (($ $) 47)) (-4010 (((-112) $ $) NIL)) (-3827 (($ $) 104)) (-3679 (($ $) 87)) (-2959 (((-564) $) 80)) (-2317 (($ $ (-564)) 75)) (-3875 (($ $) NIL)) (-3727 (($ $) NIL)) (-1976 (($) NIL T CONST)) (-1971 (($ $) 143)) (-4278 (((-3 (-564) "failed") $) 238) (((-3 (-407 (-564)) "failed") $) 234)) (-3027 (((-564) $) 236) (((-407 (-564)) $) 232)) (-2845 (($ $ $) NIL)) (-1848 (((-564) $ $) 130)) (-3104 (((-3 $ "failed") $) 145)) (-2982 (((-407 (-564)) $ (-769)) 239) (((-407 (-564)) $ (-769) (-769)) 231)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2170 (((-919)) 95) (((-919) (-919)) 126 (|has| $ (-6 -4401)))) (-2538 (((-112) $) 135)) (-4265 (($) 41)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL)) (-3709 (((-1267) (-769)) 198)) (-3355 (((-1267)) 203) (((-1267) (-769)) 204)) (-1720 (((-1267)) 205) (((-1267) (-769)) 206)) (-1593 (((-1267)) 201) (((-1267) (-769)) 202)) (-1427 (((-564) $) 68)) (-3953 (((-112) $) 40)) (-1772 (($ $ (-564)) NIL)) (-3941 (($ $) 51)) (-2218 (($ $) NIL)) (-3333 (((-112) $) 37)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL) (($) NIL (-12 (-2268 (|has| $ (-6 -4393))) (-2268 (|has| $ (-6 -4401)))))) (-1520 (($ $ $) NIL) (($) 127 (-12 (-2268 (|has| $ (-6 -4393))) (-2268 (|has| $ (-6 -4401)))))) (-3683 (((-564) $) 17)) (-2826 (($) 113) (($ $) 119)) (-2195 (($) 118) (($ $) 120)) (-3612 (($ $) 108)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 147)) (-1582 (((-919) (-564)) 46 (|has| $ (-6 -4401)))) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) 59)) (-2759 (($ $) 140)) (-2861 (($ (-564) (-564)) 136) (($ (-564) (-564) (-919)) 137)) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2700 (((-564) $) 19)) (-1788 (($) 121)) (-1723 (($ $) 103)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3918 (((-919)) 128) (((-919) (-919)) 129 (|has| $ (-6 -4401)))) (-3175 (($ $ (-769)) NIL) (($ $) 146)) (-4163 (((-919) (-564)) 50 (|has| $ (-6 -4401)))) (-3888 (($ $) NIL)) (-3739 (($ $) NIL)) (-3863 (($ $) NIL)) (-3716 (($ $) NIL)) (-3839 (($ $) 105)) (-3693 (($ $) 92)) (-1314 (((-379) $) 225) (((-225) $) 226) (((-890 (-379)) $) NIL) (((-1155) $) 209) (((-536) $) 223) (($ (-225)) 230)) (-2327 (((-860) $) 211) (($ (-564)) 235) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 235) (($ (-407 (-564))) NIL) (((-225) $) 227)) (-2756 (((-769)) NIL T CONST)) (-3264 (($ $) 142)) (-1497 (((-919)) 60) (((-919) (-919)) 82 (|has| $ (-6 -4401)))) (-1648 (((-112) $ $) NIL)) (-2547 (((-919)) 131)) (-3926 (($ $) 111)) (-3776 (($ $) 49) (($ $ $) 58)) (-2103 (((-112) $ $) NIL)) (-3900 (($ $) 109)) (-3750 (($ $) 39)) (-3951 (($ $) NIL)) (-3803 (($ $) NIL)) (-2683 (($ $) NIL)) (-3816 (($ $) NIL)) (-3938 (($ $) NIL)) (-3791 (($ $) NIL)) (-3913 (($ $) 110)) (-3763 (($ $) 52)) (-1381 (($ $) 57)) (-2312 (($) 36 T CONST)) (-2322 (($) 43 T CONST)) (-1605 (((-1155) $) 27) (((-1155) $ (-112)) 29) (((-1267) (-820) $) 30) (((-1267) (-820) $ (-112)) 31)) (-4044 (($ $ (-769)) NIL) (($ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 56)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 45)) (-2998 (($ $ $) 48) (($ $ (-564)) 42)) (-2987 (($ $) 38) (($ $ $) 53)) (-2974 (($ $ $) 74)) (** (($ $ (-919)) 85) (($ $ (-769)) NIL) (($ $ (-564)) 114) (($ $ (-407 (-564))) 157) (($ $ $) 149)) (* (($ (-919) $) 81) (($ (-769) $) NIL) (($ (-564) $) 86) (($ $ $) 73) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-379) (-13 (-404) (-233) (-612 (-1155)) (-826) (-611 (-225)) (-1197) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -2998 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -3941 ($ $)) (-15 -1848 ((-564) $ $)) (-15 -2317 ($ $ (-564))) (-15 -2982 ((-407 (-564)) $ (-769))) (-15 -2982 ((-407 (-564)) $ (-769) (-769))) (-15 -2826 ($)) (-15 -2195 ($)) (-15 -1788 ($)) (-15 -3776 ($ $ $)) (-15 -2826 ($ $)) (-15 -2195 ($ $)) (-15 -1720 ((-1267))) (-15 -1720 ((-1267) (-769))) (-15 -1593 ((-1267))) (-15 -1593 ((-1267) (-769))) (-15 -3355 ((-1267))) (-15 -3355 ((-1267) (-769))) (-15 -3709 ((-1267) (-769))) (-6 -4401) (-6 -4393)))) (T -379))
+((** (*1 *1 *1 *1) (-5 *1 (-379))) (-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-3941 (*1 *1 *1) (-5 *1 (-379))) (-1848 (*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2317 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2982 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-2982 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-2826 (*1 *1) (-5 *1 (-379))) (-2195 (*1 *1) (-5 *1 (-379))) (-1788 (*1 *1) (-5 *1 (-379))) (-3776 (*1 *1 *1 *1) (-5 *1 (-379))) (-2826 (*1 *1 *1) (-5 *1 (-379))) (-2195 (*1 *1 *1) (-5 *1 (-379))) (-1720 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))) (-1593 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))) (-3355 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))))
+(-13 (-404) (-233) (-612 (-1155)) (-826) (-611 (-225)) (-1197) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -2998 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -3941 ($ $)) (-15 -1848 ((-564) $ $)) (-15 -2317 ($ $ (-564))) (-15 -2982 ((-407 (-564)) $ (-769))) (-15 -2982 ((-407 (-564)) $ (-769) (-769))) (-15 -2826 ($)) (-15 -2195 ($)) (-15 -1788 ($)) (-15 -3776 ($ $ $)) (-15 -2826 ($ $)) (-15 -2195 ($ $)) (-15 -1720 ((-1267))) (-15 -1720 ((-1267) (-769))) (-15 -1593 ((-1267))) (-15 -1593 ((-1267) (-769))) (-15 -3355 ((-1267))) (-15 -3355 ((-1267) (-769))) (-15 -3709 ((-1267) (-769))) (-6 -4401) (-6 -4393)))
+((-1616 (((-642 (-294 (-950 |#1|))) (-294 (-407 (-950 (-564)))) |#1|) 46) (((-642 (-294 (-950 |#1|))) (-407 (-950 (-564))) |#1|) 45) (((-642 (-642 (-294 (-950 |#1|)))) (-642 (-294 (-407 (-950 (-564))))) |#1|) 42) (((-642 (-642 (-294 (-950 |#1|)))) (-642 (-407 (-950 (-564)))) |#1|) 36)) (-4101 (((-642 |#1|) (-407 (-950 (-564))) |#1|) 20) (((-642 (-642 |#1|)) (-642 (-407 (-950 (-564)))) (-642 (-1173)) |#1|) 30)))
+(((-380 |#1|) (-10 -7 (-15 -1616 ((-642 (-642 (-294 (-950 |#1|)))) (-642 (-407 (-950 (-564)))) |#1|)) (-15 -1616 ((-642 (-642 (-294 (-950 |#1|)))) (-642 (-294 (-407 (-950 (-564))))) |#1|)) (-15 -1616 ((-642 (-294 (-950 |#1|))) (-407 (-950 (-564))) |#1|)) (-15 -1616 ((-642 (-294 (-950 |#1|))) (-294 (-407 (-950 (-564)))) |#1|)) (-15 -4101 ((-642 (-642 |#1|)) (-642 (-407 (-950 (-564)))) (-642 (-1173)) |#1|)) (-15 -4101 ((-642 |#1|) (-407 (-950 (-564))) |#1|))) (-13 (-846) (-363))) (T -380))
+((-4101 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 (-564)))) (-5 *2 (-642 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363))))) (-4101 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-407 (-950 (-564))))) (-5 *4 (-642 (-1173))) (-5 *2 (-642 (-642 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-846) (-363))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-950 (-564))))) (-5 *2 (-642 (-294 (-950 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 (-564)))) (-5 *2 (-642 (-294 (-950 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-294 (-407 (-950 (-564)))))) (-5 *2 (-642 (-642 (-294 (-950 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 (-564))))) (-5 *2 (-642 (-642 (-294 (-950 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363))))))
+(-10 -7 (-15 -1616 ((-642 (-642 (-294 (-950 |#1|)))) (-642 (-407 (-950 (-564)))) |#1|)) (-15 -1616 ((-642 (-642 (-294 (-950 |#1|)))) (-642 (-294 (-407 (-950 (-564))))) |#1|)) (-15 -1616 ((-642 (-294 (-950 |#1|))) (-407 (-950 (-564))) |#1|)) (-15 -1616 ((-642 (-294 (-950 |#1|))) (-294 (-407 (-950 (-564)))) |#1|)) (-15 -4101 ((-642 (-642 |#1|)) (-642 (-407 (-950 (-564)))) (-642 (-1173)) |#1|)) (-15 -4101 ((-642 |#1|) (-407 (-950 (-564))) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) 30)) (-3027 ((|#2| $) 32)) (-1718 (($ $) NIL)) (-3934 (((-769) $) 11)) (-1763 (((-642 $) $) 23)) (-2316 (((-112) $) NIL)) (-3214 (($ |#2| |#1|) 21)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-4234 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-3950 ((|#2| $) 18)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 51) (($ |#2|) 31)) (-3849 (((-642 |#1|) $) 20)) (-2102 ((|#1| $ |#2|) 55)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 33 T CONST)) (-3692 (((-642 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
+(((-381 |#1| |#2|) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1047) (-848)) (T -381))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-848)))))
(-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#2| "failed") $) 45)) (-3120 ((|#2| $) 46)) (-1684 (($ $) 31)) (-2497 (((-767) $) 35)) (-2210 (((-641 $) $) 36)) (-4003 (((-112) $) 39)) (-3290 (($ |#2| |#1|) 40)) (-4357 (($ (-1 |#1| |#1|) $) 41)) (-3171 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 32)) (-3971 ((|#2| $) 34)) (-3982 ((|#1| $) 33)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ |#2|) 44)) (-3191 (((-641 |#1|) $) 37)) (-2007 ((|#1| $ |#2|) 42)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2404 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 38)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ |#1| $) 24) (($ $ |#1|) 27) (($ |#1| |#2|) 43)))
-(((-382 |#1| |#2|) (-140) (-1045) (-1094)) (T -382))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094)))) (-2007 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045)))) (-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)))) (-3290 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-2210 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-382 *3 *4)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-767)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1684 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094)))))
-(-13 (-111 |t#1| |t#1|) (-1034 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2007 (|t#1| $ |t#2|)) (-15 -4357 ($ (-1 |t#1| |t#1|) $)) (-15 -3290 ($ |t#2| |t#1|)) (-15 -4003 ((-112) $)) (-15 -2404 ((-641 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3191 ((-641 |t#1|) $)) (-15 -2210 ((-641 $) $)) (-15 -2497 ((-767) $)) (-15 -3971 (|t#2| $)) (-15 -3982 (|t#1| $)) (-15 -3171 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1684 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-713 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 |#2|) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-713 |#1|) |has| |#1| (-172)) ((-1034 |#2|) . T) ((-1051 |#1|) . T) ((-1094) . T))
-((-3111 (((-1264) $) 7)) (-2423 (((-858) $) 8) (($ (-685 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 11)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#2| "failed") $) 49)) (-3027 ((|#2| $) 50)) (-1718 (($ $) 35)) (-3934 (((-769) $) 39)) (-1763 (((-642 $) $) 40)) (-2316 (((-112) $) 43)) (-3214 (($ |#2| |#1|) 44)) (-4358 (($ (-1 |#1| |#1|) $) 45)) (-4234 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-3950 ((|#2| $) 38)) (-3962 ((|#1| $) 37)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ |#2|) 48)) (-3849 (((-642 |#1|) $) 41)) (-2102 ((|#1| $ |#2|) 46)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-3692 (((-642 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
+(((-382 |#1| |#2|) (-140) (-1047) (-1097)) (T -382))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1097)))) (-2102 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1047)))) (-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)))) (-3214 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1097)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-112)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-642 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-642 *3)))) (-1763 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-642 *1)) (-4 *1 (-382 *3 *4)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-769)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1097)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1047)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1718 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1097)))))
+(-13 (-111 |t#1| |t#1|) (-1036 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2102 (|t#1| $ |t#2|)) (-15 -4358 ($ (-1 |t#1| |t#1|) $)) (-15 -3214 ($ |t#2| |t#1|)) (-15 -2316 ((-112) $)) (-15 -3692 ((-642 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3849 ((-642 |t#1|) $)) (-15 -1763 ((-642 $) $)) (-15 -3934 ((-769) $)) (-15 -3950 (|t#2| $)) (-15 -3962 (|t#1| $)) (-15 -4234 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1718 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-715 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 |#2|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) |has| |#1| (-172)) ((-715 |#1|) |has| |#1| (-172)) ((-1036 |#2|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T))
+((-3019 (((-1267) $) 7)) (-2327 (((-860) $) 8) (($ (-687 (-697))) 14) (($ (-642 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 11)))
(((-383) (-140)) (T -383))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) (-4 *1 (-383)))))
-(-13 (-395) (-10 -8 (-15 -2423 ($ (-685 (-695)))) (-15 -2423 ($ (-641 (-330)))) (-15 -2423 ($ (-330))) (-15 -2423 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))))))
-(((-611 (-858)) . T) ((-395) . T) ((-1209) . T))
-((-4284 (((-3 $ "failed") (-685 (-316 (-379)))) 21) (((-3 $ "failed") (-685 (-316 (-564)))) 19) (((-3 $ "failed") (-685 (-948 (-379)))) 17) (((-3 $ "failed") (-685 (-948 (-564)))) 15) (((-3 $ "failed") (-685 (-407 (-948 (-379))))) 13) (((-3 $ "failed") (-685 (-407 (-948 (-564))))) 11)) (-3120 (($ (-685 (-316 (-379)))) 22) (($ (-685 (-316 (-564)))) 20) (($ (-685 (-948 (-379)))) 18) (($ (-685 (-948 (-564)))) 16) (($ (-685 (-407 (-948 (-379))))) 14) (($ (-685 (-407 (-948 (-564))))) 12)) (-3111 (((-1264) $) 7)) (-2423 (((-858) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 23)))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-687 (-697))) (-4 *1 (-383)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-383)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) (-4 *1 (-383)))))
+(-13 (-395) (-10 -8 (-15 -2327 ($ (-687 (-697)))) (-15 -2327 ($ (-642 (-330)))) (-15 -2327 ($ (-330))) (-15 -2327 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))))))
+(((-611 (-860)) . T) ((-395) . T) ((-1212) . T))
+((-4278 (((-3 $ "failed") (-687 (-316 (-379)))) 21) (((-3 $ "failed") (-687 (-316 (-564)))) 19) (((-3 $ "failed") (-687 (-950 (-379)))) 17) (((-3 $ "failed") (-687 (-950 (-564)))) 15) (((-3 $ "failed") (-687 (-407 (-950 (-379))))) 13) (((-3 $ "failed") (-687 (-407 (-950 (-564))))) 11)) (-3027 (($ (-687 (-316 (-379)))) 22) (($ (-687 (-316 (-564)))) 20) (($ (-687 (-950 (-379)))) 18) (($ (-687 (-950 (-564)))) 16) (($ (-687 (-407 (-950 (-379))))) 14) (($ (-687 (-407 (-950 (-564))))) 12)) (-3019 (((-1267) $) 7)) (-2327 (((-860) $) 8) (($ (-642 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 23)))
(((-384) (-140)) (T -384))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) (-4 *1 (-384)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-685 (-948 (-379)))) (-4 *1 (-384)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-948 (-379)))) (-4 *1 (-384)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-685 (-948 (-564)))) (-4 *1 (-384)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-948 (-564)))) (-4 *1 (-384)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-948 (-379))))) (-4 *1 (-384)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-948 (-379))))) (-4 *1 (-384)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-948 (-564))))) (-4 *1 (-384)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-948 (-564))))) (-4 *1 (-384)))))
-(-13 (-395) (-10 -8 (-15 -2423 ($ (-641 (-330)))) (-15 -2423 ($ (-330))) (-15 -2423 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))) (-15 -3120 ($ (-685 (-316 (-379))))) (-15 -4284 ((-3 $ "failed") (-685 (-316 (-379))))) (-15 -3120 ($ (-685 (-316 (-564))))) (-15 -4284 ((-3 $ "failed") (-685 (-316 (-564))))) (-15 -3120 ($ (-685 (-948 (-379))))) (-15 -4284 ((-3 $ "failed") (-685 (-948 (-379))))) (-15 -3120 ($ (-685 (-948 (-564))))) (-15 -4284 ((-3 $ "failed") (-685 (-948 (-564))))) (-15 -3120 ($ (-685 (-407 (-948 (-379)))))) (-15 -4284 ((-3 $ "failed") (-685 (-407 (-948 (-379)))))) (-15 -3120 ($ (-685 (-407 (-948 (-564)))))) (-15 -4284 ((-3 $ "failed") (-685 (-407 (-948 (-564))))))))
-(((-611 (-858)) . T) ((-395) . T) ((-1209) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1684 (($ $) NIL)) (-3810 (($ |#1| |#2|) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3508 ((|#2| $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 34)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 12 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
-(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|))) (-1045) (-846)) (T -385))
-NIL
-(-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767) $) 72)) (-4080 (($) NIL T CONST)) (-1662 (((-3 $ "failed") $ $) 75)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-3388 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 62)) (-4112 (((-112) $) 17)) (-4375 ((|#1| $ (-564)) NIL)) (-1325 (((-767) $ (-564)) NIL)) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2700 (($ (-1 |#1| |#1|) $) 40)) (-2320 (($ (-1 (-767) (-767)) $) 37)) (-4107 (((-3 $ "failed") $ $) 59)) (-2766 (((-1152) $) NIL)) (-1454 (($ $ $) 28)) (-4050 (($ $ $) 26)) (-4052 (((-1114) $) NIL)) (-1572 (((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-767)))) $) 34)) (-1389 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 68)) (-2423 (((-858) $) 24) (($ |#1|) NIL)) (-1860 (((-112) $ $) NIL)) (-2417 (($) 11 T CONST)) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) 81 (|has| |#1| (-846)))) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
-(((-386 |#1|) (-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -4050 ($ $ $)) (-15 -1454 ($ $ $)) (-15 -4107 ((-3 $ "failed") $ $)) (-15 -1662 ((-3 $ "failed") $ $)) (-15 -1389 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3388 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2622 ((-767) $)) (-15 -1572 ((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-767)))) $)) (-15 -1325 ((-767) $ (-564))) (-15 -4375 (|#1| $ (-564))) (-15 -2320 ($ (-1 (-767) (-767)) $)) (-15 -2700 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1094)) (T -386))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-4050 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-1454 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-4107 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-1662 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-1389 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-3388 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 (-767))))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-1325 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1094)))) (-4375 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2320 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2700 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3)))))
-(-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -4050 ($ $ $)) (-15 -1454 ($ $ $)) (-15 -4107 ((-3 $ "failed") $ $)) (-15 -1662 ((-3 $ "failed") $ $)) (-15 -1389 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3388 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2622 ((-767) $)) (-15 -1572 ((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-767)))) $)) (-15 -1325 ((-767) $ (-564))) (-15 -4375 (|#1| $ (-564))) (-15 -2320 ($ (-1 (-767) (-767)) $)) (-15 -2700 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-4284 (((-3 (-564) "failed") $) 49)) (-3120 (((-564) $) 50)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2855 (($ $ $) 56)) (-1497 (($ $ $) 55)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2998 (((-3 $ "failed") $ $) 44)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-564)) 48)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-3034 (((-112) $ $) 53)) (-3011 (((-112) $ $) 52)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 54)) (-2999 (((-112) $ $) 51)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-384)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) (-4 *1 (-384)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-687 (-316 (-379)))) (-4 *1 (-384)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-316 (-379)))) (-4 *1 (-384)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-687 (-316 (-564)))) (-4 *1 (-384)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-316 (-564)))) (-4 *1 (-384)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-687 (-950 (-379)))) (-4 *1 (-384)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-950 (-379)))) (-4 *1 (-384)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-687 (-950 (-564)))) (-4 *1 (-384)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-950 (-564)))) (-4 *1 (-384)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-687 (-407 (-950 (-379))))) (-4 *1 (-384)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-407 (-950 (-379))))) (-4 *1 (-384)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-687 (-407 (-950 (-564))))) (-4 *1 (-384)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-687 (-407 (-950 (-564))))) (-4 *1 (-384)))))
+(-13 (-395) (-10 -8 (-15 -2327 ($ (-642 (-330)))) (-15 -2327 ($ (-330))) (-15 -2327 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))) (-15 -3027 ($ (-687 (-316 (-379))))) (-15 -4278 ((-3 $ "failed") (-687 (-316 (-379))))) (-15 -3027 ($ (-687 (-316 (-564))))) (-15 -4278 ((-3 $ "failed") (-687 (-316 (-564))))) (-15 -3027 ($ (-687 (-950 (-379))))) (-15 -4278 ((-3 $ "failed") (-687 (-950 (-379))))) (-15 -3027 ($ (-687 (-950 (-564))))) (-15 -4278 ((-3 $ "failed") (-687 (-950 (-564))))) (-15 -3027 ($ (-687 (-407 (-950 (-379)))))) (-15 -4278 ((-3 $ "failed") (-687 (-407 (-950 (-379)))))) (-15 -3027 ($ (-687 (-407 (-950 (-564)))))) (-15 -4278 ((-3 $ "failed") (-687 (-407 (-950 (-564))))))))
+(((-611 (-860)) . T) ((-395) . T) ((-1212) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-1718 (($ $) NIL)) (-3774 (($ |#1| |#2|) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3959 ((|#2| $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 34)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 12 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-715 |#1|)) |%noBranch|))) (-1047) (-848)) (T -385))
+NIL
+(-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-715 |#1|)) |%noBranch|)))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769) $) 72)) (-1976 (($) NIL T CONST)) (-3842 (((-3 $ "failed") $ $) 75)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2489 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 62)) (-3953 (((-112) $) 17)) (-2123 ((|#1| $ (-564)) NIL)) (-2659 (((-769) $ (-564)) NIL)) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-4317 (($ (-1 |#1| |#1|) $) 40)) (-2733 (($ (-1 (-769) (-769)) $) 37)) (-4093 (((-3 $ "failed") $ $) 59)) (-3315 (((-1155) $) NIL)) (-2267 (($ $ $) 28)) (-1615 (($ $ $) 26)) (-4033 (((-1117) $) NIL)) (-2649 (((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-769)))) $) 34)) (-4376 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 68)) (-2327 (((-860) $) 24) (($ |#1|) NIL)) (-1648 (((-112) $ $) NIL)) (-2322 (($) 11 T CONST)) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) 81 (|has| |#1| (-848)))) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ |#1| (-769)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
+(((-386 |#1|) (-13 (-724) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-769))) (-15 -1615 ($ $ $)) (-15 -2267 ($ $ $)) (-15 -4093 ((-3 $ "failed") $ $)) (-15 -3842 ((-3 $ "failed") $ $)) (-15 -4376 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2489 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2521 ((-769) $)) (-15 -2649 ((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-769)))) $)) (-15 -2659 ((-769) $ (-564))) (-15 -2123 (|#1| $ (-564))) (-15 -2733 ($ (-1 (-769) (-769)) $)) (-15 -4317 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|))) (-1097)) (T -386))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-1615 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-2267 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-4093 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-3842 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-4376 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) (-2489 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 (-769))))) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) (-2659 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-769)) (-5 *1 (-386 *4)) (-4 *4 (-1097)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1097)))) (-2733 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-769) (-769))) (-5 *1 (-386 *3)) (-4 *3 (-1097)))) (-4317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-386 *3)))))
+(-13 (-724) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-769))) (-15 -1615 ($ $ $)) (-15 -2267 ($ $ $)) (-15 -4093 ((-3 $ "failed") $ $)) (-15 -3842 ((-3 $ "failed") $ $)) (-15 -4376 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2489 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2521 ((-769) $)) (-15 -2649 ((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-769)))) $)) (-15 -2659 ((-769) $ (-564))) (-15 -2123 (|#1| $ (-564))) (-15 -2733 ($ (-1 (-769) (-769)) $)) (-15 -4317 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-4278 (((-3 (-564) "failed") $) 53)) (-3027 (((-564) $) 54)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-2755 (($ $ $) 60)) (-1520 (($ $ $) 59)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2896 (((-3 $ "failed") $ $) 48)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-564)) 52)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2934 (((-112) $ $) 57)) (-2908 (((-112) $ $) 56)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 58)) (-2897 (((-112) $ $) 55)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
(((-387) (-140)) (T -387))
NIL
-(-13 (-556) (-846) (-1034 (-564)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-1034 (-564)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1755 (((-112) $) 25)) (-1449 (((-112) $) 22)) (-4238 (($ (-1152) (-1152) (-1152)) 26)) (-2562 (((-1152) $) 16)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1926 (($ (-1152) (-1152) (-1152)) 14)) (-2197 (((-1152) $) 17)) (-3781 (((-112) $) 18)) (-2912 (((-1152) $) 15)) (-2423 (((-858) $) 12) (($ (-1152)) 13) (((-1152) $) 9)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 7)))
+(-13 (-556) (-848) (-1036 (-564)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-848) . T) ((-1036 (-564)) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2581 (((-112) $) 25)) (-3010 (((-112) $) 22)) (-4227 (($ (-1155) (-1155) (-1155)) 26)) (-2461 (((-1155) $) 16)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1927 (($ (-1155) (-1155) (-1155)) 14)) (-4174 (((-1155) $) 17)) (-1465 (((-112) $) 18)) (-2813 (((-1155) $) 15)) (-2327 (((-860) $) 12) (($ (-1155)) 13) (((-1155) $) 9)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 7)))
(((-388) (-389)) (T -388))
NIL
(-389)
-((-3009 (((-112) $ $) 7)) (-1755 (((-112) $) 17)) (-1449 (((-112) $) 18)) (-4238 (($ (-1152) (-1152) (-1152)) 16)) (-2562 (((-1152) $) 21)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1926 (($ (-1152) (-1152) (-1152)) 23)) (-2197 (((-1152) $) 20)) (-3781 (((-112) $) 19)) (-2912 (((-1152) $) 22)) (-2423 (((-858) $) 12) (($ (-1152)) 25) (((-1152) $) 24)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
+((-2907 (((-112) $ $) 7)) (-2581 (((-112) $) 17)) (-3010 (((-112) $) 18)) (-4227 (($ (-1155) (-1155) (-1155)) 16)) (-2461 (((-1155) $) 21)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-1927 (($ (-1155) (-1155) (-1155)) 23)) (-4174 (((-1155) $) 20)) (-1465 (((-112) $) 19)) (-2813 (((-1155) $) 22)) (-2327 (((-860) $) 12) (($ (-1155)) 25) (((-1155) $) 24)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
(((-389) (-140)) (T -389))
-((-1926 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-2562 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4238 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))))
-(-13 (-1094) (-490 (-1152)) (-10 -8 (-15 -1926 ($ (-1152) (-1152) (-1152))) (-15 -2912 ((-1152) $)) (-15 -2562 ((-1152) $)) (-15 -2197 ((-1152) $)) (-15 -3781 ((-112) $)) (-15 -1449 ((-112) $)) (-15 -1755 ((-112) $)) (-15 -4238 ($ (-1152) (-1152) (-1152)))))
-(((-102) . T) ((-614 #0=(-1152)) . T) ((-611 (-858)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1553 (((-858) $) 63)) (-4080 (($) NIL T CONST)) (-3232 (($ $ (-917)) NIL)) (-3532 (($ $ (-917)) NIL)) (-2105 (($ $ (-917)) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2249 (($ (-767)) 37)) (-4327 (((-767)) 18)) (-1509 (((-858) $) 65)) (-1542 (($ $ $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-3099 (($ $ $ $) NIL)) (-3163 (($ $ $) NIL)) (-2403 (($) 24 T CONST)) (-2974 (((-112) $ $) 40)) (-3082 (($ $) 47) (($ $ $) 49)) (-3070 (($ $ $) 50)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 51) (($ $ |#3|) NIL) (($ |#3| $) 46)))
-(((-390 |#1| |#2| |#3|) (-13 (-740 |#3|) (-10 -8 (-15 -4327 ((-767))) (-15 -1509 ((-858) $)) (-15 -1553 ((-858) $)) (-15 -2249 ($ (-767))))) (-767) (-767) (-172)) (T -390))
-((-4327 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-2249 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))))
-(-13 (-740 |#3|) (-10 -8 (-15 -4327 ((-767))) (-15 -1509 ((-858) $)) (-15 -1553 ((-858) $)) (-15 -2249 ($ (-767)))))
-((-3222 (((-1152)) 12)) (-4132 (((-1141 (-1152))) 31)) (-3087 (((-1264) (-1152)) 28) (((-1264) (-388)) 27)) (-3098 (((-1264)) 29)) (-1954 (((-1141 (-1152))) 30)))
-(((-391) (-10 -7 (-15 -1954 ((-1141 (-1152)))) (-15 -4132 ((-1141 (-1152)))) (-15 -3098 ((-1264))) (-15 -3087 ((-1264) (-388))) (-15 -3087 ((-1264) (-1152))) (-15 -3222 ((-1152))))) (T -391))
-((-3222 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-3098 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391)))) (-4132 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))) (-1954 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))))
-(-10 -7 (-15 -1954 ((-1141 (-1152)))) (-15 -4132 ((-1141 (-1152)))) (-15 -3098 ((-1264))) (-15 -3087 ((-1264) (-388))) (-15 -3087 ((-1264) (-1152))) (-15 -3222 ((-1152))))
-((-3744 (((-767) (-336 |#1| |#2| |#3| |#4|)) 19)))
-(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3744 ((-767) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392))
-((-3744 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3744 ((-767) (-336 |#1| |#2| |#3| |#4|))))
-((-2423 (((-394) |#1|) 11)))
-(((-393 |#1|) (-10 -7 (-15 -2423 ((-394) |#1|))) (-1094)) (T -393))
-((-2423 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094)))))
-(-10 -7 (-15 -2423 ((-394) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-2124 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-3107 (((-641 (-1152)) $ (-641 (-1152))) 44)) (-2794 (((-641 (-1152)) $ (-641 (-1152))) 45)) (-3281 (((-641 (-1152)) $) 40)) (-4238 (($) 30)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2616 (((-641 (-1152)) $) 41)) (-4185 (((-641 (-1152)) $) 42)) (-1630 (((-1264) $ (-564)) 38) (((-1264) $) 39)) (-1311 (($ (-858) (-564)) 35)) (-2423 (((-858) $) 54) (($ (-858)) 32)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-394) (-13 (-1094) (-614 (-858)) (-10 -8 (-15 -1311 ($ (-858) (-564))) (-15 -1630 ((-1264) $ (-564))) (-15 -1630 ((-1264) $)) (-15 -4185 ((-641 (-1152)) $)) (-15 -2616 ((-641 (-1152)) $)) (-15 -4238 ($)) (-15 -3281 ((-641 (-1152)) $)) (-15 -2794 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -3107 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2124 ((-641 (-1152)) $ (-641 (-1152))))))) (T -394))
-((-1311 (*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-394)))) (-1630 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-4238 (*1 *1) (-5 *1 (-394))) (-3281 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-2794 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-3107 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-2124 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))))
-(-13 (-1094) (-614 (-858)) (-10 -8 (-15 -1311 ($ (-858) (-564))) (-15 -1630 ((-1264) $ (-564))) (-15 -1630 ((-1264) $)) (-15 -4185 ((-641 (-1152)) $)) (-15 -2616 ((-641 (-1152)) $)) (-15 -4238 ($)) (-15 -3281 ((-641 (-1152)) $)) (-15 -2794 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -3107 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2124 ((-641 (-1152)) $ (-641 (-1152))))))
-((-3111 (((-1264) $) 7)) (-2423 (((-858) $) 8)))
+((-1927 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-389)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4227 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-389)))))
+(-13 (-1097) (-490 (-1155)) (-10 -8 (-15 -1927 ($ (-1155) (-1155) (-1155))) (-15 -2813 ((-1155) $)) (-15 -2461 ((-1155) $)) (-15 -4174 ((-1155) $)) (-15 -1465 ((-112) $)) (-15 -3010 ((-112) $)) (-15 -2581 ((-112) $)) (-15 -4227 ($ (-1155) (-1155) (-1155)))))
+(((-102) . T) ((-614 #0=(-1155)) . T) ((-611 (-860)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4019 (((-860) $) 63)) (-1976 (($) NIL T CONST)) (-2013 (($ $ (-919)) NIL)) (-3285 (($ $ (-919)) NIL)) (-1522 (($ $ (-919)) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2185 (($ (-769)) 37)) (-3474 (((-769)) 18)) (-4105 (((-860) $) 65)) (-3759 (($ $ $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-3088 (($ $ $ $) NIL)) (-2920 (($ $ $) NIL)) (-2312 (($) 24 T CONST)) (-2872 (((-112) $ $) 40)) (-2987 (($ $) 47) (($ $ $) 49)) (-2974 (($ $ $) 50)) (** (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 51) (($ $ |#3|) NIL) (($ |#3| $) 46)))
+(((-390 |#1| |#2| |#3|) (-13 (-742 |#3|) (-10 -8 (-15 -3474 ((-769))) (-15 -4105 ((-860) $)) (-15 -4019 ((-860) $)) (-15 -2185 ($ (-769))))) (-769) (-769) (-172)) (T -390))
+((-3474 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-769)) (-14 *4 (-769)) (-4 *5 (-172)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-769)) (-14 *4 (-769)) (-4 *5 (-172)))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))))
+(-13 (-742 |#3|) (-10 -8 (-15 -3474 ((-769))) (-15 -4105 ((-860) $)) (-15 -4019 ((-860) $)) (-15 -2185 ($ (-769)))))
+((-4327 (((-1155)) 12)) (-2541 (((-1144 (-1155))) 31)) (-2992 (((-1267) (-1155)) 28) (((-1267) (-388)) 27)) (-3004 (((-1267)) 29)) (-2437 (((-1144 (-1155))) 30)))
+(((-391) (-10 -7 (-15 -2437 ((-1144 (-1155)))) (-15 -2541 ((-1144 (-1155)))) (-15 -3004 ((-1267))) (-15 -2992 ((-1267) (-388))) (-15 -2992 ((-1267) (-1155))) (-15 -4327 ((-1155))))) (T -391))
+((-4327 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-391)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-391)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1267)) (-5 *1 (-391)))) (-3004 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-391)))) (-2541 (*1 *2) (-12 (-5 *2 (-1144 (-1155))) (-5 *1 (-391)))) (-2437 (*1 *2) (-12 (-5 *2 (-1144 (-1155))) (-5 *1 (-391)))))
+(-10 -7 (-15 -2437 ((-1144 (-1155)))) (-15 -2541 ((-1144 (-1155)))) (-15 -3004 ((-1267))) (-15 -2992 ((-1267) (-388))) (-15 -2992 ((-1267) (-1155))) (-15 -4327 ((-1155))))
+((-1427 (((-769) (-336 |#1| |#2| |#3| |#4|)) 19)))
+(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1427 ((-769) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392))
+((-1427 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-769)) (-5 *1 (-392 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1427 ((-769) (-336 |#1| |#2| |#3| |#4|))))
+((-2327 (((-394) |#1|) 11)))
+(((-393 |#1|) (-10 -7 (-15 -2327 ((-394) |#1|))) (-1097)) (T -393))
+((-2327 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1097)))))
+(-10 -7 (-15 -2327 ((-394) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2978 (((-642 (-1155)) $ (-642 (-1155))) 43)) (-1566 (((-642 (-1155)) $ (-642 (-1155))) 44)) (-3649 (((-642 (-1155)) $ (-642 (-1155))) 45)) (-4307 (((-642 (-1155)) $) 40)) (-4227 (($) 30)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2515 (((-642 (-1155)) $) 41)) (-2745 (((-642 (-1155)) $) 42)) (-1664 (((-1267) $ (-564)) 38) (((-1267) $) 39)) (-1314 (($ (-860) (-564)) 35)) (-2327 (((-860) $) 54) (($ (-860)) 32)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-394) (-13 (-1097) (-614 (-860)) (-10 -8 (-15 -1314 ($ (-860) (-564))) (-15 -1664 ((-1267) $ (-564))) (-15 -1664 ((-1267) $)) (-15 -2745 ((-642 (-1155)) $)) (-15 -2515 ((-642 (-1155)) $)) (-15 -4227 ($)) (-15 -4307 ((-642 (-1155)) $)) (-15 -3649 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -1566 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -2978 ((-642 (-1155)) $ (-642 (-1155))))))) (T -394))
+((-1314 (*1 *1 *2 *3) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-394)))) (-1664 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-394)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-394)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) (-4227 (*1 *1) (-5 *1 (-394))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) (-3649 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) (-1566 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))) (-2978 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))))
+(-13 (-1097) (-614 (-860)) (-10 -8 (-15 -1314 ($ (-860) (-564))) (-15 -1664 ((-1267) $ (-564))) (-15 -1664 ((-1267) $)) (-15 -2745 ((-642 (-1155)) $)) (-15 -2515 ((-642 (-1155)) $)) (-15 -4227 ($)) (-15 -4307 ((-642 (-1155)) $)) (-15 -3649 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -1566 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -2978 ((-642 (-1155)) $ (-642 (-1155))))))
+((-3019 (((-1267) $) 7)) (-2327 (((-860) $) 8)))
(((-395) (-140)) (T -395))
-((-3111 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264)))))
-(-13 (-1209) (-611 (-858)) (-10 -8 (-15 -3111 ((-1264) $))))
-(((-611 (-858)) . T) ((-1209) . T))
-((-4284 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-564))) 19) (((-3 $ "failed") (-948 (-379))) 17) (((-3 $ "failed") (-948 (-564))) 15) (((-3 $ "failed") (-407 (-948 (-379)))) 13) (((-3 $ "failed") (-407 (-948 (-564)))) 11)) (-3120 (($ (-316 (-379))) 22) (($ (-316 (-564))) 20) (($ (-948 (-379))) 18) (($ (-948 (-564))) 16) (($ (-407 (-948 (-379)))) 14) (($ (-407 (-948 (-564)))) 12)) (-3111 (((-1264) $) 7)) (-2423 (((-858) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 23)))
+((-3019 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1267)))))
+(-13 (-1212) (-611 (-860)) (-10 -8 (-15 -3019 ((-1267) $))))
+(((-611 (-860)) . T) ((-1212) . T))
+((-4278 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-564))) 19) (((-3 $ "failed") (-950 (-379))) 17) (((-3 $ "failed") (-950 (-564))) 15) (((-3 $ "failed") (-407 (-950 (-379)))) 13) (((-3 $ "failed") (-407 (-950 (-564)))) 11)) (-3027 (($ (-316 (-379))) 22) (($ (-316 (-564))) 20) (($ (-950 (-379))) 18) (($ (-950 (-564))) 16) (($ (-407 (-950 (-379)))) 14) (($ (-407 (-950 (-564)))) 12)) (-3019 (((-1267) $) 7)) (-2327 (((-860) $) 8) (($ (-642 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 23)))
(((-396) (-140)) (T -396))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) (-4 *1 (-396)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-948 (-564))) (-4 *1 (-396)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-564))) (-4 *1 (-396)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-564)))) (-4 *1 (-396)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-564)))) (-4 *1 (-396)))))
-(-13 (-395) (-10 -8 (-15 -2423 ($ (-641 (-330)))) (-15 -2423 ($ (-330))) (-15 -2423 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))) (-15 -3120 ($ (-316 (-379)))) (-15 -4284 ((-3 $ "failed") (-316 (-379)))) (-15 -3120 ($ (-316 (-564)))) (-15 -4284 ((-3 $ "failed") (-316 (-564)))) (-15 -3120 ($ (-948 (-379)))) (-15 -4284 ((-3 $ "failed") (-948 (-379)))) (-15 -3120 ($ (-948 (-564)))) (-15 -4284 ((-3 $ "failed") (-948 (-564)))) (-15 -3120 ($ (-407 (-948 (-379))))) (-15 -4284 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -3120 ($ (-407 (-948 (-564))))) (-15 -4284 ((-3 $ "failed") (-407 (-948 (-564)))))))
-(((-611 (-858)) . T) ((-395) . T) ((-1209) . T))
-((-2175 (((-641 (-1152)) (-641 (-1152))) 9)) (-3111 (((-1264) (-388)) 27)) (-1468 (((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170))) 60) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170)) 35) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170))) 34)))
-(((-397) (-10 -7 (-15 -1468 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -1468 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -1468 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -3111 ((-1264) (-388))) (-15 -2175 ((-641 (-1152)) (-641 (-1152)))))) (T -397))
-((-2175 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397)))) (-1468 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-1468 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-1468 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))))
-(-10 -7 (-15 -1468 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -1468 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -1468 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -3111 ((-1264) (-388))) (-15 -2175 ((-641 (-1152)) (-641 (-1152)))))
-((-3111 (((-1264) $) 36)) (-2423 (((-858) $) 98) (($ (-330)) 100) (($ (-641 (-330))) 99) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 97) (($ (-316 (-697))) 53) (($ (-316 (-695))) 73) (($ (-316 (-690))) 86) (($ (-294 (-316 (-697)))) 68) (($ (-294 (-316 (-695)))) 81) (($ (-294 (-316 (-690)))) 94) (($ (-316 (-564))) 105) (($ (-316 (-379))) 118) (($ (-316 (-169 (-379)))) 131) (($ (-294 (-316 (-564)))) 113) (($ (-294 (-316 (-379)))) 126) (($ (-294 (-316 (-169 (-379))))) 139)))
-(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -2423 ($ (-330))) (-15 -2423 ($ (-641 (-330)))) (-15 -2423 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))) (-15 -2423 ($ (-316 (-697)))) (-15 -2423 ($ (-316 (-695)))) (-15 -2423 ($ (-316 (-690)))) (-15 -2423 ($ (-294 (-316 (-697))))) (-15 -2423 ($ (-294 (-316 (-695))))) (-15 -2423 ($ (-294 (-316 (-690))))) (-15 -2423 ($ (-316 (-564)))) (-15 -2423 ($ (-316 (-379)))) (-15 -2423 ($ (-316 (-169 (-379))))) (-15 -2423 ($ (-294 (-316 (-564))))) (-15 -2423 ($ (-294 (-316 (-379))))) (-15 -2423 ($ (-294 (-316 (-169 (-379)))))))) (-1170) (-3 (|:| |fst| (-434)) (|:| -1836 "void")) (-641 (-1170)) (-1174)) (T -398))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))))
-(-13 (-395) (-10 -8 (-15 -2423 ($ (-330))) (-15 -2423 ($ (-641 (-330)))) (-15 -2423 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))) (-15 -2423 ($ (-316 (-697)))) (-15 -2423 ($ (-316 (-695)))) (-15 -2423 ($ (-316 (-690)))) (-15 -2423 ($ (-294 (-316 (-697))))) (-15 -2423 ($ (-294 (-316 (-695))))) (-15 -2423 ($ (-294 (-316 (-690))))) (-15 -2423 ($ (-316 (-564)))) (-15 -2423 ($ (-316 (-379)))) (-15 -2423 ($ (-316 (-169 (-379))))) (-15 -2423 ($ (-294 (-316 (-564))))) (-15 -2423 ($ (-294 (-316 (-379))))) (-15 -2423 ($ (-294 (-316 (-169 (-379))))))))
-((-3009 (((-112) $ $) NIL)) (-4326 ((|#2| $) 38)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3142 (($ (-407 |#2|)) 95)) (-2879 (((-641 (-2 (|:| -1838 (-767)) (|:| -3639 |#2|) (|:| |num| |#2|))) $) 39)) (-3254 (($ $) 34) (($ $ (-767)) 36)) (-1311 (((-407 |#2|) $) 51)) (-2435 (($ (-641 (-2 (|:| -1838 (-767)) (|:| -3639 |#2|) (|:| |num| |#2|)))) 33)) (-2423 (((-858) $) 137)) (-1860 (((-112) $ $) NIL)) (-4063 (($ $) 35) (($ $ (-767)) 37)) (-2974 (((-112) $ $) NIL)) (-3070 (($ |#2| $) 41)))
-(((-399 |#1| |#2|) (-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -3070 ($ |#2| $)) (-15 -3142 ($ (-407 |#2|))) (-15 -4326 (|#2| $)) (-15 -2879 ((-641 (-2 (|:| -1838 (-767)) (|:| -3639 |#2|) (|:| |num| |#2|))) $)) (-15 -2435 ($ (-641 (-2 (|:| -1838 (-767)) (|:| -3639 |#2|) (|:| |num| |#2|))))) (-15 -3254 ($ $)) (-15 -4063 ($ $)) (-15 -3254 ($ $ (-767))) (-15 -4063 ($ $ (-767))))) (-13 (-363) (-147)) (-1235 |#1|)) (T -399))
-((-3070 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1235 *3)))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-4326 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-2879 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-641 (-2 (|:| -1838 (-767)) (|:| -3639 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1838 (-767)) (|:| -3639 *4) (|:| |num| *4)))) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-3254 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-4063 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-4063 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))))
-(-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -3070 ($ |#2| $)) (-15 -3142 ($ (-407 |#2|))) (-15 -4326 (|#2| $)) (-15 -2879 ((-641 (-2 (|:| -1838 (-767)) (|:| -3639 |#2|) (|:| |num| |#2|))) $)) (-15 -2435 ($ (-641 (-2 (|:| -1838 (-767)) (|:| -3639 |#2|) (|:| |num| |#2|))))) (-15 -3254 ($ $)) (-15 -4063 ($ $)) (-15 -3254 ($ $ (-767))) (-15 -4063 ($ $ (-767)))))
-((-3009 (((-112) $ $) 9 (-2807 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))))) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 16 (|has| |#1| (-882 (-379)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 15 (|has| |#1| (-882 (-564))))) (-2766 (((-1152) $) 13 (-2807 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))))) (-4052 (((-1114) $) 12 (-2807 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))))) (-2423 (((-858) $) 11 (-2807 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))))) (-1860 (((-112) $ $) 14 (-2807 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))))) (-2974 (((-112) $ $) 10 (-2807 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))))))
-(((-400 |#1|) (-140) (-1209)) (T -400))
-NIL
-(-13 (-1209) (-10 -7 (IF (|has| |t#1| (-882 (-564))) (-6 (-882 (-564))) |%noBranch|) (IF (|has| |t#1| (-882 (-379))) (-6 (-882 (-379))) |%noBranch|)))
-(((-102) -2807 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))) ((-611 (-858)) -2807 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-564)) |has| |#1| (-882 (-564))) ((-1094) -2807 (|has| |#1| (-882 (-564))) (|has| |#1| (-882 (-379)))) ((-1209) . T))
-((-3456 (($ $) 10) (($ $ (-767)) 12)))
-(((-401 |#1|) (-10 -8 (-15 -3456 (|#1| |#1| (-767))) (-15 -3456 (|#1| |#1|))) (-402)) (T -401))
-NIL
-(-10 -8 (-15 -3456 (|#1| |#1| (-767))) (-15 -3456 (|#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 75)) (-2753 (((-418 $) $) 74)) (-3162 (((-112) $ $) 61)) (-4080 (($) 18 T CONST)) (-2946 (($ $ $) 57)) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-3456 (($ $) 81) (($ $ (-767)) 80)) (-1339 (((-112) $) 73)) (-3744 (((-829 (-917)) $) 83)) (-4112 (((-112) $) 32)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 72)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-3688 (((-418 $) $) 76)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-1700 (((-767) $) 60)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-4255 (((-3 (-767) "failed") $ $) 82)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-407 (-564))) 68)) (-2420 (((-3 $ "failed") $) 84)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 67)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 70) (($ (-407 (-564)) $) 69)))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-396)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) (-4 *1 (-396)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-950 (-379))) (-4 *1 (-396)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-379))) (-4 *1 (-396)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-950 (-564))) (-4 *1 (-396)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-564))) (-4 *1 (-396)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-379)))) (-4 *1 (-396)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-950 (-379)))) (-4 *1 (-396)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-564)))) (-4 *1 (-396)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-950 (-564)))) (-4 *1 (-396)))))
+(-13 (-395) (-10 -8 (-15 -2327 ($ (-642 (-330)))) (-15 -2327 ($ (-330))) (-15 -2327 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))) (-15 -3027 ($ (-316 (-379)))) (-15 -4278 ((-3 $ "failed") (-316 (-379)))) (-15 -3027 ($ (-316 (-564)))) (-15 -4278 ((-3 $ "failed") (-316 (-564)))) (-15 -3027 ($ (-950 (-379)))) (-15 -4278 ((-3 $ "failed") (-950 (-379)))) (-15 -3027 ($ (-950 (-564)))) (-15 -4278 ((-3 $ "failed") (-950 (-564)))) (-15 -3027 ($ (-407 (-950 (-379))))) (-15 -4278 ((-3 $ "failed") (-407 (-950 (-379))))) (-15 -3027 ($ (-407 (-950 (-564))))) (-15 -4278 ((-3 $ "failed") (-407 (-950 (-564)))))))
+(((-611 (-860)) . T) ((-395) . T) ((-1212) . T))
+((-3380 (((-642 (-1155)) (-642 (-1155))) 9)) (-3019 (((-1267) (-388)) 27)) (-3878 (((-1101) (-1173) (-642 (-1173)) (-1176) (-642 (-1173))) 60) (((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173)) (-1173)) 35) (((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173))) 34)))
+(((-397) (-10 -7 (-15 -3878 ((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173)))) (-15 -3878 ((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173)) (-1173))) (-15 -3878 ((-1101) (-1173) (-642 (-1173)) (-1176) (-642 (-1173)))) (-15 -3019 ((-1267) (-388))) (-15 -3380 ((-642 (-1155)) (-642 (-1155)))))) (T -397))
+((-3380 (*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-397)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1267)) (-5 *1 (-397)))) (-3878 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-642 (-1173))) (-5 *5 (-1176)) (-5 *3 (-1173)) (-5 *2 (-1101)) (-5 *1 (-397)))) (-3878 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-642 (-642 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-642 (-3 (|:| |array| (-642 *3)) (|:| |scalar| (-1173))))) (-5 *6 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1101)) (-5 *1 (-397)))) (-3878 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-642 (-642 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-642 (-3 (|:| |array| (-642 *3)) (|:| |scalar| (-1173))))) (-5 *6 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1101)) (-5 *1 (-397)))))
+(-10 -7 (-15 -3878 ((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173)))) (-15 -3878 ((-1101) (-1173) (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173)))) (-642 (-642 (-3 (|:| |array| (-642 (-1173))) (|:| |scalar| (-1173))))) (-642 (-1173)) (-1173))) (-15 -3878 ((-1101) (-1173) (-642 (-1173)) (-1176) (-642 (-1173)))) (-15 -3019 ((-1267) (-388))) (-15 -3380 ((-642 (-1155)) (-642 (-1155)))))
+((-3019 (((-1267) $) 36)) (-2327 (((-860) $) 98) (($ (-330)) 100) (($ (-642 (-330))) 99) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 97) (($ (-316 (-699))) 53) (($ (-316 (-697))) 73) (($ (-316 (-692))) 86) (($ (-294 (-316 (-699)))) 68) (($ (-294 (-316 (-697)))) 81) (($ (-294 (-316 (-692)))) 94) (($ (-316 (-564))) 105) (($ (-316 (-379))) 118) (($ (-316 (-169 (-379)))) 131) (($ (-294 (-316 (-564)))) 113) (($ (-294 (-316 (-379)))) 126) (($ (-294 (-316 (-169 (-379))))) 139)))
+(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -2327 ($ (-330))) (-15 -2327 ($ (-642 (-330)))) (-15 -2327 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))) (-15 -2327 ($ (-316 (-699)))) (-15 -2327 ($ (-316 (-697)))) (-15 -2327 ($ (-316 (-692)))) (-15 -2327 ($ (-294 (-316 (-699))))) (-15 -2327 ($ (-294 (-316 (-697))))) (-15 -2327 ($ (-294 (-316 (-692))))) (-15 -2327 ($ (-316 (-564)))) (-15 -2327 ($ (-316 (-379)))) (-15 -2327 ($ (-316 (-169 (-379))))) (-15 -2327 ($ (-294 (-316 (-564))))) (-15 -2327 ($ (-294 (-316 (-379))))) (-15 -2327 ($ (-294 (-316 (-169 (-379)))))))) (-1173) (-3 (|:| |fst| (-434)) (|:| -1852 "void")) (-642 (-1173)) (-1177)) (T -398))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-316 (-699))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-316 (-692))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-699)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-692)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-14 *5 (-642 (-1173))) (-14 *6 (-1177)))))
+(-13 (-395) (-10 -8 (-15 -2327 ($ (-330))) (-15 -2327 ($ (-642 (-330)))) (-15 -2327 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))) (-15 -2327 ($ (-316 (-699)))) (-15 -2327 ($ (-316 (-697)))) (-15 -2327 ($ (-316 (-692)))) (-15 -2327 ($ (-294 (-316 (-699))))) (-15 -2327 ($ (-294 (-316 (-697))))) (-15 -2327 ($ (-294 (-316 (-692))))) (-15 -2327 ($ (-316 (-564)))) (-15 -2327 ($ (-316 (-379)))) (-15 -2327 ($ (-316 (-169 (-379))))) (-15 -2327 ($ (-294 (-316 (-564))))) (-15 -2327 ($ (-294 (-316 (-379))))) (-15 -2327 ($ (-294 (-316 (-169 (-379))))))))
+((-2907 (((-112) $ $) NIL)) (-4047 ((|#2| $) 38)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2306 (($ (-407 |#2|)) 95)) (-2286 (((-642 (-2 (|:| -2700 (-769)) (|:| -3594 |#2|) (|:| |num| |#2|))) $) 39)) (-3175 (($ $) 34) (($ $ (-769)) 36)) (-1314 (((-407 |#2|) $) 51)) (-2337 (($ (-642 (-2 (|:| -2700 (-769)) (|:| -3594 |#2|) (|:| |num| |#2|)))) 33)) (-2327 (((-860) $) 137)) (-1648 (((-112) $ $) NIL)) (-4044 (($ $) 35) (($ $ (-769)) 37)) (-2872 (((-112) $ $) NIL)) (-2974 (($ |#2| $) 41)))
+(((-399 |#1| |#2|) (-13 (-1097) (-612 (-407 |#2|)) (-10 -8 (-15 -2974 ($ |#2| $)) (-15 -2306 ($ (-407 |#2|))) (-15 -4047 (|#2| $)) (-15 -2286 ((-642 (-2 (|:| -2700 (-769)) (|:| -3594 |#2|) (|:| |num| |#2|))) $)) (-15 -2337 ($ (-642 (-2 (|:| -2700 (-769)) (|:| -3594 |#2|) (|:| |num| |#2|))))) (-15 -3175 ($ $)) (-15 -4044 ($ $)) (-15 -3175 ($ $ (-769))) (-15 -4044 ($ $ (-769))))) (-13 (-363) (-147)) (-1238 |#1|)) (T -399))
+((-2974 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1238 *3)))) (-2306 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-4047 (*1 *2 *1) (-12 (-4 *2 (-1238 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-2286 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-642 (-2 (|:| -2700 (-769)) (|:| -3594 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1238 *3)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -2700 (-769)) (|:| -3594 *4) (|:| |num| *4)))) (-4 *4 (-1238 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-3175 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1238 *2)))) (-4044 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1238 *2)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1238 *3)))) (-4044 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1238 *3)))))
+(-13 (-1097) (-612 (-407 |#2|)) (-10 -8 (-15 -2974 ($ |#2| $)) (-15 -2306 ($ (-407 |#2|))) (-15 -4047 (|#2| $)) (-15 -2286 ((-642 (-2 (|:| -2700 (-769)) (|:| -3594 |#2|) (|:| |num| |#2|))) $)) (-15 -2337 ($ (-642 (-2 (|:| -2700 (-769)) (|:| -3594 |#2|) (|:| |num| |#2|))))) (-15 -3175 ($ $)) (-15 -4044 ($ $)) (-15 -3175 ($ $ (-769))) (-15 -4044 ($ $ (-769)))))
+((-2907 (((-112) $ $) 9 (-2706 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 16 (|has| |#1| (-884 (-379)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 15 (|has| |#1| (-884 (-564))))) (-3315 (((-1155) $) 13 (-2706 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))) (-4033 (((-1117) $) 12 (-2706 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))) (-2327 (((-860) $) 11 (-2706 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))) (-1648 (((-112) $ $) 14 (-2706 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))) (-2872 (((-112) $ $) 10 (-2706 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))))))
+(((-400 |#1|) (-140) (-1212)) (T -400))
+NIL
+(-13 (-1212) (-10 -7 (IF (|has| |t#1| (-884 (-564))) (-6 (-884 (-564))) |%noBranch|) (IF (|has| |t#1| (-884 (-379))) (-6 (-884 (-379))) |%noBranch|)))
+(((-102) -2706 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))) ((-611 (-860)) -2706 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))) ((-884 (-379)) |has| |#1| (-884 (-379))) ((-884 (-564)) |has| |#1| (-884 (-564))) ((-1097) -2706 (|has| |#1| (-884 (-564))) (|has| |#1| (-884 (-379)))) ((-1212) . T))
+((-3607 (($ $) 10) (($ $ (-769)) 12)))
+(((-401 |#1|) (-10 -8 (-15 -3607 (|#1| |#1| (-769))) (-15 -3607 (|#1| |#1|))) (-402)) (T -401))
+NIL
+(-10 -8 (-15 -3607 (|#1| |#1| (-769))) (-15 -3607 (|#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 81)) (-1978 (((-418 $) $) 80)) (-4010 (((-112) $ $) 65)) (-1976 (($) 18 T CONST)) (-2845 (($ $ $) 61)) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-3607 (($ $) 87) (($ $ (-769)) 86)) (-1469 (((-112) $) 79)) (-1427 (((-831 (-919)) $) 89)) (-3953 (((-112) $) 35)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 78)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-3643 (((-418 $) $) 82)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2048 (((-769) $) 64)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-2136 (((-3 (-769) "failed") $ $) 88)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74)) (-2439 (((-3 $ "failed") $) 90)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 73)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75)))
(((-402) (-140)) (T -402))
-((-3744 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-829 (-917))))) (-4255 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767)))) (-3456 (*1 *1 *1) (-4 *1 (-402))) (-3456 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767)))))
-(-13 (-363) (-145) (-10 -8 (-15 -3744 ((-829 (-917)) $)) (-15 -4255 ((-3 (-767) "failed") $ $)) (-15 -3456 ($ $)) (-15 -3456 ($ $ (-767)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-2962 (($ (-564) (-564)) 11) (($ (-564) (-564) (-917)) NIL)) (-1982 (((-917)) 20) (((-917) (-917)) NIL)))
-(((-403 |#1|) (-10 -8 (-15 -1982 ((-917) (-917))) (-15 -1982 ((-917))) (-15 -2962 (|#1| (-564) (-564) (-917))) (-15 -2962 (|#1| (-564) (-564)))) (-404)) (T -403))
-((-1982 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))))
-(-10 -8 (-15 -1982 ((-917) (-917))) (-15 -1982 ((-917))) (-15 -2962 (|#1| (-564) (-564) (-917))) (-15 -2962 (|#1| (-564) (-564))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4198 (((-564) $) 91)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-1709 (($ $) 89)) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 75)) (-2753 (((-418 $) $) 74)) (-3700 (($ $) 99)) (-3162 (((-112) $ $) 61)) (-3249 (((-564) $) 116)) (-4080 (($) 18 T CONST)) (-2192 (($ $) 88)) (-4284 (((-3 (-564) "failed") $) 104) (((-3 (-407 (-564)) "failed") $) 101)) (-3120 (((-564) $) 105) (((-407 (-564)) $) 102)) (-2946 (($ $ $) 57)) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-1339 (((-112) $) 73)) (-2234 (((-917)) 132) (((-917) (-917)) 129 (|has| $ (-6 -4398)))) (-2384 (((-112) $) 114)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 95)) (-3744 (((-564) $) 138)) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 98)) (-2499 (($ $) 94)) (-3326 (((-112) $) 115)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-2855 (($ $ $) 113) (($) 126 (-12 (-2351 (|has| $ (-6 -4398))) (-2351 (|has| $ (-6 -4390)))))) (-1497 (($ $ $) 112) (($) 125 (-12 (-2351 (|has| $ (-6 -4398))) (-2351 (|has| $ (-6 -4390)))))) (-3725 (((-564) $) 135)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 72)) (-3549 (((-917) (-564)) 128 (|has| $ (-6 -4398)))) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-1687 (($ $) 90)) (-2882 (($ $) 92)) (-2962 (($ (-564) (-564)) 140) (($ (-564) (-564) (-917)) 139)) (-3688 (((-418 $) $) 76)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-1838 (((-564) $) 136)) (-1700 (((-767) $) 60)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-1982 (((-917)) 133) (((-917) (-917)) 130 (|has| $ (-6 -4398)))) (-2494 (((-917) (-564)) 127 (|has| $ (-6 -4398)))) (-1311 (((-379) $) 107) (((-225) $) 106) (((-888 (-379)) $) 96)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-407 (-564))) 68) (($ (-564)) 103) (($ (-407 (-564))) 100)) (-3719 (((-767)) 29 T CONST)) (-3448 (($ $) 93)) (-1987 (((-917)) 134) (((-917) (-917)) 131 (|has| $ (-6 -4398)))) (-1860 (((-112) $ $) 9)) (-2648 (((-917)) 137)) (-2119 (((-112) $ $) 41)) (-3673 (($ $) 117)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-3034 (((-112) $ $) 110)) (-3011 (((-112) $ $) 109)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 111)) (-2999 (((-112) $ $) 108)) (-3092 (($ $ $) 67)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71) (($ $ (-407 (-564))) 97)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 70) (($ (-407 (-564)) $) 69)))
+((-1427 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-831 (-919))))) (-2136 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-769)))) (-3607 (*1 *1 *1) (-4 *1 (-402))) (-3607 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-769)))))
+(-13 (-363) (-145) (-10 -8 (-15 -1427 ((-831 (-919)) $)) (-15 -2136 ((-3 (-769) "failed") $ $)) (-15 -3607 ($ $)) (-15 -3607 ($ $ (-769)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T))
+((-2861 (($ (-564) (-564)) 11) (($ (-564) (-564) (-919)) NIL)) (-3918 (((-919)) 20) (((-919) (-919)) NIL)))
+(((-403 |#1|) (-10 -8 (-15 -3918 ((-919) (-919))) (-15 -3918 ((-919))) (-15 -2861 (|#1| (-564) (-564) (-919))) (-15 -2861 (|#1| (-564) (-564)))) (-404)) (T -403))
+((-3918 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-403 *3)) (-4 *3 (-404)))))
+(-10 -8 (-15 -3918 ((-919) (-919))) (-15 -3918 ((-919))) (-15 -2861 (|#1| (-564) (-564) (-919))) (-15 -2861 (|#1| (-564) (-564))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3703 (((-564) $) 97)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1726 (($ $) 95)) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 81)) (-1978 (((-418 $) $) 80)) (-3655 (($ $) 105)) (-4010 (((-112) $ $) 65)) (-2959 (((-564) $) 122)) (-1976 (($) 18 T CONST)) (-1971 (($ $) 94)) (-4278 (((-3 (-564) "failed") $) 110) (((-3 (-407 (-564)) "failed") $) 107)) (-3027 (((-564) $) 111) (((-407 (-564)) $) 108)) (-2845 (($ $ $) 61)) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-1469 (((-112) $) 79)) (-2170 (((-919)) 138) (((-919) (-919)) 135 (|has| $ (-6 -4401)))) (-2538 (((-112) $) 120)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 101)) (-1427 (((-564) $) 144)) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 104)) (-2218 (($ $) 100)) (-3333 (((-112) $) 121)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2755 (($ $ $) 119) (($) 132 (-12 (-2268 (|has| $ (-6 -4401))) (-2268 (|has| $ (-6 -4393)))))) (-1520 (($ $ $) 118) (($) 131 (-12 (-2268 (|has| $ (-6 -4401))) (-2268 (|has| $ (-6 -4393)))))) (-3683 (((-564) $) 141)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 78)) (-1582 (((-919) (-564)) 134 (|has| $ (-6 -4401)))) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-2903 (($ $) 96)) (-2759 (($ $) 98)) (-2861 (($ (-564) (-564)) 146) (($ (-564) (-564) (-919)) 145)) (-3643 (((-418 $) $) 82)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2700 (((-564) $) 142)) (-2048 (((-769) $) 64)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-3918 (((-919)) 139) (((-919) (-919)) 136 (|has| $ (-6 -4401)))) (-4163 (((-919) (-564)) 133 (|has| $ (-6 -4401)))) (-1314 (((-379) $) 113) (((-225) $) 112) (((-890 (-379)) $) 102)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ (-564)) 109) (($ (-407 (-564))) 106)) (-2756 (((-769)) 32 T CONST)) (-3264 (($ $) 99)) (-1497 (((-919)) 140) (((-919) (-919)) 137 (|has| $ (-6 -4401)))) (-1648 (((-112) $ $) 9)) (-2547 (((-919)) 143)) (-2103 (((-112) $ $) 45)) (-1381 (($ $) 123)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2934 (((-112) $ $) 116)) (-2908 (((-112) $ $) 115)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 117)) (-2897 (((-112) $ $) 114)) (-2998 (($ $ $) 73)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77) (($ $ (-407 (-564))) 103)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75)))
(((-404) (-140)) (T -404))
-((-2962 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) (-2962 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-917)) (-4 *1 (-404)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2648 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-1987 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-1982 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-2234 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4398)) (-4 *1 (-404)) (-5 *2 (-917)))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4398)) (-4 *1 (-404)) (-5 *2 (-917)))) (-2855 (*1 *1) (-12 (-4 *1 (-404)) (-2351 (|has| *1 (-6 -4398))) (-2351 (|has| *1 (-6 -4390))))) (-1497 (*1 *1) (-12 (-4 *1 (-404)) (-2351 (|has| *1 (-6 -4398))) (-2351 (|has| *1 (-6 -4390))))))
-(-13 (-1054) (-10 -8 (-6 -3646) (-15 -2962 ($ (-564) (-564))) (-15 -2962 ($ (-564) (-564) (-917))) (-15 -3744 ((-564) $)) (-15 -2648 ((-917))) (-15 -1838 ((-564) $)) (-15 -3725 ((-564) $)) (-15 -1987 ((-917))) (-15 -1982 ((-917))) (-15 -2234 ((-917))) (IF (|has| $ (-6 -4398)) (PROGN (-15 -1987 ((-917) (-917))) (-15 -1982 ((-917) (-917))) (-15 -2234 ((-917) (-917))) (-15 -3549 ((-917) (-564))) (-15 -2494 ((-917) (-564)))) |%noBranch|) (IF (|has| $ (-6 -4390)) |%noBranch| (IF (|has| $ (-6 -4398)) |%noBranch| (PROGN (-15 -2855 ($)) (-15 -1497 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-888 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-882 (-379)) . T) ((-916) . T) ((-998) . T) ((-1018) . T) ((-1054) . T) ((-1034 (-407 (-564))) . T) ((-1034 (-564)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-4357 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20)))
-(((-405 |#1| |#2|) (-10 -7 (-15 -4357 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-556) (-556)) (T -405))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6)))))
-(-10 -7 (-15 -4357 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|))))
-((-4357 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13)))
-(((-406 |#1| |#2|) (-10 -7 (-15 -4357 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-556) (-556)) (T -406))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6)))))
-(-10 -7 (-15 -4357 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 13)) (-4198 ((|#1| $) 21 (|has| |#1| (-307)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL (|has| |#1| (-816)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) 17) (((-3 (-1170) "failed") $) NIL (|has| |#1| (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) 72 (|has| |#1| (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564))))) (-3120 ((|#1| $) 15) (((-1170) $) NIL (|has| |#1| (-1034 (-1170)))) (((-407 (-564)) $) 69 (|has| |#1| (-1034 (-564)))) (((-564) $) NIL (|has| |#1| (-1034 (-564))))) (-2946 (($ $ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) 51)) (-2534 (($) NIL (|has| |#1| (-545)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2384 (((-112) $) NIL (|has| |#1| (-816)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#1| (-882 (-379))))) (-4112 (((-112) $) 57)) (-1717 (($ $) NIL)) (-2323 ((|#1| $) 73)) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-3326 (((-112) $) NIL (|has| |#1| (-816)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| |#1| (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 100)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL (|has| |#1| (-307)))) (-2882 ((|#1| $) 28 (|has| |#1| (-545)))) (-2037 (((-418 (-1166 $)) (-1166 $)) 148 (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) 141 (|has| |#1| (-905)))) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3291 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-1700 (((-767) $) NIL)) (-4366 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2827 (($ $) NIL)) (-2336 ((|#1| $) 75)) (-1311 (((-888 (-564)) $) NIL (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| |#1| (-612 (-888 (-379))))) (((-536) $) NIL (|has| |#1| (-612 (-536)))) (((-379) $) NIL (|has| |#1| (-1018))) (((-225) $) NIL (|has| |#1| (-1018)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 10) (($ (-1170)) NIL (|has| |#1| (-1034 (-1170))))) (-2420 (((-3 $ "failed") $) 102 (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) 103 T CONST)) (-3448 ((|#1| $) 26 (|has| |#1| (-545)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3673 (($ $) NIL (|has| |#1| (-816)))) (-2403 (($) 22 T CONST)) (-2417 (($) 8 T CONST)) (-1613 (((-1152) $) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1152) $ (-112)) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1264) (-818) $) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1264) (-818) $ (-112)) 47 (-12 (|has| |#1| (-545)) (|has| |#1| (-824))))) (-4063 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) 66)) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) 24 (|has| |#1| (-846)))) (-3092 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3082 (($ $) 25) (($ $ $) 56)) (-3070 (($ $ $) 54)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 135)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 61) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
-(((-407 |#1|) (-13 (-988 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4394)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4405)) (-6 -4394) |%noBranch|) |%noBranch|) |%noBranch|))) (-556)) (T -407))
-NIL
-(-13 (-988 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4394)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4405)) (-6 -4394) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-2270 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 18)) (-3474 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 24)) (-4057 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 40)) (-3514 ((|#3| $) 73)) (-1330 ((|#2| (-1259 $)) NIL) ((|#2|) 20)) (-4225 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 22) (((-685 |#2|) (-1259 $)) 38)) (-1311 (((-1259 |#2|) $) 11) (($ (-1259 |#2|)) 13)) (-2134 ((|#3| $) 55)))
-(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -4057 ((-685 |#2|) |#1|)) (-15 -1330 (|#2|)) (-15 -2270 ((-685 |#2|))) (-15 -1311 (|#1| (-1259 |#2|))) (-15 -1311 ((-1259 |#2|) |#1|)) (-15 -3474 (|#1| (-1259 |#2|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1|)) (-15 -3514 (|#3| |#1|)) (-15 -2134 (|#3| |#1|)) (-15 -2270 ((-685 |#2|) (-1259 |#1|))) (-15 -1330 (|#2| (-1259 |#1|))) (-15 -3474 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -4057 ((-685 |#2|) |#1| (-1259 |#1|)))) (-409 |#2| |#3|) (-172) (-1235 |#2|)) (T -408))
-((-2270 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-1330 (*1 *2) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4)))))
-(-10 -8 (-15 -4057 ((-685 |#2|) |#1|)) (-15 -1330 (|#2|)) (-15 -2270 ((-685 |#2|))) (-15 -1311 (|#1| (-1259 |#2|))) (-15 -1311 ((-1259 |#2|) |#1|)) (-15 -3474 (|#1| (-1259 |#2|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1|)) (-15 -3514 (|#3| |#1|)) (-15 -2134 (|#3| |#1|)) (-15 -2270 ((-685 |#2|) (-1259 |#1|))) (-15 -1330 (|#2| (-1259 |#1|))) (-15 -3474 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -4057 ((-685 |#2|) |#1| (-1259 |#1|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-2270 (((-685 |#1|) (-1259 $)) 48) (((-685 |#1|)) 63)) (-3847 ((|#1| $) 54)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3474 (($ (-1259 |#1|) (-1259 $)) 50) (($ (-1259 |#1|)) 66)) (-4057 (((-685 |#1|) $ (-1259 $)) 55) (((-685 |#1|) $) 61)) (-3293 (((-3 $ "failed") $) 34)) (-2514 (((-917)) 56)) (-4112 (((-112) $) 32)) (-2499 ((|#1| $) 53)) (-3514 ((|#2| $) 46 (|has| |#1| (-363)))) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1330 ((|#1| (-1259 $)) 49) ((|#1|) 62)) (-4225 (((-1259 |#1|) $ (-1259 $)) 52) (((-685 |#1|) (-1259 $) (-1259 $)) 51) (((-1259 |#1|) $) 68) (((-685 |#1|) (-1259 $)) 67)) (-1311 (((-1259 |#1|) $) 65) (($ (-1259 |#1|)) 64)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 39)) (-2420 (((-3 $ "failed") $) 45 (|has| |#1| (-145)))) (-2134 ((|#2| $) 47)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2047 (((-1259 $)) 69)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 41) (($ |#1| $) 40)))
-(((-409 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -409))
-((-2047 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1)) (-4 *1 (-409 *3 *4)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-2270 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3)))) (-1330 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-4057 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3)))))
-(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -2047 ((-1259 $))) (-15 -4225 ((-1259 |t#1|) $)) (-15 -4225 ((-685 |t#1|) (-1259 $))) (-15 -3474 ($ (-1259 |t#1|))) (-15 -1311 ((-1259 |t#1|) $)) (-15 -1311 ($ (-1259 |t#1|))) (-15 -2270 ((-685 |t#1|))) (-15 -1330 (|t#1|)) (-15 -4057 ((-685 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-370 |#1| |#2|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-4284 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) 27) (((-3 (-564) "failed") $) 19)) (-3120 ((|#2| $) NIL) (((-407 (-564)) $) 24) (((-564) $) 14)) (-2423 (($ |#2|) NIL) (($ (-407 (-564))) 22) (($ (-564)) 11)))
-(((-410 |#1| |#2|) (-10 -8 (-15 -2423 (|#1| (-564))) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -2423 (|#1| |#2|))) (-411 |#2|) (-1209)) (T -410))
-NIL
-(-10 -8 (-15 -2423 (|#1| (-564))) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -2423 (|#1| |#2|)))
-((-4284 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-564)) "failed") $) 16 (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) 13 (|has| |#1| (-1034 (-564))))) (-3120 ((|#1| $) 8) (((-407 (-564)) $) 17 (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) 14 (|has| |#1| (-1034 (-564))))) (-2423 (($ |#1|) 6) (($ (-407 (-564))) 15 (|has| |#1| (-1034 (-407 (-564))))) (($ (-564)) 12 (|has| |#1| (-1034 (-564))))))
-(((-411 |#1|) (-140) (-1209)) (T -411))
-NIL
-(-13 (-1034 |t#1|) (-10 -7 (IF (|has| |t#1| (-1034 (-564))) (-6 (-1034 (-564))) |%noBranch|) (IF (|has| |t#1| (-1034 (-407 (-564)))) (-6 (-1034 (-407 (-564)))) |%noBranch|)))
-(((-614 #0=(-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-614 #1=(-564)) |has| |#1| (-1034 (-564))) ((-614 |#1|) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-564)))) ((-1034 #1#) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T))
-((-4357 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 35)))
-(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4357 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-988 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1034 |#2|)) (-307) (-988 |#5|) (-1235 |#6|) (-13 (-409 |#6| |#7|) (-1034 |#6|))) (T -412))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-988 *5)) (-4 *7 (-1235 *6)) (-4 *8 (-13 (-409 *6 *7) (-1034 *6))) (-4 *9 (-307)) (-4 *10 (-988 *9)) (-4 *11 (-1235 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1034 *10))))))
-(-10 -7 (-15 -4357 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|))))
-((-3009 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL)) (-2162 ((|#4| (-767) (-1259 |#4|)) 60)) (-4112 (((-112) $) NIL)) (-2323 (((-1259 |#4|) $) 17)) (-2499 ((|#2| $) 55)) (-3984 (($ $) 163)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 108)) (-4025 (($ (-1259 |#4|)) 107)) (-4052 (((-1114) $) NIL)) (-2336 ((|#1| $) 18)) (-3185 (($ $ $) NIL)) (-1542 (($ $ $) NIL)) (-2423 (((-858) $) 153)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 |#4|) $) 146)) (-2417 (($) 11 T CONST)) (-2974 (((-112) $ $) 41)) (-3092 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 139)) (* (($ $ $) 135)))
-(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -4025 ($ (-1259 |#4|))) (-15 -2047 ((-1259 |#4|) $)) (-15 -2499 (|#2| $)) (-15 -2323 ((-1259 |#4|) $)) (-15 -2336 (|#1| $)) (-15 -3984 ($ $)) (-15 -2162 (|#4| (-767) (-1259 |#4|))))) (-307) (-988 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1034 |#2|))) (T -413))
-((-4025 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-2047 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) (-2499 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-988 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1034 *2))))) (-2323 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) (-2336 (*1 *2 *1) (-12 (-4 *3 (-988 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) (-3984 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-988 *2)) (-4 *4 (-1235 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) (-2162 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1259 *2)) (-4 *5 (-307)) (-4 *6 (-988 *5)) (-4 *2 (-13 (-409 *6 *7) (-1034 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6)))))
-(-13 (-473) (-10 -8 (-15 -4025 ($ (-1259 |#4|))) (-15 -2047 ((-1259 |#4|) $)) (-15 -2499 (|#2| $)) (-15 -2323 ((-1259 |#4|) $)) (-15 -2336 (|#1| $)) (-15 -3984 ($ $)) (-15 -2162 (|#4| (-767) (-1259 |#4|)))))
-((-3009 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-2499 ((|#2| $) 71)) (-2891 (($ (-1259 |#4|)) 27) (($ (-413 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1034 |#2|)))) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 37)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 |#4|) $) 28)) (-2417 (($) 25 T CONST)) (-2974 (((-112) $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ $ $) 82)))
-(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-722) (-10 -8 (-15 -2047 ((-1259 |#4|) $)) (-15 -2499 (|#2| $)) (-15 -2891 ($ (-1259 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -2891 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-988 |#1|) (-1235 |#2|) (-409 |#2| |#3|) (-1259 |#4|)) (T -414))
-((-2047 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-2499 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-988 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1259 *5)))) (-2891 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2891 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))))
-(-13 (-722) (-10 -8 (-15 -2047 ((-1259 |#4|) $)) (-15 -2499 (|#2| $)) (-15 -2891 ($ (-1259 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -2891 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-4357 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
-(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4357 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))))
-(-10 -7 (-15 -4357 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2885 (((-3 $ "failed")) 99)) (-1472 (((-1259 (-685 |#2|)) (-1259 $)) NIL) (((-1259 (-685 |#2|))) 104)) (-1441 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) 97)) (-3436 (((-3 $ "failed")) 96)) (-1955 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 115)) (-1765 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 123)) (-4317 (((-1166 (-948 |#2|))) 65)) (-3216 ((|#2| (-1259 $)) NIL) ((|#2|) 119)) (-3474 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 125)) (-2330 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) 95)) (-4005 (((-3 $ "failed")) 87)) (-3803 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 113)) (-2069 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 121)) (-3189 (((-1166 (-948 |#2|))) 64)) (-1960 ((|#2| (-1259 $)) NIL) ((|#2|) 117)) (-4225 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 124) (((-685 |#2|) (-1259 $)) 133)) (-1311 (((-1259 |#2|) $) 109) (($ (-1259 |#2|)) 111)) (-3620 (((-641 (-948 |#2|)) (-1259 $)) NIL) (((-641 (-948 |#2|))) 107)) (-2598 (($ (-685 |#2|) $) 103)))
-(((-416 |#1| |#2|) (-10 -8 (-15 -2598 (|#1| (-685 |#2|) |#1|)) (-15 -4317 ((-1166 (-948 |#2|)))) (-15 -3189 ((-1166 (-948 |#2|)))) (-15 -1765 ((-685 |#2|) |#1|)) (-15 -2069 ((-685 |#2|) |#1|)) (-15 -1955 ((-685 |#2|))) (-15 -3803 ((-685 |#2|))) (-15 -3216 (|#2|)) (-15 -1960 (|#2|)) (-15 -1311 (|#1| (-1259 |#2|))) (-15 -1311 ((-1259 |#2|) |#1|)) (-15 -3474 (|#1| (-1259 |#2|))) (-15 -3620 ((-641 (-948 |#2|)))) (-15 -1472 ((-1259 (-685 |#2|)))) (-15 -4225 ((-685 |#2|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1|)) (-15 -2885 ((-3 |#1| "failed"))) (-15 -3436 ((-3 |#1| "failed"))) (-15 -4005 ((-3 |#1| "failed"))) (-15 -1441 ((-3 (-2 (|:| |particular| |#1|) (|:| -2047 (-641 |#1|))) "failed"))) (-15 -2330 ((-3 (-2 (|:| |particular| |#1|) (|:| -2047 (-641 |#1|))) "failed"))) (-15 -1955 ((-685 |#2|) (-1259 |#1|))) (-15 -3803 ((-685 |#2|) (-1259 |#1|))) (-15 -3216 (|#2| (-1259 |#1|))) (-15 -1960 (|#2| (-1259 |#1|))) (-15 -3474 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1765 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2069 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1472 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -3620 ((-641 (-948 |#2|)) (-1259 |#1|)))) (-417 |#2|) (-172)) (T -416))
-((-1472 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3620 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1960 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-3216 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-3803 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1955 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3189 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-4317 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))))
-(-10 -8 (-15 -2598 (|#1| (-685 |#2|) |#1|)) (-15 -4317 ((-1166 (-948 |#2|)))) (-15 -3189 ((-1166 (-948 |#2|)))) (-15 -1765 ((-685 |#2|) |#1|)) (-15 -2069 ((-685 |#2|) |#1|)) (-15 -1955 ((-685 |#2|))) (-15 -3803 ((-685 |#2|))) (-15 -3216 (|#2|)) (-15 -1960 (|#2|)) (-15 -1311 (|#1| (-1259 |#2|))) (-15 -1311 ((-1259 |#2|) |#1|)) (-15 -3474 (|#1| (-1259 |#2|))) (-15 -3620 ((-641 (-948 |#2|)))) (-15 -1472 ((-1259 (-685 |#2|)))) (-15 -4225 ((-685 |#2|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1|)) (-15 -2885 ((-3 |#1| "failed"))) (-15 -3436 ((-3 |#1| "failed"))) (-15 -4005 ((-3 |#1| "failed"))) (-15 -1441 ((-3 (-2 (|:| |particular| |#1|) (|:| -2047 (-641 |#1|))) "failed"))) (-15 -2330 ((-3 (-2 (|:| |particular| |#1|) (|:| -2047 (-641 |#1|))) "failed"))) (-15 -1955 ((-685 |#2|) (-1259 |#1|))) (-15 -3803 ((-685 |#2|) (-1259 |#1|))) (-15 -3216 (|#2| (-1259 |#1|))) (-15 -1960 (|#2| (-1259 |#1|))) (-15 -3474 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -4225 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -4225 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1765 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2069 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1472 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -3620 ((-641 (-948 |#2|)) (-1259 |#1|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-2885 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-4012 (((-3 $ "failed") $ $) 20)) (-1472 (((-1259 (-685 |#1|)) (-1259 $)) 79) (((-1259 (-685 |#1|))) 101)) (-1336 (((-1259 $)) 82)) (-4080 (($) 18 T CONST)) (-1441 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-3436 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-1955 (((-685 |#1|) (-1259 $)) 66) (((-685 |#1|)) 93)) (-1774 ((|#1| $) 75)) (-1765 (((-685 |#1|) $ (-1259 $)) 77) (((-685 |#1|) $) 91)) (-4015 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-4317 (((-1166 (-948 |#1|))) 89 (|has| |#1| (-363)))) (-3232 (($ $ (-917)) 29)) (-2335 ((|#1| $) 73)) (-2140 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-3216 ((|#1| (-1259 $)) 68) ((|#1|) 95)) (-2280 (((-1166 |#1|) $) 64)) (-1804 (((-112)) 58)) (-3474 (($ (-1259 |#1|) (-1259 $)) 70) (($ (-1259 |#1|)) 99)) (-3293 (((-3 $ "failed") $) 48 (|has| |#1| (-556)))) (-2514 (((-917)) 81)) (-3117 (((-112)) 55)) (-3532 (($ $ (-917)) 34)) (-3502 (((-112)) 51)) (-1506 (((-112)) 49)) (-1873 (((-112)) 53)) (-2330 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) 42 (|has| |#1| (-556)))) (-4005 (((-3 $ "failed")) 40 (|has| |#1| (-556)))) (-3803 (((-685 |#1|) (-1259 $)) 67) (((-685 |#1|)) 94)) (-2415 ((|#1| $) 76)) (-2069 (((-685 |#1|) $ (-1259 $)) 78) (((-685 |#1|) $) 92)) (-2378 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-3189 (((-1166 (-948 |#1|))) 90 (|has| |#1| (-363)))) (-2105 (($ $ (-917)) 30)) (-3188 ((|#1| $) 74)) (-2739 (((-1166 |#1|) $) 44 (|has| |#1| (-556)))) (-1960 ((|#1| (-1259 $)) 69) ((|#1|) 96)) (-4254 (((-1166 |#1|) $) 65)) (-3172 (((-112)) 59)) (-2766 (((-1152) $) 10)) (-4312 (((-112)) 50)) (-2654 (((-112)) 52)) (-3642 (((-112)) 54)) (-4052 (((-1114) $) 11)) (-3353 (((-112)) 57)) (-4366 ((|#1| $ (-564)) 102)) (-4225 (((-1259 |#1|) $ (-1259 $)) 72) (((-685 |#1|) (-1259 $) (-1259 $)) 71) (((-1259 |#1|) $) 104) (((-685 |#1|) (-1259 $)) 103)) (-1311 (((-1259 |#1|) $) 98) (($ (-1259 |#1|)) 97)) (-3620 (((-641 (-948 |#1|)) (-1259 $)) 80) (((-641 (-948 |#1|))) 100)) (-1542 (($ $ $) 26)) (-2151 (((-112)) 63)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2047 (((-1259 $)) 105)) (-2363 (((-641 (-1259 |#1|))) 45 (|has| |#1| (-556)))) (-3099 (($ $ $ $) 27)) (-2846 (((-112)) 61)) (-2598 (($ (-685 |#1|) $) 88)) (-3163 (($ $ $) 25)) (-2620 (((-112)) 62)) (-2896 (((-112)) 60)) (-4103 (((-112)) 56)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 31)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 28) (($ $ |#1|) 36) (($ |#1| $) 35)))
+((-2861 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) (-2861 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-919)) (-4 *1 (-404)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2547 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-1497 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) (-3918 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) (-2170 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) (-1497 (*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404)))) (-2170 (*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4401)) (-4 *1 (-404)) (-5 *2 (-919)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4401)) (-4 *1 (-404)) (-5 *2 (-919)))) (-2755 (*1 *1) (-12 (-4 *1 (-404)) (-2268 (|has| *1 (-6 -4401))) (-2268 (|has| *1 (-6 -4393))))) (-1520 (*1 *1) (-12 (-4 *1 (-404)) (-2268 (|has| *1 (-6 -4401))) (-2268 (|has| *1 (-6 -4393))))))
+(-13 (-1057) (-10 -8 (-6 -3601) (-15 -2861 ($ (-564) (-564))) (-15 -2861 ($ (-564) (-564) (-919))) (-15 -1427 ((-564) $)) (-15 -2547 ((-919))) (-15 -2700 ((-564) $)) (-15 -3683 ((-564) $)) (-15 -1497 ((-919))) (-15 -3918 ((-919))) (-15 -2170 ((-919))) (IF (|has| $ (-6 -4401)) (PROGN (-15 -1497 ((-919) (-919))) (-15 -3918 ((-919) (-919))) (-15 -2170 ((-919) (-919))) (-15 -1582 ((-919) (-564))) (-15 -4163 ((-919) (-564)))) |%noBranch|) (IF (|has| $ (-6 -4393)) |%noBranch| (IF (|has| $ (-6 -4401)) |%noBranch| (PROGN (-15 -2755 ($)) (-15 -1520 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-890 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-846) . T) ((-848) . T) ((-884 (-379)) . T) ((-918) . T) ((-1000) . T) ((-1020) . T) ((-1057) . T) ((-1036 (-407 (-564))) . T) ((-1036 (-564)) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T))
+((-4358 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20)))
+(((-405 |#1| |#2|) (-10 -7 (-15 -4358 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-556) (-556)) (T -405))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6)))))
+(-10 -7 (-15 -4358 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|))))
+((-4358 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13)))
+(((-406 |#1| |#2|) (-10 -7 (-15 -4358 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-556) (-556)) (T -406))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6)))))
+(-10 -7 (-15 -4358 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 13)) (-3703 ((|#1| $) 21 (|has| |#1| (-307)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL (|has| |#1| (-818)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) 17) (((-3 (-1173) "failed") $) NIL (|has| |#1| (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) 72 (|has| |#1| (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564))))) (-3027 ((|#1| $) 15) (((-1173) $) NIL (|has| |#1| (-1036 (-1173)))) (((-407 (-564)) $) 69 (|has| |#1| (-1036 (-564)))) (((-564) $) NIL (|has| |#1| (-1036 (-564))))) (-2845 (($ $ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) 51)) (-2433 (($) NIL (|has| |#1| (-545)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2538 (((-112) $) NIL (|has| |#1| (-818)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| |#1| (-884 (-379))))) (-3953 (((-112) $) 57)) (-3071 (($ $) NIL)) (-2245 ((|#1| $) 73)) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-1148)))) (-3333 (((-112) $) NIL (|has| |#1| (-818)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| |#1| (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 100)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL (|has| |#1| (-307)))) (-2759 ((|#1| $) 28 (|has| |#1| (-545)))) (-1643 (((-418 (-1169 $)) (-1169 $)) 148 (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) 141 (|has| |#1| (-907)))) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3215 (($ $ (-642 |#1|) (-642 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-514 (-1173) |#1|)))) (-2048 (((-769) $) NIL)) (-4368 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2618 (($ $) NIL)) (-2255 ((|#1| $) 75)) (-1314 (((-890 (-564)) $) NIL (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| |#1| (-612 (-890 (-379))))) (((-536) $) NIL (|has| |#1| (-612 (-536)))) (((-379) $) NIL (|has| |#1| (-1020))) (((-225) $) NIL (|has| |#1| (-1020)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 10) (($ (-1173)) NIL (|has| |#1| (-1036 (-1173))))) (-2439 (((-3 $ "failed") $) 102 (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) 103 T CONST)) (-3264 ((|#1| $) 26 (|has| |#1| (-545)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-1381 (($ $) NIL (|has| |#1| (-818)))) (-2312 (($) 22 T CONST)) (-2322 (($) 8 T CONST)) (-1605 (((-1155) $) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-826)))) (((-1155) $ (-112)) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-826)))) (((-1267) (-820) $) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-826)))) (((-1267) (-820) $ (-112)) 47 (-12 (|has| |#1| (-545)) (|has| |#1| (-826))))) (-4044 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) 66)) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) 24 (|has| |#1| (-848)))) (-2998 (($ $ $) 136) (($ |#1| |#1|) 53)) (-2987 (($ $) 25) (($ $ $) 56)) (-2974 (($ $ $) 54)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 135)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 61) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
+(((-407 |#1|) (-13 (-990 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4408)) (-6 -4397) |%noBranch|) |%noBranch|) |%noBranch|))) (-556)) (T -407))
+NIL
+(-13 (-990 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4408)) (-6 -4397) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-3166 (((-687 |#2|) (-1262 $)) NIL) (((-687 |#2|)) 18)) (-4221 (($ (-1262 |#2|) (-1262 $)) NIL) (($ (-1262 |#2|)) 24)) (-1984 (((-687 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) $) 40)) (-3947 ((|#3| $) 73)) (-1846 ((|#2| (-1262 $)) NIL) ((|#2|) 20)) (-2067 (((-1262 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) (-1262 $) (-1262 $)) NIL) (((-1262 |#2|) $) 22) (((-687 |#2|) (-1262 $)) 38)) (-1314 (((-1262 |#2|) $) 11) (($ (-1262 |#2|)) 13)) (-3011 ((|#3| $) 55)))
+(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -1984 ((-687 |#2|) |#1|)) (-15 -1846 (|#2|)) (-15 -3166 ((-687 |#2|))) (-15 -1314 (|#1| (-1262 |#2|))) (-15 -1314 ((-1262 |#2|) |#1|)) (-15 -4221 (|#1| (-1262 |#2|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1|)) (-15 -3947 (|#3| |#1|)) (-15 -3011 (|#3| |#1|)) (-15 -3166 ((-687 |#2|) (-1262 |#1|))) (-15 -1846 (|#2| (-1262 |#1|))) (-15 -4221 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -1984 ((-687 |#2|) |#1| (-1262 |#1|)))) (-409 |#2| |#3|) (-172) (-1238 |#2|)) (T -408))
+((-3166 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-1846 (*1 *2) (-12 (-4 *4 (-1238 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4)))))
+(-10 -8 (-15 -1984 ((-687 |#2|) |#1|)) (-15 -1846 (|#2|)) (-15 -3166 ((-687 |#2|))) (-15 -1314 (|#1| (-1262 |#2|))) (-15 -1314 ((-1262 |#2|) |#1|)) (-15 -4221 (|#1| (-1262 |#2|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1|)) (-15 -3947 (|#3| |#1|)) (-15 -3011 (|#3| |#1|)) (-15 -3166 ((-687 |#2|) (-1262 |#1|))) (-15 -1846 (|#2| (-1262 |#1|))) (-15 -4221 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -1984 ((-687 |#2|) |#1| (-1262 |#1|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3166 (((-687 |#1|) (-1262 $)) 53) (((-687 |#1|)) 68)) (-3815 ((|#1| $) 59)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-4221 (($ (-1262 |#1|) (-1262 $)) 55) (($ (-1262 |#1|)) 71)) (-1984 (((-687 |#1|) $ (-1262 $)) 60) (((-687 |#1|) $) 66)) (-3104 (((-3 $ "failed") $) 37)) (-2414 (((-919)) 61)) (-3953 (((-112) $) 35)) (-2218 ((|#1| $) 58)) (-3947 ((|#2| $) 51 (|has| |#1| (-363)))) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-1846 ((|#1| (-1262 $)) 54) ((|#1|) 67)) (-2067 (((-1262 |#1|) $ (-1262 $)) 57) (((-687 |#1|) (-1262 $) (-1262 $)) 56) (((-1262 |#1|) $) 73) (((-687 |#1|) (-1262 $)) 72)) (-1314 (((-1262 |#1|) $) 70) (($ (-1262 |#1|)) 69)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44)) (-2439 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3011 ((|#2| $) 52)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-4263 (((-1262 $)) 74)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-409 |#1| |#2|) (-140) (-172) (-1238 |t#1|)) (T -409))
+((-4263 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-1262 *1)) (-4 *1 (-409 *3 *4)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-1262 *3)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4)))) (-4221 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1238 *3)))) (-1314 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-1262 *3)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1238 *3)))) (-3166 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-687 *3)))) (-1846 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-687 *3)))))
+(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -4263 ((-1262 $))) (-15 -2067 ((-1262 |t#1|) $)) (-15 -2067 ((-687 |t#1|) (-1262 $))) (-15 -4221 ($ (-1262 |t#1|))) (-15 -1314 ((-1262 |t#1|) $)) (-15 -1314 ($ (-1262 |t#1|))) (-15 -3166 ((-687 |t#1|))) (-15 -1846 (|t#1|)) (-15 -1984 ((-687 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-370 |#1| |#2|) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-724) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-4278 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) 27) (((-3 (-564) "failed") $) 19)) (-3027 ((|#2| $) NIL) (((-407 (-564)) $) 24) (((-564) $) 14)) (-2327 (($ |#2|) NIL) (($ (-407 (-564))) 22) (($ (-564)) 11)))
+(((-410 |#1| |#2|) (-10 -8 (-15 -2327 (|#1| (-564))) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -2327 (|#1| |#2|))) (-411 |#2|) (-1212)) (T -410))
+NIL
+(-10 -8 (-15 -2327 (|#1| (-564))) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -2327 (|#1| |#2|)))
+((-4278 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-564)) "failed") $) 16 (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) 13 (|has| |#1| (-1036 (-564))))) (-3027 ((|#1| $) 8) (((-407 (-564)) $) 17 (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) 14 (|has| |#1| (-1036 (-564))))) (-2327 (($ |#1|) 6) (($ (-407 (-564))) 15 (|has| |#1| (-1036 (-407 (-564))))) (($ (-564)) 12 (|has| |#1| (-1036 (-564))))))
+(((-411 |#1|) (-140) (-1212)) (T -411))
+NIL
+(-13 (-1036 |t#1|) (-10 -7 (IF (|has| |t#1| (-1036 (-564))) (-6 (-1036 (-564))) |%noBranch|) (IF (|has| |t#1| (-1036 (-407 (-564)))) (-6 (-1036 (-407 (-564)))) |%noBranch|)))
+(((-614 #0=(-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-614 #1=(-564)) |has| |#1| (-1036 (-564))) ((-614 |#1|) . T) ((-1036 #0#) |has| |#1| (-1036 (-407 (-564)))) ((-1036 #1#) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T))
+((-4358 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 35)))
+(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4358 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-990 |#1|) (-1238 |#2|) (-13 (-409 |#2| |#3|) (-1036 |#2|)) (-307) (-990 |#5|) (-1238 |#6|) (-13 (-409 |#6| |#7|) (-1036 |#6|))) (T -412))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-990 *5)) (-4 *7 (-1238 *6)) (-4 *8 (-13 (-409 *6 *7) (-1036 *6))) (-4 *9 (-307)) (-4 *10 (-990 *9)) (-4 *11 (-1238 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1036 *10))))))
+(-10 -7 (-15 -4358 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|))))
+((-2907 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL)) (-2426 ((|#4| (-769) (-1262 |#4|)) 60)) (-3953 (((-112) $) NIL)) (-2245 (((-1262 |#4|) $) 17)) (-2218 ((|#2| $) 55)) (-3906 (($ $) 163)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 108)) (-3279 (($ (-1262 |#4|)) 107)) (-4033 (((-1117) $) NIL)) (-2255 ((|#1| $) 18)) (-1389 (($ $ $) NIL)) (-3759 (($ $ $) NIL)) (-2327 (((-860) $) 153)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 |#4|) $) 146)) (-2322 (($) 11 T CONST)) (-2872 (((-112) $ $) 41)) (-2998 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 139)) (* (($ $ $) 135)))
+(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -3279 ($ (-1262 |#4|))) (-15 -4263 ((-1262 |#4|) $)) (-15 -2218 (|#2| $)) (-15 -2245 ((-1262 |#4|) $)) (-15 -2255 (|#1| $)) (-15 -3906 ($ $)) (-15 -2426 (|#4| (-769) (-1262 |#4|))))) (-307) (-990 |#1|) (-1238 |#2|) (-13 (-409 |#2| |#3|) (-1036 |#2|))) (T -413))
+((-3279 (*1 *1 *2) (-12 (-5 *2 (-1262 *6)) (-4 *6 (-13 (-409 *4 *5) (-1036 *4))) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-4263 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-5 *2 (-1262 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1036 *4))))) (-2218 (*1 *2 *1) (-12 (-4 *4 (-1238 *2)) (-4 *2 (-990 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1036 *2))))) (-2245 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-5 *2 (-1262 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1036 *4))))) (-2255 (*1 *2 *1) (-12 (-4 *3 (-990 *2)) (-4 *4 (-1238 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1036 *3))))) (-3906 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-990 *2)) (-4 *4 (-1238 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1036 *3))))) (-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-1262 *2)) (-4 *5 (-307)) (-4 *6 (-990 *5)) (-4 *2 (-13 (-409 *6 *7) (-1036 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1238 *6)))))
+(-13 (-473) (-10 -8 (-15 -3279 ($ (-1262 |#4|))) (-15 -4263 ((-1262 |#4|) $)) (-15 -2218 (|#2| $)) (-15 -2245 ((-1262 |#4|) $)) (-15 -2255 (|#1| $)) (-15 -3906 ($ $)) (-15 -2426 (|#4| (-769) (-1262 |#4|)))))
+((-2907 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-2218 ((|#2| $) 71)) (-3206 (($ (-1262 |#4|)) 27) (($ (-413 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1036 |#2|)))) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 37)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 |#4|) $) 28)) (-2322 (($) 25 T CONST)) (-2872 (((-112) $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ $ $) 82)))
+(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-724) (-10 -8 (-15 -4263 ((-1262 |#4|) $)) (-15 -2218 (|#2| $)) (-15 -3206 ($ (-1262 |#4|))) (IF (|has| |#4| (-1036 |#2|)) (-15 -3206 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-990 |#1|) (-1238 |#2|) (-409 |#2| |#3|) (-1262 |#4|)) (T -414))
+((-4263 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-5 *2 (-1262 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-2218 (*1 *2 *1) (-12 (-4 *4 (-1238 *2)) (-4 *2 (-990 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1262 *5)))) (-3206 (*1 *1 *2) (-12 (-5 *2 (-1262 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3206 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1036 *4)) (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1262 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))))
+(-13 (-724) (-10 -8 (-15 -4263 ((-1262 |#4|) $)) (-15 -2218 (|#2| $)) (-15 -3206 ($ (-1262 |#4|))) (IF (|has| |#4| (-1036 |#2|)) (-15 -3206 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-4358 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
+(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))))
+(-10 -7 (-15 -4358 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3587 (((-3 $ "failed")) 99)) (-4361 (((-1262 (-687 |#2|)) (-1262 $)) NIL) (((-1262 (-687 |#2|))) 104)) (-2074 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) 97)) (-2093 (((-3 $ "failed")) 96)) (-3043 (((-687 |#2|) (-1262 $)) NIL) (((-687 |#2|)) 115)) (-3636 (((-687 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) $) 123)) (-1393 (((-1169 (-950 |#2|))) 65)) (-1933 ((|#2| (-1262 $)) NIL) ((|#2|) 119)) (-4221 (($ (-1262 |#2|) (-1262 $)) NIL) (($ (-1262 |#2|)) 125)) (-3250 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) 95)) (-1306 (((-3 $ "failed")) 87)) (-1499 (((-687 |#2|) (-1262 $)) NIL) (((-687 |#2|)) 113)) (-4070 (((-687 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) $) 121)) (-3956 (((-1169 (-950 |#2|))) 64)) (-1617 ((|#2| (-1262 $)) NIL) ((|#2|) 117)) (-2067 (((-1262 |#2|) $ (-1262 $)) NIL) (((-687 |#2|) (-1262 $) (-1262 $)) NIL) (((-1262 |#2|) $) 124) (((-687 |#2|) (-1262 $)) 133)) (-1314 (((-1262 |#2|) $) 109) (($ (-1262 |#2|)) 111)) (-2815 (((-642 (-950 |#2|)) (-1262 $)) NIL) (((-642 (-950 |#2|))) 107)) (-2497 (($ (-687 |#2|) $) 103)))
+(((-416 |#1| |#2|) (-10 -8 (-15 -2497 (|#1| (-687 |#2|) |#1|)) (-15 -1393 ((-1169 (-950 |#2|)))) (-15 -3956 ((-1169 (-950 |#2|)))) (-15 -3636 ((-687 |#2|) |#1|)) (-15 -4070 ((-687 |#2|) |#1|)) (-15 -3043 ((-687 |#2|))) (-15 -1499 ((-687 |#2|))) (-15 -1933 (|#2|)) (-15 -1617 (|#2|)) (-15 -1314 (|#1| (-1262 |#2|))) (-15 -1314 ((-1262 |#2|) |#1|)) (-15 -4221 (|#1| (-1262 |#2|))) (-15 -2815 ((-642 (-950 |#2|)))) (-15 -4361 ((-1262 (-687 |#2|)))) (-15 -2067 ((-687 |#2|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1|)) (-15 -3587 ((-3 |#1| "failed"))) (-15 -2093 ((-3 |#1| "failed"))) (-15 -1306 ((-3 |#1| "failed"))) (-15 -2074 ((-3 (-2 (|:| |particular| |#1|) (|:| -4263 (-642 |#1|))) "failed"))) (-15 -3250 ((-3 (-2 (|:| |particular| |#1|) (|:| -4263 (-642 |#1|))) "failed"))) (-15 -3043 ((-687 |#2|) (-1262 |#1|))) (-15 -1499 ((-687 |#2|) (-1262 |#1|))) (-15 -1933 (|#2| (-1262 |#1|))) (-15 -1617 (|#2| (-1262 |#1|))) (-15 -4221 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -3636 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -4070 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -4361 ((-1262 (-687 |#2|)) (-1262 |#1|))) (-15 -2815 ((-642 (-950 |#2|)) (-1262 |#1|)))) (-417 |#2|) (-172)) (T -416))
+((-4361 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1262 (-687 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2815 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-642 (-950 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1617 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1933 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1499 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-687 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3043 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-687 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3956 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1169 (-950 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1393 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1169 (-950 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))))
+(-10 -8 (-15 -2497 (|#1| (-687 |#2|) |#1|)) (-15 -1393 ((-1169 (-950 |#2|)))) (-15 -3956 ((-1169 (-950 |#2|)))) (-15 -3636 ((-687 |#2|) |#1|)) (-15 -4070 ((-687 |#2|) |#1|)) (-15 -3043 ((-687 |#2|))) (-15 -1499 ((-687 |#2|))) (-15 -1933 (|#2|)) (-15 -1617 (|#2|)) (-15 -1314 (|#1| (-1262 |#2|))) (-15 -1314 ((-1262 |#2|) |#1|)) (-15 -4221 (|#1| (-1262 |#2|))) (-15 -2815 ((-642 (-950 |#2|)))) (-15 -4361 ((-1262 (-687 |#2|)))) (-15 -2067 ((-687 |#2|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1|)) (-15 -3587 ((-3 |#1| "failed"))) (-15 -2093 ((-3 |#1| "failed"))) (-15 -1306 ((-3 |#1| "failed"))) (-15 -2074 ((-3 (-2 (|:| |particular| |#1|) (|:| -4263 (-642 |#1|))) "failed"))) (-15 -3250 ((-3 (-2 (|:| |particular| |#1|) (|:| -4263 (-642 |#1|))) "failed"))) (-15 -3043 ((-687 |#2|) (-1262 |#1|))) (-15 -1499 ((-687 |#2|) (-1262 |#1|))) (-15 -1933 (|#2| (-1262 |#1|))) (-15 -1617 (|#2| (-1262 |#1|))) (-15 -4221 (|#1| (-1262 |#2|) (-1262 |#1|))) (-15 -2067 ((-687 |#2|) (-1262 |#1|) (-1262 |#1|))) (-15 -2067 ((-1262 |#2|) |#1| (-1262 |#1|))) (-15 -3636 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -4070 ((-687 |#2|) |#1| (-1262 |#1|))) (-15 -4361 ((-1262 (-687 |#2|)) (-1262 |#1|))) (-15 -2815 ((-642 (-950 |#2|)) (-1262 |#1|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3587 (((-3 $ "failed")) 42 (|has| |#1| (-556)))) (-1532 (((-3 $ "failed") $ $) 20)) (-4361 (((-1262 (-687 |#1|)) (-1262 $)) 83) (((-1262 (-687 |#1|))) 105)) (-2954 (((-1262 $)) 86)) (-1976 (($) 18 T CONST)) (-2074 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) 45 (|has| |#1| (-556)))) (-2093 (((-3 $ "failed")) 43 (|has| |#1| (-556)))) (-3043 (((-687 |#1|) (-1262 $)) 70) (((-687 |#1|)) 97)) (-4280 ((|#1| $) 79)) (-3636 (((-687 |#1|) $ (-1262 $)) 81) (((-687 |#1|) $) 95)) (-2564 (((-3 $ "failed") $) 50 (|has| |#1| (-556)))) (-1393 (((-1169 (-950 |#1|))) 93 (|has| |#1| (-363)))) (-2013 (($ $ (-919)) 31)) (-3518 ((|#1| $) 77)) (-2640 (((-1169 |#1|) $) 47 (|has| |#1| (-556)))) (-1933 ((|#1| (-1262 $)) 72) ((|#1|) 99)) (-3205 (((-1169 |#1|) $) 68)) (-3539 (((-112)) 62)) (-4221 (($ (-1262 |#1|) (-1262 $)) 74) (($ (-1262 |#1|)) 103)) (-3104 (((-3 $ "failed") $) 52 (|has| |#1| (-556)))) (-2414 (((-919)) 85)) (-1422 (((-112)) 59)) (-3285 (($ $ (-919)) 38)) (-1734 (((-112)) 55)) (-4041 (((-112)) 53)) (-2289 (((-112)) 57)) (-3250 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) 46 (|has| |#1| (-556)))) (-1306 (((-3 $ "failed")) 44 (|has| |#1| (-556)))) (-1499 (((-687 |#1|) (-1262 $)) 71) (((-687 |#1|)) 98)) (-1490 ((|#1| $) 80)) (-4070 (((-687 |#1|) $ (-1262 $)) 82) (((-687 |#1|) $) 96)) (-4125 (((-3 $ "failed") $) 51 (|has| |#1| (-556)))) (-3956 (((-1169 (-950 |#1|))) 94 (|has| |#1| (-363)))) (-1522 (($ $ (-919)) 32)) (-2034 ((|#1| $) 78)) (-3720 (((-1169 |#1|) $) 48 (|has| |#1| (-556)))) (-1617 ((|#1| (-1262 $)) 73) ((|#1|) 100)) (-1769 (((-1169 |#1|) $) 69)) (-3573 (((-112)) 63)) (-3315 (((-1155) $) 10)) (-2443 (((-112)) 54)) (-2038 (((-112)) 56)) (-2152 (((-112)) 58)) (-4033 (((-1117) $) 11)) (-2682 (((-112)) 61)) (-4368 ((|#1| $ (-564)) 106)) (-2067 (((-1262 |#1|) $ (-1262 $)) 76) (((-687 |#1|) (-1262 $) (-1262 $)) 75) (((-1262 |#1|) $) 108) (((-687 |#1|) (-1262 $)) 107)) (-1314 (((-1262 |#1|) $) 102) (($ (-1262 |#1|)) 101)) (-2815 (((-642 (-950 |#1|)) (-1262 $)) 84) (((-642 (-950 |#1|))) 104)) (-3759 (($ $ $) 28)) (-1953 (((-112)) 67)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-4263 (((-1262 $)) 109)) (-1309 (((-642 (-1262 |#1|))) 49 (|has| |#1| (-556)))) (-3088 (($ $ $ $) 29)) (-1349 (((-112)) 65)) (-2497 (($ (-687 |#1|) $) 92)) (-2920 (($ $ $) 27)) (-3459 (((-112)) 66)) (-4171 (((-112)) 64)) (-1579 (((-112)) 60)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 33)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-417 |#1|) (-140) (-172)) (T -417))
-((-2047 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1472 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3))))) (-3620 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-948 *3))))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-1960 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3216 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3803 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1955 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-3189 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-948 *3))))) (-4317 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-948 *3))))) (-2598 (*1 *1 *2 *1) (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))))
-(-13 (-367 |t#1|) (-10 -8 (-15 -2047 ((-1259 $))) (-15 -4225 ((-1259 |t#1|) $)) (-15 -4225 ((-685 |t#1|) (-1259 $))) (-15 -4366 (|t#1| $ (-564))) (-15 -1472 ((-1259 (-685 |t#1|)))) (-15 -3620 ((-641 (-948 |t#1|)))) (-15 -3474 ($ (-1259 |t#1|))) (-15 -1311 ((-1259 |t#1|) $)) (-15 -1311 ($ (-1259 |t#1|))) (-15 -1960 (|t#1|)) (-15 -3216 (|t#1|)) (-15 -3803 ((-685 |t#1|))) (-15 -1955 ((-685 |t#1|))) (-15 -2069 ((-685 |t#1|) $)) (-15 -1765 ((-685 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -3189 ((-1166 (-948 |t#1|)))) (-15 -4317 ((-1166 (-948 |t#1|))))) |%noBranch|) (-15 -2598 ($ (-685 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-367 |#1|) . T) ((-644 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 60)) (-1517 (($ $) 78)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 190)) (-3063 (($ $) NIL)) (-3330 (((-112) $) 48)) (-2885 ((|#1| $) 16)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-1213)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-3856 (($ |#1| (-564)) 42)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 148)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 74)) (-3293 (((-3 $ "failed") $) 164)) (-2450 (((-3 (-407 (-564)) "failed") $) 84 (|has| |#1| (-545)))) (-1364 (((-112) $) 80 (|has| |#1| (-545)))) (-2553 (((-407 (-564)) $) 91 (|has| |#1| (-545)))) (-2531 (($ |#1| (-564)) 44)) (-1339 (((-112) $) 212 (|has| |#1| (-1213)))) (-4112 (((-112) $) 62)) (-1964 (((-767) $) 51)) (-2354 (((-3 "nil" "sqfr" "irred" "prime") $ (-564)) 174)) (-4375 ((|#1| $ (-564)) 173)) (-1749 (((-564) $ (-564)) 172)) (-2971 (($ |#1| (-564)) 41)) (-4357 (($ (-1 |#1| |#1|) $) 182)) (-2774 (($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564))))) 79)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2766 (((-1152) $) NIL)) (-3030 (($ |#1| (-564)) 43)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 191 (|has| |#1| (-452)))) (-3311 (($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1572 (((-641 (-2 (|:| -3688 |#1|) (|:| -1838 (-564)))) $) 73)) (-2229 (((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $) 12)) (-3688 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-2998 (((-3 $ "failed") $ $) 175)) (-1838 (((-564) $) 167)) (-1641 ((|#1| $) 75)) (-3291 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 100 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 106 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) $) NIL (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-1170)) (-641 $)) 107 (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-294 $))) 103 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-641 $) (-641 $)) NIL (|has| |#1| (-309 $)))) (-4366 (($ $ |#1|) 92 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-286 $ $)))) (-3254 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 181)) (-1311 (((-536) $) 39 (|has| |#1| (-612 (-536)))) (((-379) $) 113 (|has| |#1| (-1018))) (((-225) $) 119 (|has| |#1| (-1018)))) (-2423 (((-858) $) 146) (($ (-564)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564)))))) (-3719 (((-767)) 67 T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-2403 (($) 53 T CONST)) (-2417 (($) 52 T CONST)) (-4063 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2974 (((-112) $ $) 159)) (-3082 (($ $) 161) (($ $ $) NIL)) (-3070 (($ $ $) 179)) (** (($ $ (-917)) NIL) (($ $ (-767)) 125)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
-(((-418 |#1|) (-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -1641 (|#1| $)) (-15 -1838 ((-564) $)) (-15 -2774 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -2229 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -2971 ($ |#1| (-564))) (-15 -1572 ((-641 (-2 (|:| -3688 |#1|) (|:| -1838 (-564)))) $)) (-15 -3030 ($ |#1| (-564))) (-15 -1749 ((-564) $ (-564))) (-15 -4375 (|#1| $ (-564))) (-15 -2354 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -1964 ((-767) $)) (-15 -2531 ($ |#1| (-564))) (-15 -3856 ($ |#1| (-564))) (-15 -3311 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2885 (|#1| $)) (-15 -1517 ($ $)) (-15 -4357 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -1364 ((-112) $)) (-15 -2553 ((-407 (-564)) $)) (-15 -2450 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|))) (-556)) (T -418))
-((-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) (-1641 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2774 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-564))))) (-4 *2 (-556)) (-5 *1 (-418 *2)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -3688 *3) (|:| -1838 (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3030 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1749 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-4375 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-556)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3311 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2885 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1517 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-2450 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))))
-(-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -1641 (|#1| $)) (-15 -1838 ((-564) $)) (-15 -2774 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -2229 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -2971 ($ |#1| (-564))) (-15 -1572 ((-641 (-2 (|:| -3688 |#1|) (|:| -1838 (-564)))) $)) (-15 -3030 ($ |#1| (-564))) (-15 -1749 ((-564) $ (-564))) (-15 -4375 (|#1| $ (-564))) (-15 -2354 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -1964 ((-767) $)) (-15 -2531 ($ |#1| (-564))) (-15 -3856 ($ |#1| (-564))) (-15 -3311 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2885 (|#1| $)) (-15 -1517 ($ $)) (-15 -4357 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -1364 ((-112) $)) (-15 -2553 ((-407 (-564)) $)) (-15 -2450 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|)))
-((-4128 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 28)) (-4006 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 17)))
-(((-419 |#1|) (-10 -7 (-15 -4128 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -4006 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-556)) (T -419))
-((-4006 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))) (-4128 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4)))))
-(-10 -7 (-15 -4128 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -4006 ((-418 |#1|) (-418 |#1|) (-418 |#1|))))
-((-2560 ((|#2| |#2|) 187)) (-4333 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112)) 60)))
-(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4333 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -2560 (|#2| |#2|))) (-13 (-452) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -420))
-((-2560 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3))) (-14 *4 (-1170)) (-14 *5 *2))) (-4333 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-14 *6 (-1170)) (-14 *7 *3))))
-(-10 -7 (-15 -4333 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -2560 (|#2| |#2|)))
-((-4357 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4357 (|#4| (-1 |#3| |#1|) |#2|))) (-1045) (-430 |#1|) (-1045) (-430 |#3|)) (T -421))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5)))))
-(-10 -7 (-15 -4357 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2560 ((|#2| |#2|) 104)) (-2935 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 52)) (-2368 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 171)))
-(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2935 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2368 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2560 (|#2| |#2|))) (-13 (-452) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|) (-10 -8 (-15 -2423 ($ |#3|)))) (-844) (-13 (-1237 |#2| |#3|) (-363) (-1194) (-10 -8 (-15 -3254 ($ $)) (-15 -2070 ($ $)))) (-979 |#4|) (-1170)) (T -422))
-((-2560 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -2423 ($ *4))))) (-4 *4 (-844)) (-4 *5 (-13 (-1237 *2 *4) (-363) (-1194) (-10 -8 (-15 -3254 ($ $)) (-15 -2070 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1170)))) (-2368 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -2423 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -3254 ($ $)) (-15 -2070 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-979 *8)) (-14 *10 (-1170)))) (-2935 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -2423 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -3254 ($ $)) (-15 -2070 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-979 *8)) (-14 *10 (-1170)))))
-(-10 -7 (-15 -2935 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2368 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2560 (|#2| |#2|)))
-((-2903 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1316 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4357 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4357 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1316 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2903 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1094) (-425 |#1|) (-1094) (-425 |#3|)) (T -423))
-((-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-1316 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5)))))
-(-10 -7 (-15 -4357 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1316 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2903 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3739 (($) 52)) (-1682 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2340 (($ $ $) 45)) (-2521 (((-112) $ $) 34)) (-2622 (((-767)) 56)) (-1724 (($ (-641 |#2|)) 23) (($) NIL)) (-2534 (($) 67)) (-2342 (((-112) $ $) 15)) (-2855 ((|#2| $) 78)) (-1497 ((|#2| $) 76)) (-3256 (((-917) $) 71)) (-3888 (($ $ $) 41)) (-2083 (($ (-917)) 61)) (-2085 (($ $ |#2|) NIL) (($ $ $) 44)) (-4062 (((-767) (-1 (-112) |#2|) $) NIL) (((-767) |#2| $) 31)) (-2435 (($ (-641 |#2|)) 27)) (-3026 (($ $) 54)) (-2423 (((-858) $) 39)) (-1775 (((-767) $) 24)) (-3755 (($ (-641 |#2|)) 22) (($) NIL)) (-2974 (((-112) $ $) 19)))
-(((-424 |#1| |#2|) (-10 -8 (-15 -2622 ((-767))) (-15 -2083 (|#1| (-917))) (-15 -3256 ((-917) |#1|)) (-15 -2534 (|#1|)) (-15 -2855 (|#2| |#1|)) (-15 -1497 (|#2| |#1|)) (-15 -3739 (|#1|)) (-15 -3026 (|#1| |#1|)) (-15 -1775 ((-767) |#1|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2342 ((-112) |#1| |#1|)) (-15 -3755 (|#1|)) (-15 -3755 (|#1| (-641 |#2|))) (-15 -1724 (|#1|)) (-15 -1724 (|#1| (-641 |#2|))) (-15 -3888 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1| |#2|)) (-15 -2340 (|#1| |#1| |#1|)) (-15 -2521 ((-112) |#1| |#1|)) (-15 -1682 (|#1| |#1| |#1|)) (-15 -1682 (|#1| |#1| |#2|)) (-15 -1682 (|#1| |#2| |#1|)) (-15 -2435 (|#1| (-641 |#2|))) (-15 -4062 ((-767) |#2| |#1|)) (-15 -4062 ((-767) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1094)) (T -424))
-((-2622 (*1 *2) (-12 (-4 *4 (-1094)) (-5 *2 (-767)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))))
-(-10 -8 (-15 -2622 ((-767))) (-15 -2083 (|#1| (-917))) (-15 -3256 ((-917) |#1|)) (-15 -2534 (|#1|)) (-15 -2855 (|#2| |#1|)) (-15 -1497 (|#2| |#1|)) (-15 -3739 (|#1|)) (-15 -3026 (|#1| |#1|)) (-15 -1775 ((-767) |#1|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2342 ((-112) |#1| |#1|)) (-15 -3755 (|#1|)) (-15 -3755 (|#1| (-641 |#2|))) (-15 -1724 (|#1|)) (-15 -1724 (|#1| (-641 |#2|))) (-15 -3888 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1| |#2|)) (-15 -2340 (|#1| |#1| |#1|)) (-15 -2521 ((-112) |#1| |#1|)) (-15 -1682 (|#1| |#1| |#1|)) (-15 -1682 (|#1| |#1| |#2|)) (-15 -1682 (|#1| |#2| |#1|)) (-15 -2435 (|#1| (-641 |#2|))) (-15 -4062 ((-767) |#2| |#1|)) (-15 -4062 ((-767) (-1 (-112) |#2|) |#1|)))
-((-3009 (((-112) $ $) 19)) (-3739 (($) 68 (|has| |#1| (-368)))) (-1682 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2340 (($ $ $) 79)) (-2521 (((-112) $ $) 80)) (-1876 (((-112) $ (-767)) 8)) (-2622 (((-767)) 62 (|has| |#1| (-368)))) (-1724 (($ (-641 |#1|)) 75) (($) 74)) (-1466 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2696 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1945 (($ |#1| $) 48 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4407)))) (-2591 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4407)))) (-2534 (($) 65 (|has| |#1| (-368)))) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-2342 (((-112) $ $) 71)) (-3097 (((-112) $ (-767)) 9)) (-2855 ((|#1| $) 66 (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1497 ((|#1| $) 67 (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3256 (((-917) $) 64 (|has| |#1| (-368)))) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22)) (-3888 (($ $ $) 76)) (-3149 ((|#1| $) 40)) (-2566 (($ |#1| $) 41)) (-2083 (($ (-917)) 63 (|has| |#1| (-368)))) (-4052 (((-1114) $) 21)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-2085 (($ $ |#1|) 78) (($ $ $) 77)) (-3853 (($) 50) (($ (-641 |#1|)) 49)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 51)) (-3026 (($ $) 69 (|has| |#1| (-368)))) (-2423 (((-858) $) 18)) (-1775 (((-767) $) 70)) (-3755 (($ (-641 |#1|)) 73) (($) 72)) (-1860 (((-112) $ $) 23)) (-1863 (($ (-641 |#1|)) 43)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20)) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-425 |#1|) (-140) (-1094)) (T -425))
-((-1775 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-767)))) (-3026 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))) (-3739 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-846)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-846)))))
-(-13 (-229 |t#1|) (-1092 |t#1|) (-10 -8 (-6 -4407) (-15 -1775 ((-767) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -3026 ($ $)) (-15 -3739 ($))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -1497 (|t#1| $)) (-15 -2855 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T))
-((-4158 (((-585 |#2|) |#2| (-1170)) 38)) (-3036 (((-585 |#2|) |#2| (-1170)) 21)) (-2482 ((|#2| |#2| (-1170)) 26)))
-(((-426 |#1| |#2|) (-10 -7 (-15 -3036 ((-585 |#2|) |#2| (-1170))) (-15 -4158 ((-585 |#2|) |#2| (-1170))) (-15 -2482 (|#2| |#2| (-1170)))) (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -426))
-((-2482 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4))))) (-4158 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5))))))
-(-10 -7 (-15 -3036 ((-585 |#2|) |#2| (-1170))) (-15 -4158 ((-585 |#2|) |#2| (-1170))) (-15 -2482 (|#2| |#2| (-1170))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-3405 (($ |#2| |#1|) 37)) (-1735 (($ |#2| |#1|) 35)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 10 T CONST)) (-2417 (($) 16 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 36)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4394)) (IF (|has| |#1| (-6 -4394)) (-6 -4394) |%noBranch|) |%noBranch|) (-15 -2423 ($ |#1|)) (-15 -2423 ($ (-331 |#2|))) (-15 -3405 ($ |#2| |#1|)) (-15 -1735 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-564)))) (-13 (-846) (-21))) (T -427))
-((-2423 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) (-4 *3 (-13 (-846) (-21))))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) (-3405 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-846) (-21))))) (-1735 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-846) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4394)) (IF (|has| |#1| (-6 -4394)) (-6 -4394) |%noBranch|) |%noBranch|) (-15 -2423 ($ |#1|)) (-15 -2423 ($ (-331 |#2|))) (-15 -3405 ($ |#2| |#1|)) (-15 -1735 ($ |#2| |#1|))))
-((-2070 (((-3 |#2| (-641 |#2|)) |#2| (-1170)) 115)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -2070 ((-3 |#2| (-641 |#2|)) |#2| (-1170)))) (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-955) (-29 |#1|))) (T -428))
-((-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 *3 (-641 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1194) (-955) (-29 *5))))))
-(-10 -7 (-15 -2070 ((-3 |#2| (-641 |#2|)) |#2| (-1170))))
-((-3836 (((-641 (-1170)) $) 81)) (-3660 (((-407 (-1166 $)) $ (-610 $)) 314)) (-2559 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) 278)) (-4284 (((-3 (-610 $) "failed") $) NIL) (((-3 (-1170) "failed") $) 84) (((-3 (-564) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-407 (-948 |#2|)) "failed") $) 364) (((-3 (-948 |#2|) "failed") $) 276) (((-3 (-407 (-564)) "failed") $) NIL)) (-3120 (((-610 $) $) NIL) (((-1170) $) 28) (((-564) $) NIL) ((|#2| $) 272) (((-407 (-948 |#2|)) $) 346) (((-948 |#2|) $) 273) (((-407 (-564)) $) NIL)) (-4232 (((-114) (-114)) 47)) (-1717 (($ $) 99)) (-3521 (((-3 (-610 $) "failed") $) 269)) (-3648 (((-641 (-610 $)) $) 270)) (-1958 (((-3 (-641 $) "failed") $) 288)) (-4193 (((-3 (-2 (|:| |val| $) (|:| -1838 (-564))) "failed") $) 295)) (-1301 (((-3 (-641 $) "failed") $) 286)) (-2290 (((-3 (-2 (|:| -4376 (-564)) (|:| |var| (-610 $))) "failed") $) 305)) (-3401 (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $) 292) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $ (-1170)) 258)) (-3944 (((-112) $) 17)) (-3954 ((|#2| $) 19)) (-3291 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 277) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 109) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) 62) (($ $ (-641 (-1170))) 281) (($ $) 282) (($ $ (-114) $ (-1170)) 65) (($ $ (-641 (-114)) (-641 $) (-1170)) 72) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ $))) 120) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ (-641 $)))) 283) (($ $ (-1170) (-767) (-1 $ (-641 $))) 105) (($ $ (-1170) (-767) (-1 $ $)) 104)) (-4366 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) 119)) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 279)) (-2827 (($ $) 325)) (-1311 (((-888 (-564)) $) 298) (((-888 (-379)) $) 302) (($ (-418 $)) 360) (((-536) $) NIL)) (-2423 (((-858) $) 280) (($ (-610 $)) 93) (($ (-1170)) 24) (($ |#2|) NIL) (($ (-1119 |#2| (-610 $))) NIL) (($ (-407 |#2|)) 330) (($ (-948 (-407 |#2|))) 369) (($ (-407 (-948 (-407 |#2|)))) 342) (($ (-407 (-948 |#2|))) 336) (($ $) NIL) (($ (-948 |#2|)) 218) (($ (-407 (-564))) 374) (($ (-564)) NIL)) (-3719 (((-767)) 88)) (-3263 (((-112) (-114)) 42)) (-2750 (($ (-1170) $) 31) (($ (-1170) $ $) 32) (($ (-1170) $ $ $) 33) (($ (-1170) $ $ $ $) 34) (($ (-1170) (-641 $)) 39)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL)))
-(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2423 (|#1| (-564))) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-407 (-564)))) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -2423 (|#1| (-948 |#2|))) (-15 -4284 ((-3 (-948 |#2|) "failed") |#1|)) (-15 -3120 ((-948 |#2|) |#1|)) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2423 (|#1| (-407 (-948 |#2|)))) (-15 -4284 ((-3 (-407 (-948 |#2|)) "failed") |#1|)) (-15 -3120 ((-407 (-948 |#2|)) |#1|)) (-15 -3660 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -2423 (|#1| (-407 (-948 (-407 |#2|))))) (-15 -2423 (|#1| (-948 (-407 |#2|)))) (-15 -2423 (|#1| (-407 |#2|))) (-15 -2827 (|#1| |#1|)) (-15 -1311 (|#1| (-418 |#1|))) (-15 -3291 (|#1| |#1| (-1170) (-767) (-1 |#1| |#1|))) (-15 -3291 (|#1| |#1| (-1170) (-767) (-1 |#1| (-641 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-767)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-767)) (-641 (-1 |#1| |#1|)))) (-15 -4193 ((-3 (-2 (|:| |val| |#1|) (|:| -1838 (-564))) "failed") |#1|)) (-15 -3401 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1838 (-564))) "failed") |#1| (-1170))) (-15 -3401 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1838 (-564))) "failed") |#1| (-114))) (-15 -1717 (|#1| |#1|)) (-15 -2423 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -2290 ((-3 (-2 (|:| -4376 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -1301 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3401 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1838 (-564))) "failed") |#1|)) (-15 -1958 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3291 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -3291 (|#1| |#1| (-114) |#1| (-1170))) (-15 -3291 (|#1| |#1|)) (-15 -3291 (|#1| |#1| (-641 (-1170)))) (-15 -3291 (|#1| |#1| (-1170))) (-15 -2750 (|#1| (-1170) (-641 |#1|))) (-15 -2750 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -2750 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -2750 (|#1| (-1170) |#1| |#1|)) (-15 -2750 (|#1| (-1170) |#1|)) (-15 -3836 ((-641 (-1170)) |#1|)) (-15 -3954 (|#2| |#1|)) (-15 -3944 ((-112) |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -2423 (|#1| (-1170))) (-15 -4284 ((-3 (-1170) "failed") |#1|)) (-15 -3120 ((-1170) |#1|)) (-15 -3291 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3291 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3291 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -3291 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -3291 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 -3648 ((-641 (-610 |#1|)) |#1|)) (-15 -3521 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2559 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2559 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2559 (|#1| |#1| (-294 |#1|))) (-15 -4366 (|#1| (-114) (-641 |#1|))) (-15 -4366 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1|)) (-15 -3291 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| (-294 |#1|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3291 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2423 (|#1| (-610 |#1|))) (-15 -4284 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3120 ((-610 |#1|) |#1|)) (-15 -2423 ((-858) |#1|))) (-430 |#2|) (-1094)) (T -429))
-((-4232 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1094)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-3719 (*1 *2) (-12 (-4 *4 (-1094)) (-5 *2 (-767)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))))
-(-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2423 (|#1| (-564))) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-407 (-564)))) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -2423 (|#1| (-948 |#2|))) (-15 -4284 ((-3 (-948 |#2|) "failed") |#1|)) (-15 -3120 ((-948 |#2|) |#1|)) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2423 (|#1| (-407 (-948 |#2|)))) (-15 -4284 ((-3 (-407 (-948 |#2|)) "failed") |#1|)) (-15 -3120 ((-407 (-948 |#2|)) |#1|)) (-15 -3660 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -2423 (|#1| (-407 (-948 (-407 |#2|))))) (-15 -2423 (|#1| (-948 (-407 |#2|)))) (-15 -2423 (|#1| (-407 |#2|))) (-15 -2827 (|#1| |#1|)) (-15 -1311 (|#1| (-418 |#1|))) (-15 -3291 (|#1| |#1| (-1170) (-767) (-1 |#1| |#1|))) (-15 -3291 (|#1| |#1| (-1170) (-767) (-1 |#1| (-641 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-767)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-767)) (-641 (-1 |#1| |#1|)))) (-15 -4193 ((-3 (-2 (|:| |val| |#1|) (|:| -1838 (-564))) "failed") |#1|)) (-15 -3401 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1838 (-564))) "failed") |#1| (-1170))) (-15 -3401 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1838 (-564))) "failed") |#1| (-114))) (-15 -1717 (|#1| |#1|)) (-15 -2423 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -2290 ((-3 (-2 (|:| -4376 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -1301 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3401 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -1838 (-564))) "failed") |#1|)) (-15 -1958 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3291 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -3291 (|#1| |#1| (-114) |#1| (-1170))) (-15 -3291 (|#1| |#1|)) (-15 -3291 (|#1| |#1| (-641 (-1170)))) (-15 -3291 (|#1| |#1| (-1170))) (-15 -2750 (|#1| (-1170) (-641 |#1|))) (-15 -2750 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -2750 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -2750 (|#1| (-1170) |#1| |#1|)) (-15 -2750 (|#1| (-1170) |#1|)) (-15 -3836 ((-641 (-1170)) |#1|)) (-15 -3954 (|#2| |#1|)) (-15 -3944 ((-112) |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -2423 (|#1| (-1170))) (-15 -4284 ((-3 (-1170) "failed") |#1|)) (-15 -3120 ((-1170) |#1|)) (-15 -3291 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3291 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3291 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -3291 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -3291 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -3291 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 -3648 ((-641 (-610 |#1|)) |#1|)) (-15 -3521 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2559 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2559 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2559 (|#1| |#1| (-294 |#1|))) (-15 -4366 (|#1| (-114) (-641 |#1|))) (-15 -4366 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1| |#1|)) (-15 -4366 (|#1| (-114) |#1|)) (-15 -3291 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| (-294 |#1|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3291 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3291 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2423 (|#1| (-610 |#1|))) (-15 -4284 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3120 ((-610 |#1|) |#1|)) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 109 (|has| |#1| (-25)))) (-3836 (((-641 (-1170)) $) 196)) (-3660 (((-407 (-1166 $)) $ (-610 $)) 164 (|has| |#1| (-556)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 136 (|has| |#1| (-556)))) (-3063 (($ $) 137 (|has| |#1| (-556)))) (-3330 (((-112) $) 139 (|has| |#1| (-556)))) (-3577 (((-641 (-610 $)) $) 39)) (-4012 (((-3 $ "failed") $ $) 111 (|has| |#1| (-21)))) (-2559 (($ $ (-294 $)) 51) (($ $ (-641 (-294 $))) 50) (($ $ (-641 (-610 $)) (-641 $)) 49)) (-2683 (($ $) 156 (|has| |#1| (-556)))) (-2753 (((-418 $) $) 157 (|has| |#1| (-556)))) (-3162 (((-112) $ $) 147 (|has| |#1| (-556)))) (-4080 (($) 97 (-2807 (|has| |#1| (-1106)) (|has| |#1| (-25))) CONST)) (-4284 (((-3 (-610 $) "failed") $) 64) (((-3 (-1170) "failed") $) 209) (((-3 (-564) "failed") $) 203 (|has| |#1| (-1034 (-564)))) (((-3 |#1| "failed") $) 200) (((-3 (-407 (-948 |#1|)) "failed") $) 162 (|has| |#1| (-556))) (((-3 (-948 |#1|) "failed") $) 116 (|has| |#1| (-1045))) (((-3 (-407 (-564)) "failed") $) 91 (-2807 (-12 (|has| |#1| (-1034 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-564))))))) (-3120 (((-610 $) $) 65) (((-1170) $) 210) (((-564) $) 202 (|has| |#1| (-1034 (-564)))) ((|#1| $) 201) (((-407 (-948 |#1|)) $) 163 (|has| |#1| (-556))) (((-948 |#1|) $) 117 (|has| |#1| (-1045))) (((-407 (-564)) $) 92 (-2807 (-12 (|has| |#1| (-1034 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-564))))))) (-2946 (($ $ $) 151 (|has| |#1| (-556)))) (-4277 (((-685 (-564)) (-685 $)) 130 (-2358 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 129 (-2358 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 128 (|has| |#1| (-1045))) (((-685 |#1|) (-685 $)) 127 (|has| |#1| (-1045)))) (-3293 (((-3 $ "failed") $) 99 (|has| |#1| (-1106)))) (-2960 (($ $ $) 150 (|has| |#1| (-556)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 145 (|has| |#1| (-556)))) (-1339 (((-112) $) 158 (|has| |#1| (-556)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 205 (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 204 (|has| |#1| (-882 (-379))))) (-1387 (($ $) 46) (($ (-641 $)) 45)) (-3782 (((-641 (-114)) $) 38)) (-4232 (((-114) (-114)) 37)) (-4112 (((-112) $) 98 (|has| |#1| (-1106)))) (-3177 (((-112) $) 17 (|has| $ (-1034 (-564))))) (-1717 (($ $) 179 (|has| |#1| (-1045)))) (-2323 (((-1119 |#1| (-610 $)) $) 180 (|has| |#1| (-1045)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 154 (|has| |#1| (-556)))) (-1940 (((-1166 $) (-610 $)) 20 (|has| $ (-1045)))) (-4357 (($ (-1 $ $) (-610 $)) 31)) (-3521 (((-3 (-610 $) "failed") $) 41)) (-2084 (($ (-641 $)) 143 (|has| |#1| (-556))) (($ $ $) 142 (|has| |#1| (-556)))) (-2766 (((-1152) $) 10)) (-3648 (((-641 (-610 $)) $) 40)) (-4309 (($ (-114) $) 33) (($ (-114) (-641 $)) 32)) (-1958 (((-3 (-641 $) "failed") $) 185 (|has| |#1| (-1106)))) (-4193 (((-3 (-2 (|:| |val| $) (|:| -1838 (-564))) "failed") $) 176 (|has| |#1| (-1045)))) (-1301 (((-3 (-641 $) "failed") $) 183 (|has| |#1| (-25)))) (-2290 (((-3 (-2 (|:| -4376 (-564)) (|:| |var| (-610 $))) "failed") $) 182 (|has| |#1| (-25)))) (-3401 (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $) 184 (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $ (-114)) 178 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $ (-1170)) 177 (|has| |#1| (-1045)))) (-3679 (((-112) $ (-114)) 35) (((-112) $ (-1170)) 34)) (-3936 (($ $) 101 (-2807 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1292 (((-767) $) 42)) (-4052 (((-1114) $) 11)) (-3944 (((-112) $) 198)) (-3954 ((|#1| $) 197)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 144 (|has| |#1| (-556)))) (-2123 (($ (-641 $)) 141 (|has| |#1| (-556))) (($ $ $) 140 (|has| |#1| (-556)))) (-3817 (((-112) $ $) 30) (((-112) $ (-1170)) 29)) (-3688 (((-418 $) $) 155 (|has| |#1| (-556)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 153 (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 152 (|has| |#1| (-556)))) (-2998 (((-3 $ "failed") $ $) 135 (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 146 (|has| |#1| (-556)))) (-2663 (((-112) $) 18 (|has| $ (-1034 (-564))))) (-3291 (($ $ (-610 $) $) 62) (($ $ (-641 (-610 $)) (-641 $)) 61) (($ $ (-641 (-294 $))) 60) (($ $ (-294 $)) 59) (($ $ $ $) 58) (($ $ (-641 $) (-641 $)) 57) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 28) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 27) (($ $ (-1170) (-1 $ (-641 $))) 26) (($ $ (-1170) (-1 $ $)) 25) (($ $ (-641 (-114)) (-641 (-1 $ $))) 24) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 23) (($ $ (-114) (-1 $ (-641 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1170)) 190 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 189 (|has| |#1| (-612 (-536)))) (($ $) 188 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 187 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 186 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ $))) 175 (|has| |#1| (-1045))) (($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ (-641 $)))) 174 (|has| |#1| (-1045))) (($ $ (-1170) (-767) (-1 $ (-641 $))) 173 (|has| |#1| (-1045))) (($ $ (-1170) (-767) (-1 $ $)) 172 (|has| |#1| (-1045)))) (-1700 (((-767) $) 148 (|has| |#1| (-556)))) (-4366 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-641 $)) 52)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 149 (|has| |#1| (-556)))) (-3973 (($ $) 44) (($ $ $) 43)) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) 121 (|has| |#1| (-1045))) (($ $ (-1170) (-767)) 120 (|has| |#1| (-1045))) (($ $ (-641 (-1170))) 119 (|has| |#1| (-1045))) (($ $ (-1170)) 118 (|has| |#1| (-1045)))) (-2827 (($ $) 169 (|has| |#1| (-556)))) (-2336 (((-1119 |#1| (-610 $)) $) 170 (|has| |#1| (-556)))) (-3721 (($ $) 19 (|has| $ (-1045)))) (-1311 (((-888 (-564)) $) 207 (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) 206 (|has| |#1| (-612 (-888 (-379))))) (($ (-418 $)) 171 (|has| |#1| (-556))) (((-536) $) 93 (|has| |#1| (-612 (-536))))) (-3185 (($ $ $) 104 (|has| |#1| (-473)))) (-1542 (($ $ $) 105 (|has| |#1| (-473)))) (-2423 (((-858) $) 12) (($ (-610 $)) 63) (($ (-1170)) 208) (($ |#1|) 199) (($ (-1119 |#1| (-610 $))) 181 (|has| |#1| (-1045))) (($ (-407 |#1|)) 167 (|has| |#1| (-556))) (($ (-948 (-407 |#1|))) 166 (|has| |#1| (-556))) (($ (-407 (-948 (-407 |#1|)))) 165 (|has| |#1| (-556))) (($ (-407 (-948 |#1|))) 161 (|has| |#1| (-556))) (($ $) 134 (|has| |#1| (-556))) (($ (-948 |#1|)) 115 (|has| |#1| (-1045))) (($ (-407 (-564))) 90 (-2807 (|has| |#1| (-556)) (-12 (|has| |#1| (-1034 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1034 (-407 (-564)))))) (($ (-564)) 89 (-2807 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-564)))))) (-2420 (((-3 $ "failed") $) 131 (|has| |#1| (-145)))) (-3719 (((-767)) 126 (|has| |#1| (-1045)) CONST)) (-2180 (($ $) 48) (($ (-641 $)) 47)) (-3263 (((-112) (-114)) 36)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 138 (|has| |#1| (-556)))) (-2750 (($ (-1170) $) 195) (($ (-1170) $ $) 194) (($ (-1170) $ $ $) 193) (($ (-1170) $ $ $ $) 192) (($ (-1170) (-641 $)) 191)) (-2403 (($) 108 (|has| |#1| (-25)) CONST)) (-2417 (($) 96 (|has| |#1| (-1106)) CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) 125 (|has| |#1| (-1045))) (($ $ (-1170) (-767)) 124 (|has| |#1| (-1045))) (($ $ (-641 (-1170))) 123 (|has| |#1| (-1045))) (($ $ (-1170)) 122 (|has| |#1| (-1045)))) (-2974 (((-112) $ $) 6)) (-3092 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 168 (|has| |#1| (-556))) (($ $ $) 102 (-2807 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3082 (($ $ $) 113 (|has| |#1| (-21))) (($ $) 112 (|has| |#1| (-21)))) (-3070 (($ $ $) 106 (|has| |#1| (-25)))) (** (($ $ (-564)) 103 (-2807 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-767)) 100 (|has| |#1| (-1106))) (($ $ (-917)) 95 (|has| |#1| (-1106)))) (* (($ (-407 (-564)) $) 160 (|has| |#1| (-556))) (($ $ (-407 (-564))) 159 (|has| |#1| (-556))) (($ |#1| $) 133 (|has| |#1| (-172))) (($ $ |#1|) 132 (|has| |#1| (-172))) (($ (-564) $) 114 (|has| |#1| (-21))) (($ (-767) $) 110 (|has| |#1| (-25))) (($ (-917) $) 107 (|has| |#1| (-25))) (($ $ $) 94 (|has| |#1| (-1106)))))
-(((-430 |#1|) (-140) (-1094)) (T -430))
-((-3944 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1094)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1094)) (-5 *2 (-641 (-1170))))) (-2750 (*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-1094)))) (-2750 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-1094)))) (-2750 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-1094)))) (-2750 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-1094)))) (-2750 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4)) (-4 *4 (-1094)))) (-3291 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-1094)) (-4 *3 (-612 (-536))))) (-3291 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-4 *1 (-430 *3)) (-4 *3 (-1094)) (-4 *3 (-612 (-536))))) (-3291 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1094)) (-4 *2 (-612 (-536))))) (-3291 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1170)) (-4 *1 (-430 *4)) (-4 *4 (-1094)) (-4 *4 (-612 (-536))))) (-3291 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 *1)) (-5 *4 (-1170)) (-4 *1 (-430 *5)) (-4 *5 (-1094)) (-4 *5 (-612 (-536))))) (-1958 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-1094)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1838 (-564)))) (-4 *1 (-430 *3)))) (-1301 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-2290 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1094)) (-5 *2 (-2 (|:| -4376 (-564)) (|:| |var| (-610 *1)))) (-4 *1 (-430 *3)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1045)) (-4 *3 (-1094)) (-4 *1 (-430 *3)))) (-2323 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *3 (-1094)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-1717 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1094)) (-4 *2 (-1045)))) (-3401 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1045)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1838 (-564)))) (-4 *1 (-430 *4)))) (-3401 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1045)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1838 (-564)))) (-4 *1 (-430 *4)))) (-4193 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-1094)) (-5 *2 (-2 (|:| |val| *1) (|:| -1838 (-564)))) (-4 *1 (-430 *3)))) (-3291 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-767))) (-5 *4 (-641 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-1094)) (-4 *5 (-1045)))) (-3291 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-767))) (-5 *4 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-1094)) (-4 *5 (-1045)))) (-3291 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-641 *1))) (-4 *1 (-430 *5)) (-4 *5 (-1094)) (-4 *5 (-1045)))) (-3291 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-1094)) (-4 *5 (-1045)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) (-4 *3 (-1094)))) (-2336 (*1 *2 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1094)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-2827 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1094)) (-4 *2 (-556)))) (-3092 (*1 *1 *2 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-1094)) (-4 *1 (-430 *3)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-1094)) (-4 *1 (-430 *3)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-1094)) (-4 *1 (-430 *3)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-1094)) (-4 *1 (-430 *3)))) (-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-1094)) (-4 *4 (-556)) (-5 *2 (-407 (-1166 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-430 *3)) (-4 *3 (-1094)) (-4 *3 (-1106)))))
-(-13 (-302) (-1034 (-1170)) (-880 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -3944 ((-112) $)) (-15 -3954 (|t#1| $)) (-15 -3836 ((-641 (-1170)) $)) (-15 -2750 ($ (-1170) $)) (-15 -2750 ($ (-1170) $ $)) (-15 -2750 ($ (-1170) $ $ $)) (-15 -2750 ($ (-1170) $ $ $ $)) (-15 -2750 ($ (-1170) (-641 $))) (IF (|has| |t#1| (-612 (-536))) (PROGN (-6 (-612 (-536))) (-15 -3291 ($ $ (-1170))) (-15 -3291 ($ $ (-641 (-1170)))) (-15 -3291 ($ $)) (-15 -3291 ($ $ (-114) $ (-1170))) (-15 -3291 ($ $ (-641 (-114)) (-641 $) (-1170)))) |%noBranch|) (IF (|has| |t#1| (-1106)) (PROGN (-6 (-722)) (-15 ** ($ $ (-767))) (-15 -1958 ((-3 (-641 $) "failed") $)) (-15 -3401 ((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1301 ((-3 (-641 $) "failed") $)) (-15 -2290 ((-3 (-2 (|:| -4376 (-564)) (|:| |var| (-610 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-1034 (-948 |t#1|))) (-6 (-896 (-1170))) (-6 (-377 |t#1|)) (-15 -2423 ($ (-1119 |t#1| (-610 $)))) (-15 -2323 ((-1119 |t#1| (-610 $)) $)) (-15 -1717 ($ $)) (-15 -3401 ((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $ (-114))) (-15 -3401 ((-3 (-2 (|:| |var| (-610 $)) (|:| -1838 (-564))) "failed") $ (-1170))) (-15 -4193 ((-3 (-2 (|:| |val| $) (|:| -1838 (-564))) "failed") $)) (-15 -3291 ($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ $)))) (-15 -3291 ($ $ (-641 (-1170)) (-641 (-767)) (-641 (-1 $ (-641 $))))) (-15 -3291 ($ $ (-1170) (-767) (-1 $ (-641 $)))) (-15 -3291 ($ $ (-1170) (-767) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-363)) (-6 (-1034 (-407 (-948 |t#1|)))) (-15 -1311 ($ (-418 $))) (-15 -2336 ((-1119 |t#1| (-610 $)) $)) (-15 -2827 ($ $)) (-15 -3092 ($ (-1119 |t#1| (-610 $)) (-1119 |t#1| (-610 $)))) (-15 -2423 ($ (-407 |t#1|))) (-15 -2423 ($ (-948 (-407 |t#1|)))) (-15 -2423 ($ (-407 (-948 (-407 |t#1|))))) (-15 -3660 ((-407 (-1166 $)) $ (-610 $))) (IF (|has| |t#1| (-1034 (-564))) (-6 (-1034 (-407 (-564)))) |%noBranch|)) |%noBranch|)))
-(((-21) -2807 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2807 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2807 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-564))) |has| |#1| (-556)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-556)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-556)) ((-131) -2807 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-556))) ((-614 #1=(-407 (-948 |#1|))) |has| |#1| (-556)) ((-614 (-564)) -2807 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-564))) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-614 #2=(-610 $)) . T) ((-614 #3=(-948 |#1|)) |has| |#1| (-1045)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) |has| |#1| (-556)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-888 (-379))) |has| |#1| (-612 (-888 (-379)))) ((-612 (-888 (-564))) |has| |#1| (-612 (-888 (-564)))) ((-243) |has| |#1| (-556)) ((-290) |has| |#1| (-556)) ((-307) |has| |#1| (-556)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-556)) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-556)) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-556)) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) -2807 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1045))) ((-637 |#1|) |has| |#1| (-1045)) ((-713 #0#) |has| |#1| (-556)) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) -2807 (|has| |#1| (-1106)) (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-896 (-1170)) |has| |#1| (-1045)) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-564)) |has| |#1| (-882 (-564))) ((-880 |#1|) . T) ((-916) |has| |#1| (-556)) ((-1034 (-407 (-564))) -2807 (|has| |#1| (-1034 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1034 (-564))))) ((-1034 #1#) |has| |#1| (-556)) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 #2#) . T) ((-1034 #3#) |has| |#1| (-1045)) ((-1034 #4#) . T) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-556)) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) |has| |#1| (-556)) ((-1045) -2807 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1052) -2807 (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1106) -2807 (|has| |#1| (-1106)) (|has| |#1| (-1045)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1094) . T) ((-1209) . T) ((-1213) |has| |#1| (-556)))
-((-3377 ((|#2| |#2| |#2|) 31)) (-4232 (((-114) (-114)) 43)) (-1803 ((|#2| |#2|) 63)) (-3329 ((|#2| |#2|) 66)) (-2369 ((|#2| |#2|) 30)) (-2604 ((|#2| |#2| |#2|) 33)) (-3042 ((|#2| |#2| |#2|) 35)) (-1801 ((|#2| |#2| |#2|) 32)) (-1845 ((|#2| |#2| |#2|) 34)) (-3263 (((-112) (-114)) 41)) (-2419 ((|#2| |#2|) 37)) (-3248 ((|#2| |#2|) 36)) (-3673 ((|#2| |#2|) 25)) (-3727 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1731 ((|#2| |#2| |#2|) 29)))
-(((-431 |#1| |#2|) (-10 -7 (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 -3673 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3727 (|#2| |#2| |#2|)) (-15 -1731 (|#2| |#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -3377 (|#2| |#2| |#2|)) (-15 -1801 (|#2| |#2| |#2|)) (-15 -2604 (|#2| |#2| |#2|)) (-15 -1845 (|#2| |#2| |#2|)) (-15 -3042 (|#2| |#2| |#2|)) (-15 -3248 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -3329 (|#2| |#2|)) (-15 -1803 (|#2| |#2|))) (-556) (-430 |#1|)) (T -431))
-((-1803 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3329 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3248 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3042 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1845 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2604 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1801 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3377 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1731 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3727 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4232 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))))
-(-10 -7 (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 -3673 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3727 (|#2| |#2| |#2|)) (-15 -1731 (|#2| |#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -3377 (|#2| |#2| |#2|)) (-15 -1801 (|#2| |#2| |#2|)) (-15 -2604 (|#2| |#2| |#2|)) (-15 -1845 (|#2| |#2| |#2|)) (-15 -3042 (|#2| |#2| |#2|)) (-15 -3248 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -3329 (|#2| |#2|)) (-15 -1803 (|#2| |#2|)))
-((-1471 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|)) 68)))
-(((-432 |#1| |#2|) (-10 -7 (-15 -1471 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -1471 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-556) (-147)) (-430 |#1|)) (T -432))
-((-1471 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3)) (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-432 *4 *5)))))
-(-10 -7 (-15 -1471 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -1471 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|))
-((-2267 (((-1264)) 19)) (-1777 (((-1166 (-407 (-564))) |#2| (-610 |#2|)) 41) (((-407 (-564)) |#2|) 25)))
-(((-433 |#1| |#2|) (-10 -7 (-15 -1777 ((-407 (-564)) |#2|)) (-15 -1777 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -2267 ((-1264)))) (-13 (-556) (-1034 (-564))) (-430 |#1|)) (T -433))
-((-2267 (*1 *2) (-12 (-4 *3 (-13 (-556) (-1034 (-564)))) (-5 *2 (-1264)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-556) (-1034 (-564)))) (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3)))) (-1777 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))))
-(-10 -7 (-15 -1777 ((-407 (-564)) |#2|)) (-15 -1777 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -2267 ((-1264))))
-((-2466 (((-112) $) 32)) (-3986 (((-112) $) 34)) (-2513 (((-112) $) 35)) (-4313 (((-112) $) 38)) (-2395 (((-112) $) 33)) (-1825 (((-112) $) 37)) (-2423 (((-858) $) 20) (($ (-1152)) 31) (($ (-1170)) 26) (((-1170) $) 24) (((-1098) $) 23)) (-3930 (((-112) $) 36)) (-2974 (((-112) $ $) 17)))
-(((-434) (-13 (-611 (-858)) (-10 -8 (-15 -2423 ($ (-1152))) (-15 -2423 ($ (-1170))) (-15 -2423 ((-1170) $)) (-15 -2423 ((-1098) $)) (-15 -2466 ((-112) $)) (-15 -2395 ((-112) $)) (-15 -2513 ((-112) $)) (-15 -1825 ((-112) $)) (-15 -4313 ((-112) $)) (-15 -3930 ((-112) $)) (-15 -3986 ((-112) $)) (-15 -2974 ((-112) $ $))))) (T -434))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-434)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2974 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(-13 (-611 (-858)) (-10 -8 (-15 -2423 ($ (-1152))) (-15 -2423 ($ (-1170))) (-15 -2423 ((-1170) $)) (-15 -2423 ((-1098) $)) (-15 -2466 ((-112) $)) (-15 -2395 ((-112) $)) (-15 -2513 ((-112) $)) (-15 -1825 ((-112) $)) (-15 -4313 ((-112) $)) (-15 -3930 ((-112) $)) (-15 -3986 ((-112) $)) (-15 -2974 ((-112) $ $))))
-((-2779 (((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|) 72)) (-2936 (((-418 |#3|) |#3|) 34)) (-2640 (((-3 (-418 (-1166 (-48))) "failed") |#3|) 46 (|has| |#2| (-1034 (-48))))) (-3828 (((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -3285 (-112))) |#3|) 37)))
-(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -2936 ((-418 |#3|) |#3|)) (-15 -2779 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -3828 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -3285 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -2640 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-556) (-1034 (-564))) (-430 |#1|) (-1235 |#2|)) (T -435))
-((-2640 (*1 *2 *3) (|partial| -12 (-4 *5 (-1034 (-48))) (-4 *4 (-13 (-556) (-1034 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-3828 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -3285 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-2779 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-2936 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(-10 -7 (-15 -2936 ((-418 |#3|) |#3|)) (-15 -2779 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -3828 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -3285 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -2640 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|))
-((-3009 (((-112) $ $) NIL)) (-4079 (((-1152) $ (-1152)) NIL)) (-3871 (($ $ (-1152)) NIL)) (-1676 (((-1152) $) NIL)) (-3784 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-2319 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-2562 (((-388) $) NIL)) (-2766 (((-1152) $) NIL)) (-2058 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1327 (((-1264) (-1152)) 9)) (-3229 (((-1264) (-1152)) 10)) (-2745 (((-1264)) 11)) (-2423 (((-858) $) NIL)) (-3179 (($ $) 39)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-436) (-13 (-364 (-388) (-1152)) (-10 -7 (-15 -3784 ((-388) (-388) (-388))) (-15 -3784 ((-388) (-388))) (-15 -1327 ((-1264) (-1152))) (-15 -3229 ((-1264) (-1152))) (-15 -2745 ((-1264)))))) (T -436))
-((-3784 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-2745 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436)))))
-(-13 (-364 (-388) (-1152)) (-10 -7 (-15 -3784 ((-388) (-388) (-388))) (-15 -3784 ((-388) (-388))) (-15 -1327 ((-1264) (-1152))) (-15 -3229 ((-1264) (-1152))) (-15 -2745 ((-1264)))))
-((-3009 (((-112) $ $) NIL)) (-3967 (((-3 (|:| |fst| (-434)) (|:| -1836 "void")) $) 11)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3974 (($) 35)) (-3672 (($) 41)) (-1891 (($) 37)) (-1560 (($) 39)) (-3590 (($) 36)) (-1780 (($) 38)) (-2656 (($) 40)) (-3917 (((-112) $) 8)) (-4115 (((-641 (-948 (-564))) $) 19)) (-2435 (($ (-3 (|:| |fst| (-434)) (|:| -1836 "void")) (-641 (-1170)) (-112)) 29) (($ (-3 (|:| |fst| (-434)) (|:| -1836 "void")) (-641 (-948 (-564))) (-112)) 30)) (-2423 (((-858) $) 24) (($ (-434)) 32)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-437) (-13 (-1094) (-10 -8 (-15 -2423 ($ (-434))) (-15 -3967 ((-3 (|:| |fst| (-434)) (|:| -1836 "void")) $)) (-15 -4115 ((-641 (-948 (-564))) $)) (-15 -3917 ((-112) $)) (-15 -2435 ($ (-3 (|:| |fst| (-434)) (|:| -1836 "void")) (-641 (-1170)) (-112))) (-15 -2435 ($ (-3 (|:| |fst| (-434)) (|:| -1836 "void")) (-641 (-948 (-564))) (-112))) (-15 -3974 ($)) (-15 -3590 ($)) (-15 -1891 ($)) (-15 -3672 ($)) (-15 -1780 ($)) (-15 -1560 ($)) (-15 -2656 ($))))) (T -437))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-5 *1 (-437)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-641 (-948 (-564)))) (-5 *1 (-437)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-3974 (*1 *1) (-5 *1 (-437))) (-3590 (*1 *1) (-5 *1 (-437))) (-1891 (*1 *1) (-5 *1 (-437))) (-3672 (*1 *1) (-5 *1 (-437))) (-1780 (*1 *1) (-5 *1 (-437))) (-1560 (*1 *1) (-5 *1 (-437))) (-2656 (*1 *1) (-5 *1 (-437))))
-(-13 (-1094) (-10 -8 (-15 -2423 ($ (-434))) (-15 -3967 ((-3 (|:| |fst| (-434)) (|:| -1836 "void")) $)) (-15 -4115 ((-641 (-948 (-564))) $)) (-15 -3917 ((-112) $)) (-15 -2435 ($ (-3 (|:| |fst| (-434)) (|:| -1836 "void")) (-641 (-1170)) (-112))) (-15 -2435 ($ (-3 (|:| |fst| (-434)) (|:| -1836 "void")) (-641 (-948 (-564))) (-112))) (-15 -3974 ($)) (-15 -3590 ($)) (-15 -1891 ($)) (-15 -3672 ($)) (-15 -1780 ($)) (-15 -1560 ($)) (-15 -2656 ($))))
-((-3009 (((-112) $ $) NIL)) (-2562 (((-1170) $) 8)) (-2766 (((-1152) $) 17)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 11)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 14)))
-(((-438 |#1|) (-13 (-1094) (-10 -8 (-15 -2562 ((-1170) $)))) (-1170)) (T -438))
-((-2562 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-438 *3)) (-14 *3 *2))))
-(-13 (-1094) (-10 -8 (-15 -2562 ((-1170) $))))
-((-3009 (((-112) $ $) NIL)) (-1789 (((-1112) $) 7)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 13)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 9)))
-(((-439) (-13 (-1094) (-10 -8 (-15 -1789 ((-1112) $))))) (T -439))
-((-1789 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439)))))
-(-13 (-1094) (-10 -8 (-15 -1789 ((-1112) $))))
-((-3111 (((-1264) $) 7)) (-2423 (((-858) $) 8) (($ (-1259 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 11)))
+((-4263 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1262 *1)) (-4 *1 (-417 *3)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 *3)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-687 *4)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-4361 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 (-687 *3))))) (-2815 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-642 (-950 *3))))) (-4221 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-1314 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 *3)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-1617 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1933 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1499 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))) (-3043 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))) (-4070 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))) (-3956 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1169 (-950 *3))))) (-1393 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1169 (-950 *3))))) (-2497 (*1 *1 *2 *1) (-12 (-5 *2 (-687 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))))
+(-13 (-367 |t#1|) (-10 -8 (-15 -4263 ((-1262 $))) (-15 -2067 ((-1262 |t#1|) $)) (-15 -2067 ((-687 |t#1|) (-1262 $))) (-15 -4368 (|t#1| $ (-564))) (-15 -4361 ((-1262 (-687 |t#1|)))) (-15 -2815 ((-642 (-950 |t#1|)))) (-15 -4221 ($ (-1262 |t#1|))) (-15 -1314 ((-1262 |t#1|) $)) (-15 -1314 ($ (-1262 |t#1|))) (-15 -1617 (|t#1|)) (-15 -1933 (|t#1|)) (-15 -1499 ((-687 |t#1|))) (-15 -3043 ((-687 |t#1|))) (-15 -4070 ((-687 |t#1|) $)) (-15 -3636 ((-687 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -3956 ((-1169 (-950 |t#1|)))) (-15 -1393 ((-1169 (-950 |t#1|))))) |%noBranch|) (-15 -2497 ($ (-687 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-367 |#1|) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-718) . T) ((-742 |#1|) . T) ((-759) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 60)) (-3176 (($ $) 78)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 190)) (-1387 (($ $) NIL)) (-2037 (((-112) $) 48)) (-3587 ((|#1| $) 16)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL (|has| |#1| (-1216)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-1216)))) (-1929 (($ |#1| (-564)) 42)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 148)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 74)) (-3104 (((-3 $ "failed") $) 164)) (-3838 (((-3 (-407 (-564)) "failed") $) 84 (|has| |#1| (-545)))) (-2881 (((-112) $) 80 (|has| |#1| (-545)))) (-4034 (((-407 (-564)) $) 91 (|has| |#1| (-545)))) (-1803 (($ |#1| (-564)) 44)) (-1469 (((-112) $) 212 (|has| |#1| (-1216)))) (-3953 (((-112) $) 62)) (-3991 (((-769) $) 51)) (-3512 (((-3 "nil" "sqfr" "irred" "prime") $ (-564)) 174)) (-2123 ((|#1| $ (-564)) 173)) (-1885 (((-564) $ (-564)) 172)) (-2478 (($ |#1| (-564)) 41)) (-4358 (($ (-1 |#1| |#1|) $) 182)) (-1859 (($ |#1| (-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564))))) 79)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3315 (((-1155) $) NIL)) (-3769 (($ |#1| (-564)) 43)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) 191 (|has| |#1| (-452)))) (-1338 (($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-2649 (((-642 (-2 (|:| -3643 |#1|) (|:| -2700 (-564)))) $) 73)) (-3372 (((-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $) 12)) (-3643 (((-418 $) $) NIL (|has| |#1| (-1216)))) (-2896 (((-3 $ "failed") $ $) 175)) (-2700 (((-564) $) 167)) (-1675 ((|#1| $) 75)) (-3215 (($ $ (-642 |#1|) (-642 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) 100 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 106 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) $) NIL (|has| |#1| (-514 (-1173) $))) (($ $ (-642 (-1173)) (-642 $)) 107 (|has| |#1| (-514 (-1173) $))) (($ $ (-642 (-294 $))) 103 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-642 $) (-642 $)) NIL (|has| |#1| (-309 $)))) (-4368 (($ $ |#1|) 92 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-286 $ $)))) (-3175 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) 181)) (-1314 (((-536) $) 39 (|has| |#1| (-612 (-536)))) (((-379) $) 113 (|has| |#1| (-1020))) (((-225) $) 119 (|has| |#1| (-1020)))) (-2327 (((-860) $) 146) (($ (-564)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564)))))) (-2756 (((-769)) 67 T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-2312 (($) 53 T CONST)) (-2322 (($) 52 T CONST)) (-4044 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2872 (((-112) $ $) 159)) (-2987 (($ $) 161) (($ $ $) NIL)) (-2974 (($ $ $) 179)) (** (($ $ (-919)) NIL) (($ $ (-769)) 125)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
+(((-418 |#1|) (-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -1675 (|#1| $)) (-15 -2700 ((-564) $)) (-15 -1859 ($ |#1| (-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -3372 ((-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -2478 ($ |#1| (-564))) (-15 -2649 ((-642 (-2 (|:| -3643 |#1|) (|:| -2700 (-564)))) $)) (-15 -3769 ($ |#1| (-564))) (-15 -1885 ((-564) $ (-564))) (-15 -2123 (|#1| $ (-564))) (-15 -3512 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -3991 ((-769) $)) (-15 -1803 ($ |#1| (-564))) (-15 -1929 ($ |#1| (-564))) (-15 -1338 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3587 (|#1| $)) (-15 -3176 ($ $)) (-15 -4358 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-1216)) (-6 (-1216)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2881 ((-112) $)) (-15 -4034 ((-407 (-564)) $)) (-15 -3838 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1173) $)) (-6 (-514 (-1173) $)) |%noBranch|))) (-556)) (T -418))
+((-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) (-1675 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-1859 (*1 *1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-564))))) (-4 *2 (-556)) (-5 *1 (-418 *2)))) (-3372 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2478 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| -3643 *3) (|:| -2700 (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3769 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1885 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-556)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-1803 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1338 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3587 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3176 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-3838 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))))
+(-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -1675 (|#1| $)) (-15 -2700 ((-564) $)) (-15 -1859 ($ |#1| (-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -3372 ((-642 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -2478 ($ |#1| (-564))) (-15 -2649 ((-642 (-2 (|:| -3643 |#1|) (|:| -2700 (-564)))) $)) (-15 -3769 ($ |#1| (-564))) (-15 -1885 ((-564) $ (-564))) (-15 -2123 (|#1| $ (-564))) (-15 -3512 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -3991 ((-769) $)) (-15 -1803 ($ |#1| (-564))) (-15 -1929 ($ |#1| (-564))) (-15 -1338 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3587 (|#1| $)) (-15 -3176 ($ $)) (-15 -4358 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-1216)) (-6 (-1216)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2881 ((-112) $)) (-15 -4034 ((-407 (-564)) $)) (-15 -3838 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1173) $)) (-6 (-514 (-1173) $)) |%noBranch|)))
+((-1296 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 28)) (-3371 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 17)))
+(((-419 |#1|) (-10 -7 (-15 -1296 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3371 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-556)) (T -419))
+((-3371 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))) (-1296 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4)))))
+(-10 -7 (-15 -1296 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3371 ((-418 |#1|) (-418 |#1|) (-418 |#1|))))
+((-1297 ((|#2| |#2|) 187)) (-1898 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112)) 60)))
+(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1898 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112))) (-15 -1297 (|#2| |#2|))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|)) (-1173) |#2|) (T -420))
+((-1297 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1197) (-430 *3))) (-14 *4 (-1173)) (-14 *5 *2))) (-1898 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-14 *6 (-1173)) (-14 *7 *3))))
+(-10 -7 (-15 -1898 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112))) (-15 -1297 (|#2| |#2|)))
+((-4358 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 (|#4| (-1 |#3| |#1|) |#2|))) (-1047) (-430 |#1|) (-1047) (-430 |#3|)) (T -421))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5)))))
+(-10 -7 (-15 -4358 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1297 ((|#2| |#2|) 104)) (-1911 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155)) 52)) (-2428 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155)) 171)))
+(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1911 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155))) (-15 -2428 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155))) (-15 -1297 (|#2| |#2|))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|) (-10 -8 (-15 -2327 ($ |#3|)))) (-846) (-13 (-1240 |#2| |#3|) (-363) (-1197) (-10 -8 (-15 -3175 ($ $)) (-15 -4107 ($ $)))) (-981 |#4|) (-1173)) (T -422))
+((-1297 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-4 *2 (-13 (-27) (-1197) (-430 *3) (-10 -8 (-15 -2327 ($ *4))))) (-4 *4 (-846)) (-4 *5 (-13 (-1240 *2 *4) (-363) (-1197) (-10 -8 (-15 -3175 ($ $)) (-15 -4107 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-981 *5)) (-14 *7 (-1173)))) (-2428 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1197) (-430 *6) (-10 -8 (-15 -2327 ($ *7))))) (-4 *7 (-846)) (-4 *8 (-13 (-1240 *3 *7) (-363) (-1197) (-10 -8 (-15 -3175 ($ $)) (-15 -4107 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1155)) (-4 *9 (-981 *8)) (-14 *10 (-1173)))) (-1911 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1197) (-430 *6) (-10 -8 (-15 -2327 ($ *7))))) (-4 *7 (-846)) (-4 *8 (-13 (-1240 *3 *7) (-363) (-1197) (-10 -8 (-15 -3175 ($ $)) (-15 -4107 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1155)) (-4 *9 (-981 *8)) (-14 *10 (-1173)))))
+(-10 -7 (-15 -1911 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155))) (-15 -2428 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))) |#2| (-112) (-1155))) (-15 -1297 (|#2| |#2|)))
+((-1910 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1320 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4358 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1320 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1910 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1097) (-425 |#1|) (-1097) (-425 |#3|)) (T -423))
+((-1910 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1097)) (-4 *5 (-1097)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-1320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1097)) (-4 *2 (-1097)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5)))))
+(-10 -7 (-15 -4358 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1320 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1910 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3969 (($) 52)) (-1717 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2633 (($ $ $) 45)) (-2869 (((-112) $ $) 34)) (-2521 (((-769)) 56)) (-1754 (($ (-642 |#2|)) 23) (($) NIL)) (-2433 (($) 67)) (-1899 (((-112) $ $) 15)) (-2755 ((|#2| $) 78)) (-1520 ((|#2| $) 76)) (-1945 (((-919) $) 71)) (-2452 (($ $ $) 41)) (-2047 (($ (-919)) 61)) (-1438 (($ $ |#2|) NIL) (($ $ $) 44)) (-4043 (((-769) (-1 (-112) |#2|) $) NIL) (((-769) |#2| $) 31)) (-2337 (($ (-642 |#2|)) 27)) (-3880 (($ $) 54)) (-2327 (((-860) $) 39)) (-2094 (((-769) $) 24)) (-3715 (($ (-642 |#2|)) 22) (($) NIL)) (-2872 (((-112) $ $) 19)))
+(((-424 |#1| |#2|) (-10 -8 (-15 -2521 ((-769))) (-15 -2047 (|#1| (-919))) (-15 -1945 ((-919) |#1|)) (-15 -2433 (|#1|)) (-15 -2755 (|#2| |#1|)) (-15 -1520 (|#2| |#1|)) (-15 -3969 (|#1|)) (-15 -3880 (|#1| |#1|)) (-15 -2094 ((-769) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -1899 ((-112) |#1| |#1|)) (-15 -3715 (|#1|)) (-15 -3715 (|#1| (-642 |#2|))) (-15 -1754 (|#1|)) (-15 -1754 (|#1| (-642 |#2|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1| |#2|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 -2869 ((-112) |#1| |#1|)) (-15 -1717 (|#1| |#1| |#1|)) (-15 -1717 (|#1| |#1| |#2|)) (-15 -1717 (|#1| |#2| |#1|)) (-15 -2337 (|#1| (-642 |#2|))) (-15 -4043 ((-769) |#2| |#1|)) (-15 -4043 ((-769) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1097)) (T -424))
+((-2521 (*1 *2) (-12 (-4 *4 (-1097)) (-5 *2 (-769)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))))
+(-10 -8 (-15 -2521 ((-769))) (-15 -2047 (|#1| (-919))) (-15 -1945 ((-919) |#1|)) (-15 -2433 (|#1|)) (-15 -2755 (|#2| |#1|)) (-15 -1520 (|#2| |#1|)) (-15 -3969 (|#1|)) (-15 -3880 (|#1| |#1|)) (-15 -2094 ((-769) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -1899 ((-112) |#1| |#1|)) (-15 -3715 (|#1|)) (-15 -3715 (|#1| (-642 |#2|))) (-15 -1754 (|#1|)) (-15 -1754 (|#1| (-642 |#2|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1| |#2|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 -2869 ((-112) |#1| |#1|)) (-15 -1717 (|#1| |#1| |#1|)) (-15 -1717 (|#1| |#1| |#2|)) (-15 -1717 (|#1| |#2| |#1|)) (-15 -2337 (|#1| (-642 |#2|))) (-15 -4043 ((-769) |#2| |#1|)) (-15 -4043 ((-769) (-1 (-112) |#2|) |#1|)))
+((-2907 (((-112) $ $) 19)) (-3969 (($) 68 (|has| |#1| (-368)))) (-1717 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2633 (($ $ $) 79)) (-2869 (((-112) $ $) 80)) (-3697 (((-112) $ (-769)) 8)) (-2521 (((-769)) 62 (|has| |#1| (-368)))) (-1754 (($ (-642 |#1|)) 75) (($) 74)) (-2462 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-2595 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2265 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2490 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2433 (($) 65 (|has| |#1| (-368)))) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1899 (((-112) $ $) 71)) (-3462 (((-112) $ (-769)) 9)) (-2755 ((|#1| $) 66 (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1520 ((|#1| $) 67 (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-1945 (((-919) $) 64 (|has| |#1| (-368)))) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22)) (-2452 (($ $ $) 76)) (-2730 ((|#1| $) 40)) (-3183 (($ |#1| $) 41)) (-2047 (($ (-919)) 63 (|has| |#1| (-368)))) (-4033 (((-1117) $) 21)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-1438 (($ $ |#1|) 78) (($ $ $) 77)) (-2593 (($) 50) (($ (-642 |#1|)) 49)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 51)) (-3880 (($ $) 69 (|has| |#1| (-368)))) (-2327 (((-860) $) 18)) (-2094 (((-769) $) 70)) (-3715 (($ (-642 |#1|)) 73) (($) 72)) (-1648 (((-112) $ $) 23)) (-4386 (($ (-642 |#1|)) 43)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20)) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-425 |#1|) (-140) (-1097)) (T -425))
+((-2094 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1097)) (-5 *2 (-769)))) (-3880 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-368)))) (-3969 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1097)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-848)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-848)))))
+(-13 (-229 |t#1|) (-1095 |t#1|) (-10 -8 (-6 -4410) (-15 -2094 ((-769) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -3880 ($ $)) (-15 -3969 ($))) |%noBranch|) (IF (|has| |t#1| (-848)) (PROGN (-15 -1520 (|t#1| $)) (-15 -2755 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1095 |#1|) . T) ((-1097) . T) ((-1212) . T))
+((-4017 (((-585 |#2|) |#2| (-1173)) 38)) (-3074 (((-585 |#2|) |#2| (-1173)) 21)) (-2333 ((|#2| |#2| (-1173)) 26)))
+(((-426 |#1| |#2|) (-10 -7 (-15 -3074 ((-585 |#2|) |#2| (-1173))) (-15 -4017 ((-585 |#2|) |#2| (-1173))) (-15 -2333 (|#2| |#2| (-1173)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-29 |#1|))) (T -426))
+((-2333 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1197) (-29 *4))))) (-4017 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1197) (-29 *5))))) (-3074 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1197) (-29 *5))))))
+(-10 -7 (-15 -3074 ((-585 |#2|) |#2| (-1173))) (-15 -4017 ((-585 |#2|) |#2| (-1173))) (-15 -2333 (|#2| |#2| (-1173))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-1856 (($ |#2| |#1|) 37)) (-1473 (($ |#2| |#1|) 35)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 10 T CONST)) (-2322 (($) 16 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 36)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4397)) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|) |%noBranch|) (-15 -2327 ($ |#1|)) (-15 -2327 ($ (-331 |#2|))) (-15 -1856 ($ |#2| |#1|)) (-15 -1473 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-564)))) (-13 (-848) (-21))) (T -427))
+((-2327 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) (-4 *3 (-13 (-848) (-21))))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-848) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) (-1856 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-848) (-21))))) (-1473 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-848) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4397)) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|) |%noBranch|) (-15 -2327 ($ |#1|)) (-15 -2327 ($ (-331 |#2|))) (-15 -1856 ($ |#2| |#1|)) (-15 -1473 ($ |#2| |#1|))))
+((-4107 (((-3 |#2| (-642 |#2|)) |#2| (-1173)) 115)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -4107 ((-3 |#2| (-642 |#2|)) |#2| (-1173)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-957) (-29 |#1|))) (T -428))
+((-4107 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 *3 (-642 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1197) (-957) (-29 *5))))))
+(-10 -7 (-15 -4107 ((-3 |#2| (-642 |#2|)) |#2| (-1173))))
+((-3802 (((-642 (-1173)) $) 81)) (-3615 (((-407 (-1169 $)) $ (-610 $)) 314)) (-2458 (($ $ (-294 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-642 (-610 $)) (-642 $)) 278)) (-4278 (((-3 (-610 $) "failed") $) NIL) (((-3 (-1173) "failed") $) 84) (((-3 (-564) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-407 (-950 |#2|)) "failed") $) 364) (((-3 (-950 |#2|) "failed") $) 276) (((-3 (-407 (-564)) "failed") $) NIL)) (-3027 (((-610 $) $) NIL) (((-1173) $) 28) (((-564) $) NIL) ((|#2| $) 272) (((-407 (-950 |#2|)) $) 346) (((-950 |#2|) $) 273) (((-407 (-564)) $) NIL)) (-3307 (((-114) (-114)) 47)) (-3071 (($ $) 99)) (-2953 (((-3 (-610 $) "failed") $) 269)) (-3603 (((-642 (-610 $)) $) 270)) (-1572 (((-3 (-642 $) "failed") $) 288)) (-4310 (((-3 (-2 (|:| |val| $) (|:| -2700 (-564))) "failed") $) 295)) (-1802 (((-3 (-642 $) "failed") $) 286)) (-4216 (((-3 (-2 (|:| -4378 (-564)) (|:| |var| (-610 $))) "failed") $) 305)) (-3611 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $) 292) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $ (-1173)) 258)) (-3921 (((-112) $) 17)) (-3932 ((|#2| $) 19)) (-3215 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) 277) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) 109) (($ $ (-1173) (-1 $ (-642 $))) NIL) (($ $ (-1173) (-1 $ $)) NIL) (($ $ (-642 (-114)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-114) (-1 $ (-642 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1173)) 62) (($ $ (-642 (-1173))) 281) (($ $) 282) (($ $ (-114) $ (-1173)) 65) (($ $ (-642 (-114)) (-642 $) (-1173)) 72) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ $))) 120) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ (-642 $)))) 283) (($ $ (-1173) (-769) (-1 $ (-642 $))) 105) (($ $ (-1173) (-769) (-1 $ $)) 104)) (-4368 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-642 $)) 119)) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) 279)) (-2618 (($ $) 325)) (-1314 (((-890 (-564)) $) 298) (((-890 (-379)) $) 302) (($ (-418 $)) 360) (((-536) $) NIL)) (-2327 (((-860) $) 280) (($ (-610 $)) 93) (($ (-1173)) 24) (($ |#2|) NIL) (($ (-1122 |#2| (-610 $))) NIL) (($ (-407 |#2|)) 330) (($ (-950 (-407 |#2|))) 369) (($ (-407 (-950 (-407 |#2|)))) 342) (($ (-407 (-950 |#2|))) 336) (($ $) NIL) (($ (-950 |#2|)) 218) (($ (-407 (-564))) 374) (($ (-564)) NIL)) (-2756 (((-769)) 88)) (-2357 (((-112) (-114)) 42)) (-2647 (($ (-1173) $) 31) (($ (-1173) $ $) 32) (($ (-1173) $ $ $) 33) (($ (-1173) $ $ $ $) 34) (($ (-1173) (-642 $)) 39)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL)))
+(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-919) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2327 (|#1| (-564))) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-407 (-564)))) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -2327 (|#1| (-950 |#2|))) (-15 -4278 ((-3 (-950 |#2|) "failed") |#1|)) (-15 -3027 ((-950 |#2|) |#1|)) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2327 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2327 (|#1| (-407 (-950 |#2|)))) (-15 -4278 ((-3 (-407 (-950 |#2|)) "failed") |#1|)) (-15 -3027 ((-407 (-950 |#2|)) |#1|)) (-15 -3615 ((-407 (-1169 |#1|)) |#1| (-610 |#1|))) (-15 -2327 (|#1| (-407 (-950 (-407 |#2|))))) (-15 -2327 (|#1| (-950 (-407 |#2|)))) (-15 -2327 (|#1| (-407 |#2|))) (-15 -2618 (|#1| |#1|)) (-15 -1314 (|#1| (-418 |#1|))) (-15 -3215 (|#1| |#1| (-1173) (-769) (-1 |#1| |#1|))) (-15 -3215 (|#1| |#1| (-1173) (-769) (-1 |#1| (-642 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-769)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-769)) (-642 (-1 |#1| |#1|)))) (-15 -4310 ((-3 (-2 (|:| |val| |#1|) (|:| -2700 (-564))) "failed") |#1|)) (-15 -3611 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2700 (-564))) "failed") |#1| (-1173))) (-15 -3611 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2700 (-564))) "failed") |#1| (-114))) (-15 -3071 (|#1| |#1|)) (-15 -2327 (|#1| (-1122 |#2| (-610 |#1|)))) (-15 -4216 ((-3 (-2 (|:| -4378 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -1802 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -3611 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2700 (-564))) "failed") |#1|)) (-15 -1572 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -3215 (|#1| |#1| (-642 (-114)) (-642 |#1|) (-1173))) (-15 -3215 (|#1| |#1| (-114) |#1| (-1173))) (-15 -3215 (|#1| |#1|)) (-15 -3215 (|#1| |#1| (-642 (-1173)))) (-15 -3215 (|#1| |#1| (-1173))) (-15 -2647 (|#1| (-1173) (-642 |#1|))) (-15 -2647 (|#1| (-1173) |#1| |#1| |#1| |#1|)) (-15 -2647 (|#1| (-1173) |#1| |#1| |#1|)) (-15 -2647 (|#1| (-1173) |#1| |#1|)) (-15 -2647 (|#1| (-1173) |#1|)) (-15 -3802 ((-642 (-1173)) |#1|)) (-15 -3932 (|#2| |#1|)) (-15 -3921 ((-112) |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -2327 (|#1| (-1173))) (-15 -4278 ((-3 (-1173) "failed") |#1|)) (-15 -3027 ((-1173) |#1|)) (-15 -3215 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3215 (|#1| |#1| (-114) (-1 |#1| (-642 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3215 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| |#1|)))) (-15 -3215 (|#1| |#1| (-1173) (-1 |#1| |#1|))) (-15 -3215 (|#1| |#1| (-1173) (-1 |#1| (-642 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| |#1|)))) (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 -3603 ((-642 (-610 |#1|)) |#1|)) (-15 -2953 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2458 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -2458 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -2458 (|#1| |#1| (-294 |#1|))) (-15 -4368 (|#1| (-114) (-642 |#1|))) (-15 -4368 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1|)) (-15 -3215 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| (-294 |#1|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -3215 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2327 (|#1| (-610 |#1|))) (-15 -4278 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3027 ((-610 |#1|) |#1|)) (-15 -2327 ((-860) |#1|))) (-430 |#2|) (-1097)) (T -429))
+((-3307 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1097)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1097)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-2756 (*1 *2) (-12 (-4 *4 (-1097)) (-5 *2 (-769)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))))
+(-10 -8 (-15 * (|#1| (-919) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2327 (|#1| (-564))) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-407 (-564)))) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -2327 (|#1| (-950 |#2|))) (-15 -4278 ((-3 (-950 |#2|) "failed") |#1|)) (-15 -3027 ((-950 |#2|) |#1|)) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2327 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2327 (|#1| (-407 (-950 |#2|)))) (-15 -4278 ((-3 (-407 (-950 |#2|)) "failed") |#1|)) (-15 -3027 ((-407 (-950 |#2|)) |#1|)) (-15 -3615 ((-407 (-1169 |#1|)) |#1| (-610 |#1|))) (-15 -2327 (|#1| (-407 (-950 (-407 |#2|))))) (-15 -2327 (|#1| (-950 (-407 |#2|)))) (-15 -2327 (|#1| (-407 |#2|))) (-15 -2618 (|#1| |#1|)) (-15 -1314 (|#1| (-418 |#1|))) (-15 -3215 (|#1| |#1| (-1173) (-769) (-1 |#1| |#1|))) (-15 -3215 (|#1| |#1| (-1173) (-769) (-1 |#1| (-642 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-769)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-769)) (-642 (-1 |#1| |#1|)))) (-15 -4310 ((-3 (-2 (|:| |val| |#1|) (|:| -2700 (-564))) "failed") |#1|)) (-15 -3611 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2700 (-564))) "failed") |#1| (-1173))) (-15 -3611 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2700 (-564))) "failed") |#1| (-114))) (-15 -3071 (|#1| |#1|)) (-15 -2327 (|#1| (-1122 |#2| (-610 |#1|)))) (-15 -4216 ((-3 (-2 (|:| -4378 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -1802 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -3611 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2700 (-564))) "failed") |#1|)) (-15 -1572 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -3215 (|#1| |#1| (-642 (-114)) (-642 |#1|) (-1173))) (-15 -3215 (|#1| |#1| (-114) |#1| (-1173))) (-15 -3215 (|#1| |#1|)) (-15 -3215 (|#1| |#1| (-642 (-1173)))) (-15 -3215 (|#1| |#1| (-1173))) (-15 -2647 (|#1| (-1173) (-642 |#1|))) (-15 -2647 (|#1| (-1173) |#1| |#1| |#1| |#1|)) (-15 -2647 (|#1| (-1173) |#1| |#1| |#1|)) (-15 -2647 (|#1| (-1173) |#1| |#1|)) (-15 -2647 (|#1| (-1173) |#1|)) (-15 -3802 ((-642 (-1173)) |#1|)) (-15 -3932 (|#2| |#1|)) (-15 -3921 ((-112) |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -2327 (|#1| (-1173))) (-15 -4278 ((-3 (-1173) "failed") |#1|)) (-15 -3027 ((-1173) |#1|)) (-15 -3215 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3215 (|#1| |#1| (-114) (-1 |#1| (-642 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3215 (|#1| |#1| (-642 (-114)) (-642 (-1 |#1| |#1|)))) (-15 -3215 (|#1| |#1| (-1173) (-1 |#1| |#1|))) (-15 -3215 (|#1| |#1| (-1173) (-1 |#1| (-642 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| (-642 |#1|))))) (-15 -3215 (|#1| |#1| (-642 (-1173)) (-642 (-1 |#1| |#1|)))) (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 -3603 ((-642 (-610 |#1|)) |#1|)) (-15 -2953 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2458 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -2458 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -2458 (|#1| |#1| (-294 |#1|))) (-15 -4368 (|#1| (-114) (-642 |#1|))) (-15 -4368 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1| |#1|)) (-15 -4368 (|#1| (-114) |#1|)) (-15 -3215 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| (-294 |#1|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3215 (|#1| |#1| (-642 (-610 |#1|)) (-642 |#1|))) (-15 -3215 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2327 (|#1| (-610 |#1|))) (-15 -4278 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3027 ((-610 |#1|) |#1|)) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 116 (|has| |#1| (-25)))) (-3802 (((-642 (-1173)) $) 203)) (-3615 (((-407 (-1169 $)) $ (-610 $)) 171 (|has| |#1| (-556)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 143 (|has| |#1| (-556)))) (-1387 (($ $) 144 (|has| |#1| (-556)))) (-2037 (((-112) $) 146 (|has| |#1| (-556)))) (-3530 (((-642 (-610 $)) $) 39)) (-1532 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2458 (($ $ (-294 $)) 51) (($ $ (-642 (-294 $))) 50) (($ $ (-642 (-610 $)) (-642 $)) 49)) (-4316 (($ $) 163 (|has| |#1| (-556)))) (-1978 (((-418 $) $) 164 (|has| |#1| (-556)))) (-4010 (((-112) $ $) 154 (|has| |#1| (-556)))) (-1976 (($) 104 (-2706 (|has| |#1| (-1109)) (|has| |#1| (-25))) CONST)) (-4278 (((-3 (-610 $) "failed") $) 64) (((-3 (-1173) "failed") $) 216) (((-3 (-564) "failed") $) 210 (|has| |#1| (-1036 (-564)))) (((-3 |#1| "failed") $) 207) (((-3 (-407 (-950 |#1|)) "failed") $) 169 (|has| |#1| (-556))) (((-3 (-950 |#1|) "failed") $) 123 (|has| |#1| (-1047))) (((-3 (-407 (-564)) "failed") $) 98 (-2706 (-12 (|has| |#1| (-1036 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1036 (-407 (-564))))))) (-3027 (((-610 $) $) 65) (((-1173) $) 217) (((-564) $) 209 (|has| |#1| (-1036 (-564)))) ((|#1| $) 208) (((-407 (-950 |#1|)) $) 170 (|has| |#1| (-556))) (((-950 |#1|) $) 124 (|has| |#1| (-1047))) (((-407 (-564)) $) 99 (-2706 (-12 (|has| |#1| (-1036 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1036 (-407 (-564))))))) (-2845 (($ $ $) 158 (|has| |#1| (-556)))) (-4315 (((-687 (-564)) (-687 $)) 137 (-2275 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 136 (-2275 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 135 (|has| |#1| (-1047))) (((-687 |#1|) (-687 $)) 134 (|has| |#1| (-1047)))) (-3104 (((-3 $ "failed") $) 106 (|has| |#1| (-1109)))) (-2859 (($ $ $) 157 (|has| |#1| (-556)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 152 (|has| |#1| (-556)))) (-1469 (((-112) $) 165 (|has| |#1| (-556)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 212 (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 211 (|has| |#1| (-884 (-379))))) (-1301 (($ $) 46) (($ (-642 $)) 45)) (-3332 (((-642 (-114)) $) 38)) (-3307 (((-114) (-114)) 37)) (-3953 (((-112) $) 105 (|has| |#1| (-1109)))) (-3076 (((-112) $) 17 (|has| $ (-1036 (-564))))) (-3071 (($ $) 186 (|has| |#1| (-1047)))) (-2245 (((-1122 |#1| (-610 $)) $) 187 (|has| |#1| (-1047)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 161 (|has| |#1| (-556)))) (-2666 (((-1169 $) (-610 $)) 20 (|has| $ (-1047)))) (-4358 (($ (-1 $ $) (-610 $)) 31)) (-2953 (((-3 (-610 $) "failed") $) 41)) (-2049 (($ (-642 $)) 150 (|has| |#1| (-556))) (($ $ $) 149 (|has| |#1| (-556)))) (-3315 (((-1155) $) 10)) (-3603 (((-642 (-610 $)) $) 40)) (-4305 (($ (-114) $) 33) (($ (-114) (-642 $)) 32)) (-1572 (((-3 (-642 $) "failed") $) 192 (|has| |#1| (-1109)))) (-4310 (((-3 (-2 (|:| |val| $) (|:| -2700 (-564))) "failed") $) 183 (|has| |#1| (-1047)))) (-1802 (((-3 (-642 $) "failed") $) 190 (|has| |#1| (-25)))) (-4216 (((-3 (-2 (|:| -4378 (-564)) (|:| |var| (-610 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3611 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $) 191 (|has| |#1| (-1109))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $ (-114)) 185 (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $ (-1173)) 184 (|has| |#1| (-1047)))) (-1523 (((-112) $ (-114)) 35) (((-112) $ (-1173)) 34)) (-3911 (($ $) 108 (-2706 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1295 (((-769) $) 42)) (-4033 (((-1117) $) 11)) (-3921 (((-112) $) 205)) (-3932 ((|#1| $) 204)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 151 (|has| |#1| (-556)))) (-2080 (($ (-642 $)) 148 (|has| |#1| (-556))) (($ $ $) 147 (|has| |#1| (-556)))) (-2539 (((-112) $ $) 30) (((-112) $ (-1173)) 29)) (-3643 (((-418 $) $) 162 (|has| |#1| (-556)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 159 (|has| |#1| (-556)))) (-2896 (((-3 $ "failed") $ $) 142 (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 153 (|has| |#1| (-556)))) (-2519 (((-112) $) 18 (|has| $ (-1036 (-564))))) (-3215 (($ $ (-610 $) $) 62) (($ $ (-642 (-610 $)) (-642 $)) 61) (($ $ (-642 (-294 $))) 60) (($ $ (-294 $)) 59) (($ $ $ $) 58) (($ $ (-642 $) (-642 $)) 57) (($ $ (-642 (-1173)) (-642 (-1 $ $))) 28) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) 27) (($ $ (-1173) (-1 $ (-642 $))) 26) (($ $ (-1173) (-1 $ $)) 25) (($ $ (-642 (-114)) (-642 (-1 $ $))) 24) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) 23) (($ $ (-114) (-1 $ (-642 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1173)) 197 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-1173))) 196 (|has| |#1| (-612 (-536)))) (($ $) 195 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1173)) 194 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-114)) (-642 $) (-1173)) 193 (|has| |#1| (-612 (-536)))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ $))) 182 (|has| |#1| (-1047))) (($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ (-642 $)))) 181 (|has| |#1| (-1047))) (($ $ (-1173) (-769) (-1 $ (-642 $))) 180 (|has| |#1| (-1047))) (($ $ (-1173) (-769) (-1 $ $)) 179 (|has| |#1| (-1047)))) (-2048 (((-769) $) 155 (|has| |#1| (-556)))) (-4368 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-642 $)) 52)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 156 (|has| |#1| (-556)))) (-3238 (($ $) 44) (($ $ $) 43)) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) 128 (|has| |#1| (-1047))) (($ $ (-1173) (-769)) 127 (|has| |#1| (-1047))) (($ $ (-642 (-1173))) 126 (|has| |#1| (-1047))) (($ $ (-1173)) 125 (|has| |#1| (-1047)))) (-2618 (($ $) 176 (|has| |#1| (-556)))) (-2255 (((-1122 |#1| (-610 $)) $) 177 (|has| |#1| (-556)))) (-3280 (($ $) 19 (|has| $ (-1047)))) (-1314 (((-890 (-564)) $) 214 (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) 213 (|has| |#1| (-612 (-890 (-379))))) (($ (-418 $)) 178 (|has| |#1| (-556))) (((-536) $) 100 (|has| |#1| (-612 (-536))))) (-1389 (($ $ $) 111 (|has| |#1| (-473)))) (-3759 (($ $ $) 112 (|has| |#1| (-473)))) (-2327 (((-860) $) 12) (($ (-610 $)) 63) (($ (-1173)) 215) (($ |#1|) 206) (($ (-1122 |#1| (-610 $))) 188 (|has| |#1| (-1047))) (($ (-407 |#1|)) 174 (|has| |#1| (-556))) (($ (-950 (-407 |#1|))) 173 (|has| |#1| (-556))) (($ (-407 (-950 (-407 |#1|)))) 172 (|has| |#1| (-556))) (($ (-407 (-950 |#1|))) 168 (|has| |#1| (-556))) (($ $) 141 (|has| |#1| (-556))) (($ (-950 |#1|)) 122 (|has| |#1| (-1047))) (($ (-407 (-564))) 97 (-2706 (|has| |#1| (-556)) (-12 (|has| |#1| (-1036 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1036 (-407 (-564)))))) (($ (-564)) 96 (-2706 (|has| |#1| (-1047)) (|has| |#1| (-1036 (-564)))))) (-2439 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-2756 (((-769)) 133 (|has| |#1| (-1047)) CONST)) (-2181 (($ $) 48) (($ (-642 $)) 47)) (-2357 (((-112) (-114)) 36)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 145 (|has| |#1| (-556)))) (-2647 (($ (-1173) $) 202) (($ (-1173) $ $) 201) (($ (-1173) $ $ $) 200) (($ (-1173) $ $ $ $) 199) (($ (-1173) (-642 $)) 198)) (-2312 (($) 115 (|has| |#1| (-25)) CONST)) (-2322 (($) 103 (|has| |#1| (-1109)) CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) 132 (|has| |#1| (-1047))) (($ $ (-1173) (-769)) 131 (|has| |#1| (-1047))) (($ $ (-642 (-1173))) 130 (|has| |#1| (-1047))) (($ $ (-1173)) 129 (|has| |#1| (-1047)))) (-2872 (((-112) $ $) 6)) (-2998 (($ (-1122 |#1| (-610 $)) (-1122 |#1| (-610 $))) 175 (|has| |#1| (-556))) (($ $ $) 109 (-2706 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-2987 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-2974 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-564)) 110 (-2706 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-769)) 107 (|has| |#1| (-1109))) (($ $ (-919)) 102 (|has| |#1| (-1109)))) (* (($ (-407 (-564)) $) 167 (|has| |#1| (-556))) (($ $ (-407 (-564))) 166 (|has| |#1| (-556))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-564) $) 119 (|has| |#1| (-21))) (($ (-769) $) 117 (|has| |#1| (-25))) (($ (-919) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1109)))))
+(((-430 |#1|) (-140) (-1097)) (T -430))
+((-3921 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-5 *2 (-642 (-1173))))) (-2647 (*1 *1 *2 *1) (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) (-2647 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) (-2647 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) (-2647 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))) (-2647 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-642 *1)) (-4 *1 (-430 *4)) (-4 *4 (-1097)))) (-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-4 *3 (-612 (-536))))) (-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-1173))) (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-4 *3 (-612 (-536))))) (-3215 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-612 (-536))))) (-3215 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1173)) (-4 *1 (-430 *4)) (-4 *4 (-1097)) (-4 *4 (-612 (-536))))) (-3215 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 *1)) (-5 *4 (-1173)) (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-612 (-536))))) (-1572 (*1 *2 *1) (|partial| -12 (-4 *3 (-1109)) (-4 *3 (-1097)) (-5 *2 (-642 *1)) (-4 *1 (-430 *3)))) (-3611 (*1 *2 *1) (|partial| -12 (-4 *3 (-1109)) (-4 *3 (-1097)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2700 (-564)))) (-4 *1 (-430 *3)))) (-1802 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1097)) (-5 *2 (-642 *1)) (-4 *1 (-430 *3)))) (-4216 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1097)) (-5 *2 (-2 (|:| -4378 (-564)) (|:| |var| (-610 *1)))) (-4 *1 (-430 *3)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-1122 *3 (-610 *1))) (-4 *3 (-1047)) (-4 *3 (-1097)) (-4 *1 (-430 *3)))) (-2245 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *3 (-1097)) (-5 *2 (-1122 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-3071 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-1047)))) (-3611 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1047)) (-4 *4 (-1097)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2700 (-564)))) (-4 *1 (-430 *4)))) (-3611 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1173)) (-4 *4 (-1047)) (-4 *4 (-1097)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2700 (-564)))) (-4 *1 (-430 *4)))) (-4310 (*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *3 (-1097)) (-5 *2 (-2 (|:| |val| *1) (|:| -2700 (-564)))) (-4 *1 (-430 *3)))) (-3215 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-769))) (-5 *4 (-642 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047)))) (-3215 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-769))) (-5 *4 (-642 (-1 *1 (-642 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047)))) (-3215 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *4 (-1 *1 (-642 *1))) (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047)))) (-3215 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) (-4 *3 (-1097)))) (-2255 (*1 *2 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1097)) (-5 *2 (-1122 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-2618 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-556)))) (-2998 (*1 *1 *2 *2) (-12 (-5 *2 (-1122 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-1097)) (-4 *1 (-430 *3)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-1097)) (-4 *1 (-430 *3)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-950 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-1097)) (-4 *1 (-430 *3)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-1097)) (-4 *1 (-430 *3)))) (-3615 (*1 *2 *1 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-1097)) (-4 *4 (-556)) (-5 *2 (-407 (-1169 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-4 *3 (-1109)))))
+(-13 (-302) (-1036 (-1173)) (-882 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -3921 ((-112) $)) (-15 -3932 (|t#1| $)) (-15 -3802 ((-642 (-1173)) $)) (-15 -2647 ($ (-1173) $)) (-15 -2647 ($ (-1173) $ $)) (-15 -2647 ($ (-1173) $ $ $)) (-15 -2647 ($ (-1173) $ $ $ $)) (-15 -2647 ($ (-1173) (-642 $))) (IF (|has| |t#1| (-612 (-536))) (PROGN (-6 (-612 (-536))) (-15 -3215 ($ $ (-1173))) (-15 -3215 ($ $ (-642 (-1173)))) (-15 -3215 ($ $)) (-15 -3215 ($ $ (-114) $ (-1173))) (-15 -3215 ($ $ (-642 (-114)) (-642 $) (-1173)))) |%noBranch|) (IF (|has| |t#1| (-1109)) (PROGN (-6 (-724)) (-15 ** ($ $ (-769))) (-15 -1572 ((-3 (-642 $) "failed") $)) (-15 -3611 ((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1802 ((-3 (-642 $) "failed") $)) (-15 -4216 ((-3 (-2 (|:| -4378 (-564)) (|:| |var| (-610 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1047)) (PROGN (-6 (-1047)) (-6 (-1036 (-950 |t#1|))) (-6 (-898 (-1173))) (-6 (-377 |t#1|)) (-15 -2327 ($ (-1122 |t#1| (-610 $)))) (-15 -2245 ((-1122 |t#1| (-610 $)) $)) (-15 -3071 ($ $)) (-15 -3611 ((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $ (-114))) (-15 -3611 ((-3 (-2 (|:| |var| (-610 $)) (|:| -2700 (-564))) "failed") $ (-1173))) (-15 -4310 ((-3 (-2 (|:| |val| $) (|:| -2700 (-564))) "failed") $)) (-15 -3215 ($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ $)))) (-15 -3215 ($ $ (-642 (-1173)) (-642 (-769)) (-642 (-1 $ (-642 $))))) (-15 -3215 ($ $ (-1173) (-769) (-1 $ (-642 $)))) (-15 -3215 ($ $ (-1173) (-769) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-363)) (-6 (-1036 (-407 (-950 |t#1|)))) (-15 -1314 ($ (-418 $))) (-15 -2255 ((-1122 |t#1| (-610 $)) $)) (-15 -2618 ($ $)) (-15 -2998 ($ (-1122 |t#1| (-610 $)) (-1122 |t#1| (-610 $)))) (-15 -2327 ($ (-407 |t#1|))) (-15 -2327 ($ (-950 (-407 |t#1|)))) (-15 -2327 ($ (-407 (-950 (-407 |t#1|))))) (-15 -3615 ((-407 (-1169 $)) $ (-610 $))) (IF (|has| |t#1| (-1036 (-564))) (-6 (-1036 (-407 (-564)))) |%noBranch|)) |%noBranch|)))
+(((-21) -2706 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2706 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2706 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-564))) |has| |#1| (-556)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-556)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-556)) ((-131) -2706 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-556))) ((-614 #1=(-407 (-950 |#1|))) |has| |#1| (-556)) ((-614 (-564)) -2706 (|has| |#1| (-1047)) (|has| |#1| (-1036 (-564))) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-614 #2=(-610 $)) . T) ((-614 #3=(-950 |#1|)) |has| |#1| (-1047)) ((-614 #4=(-1173)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) |has| |#1| (-556)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-890 (-379))) |has| |#1| (-612 (-890 (-379)))) ((-612 (-890 (-564))) |has| |#1| (-612 (-890 (-564)))) ((-243) |has| |#1| (-556)) ((-290) |has| |#1| (-556)) ((-307) |has| |#1| (-556)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-556)) ((-377 |#1|) |has| |#1| (-1047)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-556)) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-556)) ((-644 (-564)) -2706 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) -2706 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-646 #0#) |has| |#1| (-556)) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) -2706 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-638 #0#) |has| |#1| (-556)) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1047))) ((-637 |#1|) |has| |#1| (-1047)) ((-715 #0#) |has| |#1| (-556)) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) -2706 (|has| |#1| (-1109)) (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-898 (-1173)) |has| |#1| (-1047)) ((-884 (-379)) |has| |#1| (-884 (-379))) ((-884 (-564)) |has| |#1| (-884 (-564))) ((-882 |#1|) . T) ((-918) |has| |#1| (-556)) ((-1036 (-407 (-564))) -2706 (|has| |#1| (-1036 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1036 (-564))))) ((-1036 #1#) |has| |#1| (-556)) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 #2#) . T) ((-1036 #3#) |has| |#1| (-1047)) ((-1036 #4#) . T) ((-1036 |#1|) . T) ((-1049 #0#) |has| |#1| (-556)) ((-1049 |#1|) |has| |#1| (-172)) ((-1049 $) |has| |#1| (-556)) ((-1054 #0#) |has| |#1| (-556)) ((-1054 |#1|) |has| |#1| (-172)) ((-1054 $) |has| |#1| (-556)) ((-1047) -2706 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1055) -2706 (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1109) -2706 (|has| |#1| (-1109)) (|has| |#1| (-1047)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1097) . T) ((-1212) . T) ((-1216) |has| |#1| (-556)))
+((-2056 ((|#2| |#2| |#2|) 31)) (-3307 (((-114) (-114)) 43)) (-1973 ((|#2| |#2|) 63)) (-3016 ((|#2| |#2|) 66)) (-1771 ((|#2| |#2|) 30)) (-3657 ((|#2| |#2| |#2|) 33)) (-2996 ((|#2| |#2| |#2|) 35)) (-3718 ((|#2| |#2| |#2|) 32)) (-1484 ((|#2| |#2| |#2|) 34)) (-2357 (((-112) (-114)) 41)) (-2283 ((|#2| |#2|) 37)) (-2372 ((|#2| |#2|) 36)) (-1381 ((|#2| |#2|) 25)) (-4035 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2003 ((|#2| |#2| |#2|) 29)))
+(((-431 |#1| |#2|) (-10 -7 (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 -1381 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -4035 (|#2| |#2| |#2|)) (-15 -2003 (|#2| |#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -2056 (|#2| |#2| |#2|)) (-15 -3718 (|#2| |#2| |#2|)) (-15 -3657 (|#2| |#2| |#2|)) (-15 -1484 (|#2| |#2| |#2|)) (-15 -2996 (|#2| |#2| |#2|)) (-15 -2372 (|#2| |#2|)) (-15 -2283 (|#2| |#2|)) (-15 -3016 (|#2| |#2|)) (-15 -1973 (|#2| |#2|))) (-556) (-430 |#1|)) (T -431))
+((-1973 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3016 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2283 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2372 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2996 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1484 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3657 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3718 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2056 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1771 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2003 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4035 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1381 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3307 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))))
+(-10 -7 (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 -1381 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -4035 (|#2| |#2| |#2|)) (-15 -2003 (|#2| |#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -2056 (|#2| |#2| |#2|)) (-15 -3718 (|#2| |#2| |#2|)) (-15 -3657 (|#2| |#2| |#2|)) (-15 -1484 (|#2| |#2| |#2|)) (-15 -2996 (|#2| |#2| |#2|)) (-15 -2372 (|#2| |#2|)) (-15 -2283 (|#2| |#2|)) (-15 -3016 (|#2| |#2|)) (-15 -1973 (|#2| |#2|)))
+((-1363 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1169 |#2|)) (|:| |pol2| (-1169 |#2|)) (|:| |prim| (-1169 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-642 (-1169 |#2|))) (|:| |prim| (-1169 |#2|))) (-642 |#2|)) 68)))
+(((-432 |#1| |#2|) (-10 -7 (-15 -1363 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-642 (-1169 |#2|))) (|:| |prim| (-1169 |#2|))) (-642 |#2|))) (IF (|has| |#2| (-27)) (-15 -1363 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1169 |#2|)) (|:| |pol2| (-1169 |#2|)) (|:| |prim| (-1169 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-556) (-147)) (-430 |#1|)) (T -432))
+((-1363 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1169 *3)) (|:| |pol2| (-1169 *3)) (|:| |prim| (-1169 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-642 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-642 (-1169 *5))) (|:| |prim| (-1169 *5)))) (-5 *1 (-432 *4 *5)))))
+(-10 -7 (-15 -1363 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-642 (-1169 |#2|))) (|:| |prim| (-1169 |#2|))) (-642 |#2|))) (IF (|has| |#2| (-27)) (-15 -1363 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1169 |#2|)) (|:| |pol2| (-1169 |#2|)) (|:| |prim| (-1169 |#2|))) |#2| |#2|)) |%noBranch|))
+((-2548 (((-1267)) 19)) (-3753 (((-1169 (-407 (-564))) |#2| (-610 |#2|)) 41) (((-407 (-564)) |#2|) 25)))
+(((-433 |#1| |#2|) (-10 -7 (-15 -3753 ((-407 (-564)) |#2|)) (-15 -3753 ((-1169 (-407 (-564))) |#2| (-610 |#2|))) (-15 -2548 ((-1267)))) (-13 (-556) (-1036 (-564))) (-430 |#1|)) (T -433))
+((-2548 (*1 *2) (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *2 (-1267)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-3753 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-433 *5 *3)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))))
+(-10 -7 (-15 -3753 ((-407 (-564)) |#2|)) (-15 -3753 ((-1169 (-407 (-564))) |#2| (-610 |#2|))) (-15 -2548 ((-1267))))
+((-1647 (((-112) $) 32)) (-3291 (((-112) $) 34)) (-3174 (((-112) $) 35)) (-1550 (((-112) $) 38)) (-2403 (((-112) $) 33)) (-2807 (((-112) $) 37)) (-2327 (((-860) $) 20) (($ (-1155)) 31) (($ (-1173)) 26) (((-1173) $) 24) (((-1101) $) 23)) (-4224 (((-112) $) 36)) (-2872 (((-112) $ $) 17)))
+(((-434) (-13 (-611 (-860)) (-10 -8 (-15 -2327 ($ (-1155))) (-15 -2327 ($ (-1173))) (-15 -2327 ((-1173) $)) (-15 -2327 ((-1101) $)) (-15 -1647 ((-112) $)) (-15 -2403 ((-112) $)) (-15 -3174 ((-112) $)) (-15 -2807 ((-112) $)) (-15 -1550 ((-112) $)) (-15 -4224 ((-112) $)) (-15 -3291 ((-112) $)) (-15 -2872 ((-112) $ $))))) (T -434))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-434)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-434)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-434)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-434)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3291 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2872 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(-13 (-611 (-860)) (-10 -8 (-15 -2327 ($ (-1155))) (-15 -2327 ($ (-1173))) (-15 -2327 ((-1173) $)) (-15 -2327 ((-1101) $)) (-15 -1647 ((-112) $)) (-15 -2403 ((-112) $)) (-15 -3174 ((-112) $)) (-15 -2807 ((-112) $)) (-15 -1550 ((-112) $)) (-15 -4224 ((-112) $)) (-15 -3291 ((-112) $)) (-15 -2872 ((-112) $ $))))
+((-1794 (((-3 (-418 (-1169 (-407 (-564)))) "failed") |#3|) 72)) (-1995 (((-418 |#3|) |#3|) 34)) (-1658 (((-3 (-418 (-1169 (-48))) "failed") |#3|) 46 (|has| |#2| (-1036 (-48))))) (-4086 (((-3 (|:| |overq| (-1169 (-407 (-564)))) (|:| |overan| (-1169 (-48))) (|:| -3209 (-112))) |#3|) 37)))
+(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1995 ((-418 |#3|) |#3|)) (-15 -1794 ((-3 (-418 (-1169 (-407 (-564)))) "failed") |#3|)) (-15 -4086 ((-3 (|:| |overq| (-1169 (-407 (-564)))) (|:| |overan| (-1169 (-48))) (|:| -3209 (-112))) |#3|)) (IF (|has| |#2| (-1036 (-48))) (-15 -1658 ((-3 (-418 (-1169 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-556) (-1036 (-564))) (-430 |#1|) (-1238 |#2|)) (T -435))
+((-1658 (*1 *2 *3) (|partial| -12 (-4 *5 (-1036 (-48))) (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1169 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5)))) (-4086 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1169 (-407 (-564)))) (|:| |overan| (-1169 (-48))) (|:| -3209 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5)))) (-1794 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1169 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5)))) (-1995 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5)))))
+(-10 -7 (-15 -1995 ((-418 |#3|) |#3|)) (-15 -1794 ((-3 (-418 (-1169 (-407 (-564)))) "failed") |#3|)) (-15 -4086 ((-3 (|:| |overq| (-1169 (-407 (-564)))) (|:| |overan| (-1169 (-48))) (|:| -3209 (-112))) |#3|)) (IF (|has| |#2| (-1036 (-48))) (-15 -1658 ((-3 (-418 (-1169 (-48))) "failed") |#3|)) |%noBranch|))
+((-2907 (((-112) $ $) NIL)) (-4143 (((-1155) $ (-1155)) NIL)) (-2371 (($ $ (-1155)) NIL)) (-3213 (((-1155) $) NIL)) (-3112 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-2241 (($ (-388)) NIL) (($ (-388) (-1155)) NIL)) (-2461 (((-388) $) NIL)) (-3315 (((-1155) $) NIL)) (-2446 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-4389 (((-1267) (-1155)) 9)) (-3568 (((-1267) (-1155)) 10)) (-2980 (((-1267)) 11)) (-2327 (((-860) $) NIL)) (-2528 (($ $) 39)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-436) (-13 (-364 (-388) (-1155)) (-10 -7 (-15 -3112 ((-388) (-388) (-388))) (-15 -3112 ((-388) (-388))) (-15 -4389 ((-1267) (-1155))) (-15 -3568 ((-1267) (-1155))) (-15 -2980 ((-1267)))))) (T -436))
+((-3112 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-3112 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-4389 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-436)))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-436)))) (-2980 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-436)))))
+(-13 (-364 (-388) (-1155)) (-10 -7 (-15 -3112 ((-388) (-388) (-388))) (-15 -3112 ((-388) (-388))) (-15 -4389 ((-1267) (-1155))) (-15 -3568 ((-1267) (-1155))) (-15 -2980 ((-1267)))))
+((-2907 (((-112) $ $) NIL)) (-1789 (((-3 (|:| |fst| (-434)) (|:| -1852 "void")) $) 11)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3822 (($) 35)) (-2192 (($) 41)) (-2005 (($) 37)) (-1457 (($) 39)) (-3396 (($) 36)) (-4092 (($) 38)) (-3314 (($) 40)) (-3259 (((-112) $) 8)) (-3138 (((-642 (-950 (-564))) $) 19)) (-2337 (($ (-3 (|:| |fst| (-434)) (|:| -1852 "void")) (-642 (-1173)) (-112)) 29) (($ (-3 (|:| |fst| (-434)) (|:| -1852 "void")) (-642 (-950 (-564))) (-112)) 30)) (-2327 (((-860) $) 24) (($ (-434)) 32)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-437) (-13 (-1097) (-10 -8 (-15 -2327 ($ (-434))) (-15 -1789 ((-3 (|:| |fst| (-434)) (|:| -1852 "void")) $)) (-15 -3138 ((-642 (-950 (-564))) $)) (-15 -3259 ((-112) $)) (-15 -2337 ($ (-3 (|:| |fst| (-434)) (|:| -1852 "void")) (-642 (-1173)) (-112))) (-15 -2337 ($ (-3 (|:| |fst| (-434)) (|:| -1852 "void")) (-642 (-950 (-564))) (-112))) (-15 -3822 ($)) (-15 -3396 ($)) (-15 -2005 ($)) (-15 -2192 ($)) (-15 -4092 ($)) (-15 -1457 ($)) (-15 -3314 ($))))) (T -437))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-5 *1 (-437)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-642 (-950 (-564)))) (-5 *1 (-437)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2337 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-5 *3 (-642 (-1173))) (-5 *4 (-112)) (-5 *1 (-437)))) (-2337 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-3822 (*1 *1) (-5 *1 (-437))) (-3396 (*1 *1) (-5 *1 (-437))) (-2005 (*1 *1) (-5 *1 (-437))) (-2192 (*1 *1) (-5 *1 (-437))) (-4092 (*1 *1) (-5 *1 (-437))) (-1457 (*1 *1) (-5 *1 (-437))) (-3314 (*1 *1) (-5 *1 (-437))))
+(-13 (-1097) (-10 -8 (-15 -2327 ($ (-434))) (-15 -1789 ((-3 (|:| |fst| (-434)) (|:| -1852 "void")) $)) (-15 -3138 ((-642 (-950 (-564))) $)) (-15 -3259 ((-112) $)) (-15 -2337 ($ (-3 (|:| |fst| (-434)) (|:| -1852 "void")) (-642 (-1173)) (-112))) (-15 -2337 ($ (-3 (|:| |fst| (-434)) (|:| -1852 "void")) (-642 (-950 (-564))) (-112))) (-15 -3822 ($)) (-15 -3396 ($)) (-15 -2005 ($)) (-15 -2192 ($)) (-15 -4092 ($)) (-15 -1457 ($)) (-15 -3314 ($))))
+((-2907 (((-112) $ $) NIL)) (-2461 (((-1173) $) 8)) (-3315 (((-1155) $) 17)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 11)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 14)))
+(((-438 |#1|) (-13 (-1097) (-10 -8 (-15 -2461 ((-1173) $)))) (-1173)) (T -438))
+((-2461 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-438 *3)) (-14 *3 *2))))
+(-13 (-1097) (-10 -8 (-15 -2461 ((-1173) $))))
+((-2907 (((-112) $ $) NIL)) (-1812 (((-1115) $) 7)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 13)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 9)))
+(((-439) (-13 (-1097) (-10 -8 (-15 -1812 ((-1115) $))))) (T -439))
+((-1812 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-439)))))
+(-13 (-1097) (-10 -8 (-15 -1812 ((-1115) $))))
+((-3019 (((-1267) $) 7)) (-2327 (((-860) $) 8) (($ (-1262 (-697))) 14) (($ (-642 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 11)))
(((-440) (-140)) (T -440))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) (-4 *1 (-440)))))
-(-13 (-395) (-10 -8 (-15 -2423 ($ (-1259 (-695)))) (-15 -2423 ($ (-641 (-330)))) (-15 -2423 ($ (-330))) (-15 -2423 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))))))
-(((-611 (-858)) . T) ((-395) . T) ((-1209) . T))
-((-4284 (((-3 $ "failed") (-1259 (-316 (-379)))) 21) (((-3 $ "failed") (-1259 (-316 (-564)))) 19) (((-3 $ "failed") (-1259 (-948 (-379)))) 17) (((-3 $ "failed") (-1259 (-948 (-564)))) 15) (((-3 $ "failed") (-1259 (-407 (-948 (-379))))) 13) (((-3 $ "failed") (-1259 (-407 (-948 (-564))))) 11)) (-3120 (($ (-1259 (-316 (-379)))) 22) (($ (-1259 (-316 (-564)))) 20) (($ (-1259 (-948 (-379)))) 18) (($ (-1259 (-948 (-564)))) 16) (($ (-1259 (-407 (-948 (-379))))) 14) (($ (-1259 (-407 (-948 (-564))))) 12)) (-3111 (((-1264) $) 7)) (-2423 (((-858) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) 23)))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-697))) (-4 *1 (-440)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-440)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) (-4 *1 (-440)))))
+(-13 (-395) (-10 -8 (-15 -2327 ($ (-1262 (-697)))) (-15 -2327 ($ (-642 (-330)))) (-15 -2327 ($ (-330))) (-15 -2327 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))))))
+(((-611 (-860)) . T) ((-395) . T) ((-1212) . T))
+((-4278 (((-3 $ "failed") (-1262 (-316 (-379)))) 21) (((-3 $ "failed") (-1262 (-316 (-564)))) 19) (((-3 $ "failed") (-1262 (-950 (-379)))) 17) (((-3 $ "failed") (-1262 (-950 (-564)))) 15) (((-3 $ "failed") (-1262 (-407 (-950 (-379))))) 13) (((-3 $ "failed") (-1262 (-407 (-950 (-564))))) 11)) (-3027 (($ (-1262 (-316 (-379)))) 22) (($ (-1262 (-316 (-564)))) 20) (($ (-1262 (-950 (-379)))) 18) (($ (-1262 (-950 (-564)))) 16) (($ (-1262 (-407 (-950 (-379))))) 14) (($ (-1262 (-407 (-950 (-564))))) 12)) (-3019 (((-1267) $) 7)) (-2327 (((-860) $) 8) (($ (-642 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) 23)))
(((-441) (-140)) (T -441))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330))))) (-4 *1 (-441)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-1259 (-948 (-379)))) (-4 *1 (-441)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-948 (-379)))) (-4 *1 (-441)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-1259 (-948 (-564)))) (-4 *1 (-441)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-948 (-564)))) (-4 *1 (-441)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-948 (-379))))) (-4 *1 (-441)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-948 (-379))))) (-4 *1 (-441)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-948 (-564))))) (-4 *1 (-441)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-948 (-564))))) (-4 *1 (-441)))))
-(-13 (-395) (-10 -8 (-15 -2423 ($ (-641 (-330)))) (-15 -2423 ($ (-330))) (-15 -2423 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))) (-15 -3120 ($ (-1259 (-316 (-379))))) (-15 -4284 ((-3 $ "failed") (-1259 (-316 (-379))))) (-15 -3120 ($ (-1259 (-316 (-564))))) (-15 -4284 ((-3 $ "failed") (-1259 (-316 (-564))))) (-15 -3120 ($ (-1259 (-948 (-379))))) (-15 -4284 ((-3 $ "failed") (-1259 (-948 (-379))))) (-15 -3120 ($ (-1259 (-948 (-564))))) (-15 -4284 ((-3 $ "failed") (-1259 (-948 (-564))))) (-15 -3120 ($ (-1259 (-407 (-948 (-379)))))) (-15 -4284 ((-3 $ "failed") (-1259 (-407 (-948 (-379)))))) (-15 -3120 ($ (-1259 (-407 (-948 (-564)))))) (-15 -4284 ((-3 $ "failed") (-1259 (-407 (-948 (-564))))))))
-(((-611 (-858)) . T) ((-395) . T) ((-1209) . T))
-((-3217 (((-112)) 18)) (-2444 (((-112) (-112)) 19)) (-4214 (((-112)) 14)) (-3875 (((-112) (-112)) 15)) (-3255 (((-112)) 16)) (-1999 (((-112) (-112)) 17)) (-1382 (((-917) (-917)) 22) (((-917)) 21)) (-1964 (((-767) (-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564))))) 52)) (-3649 (((-917) (-917)) 24) (((-917)) 23)) (-4141 (((-2 (|:| -3221 (-564)) (|:| -1572 (-641 |#1|))) |#1|) 95)) (-2774 (((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564))))))) 175)) (-2501 (((-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))) |#1| (-112)) 208)) (-3600 (((-418 |#1|) |#1| (-767) (-767)) 223) (((-418 |#1|) |#1| (-641 (-767)) (-767)) 220) (((-418 |#1|) |#1| (-641 (-767))) 222) (((-418 |#1|) |#1| (-767)) 221) (((-418 |#1|) |#1|) 219)) (-4344 (((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767) (-112)) 225) (((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767)) 226) (((-3 |#1| "failed") (-917) |#1| (-641 (-767))) 228) (((-3 |#1| "failed") (-917) |#1| (-767)) 227) (((-3 |#1| "failed") (-917) |#1|) 229)) (-3688 (((-418 |#1|) |#1| (-767) (-767)) 218) (((-418 |#1|) |#1| (-641 (-767)) (-767)) 214) (((-418 |#1|) |#1| (-641 (-767))) 216) (((-418 |#1|) |#1| (-767)) 215) (((-418 |#1|) |#1|) 213)) (-3336 (((-112) |#1|) 44)) (-2436 (((-733 (-767)) (-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564))))) 100)) (-2609 (((-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))) |#1| (-112) (-1096 (-767)) (-767)) 212)))
-(((-442 |#1|) (-10 -7 (-15 -2774 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))))) (-15 -2436 ((-733 (-767)) (-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564)))))) (-15 -3649 ((-917))) (-15 -3649 ((-917) (-917))) (-15 -1382 ((-917))) (-15 -1382 ((-917) (-917))) (-15 -1964 ((-767) (-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564)))))) (-15 -4141 ((-2 (|:| -3221 (-564)) (|:| -1572 (-641 |#1|))) |#1|)) (-15 -3217 ((-112))) (-15 -2444 ((-112) (-112))) (-15 -4214 ((-112))) (-15 -3875 ((-112) (-112))) (-15 -3336 ((-112) |#1|)) (-15 -3255 ((-112))) (-15 -1999 ((-112) (-112))) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -3688 ((-418 |#1|) |#1| (-767))) (-15 -3688 ((-418 |#1|) |#1| (-641 (-767)))) (-15 -3688 ((-418 |#1|) |#1| (-641 (-767)) (-767))) (-15 -3688 ((-418 |#1|) |#1| (-767) (-767))) (-15 -3600 ((-418 |#1|) |#1|)) (-15 -3600 ((-418 |#1|) |#1| (-767))) (-15 -3600 ((-418 |#1|) |#1| (-641 (-767)))) (-15 -3600 ((-418 |#1|) |#1| (-641 (-767)) (-767))) (-15 -3600 ((-418 |#1|) |#1| (-767) (-767))) (-15 -4344 ((-3 |#1| "failed") (-917) |#1|)) (-15 -4344 ((-3 |#1| "failed") (-917) |#1| (-767))) (-15 -4344 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)))) (-15 -4344 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767))) (-15 -4344 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767) (-112))) (-15 -2501 ((-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))) |#1| (-112))) (-15 -2609 ((-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))) |#1| (-112) (-1096 (-767)) (-767)))) (-1235 (-564))) (T -442))
-((-2609 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-767))) (-5 *6 (-767)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| *3) (|:| -2173 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| *3) (|:| -2173 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4344 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-4344 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-4344 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-4344 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-4344 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-917)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-3600 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3600 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3600 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3688 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3688 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1999 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3255 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3336 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4214 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3217 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4141 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3221 (-564)) (|:| -1572 (-641 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3688 *4) (|:| -1568 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-767)) (-5 *1 (-442 *4)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1382 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3649 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3688 *4) (|:| -1568 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-733 (-767))) (-5 *1 (-442 *4)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| *4) (|:| -2173 (-564))))))) (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4)))))
-(-10 -7 (-15 -2774 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))))) (-15 -2436 ((-733 (-767)) (-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564)))))) (-15 -3649 ((-917))) (-15 -3649 ((-917) (-917))) (-15 -1382 ((-917))) (-15 -1382 ((-917) (-917))) (-15 -1964 ((-767) (-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564)))))) (-15 -4141 ((-2 (|:| -3221 (-564)) (|:| -1572 (-641 |#1|))) |#1|)) (-15 -3217 ((-112))) (-15 -2444 ((-112) (-112))) (-15 -4214 ((-112))) (-15 -3875 ((-112) (-112))) (-15 -3336 ((-112) |#1|)) (-15 -3255 ((-112))) (-15 -1999 ((-112) (-112))) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -3688 ((-418 |#1|) |#1| (-767))) (-15 -3688 ((-418 |#1|) |#1| (-641 (-767)))) (-15 -3688 ((-418 |#1|) |#1| (-641 (-767)) (-767))) (-15 -3688 ((-418 |#1|) |#1| (-767) (-767))) (-15 -3600 ((-418 |#1|) |#1|)) (-15 -3600 ((-418 |#1|) |#1| (-767))) (-15 -3600 ((-418 |#1|) |#1| (-641 (-767)))) (-15 -3600 ((-418 |#1|) |#1| (-641 (-767)) (-767))) (-15 -3600 ((-418 |#1|) |#1| (-767) (-767))) (-15 -4344 ((-3 |#1| "failed") (-917) |#1|)) (-15 -4344 ((-3 |#1| "failed") (-917) |#1| (-767))) (-15 -4344 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)))) (-15 -4344 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767))) (-15 -4344 ((-3 |#1| "failed") (-917) |#1| (-641 (-767)) (-767) (-112))) (-15 -2501 ((-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))) |#1| (-112))) (-15 -2609 ((-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))) |#1| (-112) (-1096 (-767)) (-767))))
-((-1985 (((-564) |#2|) 52) (((-564) |#2| (-767)) 51)) (-1522 (((-564) |#2|) 67)) (-3079 ((|#3| |#2|) 26)) (-2499 ((|#3| |#2| (-917)) 15)) (-2581 ((|#3| |#2|) 16)) (-2413 ((|#3| |#2|) 9)) (-1292 ((|#3| |#2|) 10)) (-1587 ((|#3| |#2| (-917)) 74) ((|#3| |#2|) 34)) (-1462 (((-564) |#2|) 69)))
-(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -1462 ((-564) |#2|)) (-15 -1587 (|#3| |#2|)) (-15 -1587 (|#3| |#2| (-917))) (-15 -1522 ((-564) |#2|)) (-15 -1985 ((-564) |#2| (-767))) (-15 -1985 ((-564) |#2|)) (-15 -2499 (|#3| |#2| (-917))) (-15 -3079 (|#3| |#2|)) (-15 -2413 (|#3| |#2|)) (-15 -1292 (|#3| |#2|)) (-15 -2581 (|#3| |#2|))) (-1045) (-1235 |#1|) (-13 (-404) (-1034 |#1|) (-363) (-1194) (-284))) (T -443))
-((-2581 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-1292 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2413 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-3079 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2499 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-1985 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))))) (-1985 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5)) (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1194) (-284))))) (-1522 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-1587 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-1462 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))))))
-(-10 -7 (-15 -1462 ((-564) |#2|)) (-15 -1587 (|#3| |#2|)) (-15 -1587 (|#3| |#2| (-917))) (-15 -1522 ((-564) |#2|)) (-15 -1985 ((-564) |#2| (-767))) (-15 -1985 ((-564) |#2|)) (-15 -2499 (|#3| |#2| (-917))) (-15 -3079 (|#3| |#2|)) (-15 -2413 (|#3| |#2|)) (-15 -1292 (|#3| |#2|)) (-15 -2581 (|#3| |#2|)))
-((-2317 ((|#2| (-1259 |#1|)) 45)) (-1375 ((|#2| |#2| |#1|) 61)) (-2195 ((|#2| |#2| |#1|) 53)) (-3200 ((|#2| |#2|) 49)) (-2856 (((-112) |#2|) 36)) (-2228 (((-641 |#2|) (-917) (-418 |#2|)) 24)) (-4344 ((|#2| (-917) (-418 |#2|)) 28)) (-2436 (((-733 (-767)) (-418 |#2|)) 33)))
-(((-444 |#1| |#2|) (-10 -7 (-15 -2856 ((-112) |#2|)) (-15 -2317 (|#2| (-1259 |#1|))) (-15 -3200 (|#2| |#2|)) (-15 -2195 (|#2| |#2| |#1|)) (-15 -1375 (|#2| |#2| |#1|)) (-15 -2436 ((-733 (-767)) (-418 |#2|))) (-15 -4344 (|#2| (-917) (-418 |#2|))) (-15 -2228 ((-641 |#2|) (-917) (-418 |#2|)))) (-1045) (-1235 |#1|)) (T -444))
-((-2228 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-1045)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6)))) (-4344 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1045)))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1045)) (-5 *2 (-733 (-767))) (-5 *1 (-444 *4 *5)))) (-1375 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-2195 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-3200 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-2317 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1045)) (-4 *2 (-1235 *4)) (-5 *1 (-444 *4 *2)))) (-2856 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -2856 ((-112) |#2|)) (-15 -2317 (|#2| (-1259 |#1|))) (-15 -3200 (|#2| |#2|)) (-15 -2195 (|#2| |#2| |#1|)) (-15 -1375 (|#2| |#2| |#1|)) (-15 -2436 ((-733 (-767)) (-418 |#2|))) (-15 -4344 (|#2| (-917) (-418 |#2|))) (-15 -2228 ((-641 |#2|) (-917) (-418 |#2|))))
-((-1539 (((-767)) 57)) (-4182 (((-767)) 29 (|has| |#1| (-404))) (((-767) (-767)) 28 (|has| |#1| (-404)))) (-4233 (((-564) |#1|) 25 (|has| |#1| (-404)))) (-1590 (((-564) |#1|) 27 (|has| |#1| (-404)))) (-1518 (((-767)) 56) (((-767) (-767)) 55)) (-4162 ((|#1| (-767) (-564)) 36)) (-2485 (((-1264)) 59)))
-(((-445 |#1|) (-10 -7 (-15 -4162 (|#1| (-767) (-564))) (-15 -1518 ((-767) (-767))) (-15 -1518 ((-767))) (-15 -1539 ((-767))) (-15 -2485 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -1590 ((-564) |#1|)) (-15 -4233 ((-564) |#1|)) (-15 -4182 ((-767) (-767))) (-15 -4182 ((-767)))) |%noBranch|)) (-1045)) (T -445))
-((-4182 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-4233 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-1590 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2485 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-1539 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-1518 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-1518 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-4162 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1045)))))
-(-10 -7 (-15 -4162 (|#1| (-767) (-564))) (-15 -1518 ((-767) (-767))) (-15 -1518 ((-767))) (-15 -1539 ((-767))) (-15 -2485 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -1590 ((-564) |#1|)) (-15 -4233 ((-564) |#1|)) (-15 -4182 ((-767) (-767))) (-15 -4182 ((-767)))) |%noBranch|))
-((-3983 (((-641 (-564)) (-564)) 76)) (-1339 (((-112) (-169 (-564))) 82)) (-3688 (((-418 (-169 (-564))) (-169 (-564))) 75)))
-(((-446) (-10 -7 (-15 -3688 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -3983 ((-641 (-564)) (-564))) (-15 -1339 ((-112) (-169 (-564)))))) (T -446))
-((-1339 (*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) (-3983 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) (-5 *3 (-169 (-564))))))
-(-10 -7 (-15 -3688 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -3983 ((-641 (-564)) (-564))) (-15 -1339 ((-112) (-169 (-564)))))
-((-1402 ((|#4| |#4| (-641 |#4|)) 81)) (-1794 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 22) (((-641 |#4|) (-641 |#4|) (-1152)) 21) (((-641 |#4|) (-641 |#4|)) 13)))
-(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1402 (|#4| |#4| (-641 |#4|))) (-15 -1794 ((-641 |#4|) (-641 |#4|))) (-15 -1794 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -1794 ((-641 |#4|) (-641 |#4|) (-1152) (-1152)))) (-307) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -447))
-((-1794 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-1794 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1402 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1402 (|#4| |#4| (-641 |#4|))) (-15 -1794 ((-641 |#4|) (-641 |#4|))) (-15 -1794 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -1794 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))))
-((-2612 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 90) (((-641 (-641 |#4|)) (-641 |#4|)) 89) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112)) 83) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|)) 84)) (-3601 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 55) (((-641 (-641 |#4|)) (-641 |#4|)) 76)))
-(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3601 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -3601 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -2612 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -2612 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -2612 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2612 ((-641 (-641 |#4|)) (-641 |#4|) (-112)))) (-13 (-307) (-147)) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -448))
-((-2612 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2612 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2612 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2612 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-3601 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(-10 -7 (-15 -3601 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -3601 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -2612 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -2612 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -2612 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2612 ((-641 (-641 |#4|)) (-641 |#4|) (-112))))
-((-2918 (((-767) |#4|) 12)) (-1534 (((-641 (-2 (|:| |totdeg| (-767)) (|:| -1744 |#4|))) |#4| (-767) (-641 (-2 (|:| |totdeg| (-767)) (|:| -1744 |#4|)))) 38)) (-2574 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-4279 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 53)) (-3327 ((|#4| |#4| (-641 |#4|)) 55)) (-3544 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|)) 97)) (-2875 (((-1264) |#4|) 60)) (-1363 (((-1264) (-641 |#4|)) 70)) (-2706 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564)) 67)) (-1690 (((-1264) (-564)) 112)) (-1871 (((-641 |#4|) (-641 |#4|)) 104)) (-1961 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -1744 |#4|)) |#4| (-767)) 31)) (-1931 (((-564) |#4|) 109)) (-1600 ((|#4| |#4|) 36)) (-3506 (((-641 |#4|) (-641 |#4|) (-564) (-564)) 75)) (-2765 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564)) 125)) (-2321 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3939 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 79)) (-3192 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 77)) (-3016 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2921 (((-112) |#2| |#2|) 76)) (-2965 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-1893 (((-112) |#2| |#2| |#2| |#2|) 81)) (-3609 ((|#4| |#4| (-641 |#4|)) 98)))
-(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 (|#4| |#4| (-641 |#4|))) (-15 -3327 (|#4| |#4| (-641 |#4|))) (-15 -3506 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -3939 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2921 ((-112) |#2| |#2|)) (-15 -1893 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2965 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3016 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3192 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3544 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -1600 (|#4| |#4|)) (-15 -1534 ((-641 (-2 (|:| |totdeg| (-767)) (|:| -1744 |#4|))) |#4| (-767) (-641 (-2 (|:| |totdeg| (-767)) (|:| -1744 |#4|))))) (-15 -4279 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2574 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1871 ((-641 |#4|) (-641 |#4|))) (-15 -1931 ((-564) |#4|)) (-15 -2875 ((-1264) |#4|)) (-15 -2706 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -2765 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -1363 ((-1264) (-641 |#4|))) (-15 -1690 ((-1264) (-564))) (-15 -2321 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1961 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -1744 |#4|)) |#4| (-767))) (-15 -2918 ((-767) |#4|))) (-452) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -449))
-((-2918 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-1961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -1744 *4))) (-5 *5 (-767)) (-4 *4 (-945 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-2321 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2765 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2706 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2875 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-1931 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-564)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-1871 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2574 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-4279 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-789)) (-4 *2 (-945 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-846)))) (-1534 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-767)) (|:| -1744 *3)))) (-5 *4 (-767)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *3)))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-3544 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-3192 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-789)) (-4 *6 (-945 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *4 *3 *5 *6)))) (-3016 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2965 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-789)) (-4 *3 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *3)))) (-1893 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))) (-2921 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3506 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3327 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))) (-3609 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3609 (|#4| |#4| (-641 |#4|))) (-15 -3327 (|#4| |#4| (-641 |#4|))) (-15 -3506 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -3939 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2921 ((-112) |#2| |#2|)) (-15 -1893 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2965 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3016 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3192 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3544 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -1600 (|#4| |#4|)) (-15 -1534 ((-641 (-2 (|:| |totdeg| (-767)) (|:| -1744 |#4|))) |#4| (-767) (-641 (-2 (|:| |totdeg| (-767)) (|:| -1744 |#4|))))) (-15 -4279 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2574 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1871 ((-641 |#4|) (-641 |#4|))) (-15 -1931 ((-564) |#4|)) (-15 -2875 ((-1264) |#4|)) (-15 -2706 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -2765 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -1363 ((-1264) (-641 |#4|))) (-15 -1690 ((-1264) (-564))) (-15 -2321 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1961 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -1744 |#4|)) |#4| (-767))) (-15 -2918 ((-767) |#4|)))
-((-4104 ((|#4| |#4| (-641 |#4|)) 20 (|has| |#1| (-363)))) (-1520 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 46) (((-641 |#4|) (-641 |#4|) (-1152)) 45) (((-641 |#4|) (-641 |#4|)) 34)))
-(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1520 ((-641 |#4|) (-641 |#4|))) (-15 -1520 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -1520 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -4104 (|#4| |#4| (-641 |#4|))) |%noBranch|)) (-452) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -450))
-((-4104 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *2)))) (-1520 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-1520 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1520 ((-641 |#4|) (-641 |#4|))) (-15 -1520 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -1520 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -4104 (|#4| |#4| (-641 |#4|))) |%noBranch|))
-((-2084 (($ $ $) 14) (($ (-641 $)) 21)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 48)) (-2123 (($ $ $) NIL) (($ (-641 $)) 22)))
-(((-451 |#1|) (-10 -8 (-15 -2805 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2084 (|#1| (-641 |#1|))) (-15 -2084 (|#1| |#1| |#1|)) (-15 -2123 (|#1| (-641 |#1|))) (-15 -2123 (|#1| |#1| |#1|))) (-452)) (T -451))
-NIL
-(-10 -8 (-15 -2805 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2084 (|#1| (-641 |#1|))) (-15 -2084 (|#1| |#1| |#1|)) (-15 -2123 (|#1| (-641 |#1|))) (-15 -2123 (|#1| |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-2998 (((-3 $ "failed") $ $) 44)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-441)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330))))) (-4 *1 (-441)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-1262 (-316 (-379)))) (-4 *1 (-441)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-316 (-379)))) (-4 *1 (-441)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-1262 (-316 (-564)))) (-4 *1 (-441)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-316 (-564)))) (-4 *1 (-441)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-1262 (-950 (-379)))) (-4 *1 (-441)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-950 (-379)))) (-4 *1 (-441)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-1262 (-950 (-564)))) (-4 *1 (-441)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-950 (-564)))) (-4 *1 (-441)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-1262 (-407 (-950 (-379))))) (-4 *1 (-441)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-407 (-950 (-379))))) (-4 *1 (-441)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-1262 (-407 (-950 (-564))))) (-4 *1 (-441)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-1262 (-407 (-950 (-564))))) (-4 *1 (-441)))))
+(-13 (-395) (-10 -8 (-15 -2327 ($ (-642 (-330)))) (-15 -2327 ($ (-330))) (-15 -2327 ($ (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))) (-15 -3027 ($ (-1262 (-316 (-379))))) (-15 -4278 ((-3 $ "failed") (-1262 (-316 (-379))))) (-15 -3027 ($ (-1262 (-316 (-564))))) (-15 -4278 ((-3 $ "failed") (-1262 (-316 (-564))))) (-15 -3027 ($ (-1262 (-950 (-379))))) (-15 -4278 ((-3 $ "failed") (-1262 (-950 (-379))))) (-15 -3027 ($ (-1262 (-950 (-564))))) (-15 -4278 ((-3 $ "failed") (-1262 (-950 (-564))))) (-15 -3027 ($ (-1262 (-407 (-950 (-379)))))) (-15 -4278 ((-3 $ "failed") (-1262 (-407 (-950 (-379)))))) (-15 -3027 ($ (-1262 (-407 (-950 (-564)))))) (-15 -4278 ((-3 $ "failed") (-1262 (-407 (-950 (-564))))))))
+(((-611 (-860)) . T) ((-395) . T) ((-1212) . T))
+((-1533 (((-112)) 18)) (-1401 (((-112) (-112)) 19)) (-3457 (((-112)) 14)) (-3470 (((-112) (-112)) 15)) (-2762 (((-112)) 16)) (-1359 (((-112) (-112)) 17)) (-3509 (((-919) (-919)) 22) (((-919)) 21)) (-3991 (((-769) (-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564))))) 52)) (-3378 (((-919) (-919)) 24) (((-919)) 23)) (-4282 (((-2 (|:| -4136 (-564)) (|:| -2649 (-642 |#1|))) |#1|) 95)) (-1859 (((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564))))))) 175)) (-2516 (((-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))) |#1| (-112)) 208)) (-2542 (((-418 |#1|) |#1| (-769) (-769)) 223) (((-418 |#1|) |#1| (-642 (-769)) (-769)) 220) (((-418 |#1|) |#1| (-642 (-769))) 222) (((-418 |#1|) |#1| (-769)) 221) (((-418 |#1|) |#1|) 219)) (-1853 (((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769) (-112)) 225) (((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769)) 226) (((-3 |#1| "failed") (-919) |#1| (-642 (-769))) 228) (((-3 |#1| "failed") (-919) |#1| (-769)) 227) (((-3 |#1| "failed") (-919) |#1|) 229)) (-3643 (((-418 |#1|) |#1| (-769) (-769)) 218) (((-418 |#1|) |#1| (-642 (-769)) (-769)) 214) (((-418 |#1|) |#1| (-642 (-769))) 216) (((-418 |#1|) |#1| (-769)) 215) (((-418 |#1|) |#1|) 213)) (-4179 (((-112) |#1|) 44)) (-3823 (((-735 (-769)) (-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564))))) 100)) (-1805 (((-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))) |#1| (-112) (-1099 (-769)) (-769)) 212)))
+(((-442 |#1|) (-10 -7 (-15 -1859 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))))) (-15 -3823 ((-735 (-769)) (-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564)))))) (-15 -3378 ((-919))) (-15 -3378 ((-919) (-919))) (-15 -3509 ((-919))) (-15 -3509 ((-919) (-919))) (-15 -3991 ((-769) (-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564)))))) (-15 -4282 ((-2 (|:| -4136 (-564)) (|:| -2649 (-642 |#1|))) |#1|)) (-15 -1533 ((-112))) (-15 -1401 ((-112) (-112))) (-15 -3457 ((-112))) (-15 -3470 ((-112) (-112))) (-15 -4179 ((-112) |#1|)) (-15 -2762 ((-112))) (-15 -1359 ((-112) (-112))) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -3643 ((-418 |#1|) |#1| (-769))) (-15 -3643 ((-418 |#1|) |#1| (-642 (-769)))) (-15 -3643 ((-418 |#1|) |#1| (-642 (-769)) (-769))) (-15 -3643 ((-418 |#1|) |#1| (-769) (-769))) (-15 -2542 ((-418 |#1|) |#1|)) (-15 -2542 ((-418 |#1|) |#1| (-769))) (-15 -2542 ((-418 |#1|) |#1| (-642 (-769)))) (-15 -2542 ((-418 |#1|) |#1| (-642 (-769)) (-769))) (-15 -2542 ((-418 |#1|) |#1| (-769) (-769))) (-15 -1853 ((-3 |#1| "failed") (-919) |#1|)) (-15 -1853 ((-3 |#1| "failed") (-919) |#1| (-769))) (-15 -1853 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)))) (-15 -1853 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769))) (-15 -1853 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769) (-112))) (-15 -2516 ((-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))) |#1| (-112))) (-15 -1805 ((-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))) |#1| (-112) (-1099 (-769)) (-769)))) (-1238 (-564))) (T -442))
+((-1805 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1099 (-769))) (-5 *6 (-769)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| *3) (|:| -3672 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2516 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| *3) (|:| -3672 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-1853 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) (-1853 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) (-1853 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) (-1853 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-919)) (-5 *4 (-769)) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) (-1853 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-919)) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564))))) (-2542 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2542 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-769))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3643 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3643 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-769))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3643 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-2762 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-4179 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3457 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-1533 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-4282 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4136 (-564)) (|:| -2649 (-642 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -3643 *4) (|:| -2775 (-564))))) (-4 *4 (-1238 (-564))) (-5 *2 (-769)) (-5 *1 (-442 *4)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3509 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3378 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -3643 *4) (|:| -2775 (-564))))) (-4 *4 (-1238 (-564))) (-5 *2 (-735 (-769))) (-5 *1 (-442 *4)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| *4) (|:| -3672 (-564))))))) (-4 *4 (-1238 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4)))))
+(-10 -7 (-15 -1859 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))))) (-15 -3823 ((-735 (-769)) (-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564)))))) (-15 -3378 ((-919))) (-15 -3378 ((-919) (-919))) (-15 -3509 ((-919))) (-15 -3509 ((-919) (-919))) (-15 -3991 ((-769) (-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564)))))) (-15 -4282 ((-2 (|:| -4136 (-564)) (|:| -2649 (-642 |#1|))) |#1|)) (-15 -1533 ((-112))) (-15 -1401 ((-112) (-112))) (-15 -3457 ((-112))) (-15 -3470 ((-112) (-112))) (-15 -4179 ((-112) |#1|)) (-15 -2762 ((-112))) (-15 -1359 ((-112) (-112))) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -3643 ((-418 |#1|) |#1| (-769))) (-15 -3643 ((-418 |#1|) |#1| (-642 (-769)))) (-15 -3643 ((-418 |#1|) |#1| (-642 (-769)) (-769))) (-15 -3643 ((-418 |#1|) |#1| (-769) (-769))) (-15 -2542 ((-418 |#1|) |#1|)) (-15 -2542 ((-418 |#1|) |#1| (-769))) (-15 -2542 ((-418 |#1|) |#1| (-642 (-769)))) (-15 -2542 ((-418 |#1|) |#1| (-642 (-769)) (-769))) (-15 -2542 ((-418 |#1|) |#1| (-769) (-769))) (-15 -1853 ((-3 |#1| "failed") (-919) |#1|)) (-15 -1853 ((-3 |#1| "failed") (-919) |#1| (-769))) (-15 -1853 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)))) (-15 -1853 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769))) (-15 -1853 ((-3 |#1| "failed") (-919) |#1| (-642 (-769)) (-769) (-112))) (-15 -2516 ((-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))) |#1| (-112))) (-15 -1805 ((-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))) |#1| (-112) (-1099 (-769)) (-769))))
+((-2738 (((-564) |#2|) 52) (((-564) |#2| (-769)) 51)) (-2264 (((-564) |#2|) 67)) (-3110 ((|#3| |#2|) 26)) (-2218 ((|#3| |#2| (-919)) 15)) (-2480 ((|#3| |#2|) 16)) (-3039 ((|#3| |#2|) 9)) (-1295 ((|#3| |#2|) 10)) (-3589 ((|#3| |#2| (-919)) 74) ((|#3| |#2|) 34)) (-3781 (((-564) |#2|) 69)))
+(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -3781 ((-564) |#2|)) (-15 -3589 (|#3| |#2|)) (-15 -3589 (|#3| |#2| (-919))) (-15 -2264 ((-564) |#2|)) (-15 -2738 ((-564) |#2| (-769))) (-15 -2738 ((-564) |#2|)) (-15 -2218 (|#3| |#2| (-919))) (-15 -3110 (|#3| |#2|)) (-15 -3039 (|#3| |#2|)) (-15 -1295 (|#3| |#2|)) (-15 -2480 (|#3| |#2|))) (-1047) (-1238 |#1|) (-13 (-404) (-1036 |#1|) (-363) (-1197) (-284))) (T -443))
+((-2480 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) (-1295 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) (-3039 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *2 (-13 (-404) (-1036 *5) (-363) (-1197) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1238 *5)))) (-2738 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1238 *4)) (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))))) (-2738 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1238 *5)) (-4 *6 (-13 (-404) (-1036 *5) (-363) (-1197) (-284))))) (-2264 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1238 *4)) (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))))) (-3589 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *2 (-13 (-404) (-1036 *5) (-363) (-1197) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1238 *5)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))) (-3781 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1238 *4)) (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))))))
+(-10 -7 (-15 -3781 ((-564) |#2|)) (-15 -3589 (|#3| |#2|)) (-15 -3589 (|#3| |#2| (-919))) (-15 -2264 ((-564) |#2|)) (-15 -2738 ((-564) |#2| (-769))) (-15 -2738 ((-564) |#2|)) (-15 -2218 (|#3| |#2| (-919))) (-15 -3110 (|#3| |#2|)) (-15 -3039 (|#3| |#2|)) (-15 -1295 (|#3| |#2|)) (-15 -2480 (|#3| |#2|)))
+((-3247 ((|#2| (-1262 |#1|)) 45)) (-3984 ((|#2| |#2| |#1|) 61)) (-2069 ((|#2| |#2| |#1|) 53)) (-3115 ((|#2| |#2|) 49)) (-2606 (((-112) |#2|) 36)) (-3560 (((-642 |#2|) (-919) (-418 |#2|)) 24)) (-1853 ((|#2| (-919) (-418 |#2|)) 28)) (-3823 (((-735 (-769)) (-418 |#2|)) 33)))
+(((-444 |#1| |#2|) (-10 -7 (-15 -2606 ((-112) |#2|)) (-15 -3247 (|#2| (-1262 |#1|))) (-15 -3115 (|#2| |#2|)) (-15 -2069 (|#2| |#2| |#1|)) (-15 -3984 (|#2| |#2| |#1|)) (-15 -3823 ((-735 (-769)) (-418 |#2|))) (-15 -1853 (|#2| (-919) (-418 |#2|))) (-15 -3560 ((-642 |#2|) (-919) (-418 |#2|)))) (-1047) (-1238 |#1|)) (T -444))
+((-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-418 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-1047)) (-5 *2 (-642 *6)) (-5 *1 (-444 *5 *6)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-418 *2)) (-4 *2 (-1238 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1047)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-1047)) (-5 *2 (-735 (-769))) (-5 *1 (-444 *4 *5)))) (-3984 (*1 *2 *2 *3) (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3)))) (-2069 (*1 *2 *2 *3) (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3)))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-1047)) (-4 *2 (-1238 *4)) (-5 *1 (-444 *4 *2)))) (-2606 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1238 *4)))))
+(-10 -7 (-15 -2606 ((-112) |#2|)) (-15 -3247 (|#2| (-1262 |#1|))) (-15 -3115 (|#2| |#2|)) (-15 -2069 (|#2| |#2| |#1|)) (-15 -3984 (|#2| |#2| |#1|)) (-15 -3823 ((-735 (-769)) (-418 |#2|))) (-15 -1853 (|#2| (-919) (-418 |#2|))) (-15 -3560 ((-642 |#2|) (-919) (-418 |#2|))))
+((-3185 (((-769)) 57)) (-2050 (((-769)) 29 (|has| |#1| (-404))) (((-769) (-769)) 28 (|has| |#1| (-404)))) (-3195 (((-564) |#1|) 25 (|has| |#1| (-404)))) (-3522 (((-564) |#1|) 27 (|has| |#1| (-404)))) (-3304 (((-769)) 56) (((-769) (-769)) 55)) (-3340 ((|#1| (-769) (-564)) 36)) (-1619 (((-1267)) 59)))
+(((-445 |#1|) (-10 -7 (-15 -3340 (|#1| (-769) (-564))) (-15 -3304 ((-769) (-769))) (-15 -3304 ((-769))) (-15 -3185 ((-769))) (-15 -1619 ((-1267))) (IF (|has| |#1| (-404)) (PROGN (-15 -3522 ((-564) |#1|)) (-15 -3195 ((-564) |#1|)) (-15 -2050 ((-769) (-769))) (-15 -2050 ((-769)))) |%noBranch|)) (-1047)) (T -445))
+((-2050 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))) (-3195 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))) (-3522 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))) (-1619 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))) (-3185 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))) (-3304 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))) (-3304 (*1 *2 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1047)))))
+(-10 -7 (-15 -3340 (|#1| (-769) (-564))) (-15 -3304 ((-769) (-769))) (-15 -3304 ((-769))) (-15 -3185 ((-769))) (-15 -1619 ((-1267))) (IF (|has| |#1| (-404)) (PROGN (-15 -3522 ((-564) |#1|)) (-15 -3195 ((-564) |#1|)) (-15 -2050 ((-769) (-769))) (-15 -2050 ((-769)))) |%noBranch|))
+((-1886 (((-642 (-564)) (-564)) 76)) (-1469 (((-112) (-169 (-564))) 82)) (-3643 (((-418 (-169 (-564))) (-169 (-564))) 75)))
+(((-446) (-10 -7 (-15 -3643 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -1886 ((-642 (-564)) (-564))) (-15 -1469 ((-112) (-169 (-564)))))) (T -446))
+((-1469 (*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) (-1886 (*1 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))) (-3643 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) (-5 *3 (-169 (-564))))))
+(-10 -7 (-15 -3643 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -1886 ((-642 (-564)) (-564))) (-15 -1469 ((-112) (-169 (-564)))))
+((-3993 ((|#4| |#4| (-642 |#4|)) 81)) (-2609 (((-642 |#4|) (-642 |#4|) (-1155) (-1155)) 22) (((-642 |#4|) (-642 |#4|) (-1155)) 21) (((-642 |#4|) (-642 |#4|)) 13)))
+(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 (|#4| |#4| (-642 |#4|))) (-15 -2609 ((-642 |#4|) (-642 |#4|))) (-15 -2609 ((-642 |#4|) (-642 |#4|) (-1155))) (-15 -2609 ((-642 |#4|) (-642 |#4|) (-1155) (-1155)))) (-307) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -447))
+((-2609 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2609 (*1 *2 *2 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2609 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-447 *3 *4 *5 *6)))) (-3993 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3993 (|#4| |#4| (-642 |#4|))) (-15 -2609 ((-642 |#4|) (-642 |#4|))) (-15 -2609 ((-642 |#4|) (-642 |#4|) (-1155))) (-15 -2609 ((-642 |#4|) (-642 |#4|) (-1155) (-1155))))
+((-3036 (((-642 (-642 |#4|)) (-642 |#4|) (-112)) 90) (((-642 (-642 |#4|)) (-642 |#4|)) 89) (((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|) (-112)) 83) (((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|)) 84)) (-2955 (((-642 (-642 |#4|)) (-642 |#4|) (-112)) 55) (((-642 (-642 |#4|)) (-642 |#4|)) 76)))
+(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2955 ((-642 (-642 |#4|)) (-642 |#4|))) (-15 -2955 ((-642 (-642 |#4|)) (-642 |#4|) (-112))) (-15 -3036 ((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|))) (-15 -3036 ((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|) (-112))) (-15 -3036 ((-642 (-642 |#4|)) (-642 |#4|))) (-15 -3036 ((-642 (-642 |#4|)) (-642 |#4|) (-112)))) (-13 (-307) (-147)) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -448))
+((-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8)))) (-3036 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-3036 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8)))) (-3036 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8)))) (-2955 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7)))))
+(-10 -7 (-15 -2955 ((-642 (-642 |#4|)) (-642 |#4|))) (-15 -2955 ((-642 (-642 |#4|)) (-642 |#4|) (-112))) (-15 -3036 ((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|))) (-15 -3036 ((-642 (-642 |#4|)) (-642 |#4|) (-642 |#4|) (-112))) (-15 -3036 ((-642 (-642 |#4|)) (-642 |#4|))) (-15 -3036 ((-642 (-642 |#4|)) (-642 |#4|) (-112))))
+((-4112 (((-769) |#4|) 12)) (-1837 (((-642 (-2 (|:| |totdeg| (-769)) (|:| -4229 |#4|))) |#4| (-769) (-642 (-2 (|:| |totdeg| (-769)) (|:| -4229 |#4|)))) 38)) (-1956 (((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-2739 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 53)) (-3351 ((|#4| |#4| (-642 |#4|)) 55)) (-2036 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-642 |#4|)) 97)) (-3196 (((-1267) |#4|) 60)) (-3766 (((-1267) (-642 |#4|)) 70)) (-1460 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564)) 67)) (-2020 (((-1267) (-564)) 112)) (-1565 (((-642 |#4|) (-642 |#4|)) 104)) (-4005 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-769)) (|:| -4229 |#4|)) |#4| (-769)) 31)) (-2001 (((-564) |#4|) 109)) (-3432 ((|#4| |#4|) 36)) (-1521 (((-642 |#4|) (-642 |#4|) (-564) (-564)) 75)) (-1625 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564)) 125)) (-4383 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3754 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 79)) (-3179 (((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 77)) (-3857 (((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2379 (((-112) |#2| |#2|) 76)) (-2688 (((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-4000 (((-112) |#2| |#2| |#2| |#2|) 81)) (-3188 ((|#4| |#4| (-642 |#4|)) 98)))
+(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3188 (|#4| |#4| (-642 |#4|))) (-15 -3351 (|#4| |#4| (-642 |#4|))) (-15 -1521 ((-642 |#4|) (-642 |#4|) (-564) (-564))) (-15 -3754 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2379 ((-112) |#2| |#2|)) (-15 -4000 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2688 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3857 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3179 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2036 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-642 |#4|))) (-15 -3432 (|#4| |#4|)) (-15 -1837 ((-642 (-2 (|:| |totdeg| (-769)) (|:| -4229 |#4|))) |#4| (-769) (-642 (-2 (|:| |totdeg| (-769)) (|:| -4229 |#4|))))) (-15 -2739 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1956 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1565 ((-642 |#4|) (-642 |#4|))) (-15 -2001 ((-564) |#4|)) (-15 -3196 ((-1267) |#4|)) (-15 -1460 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -1625 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -3766 ((-1267) (-642 |#4|))) (-15 -2020 ((-1267) (-564))) (-15 -4383 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4005 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-769)) (|:| -4229 |#4|)) |#4| (-769))) (-15 -4112 ((-769) |#4|))) (-452) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -449))
+((-4112 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-769)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))) (-4005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-769)) (|:| -4229 *4))) (-5 *5 (-769)) (-4 *4 (-947 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-4383 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-791)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1267)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1267)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1625 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-769)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-791)) (-4 *4 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-848)) (-5 *1 (-449 *5 *6 *7 *4)))) (-1460 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-769)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-791)) (-4 *4 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-848)) (-5 *1 (-449 *5 *6 *7 *4)))) (-3196 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1267)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))) (-2001 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-564)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))) (-1565 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-449 *3 *4 *5 *6)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-642 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-769)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-791)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-848)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-791)) (-4 *2 (-947 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-848)))) (-1837 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-642 (-2 (|:| |totdeg| (-769)) (|:| -4229 *3)))) (-5 *4 (-769)) (-4 *3 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-449 *5 *6 *7 *3)))) (-3432 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5)))) (-2036 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-3179 (*1 *2 *3 *2) (-12 (-5 *2 (-642 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-769)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-791)) (-4 *6 (-947 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-848)) (-5 *1 (-449 *4 *3 *5 *6)))) (-3857 (*1 *2 *2) (-12 (-5 *2 (-642 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-769)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-791)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-848)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2688 (*1 *2 *3 *2) (-12 (-5 *2 (-642 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-791)) (-4 *3 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *3)))) (-4000 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-947 *4 *3 *5)))) (-2379 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-947 *4 *3 *5)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-791)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1521 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-564)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3351 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *2)))) (-3188 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3188 (|#4| |#4| (-642 |#4|))) (-15 -3351 (|#4| |#4| (-642 |#4|))) (-15 -1521 ((-642 |#4|) (-642 |#4|) (-564) (-564))) (-15 -3754 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2379 ((-112) |#2| |#2|)) (-15 -4000 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2688 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3857 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3179 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2036 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-642 |#4|))) (-15 -3432 (|#4| |#4|)) (-15 -1837 ((-642 (-2 (|:| |totdeg| (-769)) (|:| -4229 |#4|))) |#4| (-769) (-642 (-2 (|:| |totdeg| (-769)) (|:| -4229 |#4|))))) (-15 -2739 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1956 ((-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-642 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1565 ((-642 |#4|) (-642 |#4|))) (-15 -2001 ((-564) |#4|)) (-15 -3196 ((-1267) |#4|)) (-15 -1460 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -1625 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -3766 ((-1267) (-642 |#4|))) (-15 -2020 ((-1267) (-564))) (-15 -4383 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4005 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-769)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-769)) (|:| -4229 |#4|)) |#4| (-769))) (-15 -4112 ((-769) |#4|)))
+((-3982 ((|#4| |#4| (-642 |#4|)) 20 (|has| |#1| (-363)))) (-2128 (((-642 |#4|) (-642 |#4|) (-1155) (-1155)) 46) (((-642 |#4|) (-642 |#4|) (-1155)) 45) (((-642 |#4|) (-642 |#4|)) 34)))
+(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2128 ((-642 |#4|) (-642 |#4|))) (-15 -2128 ((-642 |#4|) (-642 |#4|) (-1155))) (-15 -2128 ((-642 |#4|) (-642 |#4|) (-1155) (-1155))) (IF (|has| |#1| (-363)) (-15 -3982 (|#4| |#4| (-642 |#4|))) |%noBranch|)) (-452) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -450))
+((-3982 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-450 *4 *5 *6 *2)))) (-2128 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2128 (*1 *2 *2 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2128 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-450 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2128 ((-642 |#4|) (-642 |#4|))) (-15 -2128 ((-642 |#4|) (-642 |#4|) (-1155))) (-15 -2128 ((-642 |#4|) (-642 |#4|) (-1155) (-1155))) (IF (|has| |#1| (-363)) (-15 -3982 (|#4| |#4| (-642 |#4|))) |%noBranch|))
+((-2049 (($ $ $) 14) (($ (-642 $)) 21)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 48)) (-2080 (($ $ $) NIL) (($ (-642 $)) 22)))
+(((-451 |#1|) (-10 -8 (-15 -2351 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2049 (|#1| (-642 |#1|))) (-15 -2049 (|#1| |#1| |#1|)) (-15 -2080 (|#1| (-642 |#1|))) (-15 -2080 (|#1| |#1| |#1|))) (-452)) (T -451))
+NIL
+(-10 -8 (-15 -2351 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2049 (|#1| (-642 |#1|))) (-15 -2049 (|#1| |#1| |#1|)) (-15 -2080 (|#1| (-642 |#1|))) (-15 -2080 (|#1| |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-2896 (((-3 $ "failed") $ $) 48)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
(((-452) (-140)) (T -452))
-((-2123 (*1 *1 *1 *1) (-4 *1 (-452))) (-2123 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-2084 (*1 *1 *1 *1) (-4 *1 (-452))) (-2084 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-2805 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452)))))
-(-13 (-556) (-10 -8 (-15 -2123 ($ $ $)) (-15 -2123 ($ (-641 $))) (-15 -2084 ($ $ $)) (-15 -2084 ($ (-641 $))) (-15 -2805 ((-1166 $) (-1166 $) (-1166 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2885 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-1259 (-685 (-407 (-948 |#1|)))) (-1259 $)) NIL) (((-1259 (-685 (-407 (-948 |#1|))))) NIL)) (-1336 (((-1259 $)) NIL)) (-4080 (($) NIL T CONST)) (-1441 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) NIL)) (-3436 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-1955 (((-685 (-407 (-948 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-948 |#1|)))) NIL)) (-1774 (((-407 (-948 |#1|)) $) NIL)) (-1765 (((-685 (-407 (-948 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-948 |#1|))) $) NIL)) (-4015 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-4317 (((-1166 (-948 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-363))) (((-1166 (-407 (-948 |#1|)))) 94 (|has| |#1| (-556)))) (-3232 (($ $ (-917)) NIL)) (-2335 (((-407 (-948 |#1|)) $) NIL)) (-2140 (((-1166 (-407 (-948 |#1|))) $) 92 (|has| (-407 (-948 |#1|)) (-556)))) (-3216 (((-407 (-948 |#1|)) (-1259 $)) NIL) (((-407 (-948 |#1|))) NIL)) (-2280 (((-1166 (-407 (-948 |#1|))) $) NIL)) (-1804 (((-112)) NIL)) (-3474 (($ (-1259 (-407 (-948 |#1|))) (-1259 $)) 118) (($ (-1259 (-407 (-948 |#1|)))) NIL)) (-3293 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-2514 (((-917)) NIL)) (-3117 (((-112)) NIL)) (-3532 (($ $ (-917)) NIL)) (-3502 (((-112)) NIL)) (-1506 (((-112)) NIL)) (-1873 (((-112)) NIL)) (-2330 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) NIL)) (-4005 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-3803 (((-685 (-407 (-948 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-948 |#1|)))) NIL)) (-2415 (((-407 (-948 |#1|)) $) NIL)) (-2069 (((-685 (-407 (-948 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-948 |#1|))) $) NIL)) (-2378 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-3189 (((-1166 (-948 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-363))) (((-1166 (-407 (-948 |#1|)))) 93 (|has| |#1| (-556)))) (-2105 (($ $ (-917)) NIL)) (-3188 (((-407 (-948 |#1|)) $) NIL)) (-2739 (((-1166 (-407 (-948 |#1|))) $) 87 (|has| (-407 (-948 |#1|)) (-556)))) (-1960 (((-407 (-948 |#1|)) (-1259 $)) NIL) (((-407 (-948 |#1|))) NIL)) (-4254 (((-1166 (-407 (-948 |#1|))) $) NIL)) (-3172 (((-112)) NIL)) (-2766 (((-1152) $) NIL)) (-4312 (((-112)) NIL)) (-2654 (((-112)) NIL)) (-3642 (((-112)) NIL)) (-4052 (((-1114) $) NIL)) (-2769 (((-407 (-948 |#1|)) $ $) 78 (|has| |#1| (-556)))) (-4136 (((-407 (-948 |#1|)) $) 104 (|has| |#1| (-556)))) (-3428 (((-407 (-948 |#1|)) $) 108 (|has| |#1| (-556)))) (-3309 (((-1166 (-407 (-948 |#1|))) $) 98 (|has| |#1| (-556)))) (-1786 (((-407 (-948 |#1|))) 79 (|has| |#1| (-556)))) (-3049 (((-407 (-948 |#1|)) $ $) 71 (|has| |#1| (-556)))) (-1515 (((-407 (-948 |#1|)) $) 103 (|has| |#1| (-556)))) (-4308 (((-407 (-948 |#1|)) $) 107 (|has| |#1| (-556)))) (-2568 (((-1166 (-407 (-948 |#1|))) $) 97 (|has| |#1| (-556)))) (-1734 (((-407 (-948 |#1|))) 75 (|has| |#1| (-556)))) (-3558 (($) 114) (($ (-1170)) 122) (($ (-1259 (-1170))) 121) (($ (-1259 $)) 109) (($ (-1170) (-1259 $)) 120) (($ (-1259 (-1170)) (-1259 $)) 119)) (-3353 (((-112)) NIL)) (-4366 (((-407 (-948 |#1|)) $ (-564)) NIL)) (-4225 (((-1259 (-407 (-948 |#1|))) $ (-1259 $)) 111) (((-685 (-407 (-948 |#1|))) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 (-948 |#1|))) $) 45) (((-685 (-407 (-948 |#1|))) (-1259 $)) NIL)) (-1311 (((-1259 (-407 (-948 |#1|))) $) NIL) (($ (-1259 (-407 (-948 |#1|)))) 42)) (-3620 (((-641 (-948 (-407 (-948 |#1|)))) (-1259 $)) NIL) (((-641 (-948 (-407 (-948 |#1|))))) NIL) (((-641 (-948 |#1|)) (-1259 $)) 112 (|has| |#1| (-556))) (((-641 (-948 |#1|))) 113 (|has| |#1| (-556)))) (-1542 (($ $ $) NIL)) (-2151 (((-112)) NIL)) (-2423 (((-858) $) NIL) (($ (-1259 (-407 (-948 |#1|)))) NIL)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) 67)) (-2363 (((-641 (-1259 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-556)))) (-3099 (($ $ $ $) NIL)) (-2846 (((-112)) NIL)) (-2598 (($ (-685 (-407 (-948 |#1|))) $) NIL)) (-3163 (($ $ $) NIL)) (-2620 (((-112)) NIL)) (-2896 (((-112)) NIL)) (-4103 (((-112)) NIL)) (-2403 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) 110)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 63) (($ $ (-407 (-948 |#1|))) NIL) (($ (-407 (-948 |#1|)) $) NIL) (($ (-1136 |#2| (-407 (-948 |#1|))) $) NIL)))
-(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-948 |#1|))) (-644 (-1136 |#2| (-407 (-948 |#1|)))) (-10 -8 (-15 -2423 ($ (-1259 (-407 (-948 |#1|))))) (-15 -2330 ((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed"))) (-15 -1441 ((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed"))) (-15 -3558 ($)) (-15 -3558 ($ (-1170))) (-15 -3558 ($ (-1259 (-1170)))) (-15 -3558 ($ (-1259 $))) (-15 -3558 ($ (-1170) (-1259 $))) (-15 -3558 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -3189 ((-1166 (-407 (-948 |#1|))))) (-15 -2568 ((-1166 (-407 (-948 |#1|))) $)) (-15 -1515 ((-407 (-948 |#1|)) $)) (-15 -4308 ((-407 (-948 |#1|)) $)) (-15 -4317 ((-1166 (-407 (-948 |#1|))))) (-15 -3309 ((-1166 (-407 (-948 |#1|))) $)) (-15 -4136 ((-407 (-948 |#1|)) $)) (-15 -3428 ((-407 (-948 |#1|)) $)) (-15 -3049 ((-407 (-948 |#1|)) $ $)) (-15 -1734 ((-407 (-948 |#1|)))) (-15 -2769 ((-407 (-948 |#1|)) $ $)) (-15 -1786 ((-407 (-948 |#1|)))) (-15 -3620 ((-641 (-948 |#1|)) (-1259 $))) (-15 -3620 ((-641 (-948 |#1|))))) |%noBranch|))) (-172) (-917) (-641 (-1170)) (-1259 (-685 |#1|))) (T -453))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-948 *3)))) (-4 *3 (-172)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))))) (-2330 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -2047 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1441 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -2047 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3558 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917)) (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2))))) (-3558 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3))))) (-3558 (*1 *1 *2) (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3558 (*1 *1 *2) (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3558 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4))))) (-3558 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-3189 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-4308 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-4317 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3049 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1734 (*1 *2) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2769 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1786 (*1 *2) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-948 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-3620 (*1 *2) (-12 (-5 *2 (-641 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(-13 (-417 (-407 (-948 |#1|))) (-644 (-1136 |#2| (-407 (-948 |#1|)))) (-10 -8 (-15 -2423 ($ (-1259 (-407 (-948 |#1|))))) (-15 -2330 ((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed"))) (-15 -1441 ((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed"))) (-15 -3558 ($)) (-15 -3558 ($ (-1170))) (-15 -3558 ($ (-1259 (-1170)))) (-15 -3558 ($ (-1259 $))) (-15 -3558 ($ (-1170) (-1259 $))) (-15 -3558 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -3189 ((-1166 (-407 (-948 |#1|))))) (-15 -2568 ((-1166 (-407 (-948 |#1|))) $)) (-15 -1515 ((-407 (-948 |#1|)) $)) (-15 -4308 ((-407 (-948 |#1|)) $)) (-15 -4317 ((-1166 (-407 (-948 |#1|))))) (-15 -3309 ((-1166 (-407 (-948 |#1|))) $)) (-15 -4136 ((-407 (-948 |#1|)) $)) (-15 -3428 ((-407 (-948 |#1|)) $)) (-15 -3049 ((-407 (-948 |#1|)) $ $)) (-15 -1734 ((-407 (-948 |#1|)))) (-15 -2769 ((-407 (-948 |#1|)) $ $)) (-15 -1786 ((-407 (-948 |#1|)))) (-15 -3620 ((-641 (-948 |#1|)) (-1259 $))) (-15 -3620 ((-641 (-948 |#1|))))) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 18)) (-3836 (((-641 (-860 |#1|)) $) 94)) (-3660 (((-1166 $) $ (-860 |#1|)) 59) (((-1166 |#2|) $) 143)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-3063 (($ $) NIL (|has| |#2| (-556)))) (-3330 (((-112) $) NIL (|has| |#2| (-556)))) (-1737 (((-767) $) 27) (((-767) $ (-641 (-860 |#1|))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2683 (($ $) NIL (|has| |#2| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#2| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) 57) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-3120 ((|#2| $) 55) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-860 |#1|) $) NIL)) (-2746 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3720 (($ $ (-641 (-564))) 100)) (-1684 (($ $) 88)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#2| (-905)))) (-3850 (($ $ |#2| |#3| $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) 72)) (-3824 (($ (-1166 |#2|) (-860 |#1|)) 148) (($ (-1166 $) (-860 |#1|)) 65)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) 75)) (-3810 (($ |#2| |#3|) 38) (($ $ (-860 |#1|) (-767)) 40) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-860 |#1|)) NIL)) (-2043 ((|#3| $) NIL) (((-767) $ (-860 |#1|)) 63) (((-641 (-767)) $ (-641 (-860 |#1|))) 70)) (-1948 (($ (-1 |#3| |#3|) $) NIL)) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-3025 (((-3 (-860 |#1|) "failed") $) 52)) (-3971 (($ $) NIL)) (-3982 ((|#2| $) 54)) (-2084 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2766 (((-1152) $) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -1838 (-767))) "failed") $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) 53)) (-3954 ((|#2| $) 141)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) 153 (|has| |#2| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#2| (-905)))) (-2998 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-860 |#1|) |#2|) 107) (($ $ (-641 (-860 |#1|)) (-641 |#2|)) 113) (($ $ (-860 |#1|) $) 105) (($ $ (-641 (-860 |#1|)) (-641 $)) 131)) (-1330 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3254 (($ $ (-860 |#1|)) 66) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-1568 ((|#3| $) 87) (((-767) $ (-860 |#1|)) 49) (((-641 (-767)) $ (-641 (-860 |#1|))) 69)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4090 ((|#2| $) 150 (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2423 (((-858) $) 178) (($ (-564)) NIL) (($ |#2|) 106) (($ (-860 |#1|)) 42) (($ (-407 (-564))) NIL (-2807 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3191 (((-641 |#2|) $) NIL)) (-2007 ((|#2| $ |#3|) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2403 (($) 22 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#2|) 84 (|has| |#2| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 136)) (** (($ $ (-917)) NIL) (($ $ (-767)) 134)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) 83) (($ $ |#2|) NIL)))
-(((-454 |#1| |#2| |#3|) (-13 (-945 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -3720 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1045) (-238 (-2181 |#1|) (-767))) (T -454))
-((-3720 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-238 (-2181 *3) (-767))))))
-(-13 (-945 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -3720 ($ $ (-641 (-564))))))
-((-1352 (((-112) |#1| (-641 |#2|)) 93)) (-2246 (((-3 (-1259 (-641 |#2|)) "failed") (-767) |#1| (-641 |#2|)) 102)) (-3199 (((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|))) 104)) (-1812 ((|#2| |#2| |#1|) 35)) (-2060 (((-767) |#2| (-641 |#2|)) 26)))
-(((-455 |#1| |#2|) (-10 -7 (-15 -1812 (|#2| |#2| |#1|)) (-15 -2060 ((-767) |#2| (-641 |#2|))) (-15 -2246 ((-3 (-1259 (-641 |#2|)) "failed") (-767) |#1| (-641 |#2|))) (-15 -3199 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -1352 ((-112) |#1| (-641 |#2|)))) (-307) (-1235 |#1|)) (T -455))
-((-1352 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-3199 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307)) (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4)))) (-2246 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1235 *4)) (-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6)))) (-2060 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307)) (-5 *2 (-767)) (-5 *1 (-455 *5 *3)))) (-1812 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3)))))
-(-10 -7 (-15 -1812 (|#2| |#2| |#1|)) (-15 -2060 ((-767) |#2| (-641 |#2|))) (-15 -2246 ((-3 (-1259 (-641 |#2|)) "failed") (-767) |#1| (-641 |#2|))) (-15 -3199 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -1352 ((-112) |#1| (-641 |#2|))))
-((-3688 (((-418 |#5|) |#5|) 24)))
-(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3688 ((-418 |#5|) |#5|))) (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)) (-15 -3395 ((-3 $ "failed") (-1170))))) (-789) (-556) (-556) (-945 |#4| |#2| |#1|)) (T -456))
-((-3688 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)) (-15 -3395 ((-3 $ "failed") (-1170)))))) (-4 *5 (-789)) (-4 *7 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) (-4 *3 (-945 *7 *5 *4)))))
-(-10 -7 (-15 -3688 ((-418 |#5|) |#5|)))
-((-1401 ((|#3|) 40)) (-2805 (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 36)))
-(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2805 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -1401 (|#3|))) (-789) (-846) (-905) (-945 |#3| |#1| |#2|)) (T -457))
-((-1401 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2805 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-905)) (-5 *1 (-457 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2805 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -1401 (|#3|)))
-((-3688 (((-418 (-1166 |#1|)) (-1166 |#1|)) 43)))
-(((-458 |#1|) (-10 -7 (-15 -3688 ((-418 (-1166 |#1|)) (-1166 |#1|)))) (-307)) (T -458))
-((-3688 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1166 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1166 *4)))))
-(-10 -7 (-15 -3688 ((-418 (-1166 |#1|)) (-1166 |#1|))))
-((-3892 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-767))) 44) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-767))) 43) (((-52) |#2| (-1170) (-294 |#2|)) 36) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 29)) (-2808 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 87) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 86) (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 85) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 84) (((-52) |#2| (-1170) (-294 |#2|)) 79) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 78)) (-3915 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 73) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 71)) (-3903 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 50) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 49)))
-(((-459 |#1| |#2|) (-10 -7 (-15 -3892 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3892 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -3892 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-767)))) (-15 -3892 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-767)))) (-15 -3903 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -3903 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -3915 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3915 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -2808 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -2808 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -2808 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -2808 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -2808 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -2808 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))))) (-13 (-556) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -459))
-((-2808 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-2808 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-2808 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2808 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-3915 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-3915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-3903 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3892 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-767))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3892 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-767))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3892 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))))
-(-10 -7 (-15 -3892 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3892 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -3892 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-767)))) (-15 -3892 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-767)))) (-15 -3903 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -3903 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -3915 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3915 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -2808 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -2808 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -2808 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -2808 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -2808 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -2808 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))))
-((-1812 ((|#2| |#2| |#1|) 15)) (-2799 (((-641 |#2|) |#2| (-641 |#2|) |#1| (-917)) 85)) (-2274 (((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-917)) 71)))
-(((-460 |#1| |#2|) (-10 -7 (-15 -2274 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-917))) (-15 -2799 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-917))) (-15 -1812 (|#2| |#2| |#1|))) (-307) (-1235 |#1|)) (T -460))
-((-1812 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3)))) (-2799 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-641 *3)) (-5 *5 (-917)) (-4 *3 (-1235 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-2274 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-917)) (-4 *5 (-307)) (-4 *3 (-1235 *5)) (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3)))))
-(-10 -7 (-15 -2274 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-917))) (-15 -2799 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-917))) (-15 -1812 (|#2| |#2| |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 28)) (-3586 (($ |#3|) 25)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1684 (($ $) 32)) (-3312 (($ |#2| |#4| $) 33)) (-3810 (($ |#2| (-709 |#3| |#4| |#5|)) 24)) (-3971 (((-709 |#3| |#4| |#5|) $) 15)) (-3251 ((|#3| $) 19)) (-2082 ((|#4| $) 17)) (-3982 ((|#2| $) 29)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-3085 (($ |#2| |#3| |#4|) 26)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 36 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 34)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -3982 (|#2| $)) (-15 -3971 ((-709 |#3| |#4| |#5|) $)) (-15 -2082 (|#4| $)) (-15 -3251 (|#3| $)) (-15 -1684 ($ $)) (-15 -3810 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -3586 ($ |#3|)) (-15 -3085 ($ |#2| |#3| |#4|)) (-15 -3312 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-641 (-1170)) (-172) (-846) (-238 (-2181 |#1|) (-767)) (-1 (-112) (-2 (|:| -2083 |#3|) (|:| -1838 |#4|)) (-2 (|:| -2083 |#3|) (|:| -1838 |#4|))) (-945 |#2| |#4| (-860 |#1|))) (T -461))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2181 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2083 *5) (|:| -1838 *6)) (-2 (|:| -2083 *5) (|:| -1838 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846)) (-4 *2 (-945 *4 *6 (-860 *3))))) (-3982 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2181 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2083 *4) (|:| -1838 *5)) (-2 (|:| -2083 *4) (|:| -1838 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-945 *2 *5 (-860 *3))))) (-3971 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2181 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2083 *5) (|:| -1838 *6)) (-2 (|:| -2083 *5) (|:| -1838 *6)))) (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-846)) (-4 *8 (-945 *4 *6 (-860 *3))))) (-2082 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2083 *5) (|:| -1838 *2)) (-2 (|:| -2083 *5) (|:| -1838 *2)))) (-4 *2 (-238 (-2181 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-846)) (-4 *7 (-945 *4 *2 (-860 *3))))) (-3251 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2181 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2083 *2) (|:| -1838 *5)) (-2 (|:| -2083 *2) (|:| -1838 *5)))) (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-945 *4 *5 (-860 *3))))) (-1684 (*1 *1 *1) (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172)) (-4 *5 (-238 (-2181 *2) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2083 *4) (|:| -1838 *5)) (-2 (|:| -2083 *4) (|:| -1838 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-945 *3 *5 (-860 *2))))) (-3810 (*1 *1 *2 *3) (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846)) (-4 *6 (-238 (-2181 *4) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2083 *5) (|:| -1838 *6)) (-2 (|:| -2083 *5) (|:| -1838 *6)))) (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-945 *2 *6 (-860 *4))))) (-3586 (*1 *1 *2) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2181 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2083 *2) (|:| -1838 *5)) (-2 (|:| -2083 *2) (|:| -1838 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846)) (-4 *7 (-945 *4 *5 (-860 *3))))) (-3085 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172)) (-4 *4 (-238 (-2181 *5) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2083 *3) (|:| -1838 *4)) (-2 (|:| -2083 *3) (|:| -1838 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846)) (-4 *7 (-945 *2 *4 (-860 *5))))) (-3312 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-4 *3 (-238 (-2181 *4) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2083 *5) (|:| -1838 *3)) (-2 (|:| -2083 *5) (|:| -1838 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846)) (-4 *7 (-945 *2 *3 (-860 *4))))))
-(-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -3982 (|#2| $)) (-15 -3971 ((-709 |#3| |#4| |#5|) $)) (-15 -2082 (|#4| $)) (-15 -3251 (|#3| $)) (-15 -1684 ($ $)) (-15 -3810 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -3586 ($ |#3|)) (-15 -3085 ($ |#2| |#3| |#4|)) (-15 -3312 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-3246 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
-(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3246 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-789) (-846) (-556) (-945 |#3| |#1| |#2|) (-13 (-1034 (-407 (-564))) (-363) (-10 -8 (-15 -2423 ($ |#4|)) (-15 -2323 (|#4| $)) (-15 -2336 (|#4| $))))) (T -462))
-((-3246 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789)) (-4 *6 (-556)) (-4 *7 (-945 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1034 (-407 (-564))) (-363) (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))))))
-(-10 -7 (-15 -3246 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-3009 (((-112) $ $) NIL)) (-3836 (((-641 |#3|) $) 41)) (-3342 (((-112) $) NIL)) (-1594 (((-112) $) NIL (|has| |#1| (-556)))) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-1667 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-1968 (((-112) $) NIL (|has| |#1| (-556)))) (-2238 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1489 (((-112) $) NIL (|has| |#1| (-556)))) (-3703 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) 49)) (-3120 (($ (-641 |#4|)) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2591 (($ |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4407)))) (-3035 (((-641 |#4|) $) 18 (|has| $ (-6 -4407)))) (-3378 ((|#3| $) 47)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#4|) $) 14 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2714 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) 21)) (-2814 (((-641 |#3|) $) NIL)) (-3169 (((-112) |#3| $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4052 (((-1114) $) NIL)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4377 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 39)) (-2994 (($) 17)) (-4062 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) 16)) (-1311 (((-536) $) NIL (|has| |#4| (-612 (-536)))) (($ (-641 |#4|)) 51)) (-2435 (($ (-641 |#4|)) 13)) (-1834 (($ $ |#3|) NIL)) (-1648 (($ $ |#3|) NIL)) (-2577 (($ $ |#3|) NIL)) (-2423 (((-858) $) 38) (((-641 |#4|) $) 50)) (-1860 (((-112) $ $) NIL)) (-1368 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 30)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-463 |#1| |#2| |#3| |#4|) (-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1311 ($ (-641 |#4|))) (-6 -4407) (-6 -4408))) (-1045) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -463))
-((-1311 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6)))))
-(-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1311 ($ (-641 |#4|))) (-6 -4407) (-6 -4408)))
-((-2403 (($) 11)) (-2417 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -2417 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2403 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464))
-NIL
-(-10 -8 (-15 -2417 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2403 (|#1|)))
-((-3009 (((-112) $ $) 7)) (-4284 (((-3 |#1| "failed") $) 27)) (-3120 ((|#1| $) 28)) (-2897 (($ $ $) 24)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1568 ((|#2| $) 20)) (-2423 (((-858) $) 12) (($ |#1|) 26)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 25 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 16) (($ $ $) 14)) (-3070 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+((-2080 (*1 *1 *1 *1) (-4 *1 (-452))) (-2080 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-452)))) (-2049 (*1 *1 *1 *1) (-4 *1 (-452))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-452)))) (-2351 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-452)))))
+(-13 (-556) (-10 -8 (-15 -2080 ($ $ $)) (-15 -2080 ($ (-642 $))) (-15 -2049 ($ $ $)) (-15 -2049 ($ (-642 $))) (-15 -2351 ((-1169 $) (-1169 $) (-1169 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3587 (((-3 $ "failed")) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4361 (((-1262 (-687 (-407 (-950 |#1|)))) (-1262 $)) NIL) (((-1262 (-687 (-407 (-950 |#1|))))) NIL)) (-2954 (((-1262 $)) NIL)) (-1976 (($) NIL T CONST)) (-2074 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) NIL)) (-2093 (((-3 $ "failed")) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-3043 (((-687 (-407 (-950 |#1|))) (-1262 $)) NIL) (((-687 (-407 (-950 |#1|)))) NIL)) (-4280 (((-407 (-950 |#1|)) $) NIL)) (-3636 (((-687 (-407 (-950 |#1|))) $ (-1262 $)) NIL) (((-687 (-407 (-950 |#1|))) $) NIL)) (-2564 (((-3 $ "failed") $) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-1393 (((-1169 (-950 (-407 (-950 |#1|))))) NIL (|has| (-407 (-950 |#1|)) (-363))) (((-1169 (-407 (-950 |#1|)))) 94 (|has| |#1| (-556)))) (-2013 (($ $ (-919)) NIL)) (-3518 (((-407 (-950 |#1|)) $) NIL)) (-2640 (((-1169 (-407 (-950 |#1|))) $) 92 (|has| (-407 (-950 |#1|)) (-556)))) (-1933 (((-407 (-950 |#1|)) (-1262 $)) NIL) (((-407 (-950 |#1|))) NIL)) (-3205 (((-1169 (-407 (-950 |#1|))) $) NIL)) (-3539 (((-112)) NIL)) (-4221 (($ (-1262 (-407 (-950 |#1|))) (-1262 $)) 118) (($ (-1262 (-407 (-950 |#1|)))) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-2414 (((-919)) NIL)) (-1422 (((-112)) NIL)) (-3285 (($ $ (-919)) NIL)) (-1734 (((-112)) NIL)) (-4041 (((-112)) NIL)) (-2289 (((-112)) NIL)) (-3250 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) NIL)) (-1306 (((-3 $ "failed")) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-1499 (((-687 (-407 (-950 |#1|))) (-1262 $)) NIL) (((-687 (-407 (-950 |#1|)))) NIL)) (-1490 (((-407 (-950 |#1|)) $) NIL)) (-4070 (((-687 (-407 (-950 |#1|))) $ (-1262 $)) NIL) (((-687 (-407 (-950 |#1|))) $) NIL)) (-4125 (((-3 $ "failed") $) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-3956 (((-1169 (-950 (-407 (-950 |#1|))))) NIL (|has| (-407 (-950 |#1|)) (-363))) (((-1169 (-407 (-950 |#1|)))) 93 (|has| |#1| (-556)))) (-1522 (($ $ (-919)) NIL)) (-2034 (((-407 (-950 |#1|)) $) NIL)) (-3720 (((-1169 (-407 (-950 |#1|))) $) 87 (|has| (-407 (-950 |#1|)) (-556)))) (-1617 (((-407 (-950 |#1|)) (-1262 $)) NIL) (((-407 (-950 |#1|))) NIL)) (-1769 (((-1169 (-407 (-950 |#1|))) $) NIL)) (-3573 (((-112)) NIL)) (-3315 (((-1155) $) NIL)) (-2443 (((-112)) NIL)) (-2038 (((-112)) NIL)) (-2152 (((-112)) NIL)) (-4033 (((-1117) $) NIL)) (-4345 (((-407 (-950 |#1|)) $ $) 78 (|has| |#1| (-556)))) (-1518 (((-407 (-950 |#1|)) $) 104 (|has| |#1| (-556)))) (-1974 (((-407 (-950 |#1|)) $) 108 (|has| |#1| (-556)))) (-2830 (((-1169 (-407 (-950 |#1|))) $) 98 (|has| |#1| (-556)))) (-4254 (((-407 (-950 |#1|))) 79 (|has| |#1| (-556)))) (-2384 (((-407 (-950 |#1|)) $ $) 71 (|has| |#1| (-556)))) (-3473 (((-407 (-950 |#1|)) $) 103 (|has| |#1| (-556)))) (-2059 (((-407 (-950 |#1|)) $) 107 (|has| |#1| (-556)))) (-2057 (((-1169 (-407 (-950 |#1|))) $) 97 (|has| |#1| (-556)))) (-2235 (((-407 (-950 |#1|))) 75 (|has| |#1| (-556)))) (-3025 (($) 114) (($ (-1173)) 122) (($ (-1262 (-1173))) 121) (($ (-1262 $)) 109) (($ (-1173) (-1262 $)) 120) (($ (-1262 (-1173)) (-1262 $)) 119)) (-2682 (((-112)) NIL)) (-4368 (((-407 (-950 |#1|)) $ (-564)) NIL)) (-2067 (((-1262 (-407 (-950 |#1|))) $ (-1262 $)) 111) (((-687 (-407 (-950 |#1|))) (-1262 $) (-1262 $)) NIL) (((-1262 (-407 (-950 |#1|))) $) 45) (((-687 (-407 (-950 |#1|))) (-1262 $)) NIL)) (-1314 (((-1262 (-407 (-950 |#1|))) $) NIL) (($ (-1262 (-407 (-950 |#1|)))) 42)) (-2815 (((-642 (-950 (-407 (-950 |#1|)))) (-1262 $)) NIL) (((-642 (-950 (-407 (-950 |#1|))))) NIL) (((-642 (-950 |#1|)) (-1262 $)) 112 (|has| |#1| (-556))) (((-642 (-950 |#1|))) 113 (|has| |#1| (-556)))) (-3759 (($ $ $) NIL)) (-1953 (((-112)) NIL)) (-2327 (((-860) $) NIL) (($ (-1262 (-407 (-950 |#1|)))) NIL)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) 67)) (-1309 (((-642 (-1262 (-407 (-950 |#1|))))) NIL (|has| (-407 (-950 |#1|)) (-556)))) (-3088 (($ $ $ $) NIL)) (-1349 (((-112)) NIL)) (-2497 (($ (-687 (-407 (-950 |#1|))) $) NIL)) (-2920 (($ $ $) NIL)) (-3459 (((-112)) NIL)) (-4171 (((-112)) NIL)) (-1579 (((-112)) NIL)) (-2312 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) 110)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 63) (($ $ (-407 (-950 |#1|))) NIL) (($ (-407 (-950 |#1|)) $) NIL) (($ (-1139 |#2| (-407 (-950 |#1|))) $) NIL)))
+(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-950 |#1|))) (-646 (-1139 |#2| (-407 (-950 |#1|)))) (-10 -8 (-15 -2327 ($ (-1262 (-407 (-950 |#1|))))) (-15 -3250 ((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed"))) (-15 -2074 ((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed"))) (-15 -3025 ($)) (-15 -3025 ($ (-1173))) (-15 -3025 ($ (-1262 (-1173)))) (-15 -3025 ($ (-1262 $))) (-15 -3025 ($ (-1173) (-1262 $))) (-15 -3025 ($ (-1262 (-1173)) (-1262 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -3956 ((-1169 (-407 (-950 |#1|))))) (-15 -2057 ((-1169 (-407 (-950 |#1|))) $)) (-15 -3473 ((-407 (-950 |#1|)) $)) (-15 -2059 ((-407 (-950 |#1|)) $)) (-15 -1393 ((-1169 (-407 (-950 |#1|))))) (-15 -2830 ((-1169 (-407 (-950 |#1|))) $)) (-15 -1518 ((-407 (-950 |#1|)) $)) (-15 -1974 ((-407 (-950 |#1|)) $)) (-15 -2384 ((-407 (-950 |#1|)) $ $)) (-15 -2235 ((-407 (-950 |#1|)))) (-15 -4345 ((-407 (-950 |#1|)) $ $)) (-15 -4254 ((-407 (-950 |#1|)))) (-15 -2815 ((-642 (-950 |#1|)) (-1262 $))) (-15 -2815 ((-642 (-950 |#1|))))) |%noBranch|))) (-172) (-919) (-642 (-1173)) (-1262 (-687 |#1|))) (T -453))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1262 (-407 (-950 *3)))) (-4 *3 (-172)) (-14 *6 (-1262 (-687 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))))) (-3250 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -4263 (-642 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-2074 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -4263 (-642 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3025 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-919)) (-14 *4 (-642 (-1173))) (-14 *5 (-1262 (-687 *2))))) (-3025 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 *2)) (-14 *6 (-1262 (-687 *3))))) (-3025 (*1 *1 *2) (-12 (-5 *2 (-1262 (-1173))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3025 (*1 *1 *2) (-12 (-5 *2 (-1262 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3025 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-919)) (-14 *6 (-642 *2)) (-14 *7 (-1262 (-687 *4))))) (-3025 (*1 *1 *2 *3) (-12 (-5 *2 (-1262 (-1173))) (-5 *3 (-1262 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-919)) (-14 *6 (-642 (-1173))) (-14 *7 (-1262 (-687 *4))))) (-3956 (*1 *2) (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-1393 (*1 *2) (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-2384 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-2235 (*1 *2) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-4345 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-4254 (*1 *2) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-1262 (-453 *4 *5 *6 *7))) (-5 *2 (-642 (-950 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) (-14 *5 (-919)) (-14 *6 (-642 (-1173))) (-14 *7 (-1262 (-687 *4))))) (-2815 (*1 *2) (-12 (-5 *2 (-642 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
+(-13 (-417 (-407 (-950 |#1|))) (-646 (-1139 |#2| (-407 (-950 |#1|)))) (-10 -8 (-15 -2327 ($ (-1262 (-407 (-950 |#1|))))) (-15 -3250 ((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed"))) (-15 -2074 ((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed"))) (-15 -3025 ($)) (-15 -3025 ($ (-1173))) (-15 -3025 ($ (-1262 (-1173)))) (-15 -3025 ($ (-1262 $))) (-15 -3025 ($ (-1173) (-1262 $))) (-15 -3025 ($ (-1262 (-1173)) (-1262 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -3956 ((-1169 (-407 (-950 |#1|))))) (-15 -2057 ((-1169 (-407 (-950 |#1|))) $)) (-15 -3473 ((-407 (-950 |#1|)) $)) (-15 -2059 ((-407 (-950 |#1|)) $)) (-15 -1393 ((-1169 (-407 (-950 |#1|))))) (-15 -2830 ((-1169 (-407 (-950 |#1|))) $)) (-15 -1518 ((-407 (-950 |#1|)) $)) (-15 -1974 ((-407 (-950 |#1|)) $)) (-15 -2384 ((-407 (-950 |#1|)) $ $)) (-15 -2235 ((-407 (-950 |#1|)))) (-15 -4345 ((-407 (-950 |#1|)) $ $)) (-15 -4254 ((-407 (-950 |#1|)))) (-15 -2815 ((-642 (-950 |#1|)) (-1262 $))) (-15 -2815 ((-642 (-950 |#1|))))) |%noBranch|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 18)) (-3802 (((-642 (-862 |#1|)) $) 94)) (-3615 (((-1169 $) $ (-862 |#1|)) 59) (((-1169 |#2|) $) 143)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1387 (($ $) NIL (|has| |#2| (-556)))) (-2037 (((-112) $) NIL (|has| |#2| (-556)))) (-4055 (((-769) $) 27) (((-769) $ (-642 (-862 |#1|))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-4316 (($ $) NIL (|has| |#2| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#2| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) 57) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-862 |#1|) "failed") $) NIL)) (-3027 ((|#2| $) 55) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-862 |#1|) $) NIL)) (-2022 (($ $ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-3884 (($ $ (-642 (-564))) 100)) (-1718 (($ $) 88)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#2| (-907)))) (-2575 (($ $ |#2| |#3| $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) 72)) (-3790 (($ (-1169 |#2|) (-862 |#1|)) 148) (($ (-1169 $) (-862 |#1|)) 65)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) 75)) (-3774 (($ |#2| |#3|) 38) (($ $ (-862 |#1|) (-769)) 40) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-862 |#1|)) NIL)) (-1398 ((|#3| $) NIL) (((-769) $ (-862 |#1|)) 63) (((-642 (-769)) $ (-642 (-862 |#1|))) 70)) (-2026 (($ (-1 |#3| |#3|) $) NIL)) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-4184 (((-3 (-862 |#1|) "failed") $) 52)) (-3950 (($ $) NIL)) (-3962 ((|#2| $) 54)) (-2049 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3315 (((-1155) $) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-862 |#1|)) (|:| -2700 (-769))) "failed") $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) 53)) (-3932 ((|#2| $) 141)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) 153 (|has| |#2| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#2| (-907)))) (-2896 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-862 |#1|) |#2|) 107) (($ $ (-642 (-862 |#1|)) (-642 |#2|)) 113) (($ $ (-862 |#1|) $) 105) (($ $ (-642 (-862 |#1|)) (-642 $)) 131)) (-1846 (($ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-3175 (($ $ (-862 |#1|)) 66) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2775 ((|#3| $) 87) (((-769) $ (-862 |#1|)) 49) (((-642 (-769)) $ (-642 (-862 |#1|))) 69)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-862 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4028 ((|#2| $) 150 (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2327 (((-860) $) 178) (($ (-564)) NIL) (($ |#2|) 106) (($ (-862 |#1|)) 42) (($ (-407 (-564))) NIL (-2706 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3849 (((-642 |#2|) $) NIL)) (-2102 ((|#2| $ |#3|) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#2| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2312 (($) 22 T CONST)) (-2322 (($) 31 T CONST)) (-4044 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#2|) 84 (|has| |#2| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 136)) (** (($ $ (-919)) NIL) (($ $ (-769)) 134)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) 83) (($ $ |#2|) NIL)))
+(((-454 |#1| |#2| |#3|) (-13 (-947 |#2| |#3| (-862 |#1|)) (-10 -8 (-15 -3884 ($ $ (-642 (-564)))))) (-642 (-1173)) (-1047) (-238 (-2127 |#1|) (-769))) (T -454))
+((-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-14 *3 (-642 (-1173))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-238 (-2127 *3) (-769))))))
+(-13 (-947 |#2| |#3| (-862 |#1|)) (-10 -8 (-15 -3884 ($ $ (-642 (-564))))))
+((-3606 (((-112) |#1| (-642 |#2|)) 93)) (-1920 (((-3 (-1262 (-642 |#2|)) "failed") (-769) |#1| (-642 |#2|)) 102)) (-1570 (((-3 (-642 |#2|) "failed") |#2| |#1| (-1262 (-642 |#2|))) 104)) (-1790 ((|#2| |#2| |#1|) 35)) (-1939 (((-769) |#2| (-642 |#2|)) 26)))
+(((-455 |#1| |#2|) (-10 -7 (-15 -1790 (|#2| |#2| |#1|)) (-15 -1939 ((-769) |#2| (-642 |#2|))) (-15 -1920 ((-3 (-1262 (-642 |#2|)) "failed") (-769) |#1| (-642 |#2|))) (-15 -1570 ((-3 (-642 |#2|) "failed") |#2| |#1| (-1262 (-642 |#2|)))) (-15 -3606 ((-112) |#1| (-642 |#2|)))) (-307) (-1238 |#1|)) (T -455))
+((-3606 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *5)) (-4 *5 (-1238 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-1570 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1262 (-642 *3))) (-4 *4 (-307)) (-5 *2 (-642 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1238 *4)))) (-1920 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-769)) (-4 *4 (-307)) (-4 *6 (-1238 *4)) (-5 *2 (-1262 (-642 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-642 *6)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-307)) (-5 *2 (-769)) (-5 *1 (-455 *5 *3)))) (-1790 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1238 *3)))))
+(-10 -7 (-15 -1790 (|#2| |#2| |#1|)) (-15 -1939 ((-769) |#2| (-642 |#2|))) (-15 -1920 ((-3 (-1262 (-642 |#2|)) "failed") (-769) |#1| (-642 |#2|))) (-15 -1570 ((-3 (-642 |#2|) "failed") |#2| |#1| (-1262 (-642 |#2|)))) (-15 -3606 ((-112) |#1| (-642 |#2|))))
+((-3643 (((-418 |#5|) |#5|) 24)))
+(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3643 ((-418 |#5|) |#5|))) (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)) (-15 -3329 ((-3 $ "failed") (-1173))))) (-791) (-556) (-556) (-947 |#4| |#2| |#1|)) (T -456))
+((-3643 (*1 *2 *3) (-12 (-4 *4 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)) (-15 -3329 ((-3 $ "failed") (-1173)))))) (-4 *5 (-791)) (-4 *7 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) (-4 *3 (-947 *7 *5 *4)))))
+(-10 -7 (-15 -3643 ((-418 |#5|) |#5|)))
+((-3538 ((|#3|) 40)) (-2351 (((-1169 |#4|) (-1169 |#4|) (-1169 |#4|)) 36)))
+(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2351 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -3538 (|#3|))) (-791) (-848) (-907) (-947 |#3| |#1| |#2|)) (T -457))
+((-3538 (*1 *2) (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-907)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-947 *2 *3 *4)))) (-2351 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-907)) (-5 *1 (-457 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2351 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -3538 (|#3|)))
+((-3643 (((-418 (-1169 |#1|)) (-1169 |#1|)) 43)))
+(((-458 |#1|) (-10 -7 (-15 -3643 ((-418 (-1169 |#1|)) (-1169 |#1|)))) (-307)) (T -458))
+((-3643 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1169 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1169 *4)))))
+(-10 -7 (-15 -3643 ((-418 (-1169 |#1|)) (-1169 |#1|))))
+((-3864 (((-52) |#2| (-1173) (-294 |#2|) (-1229 (-769))) 44) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-769))) 43) (((-52) |#2| (-1173) (-294 |#2|)) 36) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 29)) (-2707 (((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))) 87) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))) 86) (((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564))) 85) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564))) 84) (((-52) |#2| (-1173) (-294 |#2|)) 79) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 78)) (-3889 (((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))) 73) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))) 71)) (-3876 (((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564))) 50) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564))) 49)))
+(((-459 |#1| |#2|) (-10 -7 (-15 -3864 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3864 ((-52) |#2| (-1173) (-294 |#2|))) (-15 -3864 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-769)))) (-15 -3864 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-769)))) (-15 -3876 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564)))) (-15 -3876 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564)))) (-15 -3889 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -3889 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -2707 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -2707 ((-52) |#2| (-1173) (-294 |#2|))) (-15 -2707 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564)))) (-15 -2707 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564)))) (-15 -2707 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -2707 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564))))) (-13 (-556) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -459))
+((-2707 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *8))) (-4 *8 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-2707 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1229 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-2707 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-564))) (-4 *7 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2707 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-3889 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *8))) (-4 *8 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-3889 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1229 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-3876 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3876 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-564))) (-4 *7 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3864 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-769))) (-4 *3 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-769))) (-4 *7 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3864 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-3864 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))))
+(-10 -7 (-15 -3864 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3864 ((-52) |#2| (-1173) (-294 |#2|))) (-15 -3864 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-769)))) (-15 -3864 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-769)))) (-15 -3876 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564)))) (-15 -3876 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564)))) (-15 -3889 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -3889 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -2707 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -2707 ((-52) |#2| (-1173) (-294 |#2|))) (-15 -2707 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1229 (-564)))) (-15 -2707 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-564)))) (-15 -2707 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))) (-15 -2707 ((-52) |#2| (-1173) (-294 |#2|) (-1229 (-407 (-564))) (-407 (-564)))))
+((-1790 ((|#2| |#2| |#1|) 15)) (-3957 (((-642 |#2|) |#2| (-642 |#2|) |#1| (-919)) 85)) (-2702 (((-2 (|:| |plist| (-642 |#2|)) (|:| |modulo| |#1|)) |#2| (-642 |#2|) |#1| (-919)) 71)))
+(((-460 |#1| |#2|) (-10 -7 (-15 -2702 ((-2 (|:| |plist| (-642 |#2|)) (|:| |modulo| |#1|)) |#2| (-642 |#2|) |#1| (-919))) (-15 -3957 ((-642 |#2|) |#2| (-642 |#2|) |#1| (-919))) (-15 -1790 (|#2| |#2| |#1|))) (-307) (-1238 |#1|)) (T -460))
+((-1790 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1238 *3)))) (-3957 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-642 *3)) (-5 *5 (-919)) (-4 *3 (-1238 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-2702 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-919)) (-4 *5 (-307)) (-4 *3 (-1238 *5)) (-5 *2 (-2 (|:| |plist| (-642 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-642 *3)))))
+(-10 -7 (-15 -2702 ((-2 (|:| |plist| (-642 |#2|)) (|:| |modulo| |#1|)) |#2| (-642 |#2|) |#1| (-919))) (-15 -3957 ((-642 |#2|) |#2| (-642 |#2|) |#1| (-919))) (-15 -1790 (|#2| |#2| |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 28)) (-3638 (($ |#3|) 25)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-1718 (($ $) 32)) (-2114 (($ |#2| |#4| $) 33)) (-3774 (($ |#2| (-711 |#3| |#4| |#5|)) 24)) (-3950 (((-711 |#3| |#4| |#5|) $) 15)) (-4049 ((|#3| $) 19)) (-3032 ((|#4| $) 17)) (-3962 ((|#2| $) 29)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-3282 (($ |#2| |#3| |#4|) 26)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 36 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 34)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-715 |#6|) (-715 |#2|) (-10 -8 (-15 -3962 (|#2| $)) (-15 -3950 ((-711 |#3| |#4| |#5|) $)) (-15 -3032 (|#4| $)) (-15 -4049 (|#3| $)) (-15 -1718 ($ $)) (-15 -3774 ($ |#2| (-711 |#3| |#4| |#5|))) (-15 -3638 ($ |#3|)) (-15 -3282 ($ |#2| |#3| |#4|)) (-15 -2114 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-642 (-1173)) (-172) (-848) (-238 (-2127 |#1|) (-769)) (-1 (-112) (-2 (|:| -2047 |#3|) (|:| -2700 |#4|)) (-2 (|:| -2047 |#3|) (|:| -2700 |#4|))) (-947 |#2| |#4| (-862 |#1|))) (T -461))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) (-4 *6 (-238 (-2127 *3) (-769))) (-14 *7 (-1 (-112) (-2 (|:| -2047 *5) (|:| -2700 *6)) (-2 (|:| -2047 *5) (|:| -2700 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-848)) (-4 *2 (-947 *4 *6 (-862 *3))))) (-3962 (*1 *2 *1) (-12 (-14 *3 (-642 (-1173))) (-4 *5 (-238 (-2127 *3) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2047 *4) (|:| -2700 *5)) (-2 (|:| -2047 *4) (|:| -2700 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-848)) (-4 *7 (-947 *2 *5 (-862 *3))))) (-3950 (*1 *2 *1) (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) (-4 *6 (-238 (-2127 *3) (-769))) (-14 *7 (-1 (-112) (-2 (|:| -2047 *5) (|:| -2700 *6)) (-2 (|:| -2047 *5) (|:| -2700 *6)))) (-5 *2 (-711 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-848)) (-4 *8 (-947 *4 *6 (-862 *3))))) (-3032 (*1 *2 *1) (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2047 *5) (|:| -2700 *2)) (-2 (|:| -2047 *5) (|:| -2700 *2)))) (-4 *2 (-238 (-2127 *3) (-769))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-848)) (-4 *7 (-947 *4 *2 (-862 *3))))) (-4049 (*1 *2 *1) (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) (-4 *5 (-238 (-2127 *3) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2047 *2) (|:| -2700 *5)) (-2 (|:| -2047 *2) (|:| -2700 *5)))) (-4 *2 (-848)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-947 *4 *5 (-862 *3))))) (-1718 (*1 *1 *1) (-12 (-14 *2 (-642 (-1173))) (-4 *3 (-172)) (-4 *5 (-238 (-2127 *2) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2047 *4) (|:| -2700 *5)) (-2 (|:| -2047 *4) (|:| -2700 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-848)) (-4 *7 (-947 *3 *5 (-862 *2))))) (-3774 (*1 *1 *2 *3) (-12 (-5 *3 (-711 *5 *6 *7)) (-4 *5 (-848)) (-4 *6 (-238 (-2127 *4) (-769))) (-14 *7 (-1 (-112) (-2 (|:| -2047 *5) (|:| -2700 *6)) (-2 (|:| -2047 *5) (|:| -2700 *6)))) (-14 *4 (-642 (-1173))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-947 *2 *6 (-862 *4))))) (-3638 (*1 *1 *2) (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172)) (-4 *5 (-238 (-2127 *3) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2047 *2) (|:| -2700 *5)) (-2 (|:| -2047 *2) (|:| -2700 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-848)) (-4 *7 (-947 *4 *5 (-862 *3))))) (-3282 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-642 (-1173))) (-4 *2 (-172)) (-4 *4 (-238 (-2127 *5) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2047 *3) (|:| -2700 *4)) (-2 (|:| -2047 *3) (|:| -2700 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-848)) (-4 *7 (-947 *2 *4 (-862 *5))))) (-2114 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-642 (-1173))) (-4 *2 (-172)) (-4 *3 (-238 (-2127 *4) (-769))) (-14 *6 (-1 (-112) (-2 (|:| -2047 *5) (|:| -2700 *3)) (-2 (|:| -2047 *5) (|:| -2700 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-848)) (-4 *7 (-947 *2 *3 (-862 *4))))))
+(-13 (-715 |#6|) (-715 |#2|) (-10 -8 (-15 -3962 (|#2| $)) (-15 -3950 ((-711 |#3| |#4| |#5|) $)) (-15 -3032 (|#4| $)) (-15 -4049 (|#3| $)) (-15 -1718 ($ $)) (-15 -3774 ($ |#2| (-711 |#3| |#4| |#5|))) (-15 -3638 ($ |#3|)) (-15 -3282 ($ |#2| |#3| |#4|)) (-15 -2114 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-3449 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
+(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3449 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-791) (-848) (-556) (-947 |#3| |#1| |#2|) (-13 (-1036 (-407 (-564))) (-363) (-10 -8 (-15 -2327 ($ |#4|)) (-15 -2245 (|#4| $)) (-15 -2255 (|#4| $))))) (T -462))
+((-3449 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-848)) (-4 *5 (-791)) (-4 *6 (-556)) (-4 *7 (-947 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1036 (-407 (-564))) (-363) (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))))))
+(-10 -7 (-15 -3449 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2907 (((-112) $ $) NIL)) (-3802 (((-642 |#3|) $) 41)) (-3317 (((-112) $) NIL)) (-4293 (((-112) $) NIL (|has| |#1| (-556)))) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-1700 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-1496 (((-112) $) NIL (|has| |#1| (-556)))) (-4375 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2888 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2850 (((-112) $) NIL (|has| |#1| (-556)))) (-2627 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) 49)) (-3027 (($ (-642 |#4|)) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2490 (($ |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4410)))) (-2936 (((-642 |#4|) $) 18 (|has| $ (-6 -4410)))) (-3290 ((|#3| $) 47)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#4|) $) 14 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2613 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) 21)) (-3370 (((-642 |#3|) $) NIL)) (-4120 (((-112) |#3| $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4033 (((-1117) $) NIL)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 39)) (-2972 (($) 17)) (-4043 (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) 16)) (-1314 (((-536) $) NIL (|has| |#4| (-612 (-536)))) (($ (-642 |#4|)) 51)) (-2337 (($ (-642 |#4|)) 13)) (-3153 (($ $ |#3|) NIL)) (-3696 (($ $ |#3|) NIL)) (-1749 (($ $ |#3|) NIL)) (-2327 (((-860) $) 38) (((-642 |#4|) $) 50)) (-1648 (((-112) $ $) NIL)) (-2710 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 30)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-463 |#1| |#2| |#3| |#4|) (-13 (-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1314 ($ (-642 |#4|))) (-6 -4410) (-6 -4411))) (-1047) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -463))
+((-1314 (*1 *1 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-463 *3 *4 *5 *6)))))
+(-13 (-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1314 ($ (-642 |#4|))) (-6 -4410) (-6 -4411)))
+((-2312 (($) 11)) (-2322 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -2322 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2312 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464))
+NIL
+(-10 -8 (-15 -2322 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2312 (|#1|)))
+((-2907 (((-112) $ $) 7)) (-4278 (((-3 |#1| "failed") $) 27)) (-3027 ((|#1| $) 28)) (-1739 (($ $ $) 24)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2775 ((|#2| $) 20)) (-2327 (((-860) $) 12) (($ |#1|) 26)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 25 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 16) (($ $ $) 14)) (-2974 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
(((-465 |#1| |#2|) (-140) (-172) (-23)) (T -465))
-((-2417 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2897 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
-(-13 (-470 |t#1| |t#2|) (-1034 |t#1|) (-10 -8 (-15 (-2417) ($) -2959) (-15 -2897 ($ $ $))))
-(((-102) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-470 |#1| |#2|) . T) ((-1034 |#1|) . T) ((-1094) . T))
-((-3928 (((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-917)) 29)) (-4301 (((-1259 (-1259 (-564))) (-917)) 24)))
-(((-466) (-10 -7 (-15 -3928 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-917))) (-15 -4301 ((-1259 (-1259 (-564))) (-917))))) (T -466))
-((-4301 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466)))) (-3928 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-917)) (-5 *1 (-466)))))
-(-10 -7 (-15 -3928 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-917))) (-15 -4301 ((-1259 (-1259 (-564))) (-917))))
-((-1321 (((-564) (-564)) 32) (((-564)) 24)) (-3913 (((-564) (-564)) 28) (((-564)) 20)) (-1711 (((-564) (-564)) 30) (((-564)) 22)) (-1726 (((-112) (-112)) 14) (((-112)) 12)) (-1822 (((-112) (-112)) 13) (((-112)) 11)) (-2318 (((-112) (-112)) 26) (((-112)) 17)))
-(((-467) (-10 -7 (-15 -1822 ((-112))) (-15 -1726 ((-112))) (-15 -1822 ((-112) (-112))) (-15 -1726 ((-112) (-112))) (-15 -2318 ((-112))) (-15 -1711 ((-564))) (-15 -3913 ((-564))) (-15 -1321 ((-564))) (-15 -2318 ((-112) (-112))) (-15 -1711 ((-564) (-564))) (-15 -3913 ((-564) (-564))) (-15 -1321 ((-564) (-564))))) (T -467))
-((-1321 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1321 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3913 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1711 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2318 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1726 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1726 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1822 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
-(-10 -7 (-15 -1822 ((-112))) (-15 -1726 ((-112))) (-15 -1822 ((-112) (-112))) (-15 -1726 ((-112) (-112))) (-15 -2318 ((-112))) (-15 -1711 ((-564))) (-15 -3913 ((-564))) (-15 -1321 ((-564))) (-15 -2318 ((-112) (-112))) (-15 -1711 ((-564) (-564))) (-15 -3913 ((-564) (-564))) (-15 -1321 ((-564) (-564))))
-((-3009 (((-112) $ $) NIL)) (-3170 (((-641 (-379)) $) 34) (((-641 (-379)) $ (-641 (-379))) 145)) (-2019 (((-641 (-1088 (-379))) $) 16) (((-641 (-1088 (-379))) $ (-641 (-1088 (-379)))) 141)) (-2480 (((-641 (-641 (-939 (-225)))) (-641 (-641 (-939 (-225)))) (-641 (-870))) 58)) (-1933 (((-641 (-641 (-939 (-225)))) $) 136)) (-2770 (((-1264) $ (-939 (-225)) (-870)) 161)) (-3553 (($ $) 135) (($ (-641 (-641 (-939 (-225))))) 148) (($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917))) 147) (($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917)) (-641 (-263))) 149)) (-2766 (((-1152) $) NIL)) (-1901 (((-564) $) 109)) (-4052 (((-1114) $) NIL)) (-2764 (($) 146)) (-3922 (((-641 (-225)) (-641 (-641 (-939 (-225))))) 88)) (-3578 (((-1264) $ (-641 (-939 (-225))) (-870) (-870) (-917)) 154) (((-1264) $ (-939 (-225))) 156) (((-1264) $ (-939 (-225)) (-870) (-870) (-917)) 155)) (-2423 (((-858) $) 167) (($ (-641 (-641 (-939 (-225))))) 162)) (-1860 (((-112) $ $) NIL)) (-1608 (((-1264) $ (-939 (-225))) 160)) (-2974 (((-112) $ $) NIL)))
-(((-468) (-13 (-1094) (-10 -8 (-15 -2764 ($)) (-15 -3553 ($ $)) (-15 -3553 ($ (-641 (-641 (-939 (-225)))))) (-15 -3553 ($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917)))) (-15 -3553 ($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917)) (-641 (-263)))) (-15 -1933 ((-641 (-641 (-939 (-225)))) $)) (-15 -1901 ((-564) $)) (-15 -2019 ((-641 (-1088 (-379))) $)) (-15 -2019 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -3170 ((-641 (-379)) $)) (-15 -3170 ((-641 (-379)) $ (-641 (-379)))) (-15 -3578 ((-1264) $ (-641 (-939 (-225))) (-870) (-870) (-917))) (-15 -3578 ((-1264) $ (-939 (-225)))) (-15 -3578 ((-1264) $ (-939 (-225)) (-870) (-870) (-917))) (-15 -1608 ((-1264) $ (-939 (-225)))) (-15 -2770 ((-1264) $ (-939 (-225)) (-870))) (-15 -2423 ($ (-641 (-641 (-939 (-225)))))) (-15 -2423 ((-858) $)) (-15 -2480 ((-641 (-641 (-939 (-225)))) (-641 (-641 (-939 (-225)))) (-641 (-870)))) (-15 -3922 ((-641 (-225)) (-641 (-641 (-939 (-225))))))))) (T -468))
-((-2423 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-468)))) (-2764 (*1 *1) (-5 *1 (-468))) (-3553 (*1 *1 *1) (-5 *1 (-468))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468)))) (-3553 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870))) (-5 *4 (-641 (-917))) (-5 *1 (-468)))) (-3553 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870))) (-5 *4 (-641 (-917))) (-5 *5 (-641 (-263))) (-5 *1 (-468)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-2019 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-3170 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-3578 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-3578 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-3578 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1608 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-2770 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468)))) (-2480 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870))) (-5 *1 (-468)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *2 (-641 (-225))) (-5 *1 (-468)))))
-(-13 (-1094) (-10 -8 (-15 -2764 ($)) (-15 -3553 ($ $)) (-15 -3553 ($ (-641 (-641 (-939 (-225)))))) (-15 -3553 ($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917)))) (-15 -3553 ($ (-641 (-641 (-939 (-225)))) (-641 (-870)) (-641 (-870)) (-641 (-917)) (-641 (-263)))) (-15 -1933 ((-641 (-641 (-939 (-225)))) $)) (-15 -1901 ((-564) $)) (-15 -2019 ((-641 (-1088 (-379))) $)) (-15 -2019 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -3170 ((-641 (-379)) $)) (-15 -3170 ((-641 (-379)) $ (-641 (-379)))) (-15 -3578 ((-1264) $ (-641 (-939 (-225))) (-870) (-870) (-917))) (-15 -3578 ((-1264) $ (-939 (-225)))) (-15 -3578 ((-1264) $ (-939 (-225)) (-870) (-870) (-917))) (-15 -1608 ((-1264) $ (-939 (-225)))) (-15 -2770 ((-1264) $ (-939 (-225)) (-870))) (-15 -2423 ($ (-641 (-641 (-939 (-225)))))) (-15 -2423 ((-858) $)) (-15 -2480 ((-641 (-641 (-939 (-225)))) (-641 (-641 (-939 (-225)))) (-641 (-870)))) (-15 -3922 ((-641 (-225)) (-641 (-641 (-939 (-225))))))))
-((-3082 (($ $) NIL) (($ $ $) 11)))
-(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469))
-NIL
-(-10 -8 (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1568 ((|#2| $) 20)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 16) (($ $ $) 14)) (-3070 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+((-2322 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1739 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
+(-13 (-470 |t#1| |t#2|) (-1036 |t#1|) (-10 -8 (-15 (-2322) ($) -2858) (-15 -1739 ($ $ $))))
+(((-102) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-470 |#1| |#2|) . T) ((-1036 |#1|) . T) ((-1097) . T))
+((-1986 (((-1262 (-1262 (-564))) (-1262 (-1262 (-564))) (-919)) 29)) (-3537 (((-1262 (-1262 (-564))) (-919)) 24)))
+(((-466) (-10 -7 (-15 -1986 ((-1262 (-1262 (-564))) (-1262 (-1262 (-564))) (-919))) (-15 -3537 ((-1262 (-1262 (-564))) (-919))))) (T -466))
+((-3537 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1262 (-1262 (-564)))) (-5 *1 (-466)))) (-1986 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 (-1262 (-564)))) (-5 *3 (-919)) (-5 *1 (-466)))))
+(-10 -7 (-15 -1986 ((-1262 (-1262 (-564))) (-1262 (-1262 (-564))) (-919))) (-15 -3537 ((-1262 (-1262 (-564))) (-919))))
+((-3562 (((-564) (-564)) 32) (((-564)) 24)) (-3741 (((-564) (-564)) 28) (((-564)) 20)) (-1446 (((-564) (-564)) 30) (((-564)) 22)) (-1426 (((-112) (-112)) 14) (((-112)) 12)) (-1671 (((-112) (-112)) 13) (((-112)) 11)) (-2098 (((-112) (-112)) 26) (((-112)) 17)))
+(((-467) (-10 -7 (-15 -1671 ((-112))) (-15 -1426 ((-112))) (-15 -1671 ((-112) (-112))) (-15 -1426 ((-112) (-112))) (-15 -2098 ((-112))) (-15 -1446 ((-564))) (-15 -3741 ((-564))) (-15 -3562 ((-564))) (-15 -2098 ((-112) (-112))) (-15 -1446 ((-564) (-564))) (-15 -3741 ((-564) (-564))) (-15 -3562 ((-564) (-564))))) (T -467))
+((-3562 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3562 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3741 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1446 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2098 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1426 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1671 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1426 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1671 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+(-10 -7 (-15 -1671 ((-112))) (-15 -1426 ((-112))) (-15 -1671 ((-112) (-112))) (-15 -1426 ((-112) (-112))) (-15 -2098 ((-112))) (-15 -1446 ((-564))) (-15 -3741 ((-564))) (-15 -3562 ((-564))) (-15 -2098 ((-112) (-112))) (-15 -1446 ((-564) (-564))) (-15 -3741 ((-564) (-564))) (-15 -3562 ((-564) (-564))))
+((-2907 (((-112) $ $) NIL)) (-3083 (((-642 (-379)) $) 34) (((-642 (-379)) $ (-642 (-379))) 145)) (-2229 (((-642 (-1091 (-379))) $) 16) (((-642 (-1091 (-379))) $ (-642 (-1091 (-379)))) 141)) (-3327 (((-642 (-642 (-941 (-225)))) (-642 (-642 (-941 (-225)))) (-642 (-872))) 58)) (-2304 (((-642 (-642 (-941 (-225)))) $) 136)) (-2669 (((-1267) $ (-941 (-225)) (-872)) 161)) (-4290 (($ $) 135) (($ (-642 (-642 (-941 (-225))))) 148) (($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919))) 147) (($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919)) (-642 (-263))) 149)) (-3315 (((-1155) $) NIL)) (-1907 (((-564) $) 109)) (-4033 (((-1117) $) NIL)) (-2828 (($) 146)) (-2145 (((-642 (-225)) (-642 (-642 (-941 (-225))))) 88)) (-4046 (((-1267) $ (-642 (-941 (-225))) (-872) (-872) (-919)) 154) (((-1267) $ (-941 (-225))) 156) (((-1267) $ (-941 (-225)) (-872) (-872) (-919)) 155)) (-2327 (((-860) $) 167) (($ (-642 (-642 (-941 (-225))))) 162)) (-1648 (((-112) $ $) NIL)) (-2709 (((-1267) $ (-941 (-225))) 160)) (-2872 (((-112) $ $) NIL)))
+(((-468) (-13 (-1097) (-10 -8 (-15 -2828 ($)) (-15 -4290 ($ $)) (-15 -4290 ($ (-642 (-642 (-941 (-225)))))) (-15 -4290 ($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919)))) (-15 -4290 ($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919)) (-642 (-263)))) (-15 -2304 ((-642 (-642 (-941 (-225)))) $)) (-15 -1907 ((-564) $)) (-15 -2229 ((-642 (-1091 (-379))) $)) (-15 -2229 ((-642 (-1091 (-379))) $ (-642 (-1091 (-379))))) (-15 -3083 ((-642 (-379)) $)) (-15 -3083 ((-642 (-379)) $ (-642 (-379)))) (-15 -4046 ((-1267) $ (-642 (-941 (-225))) (-872) (-872) (-919))) (-15 -4046 ((-1267) $ (-941 (-225)))) (-15 -4046 ((-1267) $ (-941 (-225)) (-872) (-872) (-919))) (-15 -2709 ((-1267) $ (-941 (-225)))) (-15 -2669 ((-1267) $ (-941 (-225)) (-872))) (-15 -2327 ($ (-642 (-642 (-941 (-225)))))) (-15 -2327 ((-860) $)) (-15 -3327 ((-642 (-642 (-941 (-225)))) (-642 (-642 (-941 (-225)))) (-642 (-872)))) (-15 -2145 ((-642 (-225)) (-642 (-642 (-941 (-225))))))))) (T -468))
+((-2327 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-468)))) (-2828 (*1 *1) (-5 *1 (-468))) (-4290 (*1 *1 *1) (-5 *1 (-468))) (-4290 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468)))) (-4290 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872))) (-5 *4 (-642 (-919))) (-5 *1 (-468)))) (-4290 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872))) (-5 *4 (-642 (-919))) (-5 *5 (-642 (-263))) (-5 *1 (-468)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-468)))) (-2229 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-468)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-468)))) (-3083 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-468)))) (-4046 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *4 (-872)) (-5 *5 (-919)) (-5 *2 (-1267)) (-5 *1 (-468)))) (-4046 (*1 *2 *1 *3) (-12 (-5 *3 (-941 (-225))) (-5 *2 (-1267)) (-5 *1 (-468)))) (-4046 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-941 (-225))) (-5 *4 (-872)) (-5 *5 (-919)) (-5 *2 (-1267)) (-5 *1 (-468)))) (-2709 (*1 *2 *1 *3) (-12 (-5 *3 (-941 (-225))) (-5 *2 (-1267)) (-5 *1 (-468)))) (-2669 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941 (-225))) (-5 *4 (-872)) (-5 *2 (-1267)) (-5 *1 (-468)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468)))) (-3327 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872))) (-5 *1 (-468)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *2 (-642 (-225))) (-5 *1 (-468)))))
+(-13 (-1097) (-10 -8 (-15 -2828 ($)) (-15 -4290 ($ $)) (-15 -4290 ($ (-642 (-642 (-941 (-225)))))) (-15 -4290 ($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919)))) (-15 -4290 ($ (-642 (-642 (-941 (-225)))) (-642 (-872)) (-642 (-872)) (-642 (-919)) (-642 (-263)))) (-15 -2304 ((-642 (-642 (-941 (-225)))) $)) (-15 -1907 ((-564) $)) (-15 -2229 ((-642 (-1091 (-379))) $)) (-15 -2229 ((-642 (-1091 (-379))) $ (-642 (-1091 (-379))))) (-15 -3083 ((-642 (-379)) $)) (-15 -3083 ((-642 (-379)) $ (-642 (-379)))) (-15 -4046 ((-1267) $ (-642 (-941 (-225))) (-872) (-872) (-919))) (-15 -4046 ((-1267) $ (-941 (-225)))) (-15 -4046 ((-1267) $ (-941 (-225)) (-872) (-872) (-919))) (-15 -2709 ((-1267) $ (-941 (-225)))) (-15 -2669 ((-1267) $ (-941 (-225)) (-872))) (-15 -2327 ($ (-642 (-642 (-941 (-225)))))) (-15 -2327 ((-860) $)) (-15 -3327 ((-642 (-642 (-941 (-225)))) (-642 (-642 (-941 (-225)))) (-642 (-872)))) (-15 -2145 ((-642 (-225)) (-642 (-642 (-941 (-225))))))))
+((-2987 (($ $) NIL) (($ $ $) 11)))
+(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469))
+NIL
+(-10 -8 (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2775 ((|#2| $) 20)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 16) (($ $ $) 14)) (-2974 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
(((-470 |#1| |#2|) (-140) (-172) (-23)) (T -470))
-((-1568 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-2403 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3082 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3070 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3082 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
-(-13 (-1094) (-10 -8 (-15 -1568 (|t#2| $)) (-15 (-2403) ($) -2959) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3082 ($ $)) (-15 -3070 ($ $ $)) (-15 -3082 ($ $ $))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-2826 (((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-860 |#1|))) 137)) (-3630 (((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|))) 134)) (-1739 (((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|))) 86)))
-(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -3630 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|)))) (-15 -2826 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-860 |#1|)))) (-15 -1739 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|))))) (-641 (-1170)) (-452) (-452)) (T -471))
-((-1739 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-860 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-641 (-247 *5 *6))) (|:| |coords| (-641 (-564))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))) (-2826 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-860 *4))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-3630 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-860 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))))
-(-10 -7 (-15 -3630 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|)))) (-15 -2826 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-860 |#1|)))) (-15 -1739 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-860 |#1|)))))
-((-3293 (((-3 $ "failed") $) 11)) (-3185 (($ $ $) 23)) (-1542 (($ $ $) 24)) (-3092 (($ $ $) 9)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 22)))
-(((-472 |#1|) (-10 -8 (-15 -1542 (|#1| |#1| |#1|)) (-15 -3185 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3092 (|#1| |#1| |#1|)) (-15 -3293 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) (-473)) (T -472))
-NIL
-(-10 -8 (-15 -1542 (|#1| |#1| |#1|)) (-15 -3185 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3092 (|#1| |#1| |#1|)) (-15 -3293 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))))
-((-3009 (((-112) $ $) 7)) (-4080 (($) 19 T CONST)) (-3293 (((-3 $ "failed") $) 16)) (-4112 (((-112) $) 18)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 25)) (-4052 (((-1114) $) 11)) (-3185 (($ $ $) 22)) (-1542 (($ $ $) 21)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2417 (($) 20 T CONST)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 24)) (** (($ $ (-917)) 14) (($ $ (-767)) 17) (($ $ (-564)) 23)) (* (($ $ $) 15)))
+((-2775 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-2312 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2987 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2974 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2987 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
+(-13 (-1097) (-10 -8 (-15 -2775 (|t#2| $)) (-15 (-2312) ($) -2858) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2987 ($ $)) (-15 -2974 ($ $ $)) (-15 -2987 ($ $ $))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-3996 (((-3 (-642 (-481 |#1| |#2|)) "failed") (-642 (-481 |#1| |#2|)) (-642 (-862 |#1|))) 137)) (-1731 (((-642 (-642 (-247 |#1| |#2|))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|))) 134)) (-2167 (((-2 (|:| |dpolys| (-642 (-247 |#1| |#2|))) (|:| |coords| (-642 (-564)))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|))) 86)))
+(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -1731 ((-642 (-642 (-247 |#1| |#2|))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|)))) (-15 -3996 ((-3 (-642 (-481 |#1| |#2|)) "failed") (-642 (-481 |#1| |#2|)) (-642 (-862 |#1|)))) (-15 -2167 ((-2 (|:| |dpolys| (-642 (-247 |#1| |#2|))) (|:| |coords| (-642 (-564)))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|))))) (-642 (-1173)) (-452) (-452)) (T -471))
+((-2167 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-862 *5))) (-14 *5 (-642 (-1173))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-642 (-247 *5 *6))) (|:| |coords| (-642 (-564))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-642 (-247 *5 *6))) (-4 *7 (-452)))) (-3996 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-481 *4 *5))) (-5 *3 (-642 (-862 *4))) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-1731 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-862 *5))) (-14 *5 (-642 (-1173))) (-4 *6 (-452)) (-5 *2 (-642 (-642 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-642 (-247 *5 *6))) (-4 *7 (-452)))))
+(-10 -7 (-15 -1731 ((-642 (-642 (-247 |#1| |#2|))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|)))) (-15 -3996 ((-3 (-642 (-481 |#1| |#2|)) "failed") (-642 (-481 |#1| |#2|)) (-642 (-862 |#1|)))) (-15 -2167 ((-2 (|:| |dpolys| (-642 (-247 |#1| |#2|))) (|:| |coords| (-642 (-564)))) (-642 (-247 |#1| |#2|)) (-642 (-862 |#1|)))))
+((-3104 (((-3 $ "failed") $) 11)) (-1389 (($ $ $) 23)) (-3759 (($ $ $) 24)) (-2998 (($ $ $) 9)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 22)))
+(((-472 |#1|) (-10 -8 (-15 -3759 (|#1| |#1| |#1|)) (-15 -1389 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2998 (|#1| |#1| |#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919)))) (-473)) (T -472))
+NIL
+(-10 -8 (-15 -3759 (|#1| |#1| |#1|)) (-15 -1389 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2998 (|#1| |#1| |#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919))))
+((-2907 (((-112) $ $) 7)) (-1976 (($) 19 T CONST)) (-3104 (((-3 $ "failed") $) 16)) (-3953 (((-112) $) 18)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 25)) (-4033 (((-1117) $) 11)) (-1389 (($ $ $) 22)) (-3759 (($ $ $) 21)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2322 (($) 20 T CONST)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 24)) (** (($ $ (-919)) 14) (($ $ (-769)) 17) (($ $ (-564)) 23)) (* (($ $ $) 15)))
(((-473) (-140)) (T -473))
-((-3936 (*1 *1 *1) (-4 *1 (-473))) (-3092 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) (-3185 (*1 *1 *1 *1) (-4 *1 (-473))) (-1542 (*1 *1 *1 *1) (-4 *1 (-473))))
-(-13 (-722) (-10 -8 (-15 -3936 ($ $)) (-15 -3092 ($ $ $)) (-15 ** ($ $ (-564))) (-6 -4404) (-15 -3185 ($ $ $)) (-15 -1542 ($ $ $))))
-(((-102) . T) ((-611 (-858)) . T) ((-722) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) 18)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1709 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4289 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3880 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-363)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3858 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1339 (((-112) $) NIL (|has| |#1| (-363)))) (-4243 (((-112) $) NIL)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1747 (($ $ (-917)) NIL) (($ $ (-407 (-564))) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-4357 (($ (-1 |#1| |#1|) $) 25)) (-3657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-363)))) (-2070 (($ $) 29 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 35 (-2807 (-12 (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 30 (|has| |#1| (-38 (-407 (-564)))))) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4016 (($ $ (-407 (-564))) NIL)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1689 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) 28 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 16)) (-1568 (((-407 (-564)) $) NIL)) (-3914 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1255 |#2|)) NIL) (($ (-1244 |#1| |#2| |#3|)) 9) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2007 ((|#1| $ (-407 (-564))) NIL)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-3639 ((|#1| $) 21)) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) 27)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-474 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-10 -8 (-15 -2423 ($ (-1255 |#2|))) (-15 -2423 ($ (-1244 |#1| |#2| |#3|))) (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -474))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1240 |#1|) (-10 -8 (-15 -2423 ($ (-1255 |#2|))) (-15 -2423 ($ (-1244 |#1| |#2| |#3|))) (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-3236 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#2| $ |#1| |#2|) 18)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2327 (((-3 |#2| "failed") |#1| $) 19)) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-1945 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 16)) (-2591 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) NIL)) (-3035 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 ((|#1| $) NIL (|has| |#1| (-846)))) (-1554 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2898 ((|#1| $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3454 (((-641 |#1|) $) NIL)) (-3565 (((-112) |#1| $) NIL)) (-3149 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-2566 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-3050 (((-641 |#1|) $) NIL)) (-1563 (((-112) |#1| $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2658 ((|#2| $) NIL (|has| |#1| (-846)))) (-2139 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL)) (-1592 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3853 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-2423 (((-858) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1860 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-475 |#1| |#2| |#3| |#4|) (-1185 |#1| |#2|) (-1094) (-1094) (-1185 |#1| |#2|) |#2|) (T -475))
-NIL
-(-1185 |#1| |#2|)
-((-3009 (((-112) $ $) NIL)) (-3605 (((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 |#4|)))) (-641 |#4|)) NIL)) (-2578 (((-641 $) (-641 |#4|)) NIL)) (-3836 (((-641 |#3|) $) NIL)) (-3342 (((-112) $) NIL)) (-1594 (((-112) $) NIL (|has| |#1| (-556)))) (-3631 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3494 ((|#4| |#4| $) NIL)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-1667 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4080 (($) NIL T CONST)) (-1968 (((-112) $) 29 (|has| |#1| (-556)))) (-2238 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1489 (((-112) $) NIL (|has| |#1| (-556)))) (-2961 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3703 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) NIL)) (-3120 (($ (-641 |#4|)) NIL)) (-2671 (((-3 $ "failed") $) 45)) (-2405 ((|#4| |#4| $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2591 (($ |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3870 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2248 ((|#4| |#4| $) NIL)) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4020 (((-2 (|:| -1604 (-641 |#4|)) (|:| -2319 (-641 |#4|))) $) NIL)) (-3035 (((-641 |#4|) $) 18 (|has| $ (-6 -4407)))) (-2675 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3378 ((|#3| $) 38)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#4|) $) 19 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2714 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) 23)) (-2814 (((-641 |#3|) $) NIL)) (-3169 (((-112) |#3| $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-2615 (((-3 |#4| "failed") $) 42)) (-3167 (((-641 |#4|) $) NIL)) (-3441 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4241 ((|#4| |#4| $) NIL)) (-2582 (((-112) $ $) NIL)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1929 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3347 ((|#4| |#4| $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 (((-3 |#4| "failed") $) 40)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2533 (((-3 $ "failed") $ |#4|) 57)) (-4016 (($ $ |#4|) NIL)) (-4377 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 17)) (-2994 (($) 14)) (-1568 (((-767) $) NIL)) (-4062 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) 13)) (-1311 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2435 (($ (-641 |#4|)) 22)) (-1834 (($ $ |#3|) 52)) (-1648 (($ $ |#3|) 54)) (-1492 (($ $) NIL)) (-2577 (($ $ |#3|) NIL)) (-2423 (((-858) $) 35) (((-641 |#4|) $) 46)) (-3840 (((-767) $) NIL (|has| |#3| (-368)))) (-1860 (((-112) $ $) NIL)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3212 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-1368 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3579 (((-641 |#3|) $) NIL)) (-1816 (((-112) |#3| $) NIL)) (-2974 (((-112) $ $) NIL)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-476 |#1| |#2| |#3| |#4|) (-1202 |#1| |#2| |#3| |#4|) (-556) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -476))
-NIL
-(-1202 |#1| |#2| |#3| |#4|)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-3120 (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-4274 (($) 17)) (-4112 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-1311 (((-379) $) 21) (((-225) $) 24) (((-407 (-1166 (-564))) $) 18) (((-536) $) 53)) (-2423 (((-858) $) 51) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (((-225) $) 23) (((-379) $) 20)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-2403 (($) 37 T CONST)) (-2417 (($) 8 T CONST)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-477) (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))) (-1018) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -4274 ($))))) (T -477))
-((-4274 (*1 *1) (-5 *1 (-477))))
-(-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))) (-1018) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -4274 ($))))
-((-3009 (((-112) $ $) NIL)) (-1827 (((-1129) $) 11)) (-1813 (((-1129) $) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-478) (-13 (-1077) (-10 -8 (-15 -1813 ((-1129) $)) (-15 -1827 ((-1129) $))))) (T -478))
-((-1813 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))))
-(-13 (-1077) (-10 -8 (-15 -1813 ((-1129) $)) (-15 -1827 ((-1129) $))))
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-3236 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#2| $ |#1| |#2|) 16)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2327 (((-3 |#2| "failed") |#1| $) 20)) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-1945 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 18)) (-2591 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) NIL)) (-3035 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 ((|#1| $) NIL (|has| |#1| (-846)))) (-1554 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2898 ((|#1| $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3454 (((-641 |#1|) $) 13)) (-3565 (((-112) |#1| $) NIL)) (-3149 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-2566 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-3050 (((-641 |#1|) $) NIL)) (-1563 (((-112) |#1| $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2658 ((|#2| $) NIL (|has| |#1| (-846)))) (-2139 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL)) (-1592 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) 19)) (-4366 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3853 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-2423 (((-858) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1860 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 11 (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2181 (((-767) $) 15 (|has| $ (-6 -4407)))))
-(((-479 |#1| |#2| |#3|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4407))) (-1094) (-1094) (-1152)) (T -479))
-NIL
-(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4407)))
-((-1438 (((-564) (-564) (-564)) 19)) (-1768 (((-112) (-564) (-564) (-564) (-564)) 26)) (-1601 (((-1259 (-641 (-564))) (-767) (-767)) 40)))
-(((-480) (-10 -7 (-15 -1438 ((-564) (-564) (-564))) (-15 -1768 ((-112) (-564) (-564) (-564) (-564))) (-15 -1601 ((-1259 (-641 (-564))) (-767) (-767))))) (T -480))
-((-1601 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480)))) (-1768 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480)))))
-(-10 -7 (-15 -1438 ((-564) (-564) (-564))) (-15 -1768 ((-112) (-564) (-564) (-564) (-564))) (-15 -1601 ((-1259 (-641 (-564))) (-767) (-767))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-860 |#1|)) $) NIL)) (-3660 (((-1166 $) $ (-860 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-3063 (($ $) NIL (|has| |#2| (-556)))) (-3330 (((-112) $) NIL (|has| |#2| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-860 |#1|))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2683 (($ $) NIL (|has| |#2| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#2| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-3120 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-860 |#1|) $) NIL)) (-2746 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3720 (($ $ (-641 (-564))) NIL)) (-1684 (($ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#2| (-905)))) (-3850 (($ $ |#2| (-482 (-2181 |#1|) (-767)) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-3824 (($ (-1166 |#2|) (-860 |#1|)) NIL) (($ (-1166 $) (-860 |#1|)) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#2| (-482 (-2181 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-860 |#1|)) NIL)) (-2043 (((-482 (-2181 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-1948 (($ (-1 (-482 (-2181 |#1|) (-767)) (-482 (-2181 |#1|) (-767))) $) NIL)) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-3025 (((-3 (-860 |#1|) "failed") $) NIL)) (-3971 (($ $) NIL)) (-3982 ((|#2| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2766 (((-1152) $) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -1838 (-767))) "failed") $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 ((|#2| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#2| (-905)))) (-2998 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-641 (-860 |#1|)) (-641 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-641 (-860 |#1|)) (-641 $)) NIL)) (-1330 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3254 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-1568 (((-482 (-2181 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4090 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-564))) NIL (-2807 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3191 (((-641 |#2|) $) NIL)) (-2007 ((|#2| $ (-482 (-2181 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-481 |#1| |#2|) (-13 (-945 |#2| (-482 (-2181 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3720 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1045)) (T -481))
-((-3720 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1045)))))
-(-13 (-945 |#2| (-482 (-2181 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3720 ($ $ (-641 (-564))))))
-((-3009 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1494 (((-112) $) NIL (|has| |#2| (-131)))) (-3586 (($ (-917)) NIL (|has| |#2| (-1045)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3878 (($ $ $) NIL (|has| |#2| (-789)))) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1876 (((-112) $ (-767)) NIL)) (-2622 (((-767)) NIL (|has| |#2| (-368)))) (-3249 (((-564) $) NIL (|has| |#2| (-844)))) (-3904 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-3120 (((-564) $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-4277 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1045))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1045)))) (-3293 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-2534 (($) NIL (|has| |#2| (-368)))) (-2726 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#2| $ (-564)) 15)) (-2384 (((-112) $) NIL (|has| |#2| (-844)))) (-3035 (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-4112 (((-112) $) NIL (|has| |#2| (-722)))) (-3326 (((-112) $) NIL (|has| |#2| (-844)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1554 (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2714 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-3256 (((-917) $) NIL (|has| |#2| (-368)))) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-2083 (($ (-917)) NIL (|has| |#2| (-368)))) (-4052 (((-1114) $) NIL (|has| |#2| (-1094)))) (-2658 ((|#2| $) NIL (|has| (-564) (-846)))) (-1592 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-3270 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-3729 (($ (-1259 |#2|)) NIL)) (-4327 (((-134)) NIL (|has| |#2| (-363)))) (-3254 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-4062 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-2807 (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-858) $) NIL (|has| |#2| (-611 (-858))))) (-3719 (((-767)) NIL (|has| |#2| (-1045)) CONST)) (-1860 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1368 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3673 (($ $) NIL (|has| |#2| (-844)))) (-2403 (($) NIL (|has| |#2| (-131)) CONST)) (-2417 (($) NIL (|has| |#2| (-722)) CONST)) (-4063 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-3034 (((-112) $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3011 (((-112) $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2974 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3023 (((-112) $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2999 (((-112) $ $) 21 (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3092 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3082 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-3070 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-564) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-482 |#1| |#2|) (-238 |#1| |#2|) (-767) (-789)) (T -482))
+((-3911 (*1 *1 *1) (-4 *1 (-473))) (-2998 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) (-1389 (*1 *1 *1 *1) (-4 *1 (-473))) (-3759 (*1 *1 *1 *1) (-4 *1 (-473))))
+(-13 (-724) (-10 -8 (-15 -3911 ($ $)) (-15 -2998 ($ $ $)) (-15 ** ($ $ (-564))) (-6 -4407) (-15 -1389 ($ $ $)) (-15 -3759 ($ $ $))))
+(((-102) . T) ((-611 (-860)) . T) ((-724) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) 18)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1726 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-2674 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3851 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL (|has| |#1| (-363)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3875 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1469 (((-112) $) NIL (|has| |#1| (-363)))) (-1941 (((-112) $) NIL)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3267 (($ $ (-919)) NIL) (($ $ (-407 (-564))) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-407 (-564))) NIL) (($ $ (-1079) (-407 (-564))) NIL) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) NIL)) (-4358 (($ (-1 |#1| |#1|) $) 25)) (-3612 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| |#1| (-363)))) (-4107 (($ $) 29 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 35 (-2706 (-12 (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 30 (|has| |#1| (-38 (-407 (-564)))))) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3804 (($ $ (-407 (-564))) NIL)) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1723 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1109)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) 28 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1258 |#2|)) 16)) (-2775 (((-407 (-564)) $) NIL)) (-3888 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1258 |#2|)) NIL) (($ (-1247 |#1| |#2| |#3|)) 9) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2102 ((|#1| $ (-407 (-564))) NIL)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-3594 ((|#1| $) 21)) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) 27)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-474 |#1| |#2| |#3|) (-13 (-1243 |#1|) (-10 -8 (-15 -2327 ($ (-1258 |#2|))) (-15 -2327 ($ (-1247 |#1| |#2| |#3|))) (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -474))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-1247 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))))
+(-13 (-1243 |#1|) (-10 -8 (-15 -2327 ($ (-1258 |#2|))) (-15 -2327 ($ (-1247 |#1| |#2| |#3|))) (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|)))
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-1765 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#2| $ |#1| |#2|) 18)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2248 (((-3 |#2| "failed") |#1| $) 19)) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2265 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 16)) (-2490 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) NIL)) (-2936 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 ((|#1| $) NIL (|has| |#1| (-848)))) (-3234 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3421 ((|#1| $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3393 (((-642 |#1|) $) NIL)) (-2835 (((-112) |#1| $) NIL)) (-2730 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3183 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3997 (((-642 |#1|) $) NIL)) (-4145 (((-112) |#1| $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2557 ((|#2| $) NIL (|has| |#1| (-848)))) (-3254 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL)) (-2696 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2593 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2327 (((-860) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1648 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-475 |#1| |#2| |#3| |#4|) (-1188 |#1| |#2|) (-1097) (-1097) (-1188 |#1| |#2|) |#2|) (T -475))
+NIL
+(-1188 |#1| |#2|)
+((-2907 (((-112) $ $) NIL)) (-3126 (((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 |#4|)))) (-642 |#4|)) NIL)) (-4208 (((-642 $) (-642 |#4|)) NIL)) (-3802 (((-642 |#3|) $) NIL)) (-3317 (((-112) $) NIL)) (-4293 (((-112) $) NIL (|has| |#1| (-556)))) (-3831 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3923 ((|#4| |#4| $) NIL)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-1700 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1976 (($) NIL T CONST)) (-1496 (((-112) $) 29 (|has| |#1| (-556)))) (-4375 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2888 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2850 (((-112) $) NIL (|has| |#1| (-556)))) (-1975 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2627 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) NIL)) (-3027 (($ (-642 |#4|)) NIL)) (-2570 (((-3 $ "failed") $) 45)) (-1493 ((|#4| |#4| $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2490 (($ |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1597 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1821 ((|#4| |#4| $) NIL)) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1738 (((-2 (|:| -1639 (-642 |#4|)) (|:| -2241 (-642 |#4|))) $) NIL)) (-2936 (((-642 |#4|) $) 18 (|has| $ (-6 -4410)))) (-2846 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3290 ((|#3| $) 38)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#4|) $) 19 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2613 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) 23)) (-3370 (((-642 |#3|) $) NIL)) (-4120 (((-112) |#3| $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-2514 (((-3 |#4| "failed") $) 42)) (-2743 (((-642 |#4|) $) NIL)) (-3350 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1415 ((|#4| |#4| $) NIL)) (-3819 (((-112) $ $) NIL)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-2262 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1372 ((|#4| |#4| $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 (((-3 |#4| "failed") $) 40)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3724 (((-3 $ "failed") $ |#4|) 57)) (-3804 (($ $ |#4|) NIL)) (-2121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 17)) (-2972 (($) 14)) (-2775 (((-769) $) NIL)) (-4043 (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) 13)) (-1314 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2337 (($ (-642 |#4|)) 22)) (-3153 (($ $ |#3|) 52)) (-3696 (($ $ |#3|) 54)) (-3114 (($ $) NIL)) (-1749 (($ $ |#3|) NIL)) (-2327 (((-860) $) 35) (((-642 |#4|) $) 46)) (-4195 (((-769) $) NIL (|has| |#3| (-368)))) (-1648 (((-112) $ $) NIL)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3497 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) NIL)) (-2710 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-2240 (((-642 |#3|) $) NIL)) (-1362 (((-112) |#3| $) NIL)) (-2872 (((-112) $ $) NIL)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-476 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2| |#3| |#4|) (-556) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -476))
+NIL
+(-1205 |#1| |#2| |#3| |#4|)
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-3027 (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-4265 (($) 17)) (-3953 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-1314 (((-379) $) 21) (((-225) $) 24) (((-407 (-1169 (-564))) $) 18) (((-536) $) 53)) (-2327 (((-860) $) 51) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (((-225) $) 23) (((-379) $) 20)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-2312 (($) 37 T CONST)) (-2322 (($) 8 T CONST)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-477) (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))) (-1020) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1169 (-564)))) (-612 (-536)) (-10 -8 (-15 -4265 ($))))) (T -477))
+((-4265 (*1 *1) (-5 *1 (-477))))
+(-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))) (-1020) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1169 (-564)))) (-612 (-536)) (-10 -8 (-15 -4265 ($))))
+((-2907 (((-112) $ $) NIL)) (-1843 (((-1132) $) 11)) (-1833 (((-1132) $) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-478) (-13 (-1080) (-10 -8 (-15 -1833 ((-1132) $)) (-15 -1843 ((-1132) $))))) (T -478))
+((-1833 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-478)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-478)))))
+(-13 (-1080) (-10 -8 (-15 -1833 ((-1132) $)) (-15 -1843 ((-1132) $))))
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-1765 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#2| $ |#1| |#2|) 16)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2248 (((-3 |#2| "failed") |#1| $) 20)) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2265 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 18)) (-2490 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) NIL)) (-2936 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 ((|#1| $) NIL (|has| |#1| (-848)))) (-3234 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3421 ((|#1| $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3393 (((-642 |#1|) $) 13)) (-2835 (((-112) |#1| $) NIL)) (-2730 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3183 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3997 (((-642 |#1|) $) NIL)) (-4145 (((-112) |#1| $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2557 ((|#2| $) NIL (|has| |#1| (-848)))) (-3254 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL)) (-2696 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) 19)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2593 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2327 (((-860) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1648 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 11 (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2127 (((-769) $) 15 (|has| $ (-6 -4410)))))
+(((-479 |#1| |#2| |#3|) (-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) (-1097) (-1097) (-1155)) (T -479))
+NIL
+(-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410)))
+((-4299 (((-564) (-564) (-564)) 19)) (-1495 (((-112) (-564) (-564) (-564) (-564)) 26)) (-1638 (((-1262 (-642 (-564))) (-769) (-769)) 40)))
+(((-480) (-10 -7 (-15 -4299 ((-564) (-564) (-564))) (-15 -1495 ((-112) (-564) (-564) (-564) (-564))) (-15 -1638 ((-1262 (-642 (-564))) (-769) (-769))))) (T -480))
+((-1638 (*1 *2 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1262 (-642 (-564)))) (-5 *1 (-480)))) (-1495 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))) (-4299 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480)))))
+(-10 -7 (-15 -4299 ((-564) (-564) (-564))) (-15 -1495 ((-112) (-564) (-564) (-564) (-564))) (-15 -1638 ((-1262 (-642 (-564))) (-769) (-769))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-862 |#1|)) $) NIL)) (-3615 (((-1169 $) $ (-862 |#1|)) NIL) (((-1169 |#2|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1387 (($ $) NIL (|has| |#2| (-556)))) (-2037 (((-112) $) NIL (|has| |#2| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-862 |#1|))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-4316 (($ $) NIL (|has| |#2| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#2| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-862 |#1|) "failed") $) NIL)) (-3027 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-862 |#1|) $) NIL)) (-2022 (($ $ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-3884 (($ $ (-642 (-564))) NIL)) (-1718 (($ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#2| (-907)))) (-2575 (($ $ |#2| (-482 (-2127 |#1|) (-769)) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-3790 (($ (-1169 |#2|) (-862 |#1|)) NIL) (($ (-1169 $) (-862 |#1|)) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#2| (-482 (-2127 |#1|) (-769))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-862 |#1|)) NIL)) (-1398 (((-482 (-2127 |#1|) (-769)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-2026 (($ (-1 (-482 (-2127 |#1|) (-769)) (-482 (-2127 |#1|) (-769))) $) NIL)) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-4184 (((-3 (-862 |#1|) "failed") $) NIL)) (-3950 (($ $) NIL)) (-3962 ((|#2| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3315 (((-1155) $) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-862 |#1|)) (|:| -2700 (-769))) "failed") $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 ((|#2| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#2| (-907)))) (-2896 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-862 |#1|) |#2|) NIL) (($ $ (-642 (-862 |#1|)) (-642 |#2|)) NIL) (($ $ (-862 |#1|) $) NIL) (($ $ (-642 (-862 |#1|)) (-642 $)) NIL)) (-1846 (($ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-3175 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2775 (((-482 (-2127 |#1|) (-769)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-862 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4028 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-862 |#1|)) NIL) (($ (-407 (-564))) NIL (-2706 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3849 (((-642 |#2|) $) NIL)) (-2102 ((|#2| $ (-482 (-2127 |#1|) (-769))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#2| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-481 |#1| |#2|) (-13 (-947 |#2| (-482 (-2127 |#1|) (-769)) (-862 |#1|)) (-10 -8 (-15 -3884 ($ $ (-642 (-564)))))) (-642 (-1173)) (-1047)) (T -481))
+((-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-481 *3 *4)) (-14 *3 (-642 (-1173))) (-4 *4 (-1047)))))
+(-13 (-947 |#2| (-482 (-2127 |#1|) (-769)) (-862 |#1|)) (-10 -8 (-15 -3884 ($ $ (-642 (-564))))))
+((-2907 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2952 (((-112) $) NIL (|has| |#2| (-131)))) (-3638 (($ (-919)) NIL (|has| |#2| (-1047)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3532 (($ $ $) NIL (|has| |#2| (-791)))) (-1532 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3697 (((-112) $ (-769)) NIL)) (-2521 (((-769)) NIL (|has| |#2| (-368)))) (-2959 (((-564) $) NIL (|has| |#2| (-846)))) (-3877 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1097)))) (-3027 (((-564) $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) ((|#2| $) NIL (|has| |#2| (-1097)))) (-4315 (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL (|has| |#2| (-1047))) (((-687 |#2|) (-687 $)) NIL (|has| |#2| (-1047)))) (-3104 (((-3 $ "failed") $) NIL (|has| |#2| (-724)))) (-2433 (($) NIL (|has| |#2| (-368)))) (-2625 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#2| $ (-564)) 15)) (-2538 (((-112) $) NIL (|has| |#2| (-846)))) (-2936 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3953 (((-112) $) NIL (|has| |#2| (-724)))) (-3333 (((-112) $) NIL (|has| |#2| (-846)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-3234 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2613 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-1945 (((-919) $) NIL (|has| |#2| (-368)))) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#2| (-1097)))) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-2047 (($ (-919)) NIL (|has| |#2| (-368)))) (-4033 (((-1117) $) NIL (|has| |#2| (-1097)))) (-2557 ((|#2| $) NIL (|has| (-564) (-848)))) (-2696 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-2619 ((|#2| $ $) NIL (|has| |#2| (-1047)))) (-3685 (($ (-1262 |#2|)) NIL)) (-3474 (((-134)) NIL (|has| |#2| (-363)))) (-3175 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-4043 (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-1262 |#2|) $) NIL) (($ (-564)) NIL (-2706 (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (($ |#2|) NIL (|has| |#2| (-1097))) (((-860) $) NIL (|has| |#2| (-611 (-860))))) (-2756 (((-769)) NIL (|has| |#2| (-1047)) CONST)) (-1648 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2710 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-1381 (($ $) NIL (|has| |#2| (-846)))) (-2312 (($) NIL (|has| |#2| (-131)) CONST)) (-2322 (($) NIL (|has| |#2| (-724)) CONST)) (-4044 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-2934 (((-112) $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2908 (((-112) $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2872 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2922 (((-112) $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2897 (((-112) $ $) 21 (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2998 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2987 (($ $ $) NIL (|has| |#2| (-1047))) (($ $) NIL (|has| |#2| (-1047)))) (-2974 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-769)) NIL (|has| |#2| (-724))) (($ $ (-919)) NIL (|has| |#2| (-724)))) (* (($ (-564) $) NIL (|has| |#2| (-1047))) (($ $ $) NIL (|has| |#2| (-724))) (($ $ |#2|) NIL (|has| |#2| (-724))) (($ |#2| $) NIL (|has| |#2| (-724))) (($ (-769) $) NIL (|has| |#2| (-131))) (($ (-919) $) NIL (|has| |#2| (-25)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-482 |#1| |#2|) (-238 |#1| |#2|) (-769) (-791)) (T -482))
NIL
(-238 |#1| |#2|)
-((-3009 (((-112) $ $) NIL)) (-4209 (((-641 (-506)) $) 14)) (-2562 (((-506) $) 12)) (-2766 (((-1152) $) NIL)) (-4097 (($ (-506) (-641 (-506))) 10)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-483) (-13 (-1077) (-10 -8 (-15 -4097 ($ (-506) (-641 (-506)))) (-15 -2562 ((-506) $)) (-15 -4209 ((-641 (-506)) $))))) (T -483))
-((-4097 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483)))))
-(-13 (-1077) (-10 -8 (-15 -4097 ($ (-506) (-641 (-506)))) (-15 -2562 ((-506) $)) (-15 -4209 ((-641 (-506)) $))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) NIL)) (-4080 (($) NIL T CONST)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-2087 (($ $ $) 48)) (-3669 (($ $ $) 47)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1497 ((|#1| $) 38)) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3149 ((|#1| $) 39)) (-2566 (($ |#1| $) 18)) (-1906 (($ (-641 |#1|)) 19)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2554 ((|#1| $) 34)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) 11)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) 45)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2181 (((-767) $) 29 (|has| $ (-6 -4407)))))
-(((-484 |#1|) (-13 (-964 |#1|) (-10 -8 (-15 -1906 ($ (-641 |#1|))))) (-846)) (T -484))
-((-1906 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3)))))
-(-13 (-964 |#1|) (-10 -8 (-15 -1906 ($ (-641 |#1|)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1316 (($ $) 72)) (-2204 (((-112) $) NIL)) (-2766 (((-1152) $) NIL)) (-4025 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 45)) (-4052 (((-1114) $) NIL)) (-2249 (((-3 |#4| "failed") $) 117)) (-1761 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-564)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3384 (((-2 (|:| -4215 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2423 (((-858) $) 111)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 32 T CONST)) (-2974 (((-112) $ $) 121)) (-3082 (($ $) 78) (($ $ $) NIL)) (-3070 (($ $ $) 73)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 79)))
-(((-485 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -485))
+((-2907 (((-112) $ $) NIL)) (-4191 (((-642 (-506)) $) 14)) (-2461 (((-506) $) 12)) (-3315 (((-1155) $) NIL)) (-2809 (($ (-506) (-642 (-506))) 10)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 21) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-483) (-13 (-1080) (-10 -8 (-15 -2809 ($ (-506) (-642 (-506)))) (-15 -2461 ((-506) $)) (-15 -4191 ((-642 (-506)) $))))) (T -483))
+((-2809 (*1 *1 *2 *3) (-12 (-5 *3 (-642 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-642 (-506))) (-5 *1 (-483)))))
+(-13 (-1080) (-10 -8 (-15 -2809 ($ (-506) (-642 (-506)))) (-15 -2461 ((-506) $)) (-15 -4191 ((-642 (-506)) $))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) NIL)) (-1976 (($) NIL T CONST)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-3427 (($ $ $) 48)) (-2740 (($ $ $) 47)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1520 ((|#1| $) 38)) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2730 ((|#1| $) 39)) (-3183 (($ |#1| $) 18)) (-1798 (($ (-642 |#1|)) 19)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3388 ((|#1| $) 34)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) 11)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) 45)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2127 (((-769) $) 29 (|has| $ (-6 -4410)))))
+(((-484 |#1|) (-13 (-966 |#1|) (-10 -8 (-15 -1798 ($ (-642 |#1|))))) (-848)) (T -484))
+((-1798 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-484 *3)))))
+(-13 (-966 |#1|) (-10 -8 (-15 -1798 ($ (-642 |#1|)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-1320 (($ $) 72)) (-3595 (((-112) $) NIL)) (-3315 (((-1155) $) NIL)) (-3279 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 45)) (-4033 (((-1117) $) NIL)) (-2185 (((-3 |#4| "failed") $) 117)) (-2258 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-564)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3412 (((-2 (|:| -4199 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2327 (((-860) $) 111)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 32 T CONST)) (-2872 (((-112) $ $) 121)) (-2987 (($ $) 78) (($ $ $) NIL)) (-2974 (($ $ $) 73)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 79)))
+(((-485 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -485))
NIL
(-335 |#1| |#2| |#3| |#4|)
-((-2182 (((-564) (-641 (-564))) 54)) (-3144 ((|#1| (-641 |#1|)) 95)) (-2036 (((-641 |#1|) (-641 |#1|)) 96)) (-2861 (((-641 |#1|) (-641 |#1|)) 98)) (-2123 ((|#1| (-641 |#1|)) 97)) (-4090 (((-641 (-564)) (-641 |#1|)) 57)))
-(((-486 |#1|) (-10 -7 (-15 -2123 (|#1| (-641 |#1|))) (-15 -3144 (|#1| (-641 |#1|))) (-15 -2861 ((-641 |#1|) (-641 |#1|))) (-15 -2036 ((-641 |#1|) (-641 |#1|))) (-15 -4090 ((-641 (-564)) (-641 |#1|))) (-15 -2182 ((-564) (-641 (-564))))) (-1235 (-564))) (T -486))
-((-2182 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) (-4 *4 (-1235 *2)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564))) (-5 *1 (-486 *4)))) (-2036 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))))
-(-10 -7 (-15 -2123 (|#1| (-641 |#1|))) (-15 -3144 (|#1| (-641 |#1|))) (-15 -2861 ((-641 |#1|) (-641 |#1|))) (-15 -2036 ((-641 |#1|) (-641 |#1|))) (-15 -4090 ((-641 (-564)) (-641 |#1|))) (-15 -2182 ((-564) (-641 (-564)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4198 (((-564) $) NIL (|has| (-564) (-307)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL (|has| (-564) (-816)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1034 (-564))))) (-3120 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1034 (-564)))) (((-564) $) NIL (|has| (-564) (-1034 (-564))))) (-2946 (($ $ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-564) (-545)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2384 (((-112) $) NIL (|has| (-564) (-816)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-564) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-564) (-882 (-379))))) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL)) (-2323 (((-564) $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-3326 (((-112) $) NIL (|has| (-564) (-816)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| (-564) (-846)))) (-4357 (($ (-1 (-564) (-564)) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-564) (-1145)) CONST)) (-4150 (($ (-407 (-564))) 9)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2882 (((-564) $) NIL (|has| (-564) (-545)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3291 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-1700 (((-767) $) NIL)) (-4366 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2827 (($ $) NIL)) (-2336 (((-564) $) NIL)) (-1311 (((-888 (-564)) $) NIL (|has| (-564) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-564) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1018))) (((-225) $) NIL (|has| (-564) (-1018)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL) (((-1000 16) $) 10)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| (-564) (-905))) (|has| (-564) (-145))))) (-3719 (((-767)) NIL T CONST)) (-3448 (((-564) $) NIL (|has| (-564) (-545)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3673 (($ $) NIL (|has| (-564) (-816)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3034 (((-112) $ $) NIL (|has| (-564) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2999 (((-112) $ $) NIL (|has| (-564) (-846)))) (-3092 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
-(((-487) (-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 16)) (-10 -8 (-15 -1687 ((-407 (-564)) $)) (-15 -4150 ($ (-407 (-564))))))) (T -487))
-((-1687 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))))
-(-13 (-988 (-564)) (-611 (-407 (-564))) (-611 (-1000 16)) (-10 -8 (-15 -1687 ((-407 (-564)) $)) (-15 -4150 ($ (-407 (-564))))))
-((-1554 (((-641 |#2|) $) 29)) (-3369 (((-112) |#2| $) 34)) (-4377 (((-112) (-1 (-112) |#2|) $) 24)) (-3291 (($ $ (-641 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-4062 (((-767) (-1 (-112) |#2|) $) 28) (((-767) |#2| $) 32)) (-2423 (((-858) $) 43)) (-1368 (((-112) (-1 (-112) |#2|) $) 23)) (-2974 (((-112) $ $) 37)) (-2181 (((-767) $) 18)))
-(((-488 |#1| |#2|) (-10 -8 (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -3291 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -3291 (|#1| |#1| |#2| |#2|)) (-15 -3291 (|#1| |#1| (-294 |#2|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3369 ((-112) |#2| |#1|)) (-15 -4062 ((-767) |#2| |#1|)) (-15 -1554 ((-641 |#2|) |#1|)) (-15 -4062 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -4377 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2181 ((-767) |#1|))) (-489 |#2|) (-1209)) (T -488))
-NIL
-(-10 -8 (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -3291 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -3291 (|#1| |#1| |#2| |#2|)) (-15 -3291 (|#1| |#1| (-294 |#2|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3369 ((-112) |#2| |#1|)) (-15 -4062 ((-767) |#2| |#1|)) (-15 -1554 ((-641 |#2|) |#1|)) (-15 -4062 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -4377 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2181 ((-767) |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) 8)) (-4080 (($) 7 T CONST)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-489 |#1|) (-140) (-1209)) (T -489))
-((-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-2714 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-1368 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-4377 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-4062 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-767)))) (-3035 (*1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-1554 (*1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-4062 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-767)))) (-3369 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-611 (-858))) (-6 (-611 (-858))) |%noBranch|) (IF (|has| |t#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4357 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4408)) (-15 -2714 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4407)) (PROGN (-15 -1368 ((-112) (-1 (-112) |t#1|) $)) (-15 -4377 ((-112) (-1 (-112) |t#1|) $)) (-15 -4062 ((-767) (-1 (-112) |t#1|) $)) (-15 -3035 ((-641 |t#1|) $)) (-15 -1554 ((-641 |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -4062 ((-767) |t#1| $)) (-15 -3369 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-2423 ((|#1| $) 6) (($ |#1|) 9)))
-(((-490 |#1|) (-140) (-1209)) (T -490))
+((-3123 (((-564) (-642 (-564))) 54)) (-4260 ((|#1| (-642 |#1|)) 95)) (-1672 (((-642 |#1|) (-642 |#1|)) 96)) (-4384 (((-642 |#1|) (-642 |#1|)) 98)) (-2080 ((|#1| (-642 |#1|)) 97)) (-4028 (((-642 (-564)) (-642 |#1|)) 57)))
+(((-486 |#1|) (-10 -7 (-15 -2080 (|#1| (-642 |#1|))) (-15 -4260 (|#1| (-642 |#1|))) (-15 -4384 ((-642 |#1|) (-642 |#1|))) (-15 -1672 ((-642 |#1|) (-642 |#1|))) (-15 -4028 ((-642 (-564)) (-642 |#1|))) (-15 -3123 ((-564) (-642 (-564))))) (-1238 (-564))) (T -486))
+((-3123 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) (-4 *4 (-1238 *2)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-1238 (-564))) (-5 *2 (-642 (-564))) (-5 *1 (-486 *4)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1238 (-564))) (-5 *1 (-486 *3)))) (-4384 (*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1238 (-564))) (-5 *1 (-486 *3)))) (-4260 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1238 (-564))))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1238 (-564))))))
+(-10 -7 (-15 -2080 (|#1| (-642 |#1|))) (-15 -4260 (|#1| (-642 |#1|))) (-15 -4384 ((-642 |#1|) (-642 |#1|))) (-15 -1672 ((-642 |#1|) (-642 |#1|))) (-15 -4028 ((-642 (-564)) (-642 |#1|))) (-15 -3123 ((-564) (-642 (-564)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3703 (((-564) $) NIL (|has| (-564) (-307)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL (|has| (-564) (-818)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-564) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1036 (-564))))) (-3027 (((-564) $) NIL) (((-1173) $) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-564) (-1036 (-564)))) (((-564) $) NIL (|has| (-564) (-1036 (-564))))) (-2845 (($ $ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-564) (-545)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2538 (((-112) $) NIL (|has| (-564) (-818)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-564) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-564) (-884 (-379))))) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2245 (((-564) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| (-564) (-1148)))) (-3333 (((-112) $) NIL (|has| (-564) (-818)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| (-564) (-848)))) (-4358 (($ (-1 (-564) (-564)) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-564) (-1148)) CONST)) (-2866 (($ (-407 (-564))) 9)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2759 (((-564) $) NIL (|has| (-564) (-545)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3215 (($ $ (-642 (-564)) (-642 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-1173)) (-642 (-564))) NIL (|has| (-564) (-514 (-1173) (-564)))) (($ $ (-1173) (-564)) NIL (|has| (-564) (-514 (-1173) (-564))))) (-2048 (((-769) $) NIL)) (-4368 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2618 (($ $) NIL)) (-2255 (((-564) $) NIL)) (-1314 (((-890 (-564)) $) NIL (|has| (-564) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-564) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1020))) (((-225) $) NIL (|has| (-564) (-1020)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1173)) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL) (((-1002 16) $) 10)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| (-564) (-907))) (|has| (-564) (-145))))) (-2756 (((-769)) NIL T CONST)) (-3264 (((-564) $) NIL (|has| (-564) (-545)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-1381 (($ $) NIL (|has| (-564) (-818)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2934 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2897 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2998 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
+(((-487) (-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 16)) (-10 -8 (-15 -2903 ((-407 (-564)) $)) (-15 -2866 ($ (-407 (-564))))))) (T -487))
+((-2903 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) (-2866 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))))
+(-13 (-990 (-564)) (-611 (-407 (-564))) (-611 (-1002 16)) (-10 -8 (-15 -2903 ((-407 (-564)) $)) (-15 -2866 ($ (-407 (-564))))))
+((-3234 (((-642 |#2|) $) 29)) (-2776 (((-112) |#2| $) 34)) (-2121 (((-112) (-1 (-112) |#2|) $) 24)) (-3215 (($ $ (-642 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-642 |#2|) (-642 |#2|)) NIL)) (-4043 (((-769) (-1 (-112) |#2|) $) 28) (((-769) |#2| $) 32)) (-2327 (((-860) $) 43)) (-2710 (((-112) (-1 (-112) |#2|) $) 23)) (-2872 (((-112) $ $) 37)) (-2127 (((-769) $) 18)))
+(((-488 |#1| |#2|) (-10 -8 (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -3215 (|#1| |#1| (-642 |#2|) (-642 |#2|))) (-15 -3215 (|#1| |#1| |#2| |#2|)) (-15 -3215 (|#1| |#1| (-294 |#2|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -2776 ((-112) |#2| |#1|)) (-15 -4043 ((-769) |#2| |#1|)) (-15 -3234 ((-642 |#2|) |#1|)) (-15 -4043 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -2121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-769) |#1|))) (-489 |#2|) (-1212)) (T -488))
+NIL
+(-10 -8 (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -3215 (|#1| |#1| (-642 |#2|) (-642 |#2|))) (-15 -3215 (|#1| |#1| |#2| |#2|)) (-15 -3215 (|#1| |#1| (-294 |#2|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#2|)))) (-15 -2776 ((-112) |#2| |#1|)) (-15 -4043 ((-769) |#2| |#1|)) (-15 -3234 ((-642 |#2|) |#1|)) (-15 -4043 ((-769) (-1 (-112) |#2|) |#1|)) (-15 -2121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-769) |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) 8)) (-1976 (($) 7 T CONST)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-489 |#1|) (-140) (-1212)) (T -489))
+((-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1212)))) (-2613 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1212)))) (-2710 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4)) (-4 *4 (-1212)) (-5 *2 (-112)))) (-2121 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4)) (-4 *4 (-1212)) (-5 *2 (-112)))) (-4043 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4)) (-4 *4 (-1212)) (-5 *2 (-769)))) (-2936 (*1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) (-5 *2 (-642 *3)))) (-3234 (*1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) (-5 *2 (-642 *3)))) (-4043 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-769)))) (-2776 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-611 (-860))) (-6 (-611 (-860))) |%noBranch|) (IF (|has| |t#1| (-1097)) (-6 (-1097)) |%noBranch|) (IF (|has| |t#1| (-1097)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4358 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4411)) (-15 -2613 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4410)) (PROGN (-15 -2710 ((-112) (-1 (-112) |t#1|) $)) (-15 -2121 ((-112) (-1 (-112) |t#1|) $)) (-15 -4043 ((-769) (-1 (-112) |t#1|) $)) (-15 -2936 ((-642 |t#1|) $)) (-15 -3234 ((-642 |t#1|) $)) (IF (|has| |t#1| (-1097)) (PROGN (-15 -4043 ((-769) |t#1| $)) (-15 -2776 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-2327 ((|#1| $) 6) (($ |#1|) 9)))
+(((-490 |#1|) (-140) (-1212)) (T -490))
NIL
(-13 (-611 |t#1|) (-614 |t#1|))
(((-614 |#1|) . T) ((-611 |#1|) . T))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-2647 (($ (-1152)) 8)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 15) (((-1152) $) 12)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 11)))
-(((-491) (-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -2647 ($ (-1152)))))) (T -491))
-((-2647 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491)))))
-(-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -2647 ($ (-1152)))))
-((-3880 (($ $) 15)) (-3858 (($ $) 24)) (-3902 (($ $) 12)) (-3914 (($ $) 10)) (-3891 (($ $) 17)) (-3869 (($ $) 22)))
-(((-492 |#1|) (-10 -8 (-15 -3869 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -3880 (|#1| |#1|))) (-493)) (T -492))
-NIL
-(-10 -8 (-15 -3869 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -3880 (|#1| |#1|)))
-((-3880 (($ $) 11)) (-3858 (($ $) 10)) (-3902 (($ $) 9)) (-3914 (($ $) 8)) (-3891 (($ $) 7)) (-3869 (($ $) 6)))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-1669 (($ (-1155)) 8)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 15) (((-1155) $) 12)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 11)))
+(((-491) (-13 (-1097) (-611 (-1155)) (-10 -8 (-15 -1669 ($ (-1155)))))) (T -491))
+((-1669 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-491)))))
+(-13 (-1097) (-611 (-1155)) (-10 -8 (-15 -1669 ($ (-1155)))))
+((-3851 (($ $) 15)) (-3827 (($ $) 24)) (-3875 (($ $) 12)) (-3888 (($ $) 10)) (-3863 (($ $) 17)) (-3839 (($ $) 22)))
+(((-492 |#1|) (-10 -8 (-15 -3839 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3875 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3851 (|#1| |#1|))) (-493)) (T -492))
+NIL
+(-10 -8 (-15 -3839 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3875 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)))
+((-3851 (($ $) 11)) (-3827 (($ $) 10)) (-3875 (($ $) 9)) (-3888 (($ $) 8)) (-3863 (($ $) 7)) (-3839 (($ $) 6)))
(((-493) (-140)) (T -493))
-((-3880 (*1 *1 *1) (-4 *1 (-493))) (-3858 (*1 *1 *1) (-4 *1 (-493))) (-3902 (*1 *1 *1) (-4 *1 (-493))) (-3914 (*1 *1 *1) (-4 *1 (-493))) (-3891 (*1 *1 *1) (-4 *1 (-493))) (-3869 (*1 *1 *1) (-4 *1 (-493))))
-(-13 (-10 -8 (-15 -3869 ($ $)) (-15 -3891 ($ $)) (-15 -3914 ($ $)) (-15 -3902 ($ $)) (-15 -3858 ($ $)) (-15 -3880 ($ $))))
-((-3688 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 54)))
-(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3688 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1235 |#1|) (-13 (-363) (-147) (-720 |#1| |#2|)) (-1235 |#3|)) (T -494))
-((-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1235 *7)))))
-(-10 -7 (-15 -3688 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|))))
-((-3009 (((-112) $ $) NIL)) (-4119 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-948 $)) NIL)) (-4029 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-948 $)) NIL)) (-1494 (((-112) $) 39)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-3656 (((-112) $ $) 73)) (-3577 (((-641 (-610 $)) $) 50)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2559 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3700 (($ $) NIL)) (-3162 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-3442 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-948 $)) NIL)) (-2930 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-948 $)) NIL)) (-4284 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-3120 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) 55)) (-2946 (($ $ $) NIL)) (-4277 (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2511 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-1316 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-1387 (($ $) NIL) (($ (-641 $)) NIL)) (-3782 (((-641 (-114)) $) NIL)) (-4232 (((-114) (-114)) NIL)) (-4112 (((-112) $) 42)) (-3177 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-2323 (((-1119 (-564) (-610 $)) $) 37)) (-3614 (($ $ (-564)) NIL)) (-2499 (((-1166 $) (-1166 $) (-610 $)) 87) (((-1166 $) (-1166 $) (-641 (-610 $))) 62) (($ $ (-610 $)) 76) (($ $ (-641 (-610 $))) 77)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1940 (((-1166 $) (-610 $)) 74 (|has| $ (-1045)))) (-4357 (($ (-1 $ $) (-610 $)) NIL)) (-3521 (((-3 (-610 $) "failed") $) NIL)) (-2084 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-3648 (((-641 (-610 $)) $) NIL)) (-4309 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-3679 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-3936 (($ $) NIL)) (-1292 (((-767) $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ (-641 $)) NIL) (($ $ $) NIL)) (-3817 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-3688 (((-418 $) $) NIL)) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2663 (((-112) $) NIL (|has| $ (-1034 (-564))))) (-3291 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1700 (((-767) $) NIL)) (-4366 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3973 (($ $) NIL) (($ $ $) NIL)) (-3254 (($ $ (-767)) NIL) (($ $) 36)) (-2336 (((-1119 (-564) (-610 $)) $) 20)) (-3721 (($ $) NIL (|has| $ (-1045)))) (-1311 (((-379) $) 101) (((-225) $) 109) (((-169 (-379)) $) 117)) (-2423 (((-858) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) 21)) (-3719 (((-767)) NIL T CONST)) (-2180 (($ $) NIL) (($ (-641 $)) NIL)) (-3263 (((-112) (-114)) 93)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-2403 (($) 10 T CONST)) (-2417 (($) 22 T CONST)) (-4063 (($ $ (-767)) NIL) (($ $) NIL)) (-2974 (((-112) $ $) 24)) (-3092 (($ $ $) 44)) (-3082 (($ $ $) NIL) (($ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) 48) (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) 27) (($ (-564) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL)))
-(((-495) (-13 (-302) (-27) (-1034 (-564)) (-1034 (-407 (-564))) (-637 (-564)) (-1018) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2423 ($ (-1119 (-564) (-610 $)))) (-15 -2323 ((-1119 (-564) (-610 $)) $)) (-15 -2336 ((-1119 (-564) (-610 $)) $)) (-15 -1316 ($ $)) (-15 -3656 ((-112) $ $)) (-15 -2499 ((-1166 $) (-1166 $) (-610 $))) (-15 -2499 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2499 ($ $ (-610 $))) (-15 -2499 ($ $ (-641 (-610 $))))))) (T -495))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1316 (*1 *1 *1) (-5 *1 (-495))) (-3656 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-2499 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) (-2499 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495)))) (-5 *1 (-495)))) (-2499 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) (-2499 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495)))))
-(-13 (-302) (-27) (-1034 (-564)) (-1034 (-407 (-564))) (-637 (-564)) (-1018) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2423 ($ (-1119 (-564) (-610 $)))) (-15 -2323 ((-1119 (-564) (-610 $)) $)) (-15 -2336 ((-1119 (-564) (-610 $)) $)) (-15 -1316 ($ $)) (-15 -3656 ((-112) $ $)) (-15 -2499 ((-1166 $) (-1166 $) (-610 $))) (-15 -2499 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2499 ($ $ (-610 $))) (-15 -2499 ($ $ (-641 (-610 $))))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-564) |#1|) 46 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 41)) (-3998 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-4238 (($ (-767) |#1|) 21)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) 17 (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) 44 (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2658 ((|#1| $) NIL (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) 15 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) 19)) (-4366 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 45) (($ $ (-1226 (-564))) NIL)) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) 13)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 24)) (-3696 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2181 (((-767) $) 11 (|has| $ (-6 -4407)))))
-(((-496 |#1| |#2|) (-19 |#1|) (-1209) (-564)) (T -496))
+((-3851 (*1 *1 *1) (-4 *1 (-493))) (-3827 (*1 *1 *1) (-4 *1 (-493))) (-3875 (*1 *1 *1) (-4 *1 (-493))) (-3888 (*1 *1 *1) (-4 *1 (-493))) (-3863 (*1 *1 *1) (-4 *1 (-493))) (-3839 (*1 *1 *1) (-4 *1 (-493))))
+(-13 (-10 -8 (-15 -3839 ($ $)) (-15 -3863 ($ $)) (-15 -3888 ($ $)) (-15 -3875 ($ $)) (-15 -3827 ($ $)) (-15 -3851 ($ $))))
+((-3643 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 54)))
+(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3643 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1238 |#1|) (-13 (-363) (-147) (-722 |#1| |#2|)) (-1238 |#3|)) (T -494))
+((-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-722 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1238 *7)))))
+(-10 -7 (-15 -3643 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|))))
+((-2907 (((-112) $ $) NIL)) (-4098 (((-642 $) (-1169 $) (-1173)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-950 $)) NIL)) (-2946 (($ (-1169 $) (-1173)) NIL) (($ (-1169 $)) NIL) (($ (-950 $)) NIL)) (-2952 (((-112) $) 39)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-3575 (((-112) $ $) 73)) (-3530 (((-642 (-610 $)) $) 50)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2458 (($ $ (-294 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-3655 (($ $) NIL)) (-4010 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-3443 (((-642 $) (-1169 $) (-1173)) NIL) (((-642 $) (-1169 $)) NIL) (((-642 $) (-950 $)) NIL)) (-2525 (($ (-1169 $) (-1173)) NIL) (($ (-1169 $)) NIL) (($ (-950 $)) NIL)) (-4278 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-3027 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) 55)) (-2845 (($ $ $) NIL)) (-4315 (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -1780 (-687 (-407 (-564)))) (|:| |vec| (-1262 (-407 (-564))))) (-687 $) (-1262 $)) NIL) (((-687 (-407 (-564))) (-687 $)) NIL)) (-1320 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-1301 (($ $) NIL) (($ (-642 $)) NIL)) (-3332 (((-642 (-114)) $) NIL)) (-3307 (((-114) (-114)) NIL)) (-3953 (((-112) $) 42)) (-3076 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-2245 (((-1122 (-564) (-610 $)) $) 37)) (-1772 (($ $ (-564)) NIL)) (-2218 (((-1169 $) (-1169 $) (-610 $)) 87) (((-1169 $) (-1169 $) (-642 (-610 $))) 62) (($ $ (-610 $)) 76) (($ $ (-642 (-610 $))) 77)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2666 (((-1169 $) (-610 $)) 74 (|has| $ (-1047)))) (-4358 (($ (-1 $ $) (-610 $)) NIL)) (-2953 (((-3 (-610 $) "failed") $) NIL)) (-2049 (($ (-642 $)) NIL) (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-3603 (((-642 (-610 $)) $) NIL)) (-4305 (($ (-114) $) NIL) (($ (-114) (-642 $)) NIL)) (-1523 (((-112) $ (-114)) NIL) (((-112) $ (-1173)) NIL)) (-3911 (($ $) NIL)) (-1295 (((-769) $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ (-642 $)) NIL) (($ $ $) NIL)) (-2539 (((-112) $ $) NIL) (((-112) $ (-1173)) NIL)) (-3643 (((-418 $) $) NIL)) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2519 (((-112) $) NIL (|has| $ (-1036 (-564))))) (-3215 (($ $ (-610 $) $) NIL) (($ $ (-642 (-610 $)) (-642 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-1173)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-1173) (-1 $ (-642 $))) NIL) (($ $ (-1173) (-1 $ $)) NIL) (($ $ (-642 (-114)) (-642 (-1 $ $))) NIL) (($ $ (-642 (-114)) (-642 (-1 $ (-642 $)))) NIL) (($ $ (-114) (-1 $ (-642 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2048 (((-769) $) NIL)) (-4368 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-642 $)) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3238 (($ $) NIL) (($ $ $) NIL)) (-3175 (($ $ (-769)) NIL) (($ $) 36)) (-2255 (((-1122 (-564) (-610 $)) $) 20)) (-3280 (($ $) NIL (|has| $ (-1047)))) (-1314 (((-379) $) 101) (((-225) $) 109) (((-169 (-379)) $) 117)) (-2327 (((-860) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1122 (-564) (-610 $))) 21)) (-2756 (((-769)) NIL T CONST)) (-2181 (($ $) NIL) (($ (-642 $)) NIL)) (-2357 (((-112) (-114)) 93)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-2312 (($) 10 T CONST)) (-2322 (($) 22 T CONST)) (-4044 (($ $ (-769)) NIL) (($ $) NIL)) (-2872 (((-112) $ $) 24)) (-2998 (($ $ $) 44)) (-2987 (($ $ $) NIL) (($ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) 48) (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) 27) (($ (-564) $) NIL) (($ (-769) $) NIL) (($ (-919) $) NIL)))
+(((-495) (-13 (-302) (-27) (-1036 (-564)) (-1036 (-407 (-564))) (-637 (-564)) (-1020) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2327 ($ (-1122 (-564) (-610 $)))) (-15 -2245 ((-1122 (-564) (-610 $)) $)) (-15 -2255 ((-1122 (-564) (-610 $)) $)) (-15 -1320 ($ $)) (-15 -3575 ((-112) $ $)) (-15 -2218 ((-1169 $) (-1169 $) (-610 $))) (-15 -2218 ((-1169 $) (-1169 $) (-642 (-610 $)))) (-15 -2218 ($ $ (-610 $))) (-15 -2218 ($ $ (-642 (-610 $))))))) (T -495))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-2255 (*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1320 (*1 *1 *1) (-5 *1 (-495))) (-3575 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-2218 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) (-2218 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 (-495))) (-5 *3 (-642 (-610 (-495)))) (-5 *1 (-495)))) (-2218 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) (-2218 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-610 (-495)))) (-5 *1 (-495)))))
+(-13 (-302) (-27) (-1036 (-564)) (-1036 (-407 (-564))) (-637 (-564)) (-1020) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -2327 ($ (-1122 (-564) (-610 $)))) (-15 -2245 ((-1122 (-564) (-610 $)) $)) (-15 -2255 ((-1122 (-564) (-610 $)) $)) (-15 -1320 ($ $)) (-15 -3575 ((-112) $ $)) (-15 -2218 ((-1169 $) (-1169 $) (-610 $))) (-15 -2218 ((-1169 $) (-1169 $) (-642 (-610 $)))) (-15 -2218 ($ $ (-610 $))) (-15 -2218 ($ $ (-642 (-610 $))))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-564) |#1|) 46 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 41)) (-3979 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-4227 (($ (-769) |#1|) 21)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) 17 (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) 44 (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2557 ((|#1| $) NIL (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) 15 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) 19)) (-4368 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 45) (($ $ (-1229 (-564))) NIL)) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) 13)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 24)) (-3651 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2127 (((-769) $) 11 (|has| $ (-6 -4410)))))
+(((-496 |#1| |#2|) (-19 |#1|) (-1212) (-564)) (T -496))
NIL
(-19 |#1|)
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1440 (($ $ (-564) (-496 |#1| |#3|)) NIL)) (-3404 (($ $ (-564) (-496 |#1| |#2|)) NIL)) (-4080 (($) NIL T CONST)) (-4086 (((-496 |#1| |#3|) $ (-564)) NIL)) (-2726 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2652 ((|#1| $ (-564) (-564)) NIL)) (-3035 (((-641 |#1|) $) NIL)) (-2667 (((-767) $) NIL)) (-4238 (($ (-767) (-767) |#1|) NIL)) (-2681 (((-767) $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1795 (((-564) $) NIL)) (-2980 (((-564) $) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2283 (((-564) $) NIL)) (-2287 (((-564) $) NIL)) (-2714 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1592 (($ $ |#1|) NIL)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-1575 (((-496 |#1| |#2|) $ (-564)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-497 |#1| |#2| |#3|) (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) (-1209) (-564) (-564)) (T -497))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2950 (($ $ (-564) (-496 |#1| |#3|)) NIL)) (-1919 (($ $ (-564) (-496 |#1| |#2|)) NIL)) (-1976 (($) NIL T CONST)) (-2600 (((-496 |#1| |#3|) $ (-564)) NIL)) (-2625 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2551 ((|#1| $ (-564) (-564)) NIL)) (-2936 (((-642 |#1|) $) NIL)) (-2567 (((-769) $) NIL)) (-4227 (($ (-769) (-769) |#1|) NIL)) (-2579 (((-769) $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-3491 (((-564) $) NIL)) (-3865 (((-564) $) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3054 (((-564) $) NIL)) (-2977 (((-564) $) NIL)) (-2613 (($ (-1 |#1| |#1|) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2696 (($ $ |#1|) NIL)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-3022 (((-496 |#1| |#2|) $ (-564)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-497 |#1| |#2| |#3|) (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) (-1212) (-564) (-564)) (T -497))
NIL
(-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|))
-((-2115 (((-641 (-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-767) (-767)) 33)) (-2229 (((-641 (-1166 |#1|)) |#1| (-767) (-767) (-767)) 43)) (-2328 (((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-767)) 111)))
-(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2229 ((-641 (-1166 |#1|)) |#1| (-767) (-767) (-767))) (-15 -2115 ((-641 (-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-767) (-767))) (-15 -2328 ((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-767)))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -498))
-((-2328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-2 (|:| -2047 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7))))) (-5 *5 (-767)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -2047 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-2115 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-4 *5 (-349)) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2047 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -2047 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6)))) (-4 *7 (-1235 *6)))) (-2229 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-767)) (-4 *3 (-349)) (-4 *5 (-1235 *3)) (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1235 *5)))))
-(-10 -7 (-15 -2229 ((-641 (-1166 |#1|)) |#1| (-767) (-767) (-767))) (-15 -2115 ((-641 (-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-767) (-767))) (-15 -2328 ((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-767))))
-((-4098 (((-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 74)) (-3278 ((|#1| (-685 |#1|) |#1| (-767)) 27)) (-2888 (((-767) (-767) (-767)) 36)) (-1862 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 54)) (-2550 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 62) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 59)) (-2749 ((|#1| (-685 |#1|) (-685 |#1|) |#1| (-564)) 31)) (-2868 ((|#1| (-685 |#1|)) 18)))
-(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -2868 (|#1| (-685 |#1|))) (-15 -3278 (|#1| (-685 |#1|) |#1| (-767))) (-15 -2749 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -2888 ((-767) (-767) (-767))) (-15 -2550 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2550 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1862 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4098 ((-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))))) (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -499))
-((-4098 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2550 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2550 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2888 (*1 *2 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2749 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-564)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-3278 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-767)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))))
-(-10 -7 (-15 -2868 (|#1| (-685 |#1|))) (-15 -3278 (|#1| (-685 |#1|) |#1| (-767))) (-15 -2749 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -2888 ((-767) (-767) (-767))) (-15 -2550 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2550 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1862 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4098 ((-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -2047 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))))
-((-3009 (((-112) $ $) NIL)) (-3021 (($ $) NIL)) (-2385 (($ $ $) 39)) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3963 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-2484 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-3904 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4408))) (((-112) $ (-564) (-112)) 41 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-2591 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-1316 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-2726 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4408)))) (-2652 (((-112) $ (-564)) NIL)) (-3998 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-3035 (((-641 (-112)) $) NIL (|has| $ (-6 -4407)))) (-2372 (($ $ $) 37)) (-2351 (($ $) NIL)) (-3452 (($ $ $) NIL)) (-4238 (($ (-767) (-112)) 26)) (-3480 (($ $ $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) 8 (|has| (-564) (-846)))) (-2855 (($ $ $) NIL)) (-3669 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1554 (((-641 (-112)) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL)) (-2714 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-112) (-112) (-112)) $ $) 34) (($ (-1 (-112) (-112)) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-4248 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 (((-112) $) NIL (|has| (-564) (-846)))) (-2139 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1592 (($ $ (-112)) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094))))) (-2075 (((-641 (-112)) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) 27)) (-4366 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) 21) (((-112) $ (-564) (-112)) NIL)) (-2114 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-4062 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1094)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) 28)) (-1311 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-2435 (($ (-641 (-112))) NIL)) (-3696 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2423 (((-858) $) 25)) (-1860 (((-112) $ $) NIL)) (-1368 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-2358 (($ $ $) 35)) (-3064 (($ $ $) NIL)) (-4153 (($ $ $) 44)) (-4163 (($ $) 42)) (-4142 (($ $ $) 43)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 29)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 30)) (-3051 (($ $ $) NIL)) (-2181 (((-767) $) 13 (|has| $ (-6 -4407)))))
-(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -4163 ($ $)) (-15 -4153 ($ $ $)) (-15 -4142 ($ $ $)))) (-564)) (T -500))
-((-4163 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-4153 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-4142 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))))
-(-13 (-123) (-10 -8 (-15 -4163 ($ $)) (-15 -4153 ($ $ $)) (-15 -4142 ($ $ $))))
-((-2955 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|)) 35)) (-2325 (((-1166 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1166 |#4|)) 22)) (-2285 (((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|))) 49)) (-1914 (((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|) 58)))
-(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2325 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -2325 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2955 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -2285 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -1914 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|))) (-1045) (-1235 |#1|) (-1235 |#2|) (-1045)) (T -501))
-((-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6)))) (-2285 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1235 *6)))) (-2955 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1235 *4)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))))
-(-10 -7 (-15 -2325 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -2325 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2955 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -2285 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -1914 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-3009 (((-112) $ $) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1757 (((-1264) $) 25)) (-4366 (((-1152) $ (-1170)) 30)) (-1630 (((-1264) $) 17)) (-2423 (((-858) $) 27) (($ (-1152)) 26)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 11)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 9)))
-(((-502) (-13 (-846) (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 ((-1264) $)) (-15 -1757 ((-1264) $)) (-15 -2423 ($ (-1152)))))) (T -502))
-((-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1152)) (-5 *1 (-502)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502)))))
-(-13 (-846) (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 ((-1264) $)) (-15 -1757 ((-1264) $)) (-15 -2423 ($ (-1152)))))
-((-1566 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2201 ((|#1| |#4|) 10)) (-1434 ((|#3| |#4|) 17)))
-(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2201 (|#1| |#4|)) (-15 -1434 (|#3| |#4|)) (-15 -1566 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-556) (-988 |#1|) (-373 |#1|) (-373 |#2|)) (T -503))
-((-1566 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-1434 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-2201 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))))
-(-10 -7 (-15 -2201 (|#1| |#4|)) (-15 -1434 (|#3| |#4|)) (-15 -1566 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-3009 (((-112) $ $) NIL)) (-3455 (((-112) $ (-641 |#3|)) 129) (((-112) $) 130)) (-1494 (((-112) $) 181)) (-2344 (($ $ |#4|) 120) (($ $ |#4| (-641 |#3|)) 124)) (-3593 (((-1159 (-641 (-948 |#1|)) (-641 (-294 (-948 |#1|)))) (-641 |#4|)) 174 (|has| |#3| (-612 (-1170))))) (-3979 (($ $ $) 108) (($ $ |#4|) 106)) (-4112 (((-112) $) 180)) (-1766 (($ $) 134)) (-2766 (((-1152) $) NIL)) (-3888 (($ $ $) 100) (($ (-641 $)) 102)) (-3475 (((-112) |#4| $) 132)) (-3314 (((-112) $ $) 86)) (-4025 (($ (-641 |#4|)) 107)) (-4052 (((-1114) $) NIL)) (-2042 (($ (-641 |#4|)) 178)) (-2802 (((-112) $) 179)) (-1520 (($ $) 89)) (-3207 (((-641 |#4|) $) 73)) (-3459 (((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|)) NIL)) (-3526 (((-112) |#4| $) 93)) (-4327 (((-564) $ (-641 |#3|)) 136) (((-564) $) 137)) (-2423 (((-858) $) 177) (($ (-641 |#4|)) 103)) (-1860 (((-112) $ $) NIL)) (-4178 (($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $))) NIL)) (-2974 (((-112) $ $) 88)) (-3070 (($ $ $) 110)) (** (($ $ (-767)) 118)) (* (($ $ $) 116)))
-(((-504 |#1| |#2| |#3| |#4|) (-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -3070 ($ $ $)) (-15 -4112 ((-112) $)) (-15 -1494 ((-112) $)) (-15 -3526 ((-112) |#4| $)) (-15 -3314 ((-112) $ $)) (-15 -3475 ((-112) |#4| $)) (-15 -3455 ((-112) $ (-641 |#3|))) (-15 -3455 ((-112) $)) (-15 -3888 ($ $ $)) (-15 -3888 ($ (-641 $))) (-15 -3979 ($ $ $)) (-15 -3979 ($ $ |#4|)) (-15 -1520 ($ $)) (-15 -3459 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -4178 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -4327 ((-564) $ (-641 |#3|))) (-15 -4327 ((-564) $)) (-15 -1766 ($ $)) (-15 -4025 ($ (-641 |#4|))) (-15 -2042 ($ (-641 |#4|))) (-15 -2802 ((-112) $)) (-15 -3207 ((-641 |#4|) $)) (-15 -2423 ($ (-641 |#4|))) (-15 -2344 ($ $ |#4|)) (-15 -2344 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -3593 ((-1159 (-641 (-948 |#1|)) (-641 (-294 (-948 |#1|)))) (-641 |#4|))) |%noBranch|))) (-363) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -504))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3070 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-4112 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1494 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3526 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-3314 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3475 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-3455 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-3455 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3888 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3888 (*1 *1 *2) (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3979 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3979 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-1520 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3459 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-4327 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-4327 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-564)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1766 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2802 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3207 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2344 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-2344 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-945 *4 *5 *6)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *6 (-612 (-1170))) (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1159 (-641 (-948 *4)) (-641 (-294 (-948 *4))))) (-5 *1 (-504 *4 *5 *6 *7)))))
-(-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -3070 ($ $ $)) (-15 -4112 ((-112) $)) (-15 -1494 ((-112) $)) (-15 -3526 ((-112) |#4| $)) (-15 -3314 ((-112) $ $)) (-15 -3475 ((-112) |#4| $)) (-15 -3455 ((-112) $ (-641 |#3|))) (-15 -3455 ((-112) $)) (-15 -3888 ($ $ $)) (-15 -3888 ($ (-641 $))) (-15 -3979 ($ $ $)) (-15 -3979 ($ $ |#4|)) (-15 -1520 ($ $)) (-15 -3459 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -4178 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -4327 ((-564) $ (-641 |#3|))) (-15 -4327 ((-564) $)) (-15 -1766 ($ $)) (-15 -4025 ($ (-641 |#4|))) (-15 -2042 ($ (-641 |#4|))) (-15 -2802 ((-112) $)) (-15 -3207 ((-641 |#4|) $)) (-15 -2423 ($ (-641 |#4|))) (-15 -2344 ($ $ |#4|)) (-15 -2344 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -3593 ((-1159 (-641 (-948 |#1|)) (-641 (-294 (-948 |#1|)))) (-641 |#4|))) |%noBranch|)))
-((-2943 (((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) 178)) (-4092 (((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) 179)) (-3592 (((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) 129)) (-1339 (((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) NIL)) (-3375 (((-641 (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) 181)) (-2506 (((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-860 |#1|))) 196)))
-(((-505 |#1| |#2|) (-10 -7 (-15 -2943 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4092 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1339 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3592 ((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3375 ((-641 (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2506 ((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-860 |#1|))))) (-641 (-1170)) (-767)) (T -505))
-((-2506 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564))))) (-5 *3 (-641 (-860 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *1 (-505 *4 *5)))) (-3375 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-641 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564))))))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *4 (-767)) (-860 *3) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))))
-(-10 -7 (-15 -2943 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4092 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1339 ((-112) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3592 ((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3375 ((-641 (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2506 ((-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-860 |#1|)))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-4207 (($) 6)) (-2423 (((-858) $) 12) (((-1170) $) 10)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 8)))
-(((-506) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -4207 ($))))) (T -506))
-((-4207 (*1 *1) (-5 *1 (-506))))
-(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -4207 ($))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1684 (($ $) NIL)) (-3810 (($ |#1| |#2|) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3508 ((|#2| $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 12 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) 11) (($ $ $) 35)) (-3070 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 21)))
-(((-507 |#1| |#2|) (-13 (-21) (-509 |#1| |#2|)) (-21) (-846)) (T -507))
+((-2336 (((-642 (-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-769) (-769)) 33)) (-3372 (((-642 (-1169 |#1|)) |#1| (-769) (-769) (-769)) 43)) (-2782 (((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-642 |#3|) (-642 (-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-769)) 111)))
+(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -3372 ((-642 (-1169 |#1|)) |#1| (-769) (-769) (-769))) (-15 -2336 ((-642 (-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-769) (-769))) (-15 -2782 ((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-642 |#3|) (-642 (-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-769)))) (-349) (-1238 |#1|) (-1238 |#2|)) (T -498))
+((-2782 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 (-2 (|:| -4263 (-687 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-687 *7))))) (-5 *5 (-769)) (-4 *8 (-1238 *7)) (-4 *7 (-1238 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -4263 (-687 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-687 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-2336 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-769)) (-4 *5 (-349)) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -4263 (-687 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-687 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -4263 (-687 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-687 *6)))) (-4 *7 (-1238 *6)))) (-3372 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-769)) (-4 *3 (-349)) (-4 *5 (-1238 *3)) (-5 *2 (-642 (-1169 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1238 *5)))))
+(-10 -7 (-15 -3372 ((-642 (-1169 |#1|)) |#1| (-769) (-769) (-769))) (-15 -2336 ((-642 (-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-769) (-769))) (-15 -2782 ((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) (-642 |#3|) (-642 (-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) (-769))))
+((-1344 (((-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|)))) 74)) (-2231 ((|#1| (-687 |#1|) |#1| (-769)) 27)) (-2867 (((-769) (-769) (-769)) 36)) (-1864 (((-687 |#1|) (-687 |#1|) (-687 |#1|)) 54)) (-1482 (((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|) 62) (((-687 |#1|) (-687 |#1|) (-687 |#1|)) 59)) (-3232 ((|#1| (-687 |#1|) (-687 |#1|) |#1| (-564)) 31)) (-1921 ((|#1| (-687 |#1|)) 18)))
+(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -1921 (|#1| (-687 |#1|))) (-15 -2231 (|#1| (-687 |#1|) |#1| (-769))) (-15 -3232 (|#1| (-687 |#1|) (-687 |#1|) |#1| (-564))) (-15 -2867 ((-769) (-769) (-769))) (-15 -1482 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -1482 ((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|)) (-15 -1864 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -1344 ((-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|)))))) (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))) (-1238 |#1|) (-409 |#1| |#2|)) (T -499))
+((-1344 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1864 (*1 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1482 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-687 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1482 (*1 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2867 (*1 *2 *2 *2) (-12 (-5 *2 (-769)) (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $))))) (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3232 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-687 *2)) (-5 *4 (-564)) (-4 *2 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $))))) (-4 *5 (-1238 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-2231 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-687 *2)) (-5 *4 (-769)) (-4 *2 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $))))) (-4 *5 (-1238 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-687 *2)) (-4 *4 (-1238 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))))
+(-10 -7 (-15 -1921 (|#1| (-687 |#1|))) (-15 -2231 (|#1| (-687 |#1|) |#1| (-769))) (-15 -3232 (|#1| (-687 |#1|) (-687 |#1|) |#1| (-564))) (-15 -2867 ((-769) (-769) (-769))) (-15 -1482 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -1482 ((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|)) (-15 -1864 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -1344 ((-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))) (-2 (|:| -4263 (-687 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-687 |#1|))))))
+((-2907 (((-112) $ $) NIL)) (-2918 (($ $) NIL)) (-2296 (($ $ $) 39)) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) $) NIL (|has| (-112) (-848))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2239 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-848)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2383 (($ $) NIL (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-3877 (((-112) $ (-1229 (-564)) (-112)) NIL (|has| $ (-6 -4411))) (((-112) $ (-564) (-112)) 41 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-2490 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-1320 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-2625 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4411)))) (-2551 (((-112) $ (-564)) NIL)) (-3979 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1097))) (((-564) (-112) $) NIL (|has| (-112) (-1097))) (((-564) (-1 (-112) (-112)) $) NIL)) (-2936 (((-642 (-112)) $) NIL (|has| $ (-6 -4410)))) (-2285 (($ $ $) 37)) (-2268 (($ $) NIL)) (-2309 (($ $ $) NIL)) (-4227 (($ (-769) (-112)) 26)) (-4277 (($ $ $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) 8 (|has| (-564) (-848)))) (-2755 (($ $ $) NIL)) (-2740 (($ $ $) NIL (|has| (-112) (-848))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3234 (((-642 (-112)) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL)) (-2613 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-112) (-112) (-112)) $ $) 34) (($ (-1 (-112) (-112)) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-4238 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 (((-112) $) NIL (|has| (-564) (-848)))) (-3254 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2696 (($ $ (-112)) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-112)) (-642 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097)))) (($ $ (-642 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097))))) (-2724 (((-642 (-112)) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) 27)) (-4368 (($ $ (-1229 (-564))) NIL) (((-112) $ (-564)) 21) (((-112) $ (-564) (-112)) NIL)) (-2073 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-4043 (((-769) (-112) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-112) (-1097)))) (((-769) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) 28)) (-1314 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-2337 (($ (-642 (-112))) NIL)) (-3651 (($ (-642 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2327 (((-860) $) 25)) (-1648 (((-112) $ $) NIL)) (-2710 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4410)))) (-2275 (($ $ $) 35)) (-2971 (($ $ $) NIL)) (-4134 (($ $ $) 44)) (-4144 (($ $) 42)) (-4124 (($ $ $) 43)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 29)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 30)) (-2958 (($ $ $) NIL)) (-2127 (((-769) $) 13 (|has| $ (-6 -4410)))))
+(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -4144 ($ $)) (-15 -4134 ($ $ $)) (-15 -4124 ($ $ $)))) (-564)) (T -500))
+((-4144 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-4134 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-4124 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))))
+(-13 (-123) (-10 -8 (-15 -4144 ($ $)) (-15 -4134 ($ $ $)) (-15 -4124 ($ $ $))))
+((-4311 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1169 |#4|)) 35)) (-3087 (((-1169 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1169 |#4|)) 22)) (-3859 (((-3 (-687 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-687 (-1169 |#4|))) 49)) (-4080 (((-1169 (-1169 |#4|)) (-1 |#4| |#1|) |#3|) 58)))
+(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3087 (|#2| (-1 |#1| |#4|) (-1169 |#4|))) (-15 -3087 ((-1169 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4311 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1169 |#4|))) (-15 -3859 ((-3 (-687 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-687 (-1169 |#4|)))) (-15 -4080 ((-1169 (-1169 |#4|)) (-1 |#4| |#1|) |#3|))) (-1047) (-1238 |#1|) (-1238 |#2|) (-1047)) (T -501))
+((-4080 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *6 (-1238 *5)) (-5 *2 (-1169 (-1169 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1238 *6)))) (-3859 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-687 (-1169 *8))) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-1238 *5)) (-5 *2 (-687 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1238 *6)))) (-4311 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1169 *7)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *2 (-1238 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1238 *2)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *4 (-1238 *5)) (-5 *2 (-1169 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1238 *4)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1169 *7)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *2 (-1238 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1238 *2)))))
+(-10 -7 (-15 -3087 (|#2| (-1 |#1| |#4|) (-1169 |#4|))) (-15 -3087 ((-1169 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4311 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1169 |#4|))) (-15 -3859 ((-3 (-687 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-687 (-1169 |#4|)))) (-15 -4080 ((-1169 (-1169 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2907 (((-112) $ $) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1937 (((-1267) $) 25)) (-4368 (((-1155) $ (-1173)) 30)) (-1664 (((-1267) $) 17)) (-2327 (((-860) $) 27) (($ (-1155)) 26)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 11)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 9)))
+(((-502) (-13 (-848) (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 ((-1267) $)) (-15 -1937 ((-1267) $)) (-15 -2327 ($ (-1155)))))) (T -502))
+((-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1155)) (-5 *1 (-502)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-502)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-502)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-502)))))
+(-13 (-848) (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 ((-1267) $)) (-15 -1937 ((-1267) $)) (-15 -2327 ($ (-1155)))))
+((-3356 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1602 ((|#1| |#4|) 10)) (-3283 ((|#3| |#4|) 17)))
+(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1602 (|#1| |#4|)) (-15 -3283 (|#3| |#4|)) (-15 -3356 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-556) (-990 |#1|) (-373 |#1|) (-373 |#2|)) (T -503))
+((-3356 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-3283 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))))
+(-10 -7 (-15 -1602 (|#1| |#4|)) (-15 -3283 (|#3| |#4|)) (-15 -3356 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2907 (((-112) $ $) NIL)) (-1877 (((-112) $ (-642 |#3|)) 129) (((-112) $) 130)) (-2952 (((-112) $) 181)) (-3275 (($ $ |#4|) 120) (($ $ |#4| (-642 |#3|)) 124)) (-3565 (((-1162 (-642 (-950 |#1|)) (-642 (-294 (-950 |#1|)))) (-642 |#4|)) 174 (|has| |#3| (-612 (-1173))))) (-1420 (($ $ $) 108) (($ $ |#4|) 106)) (-3953 (((-112) $) 180)) (-1727 (($ $) 134)) (-3315 (((-1155) $) NIL)) (-2452 (($ $ $) 100) (($ (-642 $)) 102)) (-3230 (((-112) |#4| $) 132)) (-4003 (((-112) $ $) 86)) (-3279 (($ (-642 |#4|)) 107)) (-4033 (((-1117) $) NIL)) (-2878 (($ (-642 |#4|)) 178)) (-3141 (((-112) $) 179)) (-2128 (($ $) 89)) (-2919 (((-642 |#4|) $) 73)) (-1840 (((-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $)) $ (-642 |#3|)) NIL)) (-2784 (((-112) |#4| $) 93)) (-3474 (((-564) $ (-642 |#3|)) 136) (((-564) $) 137)) (-2327 (((-860) $) 177) (($ (-642 |#4|)) 103)) (-1648 (((-112) $ $) NIL)) (-1751 (($ (-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $))) NIL)) (-2872 (((-112) $ $) 88)) (-2974 (($ $ $) 110)) (** (($ $ (-769)) 118)) (* (($ $ $) 116)))
+(((-504 |#1| |#2| |#3| |#4|) (-13 (-1097) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-769))) (-15 -2974 ($ $ $)) (-15 -3953 ((-112) $)) (-15 -2952 ((-112) $)) (-15 -2784 ((-112) |#4| $)) (-15 -4003 ((-112) $ $)) (-15 -3230 ((-112) |#4| $)) (-15 -1877 ((-112) $ (-642 |#3|))) (-15 -1877 ((-112) $)) (-15 -2452 ($ $ $)) (-15 -2452 ($ (-642 $))) (-15 -1420 ($ $ $)) (-15 -1420 ($ $ |#4|)) (-15 -2128 ($ $)) (-15 -1840 ((-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $)) $ (-642 |#3|))) (-15 -1751 ($ (-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $)))) (-15 -3474 ((-564) $ (-642 |#3|))) (-15 -3474 ((-564) $)) (-15 -1727 ($ $)) (-15 -3279 ($ (-642 |#4|))) (-15 -2878 ($ (-642 |#4|))) (-15 -3141 ((-112) $)) (-15 -2919 ((-642 |#4|) $)) (-15 -2327 ($ (-642 |#4|))) (-15 -3275 ($ $ |#4|)) (-15 -3275 ($ $ |#4| (-642 |#3|))) (IF (|has| |#3| (-612 (-1173))) (-15 -3565 ((-1162 (-642 (-950 |#1|)) (-642 (-294 (-950 |#1|)))) (-642 |#4|))) |%noBranch|))) (-363) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -504))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2974 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-3953 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2952 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2784 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))) (-4003 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-3230 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))) (-1877 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))) (-1877 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2452 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-642 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-1420 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-1420 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5)))) (-2128 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-1840 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) (-5 *2 (-2 (|:| |mval| (-687 *4)) (|:| |invmval| (-687 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))) (-1751 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-687 *3)) (|:| |invmval| (-687 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-3474 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))) (-3474 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-564)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-1727 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-3279 (*1 *1 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2878 (*1 *1 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)))) (-3141 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2919 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)))) (-3275 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5)))) (-3275 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-947 *4 *5 *6)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *5 *6)) (-4 *6 (-612 (-1173))) (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1162 (-642 (-950 *4)) (-642 (-294 (-950 *4))))) (-5 *1 (-504 *4 *5 *6 *7)))))
+(-13 (-1097) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-769))) (-15 -2974 ($ $ $)) (-15 -3953 ((-112) $)) (-15 -2952 ((-112) $)) (-15 -2784 ((-112) |#4| $)) (-15 -4003 ((-112) $ $)) (-15 -3230 ((-112) |#4| $)) (-15 -1877 ((-112) $ (-642 |#3|))) (-15 -1877 ((-112) $)) (-15 -2452 ($ $ $)) (-15 -2452 ($ (-642 $))) (-15 -1420 ($ $ $)) (-15 -1420 ($ $ |#4|)) (-15 -2128 ($ $)) (-15 -1840 ((-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $)) $ (-642 |#3|))) (-15 -1751 ($ (-2 (|:| |mval| (-687 |#1|)) (|:| |invmval| (-687 |#1|)) (|:| |genIdeal| $)))) (-15 -3474 ((-564) $ (-642 |#3|))) (-15 -3474 ((-564) $)) (-15 -1727 ($ $)) (-15 -3279 ($ (-642 |#4|))) (-15 -2878 ($ (-642 |#4|))) (-15 -3141 ((-112) $)) (-15 -2919 ((-642 |#4|) $)) (-15 -2327 ($ (-642 |#4|))) (-15 -3275 ($ $ |#4|)) (-15 -3275 ($ $ |#4| (-642 |#3|))) (IF (|has| |#3| (-612 (-1173))) (-15 -3565 ((-1162 (-642 (-950 |#1|)) (-642 (-294 (-950 |#1|)))) (-642 |#4|))) |%noBranch|)))
+((-1735 (((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) 178)) (-3845 (((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) 179)) (-3545 (((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) 129)) (-1469 (((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) NIL)) (-4185 (((-642 (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) 181)) (-2147 (((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-642 (-862 |#1|))) 196)))
+(((-505 |#1| |#2|) (-10 -7 (-15 -1735 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3845 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1469 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3545 ((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4185 ((-642 (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2147 ((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-642 (-862 |#1|))))) (-642 (-1173)) (-769)) (T -505))
+((-2147 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564))))) (-5 *3 (-642 (-862 *4))) (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *1 (-505 *4 *5)))) (-4185 (*1 *2 *3) (-12 (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-642 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564))))))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *4 (-769)) (-862 *3) (-247 *3 (-407 (-564))))) (-14 *3 (-642 (-1173))) (-14 *4 (-769)) (-5 *1 (-505 *3 *4)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))))
+(-10 -7 (-15 -1735 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3845 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1469 ((-112) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3545 ((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4185 ((-642 (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2147 ((-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-769)) (-862 |#1|) (-247 |#1| (-407 (-564)))) (-642 (-862 |#1|)))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2678 (($) 6)) (-2327 (((-860) $) 12) (((-1173) $) 10)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 8)))
+(((-506) (-13 (-1097) (-611 (-1173)) (-10 -8 (-15 -2678 ($))))) (T -506))
+((-2678 (*1 *1) (-5 *1 (-506))))
+(-13 (-1097) (-611 (-1173)) (-10 -8 (-15 -2678 ($))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-1718 (($ $) NIL)) (-3774 (($ |#1| |#2|) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3959 ((|#2| $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 12 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) 11) (($ $ $) 35)) (-2974 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 21)))
+(((-507 |#1| |#2|) (-13 (-21) (-509 |#1| |#2|)) (-21) (-848)) (T -507))
NIL
(-13 (-21) (-509 |#1| |#2|))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 13)) (-4080 (($) NIL T CONST)) (-1684 (($ $) 41)) (-3810 (($ |#1| |#2|) 38)) (-4357 (($ (-1 |#1| |#1|) $) 40)) (-3508 ((|#2| $) NIL)) (-3982 ((|#1| $) 42)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 10 T CONST)) (-2974 (((-112) $ $) NIL)) (-3070 (($ $ $) 26)) (* (($ (-917) $) NIL) (($ (-767) $) 36)))
-(((-508 |#1| |#2|) (-13 (-23) (-509 |#1| |#2|)) (-23) (-846)) (T -508))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 13)) (-1976 (($) NIL T CONST)) (-1718 (($ $) 41)) (-3774 (($ |#1| |#2|) 38)) (-4358 (($ (-1 |#1| |#1|) $) 40)) (-3959 ((|#2| $) NIL)) (-3962 ((|#1| $) 42)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 10 T CONST)) (-2872 (((-112) $ $) NIL)) (-2974 (($ $ $) 26)) (* (($ (-919) $) NIL) (($ (-769) $) 36)))
+(((-508 |#1| |#2|) (-13 (-23) (-509 |#1| |#2|)) (-23) (-848)) (T -508))
NIL
(-13 (-23) (-509 |#1| |#2|))
-((-3009 (((-112) $ $) 7)) (-1684 (($ $) 14)) (-3810 (($ |#1| |#2|) 17)) (-4357 (($ (-1 |#1| |#1|) $) 18)) (-3508 ((|#2| $) 15)) (-3982 ((|#1| $) 16)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
-(((-509 |#1| |#2|) (-140) (-1094) (-846)) (T -509))
-((-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-846)))) (-3810 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1094)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-846)))) (-1684 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846)))))
-(-13 (-1094) (-10 -8 (-15 -4357 ($ (-1 |t#1| |t#1|) $)) (-15 -3810 ($ |t#1| |t#2|)) (-15 -3982 (|t#1| $)) (-15 -3508 (|t#2| $)) (-15 -1684 ($ $))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4080 (($) NIL T CONST)) (-1684 (($ $) NIL)) (-3810 (($ |#1| |#2|) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3508 ((|#2| $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2403 (($) NIL T CONST)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 20)) (-3070 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL)))
-(((-510 |#1| |#2|) (-13 (-788) (-509 |#1| |#2|)) (-788) (-846)) (T -510))
-NIL
-(-13 (-788) (-509 |#1| |#2|))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3878 (($ $ $) 22)) (-4012 (((-3 $ "failed") $ $) 18)) (-4080 (($) NIL T CONST)) (-1684 (($ $) NIL)) (-3810 (($ |#1| |#2|) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3508 ((|#2| $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2403 (($) NIL T CONST)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)) (-3070 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL)))
-(((-511 |#1| |#2|) (-13 (-789) (-509 |#1| |#2|)) (-789) (-846)) (T -511))
-NIL
-(-13 (-789) (-509 |#1| |#2|))
-((-3009 (((-112) $ $) NIL)) (-1684 (($ $) 32)) (-3810 (($ |#1| |#2|) 28)) (-4357 (($ (-1 |#1| |#1|) $) 30)) (-3508 ((|#2| $) 34)) (-3982 ((|#1| $) 33)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 27)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 20)))
-(((-512 |#1| |#2|) (-509 |#1| |#2|) (-1094) (-846)) (T -512))
+((-2907 (((-112) $ $) 7)) (-1718 (($ $) 14)) (-3774 (($ |#1| |#2|) 17)) (-4358 (($ (-1 |#1| |#1|) $) 18)) (-3959 ((|#2| $) 15)) (-3962 ((|#1| $) 16)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
+(((-509 |#1| |#2|) (-140) (-1097) (-848)) (T -509))
+((-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-848)))) (-3774 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-848)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-848)) (-4 *2 (-1097)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-848)))) (-1718 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-848)))))
+(-13 (-1097) (-10 -8 (-15 -4358 ($ (-1 |t#1| |t#1|) $)) (-15 -3774 ($ |t#1| |t#2|)) (-15 -3962 (|t#1| $)) (-15 -3959 (|t#2| $)) (-15 -1718 ($ $))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1976 (($) NIL T CONST)) (-1718 (($ $) NIL)) (-3774 (($ |#1| |#2|) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3959 ((|#2| $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2312 (($) NIL T CONST)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 20)) (-2974 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL)))
+(((-510 |#1| |#2|) (-13 (-790) (-509 |#1| |#2|)) (-790) (-848)) (T -510))
+NIL
+(-13 (-790) (-509 |#1| |#2|))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3532 (($ $ $) 22)) (-1532 (((-3 $ "failed") $ $) 18)) (-1976 (($) NIL T CONST)) (-1718 (($ $) NIL)) (-3774 (($ |#1| |#2|) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3959 ((|#2| $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2312 (($) NIL T CONST)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-2974 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL)))
+(((-511 |#1| |#2|) (-13 (-791) (-509 |#1| |#2|)) (-791) (-848)) (T -511))
+NIL
+(-13 (-791) (-509 |#1| |#2|))
+((-2907 (((-112) $ $) NIL)) (-1718 (($ $) 32)) (-3774 (($ |#1| |#2|) 28)) (-4358 (($ (-1 |#1| |#1|) $) 30)) (-3959 ((|#2| $) 34)) (-3962 ((|#1| $) 33)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 27)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 20)))
+(((-512 |#1| |#2|) (-509 |#1| |#2|) (-1097) (-848)) (T -512))
NIL
(-509 |#1| |#2|)
-((-3291 (($ $ (-641 |#2|) (-641 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -3291 (|#1| |#1| |#2| |#3|)) (-15 -3291 (|#1| |#1| (-641 |#2|) (-641 |#3|)))) (-514 |#2| |#3|) (-1094) (-1209)) (T -513))
+((-3215 (($ $ (-642 |#2|) (-642 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -3215 (|#1| |#1| |#2| |#3|)) (-15 -3215 (|#1| |#1| (-642 |#2|) (-642 |#3|)))) (-514 |#2| |#3|) (-1097) (-1212)) (T -513))
NIL
-(-10 -8 (-15 -3291 (|#1| |#1| |#2| |#3|)) (-15 -3291 (|#1| |#1| (-641 |#2|) (-641 |#3|))))
-((-3291 (($ $ (-641 |#1|) (-641 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-514 |#1| |#2|) (-140) (-1094) (-1209)) (T -514))
-((-3291 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1209)))) (-3291 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1209)))))
-(-13 (-10 -8 (-15 -3291 ($ $ |t#1| |t#2|)) (-15 -3291 ($ $ (-641 |t#1|) (-641 |t#2|)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 17)) (-4289 (((-641 (-2 (|:| |gen| |#1|) (|:| -1689 |#2|))) $) 19)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2622 (((-767) $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-4375 ((|#1| $ (-564)) 24)) (-1529 ((|#2| $ (-564)) 22)) (-2700 (($ (-1 |#1| |#1|) $) 48)) (-1670 (($ (-1 |#2| |#2|) $) 45)) (-2766 (((-1152) $) NIL)) (-3966 (($ $ $) 55 (|has| |#2| (-788)))) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 44) (($ |#1|) NIL)) (-2007 ((|#2| |#1| $) 51)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 11 T CONST)) (-2974 (((-112) $ $) 30)) (-3070 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-917) $) NIL) (($ (-767) $) 37) (($ |#2| |#1|) 32)))
-(((-515 |#1| |#2| |#3|) (-323 |#1| |#2|) (-1094) (-131) |#2|) (T -515))
+(-10 -8 (-15 -3215 (|#1| |#1| |#2| |#3|)) (-15 -3215 (|#1| |#1| (-642 |#2|) (-642 |#3|))))
+((-3215 (($ $ (-642 |#1|) (-642 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-514 |#1| |#2|) (-140) (-1097) (-1212)) (T -514))
+((-3215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1212)))) (-3215 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1212)))))
+(-13 (-10 -8 (-15 -3215 ($ $ |t#1| |t#2|)) (-15 -3215 ($ $ (-642 |t#1|) (-642 |t#2|)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 17)) (-2674 (((-642 (-2 (|:| |gen| |#1|) (|:| -1723 |#2|))) $) 19)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2521 (((-769) $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-2123 ((|#1| $ (-564)) 24)) (-2346 ((|#2| $ (-564)) 22)) (-4317 (($ (-1 |#1| |#1|) $) 48)) (-2012 (($ (-1 |#2| |#2|) $) 45)) (-3315 (((-1155) $) NIL)) (-4169 (($ $ $) 55 (|has| |#2| (-790)))) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 44) (($ |#1|) NIL)) (-2102 ((|#2| |#1| $) 51)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 11 T CONST)) (-2872 (((-112) $ $) 30)) (-2974 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-919) $) NIL) (($ (-769) $) 37) (($ |#2| |#1|) 32)))
+(((-515 |#1| |#2| |#3|) (-323 |#1| |#2|) (-1097) (-131) |#2|) (T -515))
NIL
(-323 |#1| |#2|)
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-2853 (((-112) (-112)) 32)) (-3904 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408)))) (-1466 (($ (-1 (-112) |#1|) $) 78)) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2679 (($ $) 82 (|has| |#1| (-1094)))) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1945 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 65)) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) NIL)) (-3998 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-2717 (($ $ (-564)) 19)) (-3693 (((-767) $) 13)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-4238 (($ (-767) |#1|) 31)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) 29 (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-2087 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 56)) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) 57) (($ $ $) NIL (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) 28 (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2566 (($ $ $ (-564)) 74) (($ |#1| $ (-564)) 58)) (-4248 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1651 (($ (-641 |#1|)) 43)) (-2658 ((|#1| $) NIL (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) 24 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 61)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) 21)) (-4366 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 54) (($ $ (-1226 (-564))) NIL)) (-2251 (($ $ (-1226 (-564))) 72) (($ $ (-564)) 66)) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) 62 (|has| $ (-6 -4408)))) (-3926 (($ $) 53)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) NIL)) (-3634 (($ $ $) 63) (($ $ |#1|) 60)) (-3696 (($ $ |#1|) NIL) (($ |#1| $) 59) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2181 (((-767) $) 22 (|has| $ (-6 -4407)))))
-(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1651 ($ (-641 |#1|))) (-15 -3693 ((-767) $)) (-15 -2717 ($ $ (-564))) (-15 -2853 ((-112) (-112))))) (-1209) (-564)) (T -516))
-((-1651 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4)) (-14 *4 (-564)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564)))) (-2717 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564)))))
-(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1651 ($ (-641 |#1|))) (-15 -3693 ((-767) $)) (-15 -2717 ($ $ (-564))) (-15 -2853 ((-112) (-112)))))
-((-3009 (((-112) $ $) NIL)) (-1353 (((-1129) $) 11)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3603 (((-1129) $) 13)) (-2940 (((-1129) $) 9)) (-2423 (((-858) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-517) (-13 (-1077) (-10 -8 (-15 -2940 ((-1129) $)) (-15 -1353 ((-1129) $)) (-15 -3603 ((-1129) $))))) (T -517))
-((-2940 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-1353 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))))
-(-13 (-1077) (-10 -8 (-15 -2940 ((-1129) $)) (-15 -1353 ((-1129) $)) (-15 -3603 ((-1129) $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 (((-581 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-581 |#1|) (-368)))) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-581 |#1|) (-368)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) NIL (|has| (-581 |#1|) (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-581 |#1|) "failed") $) NIL)) (-3120 (((-581 |#1|) $) NIL)) (-3474 (($ (-1259 (-581 |#1|))) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-581 |#1|) (-368)))) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-581 |#1|) (-368)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) NIL (|has| (-581 |#1|) (-368)))) (-1436 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-3456 (($ $ (-767)) NIL (-2807 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368)))) (($ $) NIL (-2807 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-1339 (((-112) $) NIL)) (-3744 (((-917) $) NIL (|has| (-581 |#1|) (-368))) (((-829 (-917)) $) NIL (-2807 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-4112 (((-112) $) NIL)) (-2908 (($) NIL (|has| (-581 |#1|) (-368)))) (-3164 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-2499 (((-581 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-581 |#1|) (-368)))) (-1846 (((-3 $ "failed") $) NIL (|has| (-581 |#1|) (-368)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 (-581 |#1|)) $) NIL) (((-1166 $) $ (-917)) NIL (|has| (-581 |#1|) (-368)))) (-3256 (((-917) $) NIL (|has| (-581 |#1|) (-368)))) (-2820 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368)))) (-4372 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-1166 (-581 |#1|)) "failed") $ $) NIL (|has| (-581 |#1|) (-368)))) (-3606 (($ $ (-1166 (-581 |#1|))) NIL (|has| (-581 |#1|) (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-581 |#1|) (-368)) CONST)) (-2083 (($ (-917)) NIL (|has| (-581 |#1|) (-368)))) (-2695 (((-112) $) NIL)) (-4052 (((-1114) $) NIL)) (-2249 (($) NIL (|has| (-581 |#1|) (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| (-581 |#1|) (-368)))) (-3688 (((-418 $) $) NIL)) (-1967 (((-829 (-917))) NIL) (((-917)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-767) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2807 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-4327 (((-134)) NIL)) (-3254 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-581 |#1|) (-368)))) (-1568 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3721 (((-1166 (-581 |#1|))) NIL)) (-3826 (($) NIL (|has| (-581 |#1|) (-368)))) (-1930 (($) NIL (|has| (-581 |#1|) (-368)))) (-4225 (((-1259 (-581 |#1|)) $) NIL) (((-685 (-581 |#1|)) (-1259 $)) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-581 |#1|) (-368)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-581 |#1|)) NIL)) (-2420 (($ $) NIL (|has| (-581 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2807 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL) (((-1259 $) (-917)) NIL)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-3037 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-581 |#1|) (-368)))) (-4063 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-581 |#1|) (-368)))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL) (($ $ (-581 |#1|)) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-581 |#1|)) NIL) (($ (-581 |#1|) $) NIL)))
-(((-518 |#1| |#2|) (-329 (-581 |#1|)) (-917) (-917)) (T -518))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3952 (((-112) (-112)) 32)) (-3877 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-2462 (($ (-1 (-112) |#1|) $) 78)) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-1938 (($ $) 82 (|has| |#1| (-1097)))) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) 65)) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) NIL)) (-3979 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-4321 (($ $ (-564)) 19)) (-4206 (((-769) $) 13)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-4227 (($ (-769) |#1|) 31)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) 29 (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-3427 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) 56)) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) 57) (($ $ $) NIL (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) 28 (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-3183 (($ $ $ (-564)) 74) (($ |#1| $ (-564)) 58)) (-4238 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3287 (($ (-642 |#1|)) 43)) (-2557 ((|#1| $) NIL (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) 24 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 61)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) 21)) (-4368 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 54) (($ $ (-1229 (-564))) NIL)) (-3184 (($ $ (-1229 (-564))) 72) (($ $ (-564)) 66)) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) 62 (|has| $ (-6 -4411)))) (-3901 (($ $) 53)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) NIL)) (-2582 (($ $ $) 63) (($ $ |#1|) 60)) (-3651 (($ $ |#1|) NIL) (($ |#1| $) 59) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2127 (((-769) $) 22 (|has| $ (-6 -4410)))))
+(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3287 ($ (-642 |#1|))) (-15 -4206 ((-769) $)) (-15 -4321 ($ $ (-564))) (-15 -3952 ((-112) (-112))))) (-1212) (-564)) (T -516))
+((-3287 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-516 *3 *4)) (-14 *4 (-564)))) (-4206 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212)) (-14 *4 (-564)))) (-4321 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212)) (-14 *4 *2))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212)) (-14 *4 (-564)))))
+(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3287 ($ (-642 |#1|))) (-15 -4206 ((-769) $)) (-15 -4321 ($ $ (-564))) (-15 -3952 ((-112) (-112)))))
+((-2907 (((-112) $ $) NIL)) (-1431 (((-1132) $) 11)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2485 (((-1132) $) 13)) (-2839 (((-1132) $) 9)) (-2327 (((-860) $) 19) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-517) (-13 (-1080) (-10 -8 (-15 -2839 ((-1132) $)) (-15 -1431 ((-1132) $)) (-15 -2485 ((-1132) $))))) (T -517))
+((-2839 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517)))))
+(-13 (-1080) (-10 -8 (-15 -2839 ((-1132) $)) (-15 -1431 ((-1132) $)) (-15 -2485 ((-1132) $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 (((-581 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-581 |#1|) (-368)))) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-581 |#1|) (-368)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) NIL (|has| (-581 |#1|) (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-581 |#1|) "failed") $) NIL)) (-3027 (((-581 |#1|) $) NIL)) (-4221 (($ (-1262 (-581 |#1|))) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-581 |#1|) (-368)))) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-581 |#1|) (-368)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) NIL (|has| (-581 |#1|) (-368)))) (-3424 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-3607 (($ $ (-769)) NIL (-2706 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368)))) (($ $) NIL (-2706 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-1469 (((-112) $) NIL)) (-1427 (((-919) $) NIL (|has| (-581 |#1|) (-368))) (((-831 (-919)) $) NIL (-2706 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3953 (((-112) $) NIL)) (-3289 (($) NIL (|has| (-581 |#1|) (-368)))) (-3563 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-2218 (((-581 |#1|) $) NIL) (($ $ (-919)) NIL (|has| (-581 |#1|) (-368)))) (-3157 (((-3 $ "failed") $) NIL (|has| (-581 |#1|) (-368)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 (-581 |#1|)) $) NIL) (((-1169 $) $ (-919)) NIL (|has| (-581 |#1|) (-368)))) (-1945 (((-919) $) NIL (|has| (-581 |#1|) (-368)))) (-4157 (((-1169 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368)))) (-2891 (((-1169 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-1169 (-581 |#1|)) "failed") $ $) NIL (|has| (-581 |#1|) (-368)))) (-2393 (($ $ (-1169 (-581 |#1|))) NIL (|has| (-581 |#1|) (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-581 |#1|) (-368)) CONST)) (-2047 (($ (-919)) NIL (|has| (-581 |#1|) (-368)))) (-2843 (((-112) $) NIL)) (-4033 (((-1117) $) NIL)) (-2185 (($) NIL (|has| (-581 |#1|) (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| (-581 |#1|) (-368)))) (-3643 (((-418 $) $) NIL)) (-1524 (((-831 (-919))) NIL) (((-919)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-769) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-769) "failed") $ $) NIL (-2706 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3474 (((-134)) NIL)) (-3175 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-581 |#1|) (-368)))) (-2775 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3280 (((-1169 (-581 |#1|))) NIL)) (-2668 (($) NIL (|has| (-581 |#1|) (-368)))) (-1627 (($) NIL (|has| (-581 |#1|) (-368)))) (-2067 (((-1262 (-581 |#1|)) $) NIL) (((-687 (-581 |#1|)) (-1262 $)) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-581 |#1|) (-368)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-581 |#1|)) NIL)) (-2439 (($ $) NIL (|has| (-581 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2706 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL) (((-1262 $) (-919)) NIL)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-3623 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-581 |#1|) (-368)))) (-4044 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-769)) NIL (|has| (-581 |#1|) (-368)))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL) (($ $ (-581 |#1|)) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-581 |#1|)) NIL) (($ (-581 |#1|) $) NIL)))
+(((-518 |#1| |#2|) (-329 (-581 |#1|)) (-919) (-919)) (T -518))
NIL
(-329 (-581 |#1|))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-564) (-564) |#1|) 50)) (-1440 (($ $ (-564) |#4|) NIL)) (-3404 (($ $ (-564) |#5|) NIL)) (-4080 (($) NIL T CONST)) (-4086 ((|#4| $ (-564)) NIL)) (-2726 ((|#1| $ (-564) (-564) |#1|) 49)) (-2652 ((|#1| $ (-564) (-564)) 45)) (-3035 (((-641 |#1|) $) NIL)) (-2667 (((-767) $) 33)) (-4238 (($ (-767) (-767) |#1|) 30)) (-2681 (((-767) $) 38)) (-3097 (((-112) $ (-767)) NIL)) (-1795 (((-564) $) 31)) (-2980 (((-564) $) 32)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2283 (((-564) $) 37)) (-2287 (((-564) $) 39)) (-2714 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) 54 (|has| |#1| (-1094)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1592 (($ $ |#1|) NIL)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 14)) (-2994 (($) 16)) (-4366 ((|#1| $ (-564) (-564)) 47) ((|#1| $ (-564) (-564) |#1|) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-1575 ((|#5| $ (-564)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-519 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1209) (-564) (-564) (-373 |#1|) (-373 |#1|)) (T -519))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) 50)) (-2950 (($ $ (-564) |#4|) NIL)) (-1919 (($ $ (-564) |#5|) NIL)) (-1976 (($) NIL T CONST)) (-2600 ((|#4| $ (-564)) NIL)) (-2625 ((|#1| $ (-564) (-564) |#1|) 49)) (-2551 ((|#1| $ (-564) (-564)) 45)) (-2936 (((-642 |#1|) $) NIL)) (-2567 (((-769) $) 33)) (-4227 (($ (-769) (-769) |#1|) 30)) (-2579 (((-769) $) 38)) (-3462 (((-112) $ (-769)) NIL)) (-3491 (((-564) $) 31)) (-3865 (((-564) $) 32)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3054 (((-564) $) 37)) (-2977 (((-564) $) 39)) (-2613 (($ (-1 |#1| |#1|) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) 54 (|has| |#1| (-1097)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2696 (($ $ |#1|) NIL)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 14)) (-2972 (($) 16)) (-4368 ((|#1| $ (-564) (-564)) 47) ((|#1| $ (-564) (-564) |#1|) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-3022 ((|#5| $ (-564)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-519 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1212) (-564) (-564) (-373 |#1|) (-373 |#1|)) (T -519))
NIL
(-57 |#1| |#4| |#5|)
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2128 ((|#1| $) NIL)) (-1783 ((|#1| $) NIL)) (-1403 (($ $) NIL)) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3611 (($ $ (-564)) 73 (|has| $ (-6 -4408)))) (-3833 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3963 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4408)))) (-2484 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-2925 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-1886 (($ $ $) 23 (|has| $ (-6 -4408)))) (-1776 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-4265 ((|#1| $ |#1|) 21 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4408))) (($ $ "rest" $) 24 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) NIL (|has| $ (-6 -4408)))) (-1466 (($ (-1 (-112) |#1|) $) NIL)) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1772 ((|#1| $) NIL)) (-4080 (($) NIL T CONST)) (-2563 (($ $) 28 (|has| $ (-6 -4408)))) (-3200 (($ $) 29)) (-2671 (($ $) 18) (($ $ (-767)) 35)) (-2679 (($ $) 66 (|has| |#1| (-1094)))) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1945 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2591 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2726 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) NIL)) (-2643 (((-112) $) NIL)) (-3998 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3035 (((-641 |#1|) $) 27 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) NIL)) (-1675 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4238 (($ (-767) |#1|) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) 31 (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-2087 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3669 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2522 (($ |#1|) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2730 (((-641 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-2766 (((-1152) $) 62 (|has| |#1| (-1094)))) (-2615 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-2566 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4248 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2658 ((|#1| $) 13) (($ $ (-767)) NIL)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-1555 (((-112) $) NIL)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 12)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) 17)) (-2994 (($) 16)) (-4366 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL)) (-3277 (((-564) $ $) NIL)) (-2251 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2114 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3206 (((-112) $) 39)) (-3068 (($ $) NIL)) (-2602 (($ $) NIL (|has| $ (-6 -4408)))) (-3004 (((-767) $) NIL)) (-1977 (($ $) 44)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) 40)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 26)) (-3634 (($ $ $) 65) (($ $ |#1|) NIL)) (-3696 (($ $ $) NIL) (($ |#1| $) 10) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-2423 (((-858) $) 54 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) NIL)) (-4059 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) 58 (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2181 (((-767) $) 9 (|has| $ (-6 -4407)))))
-(((-520 |#1| |#2|) (-662 |#1|) (-1209) (-564)) (T -520))
-NIL
-(-662 |#1|)
-((-1679 ((|#4| |#4|) 37)) (-2514 (((-767) |#4|) 46)) (-2907 (((-767) |#4|) 47)) (-2383 (((-641 |#3|) |#4|) 57 (|has| |#3| (-6 -4408)))) (-2540 (((-3 |#4| "failed") |#4|) 71)) (-3108 ((|#4| |#4|) 63)) (-1540 ((|#1| |#4|) 62)))
-(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1679 (|#4| |#4|)) (-15 -2514 ((-767) |#4|)) (-15 -2907 ((-767) |#4|)) (IF (|has| |#3| (-6 -4408)) (-15 -2383 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -1540 (|#1| |#4|)) (-15 -3108 (|#4| |#4|)) (-15 -2540 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -521))
-((-2540 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1540 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-2383 (*1 *2 *3) (-12 (|has| *6 (-6 -4408)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2907 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2514 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1679 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(-10 -7 (-15 -1679 (|#4| |#4|)) (-15 -2514 ((-767) |#4|)) (-15 -2907 ((-767) |#4|)) (IF (|has| |#3| (-6 -4408)) (-15 -2383 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -1540 (|#1| |#4|)) (-15 -3108 (|#4| |#4|)) (-15 -2540 ((-3 |#4| "failed") |#4|)))
-((-1679 ((|#8| |#4|) 20)) (-2383 (((-641 |#3|) |#4|) 29 (|has| |#7| (-6 -4408)))) (-2540 (((-3 |#8| "failed") |#4|) 23)))
-(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1679 (|#8| |#4|)) (-15 -2540 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4408)) (-15 -2383 ((-641 |#3|) |#4|)) |%noBranch|)) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-988 |#1|) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -522))
-((-2383 (*1 *2 *3) (-12 (|has| *9 (-6 -4408)) (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-641 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6)) (-4 *10 (-683 *7 *8 *9)))) (-2540 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-1679 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))))
-(-10 -7 (-15 -1679 (|#8| |#4|)) (-15 -2540 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4408)) (-15 -2383 ((-641 |#3|) |#4|)) |%noBranch|))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4122 (($ (-767) (-767)) NIL)) (-1837 (($ $ $) NIL)) (-3816 (($ (-600 |#1| |#3|)) NIL) (($ $) NIL)) (-4239 (((-112) $) NIL)) (-3152 (($ $ (-564) (-564)) 20)) (-2190 (($ $ (-564) (-564)) NIL)) (-2886 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3468 (($ $) NIL)) (-3999 (((-112) $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-2255 (($ $ (-564) (-564) $) NIL)) (-3904 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-1440 (($ $ (-564) (-600 |#1| |#3|)) NIL)) (-3404 (($ $ (-564) (-600 |#1| |#2|)) NIL)) (-3483 (($ (-767) |#1|) NIL)) (-4080 (($) NIL T CONST)) (-1679 (($ $) 29 (|has| |#1| (-307)))) (-4086 (((-600 |#1| |#3|) $ (-564)) NIL)) (-2514 (((-767) $) 32 (|has| |#1| (-556)))) (-2726 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2652 ((|#1| $ (-564) (-564)) NIL)) (-3035 (((-641 |#1|) $) NIL)) (-2907 (((-767) $) 34 (|has| |#1| (-556)))) (-2383 (((-641 (-600 |#1| |#2|)) $) 37 (|has| |#1| (-556)))) (-2667 (((-767) $) NIL)) (-4238 (($ (-767) (-767) |#1|) NIL)) (-2681 (((-767) $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-2665 ((|#1| $) 27 (|has| |#1| (-6 (-4409 "*"))))) (-1795 (((-564) $) 10)) (-2980 (((-564) $) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2283 (((-564) $) 13)) (-2287 (((-564) $) NIL)) (-2322 (($ (-641 (-641 |#1|))) NIL)) (-2714 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3587 (((-641 (-641 |#1|)) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2540 (((-3 $ "failed") $) 41 (|has| |#1| (-363)))) (-1796 (($ $ $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1592 (($ $ |#1|) NIL)) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-2006 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-2701 (((-112) $) NIL)) (-1540 ((|#1| $) 25 (|has| |#1| (-6 (-4409 "*"))))) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-1575 (((-600 |#1| |#2|) $ (-564)) NIL)) (-2423 (($ (-600 |#1| |#2|)) NIL) (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3113 (((-112) $) NIL)) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $ $) NIL) (($ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-600 |#1| |#2|) $ (-600 |#1| |#2|)) NIL) (((-600 |#1| |#3|) (-600 |#1| |#3|) $) NIL)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-523 |#1| |#2| |#3|) (-683 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) (-1045) (-564) (-564)) (T -523))
-NIL
-(-683 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-3119 (((-641 (-1208)) $) 13)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL) (($ (-641 (-1208))) 11)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-524) (-13 (-1077) (-10 -8 (-15 -2423 ($ (-641 (-1208)))) (-15 -3119 ((-641 (-1208)) $))))) (T -524))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))))
-(-13 (-1077) (-10 -8 (-15 -2423 ($ (-641 (-1208)))) (-15 -3119 ((-641 (-1208)) $))))
-((-3009 (((-112) $ $) NIL)) (-1870 (((-1129) $) 14)) (-2766 (((-1152) $) NIL)) (-1484 (((-506) $) 11)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-525) (-13 (-1077) (-10 -8 (-15 -1484 ((-506) $)) (-15 -1870 ((-1129) $))))) (T -525))
-((-1484 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525)))) (-1870 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525)))))
-(-13 (-1077) (-10 -8 (-15 -1484 ((-506) $)) (-15 -1870 ((-1129) $))))
-((-4137 (((-687 (-1217)) $) 15)) (-3046 (((-687 (-1215)) $) 39)) (-2914 (((-687 (-1214)) $) 30)) (-1447 (((-687 (-549)) $) 12)) (-1637 (((-687 (-547)) $) 43)) (-1879 (((-687 (-546)) $) 34)) (-3235 (((-767) $ (-128)) 55)))
-(((-526 |#1|) (-10 -8 (-15 -3235 ((-767) |#1| (-128))) (-15 -3046 ((-687 (-1215)) |#1|)) (-15 -1637 ((-687 (-547)) |#1|)) (-15 -2914 ((-687 (-1214)) |#1|)) (-15 -1879 ((-687 (-546)) |#1|)) (-15 -4137 ((-687 (-1217)) |#1|)) (-15 -1447 ((-687 (-549)) |#1|))) (-527)) (T -526))
-NIL
-(-10 -8 (-15 -3235 ((-767) |#1| (-128))) (-15 -3046 ((-687 (-1215)) |#1|)) (-15 -1637 ((-687 (-547)) |#1|)) (-15 -2914 ((-687 (-1214)) |#1|)) (-15 -1879 ((-687 (-546)) |#1|)) (-15 -4137 ((-687 (-1217)) |#1|)) (-15 -1447 ((-687 (-549)) |#1|)))
-((-4137 (((-687 (-1217)) $) 12)) (-3046 (((-687 (-1215)) $) 8)) (-2914 (((-687 (-1214)) $) 10)) (-1447 (((-687 (-549)) $) 13)) (-1637 (((-687 (-547)) $) 9)) (-1879 (((-687 (-546)) $) 11)) (-3235 (((-767) $ (-128)) 7)) (-1880 (((-687 (-129)) $) 14)) (-3179 (($ $) 6)))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2085 ((|#1| $) NIL)) (-1807 ((|#1| $) NIL)) (-1416 (($ $) NIL)) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3256 (($ $ (-564)) 73 (|has| $ (-6 -4411)))) (-1757 (((-112) $) NIL (|has| |#1| (-848))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2239 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4411)))) (-2383 (($ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-3070 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-1505 (($ $ $) 23 (|has| $ (-6 -4411)))) (-2153 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-4059 ((|#1| $ |#1|) 21 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4411))) (($ $ "rest" $) 24 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2462 (($ (-1 (-112) |#1|) $) NIL)) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1799 ((|#1| $) NIL)) (-1976 (($) NIL T CONST)) (-2087 (($ $) 28 (|has| $ (-6 -4411)))) (-3115 (($ $) 29)) (-2570 (($ $) 18) (($ $ (-769)) 35)) (-1938 (($ $) 66 (|has| |#1| (-1097)))) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) NIL)) (-2490 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2625 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) NIL)) (-3297 (((-112) $) NIL)) (-3979 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097))) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) (-1 (-112) |#1|) $) NIL)) (-2936 (((-642 |#1|) $) 27 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) NIL)) (-1847 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4227 (($ (-769) |#1|) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) 31 (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-3427 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-2740 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2421 (($ |#1|) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-2628 (((-642 |#1|) $) NIL)) (-2376 (((-112) $) NIL)) (-3315 (((-1155) $) 62 (|has| |#1| (-1097)))) (-2514 ((|#1| $) NIL) (($ $ (-769)) NIL)) (-3183 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4238 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2557 ((|#1| $) 13) (($ $ (-769)) NIL)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-2531 (((-112) $) NIL)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 12)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) 17)) (-2972 (($) 16)) (-4368 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1229 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL)) (-2137 (((-564) $ $) NIL)) (-3184 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-2073 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-1392 (((-112) $) 39)) (-1444 (($ $) NIL)) (-2960 (($ $) NIL (|has| $ (-6 -4411)))) (-3399 (((-769) $) NIL)) (-3848 (($ $) 44)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) 40)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 26)) (-2582 (($ $ $) 65) (($ $ |#1|) NIL)) (-3651 (($ $ $) NIL) (($ |#1| $) 10) (($ (-642 $)) NIL) (($ $ |#1|) NIL)) (-2327 (((-860) $) 54 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) NIL)) (-3820 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) 58 (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2127 (((-769) $) 9 (|has| $ (-6 -4410)))))
+(((-520 |#1| |#2|) (-664 |#1|) (-1212) (-564)) (T -520))
+NIL
+(-664 |#1|)
+((-4239 ((|#4| |#4|) 37)) (-2414 (((-769) |#4|) 46)) (-2054 (((-769) |#4|) 47)) (-4286 (((-642 |#3|) |#4|) 57 (|has| |#3| (-6 -4411)))) (-4168 (((-3 |#4| "failed") |#4|) 71)) (-1623 ((|#4| |#4|) 63)) (-1504 ((|#1| |#4|) 62)))
+(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4239 (|#4| |#4|)) (-15 -2414 ((-769) |#4|)) (-15 -2054 ((-769) |#4|)) (IF (|has| |#3| (-6 -4411)) (-15 -4286 ((-642 |#3|) |#4|)) |%noBranch|) (-15 -1504 (|#1| |#4|)) (-15 -1623 (|#4| |#4|)) (-15 -4168 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|)) (T -521))
+((-4168 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-1504 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5)))) (-4286 (*1 *2 *3) (-12 (|has| *6 (-6 -4411)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-642 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-2054 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-4239 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))))
+(-10 -7 (-15 -4239 (|#4| |#4|)) (-15 -2414 ((-769) |#4|)) (-15 -2054 ((-769) |#4|)) (IF (|has| |#3| (-6 -4411)) (-15 -4286 ((-642 |#3|) |#4|)) |%noBranch|) (-15 -1504 (|#1| |#4|)) (-15 -1623 (|#4| |#4|)) (-15 -4168 ((-3 |#4| "failed") |#4|)))
+((-4239 ((|#8| |#4|) 20)) (-4286 (((-642 |#3|) |#4|) 29 (|has| |#7| (-6 -4411)))) (-4168 (((-3 |#8| "failed") |#4|) 23)))
+(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4239 (|#8| |#4|)) (-15 -4168 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4411)) (-15 -4286 ((-642 |#3|) |#4|)) |%noBranch|)) (-556) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|) (-990 |#1|) (-373 |#5|) (-373 |#5|) (-685 |#5| |#6| |#7|)) (T -522))
+((-4286 (*1 *2 *3) (-12 (|has| *9 (-6 -4411)) (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-990 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-642 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-685 *4 *5 *6)) (-4 *10 (-685 *7 *8 *9)))) (-4168 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-990 *4)) (-4 *2 (-685 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-685 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-4239 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-990 *4)) (-4 *2 (-685 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-685 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))))
+(-10 -7 (-15 -4239 (|#8| |#4|)) (-15 -4168 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4411)) (-15 -4286 ((-642 |#3|) |#4|)) |%noBranch|))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4103 (($ (-769) (-769)) NIL)) (-1698 (($ $ $) NIL)) (-3673 (($ (-600 |#1| |#3|)) NIL) (($ $) NIL)) (-4129 (((-112) $) NIL)) (-2772 (($ $ (-564) (-564)) 20)) (-2767 (($ $ (-564) (-564)) NIL)) (-2184 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3705 (($ $) NIL)) (-3873 (((-112) $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-3149 (($ $ (-564) (-564) $) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564)) $) NIL)) (-2950 (($ $ (-564) (-600 |#1| |#3|)) NIL)) (-1919 (($ $ (-564) (-600 |#1| |#2|)) NIL)) (-2540 (($ (-769) |#1|) NIL)) (-1976 (($) NIL T CONST)) (-4239 (($ $) 29 (|has| |#1| (-307)))) (-2600 (((-600 |#1| |#3|) $ (-564)) NIL)) (-2414 (((-769) $) 32 (|has| |#1| (-556)))) (-2625 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2551 ((|#1| $ (-564) (-564)) NIL)) (-2936 (((-642 |#1|) $) NIL)) (-2054 (((-769) $) 34 (|has| |#1| (-556)))) (-4286 (((-642 (-600 |#1| |#2|)) $) 37 (|has| |#1| (-556)))) (-2567 (((-769) $) NIL)) (-4227 (($ (-769) (-769) |#1|) NIL)) (-2579 (((-769) $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-3422 ((|#1| $) 27 (|has| |#1| (-6 (-4412 "*"))))) (-3491 (((-564) $) 10)) (-3865 (((-564) $) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3054 (((-564) $) 13)) (-2977 (((-564) $) NIL)) (-2244 (($ (-642 (-642 |#1|))) NIL)) (-2613 (($ (-1 |#1| |#1|) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1624 (((-642 (-642 |#1|)) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4168 (((-3 $ "failed") $) 41 (|has| |#1| (-363)))) (-4334 (($ $ $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2696 (($ $ |#1|) NIL)) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564))) NIL)) (-3548 (($ (-642 |#1|)) NIL) (($ (-642 $)) NIL)) (-2877 (((-112) $) NIL)) (-1504 ((|#1| $) 25 (|has| |#1| (-6 (-4412 "*"))))) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-3022 (((-600 |#1| |#2|) $ (-564)) NIL)) (-2327 (($ (-600 |#1| |#2|)) NIL) (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1332 (((-112) $) NIL)) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $ $) NIL) (($ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-600 |#1| |#2|) $ (-600 |#1| |#2|)) NIL) (((-600 |#1| |#3|) (-600 |#1| |#3|) $) NIL)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-523 |#1| |#2| |#3|) (-685 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) (-1047) (-564) (-564)) (T -523))
+NIL
+(-685 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-1486 (((-642 (-1211)) $) 13)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 19) (($ (-1178)) NIL) (((-1178) $) NIL) (($ (-642 (-1211))) 11)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-524) (-13 (-1080) (-10 -8 (-15 -2327 ($ (-642 (-1211)))) (-15 -1486 ((-642 (-1211)) $))))) (T -524))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-524)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-524)))))
+(-13 (-1080) (-10 -8 (-15 -2327 ($ (-642 (-1211)))) (-15 -1486 ((-642 (-1211)) $))))
+((-2907 (((-112) $ $) NIL)) (-4023 (((-1132) $) 14)) (-3315 (((-1155) $) NIL)) (-3337 (((-506) $) 11)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 21) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-525) (-13 (-1080) (-10 -8 (-15 -3337 ((-506) $)) (-15 -4023 ((-1132) $))))) (T -525))
+((-3337 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-525)))))
+(-13 (-1080) (-10 -8 (-15 -3337 ((-506) $)) (-15 -4023 ((-1132) $))))
+((-3375 (((-689 (-1220)) $) 15)) (-3320 (((-689 (-1218)) $) 39)) (-3364 (((-689 (-1217)) $) 30)) (-3017 (((-689 (-549)) $) 12)) (-4113 (((-689 (-547)) $) 43)) (-3653 (((-689 (-546)) $) 34)) (-1711 (((-769) $ (-128)) 55)))
+(((-526 |#1|) (-10 -8 (-15 -1711 ((-769) |#1| (-128))) (-15 -3320 ((-689 (-1218)) |#1|)) (-15 -4113 ((-689 (-547)) |#1|)) (-15 -3364 ((-689 (-1217)) |#1|)) (-15 -3653 ((-689 (-546)) |#1|)) (-15 -3375 ((-689 (-1220)) |#1|)) (-15 -3017 ((-689 (-549)) |#1|))) (-527)) (T -526))
+NIL
+(-10 -8 (-15 -1711 ((-769) |#1| (-128))) (-15 -3320 ((-689 (-1218)) |#1|)) (-15 -4113 ((-689 (-547)) |#1|)) (-15 -3364 ((-689 (-1217)) |#1|)) (-15 -3653 ((-689 (-546)) |#1|)) (-15 -3375 ((-689 (-1220)) |#1|)) (-15 -3017 ((-689 (-549)) |#1|)))
+((-3375 (((-689 (-1220)) $) 12)) (-3320 (((-689 (-1218)) $) 8)) (-3364 (((-689 (-1217)) $) 10)) (-3017 (((-689 (-549)) $) 13)) (-4113 (((-689 (-547)) $) 9)) (-3653 (((-689 (-546)) $) 11)) (-1711 (((-769) $ (-128)) 7)) (-2347 (((-689 (-129)) $) 14)) (-2528 (($ $) 6)))
(((-527) (-140)) (T -527))
-((-1880 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129))))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549))))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217))))) (-1879 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546))))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214))))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547))))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215))))) (-3235 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-767)))))
-(-13 (-173) (-10 -8 (-15 -1880 ((-687 (-129)) $)) (-15 -1447 ((-687 (-549)) $)) (-15 -4137 ((-687 (-1217)) $)) (-15 -1879 ((-687 (-546)) $)) (-15 -2914 ((-687 (-1214)) $)) (-15 -1637 ((-687 (-547)) $)) (-15 -3046 ((-687 (-1215)) $)) (-15 -3235 ((-767) $ (-128)))))
+((-2347 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-129))))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-549))))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1220))))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-546))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1217))))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-547))))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1218))))) (-1711 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-769)))))
+(-13 (-173) (-10 -8 (-15 -2347 ((-689 (-129)) $)) (-15 -3017 ((-689 (-549)) $)) (-15 -3375 ((-689 (-1220)) $)) (-15 -3653 ((-689 (-546)) $)) (-15 -3364 ((-689 (-1217)) $)) (-15 -4113 ((-689 (-547)) $)) (-15 -3320 ((-689 (-1218)) $)) (-15 -1711 ((-769) $ (-128)))))
(((-173) . T))
-((-2865 (((-1166 |#1|) (-767)) 114)) (-3847 (((-1259 |#1|) (-1259 |#1|) (-917)) 107)) (-2049 (((-1264) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))) |#1|) 123)) (-3186 (((-1259 |#1|) (-1259 |#1|) (-767)) 53)) (-2534 (((-1259 |#1|) (-917)) 109)) (-1593 (((-1259 |#1|) (-1259 |#1|) (-564)) 30)) (-1744 (((-1166 |#1|) (-1259 |#1|)) 115)) (-2908 (((-1259 |#1|) (-917)) 136)) (-3164 (((-112) (-1259 |#1|)) 119)) (-2499 (((-1259 |#1|) (-1259 |#1|) (-917)) 99)) (-3514 (((-1166 |#1|) (-1259 |#1|)) 130)) (-3256 (((-917) (-1259 |#1|)) 95)) (-3936 (((-1259 |#1|) (-1259 |#1|)) 38)) (-2083 (((-1259 |#1|) (-917) (-917)) 139)) (-3135 (((-1259 |#1|) (-1259 |#1|) (-1114) (-1114)) 29)) (-3134 (((-1259 |#1|) (-1259 |#1|) (-767) (-1114)) 54)) (-2047 (((-1259 (-1259 |#1|)) (-917)) 135)) (-3092 (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 120)) (** (((-1259 |#1|) (-1259 |#1|) (-564)) 66)) (* (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 31)))
-(((-528 |#1|) (-10 -7 (-15 -2049 ((-1264) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))) |#1|)) (-15 -2534 ((-1259 |#1|) (-917))) (-15 -2083 ((-1259 |#1|) (-917) (-917))) (-15 -1744 ((-1166 |#1|) (-1259 |#1|))) (-15 -2865 ((-1166 |#1|) (-767))) (-15 -3134 ((-1259 |#1|) (-1259 |#1|) (-767) (-1114))) (-15 -3186 ((-1259 |#1|) (-1259 |#1|) (-767))) (-15 -3135 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -1593 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -3092 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -2499 ((-1259 |#1|) (-1259 |#1|) (-917))) (-15 -3847 ((-1259 |#1|) (-1259 |#1|) (-917))) (-15 -3936 ((-1259 |#1|) (-1259 |#1|))) (-15 -3256 ((-917) (-1259 |#1|))) (-15 -3164 ((-112) (-1259 |#1|))) (-15 -2047 ((-1259 (-1259 |#1|)) (-917))) (-15 -2908 ((-1259 |#1|) (-917))) (-15 -3514 ((-1166 |#1|) (-1259 |#1|)))) (-349)) (T -528))
-((-3514 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-917)) (-5 *1 (-528 *4)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-3847 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-917)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2499 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-917)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3092 (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1593 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3135 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3186 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3134 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1259 *5)) (-5 *3 (-767)) (-5 *4 (-1114)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-2083 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4)))))
-(-10 -7 (-15 -2049 ((-1264) (-1259 (-641 (-2 (|:| -2128 |#1|) (|:| -2083 (-1114))))) |#1|)) (-15 -2534 ((-1259 |#1|) (-917))) (-15 -2083 ((-1259 |#1|) (-917) (-917))) (-15 -1744 ((-1166 |#1|) (-1259 |#1|))) (-15 -2865 ((-1166 |#1|) (-767))) (-15 -3134 ((-1259 |#1|) (-1259 |#1|) (-767) (-1114))) (-15 -3186 ((-1259 |#1|) (-1259 |#1|) (-767))) (-15 -3135 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -1593 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -3092 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -2499 ((-1259 |#1|) (-1259 |#1|) (-917))) (-15 -3847 ((-1259 |#1|) (-1259 |#1|) (-917))) (-15 -3936 ((-1259 |#1|) (-1259 |#1|))) (-15 -3256 ((-917) (-1259 |#1|))) (-15 -3164 ((-112) (-1259 |#1|))) (-15 -2047 ((-1259 (-1259 |#1|)) (-917))) (-15 -2908 ((-1259 |#1|) (-917))) (-15 -3514 ((-1166 |#1|) (-1259 |#1|))))
-((-4137 (((-687 (-1217)) $) NIL)) (-3046 (((-687 (-1215)) $) NIL)) (-2914 (((-687 (-1214)) $) NIL)) (-1447 (((-687 (-549)) $) NIL)) (-1637 (((-687 (-547)) $) NIL)) (-1879 (((-687 (-546)) $) NIL)) (-3235 (((-767) $ (-128)) NIL)) (-1880 (((-687 (-129)) $) 26)) (-3006 (((-1114) $ (-1114)) 31)) (-3998 (((-1114) $) 30)) (-3489 (((-112) $) 20)) (-1740 (($ (-388)) 14) (($ (-1152)) 16)) (-2167 (((-112) $) 27)) (-2423 (((-858) $) 34)) (-3179 (($ $) 28)))
-(((-529) (-13 (-527) (-611 (-858)) (-10 -8 (-15 -1740 ($ (-388))) (-15 -1740 ($ (-1152))) (-15 -2167 ((-112) $)) (-15 -3489 ((-112) $)) (-15 -3998 ((-1114) $)) (-15 -3006 ((-1114) $ (-1114)))))) (T -529))
-((-1740 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-1740 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))) (-3006 (*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))))
-(-13 (-527) (-611 (-858)) (-10 -8 (-15 -1740 ($ (-388))) (-15 -1740 ($ (-1152))) (-15 -2167 ((-112) $)) (-15 -3489 ((-112) $)) (-15 -3998 ((-1114) $)) (-15 -3006 ((-1114) $ (-1114)))))
-((-1624 (((-1 |#1| |#1|) |#1|) 11)) (-2312 (((-1 |#1| |#1|)) 10)))
-(((-530 |#1|) (-10 -7 (-15 -2312 ((-1 |#1| |#1|))) (-15 -1624 ((-1 |#1| |#1|) |#1|))) (-13 (-722) (-25))) (T -530))
-((-1624 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))) (-2312 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))))
-(-10 -7 (-15 -2312 ((-1 |#1| |#1|))) (-15 -1624 ((-1 |#1| |#1|) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3878 (($ $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1684 (($ $) NIL)) (-3810 (($ (-767) |#1|) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-4357 (($ (-1 (-767) (-767)) $) NIL)) (-3508 ((|#1| $) NIL)) (-3982 (((-767) $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 27)) (-1860 (((-112) $ $) NIL)) (-2403 (($) NIL T CONST)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)) (-3070 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL)))
-(((-531 |#1|) (-13 (-789) (-509 (-767) |#1|)) (-846)) (T -531))
-NIL
-(-13 (-789) (-509 (-767) |#1|))
-((-1988 (((-641 |#2|) (-1166 |#1|) |#3|) 98)) (-3208 (((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))) 114)) (-1753 (((-1166 |#1|) (-685 |#1|)) 110)))
-(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -1753 ((-1166 |#1|) (-685 |#1|))) (-15 -1988 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -3208 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))))) (-363) (-363) (-13 (-363) (-844))) (T -532))
-((-3208 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6))) (-4 *6 (-363)) (-5 *2 (-641 (-2 (|:| |outval| *7) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844))))) (-1988 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844))))))
-(-10 -7 (-15 -1753 ((-1166 |#1|) (-685 |#1|))) (-15 -1988 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -3208 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|)))))
-((-2666 (((-687 (-1217)) $ (-1217)) NIL)) (-3976 (((-687 (-549)) $ (-549)) NIL)) (-1965 (((-767) $ (-128)) 41)) (-3126 (((-687 (-129)) $ (-129)) 42)) (-4137 (((-687 (-1217)) $) NIL)) (-3046 (((-687 (-1215)) $) NIL)) (-2914 (((-687 (-1214)) $) NIL)) (-1447 (((-687 (-549)) $) NIL)) (-1637 (((-687 (-547)) $) NIL)) (-1879 (((-687 (-546)) $) NIL)) (-3235 (((-767) $ (-128)) 37)) (-1880 (((-687 (-129)) $) 39)) (-2958 (((-112) $) 29)) (-3598 (((-687 $) (-579) (-950)) 19) (((-687 $) (-491) (-950)) 26)) (-2423 (((-858) $) 49)) (-3179 (($ $) 43)))
-(((-533) (-13 (-763 (-579)) (-611 (-858)) (-10 -8 (-15 -3598 ((-687 $) (-491) (-950)))))) (T -533))
-((-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-687 (-533))) (-5 *1 (-533)))))
-(-13 (-763 (-579)) (-611 (-858)) (-10 -8 (-15 -3598 ((-687 $) (-491) (-950)))))
-((-2913 (((-839 (-564))) 12)) (-2926 (((-839 (-564))) 14)) (-4282 (((-829 (-564))) 9)))
-(((-534) (-10 -7 (-15 -4282 ((-829 (-564)))) (-15 -2913 ((-839 (-564)))) (-15 -2926 ((-839 (-564)))))) (T -534))
-((-2926 (*1 *2) (-12 (-5 *2 (-839 (-564))) (-5 *1 (-534)))) (-2913 (*1 *2) (-12 (-5 *2 (-839 (-564))) (-5 *1 (-534)))) (-4282 (*1 *2) (-12 (-5 *2 (-829 (-564))) (-5 *1 (-534)))))
-(-10 -7 (-15 -4282 ((-829 (-564)))) (-15 -2913 ((-839 (-564)))) (-15 -2926 ((-839 (-564)))))
-((-2479 (((-536) (-1170)) 15)) (-3554 ((|#1| (-536)) 20)))
-(((-535 |#1|) (-10 -7 (-15 -2479 ((-536) (-1170))) (-15 -3554 (|#1| (-536)))) (-1209)) (T -535))
-((-3554 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1209)))))
-(-10 -7 (-15 -2479 ((-536) (-1170))) (-15 -3554 (|#1| (-536))))
-((-3009 (((-112) $ $) NIL)) (-4019 (((-1152) $) 55)) (-2230 (((-112) $) 51)) (-1341 (((-1170) $) 52)) (-1598 (((-112) $) 49)) (-4293 (((-1152) $) 50)) (-2481 (($ (-1152)) 56)) (-1526 (((-112) $) NIL)) (-1666 (((-112) $) NIL)) (-3801 (((-112) $) NIL)) (-2766 (((-1152) $) NIL)) (-2004 (($ $ (-641 (-1170))) 21)) (-3554 (((-52) $) 23)) (-2513 (((-112) $) NIL)) (-1359 (((-564) $) NIL)) (-4052 (((-1114) $) NIL)) (-3269 (($ $ (-641 (-1170)) (-1170)) 73)) (-3234 (((-112) $) NIL)) (-2962 (((-225) $) NIL)) (-1631 (($ $) 44)) (-3354 (((-858) $) NIL)) (-1606 (((-112) $ $) NIL)) (-4366 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-3765 (((-641 $) $) 30)) (-1390 (((-1170) (-641 $)) 57)) (-1311 (($ (-1152)) NIL) (($ (-1170)) 19) (($ (-564)) 8) (($ (-225)) 28) (($ (-858)) NIL) (($ (-641 $)) 65) (((-1098) $) 12) (($ (-1098)) 13)) (-3109 (((-1170) (-1170) (-641 $)) 60)) (-2423 (((-858) $) 54)) (-2546 (($ $) 59)) (-2535 (($ $) 58)) (-1595 (($ $ (-641 $)) 66)) (-1860 (((-112) $ $) NIL)) (-3075 (((-112) $) 29)) (-2403 (($) 9 T CONST)) (-2417 (($) 11 T CONST)) (-2974 (((-112) $ $) 74)) (-3092 (($ $ $) 82)) (-3070 (($ $ $) 75)) (** (($ $ (-767)) 81) (($ $ (-564)) 80)) (* (($ $ $) 76)) (-2181 (((-564) $) NIL)))
-(((-536) (-13 (-1097 (-1152) (-1170) (-564) (-225) (-858)) (-612 (-1098)) (-10 -8 (-15 -3554 ((-52) $)) (-15 -1311 ($ (-1098))) (-15 -1595 ($ $ (-641 $))) (-15 -3269 ($ $ (-641 (-1170)) (-1170))) (-15 -2004 ($ $ (-641 (-1170)))) (-15 -3070 ($ $ $)) (-15 * ($ $ $)) (-15 -3092 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-564))) (-15 0 ($) -2959) (-15 1 ($) -2959) (-15 -1631 ($ $)) (-15 -4019 ((-1152) $)) (-15 -2481 ($ (-1152))) (-15 -1390 ((-1170) (-641 $))) (-15 -3109 ((-1170) (-1170) (-641 $)))))) (T -536))
-((-3554 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-536)))) (-1595 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536)))) (-3269 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536)))) (-2004 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536)))) (-3070 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-3092 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) (-2403 (*1 *1) (-5 *1 (-536))) (-2417 (*1 *1) (-5 *1 (-536))) (-1631 (*1 *1 *1) (-5 *1 (-536))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-2481 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536)))) (-3109 (*1 *2 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536)))))
-(-13 (-1097 (-1152) (-1170) (-564) (-225) (-858)) (-612 (-1098)) (-10 -8 (-15 -3554 ((-52) $)) (-15 -1311 ($ (-1098))) (-15 -1595 ($ $ (-641 $))) (-15 -3269 ($ $ (-641 (-1170)) (-1170))) (-15 -2004 ($ $ (-641 (-1170)))) (-15 -3070 ($ $ $)) (-15 * ($ $ $)) (-15 -3092 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-564))) (-15 (-2403) ($) -2959) (-15 (-2417) ($) -2959) (-15 -1631 ($ $)) (-15 -4019 ((-1152) $)) (-15 -2481 ($ (-1152))) (-15 -1390 ((-1170) (-641 $))) (-15 -3109 ((-1170) (-1170) (-641 $)))))
-((-4371 ((|#2| |#2|) 17)) (-1962 ((|#2| |#2|) 13)) (-2941 ((|#2| |#2| (-564) (-564)) 20)) (-3158 ((|#2| |#2|) 15)))
-(((-537 |#1| |#2|) (-10 -7 (-15 -1962 (|#2| |#2|)) (-15 -3158 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -2941 (|#2| |#2| (-564) (-564)))) (-13 (-556) (-147)) (-1250 |#1|)) (T -537))
-((-2941 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1250 *4)))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-3158 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))))
-(-10 -7 (-15 -1962 (|#2| |#2|)) (-15 -3158 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -2941 (|#2| |#2| (-564) (-564))))
-((-2866 (((-641 (-294 (-948 |#2|))) (-641 |#2|) (-641 (-1170))) 32)) (-1852 (((-641 |#2|) (-948 |#1|) |#3|) 54) (((-641 |#2|) (-1166 |#1|) |#3|) 53)) (-2172 (((-641 (-641 |#2|)) (-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)) |#3|) 106)))
-(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -1852 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -1852 ((-641 |#2|) (-948 |#1|) |#3|)) (-15 -2172 ((-641 (-641 |#2|)) (-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)) |#3|)) (-15 -2866 ((-641 (-294 (-948 |#2|))) (-641 |#2|) (-641 (-1170))))) (-452) (-363) (-13 (-363) (-844))) (T -538))
-((-2866 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363)) (-5 *2 (-641 (-294 (-948 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844))))) (-2172 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-844))))) (-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))))
-(-10 -7 (-15 -1852 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -1852 ((-641 |#2|) (-948 |#1|) |#3|)) (-15 -2172 ((-641 (-641 |#2|)) (-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)) |#3|)) (-15 -2866 ((-641 (-294 (-948 |#2|))) (-641 |#2|) (-641 (-1170)))))
-((-1812 ((|#2| |#2| |#1|) 17)) (-3934 ((|#2| (-641 |#2|)) 34)) (-1596 ((|#2| (-641 |#2|)) 57)))
-(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 (|#2| (-641 |#2|))) (-15 -1596 (|#2| (-641 |#2|))) (-15 -1812 (|#2| |#2| |#1|))) (-307) (-1235 |#1|) |#1| (-1 |#1| |#1| (-767))) (T -539))
-((-1812 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))))
-(-10 -7 (-15 -3934 (|#2| (-641 |#2|))) (-15 -1596 (|#2| (-641 |#2|))) (-15 -1812 (|#2| |#2| |#1|)))
-((-3688 (((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 94) (((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 221)))
-(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3688 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -3688 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))))) (-846) (-789) (-13 (-307) (-147)) (-945 |#3| |#2| |#1|)) (T -540))
-((-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-945 *7 *6 *5)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1166 *8)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-945 *7 *6 *5)))))
-(-10 -7 (-15 -3688 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -3688 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))))
-((-4371 ((|#4| |#4|) 74)) (-1962 ((|#4| |#4|) 70)) (-2941 ((|#4| |#4| (-564) (-564)) 76)) (-3158 ((|#4| |#4|) 72)))
-(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1962 (|#4| |#4|)) (-15 -3158 (|#4| |#4|)) (-15 -4371 (|#4| |#4|)) (-15 -2941 (|#4| |#4| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1235 |#1|) (-720 |#1| |#2|) (-1250 |#3|)) (T -541))
-((-2941 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-4 *5 (-1235 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1250 *6)))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-3158 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))))
-(-10 -7 (-15 -1962 (|#4| |#4|)) (-15 -3158 (|#4| |#4|)) (-15 -4371 (|#4| |#4|)) (-15 -2941 (|#4| |#4| (-564) (-564))))
-((-4371 ((|#2| |#2|) 27)) (-1962 ((|#2| |#2|) 23)) (-2941 ((|#2| |#2| (-564) (-564)) 29)) (-3158 ((|#2| |#2|) 25)))
-(((-542 |#1| |#2|) (-10 -7 (-15 -1962 (|#2| |#2|)) (-15 -3158 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -2941 (|#2| |#2| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1250 |#1|)) (T -542))
-((-2941 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4)))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-3158 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))))
-(-10 -7 (-15 -1962 (|#2| |#2|)) (-15 -3158 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -2941 (|#2| |#2| (-564) (-564))))
-((-4354 (((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)) 18) (((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|)) 14) (((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|)) 32)))
-(((-543 |#1| |#2|) (-10 -7 (-15 -4354 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -4354 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -4354 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) (-1045) (-1235 |#1|)) (T -543))
-((-4354 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-4354 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-4354 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1045)) (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5)))))
-(-10 -7 (-15 -4354 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -4354 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -4354 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|))))
-((-2149 (($ $ $) 83)) (-2753 (((-418 $) $) 51)) (-4284 (((-3 (-564) "failed") $) 63)) (-3120 (((-564) $) 41)) (-2450 (((-3 (-407 (-564)) "failed") $) 78)) (-1364 (((-112) $) 26)) (-2553 (((-407 (-564)) $) 76)) (-1339 (((-112) $) 54)) (-2142 (($ $ $ $) 91)) (-2384 (((-112) $) 17)) (-3737 (($ $ $) 61)) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 73)) (-1846 (((-3 $ "failed") $) 68)) (-2924 (($ $) 24)) (-4037 (($ $ $) 89)) (-3431 (($) 64)) (-1986 (($ $) 57)) (-3688 (((-418 $) $) 49)) (-2663 (((-112) $) 15)) (-1700 (((-767) $) 31)) (-3254 (($ $ (-767)) NIL) (($ $) 11)) (-3926 (($ $) 18)) (-1311 (((-564) $) NIL) (((-536) $) 40) (((-888 (-564)) $) 44) (((-379) $) 34) (((-225) $) 37)) (-3719 (((-767)) 9)) (-2631 (((-112) $ $) 21)) (-2020 (($ $ $) 59)))
-(((-544 |#1|) (-10 -8 (-15 -4037 (|#1| |#1| |#1|)) (-15 -2142 (|#1| |#1| |#1| |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -2450 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2553 ((-407 (-564)) |#1|)) (-15 -1364 ((-112) |#1|)) (-15 -2149 (|#1| |#1| |#1|)) (-15 -2631 ((-112) |#1| |#1|)) (-15 -2663 ((-112) |#1|)) (-15 -3431 (|#1|)) (-15 -1846 ((-3 |#1| "failed") |#1|)) (-15 -1311 ((-225) |#1|)) (-15 -1311 ((-379) |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2020 (|#1| |#1| |#1|)) (-15 -1513 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -1311 ((-564) |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -2384 ((-112) |#1|)) (-15 -1700 ((-767) |#1|)) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -2753 ((-418 |#1|) |#1|)) (-15 -1339 ((-112) |#1|)) (-15 -3719 ((-767)))) (-545)) (T -544))
-((-3719 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545)))))
-(-10 -8 (-15 -4037 (|#1| |#1| |#1|)) (-15 -2142 (|#1| |#1| |#1| |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -2450 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2553 ((-407 (-564)) |#1|)) (-15 -1364 ((-112) |#1|)) (-15 -2149 (|#1| |#1| |#1|)) (-15 -2631 ((-112) |#1| |#1|)) (-15 -2663 ((-112) |#1|)) (-15 -3431 (|#1|)) (-15 -1846 ((-3 |#1| "failed") |#1|)) (-15 -1311 ((-225) |#1|)) (-15 -1311 ((-379) |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2020 (|#1| |#1| |#1|)) (-15 -1513 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -1311 ((-564) |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -2384 ((-112) |#1|)) (-15 -1700 ((-767) |#1|)) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -2753 ((-418 |#1|) |#1|)) (-15 -1339 ((-112) |#1|)) (-15 -3719 ((-767))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-2149 (($ $ $) 86)) (-4012 (((-3 $ "failed") $ $) 20)) (-2997 (($ $ $ $) 75)) (-2683 (($ $) 53)) (-2753 (((-418 $) $) 54)) (-3162 (((-112) $ $) 126)) (-3249 (((-564) $) 115)) (-2410 (($ $ $) 89)) (-4080 (($) 18 T CONST)) (-4284 (((-3 (-564) "failed") $) 107)) (-3120 (((-564) $) 108)) (-2946 (($ $ $) 130)) (-4277 (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 105) (((-685 (-564)) (-685 $)) 104)) (-3293 (((-3 $ "failed") $) 34)) (-2450 (((-3 (-407 (-564)) "failed") $) 83)) (-1364 (((-112) $) 85)) (-2553 (((-407 (-564)) $) 84)) (-2534 (($) 82) (($ $) 81)) (-2960 (($ $ $) 129)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 124)) (-1339 (((-112) $) 55)) (-2142 (($ $ $ $) 73)) (-3409 (($ $ $) 87)) (-2384 (((-112) $) 117)) (-3737 (($ $ $) 98)) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 101)) (-4112 (((-112) $) 32)) (-3177 (((-112) $) 93)) (-1846 (((-3 $ "failed") $) 95)) (-3326 (((-112) $) 116)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 133)) (-3842 (($ $ $ $) 74)) (-2855 (($ $ $) 118)) (-1497 (($ $ $) 119)) (-2924 (($ $) 77)) (-2581 (($ $) 90)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-4037 (($ $ $) 72)) (-3431 (($) 94 T CONST)) (-2468 (($ $) 79)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-1986 (($ $) 99)) (-3688 (((-418 $) $) 52)) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 132) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 131)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 125)) (-2663 (((-112) $) 92)) (-1700 (((-767) $) 127)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 128)) (-3254 (($ $ (-767)) 112) (($ $) 110)) (-2198 (($ $) 78)) (-3926 (($ $) 80)) (-1311 (((-564) $) 109) (((-536) $) 103) (((-888 (-564)) $) 102) (((-379) $) 97) (((-225) $) 96)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-564)) 106)) (-3719 (((-767)) 29 T CONST)) (-2631 (((-112) $ $) 88)) (-2020 (($ $ $) 100)) (-1860 (((-112) $ $) 9)) (-2648 (($) 91)) (-2119 (((-112) $ $) 41)) (-2111 (($ $ $ $) 76)) (-3673 (($ $) 114)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-767)) 113) (($ $) 111)) (-3034 (((-112) $ $) 121)) (-3011 (((-112) $ $) 122)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 120)) (-2999 (((-112) $ $) 123)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
+((-2160 (((-1169 |#1|) (-769)) 114)) (-3815 (((-1262 |#1|) (-1262 |#1|) (-919)) 107)) (-3701 (((-1267) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))) |#1|) 123)) (-1525 (((-1262 |#1|) (-1262 |#1|) (-769)) 53)) (-2433 (((-1262 |#1|) (-919)) 109)) (-1779 (((-1262 |#1|) (-1262 |#1|) (-564)) 30)) (-4229 (((-1169 |#1|) (-1262 |#1|)) 115)) (-3289 (((-1262 |#1|) (-919)) 136)) (-3563 (((-112) (-1262 |#1|)) 119)) (-2218 (((-1262 |#1|) (-1262 |#1|) (-919)) 99)) (-3947 (((-1169 |#1|) (-1262 |#1|)) 130)) (-1945 (((-919) (-1262 |#1|)) 95)) (-3911 (((-1262 |#1|) (-1262 |#1|)) 38)) (-2047 (((-1262 |#1|) (-919) (-919)) 139)) (-1777 (((-1262 |#1|) (-1262 |#1|) (-1117) (-1117)) 29)) (-3435 (((-1262 |#1|) (-1262 |#1|) (-769) (-1117)) 54)) (-4263 (((-1262 (-1262 |#1|)) (-919)) 135)) (-2998 (((-1262 |#1|) (-1262 |#1|) (-1262 |#1|)) 120)) (** (((-1262 |#1|) (-1262 |#1|) (-564)) 66)) (* (((-1262 |#1|) (-1262 |#1|) (-1262 |#1|)) 31)))
+(((-528 |#1|) (-10 -7 (-15 -3701 ((-1267) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))) |#1|)) (-15 -2433 ((-1262 |#1|) (-919))) (-15 -2047 ((-1262 |#1|) (-919) (-919))) (-15 -4229 ((-1169 |#1|) (-1262 |#1|))) (-15 -2160 ((-1169 |#1|) (-769))) (-15 -3435 ((-1262 |#1|) (-1262 |#1|) (-769) (-1117))) (-15 -1525 ((-1262 |#1|) (-1262 |#1|) (-769))) (-15 -1777 ((-1262 |#1|) (-1262 |#1|) (-1117) (-1117))) (-15 -1779 ((-1262 |#1|) (-1262 |#1|) (-564))) (-15 ** ((-1262 |#1|) (-1262 |#1|) (-564))) (-15 * ((-1262 |#1|) (-1262 |#1|) (-1262 |#1|))) (-15 -2998 ((-1262 |#1|) (-1262 |#1|) (-1262 |#1|))) (-15 -2218 ((-1262 |#1|) (-1262 |#1|) (-919))) (-15 -3815 ((-1262 |#1|) (-1262 |#1|) (-919))) (-15 -3911 ((-1262 |#1|) (-1262 |#1|))) (-15 -1945 ((-919) (-1262 |#1|))) (-15 -3563 ((-112) (-1262 |#1|))) (-15 -4263 ((-1262 (-1262 |#1|)) (-919))) (-15 -3289 ((-1262 |#1|) (-919))) (-15 -3947 ((-1169 |#1|) (-1262 |#1|)))) (-349)) (T -528))
+((-3947 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-1169 *4)) (-5 *1 (-528 *4)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1262 (-1262 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-919)) (-5 *1 (-528 *4)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-3815 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-919)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2218 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-919)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2998 (*1 *2 *2 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1779 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1777 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1117)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1525 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3435 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1262 *5)) (-5 *3 (-769)) (-5 *4 (-1117)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1169 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-4229 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-1169 *4)) (-5 *1 (-528 *4)))) (-2047 (*1 *2 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117)))))) (-4 *4 (-349)) (-5 *2 (-1267)) (-5 *1 (-528 *4)))))
+(-10 -7 (-15 -3701 ((-1267) (-1262 (-642 (-2 (|:| -2085 |#1|) (|:| -2047 (-1117))))) |#1|)) (-15 -2433 ((-1262 |#1|) (-919))) (-15 -2047 ((-1262 |#1|) (-919) (-919))) (-15 -4229 ((-1169 |#1|) (-1262 |#1|))) (-15 -2160 ((-1169 |#1|) (-769))) (-15 -3435 ((-1262 |#1|) (-1262 |#1|) (-769) (-1117))) (-15 -1525 ((-1262 |#1|) (-1262 |#1|) (-769))) (-15 -1777 ((-1262 |#1|) (-1262 |#1|) (-1117) (-1117))) (-15 -1779 ((-1262 |#1|) (-1262 |#1|) (-564))) (-15 ** ((-1262 |#1|) (-1262 |#1|) (-564))) (-15 * ((-1262 |#1|) (-1262 |#1|) (-1262 |#1|))) (-15 -2998 ((-1262 |#1|) (-1262 |#1|) (-1262 |#1|))) (-15 -2218 ((-1262 |#1|) (-1262 |#1|) (-919))) (-15 -3815 ((-1262 |#1|) (-1262 |#1|) (-919))) (-15 -3911 ((-1262 |#1|) (-1262 |#1|))) (-15 -1945 ((-919) (-1262 |#1|))) (-15 -3563 ((-112) (-1262 |#1|))) (-15 -4263 ((-1262 (-1262 |#1|)) (-919))) (-15 -3289 ((-1262 |#1|) (-919))) (-15 -3947 ((-1169 |#1|) (-1262 |#1|))))
+((-3375 (((-689 (-1220)) $) NIL)) (-3320 (((-689 (-1218)) $) NIL)) (-3364 (((-689 (-1217)) $) NIL)) (-3017 (((-689 (-549)) $) NIL)) (-4113 (((-689 (-547)) $) NIL)) (-3653 (((-689 (-546)) $) NIL)) (-1711 (((-769) $ (-128)) NIL)) (-2347 (((-689 (-129)) $) 26)) (-1792 (((-1117) $ (-1117)) 31)) (-3979 (((-1117) $) 30)) (-2586 (((-112) $) 20)) (-4111 (($ (-388)) 14) (($ (-1155)) 16)) (-2529 (((-112) $) 27)) (-2327 (((-860) $) 34)) (-2528 (($ $) 28)))
+(((-529) (-13 (-527) (-611 (-860)) (-10 -8 (-15 -4111 ($ (-388))) (-15 -4111 ($ (-1155))) (-15 -2529 ((-112) $)) (-15 -2586 ((-112) $)) (-15 -3979 ((-1117) $)) (-15 -1792 ((-1117) $ (-1117)))))) (T -529))
+((-4111 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-4111 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-529)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-529)))) (-1792 (*1 *2 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-529)))))
+(-13 (-527) (-611 (-860)) (-10 -8 (-15 -4111 ($ (-388))) (-15 -4111 ($ (-1155))) (-15 -2529 ((-112) $)) (-15 -2586 ((-112) $)) (-15 -3979 ((-1117) $)) (-15 -1792 ((-1117) $ (-1117)))))
+((-1659 (((-1 |#1| |#1|) |#1|) 11)) (-3805 (((-1 |#1| |#1|)) 10)))
+(((-530 |#1|) (-10 -7 (-15 -3805 ((-1 |#1| |#1|))) (-15 -1659 ((-1 |#1| |#1|) |#1|))) (-13 (-724) (-25))) (T -530))
+((-1659 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-724) (-25))))) (-3805 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-724) (-25))))))
+(-10 -7 (-15 -3805 ((-1 |#1| |#1|))) (-15 -1659 ((-1 |#1| |#1|) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3532 (($ $ $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-1718 (($ $) NIL)) (-3774 (($ (-769) |#1|) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-4358 (($ (-1 (-769) (-769)) $) NIL)) (-3959 ((|#1| $) NIL)) (-3962 (((-769) $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 27)) (-1648 (((-112) $ $) NIL)) (-2312 (($) NIL T CONST)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-2974 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL)))
+(((-531 |#1|) (-13 (-791) (-509 (-769) |#1|)) (-848)) (T -531))
+NIL
+(-13 (-791) (-509 (-769) |#1|))
+((-1343 (((-642 |#2|) (-1169 |#1|) |#3|) 98)) (-1483 (((-642 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#2|))))) (-687 |#1|) |#3| (-1 (-418 (-1169 |#1|)) (-1169 |#1|))) 114)) (-2524 (((-1169 |#1|) (-687 |#1|)) 110)))
+(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -2524 ((-1169 |#1|) (-687 |#1|))) (-15 -1343 ((-642 |#2|) (-1169 |#1|) |#3|)) (-15 -1483 ((-642 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#2|))))) (-687 |#1|) |#3| (-1 (-418 (-1169 |#1|)) (-1169 |#1|))))) (-363) (-363) (-13 (-363) (-846))) (T -532))
+((-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *6)) (-5 *5 (-1 (-418 (-1169 *6)) (-1169 *6))) (-4 *6 (-363)) (-5 *2 (-642 (-2 (|:| |outval| *7) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-846))))) (-1343 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-363)) (-5 *2 (-642 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846))))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-687 *4)) (-4 *4 (-363)) (-5 *2 (-1169 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-846))))))
+(-10 -7 (-15 -2524 ((-1169 |#1|) (-687 |#1|))) (-15 -1343 ((-642 |#2|) (-1169 |#1|) |#3|)) (-15 -1483 ((-642 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#2|))))) (-687 |#1|) |#3| (-1 (-418 (-1169 |#1|)) (-1169 |#1|)))))
+((-3866 (((-689 (-1220)) $ (-1220)) NIL)) (-3490 (((-689 (-549)) $ (-549)) NIL)) (-3343 (((-769) $ (-128)) 41)) (-3760 (((-689 (-129)) $ (-129)) 42)) (-3375 (((-689 (-1220)) $) NIL)) (-3320 (((-689 (-1218)) $) NIL)) (-3364 (((-689 (-1217)) $) NIL)) (-3017 (((-689 (-549)) $) NIL)) (-4113 (((-689 (-547)) $) NIL)) (-3653 (((-689 (-546)) $) NIL)) (-1711 (((-769) $ (-128)) 37)) (-2347 (((-689 (-129)) $) 39)) (-3009 (((-112) $) 29)) (-1626 (((-689 $) (-579) (-952)) 19) (((-689 $) (-491) (-952)) 26)) (-2327 (((-860) $) 49)) (-2528 (($ $) 43)))
+(((-533) (-13 (-765 (-579)) (-611 (-860)) (-10 -8 (-15 -1626 ((-689 $) (-491) (-952)))))) (T -533))
+((-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-952)) (-5 *2 (-689 (-533))) (-5 *1 (-533)))))
+(-13 (-765 (-579)) (-611 (-860)) (-10 -8 (-15 -1626 ((-689 $) (-491) (-952)))))
+((-2812 (((-841 (-564))) 12)) (-2825 (((-841 (-564))) 14)) (-4275 (((-831 (-564))) 9)))
+(((-534) (-10 -7 (-15 -4275 ((-831 (-564)))) (-15 -2812 ((-841 (-564)))) (-15 -2825 ((-841 (-564)))))) (T -534))
+((-2825 (*1 *2) (-12 (-5 *2 (-841 (-564))) (-5 *1 (-534)))) (-2812 (*1 *2) (-12 (-5 *2 (-841 (-564))) (-5 *1 (-534)))) (-4275 (*1 *2) (-12 (-5 *2 (-831 (-564))) (-5 *1 (-534)))))
+(-10 -7 (-15 -4275 ((-831 (-564)))) (-15 -2812 ((-841 (-564)))) (-15 -2825 ((-841 (-564)))))
+((-4062 (((-536) (-1173)) 15)) (-3502 ((|#1| (-536)) 20)))
+(((-535 |#1|) (-10 -7 (-15 -4062 ((-536) (-1173))) (-15 -3502 (|#1| (-536)))) (-1212)) (T -535))
+((-3502 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1212)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1212)))))
+(-10 -7 (-15 -4062 ((-536) (-1173))) (-15 -3502 (|#1| (-536))))
+((-2907 (((-112) $ $) NIL)) (-2790 (((-1155) $) 55)) (-3029 (((-112) $) 51)) (-1347 (((-1173) $) 52)) (-2848 (((-112) $) 49)) (-4287 (((-1155) $) 50)) (-1313 (($ (-1155)) 56)) (-4222 (((-112) $) NIL)) (-3367 (((-112) $) NIL)) (-1305 (((-112) $) NIL)) (-3315 (((-1155) $) NIL)) (-1987 (($ $ (-642 (-1173))) 21)) (-3502 (((-52) $) 23)) (-3174 (((-112) $) NIL)) (-1367 (((-564) $) NIL)) (-4033 (((-1117) $) NIL)) (-3192 (($ $ (-642 (-1173)) (-1173)) 73)) (-1558 (((-112) $) NIL)) (-2861 (((-225) $) NIL)) (-1665 (($ $) 44)) (-3284 (((-860) $) NIL)) (-1640 (((-112) $ $) NIL)) (-4368 (($ $ (-564)) NIL) (($ $ (-642 (-564))) NIL)) (-3726 (((-642 $) $) 30)) (-1402 (((-1173) (-642 $)) 57)) (-1314 (($ (-1155)) NIL) (($ (-1173)) 19) (($ (-564)) 8) (($ (-225)) 28) (($ (-860)) NIL) (($ (-642 $)) 65) (((-1101) $) 12) (($ (-1101)) 13)) (-3020 (((-1173) (-1173) (-642 $)) 60)) (-2327 (((-860) $) 54)) (-2445 (($ $) 59)) (-2434 (($ $) 58)) (-2560 (($ $ (-642 $)) 66)) (-1648 (((-112) $ $) NIL)) (-3292 (((-112) $) 29)) (-2312 (($) 9 T CONST)) (-2322 (($) 11 T CONST)) (-2872 (((-112) $ $) 74)) (-2998 (($ $ $) 82)) (-2974 (($ $ $) 75)) (** (($ $ (-769)) 81) (($ $ (-564)) 80)) (* (($ $ $) 76)) (-2127 (((-564) $) NIL)))
+(((-536) (-13 (-1100 (-1155) (-1173) (-564) (-225) (-860)) (-612 (-1101)) (-10 -8 (-15 -3502 ((-52) $)) (-15 -1314 ($ (-1101))) (-15 -2560 ($ $ (-642 $))) (-15 -3192 ($ $ (-642 (-1173)) (-1173))) (-15 -1987 ($ $ (-642 (-1173)))) (-15 -2974 ($ $ $)) (-15 * ($ $ $)) (-15 -2998 ($ $ $)) (-15 ** ($ $ (-769))) (-15 ** ($ $ (-564))) (-15 0 ($) -2858) (-15 1 ($) -2858) (-15 -1665 ($ $)) (-15 -2790 ((-1155) $)) (-15 -1313 ($ (-1155))) (-15 -1402 ((-1173) (-642 $))) (-15 -3020 ((-1173) (-1173) (-642 $)))))) (T -536))
+((-3502 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-1101)) (-5 *1 (-536)))) (-2560 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-536))) (-5 *1 (-536)))) (-3192 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-1173)) (-5 *1 (-536)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-536)))) (-2974 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-2998 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) (-2312 (*1 *1) (-5 *1 (-536))) (-2322 (*1 *1) (-5 *1 (-536))) (-1665 (*1 *1 *1) (-5 *1 (-536))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-536)))) (-1313 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-536)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-642 (-536))) (-5 *2 (-1173)) (-5 *1 (-536)))) (-3020 (*1 *2 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-536))) (-5 *1 (-536)))))
+(-13 (-1100 (-1155) (-1173) (-564) (-225) (-860)) (-612 (-1101)) (-10 -8 (-15 -3502 ((-52) $)) (-15 -1314 ($ (-1101))) (-15 -2560 ($ $ (-642 $))) (-15 -3192 ($ $ (-642 (-1173)) (-1173))) (-15 -1987 ($ $ (-642 (-1173)))) (-15 -2974 ($ $ $)) (-15 * ($ $ $)) (-15 -2998 ($ $ $)) (-15 ** ($ $ (-769))) (-15 ** ($ $ (-564))) (-15 (-2312) ($) -2858) (-15 (-2322) ($) -2858) (-15 -1665 ($ $)) (-15 -2790 ((-1155) $)) (-15 -1313 ($ (-1155))) (-15 -1402 ((-1173) (-642 $))) (-15 -3020 ((-1173) (-1173) (-642 $)))))
+((-1909 ((|#2| |#2|) 17)) (-2009 ((|#2| |#2|) 13)) (-2470 ((|#2| |#2| (-564) (-564)) 20)) (-3452 ((|#2| |#2|) 15)))
+(((-537 |#1| |#2|) (-10 -7 (-15 -2009 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -2470 (|#2| |#2| (-564) (-564)))) (-13 (-556) (-147)) (-1253 |#1|)) (T -537))
+((-2470 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1253 *4)))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1253 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1253 *3)))) (-2009 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1253 *3)))))
+(-10 -7 (-15 -2009 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -2470 (|#2| |#2| (-564) (-564))))
+((-2126 (((-642 (-294 (-950 |#2|))) (-642 |#2|) (-642 (-1173))) 32)) (-3182 (((-642 |#2|) (-950 |#1|) |#3|) 54) (((-642 |#2|) (-1169 |#1|) |#3|) 53)) (-3253 (((-642 (-642 |#2|)) (-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)) |#3|) 106)))
+(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -3182 ((-642 |#2|) (-1169 |#1|) |#3|)) (-15 -3182 ((-642 |#2|) (-950 |#1|) |#3|)) (-15 -3253 ((-642 (-642 |#2|)) (-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)) |#3|)) (-15 -2126 ((-642 (-294 (-950 |#2|))) (-642 |#2|) (-642 (-1173))))) (-452) (-363) (-13 (-363) (-846))) (T -538))
+((-2126 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-1173))) (-4 *6 (-363)) (-5 *2 (-642 (-294 (-950 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-846))))) (-3253 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) (-4 *6 (-452)) (-5 *2 (-642 (-642 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-846))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-950 *5)) (-4 *5 (-452)) (-5 *2 (-642 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-452)) (-5 *2 (-642 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846))))))
+(-10 -7 (-15 -3182 ((-642 |#2|) (-1169 |#1|) |#3|)) (-15 -3182 ((-642 |#2|) (-950 |#1|) |#3|)) (-15 -3253 ((-642 (-642 |#2|)) (-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)) |#3|)) (-15 -2126 ((-642 (-294 (-950 |#2|))) (-642 |#2|) (-642 (-1173)))))
+((-1790 ((|#2| |#2| |#1|) 17)) (-1746 ((|#2| (-642 |#2|)) 34)) (-1760 ((|#2| (-642 |#2|)) 57)))
+(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1746 (|#2| (-642 |#2|))) (-15 -1760 (|#2| (-642 |#2|))) (-15 -1790 (|#2| |#2| |#1|))) (-307) (-1238 |#1|) |#1| (-1 |#1| |#1| (-769))) (T -539))
+((-1790 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-769))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1238 *3)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-769))))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-769))))))
+(-10 -7 (-15 -1746 (|#2| (-642 |#2|))) (-15 -1760 (|#2| (-642 |#2|))) (-15 -1790 (|#2| |#2| |#1|)))
+((-3643 (((-418 (-1169 |#4|)) (-1169 |#4|) (-1 (-418 (-1169 |#3|)) (-1169 |#3|))) 94) (((-418 |#4|) |#4| (-1 (-418 (-1169 |#3|)) (-1169 |#3|))) 221)))
+(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3643 ((-418 |#4|) |#4| (-1 (-418 (-1169 |#3|)) (-1169 |#3|)))) (-15 -3643 ((-418 (-1169 |#4|)) (-1169 |#4|) (-1 (-418 (-1169 |#3|)) (-1169 |#3|))))) (-848) (-791) (-13 (-307) (-147)) (-947 |#3| |#2| |#1|)) (T -540))
+((-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1169 *7)) (-1169 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-848)) (-4 *6 (-791)) (-4 *8 (-947 *7 *6 *5)) (-5 *2 (-418 (-1169 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1169 *8)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1169 *7)) (-1169 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-848)) (-4 *6 (-791)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-947 *7 *6 *5)))))
+(-10 -7 (-15 -3643 ((-418 |#4|) |#4| (-1 (-418 (-1169 |#3|)) (-1169 |#3|)))) (-15 -3643 ((-418 (-1169 |#4|)) (-1169 |#4|) (-1 (-418 (-1169 |#3|)) (-1169 |#3|)))))
+((-1909 ((|#4| |#4|) 74)) (-2009 ((|#4| |#4|) 70)) (-2470 ((|#4| |#4| (-564) (-564)) 76)) (-3452 ((|#4| |#4|) 72)))
+(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2009 (|#4| |#4|)) (-15 -3452 (|#4| |#4|)) (-15 -1909 (|#4| |#4|)) (-15 -2470 (|#4| |#4| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1238 |#1|) (-722 |#1| |#2|) (-1253 |#3|)) (T -541))
+((-2470 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-4 *5 (-1238 *4)) (-4 *6 (-722 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1253 *6)))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3)) (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3)) (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5)))) (-2009 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3)) (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5)))))
+(-10 -7 (-15 -2009 (|#4| |#4|)) (-15 -3452 (|#4| |#4|)) (-15 -1909 (|#4| |#4|)) (-15 -2470 (|#4| |#4| (-564) (-564))))
+((-1909 ((|#2| |#2|) 27)) (-2009 ((|#2| |#2|) 23)) (-2470 ((|#2| |#2| (-564) (-564)) 29)) (-3452 ((|#2| |#2|) 25)))
+(((-542 |#1| |#2|) (-10 -7 (-15 -2009 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -2470 (|#2| |#2| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1253 |#1|)) (T -542))
+((-2470 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1253 *4)))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1253 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1253 *3)))) (-2009 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1253 *3)))))
+(-10 -7 (-15 -2009 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -2470 (|#2| |#2| (-564) (-564))))
+((-2632 (((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)) 18) (((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|)) 14) (((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|)) 32)))
+(((-543 |#1| |#2|) (-10 -7 (-15 -2632 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2632 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2632 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) (-1047) (-1238 |#1|)) (T -543))
+((-2632 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1238 *4)))) (-2632 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1238 *4)))) (-2632 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1047)) (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1238 *5)))))
+(-10 -7 (-15 -2632 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2632 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2632 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|))))
+((-2968 (($ $ $) 83)) (-1978 (((-418 $) $) 51)) (-4278 (((-3 (-564) "failed") $) 63)) (-3027 (((-564) $) 41)) (-3838 (((-3 (-407 (-564)) "failed") $) 78)) (-2881 (((-112) $) 26)) (-4034 (((-407 (-564)) $) 76)) (-1469 (((-112) $) 54)) (-3398 (($ $ $ $) 91)) (-2538 (((-112) $) 17)) (-1588 (($ $ $) 61)) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 73)) (-3157 (((-3 $ "failed") $) 68)) (-2819 (($ $) 24)) (-2182 (($ $ $) 89)) (-3366 (($) 64)) (-4303 (($ $) 57)) (-3643 (((-418 $) $) 49)) (-2519 (((-112) $) 15)) (-2048 (((-769) $) 31)) (-3175 (($ $ (-769)) NIL) (($ $) 11)) (-3901 (($ $) 18)) (-1314 (((-564) $) NIL) (((-536) $) 40) (((-890 (-564)) $) 44) (((-379) $) 34) (((-225) $) 37)) (-2756 (((-769)) 9)) (-1866 (((-112) $ $) 21)) (-3310 (($ $ $) 59)))
+(((-544 |#1|) (-10 -8 (-15 -2182 (|#1| |#1| |#1|)) (-15 -3398 (|#1| |#1| |#1| |#1|)) (-15 -2819 (|#1| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3838 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4034 ((-407 (-564)) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -2968 (|#1| |#1| |#1|)) (-15 -1866 ((-112) |#1| |#1|)) (-15 -2519 ((-112) |#1|)) (-15 -3366 (|#1|)) (-15 -3157 ((-3 |#1| "failed") |#1|)) (-15 -1314 ((-225) |#1|)) (-15 -1314 ((-379) |#1|)) (-15 -1588 (|#1| |#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -3310 (|#1| |#1| |#1|)) (-15 -2453 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -1314 ((-564) |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -2538 ((-112) |#1|)) (-15 -2048 ((-769) |#1|)) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -1978 ((-418 |#1|) |#1|)) (-15 -1469 ((-112) |#1|)) (-15 -2756 ((-769)))) (-545)) (T -544))
+((-2756 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-544 *3)) (-4 *3 (-545)))))
+(-10 -8 (-15 -2182 (|#1| |#1| |#1|)) (-15 -3398 (|#1| |#1| |#1| |#1|)) (-15 -2819 (|#1| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3838 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4034 ((-407 (-564)) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -2968 (|#1| |#1| |#1|)) (-15 -1866 ((-112) |#1| |#1|)) (-15 -2519 ((-112) |#1|)) (-15 -3366 (|#1|)) (-15 -3157 ((-3 |#1| "failed") |#1|)) (-15 -1314 ((-225) |#1|)) (-15 -1314 ((-379) |#1|)) (-15 -1588 (|#1| |#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 -3310 (|#1| |#1| |#1|)) (-15 -2453 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -1314 ((-564) |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -2538 ((-112) |#1|)) (-15 -2048 ((-769) |#1|)) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -1978 ((-418 |#1|) |#1|)) (-15 -1469 ((-112) |#1|)) (-15 -2756 ((-769))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-2968 (($ $ $) 90)) (-1532 (((-3 $ "failed") $ $) 20)) (-1337 (($ $ $ $) 79)) (-4316 (($ $) 57)) (-1978 (((-418 $) $) 58)) (-4010 (((-112) $ $) 130)) (-2959 (((-564) $) 119)) (-2317 (($ $ $) 93)) (-1976 (($) 18 T CONST)) (-4278 (((-3 (-564) "failed") $) 111)) (-3027 (((-564) $) 112)) (-2845 (($ $ $) 134)) (-4315 (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 109) (((-687 (-564)) (-687 $)) 108)) (-3104 (((-3 $ "failed") $) 37)) (-3838 (((-3 (-407 (-564)) "failed") $) 87)) (-2881 (((-112) $) 89)) (-4034 (((-407 (-564)) $) 88)) (-2433 (($) 86) (($ $) 85)) (-2859 (($ $ $) 133)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 128)) (-1469 (((-112) $) 59)) (-3398 (($ $ $ $) 77)) (-3903 (($ $ $) 91)) (-2538 (((-112) $) 121)) (-1588 (($ $ $) 102)) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 105)) (-3953 (((-112) $) 35)) (-3076 (((-112) $) 97)) (-3157 (((-3 $ "failed") $) 99)) (-3333 (((-112) $) 120)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 137)) (-2172 (($ $ $ $) 78)) (-2755 (($ $ $) 122)) (-1520 (($ $ $) 123)) (-2819 (($ $) 81)) (-2480 (($ $) 94)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-2182 (($ $ $) 76)) (-3366 (($) 98 T CONST)) (-2367 (($ $) 83)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-4303 (($ $) 103)) (-3643 (((-418 $) $) 56)) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 135)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 129)) (-2519 (((-112) $) 96)) (-2048 (((-769) $) 131)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 132)) (-3175 (($ $ (-769)) 116) (($ $) 114)) (-2142 (($ $) 82)) (-3901 (($ $) 84)) (-1314 (((-564) $) 113) (((-536) $) 107) (((-890 (-564)) $) 106) (((-379) $) 101) (((-225) $) 100)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-564)) 110)) (-2756 (((-769)) 32 T CONST)) (-1866 (((-112) $ $) 92)) (-3310 (($ $ $) 104)) (-1648 (((-112) $ $) 9)) (-2547 (($) 95)) (-2103 (((-112) $ $) 45)) (-3618 (($ $ $ $) 80)) (-1381 (($ $) 118)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-769)) 117) (($ $) 115)) (-2934 (((-112) $ $) 125)) (-2908 (((-112) $ $) 126)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 124)) (-2897 (((-112) $ $) 127)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
(((-545) (-140)) (T -545))
-((-3177 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2663 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2648 (*1 *1) (-4 *1 (-545))) (-2581 (*1 *1 *1) (-4 *1 (-545))) (-2410 (*1 *1 *1 *1) (-4 *1 (-545))) (-2631 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3409 (*1 *1 *1 *1) (-4 *1 (-545))) (-2149 (*1 *1 *1 *1) (-4 *1 (-545))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-2450 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-2534 (*1 *1) (-4 *1 (-545))) (-2534 (*1 *1 *1) (-4 *1 (-545))) (-3926 (*1 *1 *1) (-4 *1 (-545))) (-2468 (*1 *1 *1) (-4 *1 (-545))) (-2198 (*1 *1 *1) (-4 *1 (-545))) (-2924 (*1 *1 *1) (-4 *1 (-545))) (-2111 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2997 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-3842 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2142 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4037 (*1 *1 *1 *1) (-4 *1 (-545))))
-(-13 (-1213) (-307) (-816) (-233) (-612 (-564)) (-1034 (-564)) (-637 (-564)) (-612 (-536)) (-612 (-888 (-564))) (-882 (-564)) (-143) (-1018) (-147) (-1145) (-10 -8 (-15 -3177 ((-112) $)) (-15 -2663 ((-112) $)) (-6 -4406) (-15 -2648 ($)) (-15 -2581 ($ $)) (-15 -2410 ($ $ $)) (-15 -2631 ((-112) $ $)) (-15 -3409 ($ $ $)) (-15 -2149 ($ $ $)) (-15 -1364 ((-112) $)) (-15 -2553 ((-407 (-564)) $)) (-15 -2450 ((-3 (-407 (-564)) "failed") $)) (-15 -2534 ($)) (-15 -2534 ($ $)) (-15 -3926 ($ $)) (-15 -2468 ($ $)) (-15 -2198 ($ $)) (-15 -2924 ($ $)) (-15 -2111 ($ $ $ $)) (-15 -2997 ($ $ $ $)) (-15 -3842 ($ $ $ $)) (-15 -2142 ($ $ $ $)) (-15 -4037 ($ $ $)) (-6 -4405)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-143) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-536)) . T) ((-612 (-564)) . T) ((-612 (-888 (-564))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-637 (-564)) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-816) . T) ((-844) . T) ((-846) . T) ((-882 (-564)) . T) ((-916) . T) ((-1018) . T) ((-1034 (-564)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) . T) ((-1213) . T))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) NIL T CONST)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-3256 (((-917) $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-546) (-13 (-840) (-10 -8 (-15 -4080 ($) -2959)))) (T -546))
-((-4080 (*1 *1) (-5 *1 (-546))))
-(-13 (-840) (-10 -8 (-15 -4080 ($) -2959)))
+((-3076 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2547 (*1 *1) (-4 *1 (-545))) (-2480 (*1 *1 *1) (-4 *1 (-545))) (-2317 (*1 *1 *1 *1) (-4 *1 (-545))) (-1866 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3903 (*1 *1 *1 *1) (-4 *1 (-545))) (-2968 (*1 *1 *1 *1) (-4 *1 (-545))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-3838 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-2433 (*1 *1) (-4 *1 (-545))) (-2433 (*1 *1 *1) (-4 *1 (-545))) (-3901 (*1 *1 *1) (-4 *1 (-545))) (-2367 (*1 *1 *1) (-4 *1 (-545))) (-2142 (*1 *1 *1) (-4 *1 (-545))) (-2819 (*1 *1 *1) (-4 *1 (-545))) (-3618 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-1337 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2172 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-3398 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2182 (*1 *1 *1 *1) (-4 *1 (-545))))
+(-13 (-1216) (-307) (-818) (-233) (-612 (-564)) (-1036 (-564)) (-637 (-564)) (-612 (-536)) (-612 (-890 (-564))) (-884 (-564)) (-143) (-1020) (-147) (-1148) (-10 -8 (-15 -3076 ((-112) $)) (-15 -2519 ((-112) $)) (-6 -4409) (-15 -2547 ($)) (-15 -2480 ($ $)) (-15 -2317 ($ $ $)) (-15 -1866 ((-112) $ $)) (-15 -3903 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -2881 ((-112) $)) (-15 -4034 ((-407 (-564)) $)) (-15 -3838 ((-3 (-407 (-564)) "failed") $)) (-15 -2433 ($)) (-15 -2433 ($ $)) (-15 -3901 ($ $)) (-15 -2367 ($ $)) (-15 -2142 ($ $)) (-15 -2819 ($ $)) (-15 -3618 ($ $ $ $)) (-15 -1337 ($ $ $ $)) (-15 -2172 ($ $ $ $)) (-15 -3398 ($ $ $ $)) (-15 -2182 ($ $ $)) (-6 -4408)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-143) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-536)) . T) ((-612 (-564)) . T) ((-612 (-890 (-564))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-637 (-564)) . T) ((-715 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-818) . T) ((-846) . T) ((-848) . T) ((-884 (-564)) . T) ((-918) . T) ((-1020) . T) ((-1036 (-564)) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) . T) ((-1216) . T))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) NIL T CONST)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-919) $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-546) (-13 (-842) (-10 -8 (-15 -1976 ($) -2858)))) (T -546))
+((-1976 (*1 *1) (-5 *1 (-546))))
+(-13 (-842) (-10 -8 (-15 -1976 ($) -2858)))
((|Integer|) (NOT (< 16 (INTEGER-LENGTH |#1|))))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) NIL T CONST)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-3256 (((-917) $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-547) (-13 (-840) (-10 -8 (-15 -4080 ($) -2959)))) (T -547))
-((-4080 (*1 *1) (-5 *1 (-547))))
-(-13 (-840) (-10 -8 (-15 -4080 ($) -2959)))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) NIL T CONST)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-919) $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-547) (-13 (-842) (-10 -8 (-15 -1976 ($) -2858)))) (T -547))
+((-1976 (*1 *1) (-5 *1 (-547))))
+(-13 (-842) (-10 -8 (-15 -1976 ($) -2858)))
((|Integer|) (NOT (< 32 (INTEGER-LENGTH |#1|))))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) NIL T CONST)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-3256 (((-917) $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-548) (-13 (-840) (-10 -8 (-15 -4080 ($) -2959)))) (T -548))
-((-4080 (*1 *1) (-5 *1 (-548))))
-(-13 (-840) (-10 -8 (-15 -4080 ($) -2959)))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) NIL T CONST)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-919) $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-548) (-13 (-842) (-10 -8 (-15 -1976 ($) -2858)))) (T -548))
+((-1976 (*1 *1) (-5 *1 (-548))))
+(-13 (-842) (-10 -8 (-15 -1976 ($) -2858)))
((|Integer|) (NOT (< 64 (INTEGER-LENGTH |#1|))))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) NIL T CONST)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-3256 (((-917) $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-549) (-13 (-840) (-10 -8 (-15 -4080 ($) -2959)))) (T -549))
-((-4080 (*1 *1) (-5 *1 (-549))))
-(-13 (-840) (-10 -8 (-15 -4080 ($) -2959)))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) NIL T CONST)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-919) $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-549) (-13 (-842) (-10 -8 (-15 -1976 ($) -2858)))) (T -549))
+((-1976 (*1 *1) (-5 *1 (-549))))
+(-13 (-842) (-10 -8 (-15 -1976 ($) -2858)))
((|Integer|) (NOT (< 8 (INTEGER-LENGTH |#1|))))
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-3236 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#2| $ |#1| |#2|) NIL)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2327 (((-3 |#2| "failed") |#1| $) NIL)) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-1945 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) NIL)) (-2591 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) NIL)) (-3035 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 ((|#1| $) NIL (|has| |#1| (-846)))) (-1554 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2898 ((|#1| $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3454 (((-641 |#1|) $) NIL)) (-3565 (((-112) |#1| $) NIL)) (-3149 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-2566 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-3050 (((-641 |#1|) $) NIL)) (-1563 (((-112) |#1| $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2658 ((|#2| $) NIL (|has| |#1| (-846)))) (-2139 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL)) (-1592 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3853 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-2423 (((-858) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1860 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-550 |#1| |#2| |#3|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4407))) (-1094) (-1094) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4407)))) (T -550))
-NIL
-(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4407)))
-((-2839 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))) 50)))
-(((-551 |#1| |#2|) (-10 -7 (-15 -2839 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))))) (-556) (-13 (-27) (-430 |#1|))) (T -551))
-((-2839 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-556)) (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3)))))
-(-10 -7 (-15 -2839 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|)))))
-((-1693 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 222)) (-1808 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 218)) (-1832 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 226)))
-(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1832 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1693 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1808 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-556) (-1034 (-564))) (-13 (-27) (-430 |#1|)) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -552))
-((-1808 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-556) (-1034 (-564)))) (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1034 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-1832 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1034 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
-(-10 -7 (-15 -1832 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1693 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1808 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-1714 (((-112) (-564) (-564)) 12)) (-4257 (((-564) (-564)) 7)) (-4043 (((-564) (-564) (-564)) 10)))
-(((-553) (-10 -7 (-15 -4257 ((-564) (-564))) (-15 -4043 ((-564) (-564) (-564))) (-15 -1714 ((-112) (-564) (-564))))) (T -553))
-((-1714 (*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))) (-4043 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
-(-10 -7 (-15 -4257 ((-564) (-564))) (-15 -4043 ((-564) (-564) (-564))) (-15 -1714 ((-112) (-564) (-564))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3469 ((|#1| $) 63)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-3880 (($ $) 93)) (-3745 (($ $) 76)) (-3878 ((|#1| $) 64)) (-4012 (((-3 $ "failed") $ $) 20)) (-3700 (($ $) 75)) (-3858 (($ $) 92)) (-3722 (($ $) 77)) (-3902 (($ $) 91)) (-3766 (($ $) 78)) (-4080 (($) 18 T CONST)) (-4284 (((-3 (-564) "failed") $) 71)) (-3120 (((-564) $) 72)) (-3293 (((-3 $ "failed") $) 34)) (-3663 (($ |#1| |#1|) 68)) (-2384 (((-112) $) 62)) (-4274 (($) 103)) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 74)) (-3326 (((-112) $) 61)) (-2855 (($ $ $) 109)) (-1497 (($ $ $) 108)) (-3657 (($ $) 100)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-2297 (($ |#1| |#1|) 69) (($ |#1|) 67) (($ (-407 (-564))) 66)) (-2122 ((|#1| $) 65)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-2998 (((-3 $ "failed") $ $) 44)) (-1689 (($ $) 101)) (-3914 (($ $) 90)) (-3777 (($ $) 79)) (-3891 (($ $) 89)) (-3756 (($ $) 80)) (-3869 (($ $) 88)) (-3735 (($ $) 81)) (-2461 (((-112) $ |#1|) 60)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-564)) 70)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-3949 (($ $) 99)) (-3811 (($ $) 87)) (-2119 (((-112) $ $) 41)) (-3925 (($ $) 98)) (-3787 (($ $) 86)) (-3972 (($ $) 97)) (-3837 (($ $) 85)) (-2784 (($ $) 96)) (-3848 (($ $) 84)) (-3960 (($ $) 95)) (-3825 (($ $) 83)) (-3937 (($ $) 94)) (-3799 (($ $) 82)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-3034 (((-112) $ $) 106)) (-3011 (((-112) $ $) 105)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 107)) (-2999 (((-112) $ $) 104)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ $) 102) (($ $ (-407 (-564))) 73)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-554 |#1|) (-140) (-13 (-404) (-1194))) (T -554))
-((-2297 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3663 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2297 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2297 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-2461 (*1 *2 *1 *3) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))))
-(-13 (-452) (-846) (-1194) (-998) (-1034 (-564)) (-10 -8 (-6 -3646) (-15 -2297 ($ |t#1| |t#1|)) (-15 -3663 ($ |t#1| |t#1|)) (-15 -2297 ($ |t#1|)) (-15 -2297 ($ (-407 (-564)))) (-15 -2122 (|t#1| $)) (-15 -3878 (|t#1| $)) (-15 -3469 (|t#1| $)) (-15 -2384 ((-112) $)) (-15 -3326 ((-112) $)) (-15 -2461 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-998) . T) ((-1034 (-564)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) . T) ((-1197) . T))
-((-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 9)) (-3063 (($ $) 11)) (-3330 (((-112) $) 20)) (-3293 (((-3 $ "failed") $) 16)) (-2119 (((-112) $ $) 22)))
-(((-555 |#1|) (-10 -8 (-15 -3330 ((-112) |#1|)) (-15 -2119 ((-112) |#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -1660 ((-2 (|:| -2885 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3293 ((-3 |#1| "failed") |#1|))) (-556)) (T -555))
-NIL
-(-10 -8 (-15 -3330 ((-112) |#1|)) (-15 -2119 ((-112) |#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -1660 ((-2 (|:| -2885 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3293 ((-3 |#1| "failed") |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2998 (((-3 $ "failed") $ $) 44)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-1765 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#2| $ |#1| |#2|) NIL)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2248 (((-3 |#2| "failed") |#1| $) NIL)) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2265 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) NIL)) (-2490 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) NIL)) (-2936 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 ((|#1| $) NIL (|has| |#1| (-848)))) (-3234 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3421 ((|#1| $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3393 (((-642 |#1|) $) NIL)) (-2835 (((-112) |#1| $) NIL)) (-2730 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3183 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3997 (((-642 |#1|) $) NIL)) (-4145 (((-112) |#1| $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2557 ((|#2| $) NIL (|has| |#1| (-848)))) (-3254 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL)) (-2696 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2593 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2327 (((-860) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1648 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-550 |#1| |#2| |#3|) (-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) (-1097) (-1097) (-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410)))) (T -550))
+NIL
+(-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410)))
+((-4288 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1169 |#2|) (-1169 |#2|))) 50)))
+(((-551 |#1| |#2|) (-10 -7 (-15 -4288 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1169 |#2|) (-1169 |#2|))))) (-556) (-13 (-27) (-430 |#1|))) (T -551))
+((-4288 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1169 *3) (-1169 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-556)) (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3)))))
+(-10 -7 (-15 -4288 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1169 |#2|) (-1169 |#2|)))))
+((-3240 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 222)) (-3582 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 218)) (-1729 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 226)))
+(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1729 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3240 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3582 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-556) (-1036 (-564))) (-13 (-27) (-430 |#1|)) (-1238 |#2|) (-1238 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -552))
+((-3582 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *7 (-1238 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-3240 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1238 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)))) (-4 *8 (-1238 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-1729 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1238 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564)))) (-4 *8 (-1238 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
+(-10 -7 (-15 -1729 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3240 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3582 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-4149 (((-112) (-564) (-564)) 12)) (-4018 (((-564) (-564)) 7)) (-3757 (((-564) (-564) (-564)) 10)))
+(((-553) (-10 -7 (-15 -4018 ((-564) (-564))) (-15 -3757 ((-564) (-564) (-564))) (-15 -4149 ((-112) (-564) (-564))))) (T -553))
+((-4149 (*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))) (-3757 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
+(-10 -7 (-15 -4018 ((-564) (-564))) (-15 -3757 ((-564) (-564) (-564))) (-15 -4149 ((-112) (-564) (-564))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3410 ((|#1| $) 67)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-3851 (($ $) 97)) (-3704 (($ $) 80)) (-3532 ((|#1| $) 68)) (-1532 (((-3 $ "failed") $ $) 20)) (-3655 (($ $) 79)) (-3827 (($ $) 96)) (-3679 (($ $) 81)) (-3875 (($ $) 95)) (-3727 (($ $) 82)) (-1976 (($) 18 T CONST)) (-4278 (((-3 (-564) "failed") $) 75)) (-3027 (((-564) $) 76)) (-3104 (((-3 $ "failed") $) 37)) (-1530 (($ |#1| |#1|) 72)) (-2538 (((-112) $) 66)) (-4265 (($) 107)) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 78)) (-3333 (((-112) $) 65)) (-2755 (($ $ $) 113)) (-1520 (($ $ $) 112)) (-3612 (($ $) 104)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3210 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-407 (-564))) 70)) (-3305 ((|#1| $) 69)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-2896 (((-3 $ "failed") $ $) 48)) (-1723 (($ $) 105)) (-3888 (($ $) 94)) (-3739 (($ $) 83)) (-3863 (($ $) 93)) (-3716 (($ $) 84)) (-3839 (($ $) 92)) (-3693 (($ $) 85)) (-1652 (((-112) $ |#1|) 64)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-564)) 74)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-3926 (($ $) 103)) (-3776 (($ $) 91)) (-2103 (((-112) $ $) 45)) (-3900 (($ $) 102)) (-3750 (($ $) 90)) (-3951 (($ $) 101)) (-3803 (($ $) 89)) (-2683 (($ $) 100)) (-3816 (($ $) 88)) (-3938 (($ $) 99)) (-3791 (($ $) 87)) (-3913 (($ $) 98)) (-3763 (($ $) 86)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2934 (((-112) $ $) 110)) (-2908 (((-112) $ $) 109)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 111)) (-2897 (((-112) $ $) 108)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ $) 106) (($ $ (-407 (-564))) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-554 |#1|) (-140) (-13 (-404) (-1197))) (T -554))
+((-3210 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-1530 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-3210 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-3410 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112)))) (-1652 (*1 *2 *1 *3) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112)))))
+(-13 (-452) (-848) (-1197) (-1000) (-1036 (-564)) (-10 -8 (-6 -3601) (-15 -3210 ($ |t#1| |t#1|)) (-15 -1530 ($ |t#1| |t#1|)) (-15 -3210 ($ |t#1|)) (-15 -3210 ($ (-407 (-564)))) (-15 -3305 (|t#1| $)) (-15 -3532 (|t#1| $)) (-15 -3410 (|t#1| $)) (-15 -2538 ((-112) $)) (-15 -3333 ((-112) $)) (-15 -1652 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-848) . T) ((-1000) . T) ((-1036 (-564)) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) . T) ((-1200) . T))
+((-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 9)) (-1387 (($ $) 11)) (-2037 (((-112) $) 20)) (-3104 (((-3 $ "failed") $) 16)) (-2103 (((-112) $ $) 22)))
+(((-555 |#1|) (-10 -8 (-15 -2037 ((-112) |#1|)) (-15 -2103 ((-112) |#1| |#1|)) (-15 -1387 (|#1| |#1|)) (-15 -4039 ((-2 (|:| -3587 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|))) (-556)) (T -555))
+NIL
+(-10 -8 (-15 -2037 ((-112) |#1|)) (-15 -2103 ((-112) |#1| |#1|)) (-15 -1387 (|#1| |#1|)) (-15 -4039 ((-2 (|:| -3587 |#1|) (|:| -4397 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2896 (((-3 $ "failed") $ $) 48)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
(((-556) (-140)) (T -556))
-((-2998 (*1 *1 *1 *1) (|partial| -4 *1 (-556))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2885 *1) (|:| -4394 *1) (|:| |associate| *1))) (-4 *1 (-556)))) (-3063 (*1 *1 *1) (-4 *1 (-556))) (-2119 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
-(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -2998 ((-3 $ "failed") $ $)) (-15 -1660 ((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $)) (-15 -3063 ($ $)) (-15 -2119 ((-112) $ $)) (-15 -3330 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-4111 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|)) 38)) (-1857 (((-585 |#2|) |#2| (-1170)) 63)) (-1719 (((-3 |#2| "failed") |#2| (-1170)) 156)) (-4149 (((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))) 159)) (-3643 (((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|) 41)))
-(((-557 |#1| |#2|) (-10 -7 (-15 -3643 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -4111 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -1719 ((-3 |#2| "failed") |#2| (-1170))) (-15 -1857 ((-585 |#2|) |#2| (-1170))) (-15 -4149 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))))) (-13 (-452) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -557))
-((-4149 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3))) (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-452) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -2177 *3) (|:| |coeff| *3))) (-5 *1 (-557 *7 *3)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-1719 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-4111 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *3)))) (-3643 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -2177 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(-10 -7 (-15 -3643 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -4111 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -1719 ((-3 |#2| "failed") |#2| (-1170))) (-15 -1857 ((-585 |#2|) |#2| (-1170))) (-15 -4149 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|)))))
-((-2753 (((-418 |#1|) |#1|) 18)) (-3688 (((-418 |#1|) |#1|) 33)) (-2592 (((-3 |#1| "failed") |#1|) 49)) (-4049 (((-418 |#1|) |#1|) 63)))
-(((-558 |#1|) (-10 -7 (-15 -3688 ((-418 |#1|) |#1|)) (-15 -2753 ((-418 |#1|) |#1|)) (-15 -4049 ((-418 |#1|) |#1|)) (-15 -2592 ((-3 |#1| "failed") |#1|))) (-545)) (T -558))
-((-2592 (*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))) (-4049 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-2753 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))))
-(-10 -7 (-15 -3688 ((-418 |#1|) |#1|)) (-15 -2753 ((-418 |#1|) |#1|)) (-15 -4049 ((-418 |#1|) |#1|)) (-15 -2592 ((-3 |#1| "failed") |#1|)))
-((-3024 (($) 9)) (-2508 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-3454 (((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-2566 (($ (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1376 (($ (-641 (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-3813 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2075 (((-641 (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2990 (((-1264)) 12)))
-(((-559) (-10 -8 (-15 -3024 ($)) (-15 -2990 ((-1264))) (-15 -3454 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1376 ($ (-641 (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2566 ($ (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2508 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2075 ((-641 (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3813 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -559))
-((-3813 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-2075 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-2508 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-559)))) (-1376 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-559)))) (-2990 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559)))) (-3024 (*1 *1) (-5 *1 (-559))))
-(-10 -8 (-15 -3024 ($)) (-15 -2990 ((-1264))) (-15 -3454 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1376 ($ (-641 (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2566 ($ (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2508 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2075 ((-641 (-2 (|:| -1901 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3813 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2141 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-3660 (((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|)) 35)) (-3398 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|)) 115)) (-4168 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 85) (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 55)) (-3253 (((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|))) 92) (((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|)) 114)) (-2295 (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|)) 116)) (-1485 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2047 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 135 (|has| |#3| (-652 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2047 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 134 (|has| |#3| (-652 |#2|)))) (-3824 ((|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|) 53)) (-1305 (((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|)) 34)))
-(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -4168 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -4168 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3253 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -3253 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3398 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -3398 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2295 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -2295 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3660 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -3824 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -1305 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -1485 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2047 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -1485 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2047 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|)) (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -560))
-((-1485 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-1485 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-1305 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7)) (-5 *3 (-1166 *6)) (-4 *7 (-1094)))) (-3824 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094)))) (-3660 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *3)))) (-5 *1 (-560 *6 *3 *7)) (-5 *5 (-1166 *3)) (-4 *7 (-1094)))) (-2295 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-2295 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-3398 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-3398 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-3253 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2177 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-3253 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2177 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-4168 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-4168 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
-(-10 -7 (-15 -4168 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -4168 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3253 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -3253 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3398 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -3398 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2295 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -2295 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3660 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -3824 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -1305 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -1485 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2047 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -1485 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2047 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|))
-((-3298 (((-564) (-564) (-767)) 88)) (-3482 (((-564) (-564)) 86)) (-3613 (((-564) (-564)) 84)) (-3044 (((-564) (-564)) 91)) (-2557 (((-564) (-564) (-564)) 68)) (-3843 (((-564) (-564) (-564)) 65)) (-3210 (((-407 (-564)) (-564)) 29)) (-3834 (((-564) (-564)) 35)) (-3101 (((-564) (-564)) 77)) (-1854 (((-564) (-564)) 50)) (-2305 (((-641 (-564)) (-564)) 83)) (-2328 (((-564) (-564) (-564) (-564) (-564)) 62)) (-1581 (((-407 (-564)) (-564)) 59)))
-(((-561) (-10 -7 (-15 -1581 ((-407 (-564)) (-564))) (-15 -2328 ((-564) (-564) (-564) (-564) (-564))) (-15 -2305 ((-641 (-564)) (-564))) (-15 -1854 ((-564) (-564))) (-15 -3101 ((-564) (-564))) (-15 -3834 ((-564) (-564))) (-15 -3210 ((-407 (-564)) (-564))) (-15 -3843 ((-564) (-564) (-564))) (-15 -2557 ((-564) (-564) (-564))) (-15 -3044 ((-564) (-564))) (-15 -3613 ((-564) (-564))) (-15 -3482 ((-564) (-564))) (-15 -3298 ((-564) (-564) (-767))))) (T -561))
-((-3298 (*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-767)) (-5 *1 (-561)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3044 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2557 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3843 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3210 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2305 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-2328 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1581 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
-(-10 -7 (-15 -1581 ((-407 (-564)) (-564))) (-15 -2328 ((-564) (-564) (-564) (-564) (-564))) (-15 -2305 ((-641 (-564)) (-564))) (-15 -1854 ((-564) (-564))) (-15 -3101 ((-564) (-564))) (-15 -3834 ((-564) (-564))) (-15 -3210 ((-407 (-564)) (-564))) (-15 -3843 ((-564) (-564) (-564))) (-15 -2557 ((-564) (-564) (-564))) (-15 -3044 ((-564) (-564))) (-15 -3613 ((-564) (-564))) (-15 -3482 ((-564) (-564))) (-15 -3298 ((-564) (-564) (-767))))
-((-2356 (((-2 (|:| |answer| |#4|) (|:| -2583 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
-(((-562 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2356 ((-2 (|:| |answer| |#4|) (|:| -2583 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -562))
-((-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2583 *3))) (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))))
-(-10 -7 (-15 -2356 ((-2 (|:| |answer| |#4|) (|:| -2583 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2356 (((-2 (|:| |answer| (-407 |#2|)) (|:| -2583 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18)))
-(((-563 |#1| |#2|) (-10 -7 (-15 -2356 ((-2 (|:| |answer| (-407 |#2|)) (|:| -2583 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -563))
-((-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -2583 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6)))))
-(-10 -7 (-15 -2356 ((-2 (|:| |answer| (-407 |#2|)) (|:| -2583 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 30)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 93)) (-3063 (($ $) 94)) (-3330 (((-112) $) NIL)) (-2149 (($ $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2997 (($ $ $ $) 51)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL)) (-2410 (($ $ $) 88)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL)) (-3120 (((-564) $) NIL)) (-2946 (($ $ $) 53)) (-4277 (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 76) (((-685 (-564)) (-685 $)) 72)) (-3293 (((-3 $ "failed") $) 90)) (-2450 (((-3 (-407 (-564)) "failed") $) NIL)) (-1364 (((-112) $) NIL)) (-2553 (((-407 (-564)) $) NIL)) (-2534 (($) 78) (($ $) 79)) (-2960 (($ $ $) 87)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2142 (($ $ $ $) NIL)) (-3409 (($ $ $) 69)) (-2384 (((-112) $) NIL)) (-3737 (($ $ $) NIL)) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL)) (-4112 (((-112) $) 34)) (-3177 (((-112) $) 82)) (-1846 (((-3 $ "failed") $) NIL)) (-3326 (((-112) $) 43)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3842 (($ $ $ $) 54)) (-2855 (($ $ $) 84)) (-1497 (($ $ $) 83)) (-2924 (($ $) NIL)) (-2581 (($ $) 49)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) 68)) (-4037 (($ $ $) NIL)) (-3431 (($) NIL T CONST)) (-2468 (($ $) 38)) (-4052 (((-1114) $) 42)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 125)) (-2123 (($ $ $) 91) (($ (-641 $)) NIL)) (-1986 (($ $) NIL)) (-3688 (((-418 $) $) 111)) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL)) (-2998 (((-3 $ "failed") $ $) 109)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2663 (((-112) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 86)) (-3254 (($ $ (-767)) NIL) (($ $) NIL)) (-2198 (($ $) 40)) (-3926 (($ $) 36)) (-1311 (((-564) $) 48) (((-536) $) 63) (((-888 (-564)) $) NIL) (((-379) $) 57) (((-225) $) 60) (((-1152) $) 65)) (-2423 (((-858) $) 46) (($ (-564)) 47) (($ $) NIL) (($ (-564)) 47)) (-3719 (((-767)) NIL T CONST)) (-2631 (((-112) $ $) NIL)) (-2020 (($ $ $) NIL)) (-1860 (((-112) $ $) NIL)) (-2648 (($) 35)) (-2119 (((-112) $ $) NIL)) (-2111 (($ $ $ $) 50)) (-3673 (($ $) 77)) (-2403 (($) 6 T CONST)) (-2417 (($) 31 T CONST)) (-1613 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-818) $) 28) (((-1264) (-818) $ (-112)) 29)) (-4063 (($ $ (-767)) NIL) (($ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 33)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 10)) (-3082 (($ $) 16) (($ $ $) 39)) (-3070 (($ $ $) 37)) (** (($ $ (-917)) NIL) (($ $ (-767)) 81)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 80) (($ $ $) 52)))
-(((-564) (-13 (-545) (-612 (-1152)) (-824) (-10 -8 (-15 -2534 ($ $)) (-6 -4394) (-6 -4399) (-6 -4395) (-6 -4389)))) (T -564))
-((-2534 (*1 *1 *1) (-5 *1 (-564))))
-(-13 (-545) (-612 (-1152)) (-824) (-10 -8 (-15 -2534 ($ $)) (-6 -4394) (-6 -4399) (-6 -4395) (-6 -4389)))
-((-3644 (((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765) (-1057)) 119) (((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765)) 121)) (-2070 (((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1170)) 196) (((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1152)) 195) (((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379) (-1057)) 200) (((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379)) 201) (((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379)) 202) (((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379))))) 203) (((-1031) (-316 (-379)) (-1088 (-839 (-379)))) 191) (((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379)) 190) (((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379)) 186) (((-1031) (-765)) 178) (((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379) (-1057)) 185)))
-(((-565) (-10 -7 (-15 -2070 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379) (-1057))) (-15 -2070 ((-1031) (-765))) (-15 -2070 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379))) (-15 -2070 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379))) (-15 -2070 ((-1031) (-316 (-379)) (-1088 (-839 (-379))))) (-15 -2070 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))))) (-15 -2070 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379))) (-15 -2070 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379))) (-15 -2070 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379) (-1057))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -2070 ((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1152))) (-15 -2070 ((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1170))))) (T -565))
-((-2070 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-839 (-379)))) (-5 *5 (-1170)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-2070 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-839 (-379)))) (-5 *5 (-1152)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) (-5 *1 (-565)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031)))) (-5 *1 (-565)))) (-2070 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-2070 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-2070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379))))) (-5 *2 (-1031)) (-5 *1 (-565)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-565)))) (-2070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-2070 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-565)))) (-2070 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379)))) (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-565)))))
-(-10 -7 (-15 -2070 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379) (-1057))) (-15 -2070 ((-1031) (-765))) (-15 -2070 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379) (-379))) (-15 -2070 ((-1031) (-316 (-379)) (-1088 (-839 (-379))) (-379))) (-15 -2070 ((-1031) (-316 (-379)) (-1088 (-839 (-379))))) (-15 -2070 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))))) (-15 -2070 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379))) (-15 -2070 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379))) (-15 -2070 ((-1031) (-316 (-379)) (-641 (-1088 (-839 (-379)))) (-379) (-379) (-1057))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -2070 ((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1152))) (-15 -2070 ((-3 (-1031) "failed") (-316 (-379)) (-1086 (-839 (-379))) (-1170))))
-((-4151 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|)) 200)) (-1370 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|)) 102)) (-2137 (((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|) 196)) (-3887 (((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170))) 205)) (-3346 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2047 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170)) 214 (|has| |#3| (-652 |#2|)))))
-(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -1370 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -2137 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -4151 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -3887 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -3346 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2047 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|)) (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -566))
-((-3346 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-3887 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094)))) (-4151 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094)))) (-2137 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2177 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))))
-(-10 -7 (-15 -1370 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -2137 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -4151 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -3887 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -3346 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2047 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|))
-((-1296 (((-2 (|:| -2018 |#2|) (|:| |nconst| |#2|)) |#2| (-1170)) 64)) (-1742 (((-3 |#2| "failed") |#2| (-1170) (-839 |#2|) (-839 |#2|)) 179 (-12 (|has| |#2| (-1133)) (|has| |#1| (-612 (-888 (-564)))) (|has| |#1| (-882 (-564))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 158 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-888 (-564)))) (|has| |#1| (-882 (-564)))))) (-3927 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 160 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-888 (-564)))) (|has| |#1| (-882 (-564)))))))
-(((-567 |#1| |#2|) (-10 -7 (-15 -1296 ((-2 (|:| -2018 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-888 (-564)))) (IF (|has| |#1| (-882 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -3927 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -1742 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -1742 ((-3 |#2| "failed") |#2| (-1170) (-839 |#2|) (-839 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1034 (-564)) (-452) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -567))
-((-1742 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-839 *2)) (-4 *2 (-1133)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-612 (-888 (-564)))) (-4 *5 (-882 (-564))) (-4 *5 (-13 (-1034 (-564)) (-452) (-637 (-564)))) (-5 *1 (-567 *5 *2)))) (-1742 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-888 (-564)))) (-4 *5 (-882 (-564))) (-4 *5 (-13 (-1034 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3927 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-888 (-564)))) (-4 *5 (-882 (-564))) (-4 *5 (-13 (-1034 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-1296 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-1034 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| -2018 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(-10 -7 (-15 -1296 ((-2 (|:| -2018 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-888 (-564)))) (IF (|has| |#1| (-882 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -3927 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -1742 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -1742 ((-3 |#2| "failed") |#2| (-1170) (-839 |#2|) (-839 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-4295 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))) 41)) (-2070 (((-585 (-407 |#2|)) (-407 |#2|)) 28)) (-1697 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-4161 (((-3 (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -2070 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -1697 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -4161 ((-3 (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -4295 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-564))) (-1235 |#1|)) (T -568))
-((-4295 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *5 *6)))) (-4161 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -2177 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) (-1697 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147) (-1034 (-564)))) (-5 *1 (-568 *3 *4)))) (-2070 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))))
-(-10 -7 (-15 -2070 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -1697 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -4161 ((-3 (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -4295 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|)))))
-((-4146 (((-3 (-564) "failed") |#1|) 14)) (-2513 (((-112) |#1|) 13)) (-1359 (((-564) |#1|) 9)))
-(((-569 |#1|) (-10 -7 (-15 -1359 ((-564) |#1|)) (-15 -2513 ((-112) |#1|)) (-15 -4146 ((-3 (-564) "failed") |#1|))) (-1034 (-564))) (T -569))
-((-4146 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1034 *2)))) (-2513 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1034 (-564))))) (-1359 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1034 *2)))))
-(-10 -7 (-15 -1359 ((-564) |#1|)) (-15 -2513 ((-112) |#1|)) (-15 -4146 ((-3 (-564) "failed") |#1|)))
-((-2152 (((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1170) (-641 (-407 (-948 |#1|)))) 48)) (-3036 (((-585 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1170)) 28)) (-3272 (((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1170)) 23)) (-2364 (((-3 (-2 (|:| -2177 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|))) 35)))
-(((-570 |#1|) (-10 -7 (-15 -3036 ((-585 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -3272 ((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1170))) (-15 -2152 ((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1170) (-641 (-407 (-948 |#1|))))) (-15 -2364 ((-3 (-2 (|:| -2177 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|))))) (-13 (-556) (-1034 (-564)) (-147))) (T -570))
-((-2364 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564)) (-147))) (-5 *2 (-2 (|:| -2177 (-407 (-948 *5))) (|:| |coeff| (-407 (-948 *5))))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-948 *5))))) (-2152 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-948 *6)))) (-5 *3 (-407 (-948 *6))) (-4 *6 (-13 (-556) (-1034 (-564)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6)))) (-3272 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1034 (-564)) (-147))) (-5 *1 (-570 *4)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564)) (-147))) (-5 *2 (-585 (-407 (-948 *5)))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-948 *5))))))
-(-10 -7 (-15 -3036 ((-585 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -3272 ((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1170))) (-15 -2152 ((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1170) (-641 (-407 (-948 |#1|))))) (-15 -2364 ((-3 (-2 (|:| -2177 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)))))
-((-3009 (((-112) $ $) 73)) (-1494 (((-112) $) 47)) (-3469 ((|#1| $) 39)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) 77)) (-3880 (($ $) 137)) (-3745 (($ $) 117)) (-3878 ((|#1| $) 37)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3700 (($ $) NIL)) (-3858 (($ $) 139)) (-3722 (($ $) 113)) (-3902 (($ $) 141)) (-3766 (($ $) 121)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) 92)) (-3120 (((-564) $) 94)) (-3293 (((-3 $ "failed") $) 76)) (-3663 (($ |#1| |#1|) 35)) (-2384 (((-112) $) 43)) (-4274 (($) 103)) (-4112 (((-112) $) 54)) (-3614 (($ $ (-564)) NIL)) (-3326 (((-112) $) 44)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-3657 (($ $) 105)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-2297 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-407 (-564))) 91)) (-2122 ((|#1| $) 36)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) 79) (($ (-641 $)) NIL)) (-2998 (((-3 $ "failed") $ $) 78)) (-1689 (($ $) 107)) (-3914 (($ $) 145)) (-3777 (($ $) 119)) (-3891 (($ $) 147)) (-3756 (($ $) 123)) (-3869 (($ $) 143)) (-3735 (($ $) 115)) (-2461 (((-112) $ |#1|) 41)) (-2423 (((-858) $) 99) (($ (-564)) 81) (($ $) NIL) (($ (-564)) 81)) (-3719 (((-767)) 101 T CONST)) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) 159)) (-3811 (($ $) 129)) (-2119 (((-112) $ $) NIL)) (-3925 (($ $) 157)) (-3787 (($ $) 125)) (-3972 (($ $) 155)) (-3837 (($ $) 135)) (-2784 (($ $) 153)) (-3848 (($ $) 133)) (-3960 (($ $) 151)) (-3825 (($ $) 131)) (-3937 (($ $) 149)) (-3799 (($ $) 127)) (-2403 (($) 30 T CONST)) (-2417 (($) 10 T CONST)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 48)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 46)) (-3082 (($ $) 52) (($ $ $) 53)) (-3070 (($ $ $) 51)) (** (($ $ (-917)) 69) (($ $ (-767)) NIL) (($ $ $) 109) (($ $ (-407 (-564))) 161)) (* (($ (-917) $) 64) (($ (-767) $) NIL) (($ (-564) $) 63) (($ $ $) 60)))
-(((-571 |#1|) (-554 |#1|) (-13 (-404) (-1194))) (T -571))
+((-2896 (*1 *1 *1 *1) (|partial| -4 *1 (-556))) (-4039 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3587 *1) (|:| -4397 *1) (|:| |associate| *1))) (-4 *1 (-556)))) (-1387 (*1 *1 *1) (-4 *1 (-556))) (-2103 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
+(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -2896 ((-3 $ "failed") $ $)) (-15 -4039 ((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $)) (-15 -1387 ($ $)) (-15 -2103 ((-112) $ $)) (-15 -2037 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-3688 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1173) (-642 |#2|)) 38)) (-1736 (((-585 |#2|) |#2| (-1173)) 63)) (-3633 (((-3 |#2| "failed") |#2| (-1173)) 156)) (-1838 (((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) (-610 |#2|) (-642 (-610 |#2|))) 159)) (-2023 (((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) |#2|) 41)))
+(((-557 |#1| |#2|) (-10 -7 (-15 -2023 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) |#2|)) (-15 -3688 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1173) (-642 |#2|))) (-15 -3633 ((-3 |#2| "failed") |#2| (-1173))) (-15 -1736 ((-585 |#2|) |#2| (-1173))) (-15 -1838 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) (-610 |#2|) (-642 (-610 |#2|))))) (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -557))
+((-1838 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1173)) (-5 *6 (-642 (-610 *3))) (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *7))) (-4 *7 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -2116 *3) (|:| |coeff| *3))) (-5 *1 (-557 *7 *3)))) (-1736 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-3633 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-3688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *3)))) (-2023 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -2116 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))))
+(-10 -7 (-15 -2023 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) |#2|)) (-15 -3688 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1173) (-642 |#2|))) (-15 -3633 ((-3 |#2| "failed") |#2| (-1173))) (-15 -1736 ((-585 |#2|) |#2| (-1173))) (-15 -1838 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1173) (-610 |#2|) (-642 (-610 |#2|)))))
+((-1978 (((-418 |#1|) |#1|) 18)) (-3643 (((-418 |#1|) |#1|) 33)) (-1509 (((-3 |#1| "failed") |#1|) 49)) (-3391 (((-418 |#1|) |#1|) 63)))
+(((-558 |#1|) (-10 -7 (-15 -3643 ((-418 |#1|) |#1|)) (-15 -1978 ((-418 |#1|) |#1|)) (-15 -3391 ((-418 |#1|) |#1|)) (-15 -1509 ((-3 |#1| "failed") |#1|))) (-545)) (T -558))
+((-1509 (*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))) (-3391 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-1978 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-3643 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))))
+(-10 -7 (-15 -3643 ((-418 |#1|) |#1|)) (-15 -1978 ((-418 |#1|) |#1|)) (-15 -3391 ((-418 |#1|) |#1|)) (-15 -1509 ((-3 |#1| "failed") |#1|)))
+((-1539 (($) 9)) (-2407 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-3393 (((-642 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-3183 (($ (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3273 (($ (-642 (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-3778 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2724 (((-642 (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2175 (((-1267)) 12)))
+(((-559) (-10 -8 (-15 -1539 ($)) (-15 -2175 ((-1267))) (-15 -3393 ((-642 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3273 ($ (-642 (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3183 ($ (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2407 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2724 ((-642 (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3778 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -559))
+((-3778 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-2407 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-3183 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-559)))) (-3273 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-559)))) (-2175 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-559)))) (-1539 (*1 *1) (-5 *1 (-559))))
+(-10 -8 (-15 -1539 ($)) (-15 -2175 ((-1267))) (-15 -3393 ((-642 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3273 ($ (-642 (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3183 ($ (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2407 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2724 ((-642 (-2 (|:| -1907 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3778 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1153 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3894 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-3615 (((-1169 (-407 (-1169 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1169 |#2|)) 35)) (-2338 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) |#2| (-1169 |#2|)) 115)) (-3073 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|))) 85) (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|)) 55)) (-2456 (((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1169 |#2|))) 92) (((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1169 |#2|)) 114)) (-1774 (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) (-610 |#2|) |#2| (-407 (-1169 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) |#2| (-1169 |#2|)) 116)) (-1949 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4263 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|))) 135 (|has| |#3| (-654 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4263 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|)) 134 (|has| |#3| (-654 |#2|)))) (-3790 ((|#2| (-1169 (-407 (-1169 |#2|))) (-610 |#2|) |#2|) 53)) (-1308 (((-1169 (-407 (-1169 |#2|))) (-1169 |#2|) (-610 |#2|)) 34)))
+(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -3073 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|))) (-15 -3073 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -2456 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1169 |#2|))) (-15 -2456 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -2338 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) |#2| (-1169 |#2|))) (-15 -2338 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -1774 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) |#2| (-1169 |#2|))) (-15 -1774 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -3615 ((-1169 (-407 (-1169 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1169 |#2|))) (-15 -3790 (|#2| (-1169 (-407 (-1169 |#2|))) (-610 |#2|) |#2|)) (-15 -1308 ((-1169 (-407 (-1169 |#2|))) (-1169 |#2|) (-610 |#2|))) (IF (|has| |#3| (-654 |#2|)) (PROGN (-15 -1949 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4263 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|))) (-15 -1949 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4263 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|))))) |%noBranch|)) (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1197)) (-1097)) (T -560))
+((-1949 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1169 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1197))) (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097)))) (-1949 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1169 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1197))) (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097)))) (-1308 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1197))) (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-1169 (-407 (-1169 *6)))) (-5 *1 (-560 *5 *6 *7)) (-5 *3 (-1169 *6)) (-4 *7 (-1097)))) (-3790 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1169 (-407 (-1169 *2)))) (-5 *4 (-610 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1197))) (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1097)))) (-3615 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-1169 (-407 (-1169 *3)))) (-5 *1 (-560 *6 *3 *7)) (-5 *5 (-1169 *3)) (-4 *7 (-1097)))) (-1774 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173))) (-5 *5 (-407 (-1169 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1097)))) (-1774 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173))) (-5 *5 (-1169 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1097)))) (-2338 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3)) (-5 *6 (-407 (-1169 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1197))) (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1097)))) (-2338 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3)) (-5 *6 (-1169 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1197))) (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1097)))) (-2456 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1169 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2116 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))) (-2456 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1169 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2116 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))) (-3073 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1169 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))) (-3073 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1169 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))))
+(-10 -7 (-15 -3073 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|))) (-15 -3073 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -2456 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1169 |#2|))) (-15 -2456 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -2338 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) |#2| (-1169 |#2|))) (-15 -2338 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -1774 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) |#2| (-1169 |#2|))) (-15 -1774 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)) (-610 |#2|) |#2| (-407 (-1169 |#2|)))) (-15 -3615 ((-1169 (-407 (-1169 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1169 |#2|))) (-15 -3790 (|#2| (-1169 (-407 (-1169 |#2|))) (-610 |#2|) |#2|)) (-15 -1308 ((-1169 (-407 (-1169 |#2|))) (-1169 |#2|) (-610 |#2|))) (IF (|has| |#3| (-654 |#2|)) (PROGN (-15 -1949 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4263 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1169 |#2|))) (-15 -1949 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4263 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1169 |#2|))))) |%noBranch|))
+((-4181 (((-564) (-564) (-769)) 88)) (-2325 (((-564) (-564)) 86)) (-3966 (((-564) (-564)) 84)) (-4083 (((-564) (-564)) 91)) (-1958 (((-564) (-564) (-564)) 68)) (-2690 (((-564) (-564) (-564)) 65)) (-2242 (((-407 (-564)) (-564)) 29)) (-2360 (((-564) (-564)) 35)) (-4072 (((-564) (-564)) 77)) (-1323 (((-564) (-564)) 50)) (-3869 (((-642 (-564)) (-564)) 83)) (-2782 (((-564) (-564) (-564) (-564) (-564)) 62)) (-4009 (((-407 (-564)) (-564)) 59)))
+(((-561) (-10 -7 (-15 -4009 ((-407 (-564)) (-564))) (-15 -2782 ((-564) (-564) (-564) (-564) (-564))) (-15 -3869 ((-642 (-564)) (-564))) (-15 -1323 ((-564) (-564))) (-15 -4072 ((-564) (-564))) (-15 -2360 ((-564) (-564))) (-15 -2242 ((-407 (-564)) (-564))) (-15 -2690 ((-564) (-564) (-564))) (-15 -1958 ((-564) (-564) (-564))) (-15 -4083 ((-564) (-564))) (-15 -3966 ((-564) (-564))) (-15 -2325 ((-564) (-564))) (-15 -4181 ((-564) (-564) (-769))))) (T -561))
+((-4181 (*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-769)) (-5 *1 (-561)))) (-2325 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3966 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-4083 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2690 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2242 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1323 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3869 (*1 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-2782 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-4009 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
+(-10 -7 (-15 -4009 ((-407 (-564)) (-564))) (-15 -2782 ((-564) (-564) (-564) (-564) (-564))) (-15 -3869 ((-642 (-564)) (-564))) (-15 -1323 ((-564) (-564))) (-15 -4072 ((-564) (-564))) (-15 -2360 ((-564) (-564))) (-15 -2242 ((-407 (-564)) (-564))) (-15 -2690 ((-564) (-564) (-564))) (-15 -1958 ((-564) (-564) (-564))) (-15 -4083 ((-564) (-564))) (-15 -3966 ((-564) (-564))) (-15 -2325 ((-564) (-564))) (-15 -4181 ((-564) (-564) (-769))))
+((-2870 (((-2 (|:| |answer| |#4|) (|:| -3722 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
+(((-562 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2870 ((-2 (|:| |answer| |#4|) (|:| -3722 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -562))
+((-2870 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-4 *7 (-1238 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3722 *3))) (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))))
+(-10 -7 (-15 -2870 ((-2 (|:| |answer| |#4|) (|:| -3722 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2870 (((-2 (|:| |answer| (-407 |#2|)) (|:| -3722 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -2870 ((-2 (|:| |answer| (-407 |#2|)) (|:| -3722 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1238 |#1|)) (T -563))
+((-2870 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -3722 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6)))))
+(-10 -7 (-15 -2870 ((-2 (|:| |answer| (-407 |#2|)) (|:| -3722 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 30)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 93)) (-1387 (($ $) 94)) (-2037 (((-112) $) NIL)) (-2968 (($ $ $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1337 (($ $ $ $) 51)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL)) (-2317 (($ $ $) 88)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL)) (-3027 (((-564) $) NIL)) (-2845 (($ $ $) 53)) (-4315 (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 76) (((-687 (-564)) (-687 $)) 72)) (-3104 (((-3 $ "failed") $) 90)) (-3838 (((-3 (-407 (-564)) "failed") $) NIL)) (-2881 (((-112) $) NIL)) (-4034 (((-407 (-564)) $) NIL)) (-2433 (($) 78) (($ $) 79)) (-2859 (($ $ $) 87)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-3398 (($ $ $ $) NIL)) (-3903 (($ $ $) 69)) (-2538 (((-112) $) NIL)) (-1588 (($ $ $) NIL)) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL)) (-3953 (((-112) $) 34)) (-3076 (((-112) $) 82)) (-3157 (((-3 $ "failed") $) NIL)) (-3333 (((-112) $) 43)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2172 (($ $ $ $) 54)) (-2755 (($ $ $) 84)) (-1520 (($ $ $) 83)) (-2819 (($ $) NIL)) (-2480 (($ $) 49)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) 68)) (-2182 (($ $ $) NIL)) (-3366 (($) NIL T CONST)) (-2367 (($ $) 38)) (-4033 (((-1117) $) 42)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 125)) (-2080 (($ $ $) 91) (($ (-642 $)) NIL)) (-4303 (($ $) NIL)) (-3643 (((-418 $) $) 111)) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL)) (-2896 (((-3 $ "failed") $ $) 109)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2519 (((-112) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 86)) (-3175 (($ $ (-769)) NIL) (($ $) NIL)) (-2142 (($ $) 40)) (-3901 (($ $) 36)) (-1314 (((-564) $) 48) (((-536) $) 63) (((-890 (-564)) $) NIL) (((-379) $) 57) (((-225) $) 60) (((-1155) $) 65)) (-2327 (((-860) $) 46) (($ (-564)) 47) (($ $) NIL) (($ (-564)) 47)) (-2756 (((-769)) NIL T CONST)) (-1866 (((-112) $ $) NIL)) (-3310 (($ $ $) NIL)) (-1648 (((-112) $ $) NIL)) (-2547 (($) 35)) (-2103 (((-112) $ $) NIL)) (-3618 (($ $ $ $) 50)) (-1381 (($ $) 77)) (-2312 (($) 6 T CONST)) (-2322 (($) 31 T CONST)) (-1605 (((-1155) $) 26) (((-1155) $ (-112)) 27) (((-1267) (-820) $) 28) (((-1267) (-820) $ (-112)) 29)) (-4044 (($ $ (-769)) NIL) (($ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 33)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 10)) (-2987 (($ $) 16) (($ $ $) 39)) (-2974 (($ $ $) 37)) (** (($ $ (-919)) NIL) (($ $ (-769)) 81)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 80) (($ $ $) 52)))
+(((-564) (-13 (-545) (-612 (-1155)) (-826) (-10 -8 (-15 -2433 ($ $)) (-6 -4397) (-6 -4402) (-6 -4398) (-6 -4392)))) (T -564))
+((-2433 (*1 *1 *1) (-5 *1 (-564))))
+(-13 (-545) (-612 (-1155)) (-826) (-10 -8 (-15 -2433 ($ $)) (-6 -4397) (-6 -4402) (-6 -4398) (-6 -4392)))
+((-3978 (((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767) (-1060)) 119) (((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767)) 121)) (-4107 (((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1173)) 196) (((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1155)) 195) (((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379) (-1060)) 200) (((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379)) 201) (((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379)) 202) (((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379))))) 203) (((-1033) (-316 (-379)) (-1091 (-841 (-379)))) 191) (((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379)) 190) (((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379)) 186) (((-1033) (-767)) 178) (((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379) (-1060)) 185)))
+(((-565) (-10 -7 (-15 -4107 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379) (-1060))) (-15 -4107 ((-1033) (-767))) (-15 -4107 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379))) (-15 -4107 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379))) (-15 -4107 ((-1033) (-316 (-379)) (-1091 (-841 (-379))))) (-15 -4107 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))))) (-15 -4107 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379))) (-15 -4107 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379))) (-15 -4107 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379) (-1060))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767) (-1060))) (-15 -4107 ((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1155))) (-15 -4107 ((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1173))))) (T -565))
+((-4107 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1089 (-841 (-379)))) (-5 *5 (-1173)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-4107 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1089 (-841 (-379)))) (-5 *5 (-1155)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1060)) (-5 *2 (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) (-5 *1 (-565)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033)))) (-5 *1 (-565)))) (-4107 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) (-5 *5 (-379)) (-5 *6 (-1060)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-4107 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-4107 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379))))) (-5 *2 (-1033)) (-5 *1 (-565)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) (-5 *2 (-1033)) (-5 *1 (-565)))) (-4107 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-4107 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1033)) (-5 *1 (-565)))) (-4107 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379)))) (-5 *5 (-379)) (-5 *6 (-1060)) (-5 *2 (-1033)) (-5 *1 (-565)))))
+(-10 -7 (-15 -4107 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379) (-1060))) (-15 -4107 ((-1033) (-767))) (-15 -4107 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379) (-379))) (-15 -4107 ((-1033) (-316 (-379)) (-1091 (-841 (-379))) (-379))) (-15 -4107 ((-1033) (-316 (-379)) (-1091 (-841 (-379))))) (-15 -4107 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))))) (-15 -4107 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379))) (-15 -4107 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379))) (-15 -4107 ((-1033) (-316 (-379)) (-642 (-1091 (-841 (-379)))) (-379) (-379) (-1060))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))) (-767) (-1060))) (-15 -4107 ((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1155))) (-15 -4107 ((-3 (-1033) "failed") (-316 (-379)) (-1089 (-841 (-379))) (-1173))))
+((-4274 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|)) 200)) (-4063 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|)) 102)) (-1516 (((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|) 196)) (-3357 (((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173))) 205)) (-3193 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4263 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1173)) 214 (|has| |#3| (-654 |#2|)))))
+(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -4063 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -1516 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -4274 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|))) (-15 -3357 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)))) (IF (|has| |#3| (-654 |#2|)) (-15 -3193 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4263 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1173))) |%noBranch|)) (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1197)) (-1097)) (T -566))
+((-3193 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1173)) (-4 *4 (-13 (-430 *7) (-27) (-1197))) (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097)))) (-3357 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173))) (-4 *2 (-13 (-430 *5) (-27) (-1197))) (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1097)))) (-4274 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1197))) (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1097)))) (-1516 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1197))) (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2116 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1097)))) (-4063 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1197))) (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1097)))))
+(-10 -7 (-15 -4063 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -1516 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -4274 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-642 |#2|))) (-15 -3357 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1173)))) (IF (|has| |#3| (-654 |#2|)) (-15 -3193 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4263 (-642 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1173))) |%noBranch|))
+((-2522 (((-2 (|:| -1529 |#2|) (|:| |nconst| |#2|)) |#2| (-1173)) 64)) (-2408 (((-3 |#2| "failed") |#2| (-1173) (-841 |#2|) (-841 |#2|)) 179 (-12 (|has| |#2| (-1136)) (|has| |#1| (-612 (-890 (-564)))) (|has| |#1| (-884 (-564))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)) 158 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-890 (-564)))) (|has| |#1| (-884 (-564)))))) (-2465 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)) 160 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-890 (-564)))) (|has| |#1| (-884 (-564)))))))
+(((-567 |#1| |#2|) (-10 -7 (-15 -2522 ((-2 (|:| -1529 |#2|) (|:| |nconst| |#2|)) |#2| (-1173))) (IF (|has| |#1| (-612 (-890 (-564)))) (IF (|has| |#1| (-884 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -2465 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173))) (-15 -2408 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)))) |%noBranch|) (IF (|has| |#2| (-1136)) (-15 -2408 ((-3 |#2| "failed") |#2| (-1173) (-841 |#2|) (-841 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1036 (-564)) (-452) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -567))
+((-2408 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1173)) (-5 *4 (-841 *2)) (-4 *2 (-1136)) (-4 *2 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-612 (-890 (-564)))) (-4 *5 (-884 (-564))) (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) (-5 *1 (-567 *5 *2)))) (-2408 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-612 (-890 (-564)))) (-4 *5 (-884 (-564))) (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-612 (-890 (-564)))) (-4 *5 (-884 (-564))) (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| -1529 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))))
+(-10 -7 (-15 -2522 ((-2 (|:| -1529 |#2|) (|:| |nconst| |#2|)) |#2| (-1173))) (IF (|has| |#1| (-612 (-890 (-564)))) (IF (|has| |#1| (-884 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -2465 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173))) (-15 -2408 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)))) |%noBranch|) (IF (|has| |#2| (-1136)) (-15 -2408 ((-3 |#2| "failed") |#2| (-1173) (-841 |#2|) (-841 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-3048 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-642 (-407 |#2|))) 41)) (-4107 (((-585 (-407 |#2|)) (-407 |#2|)) 28)) (-1611 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-2310 (((-3 (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -4107 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -1611 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2310 ((-3 (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -3048 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-642 (-407 |#2|))))) (-13 (-363) (-147) (-1036 (-564))) (-1238 |#1|)) (T -568))
+((-3048 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-642 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *5 *6)))) (-2310 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| -2116 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) (-1611 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-13 (-363) (-147) (-1036 (-564)))) (-5 *1 (-568 *3 *4)))) (-4107 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4)) (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))))
+(-10 -7 (-15 -4107 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -1611 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2310 ((-3 (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -3048 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-642 (-407 |#2|)))))
+((-3352 (((-3 (-564) "failed") |#1|) 14)) (-3174 (((-112) |#1|) 13)) (-1367 (((-564) |#1|) 9)))
+(((-569 |#1|) (-10 -7 (-15 -1367 ((-564) |#1|)) (-15 -3174 ((-112) |#1|)) (-15 -3352 ((-3 (-564) "failed") |#1|))) (-1036 (-564))) (T -569))
+((-3352 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1036 *2)))) (-3174 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1036 (-564))))) (-1367 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1036 *2)))))
+(-10 -7 (-15 -1367 ((-564) |#1|)) (-15 -3174 ((-112) |#1|)) (-15 -3352 ((-3 (-564) "failed") |#1|)))
+((-3689 (((-3 (-2 (|:| |mainpart| (-407 (-950 |#1|))) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 (-950 |#1|))) (|:| |logand| (-407 (-950 |#1|))))))) "failed") (-407 (-950 |#1|)) (-1173) (-642 (-407 (-950 |#1|)))) 48)) (-3074 (((-585 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-1173)) 28)) (-1687 (((-3 (-407 (-950 |#1|)) "failed") (-407 (-950 |#1|)) (-1173)) 23)) (-2699 (((-3 (-2 (|:| -2116 (-407 (-950 |#1|))) (|:| |coeff| (-407 (-950 |#1|)))) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|))) 35)))
+(((-570 |#1|) (-10 -7 (-15 -3074 ((-585 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -1687 ((-3 (-407 (-950 |#1|)) "failed") (-407 (-950 |#1|)) (-1173))) (-15 -3689 ((-3 (-2 (|:| |mainpart| (-407 (-950 |#1|))) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 (-950 |#1|))) (|:| |logand| (-407 (-950 |#1|))))))) "failed") (-407 (-950 |#1|)) (-1173) (-642 (-407 (-950 |#1|))))) (-15 -2699 ((-3 (-2 (|:| -2116 (-407 (-950 |#1|))) (|:| |coeff| (-407 (-950 |#1|)))) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|))))) (-13 (-556) (-1036 (-564)) (-147))) (T -570))
+((-2699 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)) (-147))) (-5 *2 (-2 (|:| -2116 (-407 (-950 *5))) (|:| |coeff| (-407 (-950 *5))))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-950 *5))))) (-3689 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 (-407 (-950 *6)))) (-5 *3 (-407 (-950 *6))) (-4 *6 (-13 (-556) (-1036 (-564)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6)))) (-1687 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-950 *4))) (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)) (-147))) (-5 *1 (-570 *4)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)) (-147))) (-5 *2 (-585 (-407 (-950 *5)))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-950 *5))))))
+(-10 -7 (-15 -3074 ((-585 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -1687 ((-3 (-407 (-950 |#1|)) "failed") (-407 (-950 |#1|)) (-1173))) (-15 -3689 ((-3 (-2 (|:| |mainpart| (-407 (-950 |#1|))) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 (-950 |#1|))) (|:| |logand| (-407 (-950 |#1|))))))) "failed") (-407 (-950 |#1|)) (-1173) (-642 (-407 (-950 |#1|))))) (-15 -2699 ((-3 (-2 (|:| -2116 (-407 (-950 |#1|))) (|:| |coeff| (-407 (-950 |#1|)))) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)))))
+((-2907 (((-112) $ $) 73)) (-2952 (((-112) $) 47)) (-3410 ((|#1| $) 39)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) 77)) (-3851 (($ $) 137)) (-3704 (($ $) 117)) (-3532 ((|#1| $) 37)) (-1532 (((-3 $ "failed") $ $) NIL)) (-3655 (($ $) NIL)) (-3827 (($ $) 139)) (-3679 (($ $) 113)) (-3875 (($ $) 141)) (-3727 (($ $) 121)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) 92)) (-3027 (((-564) $) 94)) (-3104 (((-3 $ "failed") $) 76)) (-1530 (($ |#1| |#1|) 35)) (-2538 (((-112) $) 43)) (-4265 (($) 103)) (-3953 (((-112) $) 54)) (-1772 (($ $ (-564)) NIL)) (-3333 (((-112) $) 44)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3612 (($ $) 105)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3210 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-407 (-564))) 91)) (-3305 ((|#1| $) 36)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) 79) (($ (-642 $)) NIL)) (-2896 (((-3 $ "failed") $ $) 78)) (-1723 (($ $) 107)) (-3888 (($ $) 145)) (-3739 (($ $) 119)) (-3863 (($ $) 147)) (-3716 (($ $) 123)) (-3839 (($ $) 143)) (-3693 (($ $) 115)) (-1652 (((-112) $ |#1|) 41)) (-2327 (((-860) $) 99) (($ (-564)) 81) (($ $) NIL) (($ (-564)) 81)) (-2756 (((-769)) 101 T CONST)) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) 159)) (-3776 (($ $) 129)) (-2103 (((-112) $ $) NIL)) (-3900 (($ $) 157)) (-3750 (($ $) 125)) (-3951 (($ $) 155)) (-3803 (($ $) 135)) (-2683 (($ $) 153)) (-3816 (($ $) 133)) (-3938 (($ $) 151)) (-3791 (($ $) 131)) (-3913 (($ $) 149)) (-3763 (($ $) 127)) (-2312 (($) 30 T CONST)) (-2322 (($) 10 T CONST)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 48)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 46)) (-2987 (($ $) 52) (($ $ $) 53)) (-2974 (($ $ $) 51)) (** (($ $ (-919)) 69) (($ $ (-769)) NIL) (($ $ $) 109) (($ $ (-407 (-564))) 161)) (* (($ (-919) $) 64) (($ (-769) $) NIL) (($ (-564) $) 63) (($ $ $) 60)))
+(((-571 |#1|) (-554 |#1|) (-13 (-404) (-1197))) (T -571))
NIL
(-554 |#1|)
-((-4192 (((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564))) 27)))
-(((-572) (-10 -7 (-15 -4192 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564)))))) (T -572))
-((-4192 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564))) (-5 *1 (-572)))))
-(-10 -7 (-15 -4192 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564)))))
-((-4067 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170)) 19)) (-2373 (((-641 (-610 |#2|)) (-641 |#2|) (-1170)) 23)) (-1682 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|))) 11)) (-3430 ((|#2| |#2| (-1170)) 59 (|has| |#1| (-556)))) (-2062 ((|#2| |#2| (-1170)) 87 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-3139 (((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170)) 25)) (-1869 (((-610 |#2|) (-641 (-610 |#2|))) 24)) (-4345 (((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) 115 (-12 (|has| |#2| (-284)) (|has| |#2| (-627)) (|has| |#2| (-1034 (-1170))) (|has| |#1| (-612 (-888 (-564)))) (|has| |#1| (-452)) (|has| |#1| (-882 (-564)))))))
-(((-573 |#1| |#2|) (-10 -7 (-15 -4067 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -1869 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -3139 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -1682 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -2373 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -3430 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -2062 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-888 (-564)))) (IF (|has| |#1| (-882 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1034 (-1170))) (-15 -4345 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1094) (-430 |#1|)) (T -573))
-((-4345 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-585 *3) *3 (-1170))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1170))) (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1034 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1170)) (-4 *7 (-612 (-888 (-564)))) (-4 *7 (-452)) (-4 *7 (-882 (-564))) (-4 *7 (-1094)) (-5 *2 (-585 *3)) (-5 *1 (-573 *7 *3)))) (-2062 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-1094)) (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-3430 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-1094)) (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5)) (-4 *5 (-1094)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6)))) (-1682 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-1094)) (-5 *1 (-573 *3 *4)))) (-3139 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6)) (-4 *6 (-430 *5)) (-4 *5 (-1094)) (-5 *1 (-573 *5 *6)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-1094)) (-5 *2 (-610 *5)) (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))) (-4067 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4)) (-4 *4 (-1094)) (-5 *1 (-573 *4 *5)))))
-(-10 -7 (-15 -4067 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -1869 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -3139 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -1682 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -2373 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -3430 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -2062 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-888 (-564)))) (IF (|has| |#1| (-882 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1034 (-1170))) (-15 -4345 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2988 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|)) 201)) (-2818 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|))) 178)) (-3955 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|))) 175)) (-1916 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-3980 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 188)) (-2721 (((-3 (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 204)) (-2349 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 207)) (-2849 (((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 90)) (-1638 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-3449 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|))) 182)) (-2196 (((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 170)) (-2594 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 192)) (-2025 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|)) 212)))
-(((-574 |#1| |#2|) (-10 -7 (-15 -3980 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2594 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2988 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -2349 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -2025 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -2818 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -3449 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -2721 ((-3 (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3955 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -1916 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2196 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2849 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -1638 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -574))
-((-1638 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-574 *5 *3)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-2196 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4337 *4) (|:| |sol?| (-112))) (-564) *4)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5)))) (-1916 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2177 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4)))) (-3955 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7))) (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6 *7)))) (-2721 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2177 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-3449 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4337 *7) (|:| |sol?| (-112))) (-564) *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-2818 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2177 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-2025 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4337 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2177 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2349 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2177 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2177 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2988 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4337 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-3980 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2177 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(-10 -7 (-15 -3980 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2594 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2988 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -2349 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -2025 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -2818 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -3449 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -2721 ((-3 (-2 (|:| -2177 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3955 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -1916 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2196 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4337 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2849 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -1638 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-1388 (((-3 |#2| "failed") |#2| (-1170) (-1170)) 10)))
-(((-575 |#1| |#2|) (-10 -7 (-15 -1388 ((-3 |#2| "failed") |#2| (-1170) (-1170)))) (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-955) (-1133) (-29 |#1|))) (T -575))
-((-1388 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-1194) (-955) (-1133) (-29 *4))))))
-(-10 -7 (-15 -1388 ((-3 |#2| "failed") |#2| (-1170) (-1170))))
-((-2666 (((-687 (-1217)) $ (-1217)) 26)) (-3976 (((-687 (-549)) $ (-549)) 25)) (-1965 (((-767) $ (-128)) 27)) (-3126 (((-687 (-129)) $ (-129)) 24)) (-4137 (((-687 (-1217)) $) 12)) (-3046 (((-687 (-1215)) $) 8)) (-2914 (((-687 (-1214)) $) 10)) (-1447 (((-687 (-549)) $) 13)) (-1637 (((-687 (-547)) $) 9)) (-1879 (((-687 (-546)) $) 11)) (-3235 (((-767) $ (-128)) 7)) (-1880 (((-687 (-129)) $) 14)) (-3179 (($ $) 6)))
+((-4094 (((-3 (-642 (-1169 (-564))) "failed") (-642 (-1169 (-564))) (-1169 (-564))) 27)))
+(((-572) (-10 -7 (-15 -4094 ((-3 (-642 (-1169 (-564))) "failed") (-642 (-1169 (-564))) (-1169 (-564)))))) (T -572))
+((-4094 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 (-564)))) (-5 *3 (-1169 (-564))) (-5 *1 (-572)))))
+(-10 -7 (-15 -4094 ((-3 (-642 (-1169 (-564))) "failed") (-642 (-1169 (-564))) (-1169 (-564)))))
+((-3721 (((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-1173)) 19)) (-2754 (((-642 (-610 |#2|)) (-642 |#2|) (-1173)) 23)) (-1717 (((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-642 (-610 |#2|))) 11)) (-1599 ((|#2| |#2| (-1173)) 59 (|has| |#1| (-556)))) (-3194 ((|#2| |#2| (-1173)) 87 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-4085 (((-610 |#2|) (-610 |#2|) (-642 (-610 |#2|)) (-1173)) 25)) (-1865 (((-610 |#2|) (-642 (-610 |#2|))) 24)) (-2786 (((-585 |#2|) |#2| (-1173) (-1 (-585 |#2|) |#2| (-1173)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173))) 115 (-12 (|has| |#2| (-284)) (|has| |#2| (-627)) (|has| |#2| (-1036 (-1173))) (|has| |#1| (-612 (-890 (-564)))) (|has| |#1| (-452)) (|has| |#1| (-884 (-564)))))))
+(((-573 |#1| |#2|) (-10 -7 (-15 -3721 ((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-1173))) (-15 -1865 ((-610 |#2|) (-642 (-610 |#2|)))) (-15 -4085 ((-610 |#2|) (-610 |#2|) (-642 (-610 |#2|)) (-1173))) (-15 -1717 ((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-642 (-610 |#2|)))) (-15 -2754 ((-642 (-610 |#2|)) (-642 |#2|) (-1173))) (IF (|has| |#1| (-556)) (-15 -1599 (|#2| |#2| (-1173))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -3194 (|#2| |#2| (-1173))) (IF (|has| |#1| (-612 (-890 (-564)))) (IF (|has| |#1| (-884 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1036 (-1173))) (-15 -2786 ((-585 |#2|) |#2| (-1173) (-1 (-585 |#2|) |#2| (-1173)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1097) (-430 |#1|)) (T -573))
+((-2786 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-585 *3) *3 (-1173))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1173))) (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1036 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1173)) (-4 *7 (-612 (-890 (-564)))) (-4 *7 (-452)) (-4 *7 (-884 (-564))) (-4 *7 (-1097)) (-5 *2 (-585 *3)) (-5 *1 (-573 *7 *3)))) (-3194 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-452)) (-4 *4 (-1097)) (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-1599 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-4 *4 (-1097)) (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-1173)) (-4 *6 (-430 *5)) (-4 *5 (-1097)) (-5 *2 (-642 (-610 *6))) (-5 *1 (-573 *5 *6)))) (-1717 (*1 *2 *2 *2) (-12 (-5 *2 (-642 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-1097)) (-5 *1 (-573 *3 *4)))) (-4085 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-642 (-610 *6))) (-5 *4 (-1173)) (-5 *2 (-610 *6)) (-4 *6 (-430 *5)) (-4 *5 (-1097)) (-5 *1 (-573 *5 *6)))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-642 (-610 *5))) (-4 *4 (-1097)) (-5 *2 (-610 *5)) (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))) (-3721 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-610 *5))) (-5 *3 (-1173)) (-4 *5 (-430 *4)) (-4 *4 (-1097)) (-5 *1 (-573 *4 *5)))))
+(-10 -7 (-15 -3721 ((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-1173))) (-15 -1865 ((-610 |#2|) (-642 (-610 |#2|)))) (-15 -4085 ((-610 |#2|) (-610 |#2|) (-642 (-610 |#2|)) (-1173))) (-15 -1717 ((-642 (-610 |#2|)) (-642 (-610 |#2|)) (-642 (-610 |#2|)))) (-15 -2754 ((-642 (-610 |#2|)) (-642 |#2|) (-1173))) (IF (|has| |#1| (-556)) (-15 -1599 (|#2| |#2| (-1173))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -3194 (|#2| |#2| (-1173))) (IF (|has| |#1| (-612 (-890 (-564)))) (IF (|has| |#1| (-884 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1036 (-1173))) (-15 -2786 ((-585 |#2|) |#2| (-1173) (-1 (-585 |#2|) |#2| (-1173)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1173)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2924 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-642 |#1|) "failed") (-564) |#1| |#1|)) 201)) (-3479 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-642 (-407 |#2|))) 178)) (-3770 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-642 (-407 |#2|))) 175)) (-4312 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-1693 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 188)) (-3203 (((-3 (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 204)) (-3401 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 207)) (-1881 (((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 90)) (-2823 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-1901 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-642 (-407 |#2|))) 182)) (-2713 (((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 170)) (-4323 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 192)) (-1782 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|)) 212)))
+(((-574 |#1| |#2|) (-10 -7 (-15 -1693 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4323 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2924 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-642 |#1|) "failed") (-564) |#1| |#1|))) (-15 -3401 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -1782 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -3479 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-642 (-407 |#2|)))) (-15 -1901 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-642 (-407 |#2|)))) (-15 -3203 ((-3 (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3770 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-642 (-407 |#2|)))) (-15 -4312 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2713 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -1881 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2823 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1238 |#1|)) (T -574))
+((-2823 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-574 *5 *3)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-2713 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4336 *4) (|:| |sol?| (-112))) (-564) *4)) (-4 *4 (-363)) (-4 *5 (-1238 *4)) (-5 *1 (-574 *4 *5)))) (-4312 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2116 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1238 *4)))) (-3770 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-642 (-407 *7))) (-4 *7 (-1238 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6 *7)))) (-3203 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2116 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-1901 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4336 *7) (|:| |sol?| (-112))) (-564) *7)) (-5 *6 (-642 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1238 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-3479 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2116 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-642 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1238 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-1782 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4336 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2116 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-3401 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2116 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2116 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2924 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-642 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-4323 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4336 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-1693 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2116 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+(-10 -7 (-15 -1693 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4323 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2924 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-642 |#1|) "failed") (-564) |#1| |#1|))) (-15 -3401 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -1782 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -3479 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-642 (-407 |#2|)))) (-15 -1901 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-642 (-407 |#2|)))) (-15 -3203 ((-3 (-2 (|:| -2116 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3770 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-642 (-407 |#2|)))) (-15 -4312 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2713 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4336 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -1881 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2823 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-1768 (((-3 |#2| "failed") |#2| (-1173) (-1173)) 10)))
+(((-575 |#1| |#2|) (-10 -7 (-15 -1768 ((-3 |#2| "failed") |#2| (-1173) (-1173)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-957) (-1136) (-29 |#1|))) (T -575))
+((-1768 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-1197) (-957) (-1136) (-29 *4))))))
+(-10 -7 (-15 -1768 ((-3 |#2| "failed") |#2| (-1173) (-1173))))
+((-3866 (((-689 (-1220)) $ (-1220)) 26)) (-3490 (((-689 (-549)) $ (-549)) 25)) (-3343 (((-769) $ (-128)) 27)) (-3760 (((-689 (-129)) $ (-129)) 24)) (-3375 (((-689 (-1220)) $) 12)) (-3320 (((-689 (-1218)) $) 8)) (-3364 (((-689 (-1217)) $) 10)) (-3017 (((-689 (-549)) $) 13)) (-4113 (((-689 (-547)) $) 9)) (-3653 (((-689 (-546)) $) 11)) (-1711 (((-769) $ (-128)) 7)) (-2347 (((-689 (-129)) $) 14)) (-2528 (($ $) 6)))
(((-576) (-140)) (T -576))
NIL
-(-13 (-527) (-856))
-(((-173) . T) ((-527) . T) ((-856) . T))
-((-2666 (((-687 (-1217)) $ (-1217)) NIL)) (-3976 (((-687 (-549)) $ (-549)) NIL)) (-1965 (((-767) $ (-128)) NIL)) (-3126 (((-687 (-129)) $ (-129)) NIL)) (-4137 (((-687 (-1217)) $) NIL)) (-3046 (((-687 (-1215)) $) NIL)) (-2914 (((-687 (-1214)) $) NIL)) (-1447 (((-687 (-549)) $) NIL)) (-1637 (((-687 (-547)) $) NIL)) (-1879 (((-687 (-546)) $) NIL)) (-3235 (((-767) $ (-128)) NIL)) (-1880 (((-687 (-129)) $) NIL)) (-3489 (((-112) $) NIL)) (-4203 (($ (-388)) 14) (($ (-1152)) 16)) (-2423 (((-858) $) NIL)) (-3179 (($ $) NIL)))
-(((-577) (-13 (-576) (-611 (-858)) (-10 -8 (-15 -4203 ($ (-388))) (-15 -4203 ($ (-1152))) (-15 -3489 ((-112) $))))) (T -577))
-((-4203 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))) (-4203 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577)))))
-(-13 (-576) (-611 (-858)) (-10 -8 (-15 -4203 ($ (-388))) (-15 -4203 ($ (-1152))) (-15 -3489 ((-112) $))))
-((-3009 (((-112) $ $) NIL)) (-2632 (($) 7 T CONST)) (-2766 (((-1152) $) NIL)) (-1673 (($) 6 T CONST)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 14)) (-3844 (($) 8 T CONST)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 10)))
-(((-578) (-13 (-1094) (-10 -8 (-15 -1673 ($) -2959) (-15 -2632 ($) -2959) (-15 -3844 ($) -2959)))) (T -578))
-((-1673 (*1 *1) (-5 *1 (-578))) (-2632 (*1 *1) (-5 *1 (-578))) (-3844 (*1 *1) (-5 *1 (-578))))
-(-13 (-1094) (-10 -8 (-15 -1673 ($) -2959) (-15 -2632 ($) -2959) (-15 -3844 ($) -2959)))
-((-3009 (((-112) $ $) NIL)) (-2948 (((-687 $) (-491)) 21)) (-2766 (((-1152) $) NIL)) (-1373 (($ (-1152)) 14)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 34)) (-2517 (((-213 4 (-129)) $) 24)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 26)))
-(((-579) (-13 (-1094) (-10 -8 (-15 -1373 ($ (-1152))) (-15 -2517 ((-213 4 (-129)) $)) (-15 -2948 ((-687 $) (-491)))))) (T -579))
-((-1373 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579)))))
-(-13 (-1094) (-10 -8 (-15 -1373 ($ (-1152))) (-15 -2517 ((-213 4 (-129)) $)) (-15 -2948 ((-687 $) (-491)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3700 (($ $ (-564)) 77)) (-3162 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-3537 (($ (-1166 (-564)) (-564)) 83)) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) 68)) (-4035 (($ $) 43)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-3744 (((-767) $) 16)) (-4112 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3056 (((-564)) 37)) (-2028 (((-564) $) 41)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4016 (($ $ (-564)) 24)) (-2998 (((-3 $ "failed") $ $) 73)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) 17)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 74)) (-1982 (((-1150 (-564)) $) 19)) (-2732 (($ $) 26)) (-2423 (((-858) $) 104) (($ (-564)) 63) (($ $) NIL)) (-3719 (((-767)) 15 T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3646 (((-564) $ (-564)) 46)) (-2403 (($) 44 T CONST)) (-2417 (($) 21 T CONST)) (-2974 (((-112) $ $) 54)) (-3082 (($ $) 62) (($ $ $) 48)) (-3070 (($ $ $) 61)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 64) (($ $ $) 65)))
-(((-580 |#1| |#2|) (-865 |#1|) (-564) (-112)) (T -580))
-NIL
-(-865 |#1|)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 30)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-4373 (((-1182 (-917) (-767)) (-564)) 59)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 $ "failed") $) 98)) (-3120 (($ $) 97)) (-3474 (($ (-1259 $)) 96)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) 44)) (-2534 (($) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) 61)) (-1436 (((-112) $) NIL)) (-3456 (($ $) NIL) (($ $ (-767)) NIL)) (-1339 (((-112) $) NIL)) (-3744 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-4112 (((-112) $) NIL)) (-2908 (($) 49 (|has| $ (-368)))) (-3164 (((-112) $) NIL (|has| $ (-368)))) (-2499 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-1846 (((-3 $ "failed") $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 $) $ (-917)) NIL (|has| $ (-368))) (((-1166 $) $) 107)) (-3256 (((-917) $) 67)) (-2820 (((-1166 $) $) NIL (|has| $ (-368)))) (-4372 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-3606 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL T CONST)) (-2083 (($ (-917)) 60)) (-2695 (((-112) $) 90)) (-4052 (((-1114) $) NIL)) (-2249 (($) 28 (|has| $ (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) 54)) (-3688 (((-418 $) $) NIL)) (-1967 (((-917)) 89) (((-829 (-917))) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-4327 (((-134)) NIL)) (-3254 (($ $ (-767)) NIL) (($ $) NIL)) (-1568 (((-917) $) 88) (((-829 (-917)) $) NIL)) (-3721 (((-1166 $)) 105)) (-3826 (($) 66)) (-1930 (($) 50 (|has| $ (-368)))) (-4225 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) 94)) (-1311 (((-564) $) 40)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) 42) (($ $) NIL) (($ (-407 (-564))) NIL)) (-2420 (((-3 $ "failed") $) NIL) (($ $) 108)) (-3719 (((-767)) 51 T CONST)) (-1860 (((-112) $ $) 110)) (-2047 (((-1259 $) (-917)) 100) (((-1259 $)) 99)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) 31 T CONST)) (-2417 (($) 27 T CONST)) (-3037 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-4063 (($ $ (-767)) NIL) (($ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 34)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-581 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-917)) (T -581))
+(-13 (-527) (-858))
+(((-173) . T) ((-527) . T) ((-858) . T))
+((-3866 (((-689 (-1220)) $ (-1220)) NIL)) (-3490 (((-689 (-549)) $ (-549)) NIL)) (-3343 (((-769) $ (-128)) NIL)) (-3760 (((-689 (-129)) $ (-129)) NIL)) (-3375 (((-689 (-1220)) $) NIL)) (-3320 (((-689 (-1218)) $) NIL)) (-3364 (((-689 (-1217)) $) NIL)) (-3017 (((-689 (-549)) $) NIL)) (-4113 (((-689 (-547)) $) NIL)) (-3653 (((-689 (-546)) $) NIL)) (-1711 (((-769) $ (-128)) NIL)) (-2347 (((-689 (-129)) $) NIL)) (-2586 (((-112) $) NIL)) (-1876 (($ (-388)) 14) (($ (-1155)) 16)) (-2327 (((-860) $) NIL)) (-2528 (($ $) NIL)))
+(((-577) (-13 (-576) (-611 (-860)) (-10 -8 (-15 -1876 ($ (-388))) (-15 -1876 ($ (-1155))) (-15 -2586 ((-112) $))))) (T -577))
+((-1876 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))) (-1876 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-577)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577)))))
+(-13 (-576) (-611 (-860)) (-10 -8 (-15 -1876 ($ (-388))) (-15 -1876 ($ (-1155))) (-15 -2586 ((-112) $))))
+((-2907 (((-112) $ $) NIL)) (-2530 (($) 7 T CONST)) (-3315 (((-1155) $) NIL)) (-1707 (($) 6 T CONST)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 14)) (-4056 (($) 8 T CONST)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 10)))
+(((-578) (-13 (-1097) (-10 -8 (-15 -1707 ($) -2858) (-15 -2530 ($) -2858) (-15 -4056 ($) -2858)))) (T -578))
+((-1707 (*1 *1) (-5 *1 (-578))) (-2530 (*1 *1) (-5 *1 (-578))) (-4056 (*1 *1) (-5 *1 (-578))))
+(-13 (-1097) (-10 -8 (-15 -1707 ($) -2858) (-15 -2530 ($) -2858) (-15 -4056 ($) -2858)))
+((-2907 (((-112) $ $) NIL)) (-2847 (((-689 $) (-491)) 21)) (-3315 (((-1155) $) NIL)) (-2207 (($ (-1155)) 14)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 34)) (-3135 (((-213 4 (-129)) $) 24)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 26)))
+(((-579) (-13 (-1097) (-10 -8 (-15 -2207 ($ (-1155))) (-15 -3135 ((-213 4 (-129)) $)) (-15 -2847 ((-689 $) (-491)))))) (T -579))
+((-2207 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-579)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-689 (-579))) (-5 *1 (-579)))))
+(-13 (-1097) (-10 -8 (-15 -2207 ($ (-1155))) (-15 -3135 ((-213 4 (-129)) $)) (-15 -2847 ((-689 $) (-491)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-3655 (($ $ (-564)) 77)) (-4010 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-3501 (($ (-1169 (-564)) (-564)) 83)) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) 68)) (-2590 (($ $) 43)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1427 (((-769) $) 16)) (-3953 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1472 (((-564)) 37)) (-2016 (((-564) $) 41)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3804 (($ $ (-564)) 24)) (-2896 (((-3 $ "failed") $ $) 73)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) 17)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 74)) (-3918 (((-1153 (-564)) $) 19)) (-4318 (($ $) 26)) (-2327 (((-860) $) 104) (($ (-564)) 63) (($ $) NIL)) (-2756 (((-769)) 15 T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-3601 (((-564) $ (-564)) 46)) (-2312 (($) 44 T CONST)) (-2322 (($) 21 T CONST)) (-2872 (((-112) $ $) 54)) (-2987 (($ $) 62) (($ $ $) 48)) (-2974 (($ $ $) 61)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 64) (($ $ $) 65)))
+(((-580 |#1| |#2|) (-867 |#1|) (-564) (-112)) (T -580))
+NIL
+(-867 |#1|)
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 30)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 (($ $ (-919)) NIL (|has| $ (-368))) (($ $) NIL)) (-1964 (((-1185 (-919) (-769)) (-564)) 59)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 $ "failed") $) 98)) (-3027 (($ $) 97)) (-4221 (($ (-1262 $)) 96)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) 44)) (-2433 (($) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) 61)) (-3424 (((-112) $) NIL)) (-3607 (($ $) NIL) (($ $ (-769)) NIL)) (-1469 (((-112) $) NIL)) (-1427 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3953 (((-112) $) NIL)) (-3289 (($) 49 (|has| $ (-368)))) (-3563 (((-112) $) NIL (|has| $ (-368)))) (-2218 (($ $ (-919)) NIL (|has| $ (-368))) (($ $) NIL)) (-3157 (((-3 $ "failed") $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 $) $ (-919)) NIL (|has| $ (-368))) (((-1169 $) $) 107)) (-1945 (((-919) $) 67)) (-4157 (((-1169 $) $) NIL (|has| $ (-368)))) (-2891 (((-3 (-1169 $) "failed") $ $) NIL (|has| $ (-368))) (((-1169 $) $) NIL (|has| $ (-368)))) (-2393 (($ $ (-1169 $)) NIL (|has| $ (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL T CONST)) (-2047 (($ (-919)) 60)) (-2843 (((-112) $) 90)) (-4033 (((-1117) $) NIL)) (-2185 (($) 28 (|has| $ (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) 54)) (-3643 (((-418 $) $) NIL)) (-1524 (((-919)) 89) (((-831 (-919))) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-3 (-769) "failed") $ $) NIL) (((-769) $) NIL)) (-3474 (((-134)) NIL)) (-3175 (($ $ (-769)) NIL) (($ $) NIL)) (-2775 (((-919) $) 88) (((-831 (-919)) $) NIL)) (-3280 (((-1169 $)) 105)) (-2668 (($) 66)) (-1627 (($) 50 (|has| $ (-368)))) (-2067 (((-687 $) (-1262 $)) NIL) (((-1262 $) $) 94)) (-1314 (((-564) $) 40)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) 42) (($ $) NIL) (($ (-407 (-564))) NIL)) (-2439 (((-3 $ "failed") $) NIL) (($ $) 108)) (-2756 (((-769)) 51 T CONST)) (-1648 (((-112) $ $) 110)) (-4263 (((-1262 $) (-919)) 100) (((-1262 $)) 99)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) 31 T CONST)) (-2322 (($) 27 T CONST)) (-3623 (($ $ (-769)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-4044 (($ $ (-769)) NIL) (($ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 34)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-581 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-919)) (T -581))
NIL
(-13 (-349) (-329 $) (-612 (-564)))
-((-2428 (((-1264) (-1152)) 10)))
-(((-582) (-10 -7 (-15 -2428 ((-1264) (-1152))))) (T -582))
-((-2428 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582)))))
-(-10 -7 (-15 -2428 ((-1264) (-1152))))
-((-1335 (((-585 |#2|) (-585 |#2|)) 42)) (-1641 (((-641 |#2|) (-585 |#2|)) 44)) (-4296 ((|#2| (-585 |#2|)) 50)))
-(((-583 |#1| |#2|) (-10 -7 (-15 -1335 ((-585 |#2|) (-585 |#2|))) (-15 -1641 ((-641 |#2|) (-585 |#2|))) (-15 -4296 (|#2| (-585 |#2|)))) (-13 (-452) (-1034 (-564)) (-637 (-564))) (-13 (-29 |#1|) (-1194))) (T -583))
-((-4296 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194))) (-5 *1 (-583 *4 *2)) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194))) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5)))) (-1335 (*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194))) (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-583 *3 *4)))))
-(-10 -7 (-15 -1335 ((-585 |#2|) (-585 |#2|))) (-15 -1641 ((-641 |#2|) (-585 |#2|))) (-15 -4296 (|#2| (-585 |#2|))))
-((-4357 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 30)))
-(((-584 |#1| |#2|) (-10 -7 (-15 -4357 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -4357 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4357 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4357 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -584))
-((-4357 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-584 *5 *6)))) (-4357 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-584 *5 *2)))) (-4357 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2177 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2177 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6)))))
-(-10 -7 (-15 -4357 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -4357 ((-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2177 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4357 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4357 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) 76)) (-3120 ((|#1| $) NIL)) (-2177 ((|#1| $) 30)) (-3368 (((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3433 (($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2583 (((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $) 31)) (-2766 (((-1152) $) NIL)) (-1548 (($ |#1| |#1|) 38) (($ |#1| (-1170)) 49 (|has| |#1| (-1034 (-1170))))) (-4052 (((-1114) $) NIL)) (-2451 (((-112) $) 35)) (-3254 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1170)) 89 (|has| |#1| (-896 (-1170))))) (-2423 (((-858) $) 112) (($ |#1|) 29)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 18 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) 17) (($ $ $) NIL)) (-3070 (($ $ $) 85)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 16) (($ (-407 (-564)) $) 41) (($ $ (-407 (-564))) NIL)))
-(((-585 |#1|) (-13 (-713 (-407 (-564))) (-1034 |#1|) (-10 -8 (-15 -3433 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2177 (|#1| $)) (-15 -2583 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -3368 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2451 ((-112) $)) (-15 -1548 ($ |#1| |#1|)) (-15 -3254 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1170))) (-15 -3254 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1034 (-1170))) (-15 -1548 ($ |#1| (-1170))) |%noBranch|))) (-363)) (T -585))
-((-3433 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *2)) (|:| |logand| (-1166 *2))))) (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-585 *2)))) (-2177 (*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3)) (|:| |logand| (-1166 *3))))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-2451 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-1548 (*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3254 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-585 *2)) (-5 *3 (-1170)))) (-1548 (*1 *1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1034 *3)) (-4 *2 (-363)))))
-(-13 (-713 (-407 (-564))) (-1034 |#1|) (-10 -8 (-15 -3433 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2177 (|#1| $)) (-15 -2583 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -3368 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2451 ((-112) $)) (-15 -1548 ($ |#1| |#1|)) (-15 -3254 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1170))) (-15 -3254 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1034 (-1170))) (-15 -1548 ($ |#1| (-1170))) |%noBranch|)))
-((-2850 (((-112) |#1|) 16)) (-1360 (((-3 |#1| "failed") |#1|) 14)) (-1591 (((-2 (|:| -2648 |#1|) (|:| -1838 (-767))) |#1|) 39) (((-3 |#1| "failed") |#1| (-767)) 18)) (-1727 (((-112) |#1| (-767)) 19)) (-3183 ((|#1| |#1|) 43)) (-3288 ((|#1| |#1| (-767)) 46)))
-(((-586 |#1|) (-10 -7 (-15 -1727 ((-112) |#1| (-767))) (-15 -1591 ((-3 |#1| "failed") |#1| (-767))) (-15 -1591 ((-2 (|:| -2648 |#1|) (|:| -1838 (-767))) |#1|)) (-15 -3288 (|#1| |#1| (-767))) (-15 -2850 ((-112) |#1|)) (-15 -1360 ((-3 |#1| "failed") |#1|)) (-15 -3183 (|#1| |#1|))) (-545)) (T -586))
-((-3183 (*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-1360 (*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2850 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-3288 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-1591 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2648 *3) (|:| -1838 (-767)))) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-1591 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
-(-10 -7 (-15 -1727 ((-112) |#1| (-767))) (-15 -1591 ((-3 |#1| "failed") |#1| (-767))) (-15 -1591 ((-2 (|:| -2648 |#1|) (|:| -1838 (-767))) |#1|)) (-15 -3288 (|#1| |#1| (-767))) (-15 -2850 ((-112) |#1|)) (-15 -1360 ((-3 |#1| "failed") |#1|)) (-15 -3183 (|#1| |#1|)))
-((-1798 (((-1166 |#1|) (-917)) 44)))
-(((-587 |#1|) (-10 -7 (-15 -1798 ((-1166 |#1|) (-917)))) (-349)) (T -587))
-((-1798 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4)) (-4 *4 (-349)))))
-(-10 -7 (-15 -1798 ((-1166 |#1|) (-917))))
-((-1335 (((-585 (-407 (-948 |#1|))) (-585 (-407 (-948 |#1|)))) 27)) (-2070 (((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-948 |#1|)) (-1170)) 34 (|has| |#1| (-147)))) (-1641 (((-641 (-316 |#1|)) (-585 (-407 (-948 |#1|)))) 19)) (-2482 (((-316 |#1|) (-407 (-948 |#1|)) (-1170)) 32 (|has| |#1| (-147)))) (-4296 (((-316 |#1|) (-585 (-407 (-948 |#1|)))) 21)))
-(((-588 |#1|) (-10 -7 (-15 -1335 ((-585 (-407 (-948 |#1|))) (-585 (-407 (-948 |#1|))))) (-15 -1641 ((-641 (-316 |#1|)) (-585 (-407 (-948 |#1|))))) (-15 -4296 ((-316 |#1|) (-585 (-407 (-948 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2070 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -2482 ((-316 |#1|) (-407 (-948 |#1|)) (-1170)))) |%noBranch|)) (-13 (-452) (-1034 (-564)) (-637 (-564)))) (T -588))
-((-2482 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-316 *5)) (-5 *1 (-588 *5)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (-316 *5) (-641 (-316 *5)))) (-5 *1 (-588 *5)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-948 *4)))) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-588 *4)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-948 *4)))) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4)))) (-1335 (*1 *2 *2) (-12 (-5 *2 (-585 (-407 (-948 *3)))) (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-588 *3)))))
-(-10 -7 (-15 -1335 ((-585 (-407 (-948 |#1|))) (-585 (-407 (-948 |#1|))))) (-15 -1641 ((-641 (-316 |#1|)) (-585 (-407 (-948 |#1|))))) (-15 -4296 ((-316 |#1|) (-585 (-407 (-948 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2070 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -2482 ((-316 |#1|) (-407 (-948 |#1|)) (-1170)))) |%noBranch|))
-((-2097 (((-641 (-685 (-564))) (-641 (-564)) (-641 (-901 (-564)))) 75) (((-641 (-685 (-564))) (-641 (-564))) 76) (((-685 (-564)) (-641 (-564)) (-901 (-564))) 69)) (-1516 (((-767) (-641 (-564))) 66)))
-(((-589) (-10 -7 (-15 -1516 ((-767) (-641 (-564)))) (-15 -2097 ((-685 (-564)) (-641 (-564)) (-901 (-564)))) (-15 -2097 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2097 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-901 (-564))))))) (T -589))
-((-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-901 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-901 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-589)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-767)) (-5 *1 (-589)))))
-(-10 -7 (-15 -1516 ((-767) (-641 (-564)))) (-15 -2097 ((-685 (-564)) (-641 (-564)) (-901 (-564)))) (-15 -2097 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2097 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-901 (-564))))))
-((-1990 (((-641 |#5|) |#5| (-112)) 100)) (-1716 (((-112) |#5| (-641 |#5|)) 34)))
-(((-590 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1990 ((-641 |#5|) |#5| (-112))) (-15 -1716 ((-112) |#5| (-641 |#5|)))) (-13 (-307) (-147)) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -590))
-((-1716 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-590 *5 *6 *7 *8 *3)))) (-1990 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-641 *3)) (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1990 ((-641 |#5|) |#5| (-112))) (-15 -1716 ((-112) |#5| (-641 |#5|))))
-((-3009 (((-112) $ $) NIL)) (-1827 (((-1129) $) 11)) (-1813 (((-1129) $) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-591) (-13 (-1077) (-10 -8 (-15 -1813 ((-1129) $)) (-15 -1827 ((-1129) $))))) (T -591))
-((-1813 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))))
-(-13 (-1077) (-10 -8 (-15 -1813 ((-1129) $)) (-15 -1827 ((-1129) $))))
-((-3009 (((-112) $ $) NIL (|has| (-144) (-1094)))) (-2587 (($ $) 38)) (-3890 (($ $) NIL)) (-2505 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-2008 (((-112) $ $) 66)) (-1984 (((-112) $ $ (-564)) 60)) (-1335 (((-641 $) $ (-144)) 75) (((-641 $) $ (-141)) 76)) (-3833 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-3963 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-846))))) (-2484 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 (((-144) $ (-564) (-144)) 57 (|has| $ (-6 -4408))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-1537 (($ $ (-144)) 80) (($ $ (-141)) 81)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-3741 (($ $ (-1226 (-564)) $) 56)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-2591 (($ (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4407)))) (-2726 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4408)))) (-2652 (((-144) $ (-564)) NIL)) (-2834 (((-112) $ $) 94)) (-3998 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 63 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 61) (((-564) (-141) $ (-564)) 65)) (-3035 (((-641 (-144)) $) NIL (|has| $ (-6 -4407)))) (-4238 (($ (-767) (-144)) 9)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) 32 (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| (-144) (-846)))) (-3669 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-1554 (((-641 (-144)) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-2898 (((-564) $) 47 (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| (-144) (-846)))) (-4017 (((-112) $ $ (-144)) 95)) (-2113 (((-767) $ $ (-144)) 92)) (-2714 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2590 (($ $) 41)) (-3364 (($ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-1546 (($ $ (-144)) 77) (($ $ (-141)) 78)) (-2766 (((-1152) $) 43 (|has| (-144) (-1094)))) (-4248 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) 27)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-564) $) 91) (((-1114) $) NIL (|has| (-144) (-1094)))) (-2658 (((-144) $) NIL (|has| (-564) (-846)))) (-2139 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1592 (($ $ (-144)) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-2075 (((-641 (-144)) $) NIL)) (-1976 (((-112) $) 15)) (-2994 (($) 10)) (-4366 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) 67) (($ $ (-1226 (-564))) 25) (($ $ $) NIL)) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4062 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-3806 (($ $ $ (-564)) 83 (|has| $ (-6 -4408)))) (-3926 (($ $) 20)) (-1311 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-2435 (($ (-641 (-144))) NIL)) (-3696 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-641 $)) 84)) (-2423 (($ (-144)) NIL) (((-858) $) 31 (|has| (-144) (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| (-144) (-1094)))) (-1368 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| (-144) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2974 (((-112) $ $) 17 (|has| (-144) (-1094)))) (-3023 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2999 (((-112) $ $) 18 (|has| (-144) (-846)))) (-2181 (((-767) $) 16 (|has| $ (-6 -4407)))))
-(((-592 |#1|) (-13 (-1138) (-10 -8 (-15 -4052 ((-564) $)))) (-564)) (T -592))
-((-4052 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2))))
-(-13 (-1138) (-10 -8 (-15 -4052 ((-564) $))))
-((-4305 (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|)) 32)))
-(((-593 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4305 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -4305 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) (-789) (-846) (-556) (-945 |#3| |#1| |#2|)) (T -593))
-((-4305 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) (-4305 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1088 *3)) (-4 *3 (-945 *7 *6 *4)) (-4 *6 (-789)) (-4 *4 (-846)) (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *6 *4 *7 *3)))))
-(-10 -7 (-15 -4305 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -4305 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 71)) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1709 (($ $ (-564)) 57) (($ $ (-564) (-564)) 58)) (-4289 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 64)) (-2352 (($ $) 108)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3536 (((-858) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1022 (-839 (-564))) (-1170) |#1| (-407 (-564))) 241)) (-2808 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 36)) (-4080 (($) NIL T CONST)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-4243 (((-112) $) NIL)) (-3744 (((-564) $) 62) (((-564) $ (-564)) 63)) (-4112 (((-112) $) NIL)) (-1747 (($ $ (-917)) 83)) (-3262 (($ (-1 |#1| (-564)) $) 80)) (-4003 (((-112) $) 26)) (-3810 (($ |#1| (-564)) 22) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-4357 (($ (-1 |#1| |#1|) $) 75)) (-2621 (($ (-1022 (-839 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 13)) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-2070 (($ $) 161 (|has| |#1| (-38 (-407 (-564)))))) (-4263 (((-3 $ "failed") $ $ (-112)) 107)) (-2957 (($ $ $) 115)) (-4052 (((-1114) $) NIL)) (-3757 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 15)) (-1366 (((-1022 (-839 (-564))) $) 14)) (-4016 (($ $ (-564)) 47)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3291 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-4366 ((|#1| $ (-564)) 61) (($ $ $) NIL (|has| (-564) (-1106)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1568 (((-564) $) NIL)) (-2732 (($ $) 48)) (-2423 (((-858) $) NIL) (($ (-564)) 29) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 28 (|has| |#1| (-172)))) (-2007 ((|#1| $ (-564)) 60)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) 39 T CONST)) (-3639 ((|#1| $) NIL)) (-1374 (($ $) 199 (|has| |#1| (-38 (-407 (-564)))))) (-3519 (($ $) 169 (|has| |#1| (-38 (-407 (-564)))))) (-3243 (($ $) 203 (|has| |#1| (-38 (-407 (-564)))))) (-3334 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3820 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-4331 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-4133 (($ $ (-407 (-564))) 177 (|has| |#1| (-38 (-407 (-564)))))) (-2314 (($ $ |#1|) 157 (|has| |#1| (-38 (-407 (-564)))))) (-3509 (($ $) 205 (|has| |#1| (-38 (-407 (-564)))))) (-2894 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-3738 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3429 (($ $) 175 (|has| |#1| (-38 (-407 (-564)))))) (-2207 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-4087 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-1883 (($ $) 201 (|has| |#1| (-38 (-407 (-564)))))) (-3637 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-1310 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3279 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3007 (($ $) 207 (|has| |#1| (-38 (-407 (-564)))))) (-3633 (($ $) 181 (|has| |#1| (-38 (-407 (-564)))))) (-2449 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-1760 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3470 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3989 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3412 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-1815 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-2263 (($ $) 209 (|has| |#1| (-38 (-407 (-564)))))) (-2160 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3646 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2403 (($) 30 T CONST)) (-2417 (($) 40 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2974 (((-112) $ $) 73)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) 90) (($ $ $) 72)) (-3070 (($ $ $) 87)) (** (($ $ (-917)) NIL) (($ $ (-767)) 110)) (* (($ (-917) $) 97) (($ (-767) $) 95) (($ (-564) $) 92) (($ $ $) 103) (($ $ |#1|) NIL) (($ |#1| $) 122) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-594 |#1|) (-13 (-1237 |#1| (-564)) (-10 -8 (-15 -2621 ($ (-1022 (-839 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -1366 ((-1022 (-839 (-564))) $)) (-15 -3757 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -2808 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -4003 ((-112) $)) (-15 -3262 ($ (-1 |#1| (-564)) $)) (-15 -4263 ((-3 $ "failed") $ $ (-112))) (-15 -2352 ($ $)) (-15 -2957 ($ $ $)) (-15 -3536 ((-858) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1022 (-839 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ($ $)) (-15 -2314 ($ $ |#1|)) (-15 -4133 ($ $ (-407 (-564)))) (-15 -2894 ($ $)) (-15 -3509 ($ $)) (-15 -3334 ($ $)) (-15 -3637 ($ $)) (-15 -3519 ($ $)) (-15 -4087 ($ $)) (-15 -4331 ($ $)) (-15 -3429 ($ $)) (-15 -3633 ($ $)) (-15 -2160 ($ $)) (-15 -3279 ($ $)) (-15 -1815 ($ $)) (-15 -1760 ($ $)) (-15 -3989 ($ $)) (-15 -3243 ($ $)) (-15 -1883 ($ $)) (-15 -1374 ($ $)) (-15 -2207 ($ $)) (-15 -3820 ($ $)) (-15 -3738 ($ $)) (-15 -3007 ($ $)) (-15 -2263 ($ $)) (-15 -1310 ($ $)) (-15 -3412 ($ $)) (-15 -2449 ($ $)) (-15 -3470 ($ $))) |%noBranch|))) (-1045)) (T -594))
-((-4003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-2621 (*1 *1 *2 *3) (-12 (-5 *2 (-1022 (-839 (-564)))) (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1045)) (-5 *1 (-594 *4)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-1022 (-839 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) (-3262 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) (-4263 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (-2957 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (-3536 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6)))) (-5 *4 (-1022 (-839 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564))) (-4 *6 (-1045)) (-5 *2 (-858)) (-5 *1 (-594 *6)))) (-2070 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2314 (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-4133 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1045)))) (-2894 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3509 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3334 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3637 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3519 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-4087 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-4331 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3429 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3633 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3279 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-1815 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-1760 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3989 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3243 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-1374 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2207 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3820 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3738 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3007 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2263 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-1310 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-2449 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))) (-3470 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(-13 (-1237 |#1| (-564)) (-10 -8 (-15 -2621 ($ (-1022 (-839 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -1366 ((-1022 (-839 (-564))) $)) (-15 -3757 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -2808 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -4003 ((-112) $)) (-15 -3262 ($ (-1 |#1| (-564)) $)) (-15 -4263 ((-3 $ "failed") $ $ (-112))) (-15 -2352 ($ $)) (-15 -2957 ($ $ $)) (-15 -3536 ((-858) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1022 (-839 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ($ $)) (-15 -2314 ($ $ |#1|)) (-15 -4133 ($ $ (-407 (-564)))) (-15 -2894 ($ $)) (-15 -3509 ($ $)) (-15 -3334 ($ $)) (-15 -3637 ($ $)) (-15 -3519 ($ $)) (-15 -4087 ($ $)) (-15 -4331 ($ $)) (-15 -3429 ($ $)) (-15 -3633 ($ $)) (-15 -2160 ($ $)) (-15 -3279 ($ $)) (-15 -1815 ($ $)) (-15 -1760 ($ $)) (-15 -3989 ($ $)) (-15 -3243 ($ $)) (-15 -1883 ($ $)) (-15 -1374 ($ $)) (-15 -2207 ($ $)) (-15 -3820 ($ $)) (-15 -3738 ($ $)) (-15 -3007 ($ $)) (-15 -2263 ($ $)) (-15 -1310 ($ $)) (-15 -3412 ($ $)) (-15 -2449 ($ $)) (-15 -3470 ($ $))) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2808 (($ (-1150 |#1|)) 9)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) 48)) (-4243 (((-112) $) 58)) (-3744 (((-767) $) 63) (((-767) $ (-767)) 62)) (-4112 (((-112) $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2998 (((-3 $ "failed") $ $) 50 (|has| |#1| (-556)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556)))) (-3191 (((-1150 |#1|) $) 29)) (-3719 (((-767)) 57 T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2403 (($) 10 T CONST)) (-2417 (($) 14 T CONST)) (-2974 (((-112) $ $) 28)) (-3082 (($ $) 36) (($ $ $) 16)) (-3070 (($ $ $) 31)) (** (($ $ (-917)) NIL) (($ $ (-767)) 55)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-564)) 42)))
-(((-595 |#1|) (-13 (-1045) (-10 -8 (-15 -3191 ((-1150 |#1|) $)) (-15 -2808 ($ (-1150 |#1|))) (-15 -4243 ((-112) $)) (-15 -3744 ((-767) $)) (-15 -3744 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) (-1045)) (T -595))
-((-3191 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-595 *3)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) (-3744 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1045)))))
-(-13 (-1045) (-10 -8 (-15 -3191 ((-1150 |#1|) $)) (-15 -2808 ($ (-1150 |#1|))) (-15 -4243 ((-112) $)) (-15 -3744 ((-767) $)) (-15 -3744 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|)))
-((-4357 (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 15)))
-(((-596 |#1| |#2|) (-10 -7 (-15 -4357 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) (-1209) (-1209)) (T -596))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6)))))
-(-10 -7 (-15 -4357 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))))
-((-4357 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)) 20) (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|)) 19) (((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)) 18)))
-(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -4357 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -4357 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -4357 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -597))
-((-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-599 *8)) (-5 *1 (-597 *6 *7 *8)))))
-(-10 -7 (-15 -4357 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -4357 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -4357 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|))))
-((-4196 ((|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))) 57)) (-1751 (((-169 |#2|) |#3|) 121)) (-3908 ((|#3| (-169 |#2|)) 46)) (-3929 ((|#2| |#3|) 21)) (-3924 ((|#3| |#2|) 35)))
-(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -3908 (|#3| (-169 |#2|))) (-15 -3929 (|#2| |#3|)) (-15 -3924 (|#3| |#2|)) (-15 -1751 ((-169 |#2|) |#3|)) (-15 -4196 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))))) (-556) (-13 (-430 |#1|) (-998) (-1194)) (-13 (-430 (-169 |#1|)) (-998) (-1194))) (T -598))
-((-4196 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170))) (-4 *2 (-13 (-430 (-169 *5)) (-998) (-1194))) (-4 *5 (-556)) (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-998) (-1194))))) (-1751 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-998) (-1194))) (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1194))))) (-3924 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1194))) (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-998) (-1194))))) (-3929 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 *4) (-998) (-1194))) (-5 *1 (-598 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1194))))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1194))) (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1194))) (-5 *1 (-598 *4 *5 *2)))))
-(-10 -7 (-15 -3908 (|#3| (-169 |#2|))) (-15 -3929 (|#2| |#3|)) (-15 -3924 (|#3| |#2|)) (-15 -1751 ((-169 |#2|) |#3|)) (-15 -4196 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170)))))
-((-1667 (($ (-1 (-112) |#1|) $) 17)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-1601 (($ (-1 |#1| |#1|) |#1|) 9)) (-1649 (($ (-1 (-112) |#1|) $) 13)) (-1658 (($ (-1 (-112) |#1|) $) 15)) (-2435 (((-1150 |#1|) $) 18)) (-2423 (((-858) $) NIL)))
-(((-599 |#1|) (-13 (-611 (-858)) (-10 -8 (-15 -4357 ($ (-1 |#1| |#1|) $)) (-15 -1649 ($ (-1 (-112) |#1|) $)) (-15 -1658 ($ (-1 (-112) |#1|) $)) (-15 -1667 ($ (-1 (-112) |#1|) $)) (-15 -1601 ($ (-1 |#1| |#1|) |#1|)) (-15 -2435 ((-1150 |#1|) $)))) (-1209)) (T -599))
-((-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-1649 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-1658 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-1667 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-1601 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209)))))
-(-13 (-611 (-858)) (-10 -8 (-15 -4357 ($ (-1 |#1| |#1|) $)) (-15 -1649 ($ (-1 (-112) |#1|) $)) (-15 -1658 ($ (-1 (-112) |#1|) $)) (-15 -1667 ($ (-1 (-112) |#1|) $)) (-15 -1601 ($ (-1 |#1| |#1|) |#1|)) (-15 -2435 ((-1150 |#1|) $))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4122 (($ (-767)) NIL (|has| |#1| (-23)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) NIL)) (-3998 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1712 (((-685 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-4238 (($ (-767) |#1|) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3224 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3619 (((-112) $ (-767)) NIL)) (-2581 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2658 ((|#1| $) NIL (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3270 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3015 (($ $ $) NIL (|has| |#1| (-1045)))) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) NIL)) (-3696 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3082 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3070 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-600 |#1| |#2|) (-1257 |#1|) (-1209) (-564)) (T -600))
-NIL
-(-1257 |#1|)
-((-3236 (((-1264) $ |#2| |#2|) 36)) (-1956 ((|#2| $) 23)) (-2898 ((|#2| $) 21)) (-2714 (($ (-1 |#3| |#3|) $) 32)) (-4357 (($ (-1 |#3| |#3|) $) 30)) (-2658 ((|#3| $) 26)) (-1592 (($ $ |#3|) 33)) (-3417 (((-112) |#3| $) 17)) (-2075 (((-641 |#3|) $) 15)) (-4366 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-601 |#1| |#2| |#3|) (-10 -8 (-15 -3236 ((-1264) |#1| |#2| |#2|)) (-15 -1592 (|#1| |#1| |#3|)) (-15 -2658 (|#3| |#1|)) (-15 -1956 (|#2| |#1|)) (-15 -2898 (|#2| |#1|)) (-15 -3417 ((-112) |#3| |#1|)) (-15 -2075 ((-641 |#3|) |#1|)) (-15 -4366 (|#3| |#1| |#2|)) (-15 -4366 (|#3| |#1| |#2| |#3|)) (-15 -2714 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4357 (|#1| (-1 |#3| |#3|) |#1|))) (-602 |#2| |#3|) (-1094) (-1209)) (T -601))
-NIL
-(-10 -8 (-15 -3236 ((-1264) |#1| |#2| |#2|)) (-15 -1592 (|#1| |#1| |#3|)) (-15 -2658 (|#3| |#1|)) (-15 -1956 (|#2| |#1|)) (-15 -2898 (|#2| |#1|)) (-15 -3417 ((-112) |#3| |#1|)) (-15 -2075 ((-641 |#3|) |#1|)) (-15 -4366 (|#3| |#1| |#2|)) (-15 -4366 (|#3| |#1| |#2| |#3|)) (-15 -2714 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4357 (|#1| (-1 |#3| |#3|) |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-3236 (((-1264) $ |#1| |#1|) 41 (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) 8)) (-3904 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4408)))) (-4080 (($) 7 T CONST)) (-2726 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) 52)) (-3035 (((-641 |#2|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1956 ((|#1| $) 44 (|has| |#1| (-846)))) (-1554 (((-641 |#2|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4407))))) (-2898 ((|#1| $) 45 (|has| |#1| (-846)))) (-2714 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#2| |#2|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#2| (-1094)))) (-3050 (((-641 |#1|) $) 47)) (-1563 (((-112) |#1| $) 48)) (-4052 (((-1114) $) 21 (|has| |#2| (-1094)))) (-2658 ((|#2| $) 43 (|has| |#1| (-846)))) (-1592 (($ $ |#2|) 42 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#2|))) 27 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-4062 (((-767) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4407))) (((-767) |#2| $) 29 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-858) $) 18 (|has| |#2| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#2| (-1094)))) (-1368 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-602 |#1| |#2|) (-140) (-1094) (-1209)) (T -602))
-((-2075 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *4)))) (-1563 (*1 *2 *3 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3050 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *3)))) (-3417 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-846)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-846)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-846)) (-4 *2 (-1209)))) (-1592 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-3236 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-1264)))))
-(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -2075 ((-641 |t#2|) $)) (-15 -1563 ((-112) |t#1| $)) (-15 -3050 ((-641 |t#1|) $)) (IF (|has| |t#2| (-1094)) (IF (|has| $ (-6 -4407)) (-15 -3417 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -2898 (|t#1| $)) (-15 -1956 (|t#1| $)) (-15 -2658 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4408)) (PROGN (-15 -1592 ($ $ |t#2|)) (-15 -3236 ((-1264) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1094)) ((-611 (-858)) -2807 (|has| |#2| (-1094)) (|has| |#2| (-611 (-858)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-1094) |has| |#2| (-1094)) ((-1209) . T))
-((-2423 (((-858) $) 19) (($ (-129)) 13) (((-129) $) 14)))
-(((-603) (-13 (-611 (-858)) (-490 (-129)))) (T -603))
-NIL
-(-13 (-611 (-858)) (-490 (-129)))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 14) (($ (-641 (-1208))) 13)) (-2374 (((-641 (-1208)) $) 10)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-604) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -2423 ($ (-641 (-1208)))) (-15 -2374 ((-641 (-1208)) $))))) (T -604))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))))
-(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -2423 ($ (-641 (-1208)))) (-15 -2374 ((-641 (-1208)) $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2885 (((-3 $ "failed")) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1336 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4080 (($) NIL T CONST)) (-1441 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3436 (((-3 $ "failed")) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1955 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1774 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1765 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4015 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4317 (((-1166 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3232 (($ $ (-917)) NIL)) (-2335 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2140 (((-1166 |#1|) $) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3216 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2280 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-1804 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3474 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3293 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2514 (((-917)) NIL (|has| |#2| (-367 |#1|)))) (-3117 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3532 (($ $ (-917)) NIL)) (-3502 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1506 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1873 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2330 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4005 (((-3 $ "failed")) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3803 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2415 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2069 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2378 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3189 (((-1166 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2105 (($ $ (-917)) NIL)) (-3188 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2739 (((-1166 |#1|) $) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1960 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4254 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3172 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2766 (((-1152) $) NIL)) (-4312 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2654 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3642 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4052 (((-1114) $) NIL)) (-3353 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4366 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-4225 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1311 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3620 (((-641 (-948 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-948 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1542 (($ $ $) NIL)) (-2151 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2423 (((-858) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-2363 (((-641 (-1259 |#1|))) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3099 (($ $ $ $) NIL)) (-2846 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2598 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3163 (($ $ $) NIL)) (-2620 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2896 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4103 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2403 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) 24)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-605 |#1| |#2|) (-13 (-740 |#1|) (-611 |#2|) (-10 -8 (-15 -2423 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -605))
-((-2423 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-740 *3)))))
-(-13 (-740 |#1|) (-611 |#2|) (-10 -8 (-15 -2423 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-4079 (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) 39)) (-4231 (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL) (($) NIL)) (-3236 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-1152) |#1|) 49)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-2327 (((-3 |#1| "failed") (-1152) $) 52)) (-4080 (($) NIL T CONST)) (-3871 (($ $ (-1152)) 25)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094))))) (-1945 (((-3 |#1| "failed") (-1152) $) 53) (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407))) (($ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL (|has| $ (-6 -4407)))) (-2591 (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407))) (($ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094))))) (-1316 (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094))))) (-1676 (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) 38)) (-2726 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-1152)) NIL)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407))) (((-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-2259 (($ $) 54)) (-2319 (($ (-388)) 23) (($ (-388) (-1152)) 22)) (-2562 (((-388) $) 40)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-1152) $) NIL (|has| (-1152) (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407))) (((-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (((-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094))))) (-2898 (((-1152) $) NIL (|has| (-1152) (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-3454 (((-641 (-1152)) $) 45)) (-3565 (((-112) (-1152) $) NIL)) (-2058 (((-1152) $) 41)) (-3149 (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL)) (-2566 (($ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL)) (-3050 (((-641 (-1152)) $) NIL)) (-1563 (((-112) (-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 ((|#1| $) NIL (|has| (-1152) (-846)))) (-2139 (((-3 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) "failed") (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL)) (-1592 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (($ $ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) 43)) (-4366 ((|#1| $ (-1152) |#1|) NIL) ((|#1| $ (-1152)) 48)) (-3853 (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL) (($) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (((-767) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (((-767) (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL)) (-2423 (((-858) $) 21)) (-3179 (($ $) 26)) (-1860 (((-112) $ $) NIL)) (-1863 (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20)) (-2181 (((-767) $) 47 (|has| $ (-6 -4407)))))
-(((-606 |#1|) (-13 (-364 (-388) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4407) (-15 -2259 ($ $)))) (-1094)) (T -606))
-((-2259 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094)))))
-(-13 (-364 (-388) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4407) (-15 -2259 ($ $))))
-((-3369 (((-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) $) 16)) (-3454 (((-641 |#2|) $) 20)) (-3565 (((-112) |#2| $) 12)))
-(((-607 |#1| |#2| |#3|) (-10 -8 (-15 -3454 ((-641 |#2|) |#1|)) (-15 -3565 ((-112) |#2| |#1|)) (-15 -3369 ((-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|))) (-608 |#2| |#3|) (-1094) (-1094)) (T -607))
-NIL
-(-10 -8 (-15 -3454 ((-641 |#2|) |#1|)) (-15 -3565 ((-112) |#2| |#1|)) (-15 -3369 ((-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)))
-((-3009 (((-112) $ $) 19 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-1876 (((-112) $ (-767)) 8)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 46 (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 56 (|has| $ (-6 -4407)))) (-2327 (((-3 |#2| "failed") |#1| $) 62)) (-4080 (($) 7 T CONST)) (-2696 (($ $) 59 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407))))) (-1945 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 48 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 47 (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 63)) (-2591 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 55 (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 57 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 54 (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 53 (|has| $ (-6 -4407)))) (-3035 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-3454 (((-641 |#1|) $) 64)) (-3565 (((-112) |#1| $) 65)) (-3149 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 40)) (-2566 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 41)) (-4052 (((-1114) $) 21 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-2139 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 52)) (-2554 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 42)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) 27 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 26 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 25 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 24 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-3853 (($) 50) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 49)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 32 (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 60 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 51)) (-2423 (((-858) $) 18 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-1863 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 43)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-608 |#1| |#2|) (-140) (-1094) (-1094)) (T -608))
-((-3565 (*1 *2 *3 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-1945 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-2327 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(-13 (-229 (-2 (|:| -1901 |t#1|) (|:| -3813 |t#2|))) (-10 -8 (-15 -3565 ((-112) |t#1| $)) (-15 -3454 ((-641 |t#1|) $)) (-15 -1945 ((-3 |t#2| "failed") |t#1| $)) (-15 -2327 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T) ((-102) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) ((-611 (-858)) -2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))) ((-1094) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) ((-1209) . T))
-((-2038 (((-610 |#2|) |#1|) 17)) (-2076 (((-3 |#1| "failed") (-610 |#2|)) 21)))
-(((-609 |#1| |#2|) (-10 -7 (-15 -2038 ((-610 |#2|) |#1|)) (-15 -2076 ((-3 |#1| "failed") (-610 |#2|)))) (-1094) (-1094)) (T -609))
-((-2076 (*1 *2 *3) (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) (-5 *1 (-609 *2 *4)))) (-2038 (*1 *2 *3) (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
-(-10 -7 (-15 -2038 ((-610 |#2|) |#1|)) (-15 -2076 ((-3 |#1| "failed") (-610 |#2|))))
-((-3009 (((-112) $ $) NIL)) (-3668 (((-3 (-1170) "failed") $) 49)) (-2738 (((-1264) $ (-767)) 26)) (-3998 (((-767) $) 25)) (-4232 (((-114) $) 12)) (-2562 (((-1170) $) 20)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4309 (($ (-114) (-641 |#1|) (-767)) 36) (($ (-1170)) 37)) (-3679 (((-112) $ (-114)) 18) (((-112) $ (-1170)) 16)) (-1292 (((-767) $) 22)) (-4052 (((-1114) $) NIL)) (-1311 (((-888 (-564)) $) 97 (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) 104 (|has| |#1| (-612 (-888 (-379))))) (((-536) $) 90 (|has| |#1| (-612 (-536))))) (-2423 (((-858) $) 74)) (-1860 (((-112) $ $) NIL)) (-3862 (((-641 |#1|) $) 24)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 53)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 55)))
-(((-610 |#1|) (-13 (-132) (-846) (-880 |#1|) (-10 -8 (-15 -2562 ((-1170) $)) (-15 -4232 ((-114) $)) (-15 -3862 ((-641 |#1|) $)) (-15 -1292 ((-767) $)) (-15 -4309 ($ (-114) (-641 |#1|) (-767))) (-15 -4309 ($ (-1170))) (-15 -3668 ((-3 (-1170) "failed") $)) (-15 -3679 ((-112) $ (-114))) (-15 -3679 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-1094)) (T -610))
-((-2562 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-1094)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1094)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1094)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-610 *3)) (-4 *3 (-1094)))) (-4309 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-767)) (-4 *5 (-1094)) (-5 *1 (-610 *5)))) (-4309 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-1094)))) (-3668 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-1094)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-1094)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-1094)))))
-(-13 (-132) (-846) (-880 |#1|) (-10 -8 (-15 -2562 ((-1170) $)) (-15 -4232 ((-114) $)) (-15 -3862 ((-641 |#1|) $)) (-15 -1292 ((-767) $)) (-15 -4309 ($ (-114) (-641 |#1|) (-767))) (-15 -4309 ($ (-1170))) (-15 -3668 ((-3 (-1170) "failed") $)) (-15 -3679 ((-112) $ (-114))) (-15 -3679 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
-((-2423 ((|#1| $) 6)))
-(((-611 |#1|) (-140) (-1209)) (T -611))
-((-2423 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209)))))
-(-13 (-10 -8 (-15 -2423 (|t#1| $))))
-((-1311 ((|#1| $) 6)))
-(((-612 |#1|) (-140) (-1209)) (T -612))
-((-1311 (*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1209)))))
-(-13 (-10 -8 (-15 -1311 (|t#1| $))))
-((-3366 (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16)))
-(((-613 |#1| |#2|) (-10 -7 (-15 -3366 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -3366 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1034 (-564)) (-1034 (-407 (-564)))) (-1235 |#1|)) (T -613))
-((-3366 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-147) (-27) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))) (-3366 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5)) (-5 *3 (-407 *5)))))
-(-10 -7 (-15 -3366 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -3366 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|))))
-((-2423 (($ |#1|) 6)))
-(((-614 |#1|) (-140) (-1209)) (T -614))
-((-2423 (*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209)))))
-(-13 (-10 -8 (-15 -2423 ($ |t#1|))))
-((-3009 (((-112) $ $) NIL)) (-1443 (($) 14 T CONST)) (-3396 (($) 15 T CONST)) (-2372 (($ $ $) 29)) (-2351 (($ $) 27)) (-2766 (((-1152) $) NIL)) (-1561 (($ $ $) 30)) (-4052 (((-1114) $) NIL)) (-2136 (($) 11 T CONST)) (-2472 (($ $ $) 31)) (-2423 (((-858) $) 35)) (-2396 (((-112) $ (|[\|\|]| -2136)) 24) (((-112) $ (|[\|\|]| -1443)) 26) (((-112) $ (|[\|\|]| -3396)) 21)) (-1860 (((-112) $ $) NIL)) (-2358 (($ $ $) 28)) (-2974 (((-112) $ $) 18)))
-(((-615) (-13 (-963) (-10 -8 (-15 -1443 ($) -2959) (-15 -2396 ((-112) $ (|[\|\|]| -2136))) (-15 -2396 ((-112) $ (|[\|\|]| -1443))) (-15 -2396 ((-112) $ (|[\|\|]| -3396)))))) (T -615))
-((-1443 (*1 *1) (-5 *1 (-615))) (-2396 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2136)) (-5 *2 (-112)) (-5 *1 (-615)))) (-2396 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1443)) (-5 *2 (-112)) (-5 *1 (-615)))) (-2396 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3396)) (-5 *2 (-112)) (-5 *1 (-615)))))
-(-13 (-963) (-10 -8 (-15 -1443 ($) -2959) (-15 -2396 ((-112) $ (|[\|\|]| -2136))) (-15 -2396 ((-112) $ (|[\|\|]| -1443))) (-15 -2396 ((-112) $ (|[\|\|]| -3396)))))
-((-1311 (($ |#1|) 6)))
-(((-616 |#1|) (-140) (-1209)) (T -616))
-((-1311 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1209)))))
-(-13 (-10 -8 (-15 -1311 ($ |t#1|))))
-((-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) 10)))
-(((-617 |#1| |#2|) (-10 -8 (-15 -2423 (|#1| |#2|)) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|))) (-618 |#2|) (-1045)) (T -617))
-NIL
-(-10 -8 (-15 -2423 (|#1| |#2|)) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 37)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ |#1| $) 38)))
-(((-618 |#1|) (-140) (-1045)) (T -618))
-((-2423 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1045)))))
-(-13 (-1045) (-644 |t#1|) (-10 -8 (-15 -2423 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3249 (((-564) $) NIL (|has| |#1| (-844)))) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL)) (-2384 (((-112) $) NIL (|has| |#1| (-844)))) (-4112 (((-112) $) NIL)) (-2323 ((|#1| $) 13)) (-3326 (((-112) $) NIL (|has| |#1| (-844)))) (-2855 (($ $ $) NIL (|has| |#1| (-844)))) (-1497 (($ $ $) NIL (|has| |#1| (-844)))) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2336 ((|#3| $) 15)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL)) (-3719 (((-767)) 20 T CONST)) (-1860 (((-112) $ $) NIL)) (-3673 (($ $) NIL (|has| |#1| (-844)))) (-2403 (($) NIL T CONST)) (-2417 (($) 12 T CONST)) (-3034 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3092 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-619 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -3092 ($ $ |#3|)) (-15 -3092 ($ |#1| |#3|)) (-15 -2323 (|#1| $)) (-15 -2336 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -619))
-((-3092 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-3092 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-2323 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-2336 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -3092 ($ $ |#3|)) (-15 -3092 ($ |#1| |#3|)) (-15 -2323 (|#1| $)) (-15 -2336 (|#3| $))))
-((-1713 ((|#2| |#2| (-1170) (-1170)) 16)))
-(((-620 |#1| |#2|) (-10 -7 (-15 -1713 (|#2| |#2| (-1170) (-1170)))) (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-955) (-29 |#1|))) (T -620))
-((-1713 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-955) (-29 *4))))))
-(-10 -7 (-15 -1713 (|#2| |#2| (-1170) (-1170))))
-((-3009 (((-112) $ $) 64)) (-1494 (((-112) $) 58)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-2438 ((|#1| $) 55)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2899 (((-2 (|:| -4326 $) (|:| -2879 (-407 |#2|))) (-407 |#2|)) 110 (|has| |#1| (-363)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 98) (((-3 |#2| "failed") $) 94)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) 27)) (-3293 (((-3 $ "failed") $) 88)) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3744 (((-564) $) 22)) (-4112 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4003 (((-112) $) 40)) (-3810 (($ |#1| (-564)) 24)) (-3982 ((|#1| $) 57)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 115 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-2998 (((-3 $ "failed") $ $) 92)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1700 (((-767) $) 114 (|has| |#1| (-363)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 113 (|has| |#1| (-363)))) (-3254 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1568 (((-564) $) 38)) (-1311 (((-407 |#2|) $) 47)) (-2423 (((-858) $) 69) (($ (-564)) 35) (($ $) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) 34) (($ |#2|) 25)) (-2007 ((|#1| $ (-564)) 72)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) 32 T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-2403 (($) 9 T CONST)) (-2417 (($) 14 T CONST)) (-4063 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2974 (((-112) $ $) 21)) (-3082 (($ $) 51) (($ $ $) NIL)) (-3070 (($ $ $) 89)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 29) (($ $ $) 49)))
-(((-621 |#1| |#2|) (-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1034 |#2|) (-10 -8 (-15 -4003 ((-112) $)) (-15 -1568 ((-564) $)) (-15 -3744 ((-564) $)) (-15 -1684 ($ $)) (-15 -3982 (|#1| $)) (-15 -2438 (|#1| $)) (-15 -2007 (|#1| $ (-564))) (-15 -3810 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2899 ((-2 (|:| -4326 $) (|:| -2879 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-556) (-1235 |#1|)) (T -621))
-((-4003 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-1568 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-3744 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-1684 (*1 *1 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-3982 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-2438 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-3810 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-2899 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -4326 (-621 *4 *5)) (|:| -2879 (-407 *5)))) (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5)))))
-(-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1034 |#2|) (-10 -8 (-15 -4003 ((-112) $)) (-15 -1568 ((-564) $)) (-15 -3744 ((-564) $)) (-15 -1684 ($ $)) (-15 -3982 (|#1| $)) (-15 -2438 (|#1| $)) (-15 -2007 (|#1| $ (-564))) (-15 -3810 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2899 ((-2 (|:| -4326 $) (|:| -2879 (-407 |#2|))) (-407 |#2|)))) |%noBranch|)))
-((-2578 (((-641 |#6|) (-641 |#4|) (-112)) 54)) (-2355 ((|#6| |#6|) 48)))
-(((-622 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2355 (|#6| |#6|)) (-15 -2578 ((-641 |#6|) (-641 |#4|) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|) (-1103 |#1| |#2| |#3| |#4|)) (T -622))
-((-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 *10)) (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *10 (-1103 *5 *6 *7 *8)))) (-2355 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2355 (|#6| |#6|)) (-15 -2578 ((-641 |#6|) (-641 |#4|) (-112))))
-((-3640 (((-112) |#3| (-767) (-641 |#3|)) 32)) (-2613 (((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1572 (-641 (-2 (|:| |irr| |#4|) (|:| -2173 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)) 73)))
-(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3640 ((-112) |#3| (-767) (-641 |#3|))) (-15 -2613 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1572 (-641 (-2 (|:| |irr| |#4|) (|:| -2173 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)))) (-846) (-789) (-307) (-945 |#3| |#2| |#1|)) (T -623))
-((-2613 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1572 (-641 (-2 (|:| |irr| *10) (|:| -2173 (-564))))))) (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-846)) (-4 *3 (-307)) (-4 *10 (-945 *3 *9 *8)) (-4 *9 (-789)) (-5 *2 (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3) (|:| |corrfact| (-641 (-1166 *3))))) (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3))))) (-3640 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-767)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-846)) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) (-4 *8 (-945 *3 *7 *6)))))
-(-10 -7 (-15 -3640 ((-112) |#3| (-767) (-641 |#3|))) (-15 -2613 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1572 (-641 (-2 (|:| |irr| |#4|) (|:| -2173 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|))))
-((-3009 (((-112) $ $) NIL)) (-1827 (((-1129) $) 11)) (-1813 (((-1129) $) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-624) (-13 (-1077) (-10 -8 (-15 -1813 ((-1129) $)) (-15 -1827 ((-1129) $))))) (T -624))
-((-1813 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))))
-(-13 (-1077) (-10 -8 (-15 -1813 ((-1129) $)) (-15 -1827 ((-1129) $))))
-((-3009 (((-112) $ $) NIL)) (-3058 (((-641 |#1|) $) NIL)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-4275 (($ $) 77)) (-3657 (((-660 |#1| |#2|) $) 60)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 81)) (-2847 (((-641 (-294 |#2|)) $ $) 42)) (-4052 (((-1114) $) NIL)) (-1689 (($ (-660 |#1| |#2|)) 56)) (-3185 (($ $ $) NIL)) (-1542 (($ $ $) NIL)) (-2423 (((-858) $) 66) (((-1274 |#1| |#2|) $) NIL) (((-1279 |#1| |#2|) $) 74)) (-1860 (((-112) $ $) NIL)) (-2417 (($) 61 T CONST)) (-2711 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) 41)) (-2993 (((-641 (-660 |#1| |#2|)) (-641 |#1|)) 73)) (-2404 (((-641 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) 46)) (-2974 (((-112) $ $) 62)) (-3092 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 52)))
-(((-625 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -1689 ($ (-660 |#1| |#2|))) (-15 -3657 ((-660 |#1| |#2|) $)) (-15 -2404 ((-641 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -2423 ((-1274 |#1| |#2|) $)) (-15 -2423 ((-1279 |#1| |#2|) $)) (-15 -4275 ($ $)) (-15 -3058 ((-641 |#1|) $)) (-15 -2993 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -2711 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -2847 ((-641 (-294 |#2|)) $ $)))) (-846) (-13 (-172) (-713 (-407 (-564)))) (-917)) (T -625))
-((-1689 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) (-14 *5 (-917)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-889 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-4275 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-13 (-172) (-713 (-407 (-564))))) (-14 *4 (-917)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-846)) (-5 *2 (-641 (-660 *4 *5))) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-564))))) (-14 *6 (-917)))) (-2711 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))) (-2847 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))))
-(-13 (-473) (-10 -8 (-15 -1689 ($ (-660 |#1| |#2|))) (-15 -3657 ((-660 |#1| |#2|) $)) (-15 -2404 ((-641 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -2423 ((-1274 |#1| |#2|) $)) (-15 -2423 ((-1279 |#1| |#2|) $)) (-15 -4275 ($ $)) (-15 -3058 ((-641 |#1|) $)) (-15 -2993 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -2711 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -2847 ((-641 (-294 |#2|)) $ $))))
-((-2578 (((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112)) 103) (((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112)) 77)) (-1622 (((-112) (-641 (-776 |#1| (-860 |#2|)))) 26)) (-2509 (((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112)) 102)) (-3357 (((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112)) 76)) (-1520 (((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|)))) 30)) (-3008 (((-3 (-641 (-776 |#1| (-860 |#2|))) "failed") (-641 (-776 |#1| (-860 |#2|)))) 29)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -1622 ((-112) (-641 (-776 |#1| (-860 |#2|))))) (-15 -3008 ((-3 (-641 (-776 |#1| (-860 |#2|))) "failed") (-641 (-776 |#1| (-860 |#2|))))) (-15 -1520 ((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|))))) (-15 -3357 ((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2509 ((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2578 ((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2578 ((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112)))) (-452) (-641 (-1170))) (T -626))
-((-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-626 *5 *6)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-626 *5 *6)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-626 *5 *6)))) (-3357 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-626 *5 *6)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-641 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-3008 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-641 (-776 *4 (-860 *5)))) (-4 *4 (-452)) (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)))))
-(-10 -7 (-15 -1622 ((-112) (-641 (-776 |#1| (-860 |#2|))))) (-15 -3008 ((-3 (-641 (-776 |#1| (-860 |#2|))) "failed") (-641 (-776 |#1| (-860 |#2|))))) (-15 -1520 ((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|))))) (-15 -3357 ((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2509 ((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2578 ((-641 (-1042 |#1| |#2|)) (-641 (-776 |#1| (-860 |#2|))) (-112))) (-15 -2578 ((-641 (-1140 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-641 (-776 |#1| (-860 |#2|))) (-112))))
-((-3880 (($ $) 38)) (-3745 (($ $) 21)) (-3858 (($ $) 37)) (-3722 (($ $) 22)) (-3902 (($ $) 36)) (-3766 (($ $) 23)) (-4274 (($) 48)) (-3657 (($ $) 45)) (-1488 (($ $) 17)) (-1548 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6)) (-1689 (($ $) 46)) (-3680 (($ $) 15)) (-3711 (($ $) 16)) (-3914 (($ $) 35)) (-3777 (($ $) 24)) (-3891 (($ $) 34)) (-3756 (($ $) 25)) (-3869 (($ $) 33)) (-3735 (($ $) 26)) (-3949 (($ $) 44)) (-3811 (($ $) 32)) (-3925 (($ $) 43)) (-3787 (($ $) 31)) (-3972 (($ $) 42)) (-3837 (($ $) 30)) (-2784 (($ $) 41)) (-3848 (($ $) 29)) (-3960 (($ $) 40)) (-3825 (($ $) 28)) (-3937 (($ $) 39)) (-3799 (($ $) 27)) (-3349 (($ $) 19)) (-3020 (($ $) 20)) (-3581 (($ $) 18)) (** (($ $ $) 47)))
+((-3433 (((-1267) (-1155)) 10)))
+(((-582) (-10 -7 (-15 -3433 ((-1267) (-1155))))) (T -582))
+((-3433 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-582)))))
+(-10 -7 (-15 -3433 ((-1267) (-1155))))
+((-1414 (((-585 |#2|) (-585 |#2|)) 42)) (-1675 (((-642 |#2|) (-585 |#2|)) 44)) (-3416 ((|#2| (-585 |#2|)) 50)))
+(((-583 |#1| |#2|) (-10 -7 (-15 -1414 ((-585 |#2|) (-585 |#2|))) (-15 -1675 ((-642 |#2|) (-585 |#2|))) (-15 -3416 (|#2| (-585 |#2|)))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-29 |#1|) (-1197))) (T -583))
+((-3416 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1197))) (-5 *1 (-583 *4 *2)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1197))) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-642 *5)) (-5 *1 (-583 *4 *5)))) (-1414 (*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1197))) (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-583 *3 *4)))))
+(-10 -7 (-15 -1414 ((-585 |#2|) (-585 |#2|))) (-15 -1675 ((-642 |#2|) (-585 |#2|))) (-15 -3416 (|#2| (-585 |#2|))))
+((-4358 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 30)))
+(((-584 |#1| |#2|) (-10 -7 (-15 -4358 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -4358 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4358 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4358 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -584))
+((-4358 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-584 *5 *6)))) (-4358 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-584 *5 *2)))) (-4358 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2116 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2116 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6)))))
+(-10 -7 (-15 -4358 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -4358 ((-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2116 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4358 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4358 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) 76)) (-3027 ((|#1| $) NIL)) (-2116 ((|#1| $) 30)) (-3271 (((-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2785 (($ |#1| (-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) (-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3722 (((-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) $) 31)) (-3315 (((-1155) $) NIL)) (-4223 (($ |#1| |#1|) 38) (($ |#1| (-1173)) 49 (|has| |#1| (-1036 (-1173))))) (-4033 (((-1117) $) NIL)) (-1917 (((-112) $) 35)) (-3175 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1173)) 89 (|has| |#1| (-898 (-1173))))) (-2327 (((-860) $) 112) (($ |#1|) 29)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 18 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) 17) (($ $ $) NIL)) (-2974 (($ $ $) 85)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 16) (($ (-407 (-564)) $) 41) (($ $ (-407 (-564))) NIL)))
+(((-585 |#1|) (-13 (-715 (-407 (-564))) (-1036 |#1|) (-10 -8 (-15 -2785 ($ |#1| (-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) (-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2116 (|#1| $)) (-15 -3722 ((-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) $)) (-15 -3271 ((-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1917 ((-112) $)) (-15 -4223 ($ |#1| |#1|)) (-15 -3175 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-898 (-1173))) (-15 -3175 (|#1| $ (-1173))) |%noBranch|) (IF (|has| |#1| (-1036 (-1173))) (-15 -4223 ($ |#1| (-1173))) |%noBranch|))) (-363)) (T -585))
+((-2785 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 *2)) (|:| |logand| (-1169 *2))))) (-5 *4 (-642 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-585 *2)))) (-2116 (*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 *3)) (|:| |logand| (-1169 *3))))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-4223 (*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3175 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3175 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-898 *3)) (-5 *1 (-585 *2)) (-5 *3 (-1173)))) (-4223 (*1 *1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *1 (-585 *2)) (-4 *2 (-1036 *3)) (-4 *2 (-363)))))
+(-13 (-715 (-407 (-564))) (-1036 |#1|) (-10 -8 (-15 -2785 ($ |#1| (-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) (-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2116 (|#1| $)) (-15 -3722 ((-642 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 |#1|)) (|:| |logand| (-1169 |#1|)))) $)) (-15 -3271 ((-642 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1917 ((-112) $)) (-15 -4223 ($ |#1| |#1|)) (-15 -3175 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-898 (-1173))) (-15 -3175 (|#1| $ (-1173))) |%noBranch|) (IF (|has| |#1| (-1036 (-1173))) (-15 -4223 ($ |#1| (-1173))) |%noBranch|)))
+((-4004 (((-112) |#1|) 16)) (-3994 (((-3 |#1| "failed") |#1|) 14)) (-2799 (((-2 (|:| -2547 |#1|) (|:| -2700 (-769))) |#1|) 39) (((-3 |#1| "failed") |#1| (-769)) 18)) (-1580 (((-112) |#1| (-769)) 19)) (-3711 ((|#1| |#1|) 43)) (-3137 ((|#1| |#1| (-769)) 46)))
+(((-586 |#1|) (-10 -7 (-15 -1580 ((-112) |#1| (-769))) (-15 -2799 ((-3 |#1| "failed") |#1| (-769))) (-15 -2799 ((-2 (|:| -2547 |#1|) (|:| -2700 (-769))) |#1|)) (-15 -3137 (|#1| |#1| (-769))) (-15 -4004 ((-112) |#1|)) (-15 -3994 ((-3 |#1| "failed") |#1|)) (-15 -3711 (|#1| |#1|))) (-545)) (T -586))
+((-3711 (*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3994 (*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-4004 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-3137 (*1 *2 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2547 *3) (|:| -2700 (-769)))) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-2799 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-769)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
+(-10 -7 (-15 -1580 ((-112) |#1| (-769))) (-15 -2799 ((-3 |#1| "failed") |#1| (-769))) (-15 -2799 ((-2 (|:| -2547 |#1|) (|:| -2700 (-769))) |#1|)) (-15 -3137 (|#1| |#1| (-769))) (-15 -4004 ((-112) |#1|)) (-15 -3994 ((-3 |#1| "failed") |#1|)) (-15 -3711 (|#1| |#1|)))
+((-3971 (((-1169 |#1|) (-919)) 44)))
+(((-587 |#1|) (-10 -7 (-15 -3971 ((-1169 |#1|) (-919)))) (-349)) (T -587))
+((-3971 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-587 *4)) (-4 *4 (-349)))))
+(-10 -7 (-15 -3971 ((-1169 |#1|) (-919))))
+((-1414 (((-585 (-407 (-950 |#1|))) (-585 (-407 (-950 |#1|)))) 27)) (-4107 (((-3 (-316 |#1|) (-642 (-316 |#1|))) (-407 (-950 |#1|)) (-1173)) 34 (|has| |#1| (-147)))) (-1675 (((-642 (-316 |#1|)) (-585 (-407 (-950 |#1|)))) 19)) (-2333 (((-316 |#1|) (-407 (-950 |#1|)) (-1173)) 32 (|has| |#1| (-147)))) (-3416 (((-316 |#1|) (-585 (-407 (-950 |#1|)))) 21)))
+(((-588 |#1|) (-10 -7 (-15 -1414 ((-585 (-407 (-950 |#1|))) (-585 (-407 (-950 |#1|))))) (-15 -1675 ((-642 (-316 |#1|)) (-585 (-407 (-950 |#1|))))) (-15 -3416 ((-316 |#1|) (-585 (-407 (-950 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4107 ((-3 (-316 |#1|) (-642 (-316 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -2333 ((-316 |#1|) (-407 (-950 |#1|)) (-1173)))) |%noBranch|)) (-13 (-452) (-1036 (-564)) (-637 (-564)))) (T -588))
+((-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-316 *5)) (-5 *1 (-588 *5)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (-316 *5) (-642 (-316 *5)))) (-5 *1 (-588 *5)))) (-3416 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-950 *4)))) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-588 *4)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-950 *4)))) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-642 (-316 *4))) (-5 *1 (-588 *4)))) (-1414 (*1 *2 *2) (-12 (-5 *2 (-585 (-407 (-950 *3)))) (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-588 *3)))))
+(-10 -7 (-15 -1414 ((-585 (-407 (-950 |#1|))) (-585 (-407 (-950 |#1|))))) (-15 -1675 ((-642 (-316 |#1|)) (-585 (-407 (-950 |#1|))))) (-15 -3416 ((-316 |#1|) (-585 (-407 (-950 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4107 ((-3 (-316 |#1|) (-642 (-316 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -2333 ((-316 |#1|) (-407 (-950 |#1|)) (-1173)))) |%noBranch|))
+((-2614 (((-642 (-687 (-564))) (-642 (-564)) (-642 (-903 (-564)))) 75) (((-642 (-687 (-564))) (-642 (-564))) 76) (((-687 (-564)) (-642 (-564)) (-903 (-564))) 69)) (-3084 (((-769) (-642 (-564))) 66)))
+(((-589) (-10 -7 (-15 -3084 ((-769) (-642 (-564)))) (-15 -2614 ((-687 (-564)) (-642 (-564)) (-903 (-564)))) (-15 -2614 ((-642 (-687 (-564))) (-642 (-564)))) (-15 -2614 ((-642 (-687 (-564))) (-642 (-564)) (-642 (-903 (-564))))))) (T -589))
+((-2614 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-564))) (-5 *4 (-642 (-903 (-564)))) (-5 *2 (-642 (-687 (-564)))) (-5 *1 (-589)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-642 (-687 (-564)))) (-5 *1 (-589)))) (-2614 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-564))) (-5 *4 (-903 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-589)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-769)) (-5 *1 (-589)))))
+(-10 -7 (-15 -3084 ((-769) (-642 (-564)))) (-15 -2614 ((-687 (-564)) (-642 (-564)) (-903 (-564)))) (-15 -2614 ((-642 (-687 (-564))) (-642 (-564)))) (-15 -2614 ((-642 (-687 (-564))) (-642 (-564)) (-642 (-903 (-564))))))
+((-2999 (((-642 |#5|) |#5| (-112)) 100)) (-1694 (((-112) |#5| (-642 |#5|)) 34)))
+(((-590 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2999 ((-642 |#5|) |#5| (-112))) (-15 -1694 ((-112) |#5| (-642 |#5|)))) (-13 (-307) (-147)) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1106 |#1| |#2| |#3| |#4|)) (T -590))
+((-1694 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-1106 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-590 *5 *6 *7 *8 *3)))) (-2999 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-642 *3)) (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1106 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2999 ((-642 |#5|) |#5| (-112))) (-15 -1694 ((-112) |#5| (-642 |#5|))))
+((-2907 (((-112) $ $) NIL)) (-1843 (((-1132) $) 11)) (-1833 (((-1132) $) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-591) (-13 (-1080) (-10 -8 (-15 -1833 ((-1132) $)) (-15 -1843 ((-1132) $))))) (T -591))
+((-1833 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-591)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-591)))))
+(-13 (-1080) (-10 -8 (-15 -1833 ((-1132) $)) (-15 -1843 ((-1132) $))))
+((-2907 (((-112) $ $) NIL (|has| (-144) (-1097)))) (-2817 (($ $) 38)) (-3235 (($ $) NIL)) (-4192 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1990 (((-112) $ $) 66)) (-1972 (((-112) $ $ (-564)) 60)) (-1414 (((-642 $) $ (-144)) 75) (((-642 $) $ (-141)) 76)) (-1757 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-848)))) (-2239 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-848))))) (-2383 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 (((-144) $ (-564) (-144)) 57 (|has| $ (-6 -4411))) (((-144) $ (-1229 (-564)) (-144)) NIL (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-1564 (($ $ (-144)) 80) (($ $ (-141)) 81)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2663 (($ $ (-1229 (-564)) $) 56)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2490 (($ (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4410)))) (-2625 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4411)))) (-2551 (((-144) $ (-564)) NIL)) (-2735 (((-112) $ $) 94)) (-3979 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1097))) (((-564) (-144) $ (-564)) 63 (|has| (-144) (-1097))) (((-564) $ $ (-564)) 61) (((-564) (-141) $ (-564)) 65)) (-2936 (((-642 (-144)) $) NIL (|has| $ (-6 -4410)))) (-4227 (($ (-769) (-144)) 9)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) 32 (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| (-144) (-848)))) (-2740 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-848)))) (-3234 (((-642 (-144)) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3421 (((-564) $) 47 (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| (-144) (-848)))) (-3998 (((-112) $ $ (-144)) 95)) (-2072 (((-769) $ $ (-144)) 92)) (-2613 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2226 (($ $) 41)) (-1436 (($ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-1574 (($ $ (-144)) 77) (($ $ (-141)) 78)) (-3315 (((-1155) $) 43 (|has| (-144) (-1097)))) (-4238 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) 27)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-564) $) 91) (((-1117) $) NIL (|has| (-144) (-1097)))) (-2557 (((-144) $) NIL (|has| (-564) (-848)))) (-3254 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2696 (($ $ (-144)) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-642 (-144)) (-642 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2724 (((-642 (-144)) $) NIL)) (-3719 (((-112) $) 15)) (-2972 (($) 10)) (-4368 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) 67) (($ $ (-1229 (-564))) 25) (($ $ $) NIL)) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4043 (((-769) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410))) (((-769) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2568 (($ $ $ (-564)) 83 (|has| $ (-6 -4411)))) (-3901 (($ $) 20)) (-1314 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-2337 (($ (-642 (-144))) NIL)) (-3651 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-642 $)) 84)) (-2327 (($ (-144)) NIL) (((-860) $) 31 (|has| (-144) (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| (-144) (-1097)))) (-2710 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2872 (((-112) $ $) 17 (|has| (-144) (-1097)))) (-2922 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2897 (((-112) $ $) 18 (|has| (-144) (-848)))) (-2127 (((-769) $) 16 (|has| $ (-6 -4410)))))
+(((-592 |#1|) (-13 (-1141) (-10 -8 (-15 -4033 ((-564) $)))) (-564)) (T -592))
+((-4033 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2))))
+(-13 (-1141) (-10 -8 (-15 -4033 ((-564) $))))
+((-4301 (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1091 |#4|)) 32)))
+(((-593 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1091 |#4|))) (-15 -4301 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) (-791) (-848) (-556) (-947 |#3| |#1| |#2|)) (T -593))
+((-4301 (*1 *2 *3 *4) (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-947 *6 *5 *4)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1091 *3)) (-4 *3 (-947 *7 *6 *4)) (-4 *6 (-791)) (-4 *4 (-848)) (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *6 *4 *7 *3)))))
+(-10 -7 (-15 -4301 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1091 |#4|))) (-15 -4301 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 71)) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1726 (($ $ (-564)) 57) (($ $ (-564) (-564)) 58)) (-2674 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 64)) (-4121 (($ $) 108)) (-1532 (((-3 $ "failed") $ $) NIL)) (-3698 (((-860) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1024 (-841 (-564))) (-1173) |#1| (-407 (-564))) 241)) (-2707 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 36)) (-1976 (($) NIL T CONST)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-1941 (((-112) $) NIL)) (-1427 (((-564) $) 62) (((-564) $ (-564)) 63)) (-3953 (((-112) $) NIL)) (-3267 (($ $ (-919)) 83)) (-1502 (($ (-1 |#1| (-564)) $) 80)) (-2316 (((-112) $) 26)) (-3774 (($ |#1| (-564)) 22) (($ $ (-1079) (-564)) NIL) (($ $ (-642 (-1079)) (-642 (-564))) NIL)) (-4358 (($ (-1 |#1| |#1|) $) 75)) (-3162 (($ (-1024 (-841 (-564))) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 13)) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4107 (($ $) 161 (|has| |#1| (-38 (-407 (-564)))))) (-1406 (((-3 $ "failed") $ $ (-112)) 107)) (-1960 (($ $ $) 115)) (-4033 (((-1117) $) NIL)) (-2342 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 15)) (-3731 (((-1024 (-841 (-564))) $) 14)) (-3804 (($ $ (-564)) 47)) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3215 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-4368 ((|#1| $ (-564)) 61) (($ $ $) NIL (|has| (-564) (-1109)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2775 (((-564) $) NIL)) (-4318 (($ $) 48)) (-2327 (((-860) $) NIL) (($ (-564)) 29) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 28 (|has| |#1| (-172)))) (-2102 ((|#1| $ (-564)) 60)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) 39 T CONST)) (-3594 ((|#1| $) NIL)) (-3798 (($ $) 199 (|has| |#1| (-38 (-407 (-564)))))) (-4341 (($ $) 169 (|has| |#1| (-38 (-407 (-564)))))) (-3121 (($ $) 203 (|has| |#1| (-38 (-407 (-564)))))) (-2555 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3617 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-1752 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-2856 (($ $ (-407 (-564))) 177 (|has| |#1| (-38 (-407 (-564)))))) (-3569 (($ $ |#1|) 157 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 205 (|has| |#1| (-38 (-407 (-564)))))) (-2963 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-4002 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3007 (($ $) 175 (|has| |#1| (-38 (-407 (-564)))))) (-2031 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-2928 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-1634 (($ $) 201 (|has| |#1| (-38 (-407 (-564)))))) (-2051 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2892 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3216 (($ $) 207 (|has| |#1| (-38 (-407 (-564)))))) (-2969 (($ $) 181 (|has| |#1| (-38 (-407 (-564)))))) (-3535 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-3134 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3263 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3592 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3747 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-3484 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-2588 (($ $) 209 (|has| |#1| (-38 (-407 (-564)))))) (-4249 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3601 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2312 (($) 30 T CONST)) (-2322 (($) 40 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2872 (((-112) $ $) 73)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) 90) (($ $ $) 72)) (-2974 (($ $ $) 87)) (** (($ $ (-919)) NIL) (($ $ (-769)) 110)) (* (($ (-919) $) 97) (($ (-769) $) 95) (($ (-564) $) 92) (($ $ $) 103) (($ $ |#1|) NIL) (($ |#1| $) 122) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-594 |#1|) (-13 (-1240 |#1| (-564)) (-10 -8 (-15 -3162 ($ (-1024 (-841 (-564))) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -3731 ((-1024 (-841 (-564))) $)) (-15 -2342 ((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -2707 ($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -2316 ((-112) $)) (-15 -1502 ($ (-1 |#1| (-564)) $)) (-15 -1406 ((-3 $ "failed") $ $ (-112))) (-15 -4121 ($ $)) (-15 -1960 ($ $ $)) (-15 -3698 ((-860) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1024 (-841 (-564))) (-1173) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ($ $)) (-15 -3569 ($ $ |#1|)) (-15 -2856 ($ $ (-407 (-564)))) (-15 -2963 ($ $)) (-15 -2391 ($ $)) (-15 -2555 ($ $)) (-15 -2051 ($ $)) (-15 -4341 ($ $)) (-15 -2928 ($ $)) (-15 -1752 ($ $)) (-15 -3007 ($ $)) (-15 -2969 ($ $)) (-15 -4249 ($ $)) (-15 -2404 ($ $)) (-15 -3484 ($ $)) (-15 -3134 ($ $)) (-15 -3592 ($ $)) (-15 -3121 ($ $)) (-15 -1634 ($ $)) (-15 -3798 ($ $)) (-15 -2031 ($ $)) (-15 -3617 ($ $)) (-15 -4002 ($ $)) (-15 -3216 ($ $)) (-15 -2588 ($ $)) (-15 -2892 ($ $)) (-15 -3747 ($ $)) (-15 -3535 ($ $)) (-15 -3263 ($ $))) |%noBranch|))) (-1047)) (T -594))
+((-2316 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-3162 (*1 *1 *2 *3) (-12 (-5 *2 (-1024 (-841 (-564)))) (-5 *3 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1047)) (-5 *1 (-594 *4)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-1024 (-841 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1047)) (-5 *1 (-594 *3)))) (-1502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1047)) (-5 *1 (-594 *3)))) (-1406 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-4121 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047)))) (-1960 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047)))) (-3698 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *6)))) (-5 *4 (-1024 (-841 (-564)))) (-5 *5 (-1173)) (-5 *7 (-407 (-564))) (-4 *6 (-1047)) (-5 *2 (-860)) (-5 *1 (-594 *6)))) (-4107 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3569 (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2856 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1047)))) (-2963 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2391 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2555 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2051 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-4341 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2928 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-1752 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3007 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2969 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-4249 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2404 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3484 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3134 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-1634 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3798 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2031 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3617 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-4002 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3216 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2588 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-2892 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3747 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3535 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))) (-3263 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(-13 (-1240 |#1| (-564)) (-10 -8 (-15 -3162 ($ (-1024 (-841 (-564))) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -3731 ((-1024 (-841 (-564))) $)) (-15 -2342 ((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -2707 ($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -2316 ((-112) $)) (-15 -1502 ($ (-1 |#1| (-564)) $)) (-15 -1406 ((-3 $ "failed") $ $ (-112))) (-15 -4121 ($ $)) (-15 -1960 ($ $ $)) (-15 -3698 ((-860) (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1024 (-841 (-564))) (-1173) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ($ $)) (-15 -3569 ($ $ |#1|)) (-15 -2856 ($ $ (-407 (-564)))) (-15 -2963 ($ $)) (-15 -2391 ($ $)) (-15 -2555 ($ $)) (-15 -2051 ($ $)) (-15 -4341 ($ $)) (-15 -2928 ($ $)) (-15 -1752 ($ $)) (-15 -3007 ($ $)) (-15 -2969 ($ $)) (-15 -4249 ($ $)) (-15 -2404 ($ $)) (-15 -3484 ($ $)) (-15 -3134 ($ $)) (-15 -3592 ($ $)) (-15 -3121 ($ $)) (-15 -1634 ($ $)) (-15 -3798 ($ $)) (-15 -2031 ($ $)) (-15 -3617 ($ $)) (-15 -4002 ($ $)) (-15 -3216 ($ $)) (-15 -2588 ($ $)) (-15 -2892 ($ $)) (-15 -3747 ($ $)) (-15 -3535 ($ $)) (-15 -3263 ($ $))) |%noBranch|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-2707 (($ (-1153 |#1|)) 9)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) 48)) (-1941 (((-112) $) 58)) (-1427 (((-769) $) 63) (((-769) $ (-769)) 62)) (-3953 (((-112) $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2896 (((-3 $ "failed") $ $) 50 (|has| |#1| (-556)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556)))) (-3849 (((-1153 |#1|) $) 29)) (-2756 (((-769)) 57 T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2312 (($) 10 T CONST)) (-2322 (($) 14 T CONST)) (-2872 (((-112) $ $) 28)) (-2987 (($ $) 36) (($ $ $) 16)) (-2974 (($ $ $) 31)) (** (($ $ (-919)) NIL) (($ $ (-769)) 55)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-564)) 42)))
+(((-595 |#1|) (-13 (-1047) (-10 -8 (-15 -3849 ((-1153 |#1|) $)) (-15 -2707 ($ (-1153 |#1|))) (-15 -1941 ((-112) $)) (-15 -1427 ((-769) $)) (-15 -1427 ((-769) $ (-769))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) (-1047)) (T -595))
+((-3849 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-595 *3)))) (-1941 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) (-1427 (*1 *2 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1047)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1047)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1047)))))
+(-13 (-1047) (-10 -8 (-15 -3849 ((-1153 |#1|) $)) (-15 -2707 ($ (-1153 |#1|))) (-15 -1941 ((-112) $)) (-15 -1427 ((-769) $)) (-15 -1427 ((-769) $ (-769))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|)))
+((-4358 (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 15)))
+(((-596 |#1| |#2|) (-10 -7 (-15 -4358 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) (-1212) (-1212)) (T -596))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6)))))
+(-10 -7 (-15 -4358 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))))
+((-4358 (((-1153 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1153 |#2|)) 20) (((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-599 |#2|)) 19) (((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)) 18)))
+(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -4358 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -4358 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-599 |#2|))) (-15 -4358 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1153 |#2|)))) (-1212) (-1212) (-1212)) (T -597))
+((-4358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1153 *7)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8)) (-5 *1 (-597 *6 *7 *8)))) (-4358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1153 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8)) (-5 *1 (-597 *6 *7 *8)))) (-4358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-599 *8)) (-5 *1 (-597 *6 *7 *8)))))
+(-10 -7 (-15 -4358 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -4358 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-599 |#2|))) (-15 -4358 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1153 |#2|))))
+((-3963 ((|#3| |#3| (-642 (-610 |#3|)) (-642 (-1173))) 57)) (-4090 (((-169 |#2|) |#3|) 121)) (-3147 ((|#3| (-169 |#2|)) 46)) (-3543 ((|#2| |#3|) 21)) (-3626 ((|#3| |#2|) 35)))
+(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -3147 (|#3| (-169 |#2|))) (-15 -3543 (|#2| |#3|)) (-15 -3626 (|#3| |#2|)) (-15 -4090 ((-169 |#2|) |#3|)) (-15 -3963 (|#3| |#3| (-642 (-610 |#3|)) (-642 (-1173))))) (-556) (-13 (-430 |#1|) (-1000) (-1197)) (-13 (-430 (-169 |#1|)) (-1000) (-1197))) (T -598))
+((-3963 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-642 (-610 *2))) (-5 *4 (-642 (-1173))) (-4 *2 (-13 (-430 (-169 *5)) (-1000) (-1197))) (-4 *5 (-556)) (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-1000) (-1197))))) (-4090 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-1000) (-1197))) (-4 *3 (-13 (-430 (-169 *4)) (-1000) (-1197))))) (-3626 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-1000) (-1197))) (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-1000) (-1197))))) (-3543 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 *4) (-1000) (-1197))) (-5 *1 (-598 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-1000) (-1197))))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-1000) (-1197))) (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-1000) (-1197))) (-5 *1 (-598 *4 *5 *2)))))
+(-10 -7 (-15 -3147 (|#3| (-169 |#2|))) (-15 -3543 (|#2| |#3|)) (-15 -3626 (|#3| |#2|)) (-15 -4090 ((-169 |#2|) |#3|)) (-15 -3963 (|#3| |#3| (-642 (-610 |#3|)) (-642 (-1173)))))
+((-1700 (($ (-1 (-112) |#1|) $) 17)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-1638 (($ (-1 |#1| |#1|) |#1|) 9)) (-1682 (($ (-1 (-112) |#1|) $) 13)) (-1691 (($ (-1 (-112) |#1|) $) 15)) (-2337 (((-1153 |#1|) $) 18)) (-2327 (((-860) $) NIL)))
+(((-599 |#1|) (-13 (-611 (-860)) (-10 -8 (-15 -4358 ($ (-1 |#1| |#1|) $)) (-15 -1682 ($ (-1 (-112) |#1|) $)) (-15 -1691 ($ (-1 (-112) |#1|) $)) (-15 -1700 ($ (-1 (-112) |#1|) $)) (-15 -1638 ($ (-1 |#1| |#1|) |#1|)) (-15 -2337 ((-1153 |#1|) $)))) (-1212)) (T -599))
+((-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) (-1682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) (-1691 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) (-1700 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) (-1638 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1212)))))
+(-13 (-611 (-860)) (-10 -8 (-15 -4358 ($ (-1 |#1| |#1|) $)) (-15 -1682 ($ (-1 (-112) |#1|) $)) (-15 -1691 ($ (-1 (-112) |#1|) $)) (-15 -1700 ($ (-1 (-112) |#1|) $)) (-15 -1638 ($ (-1 |#1| |#1|) |#1|)) (-15 -2337 ((-1153 |#1|) $))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4103 (($ (-769)) NIL (|has| |#1| (-23)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) NIL)) (-3979 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-1745 (((-687 |#1|) $ $) NIL (|has| |#1| (-1047)))) (-4227 (($ (-769) |#1|) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4372 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-3576 (((-112) $ (-769)) NIL)) (-2480 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2557 ((|#1| $) NIL (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-2619 ((|#1| $ $) NIL (|has| |#1| (-1047)))) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-2909 (($ $ $) NIL (|has| |#1| (-1047)))) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) NIL)) (-3651 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2987 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2974 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-724))) (($ $ |#1|) NIL (|has| |#1| (-724)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-600 |#1| |#2|) (-1260 |#1|) (-1212) (-564)) (T -600))
+NIL
+(-1260 |#1|)
+((-1765 (((-1267) $ |#2| |#2|) 36)) (-2040 ((|#2| $) 23)) (-3421 ((|#2| $) 21)) (-2613 (($ (-1 |#3| |#3|) $) 32)) (-4358 (($ (-1 |#3| |#3|) $) 30)) (-2557 ((|#3| $) 26)) (-2696 (($ $ |#3|) 33)) (-3441 (((-112) |#3| $) 17)) (-2724 (((-642 |#3|) $) 15)) (-4368 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-601 |#1| |#2| |#3|) (-10 -8 (-15 -1765 ((-1267) |#1| |#2| |#2|)) (-15 -2696 (|#1| |#1| |#3|)) (-15 -2557 (|#3| |#1|)) (-15 -2040 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -3441 ((-112) |#3| |#1|)) (-15 -2724 ((-642 |#3|) |#1|)) (-15 -4368 (|#3| |#1| |#2|)) (-15 -4368 (|#3| |#1| |#2| |#3|)) (-15 -2613 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4358 (|#1| (-1 |#3| |#3|) |#1|))) (-602 |#2| |#3|) (-1097) (-1212)) (T -601))
+NIL
+(-10 -8 (-15 -1765 ((-1267) |#1| |#2| |#2|)) (-15 -2696 (|#1| |#1| |#3|)) (-15 -2557 (|#3| |#1|)) (-15 -2040 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -3441 ((-112) |#3| |#1|)) (-15 -2724 ((-642 |#3|) |#1|)) (-15 -4368 (|#3| |#1| |#2|)) (-15 -4368 (|#3| |#1| |#2| |#3|)) (-15 -2613 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4358 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#2| (-1097)))) (-1765 (((-1267) $ |#1| |#1|) 41 (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) 8)) (-3877 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4411)))) (-1976 (($) 7 T CONST)) (-2625 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) 52)) (-2936 (((-642 |#2|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-2040 ((|#1| $) 44 (|has| |#1| (-848)))) (-3234 (((-642 |#2|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3421 ((|#1| $) 45 (|has| |#1| (-848)))) (-2613 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#2| |#2|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#2| (-1097)))) (-3997 (((-642 |#1|) $) 47)) (-4145 (((-112) |#1| $) 48)) (-4033 (((-1117) $) 21 (|has| |#2| (-1097)))) (-2557 ((|#2| $) 43 (|has| |#1| (-848)))) (-2696 (($ $ |#2|) 42 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#2|))) 27 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-4043 (((-769) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4410))) (((-769) |#2| $) 29 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-860) $) 18 (|has| |#2| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#2| (-1097)))) (-2710 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#2| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-602 |#1| |#2|) (-140) (-1097) (-1212)) (T -602))
+((-2724 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) (-5 *2 (-642 *4)))) (-4145 (*1 *2 *3 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) (-5 *2 (-112)))) (-3997 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) (-5 *2 (-642 *3)))) (-3441 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1097)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1212)) (-4 *2 (-1097)) (-4 *2 (-848)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1212)) (-4 *2 (-1097)) (-4 *2 (-848)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1097)) (-4 *3 (-848)) (-4 *2 (-1212)))) (-2696 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212)))) (-1765 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212)) (-5 *2 (-1267)))))
+(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -2724 ((-642 |t#2|) $)) (-15 -4145 ((-112) |t#1| $)) (-15 -3997 ((-642 |t#1|) $)) (IF (|has| |t#2| (-1097)) (IF (|has| $ (-6 -4410)) (-15 -3441 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-848)) (PROGN (-15 -3421 (|t#1| $)) (-15 -2040 (|t#1| $)) (-15 -2557 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4411)) (PROGN (-15 -2696 ($ $ |t#2|)) (-15 -1765 ((-1267) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1097)) ((-611 (-860)) -2706 (|has| |#2| (-1097)) (|has| |#2| (-611 (-860)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-1097) |has| |#2| (-1097)) ((-1212) . T))
+((-2327 (((-860) $) 19) (($ (-129)) 13) (((-129) $) 14)))
+(((-603) (-13 (-611 (-860)) (-490 (-129)))) (T -603))
+NIL
+(-13 (-611 (-860)) (-490 (-129)))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL) (($ (-1178)) NIL) (((-1178) $) NIL) (((-1211) $) 14) (($ (-642 (-1211))) 13)) (-2287 (((-642 (-1211)) $) 10)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-604) (-13 (-1080) (-611 (-1211)) (-10 -8 (-15 -2327 ($ (-642 (-1211)))) (-15 -2287 ((-642 (-1211)) $))))) (T -604))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-604)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-604)))))
+(-13 (-1080) (-611 (-1211)) (-10 -8 (-15 -2327 ($ (-642 (-1211)))) (-15 -2287 ((-642 (-1211)) $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3587 (((-3 $ "failed")) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4361 (((-1262 (-687 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1262 (-687 |#1|)) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-2954 (((-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1976 (($) NIL T CONST)) (-2074 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2093 (((-3 $ "failed")) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3043 (((-687 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-4280 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3636 (((-687 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-2564 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1393 (((-1169 (-950 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2013 (($ $ (-919)) NIL)) (-3518 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2640 (((-1169 |#1|) $) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1933 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3205 (((-1169 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3539 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4221 (($ (-1262 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1262 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3104 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2414 (((-919)) NIL (|has| |#2| (-367 |#1|)))) (-1422 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3285 (($ $ (-919)) NIL)) (-1734 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4041 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2289 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3250 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1306 (((-3 $ "failed")) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1499 (((-687 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1490 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-4070 (((-687 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-4125 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3956 (((-1169 (-950 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-1522 (($ $ (-919)) NIL)) (-2034 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3720 (((-1169 |#1|) $) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1617 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1769 (((-1169 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3573 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3315 (((-1155) $) NIL)) (-2443 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2038 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2152 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4033 (((-1117) $) NIL)) (-2682 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4368 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-2067 (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-417 |#1|))) (((-1262 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $) (-1262 $)) NIL (|has| |#2| (-367 |#1|))) (((-1262 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1314 (($ (-1262 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1262 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2815 (((-642 (-950 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-642 (-950 |#1|)) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3759 (($ $ $) NIL)) (-1953 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2327 (((-860) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL (|has| |#2| (-417 |#1|)))) (-1309 (((-642 (-1262 |#1|))) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3088 (($ $ $ $) NIL)) (-1349 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2497 (($ (-687 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2920 (($ $ $) NIL)) (-3459 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4171 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1579 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2312 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) 24)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-605 |#1| |#2|) (-13 (-742 |#1|) (-611 |#2|) (-10 -8 (-15 -2327 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-742 |#1|)) (T -605))
+((-2327 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-742 *3)))))
+(-13 (-742 |#1|) (-611 |#2|) (-10 -8 (-15 -2327 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
+((-2907 (((-112) $ $) NIL)) (-4143 (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) 39)) (-4218 (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL) (($) NIL)) (-1765 (((-1267) $ (-1155) (-1155)) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-1155) |#1|) 49)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-2248 (((-3 |#1| "failed") (-1155) $) 52)) (-1976 (($) NIL T CONST)) (-2371 (($ $ (-1155)) 25)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097))))) (-2265 (((-3 |#1| "failed") (-1155) $) 53) (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410))) (($ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL (|has| $ (-6 -4410)))) (-2490 (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410))) (($ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097))))) (-1320 (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097))))) (-3213 (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) 38)) (-2625 ((|#1| $ (-1155) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-1155)) NIL)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-1635 (($ $) 54)) (-2241 (($ (-388)) 23) (($ (-388) (-1155)) 22)) (-2461 (((-388) $) 40)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-1155) $) NIL (|has| (-1155) (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410))) (((-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (((-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097))))) (-3421 (((-1155) $) NIL (|has| (-1155) (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-3393 (((-642 (-1155)) $) 45)) (-2835 (((-112) (-1155) $) NIL)) (-2446 (((-1155) $) 41)) (-2730 (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL)) (-3183 (($ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL)) (-3997 (((-642 (-1155)) $) NIL)) (-4145 (((-112) (-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 ((|#1| $) NIL (|has| (-1155) (-848)))) (-3254 (((-3 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) "failed") (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL)) (-2696 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (($ $ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (($ $ (-642 (-294 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) 43)) (-4368 ((|#1| $ (-1155) |#1|) NIL) ((|#1| $ (-1155)) 48)) (-2593 (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL) (($) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (((-769) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (((-769) (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL)) (-2327 (((-860) $) 21)) (-2528 (($ $) 26)) (-1648 (((-112) $ $) NIL)) (-4386 (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20)) (-2127 (((-769) $) 47 (|has| $ (-6 -4410)))))
+(((-606 |#1|) (-13 (-364 (-388) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) (-1188 (-1155) |#1|) (-10 -8 (-6 -4410) (-15 -1635 ($ $)))) (-1097)) (T -606))
+((-1635 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1097)))))
+(-13 (-364 (-388) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) (-1188 (-1155) |#1|) (-10 -8 (-6 -4410) (-15 -1635 ($ $))))
+((-2776 (((-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) $) 16)) (-3393 (((-642 |#2|) $) 20)) (-2835 (((-112) |#2| $) 12)))
+(((-607 |#1| |#2| |#3|) (-10 -8 (-15 -3393 ((-642 |#2|) |#1|)) (-15 -2835 ((-112) |#2| |#1|)) (-15 -2776 ((-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|))) (-608 |#2| |#3|) (-1097) (-1097)) (T -607))
+NIL
+(-10 -8 (-15 -3393 ((-642 |#2|) |#1|)) (-15 -2835 ((-112) |#2| |#1|)) (-15 -2776 ((-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)))
+((-2907 (((-112) $ $) 19 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-3697 (((-112) $ (-769)) 8)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 46 (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 56 (|has| $ (-6 -4410)))) (-2248 (((-3 |#2| "failed") |#1| $) 62)) (-1976 (($) 7 T CONST)) (-2595 (($ $) 59 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410))))) (-2265 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 47 (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 63)) (-2490 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 55 (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 57 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 54 (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 53 (|has| $ (-6 -4410)))) (-2936 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-3393 (((-642 |#1|) $) 64)) (-2835 (((-112) |#1| $) 65)) (-2730 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 40)) (-3183 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 41)) (-4033 (((-1117) $) 21 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-3254 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 52)) (-3388 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 42)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) 27 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 26 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 25 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 24 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-2593 (($) 50) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 49)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 32 (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 60 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 51)) (-2327 (((-860) $) 18 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-4386 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 43)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-608 |#1| |#2|) (-140) (-1097) (-1097)) (T -608))
+((-2835 (*1 *2 *3 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-5 *2 (-112)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-5 *2 (-642 *3)))) (-2265 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))) (-2248 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))))
+(-13 (-229 (-2 (|:| -1907 |t#1|) (|:| -3778 |t#2|))) (-10 -8 (-15 -2835 ((-112) |t#1| $)) (-15 -3393 ((-642 |t#1|) $)) (-15 -2265 ((-3 |t#2| "failed") |t#1| $)) (-15 -2248 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T) ((-102) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) ((-611 (-860)) -2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))) ((-1097) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) ((-1212) . T))
+((-2957 (((-610 |#2|) |#1|) 17)) (-3648 (((-3 |#1| "failed") (-610 |#2|)) 21)))
+(((-609 |#1| |#2|) (-10 -7 (-15 -2957 ((-610 |#2|) |#1|)) (-15 -3648 ((-3 |#1| "failed") (-610 |#2|)))) (-1097) (-1097)) (T -609))
+((-3648 (*1 *2 *3) (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-1097)) (-4 *2 (-1097)) (-5 *1 (-609 *2 *4)))) (-2957 (*1 *2 *3) (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))))
+(-10 -7 (-15 -2957 ((-610 |#2|) |#1|)) (-15 -3648 ((-3 |#1| "failed") (-610 |#2|))))
+((-2907 (((-112) $ $) NIL)) (-3023 (((-3 (-1173) "failed") $) 49)) (-2511 (((-1267) $ (-769)) 26)) (-3979 (((-769) $) 25)) (-3307 (((-114) $) 12)) (-2461 (((-1173) $) 20)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4305 (($ (-114) (-642 |#1|) (-769)) 36) (($ (-1173)) 37)) (-1523 (((-112) $ (-114)) 18) (((-112) $ (-1173)) 16)) (-1295 (((-769) $) 22)) (-4033 (((-1117) $) NIL)) (-1314 (((-890 (-564)) $) 97 (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) 104 (|has| |#1| (-612 (-890 (-379))))) (((-536) $) 90 (|has| |#1| (-612 (-536))))) (-2327 (((-860) $) 74)) (-1648 (((-112) $ $) NIL)) (-3417 (((-642 |#1|) $) 24)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 53)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 55)))
+(((-610 |#1|) (-13 (-132) (-848) (-882 |#1|) (-10 -8 (-15 -2461 ((-1173) $)) (-15 -3307 ((-114) $)) (-15 -3417 ((-642 |#1|) $)) (-15 -1295 ((-769) $)) (-15 -4305 ($ (-114) (-642 |#1|) (-769))) (-15 -4305 ($ (-1173))) (-15 -3023 ((-3 (-1173) "failed") $)) (-15 -1523 ((-112) $ (-114))) (-15 -1523 ((-112) $ (-1173))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-1097)) (T -610))
+((-2461 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-4305 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-642 *5)) (-5 *4 (-769)) (-4 *5 (-1097)) (-5 *1 (-610 *5)))) (-4305 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-3023 (*1 *2 *1) (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))) (-1523 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-1097)))) (-1523 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-1097)))))
+(-13 (-132) (-848) (-882 |#1|) (-10 -8 (-15 -2461 ((-1173) $)) (-15 -3307 ((-114) $)) (-15 -3417 ((-642 |#1|) $)) (-15 -1295 ((-769) $)) (-15 -4305 ($ (-114) (-642 |#1|) (-769))) (-15 -4305 ($ (-1173))) (-15 -3023 ((-3 (-1173) "failed") $)) (-15 -1523 ((-112) $ (-114))) (-15 -1523 ((-112) $ (-1173))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
+((-2327 ((|#1| $) 6)))
+(((-611 |#1|) (-140) (-1212)) (T -611))
+((-2327 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1212)))))
+(-13 (-10 -8 (-15 -2327 (|t#1| $))))
+((-1314 ((|#1| $) 6)))
+(((-612 |#1|) (-140) (-1212)) (T -612))
+((-1314 (*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1212)))))
+(-13 (-10 -8 (-15 -1314 (|t#1| $))))
+((-2661 (((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16)))
+(((-613 |#1| |#2|) (-10 -7 (-15 -2661 ((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -2661 ((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1036 (-564)) (-1036 (-407 (-564)))) (-1238 |#1|)) (T -613))
+((-2661 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-147) (-27) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-1169 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))) (-2661 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-1169 (-407 *5))) (-5 *1 (-613 *4 *5)) (-5 *3 (-407 *5)))))
+(-10 -7 (-15 -2661 ((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -2661 ((-3 (-1169 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|))))
+((-2327 (($ |#1|) 6)))
+(((-614 |#1|) (-140) (-1212)) (T -614))
+((-2327 (*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1212)))))
+(-13 (-10 -8 (-15 -2327 ($ |t#1|))))
+((-2907 (((-112) $ $) NIL)) (-1462 (($) 14 T CONST)) (-3331 (($) 15 T CONST)) (-2285 (($ $ $) 29)) (-2268 (($ $) 27)) (-3315 (((-1155) $) NIL)) (-1403 (($ $ $) 30)) (-4033 (((-1117) $) NIL)) (-2092 (($) 11 T CONST)) (-4297 (($ $ $) 31)) (-2327 (((-860) $) 35)) (-2305 (((-112) $ (|[\|\|]| -2092)) 24) (((-112) $ (|[\|\|]| -1462)) 26) (((-112) $ (|[\|\|]| -3331)) 21)) (-1648 (((-112) $ $) NIL)) (-2275 (($ $ $) 28)) (-2872 (((-112) $ $) 18)))
+(((-615) (-13 (-965) (-10 -8 (-15 -1462 ($) -2858) (-15 -2305 ((-112) $ (|[\|\|]| -2092))) (-15 -2305 ((-112) $ (|[\|\|]| -1462))) (-15 -2305 ((-112) $ (|[\|\|]| -3331)))))) (T -615))
+((-1462 (*1 *1) (-5 *1 (-615))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2092)) (-5 *2 (-112)) (-5 *1 (-615)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1462)) (-5 *2 (-112)) (-5 *1 (-615)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3331)) (-5 *2 (-112)) (-5 *1 (-615)))))
+(-13 (-965) (-10 -8 (-15 -1462 ($) -2858) (-15 -2305 ((-112) $ (|[\|\|]| -2092))) (-15 -2305 ((-112) $ (|[\|\|]| -1462))) (-15 -2305 ((-112) $ (|[\|\|]| -3331)))))
+((-1314 (($ |#1|) 6)))
+(((-616 |#1|) (-140) (-1212)) (T -616))
+((-1314 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1212)))))
+(-13 (-10 -8 (-15 -1314 ($ |t#1|))))
+((-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) 10)))
+(((-617 |#1| |#2|) (-10 -8 (-15 -2327 (|#1| |#2|)) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|))) (-618 |#2|) (-1047)) (T -617))
+NIL
+(-10 -8 (-15 -2327 (|#1| |#2|)) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 41)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
+(((-618 |#1|) (-140) (-1047)) (T -618))
+((-2327 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1047)))))
+(-13 (-1047) (-646 |t#1|) (-10 -8 (-15 -2327 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2959 (((-564) $) NIL (|has| |#1| (-846)))) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL)) (-2538 (((-112) $) NIL (|has| |#1| (-846)))) (-3953 (((-112) $) NIL)) (-2245 ((|#1| $) 13)) (-3333 (((-112) $) NIL (|has| |#1| (-846)))) (-2755 (($ $ $) NIL (|has| |#1| (-846)))) (-1520 (($ $ $) NIL (|has| |#1| (-846)))) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2255 ((|#3| $) 15)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL)) (-2756 (((-769)) 20 T CONST)) (-1648 (((-112) $ $) NIL)) (-1381 (($ $) NIL (|has| |#1| (-846)))) (-2312 (($) NIL T CONST)) (-2322 (($) 12 T CONST)) (-2934 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2998 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-619 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (-15 -2998 ($ $ |#3|)) (-15 -2998 ($ |#1| |#3|)) (-15 -2245 (|#1| $)) (-15 -2255 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-724) |#2|)) (T -619))
+((-2998 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-724) *4)))) (-2998 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-724) *4)))) (-2245 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-724) *3)))) (-2255 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-724) *4)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (-15 -2998 ($ $ |#3|)) (-15 -2998 ($ |#1| |#3|)) (-15 -2245 (|#1| $)) (-15 -2255 (|#3| $))))
+((-2100 ((|#2| |#2| (-1173) (-1173)) 16)))
+(((-620 |#1| |#2|) (-10 -7 (-15 -2100 (|#2| |#2| (-1173) (-1173)))) (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-957) (-29 |#1|))) (T -620))
+((-2100 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1197) (-957) (-29 *4))))))
+(-10 -7 (-15 -2100 (|#2| |#2| (-1173) (-1173))))
+((-2907 (((-112) $ $) 64)) (-2952 (((-112) $) 58)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1989 ((|#1| $) 55)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2486 (((-2 (|:| -4047 $) (|:| -2286 (-407 |#2|))) (-407 |#2|)) 110 (|has| |#1| (-363)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 98) (((-3 |#2| "failed") $) 94)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) 27)) (-3104 (((-3 $ "failed") $) 88)) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1427 (((-564) $) 22)) (-3953 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2316 (((-112) $) 40)) (-3774 (($ |#1| (-564)) 24)) (-3962 ((|#1| $) 57)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 115 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-2896 (((-3 $ "failed") $ $) 92)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2048 (((-769) $) 114 (|has| |#1| (-363)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 113 (|has| |#1| (-363)))) (-3175 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2775 (((-564) $) 38)) (-1314 (((-407 |#2|) $) 47)) (-2327 (((-860) $) 69) (($ (-564)) 35) (($ $) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) 34) (($ |#2|) 25)) (-2102 ((|#1| $ (-564)) 72)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-2312 (($) 9 T CONST)) (-2322 (($) 14 T CONST)) (-4044 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2872 (((-112) $ $) 21)) (-2987 (($ $) 51) (($ $ $) NIL)) (-2974 (($ $ $) 89)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 29) (($ $ $) 49)))
+(((-621 |#1| |#2|) (-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1036 |#2|) (-10 -8 (-15 -2316 ((-112) $)) (-15 -2775 ((-564) $)) (-15 -1427 ((-564) $)) (-15 -1718 ($ $)) (-15 -3962 (|#1| $)) (-15 -1989 (|#1| $)) (-15 -2102 (|#1| $ (-564))) (-15 -3774 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2486 ((-2 (|:| -4047 $) (|:| -2286 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-556) (-1238 |#1|)) (T -621))
+((-2316 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1238 *3)))) (-2775 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1238 *3)))) (-1427 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1238 *3)))) (-1718 (*1 *1 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2)))) (-3962 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2)))) (-1989 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2)))) (-2102 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1238 *2)))) (-3774 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1238 *2)))) (-2486 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| -4047 (-621 *4 *5)) (|:| -2286 (-407 *5)))) (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5)))))
+(-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1036 |#2|) (-10 -8 (-15 -2316 ((-112) $)) (-15 -2775 ((-564) $)) (-15 -1427 ((-564) $)) (-15 -1718 ($ $)) (-15 -3962 (|#1| $)) (-15 -1989 (|#1| $)) (-15 -2102 (|#1| $ (-564))) (-15 -3774 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2486 ((-2 (|:| -4047 $) (|:| -2286 (-407 |#2|))) (-407 |#2|)))) |%noBranch|)))
+((-4208 (((-642 |#6|) (-642 |#4|) (-112)) 54)) (-2251 ((|#6| |#6|) 48)))
+(((-622 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2251 (|#6| |#6|)) (-15 -4208 ((-642 |#6|) (-642 |#4|) (-112)))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|) (-1106 |#1| |#2| |#3| |#4|)) (T -622))
+((-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 *10)) (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *10 (-1106 *5 *6 *7 *8)))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *2 (-1106 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2251 (|#6| |#6|)) (-15 -4208 ((-642 |#6|) (-642 |#4|) (-112))))
+((-3928 (((-112) |#3| (-769) (-642 |#3|)) 32)) (-2983 (((-3 (-2 (|:| |polfac| (-642 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-642 (-1169 |#3|)))) "failed") |#3| (-642 (-1169 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2649 (-642 (-2 (|:| |irr| |#4|) (|:| -3672 (-564)))))) (-642 |#3|) (-642 |#1|) (-642 |#3|)) 73)))
+(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3928 ((-112) |#3| (-769) (-642 |#3|))) (-15 -2983 ((-3 (-2 (|:| |polfac| (-642 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-642 (-1169 |#3|)))) "failed") |#3| (-642 (-1169 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2649 (-642 (-2 (|:| |irr| |#4|) (|:| -3672 (-564)))))) (-642 |#3|) (-642 |#1|) (-642 |#3|)))) (-848) (-791) (-307) (-947 |#3| |#2| |#1|)) (T -623))
+((-2983 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2649 (-642 (-2 (|:| |irr| *10) (|:| -3672 (-564))))))) (-5 *6 (-642 *3)) (-5 *7 (-642 *8)) (-4 *8 (-848)) (-4 *3 (-307)) (-4 *10 (-947 *3 *9 *8)) (-4 *9 (-791)) (-5 *2 (-2 (|:| |polfac| (-642 *10)) (|:| |correct| *3) (|:| |corrfact| (-642 (-1169 *3))))) (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-642 (-1169 *3))))) (-3928 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-769)) (-5 *5 (-642 *3)) (-4 *3 (-307)) (-4 *6 (-848)) (-4 *7 (-791)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) (-4 *8 (-947 *3 *7 *6)))))
+(-10 -7 (-15 -3928 ((-112) |#3| (-769) (-642 |#3|))) (-15 -2983 ((-3 (-2 (|:| |polfac| (-642 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-642 (-1169 |#3|)))) "failed") |#3| (-642 (-1169 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2649 (-642 (-2 (|:| |irr| |#4|) (|:| -3672 (-564)))))) (-642 |#3|) (-642 |#1|) (-642 |#3|))))
+((-2907 (((-112) $ $) NIL)) (-1843 (((-1132) $) 11)) (-1833 (((-1132) $) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-624) (-13 (-1080) (-10 -8 (-15 -1833 ((-1132) $)) (-15 -1843 ((-1132) $))))) (T -624))
+((-1833 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624)))))
+(-13 (-1080) (-10 -8 (-15 -1833 ((-1132) $)) (-15 -1843 ((-1132) $))))
+((-2907 (((-112) $ $) NIL)) (-2961 (((-642 |#1|) $) NIL)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-3298 (($ $) 77)) (-3612 (((-662 |#1| |#2|) $) 60)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 81)) (-4231 (((-642 (-294 |#2|)) $ $) 42)) (-4033 (((-1117) $) NIL)) (-1723 (($ (-662 |#1| |#2|)) 56)) (-1389 (($ $ $) NIL)) (-3759 (($ $ $) NIL)) (-2327 (((-860) $) 66) (((-1277 |#1| |#2|) $) NIL) (((-1282 |#1| |#2|) $) 74)) (-1648 (((-112) $ $) NIL)) (-2322 (($) 61 T CONST)) (-2295 (((-642 (-2 (|:| |k| (-670 |#1|)) (|:| |c| |#2|))) $) 41)) (-2680 (((-642 (-662 |#1| |#2|)) (-642 |#1|)) 73)) (-3692 (((-642 (-2 (|:| |k| (-891 |#1|)) (|:| |c| |#2|))) $) 46)) (-2872 (((-112) $ $) 62)) (-2998 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 52)))
+(((-625 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -1723 ($ (-662 |#1| |#2|))) (-15 -3612 ((-662 |#1| |#2|) $)) (-15 -3692 ((-642 (-2 (|:| |k| (-891 |#1|)) (|:| |c| |#2|))) $)) (-15 -2327 ((-1277 |#1| |#2|) $)) (-15 -2327 ((-1282 |#1| |#2|) $)) (-15 -3298 ($ $)) (-15 -2961 ((-642 |#1|) $)) (-15 -2680 ((-642 (-662 |#1| |#2|)) (-642 |#1|))) (-15 -2295 ((-642 (-2 (|:| |k| (-670 |#1|)) (|:| |c| |#2|))) $)) (-15 -4231 ((-642 (-294 |#2|)) $ $)))) (-848) (-13 (-172) (-715 (-407 (-564)))) (-919)) (T -625))
+((-1723 (*1 *1 *2) (-12 (-5 *2 (-662 *3 *4)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) (-14 *5 (-919)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-662 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |k| (-891 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-1282 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-3298 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-848)) (-4 *3 (-13 (-172) (-715 (-407 (-564))))) (-14 *4 (-919)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-2680 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-848)) (-5 *2 (-642 (-662 *4 *5))) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-715 (-407 (-564))))) (-14 *6 (-919)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |k| (-670 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))) (-4231 (*1 *2 *1 *1) (-12 (-5 *2 (-642 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848)) (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))))
+(-13 (-473) (-10 -8 (-15 -1723 ($ (-662 |#1| |#2|))) (-15 -3612 ((-662 |#1| |#2|) $)) (-15 -3692 ((-642 (-2 (|:| |k| (-891 |#1|)) (|:| |c| |#2|))) $)) (-15 -2327 ((-1277 |#1| |#2|) $)) (-15 -2327 ((-1282 |#1| |#2|) $)) (-15 -3298 ($ $)) (-15 -2961 ((-642 |#1|) $)) (-15 -2680 ((-642 (-662 |#1| |#2|)) (-642 |#1|))) (-15 -2295 ((-642 (-2 (|:| |k| (-670 |#1|)) (|:| |c| |#2|))) $)) (-15 -4231 ((-642 (-294 |#2|)) $ $))))
+((-4208 (((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112)) 103) (((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112)) 77)) (-4235 (((-112) (-642 (-778 |#1| (-862 |#2|)))) 26)) (-3102 (((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112)) 102)) (-3561 (((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112)) 76)) (-2128 (((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|)))) 30)) (-1689 (((-3 (-642 (-778 |#1| (-862 |#2|))) "failed") (-642 (-778 |#1| (-862 |#2|)))) 29)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -4235 ((-112) (-642 (-778 |#1| (-862 |#2|))))) (-15 -1689 ((-3 (-642 (-778 |#1| (-862 |#2|))) "failed") (-642 (-778 |#1| (-862 |#2|))))) (-15 -2128 ((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|))))) (-15 -3561 ((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -3102 ((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -4208 ((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -4208 ((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112)))) (-452) (-642 (-1173))) (T -626))
+((-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1143 *5 (-531 (-862 *6)) (-862 *6) (-778 *5 (-862 *6))))) (-5 *1 (-626 *5 *6)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-626 *5 *6)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1143 *5 (-531 (-862 *6)) (-862 *6) (-778 *5 (-862 *6))))) (-5 *1 (-626 *5 *6)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-626 *5 *6)))) (-2128 (*1 *2 *2) (-12 (-5 *2 (-642 (-778 *3 (-862 *4)))) (-4 *3 (-452)) (-14 *4 (-642 (-1173))) (-5 *1 (-626 *3 *4)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-642 (-778 *3 (-862 *4)))) (-4 *3 (-452)) (-14 *4 (-642 (-1173))) (-5 *1 (-626 *3 *4)))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-642 (-778 *4 (-862 *5)))) (-4 *4 (-452)) (-14 *5 (-642 (-1173))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)))))
+(-10 -7 (-15 -4235 ((-112) (-642 (-778 |#1| (-862 |#2|))))) (-15 -1689 ((-3 (-642 (-778 |#1| (-862 |#2|))) "failed") (-642 (-778 |#1| (-862 |#2|))))) (-15 -2128 ((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|))))) (-15 -3561 ((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -3102 ((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -4208 ((-642 (-1044 |#1| |#2|)) (-642 (-778 |#1| (-862 |#2|))) (-112))) (-15 -4208 ((-642 (-1143 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|)))) (-642 (-778 |#1| (-862 |#2|))) (-112))))
+((-3851 (($ $) 38)) (-3704 (($ $) 21)) (-3827 (($ $) 37)) (-3679 (($ $) 22)) (-3875 (($ $) 36)) (-3727 (($ $) 23)) (-4265 (($) 48)) (-3612 (($ $) 45)) (-1511 (($ $) 17)) (-4223 (($ $ (-1089 $)) 7) (($ $ (-1173)) 6)) (-1723 (($ $) 46)) (-3635 (($ $) 15)) (-3663 (($ $) 16)) (-3888 (($ $) 35)) (-3739 (($ $) 24)) (-3863 (($ $) 34)) (-3716 (($ $) 25)) (-3839 (($ $) 33)) (-3693 (($ $) 26)) (-3926 (($ $) 44)) (-3776 (($ $) 32)) (-3900 (($ $) 43)) (-3750 (($ $) 31)) (-3951 (($ $) 42)) (-3803 (($ $) 30)) (-2683 (($ $) 41)) (-3816 (($ $) 29)) (-3938 (($ $) 40)) (-3791 (($ $) 28)) (-3913 (($ $) 39)) (-3763 (($ $) 27)) (-1383 (($ $) 19)) (-4040 (($ $) 20)) (-2409 (($ $) 18)) (** (($ $ $) 47)))
(((-627) (-140)) (T -627))
-((-3020 (*1 *1 *1) (-4 *1 (-627))) (-3349 (*1 *1 *1) (-4 *1 (-627))) (-3581 (*1 *1 *1) (-4 *1 (-627))) (-1488 (*1 *1 *1) (-4 *1 (-627))) (-3711 (*1 *1 *1) (-4 *1 (-627))) (-3680 (*1 *1 *1) (-4 *1 (-627))))
-(-13 (-955) (-1194) (-10 -8 (-15 -3020 ($ $)) (-15 -3349 ($ $)) (-15 -3581 ($ $)) (-15 -1488 ($ $)) (-15 -3711 ($ $)) (-15 -3680 ($ $))))
-(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-955) . T) ((-1194) . T) ((-1197) . T))
-((-4232 (((-114) (-114)) 88)) (-1488 ((|#2| |#2|) 28)) (-1548 ((|#2| |#2| (-1086 |#2|)) 84) ((|#2| |#2| (-1170)) 50)) (-3680 ((|#2| |#2|) 27)) (-3711 ((|#2| |#2|) 29)) (-3263 (((-112) (-114)) 33)) (-3349 ((|#2| |#2|) 24)) (-3020 ((|#2| |#2|) 26)) (-3581 ((|#2| |#2|) 25)))
-(((-628 |#1| |#2|) (-10 -7 (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 -3020 (|#2| |#2|)) (-15 -3349 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -1488 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -1548 (|#2| |#2| (-1170))) (-15 -1548 (|#2| |#2| (-1086 |#2|)))) (-556) (-13 (-430 |#1|) (-998) (-1194))) (T -628))
-((-1548 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1194))) (-4 *4 (-556)) (-5 *1 (-628 *4 *2)))) (-1548 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1194))))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-3680 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-1488 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-3349 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-3020 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1194))))) (-4232 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-628 *3 *4)) (-4 *4 (-13 (-430 *3) (-998) (-1194))))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1194))))))
-(-10 -7 (-15 -3263 ((-112) (-114))) (-15 -4232 ((-114) (-114))) (-15 -3020 (|#2| |#2|)) (-15 -3349 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -1488 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -1548 (|#2| |#2| (-1170))) (-15 -1548 (|#2| |#2| (-1086 |#2|))))
-((-1343 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-1972 (((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 93)) (-3300 (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-860 |#1|)) 95) (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-860 |#1|)) 94)) (-2458 (((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|))) 138)) (-2469 (((-641 (-481 |#1| |#2|)) (-860 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 108)) (-1527 (((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|))) 148)) (-4184 (((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|))) 72)) (-2011 (((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 48)) (-2032 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 64)) (-1944 (((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 116)))
-(((-629 |#1| |#2|) (-10 -7 (-15 -2458 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -1527 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -1972 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3300 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -3300 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2011 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -4184 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -1944 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -2469 ((-641 (-481 |#1| |#2|)) (-860 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2032 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -1343 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-641 (-1170)) (-452)) (T -629))
-((-1343 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))) (-2032 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-2469 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-860 *4)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-1944 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6)))) (-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6)) (-5 *1 (-629 *5 *6)))) (-2011 (*1 *2 *2) (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))) (-3300 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-3300 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))) (-1527 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564))))) (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5))))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-641 (-247 *4 *5))) (|:| |gvlist| (-641 (-564))))) (-5 *1 (-629 *4 *5)))))
-(-10 -7 (-15 -2458 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -1527 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -1972 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3300 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -3300 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2011 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -4184 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -1944 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -2469 ((-641 (-481 |#1| |#2|)) (-860 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2032 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -1343 ((-481 |#1| |#2|) (-247 |#1| |#2|))))
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094))))) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))) NIL)) (-3236 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 (((-52) $ (-1152) (-52)) 16) (((-52) $ (-1170) (-52)) 17)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2327 (((-3 (-52) "failed") (-1152) $) NIL)) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094))))) (-1945 (($ (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-3 (-52) "failed") (-1152) $) NIL)) (-2591 (($ (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $ (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094)))) (((-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $ (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2726 (((-52) $ (-1152) (-52)) NIL (|has| $ (-6 -4408)))) (-2652 (((-52) $ (-1152)) NIL)) (-3035 (((-641 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-641 (-52)) $) NIL (|has| $ (-6 -4407)))) (-2259 (($ $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-1152) $) NIL (|has| (-1152) (-846)))) (-1554 (((-641 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-641 (-52)) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1094))))) (-2898 (((-1152) $) NIL (|has| (-1152) (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1686 (($ (-388)) 9)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094))))) (-3454 (((-641 (-1152)) $) NIL)) (-3565 (((-112) (-1152) $) NIL)) (-3149 (((-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) $) NIL)) (-2566 (($ (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) $) NIL)) (-3050 (((-641 (-1152)) $) NIL)) (-1563 (((-112) (-1152) $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094))))) (-2658 (((-52) $) NIL (|has| (-1152) (-846)))) (-2139 (((-3 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) "failed") (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL)) (-1592 (($ $ (-52)) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094)))) (($ $ (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1094))))) (-2075 (((-641 (-52)) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 (((-52) $ (-1152)) 14) (((-52) $ (-1152) (-52)) NIL) (((-52) $ (-1170)) 15)) (-3853 (($) NIL) (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))) NIL)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1094)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))) NIL)) (-2423 (((-858) $) NIL (-2807 (|has| (-52) (-611 (-858))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-611 (-858)))))) (-1860 (((-112) $ $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))))) NIL)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 (-52))) (-1094))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-630) (-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -1686 ($ (-388))) (-15 -2259 ($ $)) (-15 -4366 ((-52) $ (-1170))) (-15 -3904 ((-52) $ (-1170) (-52)))))) (T -630))
-((-1686 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))) (-2259 (*1 *1 *1) (-5 *1 (-630))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-630)))) (-3904 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630)))))
-(-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -1686 ($ (-388))) (-15 -2259 ($ $)) (-15 -4366 ((-52) $ (-1170))) (-15 -3904 ((-52) $ (-1170) (-52)))))
-((-3092 (($ $ |#2|) 10)))
-(((-631 |#1| |#2|) (-10 -8 (-15 -3092 (|#1| |#1| |#2|))) (-632 |#2|) (-172)) (T -631))
-NIL
-(-10 -8 (-15 -3092 (|#1| |#1| |#2|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2435 (($ $ $) 30)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 29 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ |#1| $) 24) (($ $ |#1|) 27)))
+((-4040 (*1 *1 *1) (-4 *1 (-627))) (-1383 (*1 *1 *1) (-4 *1 (-627))) (-2409 (*1 *1 *1) (-4 *1 (-627))) (-1511 (*1 *1 *1) (-4 *1 (-627))) (-3663 (*1 *1 *1) (-4 *1 (-627))) (-3635 (*1 *1 *1) (-4 *1 (-627))))
+(-13 (-957) (-1197) (-10 -8 (-15 -4040 ($ $)) (-15 -1383 ($ $)) (-15 -2409 ($ $)) (-15 -1511 ($ $)) (-15 -3663 ($ $)) (-15 -3635 ($ $))))
+(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-957) . T) ((-1197) . T) ((-1200) . T))
+((-3307 (((-114) (-114)) 88)) (-1511 ((|#2| |#2|) 28)) (-4223 ((|#2| |#2| (-1089 |#2|)) 84) ((|#2| |#2| (-1173)) 50)) (-3635 ((|#2| |#2|) 27)) (-3663 ((|#2| |#2|) 29)) (-2357 (((-112) (-114)) 33)) (-1383 ((|#2| |#2|) 24)) (-4040 ((|#2| |#2|) 26)) (-2409 ((|#2| |#2|) 25)))
+(((-628 |#1| |#2|) (-10 -7 (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 -4040 (|#2| |#2|)) (-15 -1383 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -1511 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -4223 (|#2| |#2| (-1173))) (-15 -4223 (|#2| |#2| (-1089 |#2|)))) (-556) (-13 (-430 |#1|) (-1000) (-1197))) (T -628))
+((-4223 (*1 *2 *2 *3) (-12 (-5 *3 (-1089 *2)) (-4 *2 (-13 (-430 *4) (-1000) (-1197))) (-4 *4 (-556)) (-5 *1 (-628 *4 *2)))) (-4223 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-430 *4) (-1000) (-1197))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-1511 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-1383 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-4040 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-1000) (-1197))))) (-3307 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-628 *3 *4)) (-4 *4 (-13 (-430 *3) (-1000) (-1197))))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-1000) (-1197))))))
+(-10 -7 (-15 -2357 ((-112) (-114))) (-15 -3307 ((-114) (-114))) (-15 -4040 (|#2| |#2|)) (-15 -1383 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -1511 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -4223 (|#2| |#2| (-1173))) (-15 -4223 (|#2| |#2| (-1089 |#2|))))
+((-1303 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-3981 (((-642 (-247 |#1| |#2|)) (-642 (-481 |#1| |#2|))) 93)) (-3018 (((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-862 |#1|)) 95) (((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)) (-862 |#1|)) 94)) (-3654 (((-2 (|:| |gblist| (-642 (-247 |#1| |#2|))) (|:| |gvlist| (-642 (-564)))) (-642 (-481 |#1| |#2|))) 138)) (-1879 (((-642 (-481 |#1| |#2|)) (-862 |#1|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|))) 108)) (-3094 (((-2 (|:| |glbase| (-642 (-247 |#1| |#2|))) (|:| |glval| (-642 (-564)))) (-642 (-247 |#1| |#2|))) 148)) (-4322 (((-1262 |#2|) (-481 |#1| |#2|) (-642 (-481 |#1| |#2|))) 72)) (-2719 (((-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|))) 48)) (-2818 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|))) 64)) (-3131 (((-247 |#1| |#2|) (-642 |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|))) 116)))
+(((-629 |#1| |#2|) (-10 -7 (-15 -3654 ((-2 (|:| |gblist| (-642 (-247 |#1| |#2|))) (|:| |gvlist| (-642 (-564)))) (-642 (-481 |#1| |#2|)))) (-15 -3094 ((-2 (|:| |glbase| (-642 (-247 |#1| |#2|))) (|:| |glval| (-642 (-564)))) (-642 (-247 |#1| |#2|)))) (-15 -3981 ((-642 (-247 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -3018 ((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)) (-862 |#1|))) (-15 -3018 ((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-862 |#1|))) (-15 -2719 ((-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -4322 ((-1262 |#2|) (-481 |#1| |#2|) (-642 (-481 |#1| |#2|)))) (-15 -3131 ((-247 |#1| |#2|) (-642 |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|)))) (-15 -1879 ((-642 (-481 |#1| |#2|)) (-862 |#1|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -2818 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|)))) (-15 -1303 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-642 (-1173)) (-452)) (T -629))
+((-1303 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))) (-2818 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-1879 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-642 (-481 *4 *5))) (-5 *3 (-862 *4)) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-3131 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-642 (-1173))) (-5 *1 (-629 *5 *6)))) (-4322 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-642 (-1173))) (-4 *6 (-452)) (-5 *2 (-1262 *6)) (-5 *1 (-629 *5 *6)))) (-2719 (*1 *2 *2) (-12 (-5 *2 (-642 (-481 *3 *4))) (-14 *3 (-642 (-1173))) (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-481 *5 *6))) (-5 *4 (-862 *5)) (-14 *5 (-642 (-1173))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-3018 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-642 (-481 *5 *6))) (-5 *4 (-862 *5)) (-14 *5 (-642 (-1173))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-642 (-481 *4 *5))) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *2 (-642 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))) (-3094 (*1 *2 *3) (-12 (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-642 (-247 *4 *5))) (|:| |glval| (-642 (-564))))) (-5 *1 (-629 *4 *5)) (-5 *3 (-642 (-247 *4 *5))))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-642 (-481 *4 *5))) (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-642 (-247 *4 *5))) (|:| |gvlist| (-642 (-564))))) (-5 *1 (-629 *4 *5)))))
+(-10 -7 (-15 -3654 ((-2 (|:| |gblist| (-642 (-247 |#1| |#2|))) (|:| |gvlist| (-642 (-564)))) (-642 (-481 |#1| |#2|)))) (-15 -3094 ((-2 (|:| |glbase| (-642 (-247 |#1| |#2|))) (|:| |glval| (-642 (-564)))) (-642 (-247 |#1| |#2|)))) (-15 -3981 ((-642 (-247 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -3018 ((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)) (-862 |#1|))) (-15 -3018 ((-481 |#1| |#2|) (-642 (-481 |#1| |#2|)) (-862 |#1|))) (-15 -2719 ((-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -4322 ((-1262 |#2|) (-481 |#1| |#2|) (-642 (-481 |#1| |#2|)))) (-15 -3131 ((-247 |#1| |#2|) (-642 |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|)))) (-15 -1879 ((-642 (-481 |#1| |#2|)) (-862 |#1|) (-642 (-481 |#1| |#2|)) (-642 (-481 |#1| |#2|)))) (-15 -2818 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-642 (-247 |#1| |#2|)))) (-15 -1303 ((-481 |#1| |#2|) (-247 |#1| |#2|))))
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097))))) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))) NIL)) (-1765 (((-1267) $ (-1155) (-1155)) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 (((-52) $ (-1155) (-52)) 16) (((-52) $ (-1173) (-52)) 17)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-2248 (((-3 (-52) "failed") (-1155) $) NIL)) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097))))) (-2265 (($ (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-3 (-52) "failed") (-1155) $) NIL)) (-2490 (($ (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $ (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097)))) (((-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $ (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-2625 (((-52) $ (-1155) (-52)) NIL (|has| $ (-6 -4411)))) (-2551 (((-52) $ (-1155)) NIL)) (-2936 (((-642 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-1635 (($ $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-1155) $) NIL (|has| (-1155) (-848)))) (-3234 (((-642 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-3421 (((-1155) $) NIL (|has| (-1155) (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1721 (($ (-388)) 9)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097))))) (-3393 (((-642 (-1155)) $) NIL)) (-2835 (((-112) (-1155) $) NIL)) (-2730 (((-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) $) NIL)) (-3183 (($ (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) $) NIL)) (-3997 (((-642 (-1155)) $) NIL)) (-4145 (((-112) (-1155) $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097))))) (-2557 (((-52) $) NIL (|has| (-1155) (-848)))) (-3254 (((-3 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) "failed") (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL)) (-2696 (($ $ (-52)) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097)))) (($ $ (-294 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097)))) (($ $ (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097)))) (($ $ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097)))) (($ $ (-642 (-52)) (-642 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-642 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-2724 (((-642 (-52)) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 (((-52) $ (-1155)) 14) (((-52) $ (-1155) (-52)) NIL) (((-52) $ (-1173)) 15)) (-2593 (($) NIL) (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))) NIL)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097)))) (((-769) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097)))) (((-769) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))) NIL)) (-2327 (((-860) $) NIL (-2706 (|has| (-52) (-611 (-860))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-611 (-860)))))) (-1648 (((-112) $ $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))))) NIL)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 (-52))) (-1097))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-630) (-13 (-1188 (-1155) (-52)) (-10 -8 (-15 -1721 ($ (-388))) (-15 -1635 ($ $)) (-15 -4368 ((-52) $ (-1173))) (-15 -3877 ((-52) $ (-1173) (-52)))))) (T -630))
+((-1721 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))) (-1635 (*1 *1 *1) (-5 *1 (-630))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-52)) (-5 *1 (-630)))) (-3877 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1173)) (-5 *1 (-630)))))
+(-13 (-1188 (-1155) (-52)) (-10 -8 (-15 -1721 ($ (-388))) (-15 -1635 ($ $)) (-15 -4368 ((-52) $ (-1173))) (-15 -3877 ((-52) $ (-1173) (-52)))))
+((-2998 (($ $ |#2|) 10)))
+(((-631 |#1| |#2|) (-10 -8 (-15 -2998 (|#1| |#1| |#2|))) (-632 |#2|) (-172)) (T -631))
+NIL
+(-10 -8 (-15 -2998 (|#1| |#1| |#2|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2337 (($ $ $) 34)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 33 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
(((-632 |#1|) (-140) (-172)) (T -632))
-((-2435 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) (-3092 (*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
-(-13 (-713 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2435 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -3092 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2885 (((-3 $ "failed")) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1336 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4080 (($) NIL T CONST)) (-1441 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3436 (((-3 $ "failed")) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1955 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1774 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1765 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4015 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4317 (((-1166 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3232 (($ $ (-917)) NIL)) (-2335 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2140 (((-1166 |#1|) $) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3216 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2280 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-1804 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3474 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3293 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2514 (((-917)) NIL (|has| |#2| (-367 |#1|)))) (-3117 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3532 (($ $ (-917)) NIL)) (-3502 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1506 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1873 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2330 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4005 (((-3 $ "failed")) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3803 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2415 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2069 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2378 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3189 (((-1166 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2105 (($ $ (-917)) NIL)) (-3188 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2739 (((-1166 |#1|) $) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1960 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4254 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3172 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2766 (((-1152) $) NIL)) (-4312 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2654 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3642 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4052 (((-1114) $) NIL)) (-3353 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4366 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-4225 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1311 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3620 (((-641 (-948 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-948 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1542 (($ $ $) NIL)) (-2151 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2423 (((-858) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-2363 (((-641 (-1259 |#1|))) NIL (-2807 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3099 (($ $ $ $) NIL)) (-2846 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2598 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3163 (($ $ $) NIL)) (-2620 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2896 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4103 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) 20)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-633 |#1| |#2|) (-13 (-740 |#1|) (-611 |#2|) (-10 -8 (-15 -2423 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -633))
-((-2423 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-740 *3)))))
-(-13 (-740 |#1|) (-611 |#2|) (-10 -8 (-15 -2423 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
-((-3175 (((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1152)) 106) (((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|))) 131)) (-1294 (((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|))) 136)))
-(((-634 |#1| |#2|) (-10 -7 (-15 -3175 ((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|)))) (-15 -1294 ((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|)))) (-15 -3175 ((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1152)))) (-13 (-452) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -634))
-((-3175 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-839 *3)) (-5 *1 (-634 *6 *3)))) (-1294 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-829 *3))) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-829 *3)) (-5 *1 (-634 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3175 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-839 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-3 (-839 *3) (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) "failed")) (-5 *1 (-634 *5 *3)))))
-(-10 -7 (-15 -3175 ((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|)))) (-15 -1294 ((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|)))) (-15 -3175 ((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1152))))
-((-3175 (((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1152)) 85) (((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 20) (((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|)))) 35)) (-1294 (((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 23) (((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|)))) 43)))
-(((-635 |#1|) (-10 -7 (-15 -3175 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|))))) (-15 -3175 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1294 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|))))) (-15 -1294 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3175 ((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1152)))) (-452)) (T -635))
-((-3175 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-948 *6)))) (-5 *5 (-1152)) (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-839 *3)) (-5 *1 (-635 *6)))) (-1294 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-452)) (-5 *2 (-829 *3)) (-5 *1 (-635 *5)))) (-1294 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-829 (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-829 (-407 (-948 *5)))) (-5 *1 (-635 *5)) (-5 *3 (-407 (-948 *5))))) (-3175 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-839 *3) (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) "failed")) (-5 *1 (-635 *5)))) (-3175 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-839 (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-839 (-407 (-948 *5))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 *5))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 *5))) "failed"))) "failed")) (-5 *1 (-635 *5)) (-5 *3 (-407 (-948 *5))))))
-(-10 -7 (-15 -3175 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|))))) (-15 -3175 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1294 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|))))) (-15 -1294 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3175 ((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1152))))
-((-3367 (((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|) 64 (-2351 (|has| |#1| (-363)))) (((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|) 49 (|has| |#1| (-363)))) (-2416 (((-112) (-1259 |#2|)) 33)) (-1949 (((-3 (-1259 |#1|) "failed") (-1259 |#2|)) 40)))
-(((-636 |#1| |#2|) (-10 -7 (-15 -2416 ((-112) (-1259 |#2|))) (-15 -1949 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -3367 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -3367 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|)))) (-556) (-637 |#1|)) (T -636))
-((-3367 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-2351 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5))) (-5 *1 (-636 *5 *4)))) (-3367 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4)))) (-1949 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
-(-10 -7 (-15 -2416 ((-112) (-1259 |#2|))) (-15 -1949 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -3367 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -3367 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-4277 (((-685 |#1|) (-685 $)) 37) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 36)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-637 |#1|) (-140) (-1045)) (T -637))
-((-4277 (*1 *2 *3) (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1045)) (-5 *2 (-685 *4)))) (-4277 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2511 (-685 *5)) (|:| |vec| (-1259 *5)))))))
-(-13 (-1045) (-10 -8 (-15 -4277 ((-685 |t#1|) (-685 $))) (-15 -4277 ((-2 (|:| -2511 (-685 |t#1|)) (|:| |vec| (-1259 |t#1|))) (-685 $) (-1259 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-2113 ((|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|) 17) ((|#2| (-641 |#1|) (-641 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|)) 12)))
-(((-638 |#1| |#2|) (-10 -7 (-15 -2113 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -2113 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -2113 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -2113 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -2113 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -2113 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)))) (-1094) (-1209)) (T -638))
-((-2113 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-2113 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6)))) (-2113 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094)) (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6)))))
-(-10 -7 (-15 -2113 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -2113 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -2113 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -2113 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -2113 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -2113 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|))))
-((-2903 (((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 16)) (-1316 ((|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 18)) (-4357 (((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)) 13)))
-(((-639 |#1| |#2|) (-10 -7 (-15 -2903 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -1316 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -4357 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)))) (-1209) (-1209)) (T -639))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-639 *5 *6)))) (-1316 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-639 *5 *2)))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5)))))
-(-10 -7 (-15 -2903 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -1316 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -4357 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|))))
-((-4357 (((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)) 21)))
-(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -4357 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)))) (-1209) (-1209) (-1209)) (T -640))
-((-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-641 *6)) (-5 *5 (-641 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-641 *8)) (-5 *1 (-640 *6 *7 *8)))))
-(-10 -7 (-15 -4357 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2128 ((|#1| $) NIL)) (-1783 ((|#1| $) NIL)) (-1403 (($ $) NIL)) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3611 (($ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3963 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2484 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-2925 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-1886 (($ $ $) NIL (|has| $ (-6 -4408)))) (-1776 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-4265 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "rest" $) NIL (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) NIL (|has| $ (-6 -4408)))) (-2585 (($ $ $) 37 (|has| |#1| (-1094)))) (-2572 (($ $ $) 41 (|has| |#1| (-1094)))) (-2558 (($ $ $) 44 (|has| |#1| (-1094)))) (-1466 (($ (-1 (-112) |#1|) $) NIL)) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1772 ((|#1| $) NIL)) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2671 (($ $) 23) (($ $ (-767)) NIL)) (-2679 (($ $) NIL (|has| |#1| (-1094)))) (-2696 (($ $) 36 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1945 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2591 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2726 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) NIL)) (-2643 (((-112) $) NIL)) (-3998 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2339 (((-112) $) 11)) (-3573 (((-641 $) $) NIL)) (-1675 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3615 (($) 9)) (-4238 (($ (-767) |#1|) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-2087 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3669 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2522 (($ |#1|) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2730 (((-641 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2615 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-2566 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4248 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2658 ((|#1| $) 20) (($ $ (-767)) NIL)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-1555 (((-112) $) NIL)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) 39)) (-2994 (($) 38)) (-4366 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 42) ((|#1| $ (-564) |#1|) NIL)) (-3277 (((-564) $ $) NIL)) (-2251 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2114 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3206 (((-112) $) NIL)) (-3068 (($ $) NIL)) (-2602 (($ $) NIL (|has| $ (-6 -4408)))) (-3004 (((-767) $) NIL)) (-1977 (($ $) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) 53 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) NIL)) (-1718 (($ |#1| $) 12)) (-3634 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3696 (($ $ $) 35) (($ |#1| $) 43) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) NIL)) (-4059 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2107 (($ $ $) 13)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1613 (((-1152) $) 31 (|has| |#1| (-824))) (((-1152) $ (-112)) 32 (|has| |#1| (-824))) (((-1264) (-818) $) 33 (|has| |#1| (-824))) (((-1264) (-818) $ (-112)) 34 (|has| |#1| (-824)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-641 |#1|) (-13 (-662 |#1|) (-10 -8 (-15 -3615 ($)) (-15 -2339 ((-112) $)) (-15 -1718 ($ |#1| $)) (-15 -2107 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -2585 ($ $ $)) (-15 -2572 ($ $ $)) (-15 -2558 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-1209)) (T -641))
-((-3615 (*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209)))) (-1718 (*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-2107 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-2585 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-2572 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-2558 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
-(-13 (-662 |#1|) (-10 -8 (-15 -3615 ($)) (-15 -2339 ((-112) $)) (-15 -1718 ($ |#1| $)) (-15 -2107 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -2585 ($ $ $)) (-15 -2572 ($ $ $)) (-15 -2558 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 11) (($ (-1175)) NIL) (((-1175) $) NIL) ((|#1| $) 8)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-642 |#1|) (-13 (-1077) (-611 |#1|)) (-1094)) (T -642))
-NIL
-(-13 (-1077) (-611 |#1|))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2684 (($ |#1| |#1| $) 46)) (-1876 (((-112) $ (-767)) NIL)) (-1466 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2679 (($ $) 48)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1945 (($ |#1| $) 59 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4407)))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3035 (((-641 |#1|) $) 9 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 37)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3149 ((|#1| $) 50)) (-2566 (($ |#1| $) 29) (($ |#1| $ (-767)) 45)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2554 ((|#1| $) 53)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 23)) (-2994 (($) 28)) (-2029 (((-112) $) 57)) (-2680 (((-641 (-2 (|:| -3813 |#1|) (|:| -4062 (-767)))) $) 69)) (-3853 (($) 26) (($ (-641 |#1|)) 19)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) 66 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) 20)) (-1311 (((-536) $) 34 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) NIL)) (-2423 (((-858) $) 14 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) 24)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 71 (|has| |#1| (-1094)))) (-2181 (((-767) $) 17 (|has| $ (-6 -4407)))))
-(((-643 |#1|) (-13 (-691 |#1|) (-10 -8 (-6 -4407) (-15 -2029 ((-112) $)) (-15 -2684 ($ |#1| |#1| $)))) (-1094)) (T -643))
-((-2029 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094)))) (-2684 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094)))))
-(-13 (-691 |#1|) (-10 -8 (-6 -4407) (-15 -2029 ((-112) $)) (-15 -2684 ($ |#1| |#1| $))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ |#1| $) 24)))
-(((-644 |#1|) (-140) (-1052)) (T -644))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1052)))))
-(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767) $) 17)) (-3088 (($ $ |#1|) 69)) (-2563 (($ $) 39)) (-3200 (($ $) 37)) (-4284 (((-3 |#1| "failed") $) 61)) (-3120 ((|#1| $) NIL)) (-3201 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2454 (((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-564)) 56)) (-4375 ((|#1| $ (-564)) 35)) (-1325 ((|#2| $ (-564)) 34)) (-2700 (($ (-1 |#1| |#1|) $) 41)) (-2320 (($ (-1 |#2| |#2|) $) 47)) (-3589 (($) 11)) (-2486 (($ |#1| |#2|) 24)) (-3607 (($ (-641 (-2 (|:| |gen| |#1|) (|:| -1689 |#2|)))) 25)) (-2080 (((-641 (-2 (|:| |gen| |#1|) (|:| -1689 |#2|))) $) 14)) (-2623 (($ |#1| $) 71)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1653 (((-112) $ $) 76)) (-2423 (((-858) $) 21) (($ |#1|) 18)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 27)))
-(((-645 |#1| |#2| |#3|) (-13 (-1094) (-1034 |#1|) (-10 -8 (-15 -2454 ((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-564))) (-15 -2080 ((-641 (-2 (|:| |gen| |#1|) (|:| -1689 |#2|))) $)) (-15 -2486 ($ |#1| |#2|)) (-15 -3607 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -1689 |#2|))))) (-15 -1325 (|#2| $ (-564))) (-15 -4375 (|#1| $ (-564))) (-15 -3200 ($ $)) (-15 -2563 ($ $)) (-15 -2622 ((-767) $)) (-15 -3589 ($)) (-15 -3088 ($ $ |#1|)) (-15 -2623 ($ |#1| $)) (-15 -3201 ($ |#1| |#2| $)) (-15 -3201 ($ $ $)) (-15 -1653 ((-112) $ $)) (-15 -2320 ($ (-1 |#2| |#2|) $)) (-15 -2700 ($ (-1 |#1| |#1|) $)))) (-1094) (-23) |#2|) (T -645))
-((-2454 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-858) (-858) (-858))) (-5 *4 (-564)) (-5 *2 (-858)) (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 *4)))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-2486 (*1 *1 *2 *3) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3607 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 *4)))) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)))) (-1325 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5)) (-4 *4 (-1094)) (-14 *5 *2))) (-4375 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2563 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-3589 (*1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3088 (*1 *1 *1 *2) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2623 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3201 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3201 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1653 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-2320 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)))) (-2700 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1094) (-1034 |#1|) (-10 -8 (-15 -2454 ((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-564))) (-15 -2080 ((-641 (-2 (|:| |gen| |#1|) (|:| -1689 |#2|))) $)) (-15 -2486 ($ |#1| |#2|)) (-15 -3607 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -1689 |#2|))))) (-15 -1325 (|#2| $ (-564))) (-15 -4375 (|#1| $ (-564))) (-15 -3200 ($ $)) (-15 -2563 ($ $)) (-15 -2622 ((-767) $)) (-15 -3589 ($)) (-15 -3088 ($ $ |#1|)) (-15 -2623 ($ |#1| $)) (-15 -3201 ($ |#1| |#2| $)) (-15 -3201 ($ $ $)) (-15 -1653 ((-112) $ $)) (-15 -2320 ($ (-1 |#2| |#2|) $)) (-15 -2700 ($ (-1 |#1| |#1|) $))))
-((-2898 (((-564) $) 30)) (-4248 (($ |#2| $ (-564)) 26) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) 12)) (-1563 (((-112) (-564) $) 17)) (-3696 (($ $ |#2|) 23) (($ |#2| $) 24) (($ $ $) NIL) (($ (-641 $)) NIL)))
-(((-646 |#1| |#2|) (-10 -8 (-15 -4248 (|#1| |#1| |#1| (-564))) (-15 -4248 (|#1| |#2| |#1| (-564))) (-15 -3696 (|#1| (-641 |#1|))) (-15 -3696 (|#1| |#1| |#1|)) (-15 -3696 (|#1| |#2| |#1|)) (-15 -3696 (|#1| |#1| |#2|)) (-15 -2898 ((-564) |#1|)) (-15 -3050 ((-641 (-564)) |#1|)) (-15 -1563 ((-112) (-564) |#1|))) (-647 |#2|) (-1209)) (T -646))
-NIL
-(-10 -8 (-15 -4248 (|#1| |#1| |#1| (-564))) (-15 -4248 (|#1| |#2| |#1| (-564))) (-15 -3696 (|#1| (-641 |#1|))) (-15 -3696 (|#1| |#1| |#1|)) (-15 -3696 (|#1| |#2| |#1|)) (-15 -3696 (|#1| |#1| |#2|)) (-15 -2898 ((-564) |#1|)) (-15 -3050 ((-641 (-564)) |#1|)) (-15 -1563 ((-112) (-564) |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3236 (((-1264) $ (-564) (-564)) 41 (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) 8)) (-3904 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) 59 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2696 (($ $) 79 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#1| $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 52)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-4238 (($ (-767) |#1|) 70)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 44 (|has| (-564) (-846)))) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 45 (|has| (-564) (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3050 (((-641 (-564)) $) 47)) (-1563 (((-112) (-564) $) 48)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2658 ((|#1| $) 43 (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1592 (($ $ |#1|) 42 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1226 (-564))) 64)) (-2114 (($ $ (-564)) 63) (($ $ (-1226 (-564))) 62)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 71)) (-3696 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-641 $)) 66)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-647 |#1|) (-140) (-1209)) (T -647))
-((-4238 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-3696 (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3696 (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3696 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3696 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-4357 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2114 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2114 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-4248 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-4248 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-3904 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4408)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))))
-(-13 (-602 (-564) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4238 ($ (-767) |t#1|)) (-15 -3696 ($ $ |t#1|)) (-15 -3696 ($ |t#1| $)) (-15 -3696 ($ $ $)) (-15 -3696 ($ (-641 $))) (-15 -4357 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4366 ($ $ (-1226 (-564)))) (-15 -2114 ($ $ (-564))) (-15 -2114 ($ $ (-1226 (-564)))) (-15 -4248 ($ |t#1| $ (-564))) (-15 -4248 ($ $ $ (-564))) (IF (|has| $ (-6 -4408)) (-15 -3904 (|t#1| $ (-1226 (-564)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-4256 (((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) "failed") |#3| |#2| (-1170)) 44)))
-(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -4256 ((-3 (-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -4256 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)))) (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-955)) (-652 |#2|)) (T -648))
-((-4256 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2)))) (-4256 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1170)) (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-955))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2047 (-641 *4)))) (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4)))))
-(-10 -7 (-15 -4256 ((-3 (-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -4256 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2375 (($ $) NIL (|has| |#1| (-363)))) (-1501 (($ $ $) NIL (|has| |#1| (-363)))) (-1326 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-2071 (($ $ $) NIL (|has| |#1| (-363)))) (-1597 (($ $ $) NIL (|has| |#1| (-363)))) (-2607 (($ $ $) NIL (|has| |#1| (-363)))) (-2209 (($ $ $) NIL (|has| |#1| (-363)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2298 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#1| (-452)))) (-4112 (((-112) $) NIL)) (-3810 (($ |#1| (-767)) NIL)) (-3689 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-556)))) (-2775 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-556)))) (-2043 (((-767) $) NIL)) (-3268 (($ $ $) NIL (|has| |#1| (-363)))) (-1430 (($ $ $) NIL (|has| |#1| (-363)))) (-3182 (($ $ $) NIL (|has| |#1| (-363)))) (-2567 (($ $ $) NIL (|has| |#1| (-363)))) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-1921 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1911 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4366 ((|#1| $ |#1|) NIL)) (-2170 (($ $ $) NIL (|has| |#1| (-363)))) (-1568 (((-767) $) NIL)) (-4090 ((|#1| $) NIL (|has| |#1| (-452)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) NIL)) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-767)) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2598 ((|#1| $ |#1| |#1|) NIL)) (-3527 (($ $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($) NIL)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-649 |#1|) (-652 |#1|) (-233)) (T -649))
-NIL
-(-652 |#1|)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2375 (($ $) NIL (|has| |#1| (-363)))) (-1501 (($ $ $) NIL (|has| |#1| (-363)))) (-1326 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-2071 (($ $ $) NIL (|has| |#1| (-363)))) (-1597 (($ $ $) NIL (|has| |#1| (-363)))) (-2607 (($ $ $) NIL (|has| |#1| (-363)))) (-2209 (($ $ $) NIL (|has| |#1| (-363)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2298 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#1| (-452)))) (-4112 (((-112) $) NIL)) (-3810 (($ |#1| (-767)) NIL)) (-3689 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-556)))) (-2775 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-556)))) (-2043 (((-767) $) NIL)) (-3268 (($ $ $) NIL (|has| |#1| (-363)))) (-1430 (($ $ $) NIL (|has| |#1| (-363)))) (-3182 (($ $ $) NIL (|has| |#1| (-363)))) (-2567 (($ $ $) NIL (|has| |#1| (-363)))) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-1921 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1911 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4366 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2170 (($ $ $) NIL (|has| |#1| (-363)))) (-1568 (((-767) $) NIL)) (-4090 ((|#1| $) NIL (|has| |#1| (-452)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) NIL)) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-767)) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2598 ((|#1| $ |#1| |#1|) NIL)) (-3527 (($ $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($) NIL)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-650 |#1| |#2|) (-13 (-652 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-644 |#1|) (-10 -8 (-15 -3254 ($ $))))) (T -650))
-NIL
-(-13 (-652 |#1|) (-286 |#2| |#2|))
-((-2375 (($ $) 29)) (-3527 (($ $) 27)) (-4063 (($) 13)))
-(((-651 |#1| |#2|) (-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -3527 (|#1| |#1|)) (-15 -4063 (|#1|))) (-652 |#2|) (-1045)) (T -651))
-NIL
-(-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -3527 (|#1| |#1|)) (-15 -4063 (|#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-2375 (($ $) 82 (|has| |#1| (-363)))) (-1501 (($ $ $) 84 (|has| |#1| (-363)))) (-1326 (($ $ (-767)) 83 (|has| |#1| (-363)))) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2071 (($ $ $) 45 (|has| |#1| (-363)))) (-1597 (($ $ $) 46 (|has| |#1| (-363)))) (-2607 (($ $ $) 48 (|has| |#1| (-363)))) (-2209 (($ $ $) 43 (|has| |#1| (-363)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 42 (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $ $) 44 (|has| |#1| (-363)))) (-2298 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 47 (|has| |#1| (-363)))) (-4284 (((-3 (-564) "failed") $) 75 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 72 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 69)) (-3120 (((-564) $) 74 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 71 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 70)) (-1684 (($ $) 64)) (-3293 (((-3 $ "failed") $) 34)) (-2571 (($ $) 55 (|has| |#1| (-452)))) (-4112 (((-112) $) 32)) (-3810 (($ |#1| (-767)) 62)) (-3689 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 57 (|has| |#1| (-556)))) (-2775 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 58 (|has| |#1| (-556)))) (-2043 (((-767) $) 66)) (-3268 (($ $ $) 52 (|has| |#1| (-363)))) (-1430 (($ $ $) 53 (|has| |#1| (-363)))) (-3182 (($ $ $) 41 (|has| |#1| (-363)))) (-2567 (($ $ $) 50 (|has| |#1| (-363)))) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 49 (|has| |#1| (-363)))) (-1921 (((-3 $ "failed") $ $) 51 (|has| |#1| (-363)))) (-1911 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 54 (|has| |#1| (-363)))) (-3982 ((|#1| $) 65)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2998 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-556)))) (-4366 ((|#1| $ |#1|) 87)) (-2170 (($ $ $) 81 (|has| |#1| (-363)))) (-1568 (((-767) $) 67)) (-4090 ((|#1| $) 56 (|has| |#1| (-452)))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ (-407 (-564))) 73 (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) 68)) (-3191 (((-641 |#1|) $) 61)) (-2007 ((|#1| $ (-767)) 63)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2598 ((|#1| $ |#1| |#1|) 60)) (-3527 (($ $) 85)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($) 86)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-652 |#1|) (-140) (-1045)) (T -652))
-((-4063 (*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)))) (-3527 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)))) (-1501 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-1326 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-652 *3)) (-4 *3 (-1045)) (-4 *3 (-363)))) (-2375 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2170 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(-13 (-848 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -4063 ($)) (-15 -3527 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -1501 ($ $ $)) (-15 -1326 ($ $ (-767))) (-15 -2375 ($ $)) (-15 -2170 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-286 |#1| |#1|) . T) ((-411 |#1|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-848 |#1|) . T))
-((-2843 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 88 (|has| |#1| (-27)))) (-3688 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 87 (|has| |#1| (-27))) (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 19)))
-(((-653 |#1| |#2|) (-10 -7 (-15 -3688 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3688 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -2843 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))) (-1235 |#1|)) (T -653))
-((-2843 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-649 (-407 *6)))) (-5 *1 (-653 *5 *6)) (-5 *3 (-649 (-407 *6))))))
-(-10 -7 (-15 -3688 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3688 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -2843 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2375 (($ $) NIL (|has| |#1| (-363)))) (-1501 (($ $ $) 28 (|has| |#1| (-363)))) (-1326 (($ $ (-767)) 31 (|has| |#1| (-363)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-2071 (($ $ $) NIL (|has| |#1| (-363)))) (-1597 (($ $ $) NIL (|has| |#1| (-363)))) (-2607 (($ $ $) NIL (|has| |#1| (-363)))) (-2209 (($ $ $) NIL (|has| |#1| (-363)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2298 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#1| (-452)))) (-4112 (((-112) $) NIL)) (-3810 (($ |#1| (-767)) NIL)) (-3689 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-556)))) (-2775 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-556)))) (-2043 (((-767) $) NIL)) (-3268 (($ $ $) NIL (|has| |#1| (-363)))) (-1430 (($ $ $) NIL (|has| |#1| (-363)))) (-3182 (($ $ $) NIL (|has| |#1| (-363)))) (-2567 (($ $ $) NIL (|has| |#1| (-363)))) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-1921 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1911 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4366 ((|#1| $ |#1|) 24)) (-2170 (($ $ $) 33 (|has| |#1| (-363)))) (-1568 (((-767) $) NIL)) (-4090 ((|#1| $) NIL (|has| |#1| (-452)))) (-2423 (((-858) $) 20) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) NIL)) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-767)) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2598 ((|#1| $ |#1| |#1|) 23)) (-3527 (($ $) NIL)) (-2403 (($) 21 T CONST)) (-2417 (($) 8 T CONST)) (-4063 (($) NIL)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-654 |#1| |#2|) (-652 |#1|) (-1045) (-1 |#1| |#1|)) (T -654))
-NIL
-(-652 |#1|)
-((-1501 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-1326 ((|#2| |#2| (-767) (-1 |#1| |#1|)) 48)) (-2170 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
-(((-655 |#1| |#2|) (-10 -7 (-15 -1501 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1326 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -2170 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -655))
-((-2170 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4)))) (-1326 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5)))) (-1501 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4)))))
-(-10 -7 (-15 -1501 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1326 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -2170 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-3064 (($ $ $) 9)))
-(((-656 |#1|) (-10 -8 (-15 -3064 (|#1| |#1| |#1|))) (-657)) (T -656))
-NIL
-(-10 -8 (-15 -3064 (|#1| |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-3021 (($ $) 10)) (-3064 (($ $ $) 8)) (-2974 (((-112) $ $) 6)) (-3051 (($ $ $) 9)))
-(((-657) (-140)) (T -657))
-((-3021 (*1 *1 *1) (-4 *1 (-657))) (-3051 (*1 *1 *1 *1) (-4 *1 (-657))) (-3064 (*1 *1 *1 *1) (-4 *1 (-657))))
-(-13 (-102) (-10 -8 (-15 -3021 ($ $)) (-15 -3051 ($ $ $)) (-15 -3064 ($ $ $))))
+((-2337 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) (-2998 (*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
+(-13 (-715 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2337 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -2998 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3587 (((-3 $ "failed")) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4361 (((-1262 (-687 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1262 (-687 |#1|)) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-2954 (((-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1976 (($) NIL T CONST)) (-2074 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2093 (((-3 $ "failed")) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3043 (((-687 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-4280 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3636 (((-687 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-2564 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1393 (((-1169 (-950 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2013 (($ $ (-919)) NIL)) (-3518 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2640 (((-1169 |#1|) $) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1933 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3205 (((-1169 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3539 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4221 (($ (-1262 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1262 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3104 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2414 (((-919)) NIL (|has| |#2| (-367 |#1|)))) (-1422 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3285 (($ $ (-919)) NIL)) (-1734 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4041 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2289 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3250 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1306 (((-3 $ "failed")) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1499 (((-687 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1490 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-4070 (((-687 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-4125 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3956 (((-1169 (-950 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-1522 (($ $ (-919)) NIL)) (-2034 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3720 (((-1169 |#1|) $) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1617 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1769 (((-1169 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3573 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3315 (((-1155) $) NIL)) (-2443 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2038 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2152 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4033 (((-1117) $) NIL)) (-2682 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4368 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-2067 (((-687 |#1|) (-1262 $)) NIL (|has| |#2| (-417 |#1|))) (((-1262 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-687 |#1|) (-1262 $) (-1262 $)) NIL (|has| |#2| (-367 |#1|))) (((-1262 |#1|) $ (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-1314 (($ (-1262 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1262 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2815 (((-642 (-950 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-642 (-950 |#1|)) (-1262 $)) NIL (|has| |#2| (-367 |#1|)))) (-3759 (($ $ $) NIL)) (-1953 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2327 (((-860) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL (|has| |#2| (-417 |#1|)))) (-1309 (((-642 (-1262 |#1|))) NIL (-2706 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3088 (($ $ $ $) NIL)) (-1349 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2497 (($ (-687 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2920 (($ $ $) NIL)) (-3459 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4171 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1579 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) 20)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-633 |#1| |#2|) (-13 (-742 |#1|) (-611 |#2|) (-10 -8 (-15 -2327 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-742 |#1|)) (T -633))
+((-2327 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-742 *3)))))
+(-13 (-742 |#1|) (-611 |#2|) (-10 -8 (-15 -2327 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
+((-2017 (((-3 (-841 |#2|) "failed") |#2| (-294 |#2|) (-1155)) 106) (((-3 (-841 |#2|) (-2 (|:| |leftHandLimit| (-3 (-841 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-841 |#2|) "failed"))) "failed") |#2| (-294 (-841 |#2|))) 131)) (-4158 (((-3 (-831 |#2|) "failed") |#2| (-294 (-831 |#2|))) 136)))
+(((-634 |#1| |#2|) (-10 -7 (-15 -2017 ((-3 (-841 |#2|) (-2 (|:| |leftHandLimit| (-3 (-841 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-841 |#2|) "failed"))) "failed") |#2| (-294 (-841 |#2|)))) (-15 -4158 ((-3 (-831 |#2|) "failed") |#2| (-294 (-831 |#2|)))) (-15 -2017 ((-3 (-841 |#2|) "failed") |#2| (-294 |#2|) (-1155)))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -634))
+((-2017 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1155)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-841 *3)) (-5 *1 (-634 *6 *3)))) (-4158 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-831 *3))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-831 *3)) (-5 *1 (-634 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-841 *3))) (-4 *3 (-13 (-27) (-1197) (-430 *5))) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-3 (-841 *3) (-2 (|:| |leftHandLimit| (-3 (-841 *3) "failed")) (|:| |rightHandLimit| (-3 (-841 *3) "failed"))) "failed")) (-5 *1 (-634 *5 *3)))))
+(-10 -7 (-15 -2017 ((-3 (-841 |#2|) (-2 (|:| |leftHandLimit| (-3 (-841 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-841 |#2|) "failed"))) "failed") |#2| (-294 (-841 |#2|)))) (-15 -4158 ((-3 (-831 |#2|) "failed") |#2| (-294 (-831 |#2|)))) (-15 -2017 ((-3 (-841 |#2|) "failed") |#2| (-294 |#2|) (-1155))))
+((-2017 (((-3 (-841 (-407 (-950 |#1|))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))) (-1155)) 85) (((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|)))) 20) (((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-841 (-950 |#1|)))) 35)) (-4158 (((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|)))) 23) (((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-831 (-950 |#1|)))) 43)))
+(((-635 |#1|) (-10 -7 (-15 -2017 ((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-841 (-950 |#1|))))) (-15 -2017 ((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -4158 ((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-831 (-950 |#1|))))) (-15 -4158 ((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -2017 ((-3 (-841 (-407 (-950 |#1|))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))) (-1155)))) (-452)) (T -635))
+((-2017 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-950 *6)))) (-5 *5 (-1155)) (-5 *3 (-407 (-950 *6))) (-4 *6 (-452)) (-5 *2 (-841 *3)) (-5 *1 (-635 *6)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5))) (-4 *5 (-452)) (-5 *2 (-831 *3)) (-5 *1 (-635 *5)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-831 (-950 *5)))) (-4 *5 (-452)) (-5 *2 (-831 (-407 (-950 *5)))) (-5 *1 (-635 *5)) (-5 *3 (-407 (-950 *5))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-841 *3) (-2 (|:| |leftHandLimit| (-3 (-841 *3) "failed")) (|:| |rightHandLimit| (-3 (-841 *3) "failed"))) "failed")) (-5 *1 (-635 *5)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-841 (-950 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-841 (-407 (-950 *5))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 *5))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 *5))) "failed"))) "failed")) (-5 *1 (-635 *5)) (-5 *3 (-407 (-950 *5))))))
+(-10 -7 (-15 -2017 ((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-841 (-950 |#1|))))) (-15 -2017 ((-3 (-841 (-407 (-950 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-841 (-407 (-950 |#1|))) "failed"))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -4158 ((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-831 (-950 |#1|))))) (-15 -4158 ((-831 (-407 (-950 |#1|))) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -2017 ((-3 (-841 (-407 (-950 |#1|))) "failed") (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))) (-1155))))
+((-1997 (((-3 (-1262 (-407 |#1|)) "failed") (-1262 |#2|) |#2|) 64 (-2268 (|has| |#1| (-363)))) (((-3 (-1262 |#1|) "failed") (-1262 |#2|) |#2|) 49 (|has| |#1| (-363)))) (-3243 (((-112) (-1262 |#2|)) 33)) (-1891 (((-3 (-1262 |#1|) "failed") (-1262 |#2|)) 40)))
+(((-636 |#1| |#2|) (-10 -7 (-15 -3243 ((-112) (-1262 |#2|))) (-15 -1891 ((-3 (-1262 |#1|) "failed") (-1262 |#2|))) (IF (|has| |#1| (-363)) (-15 -1997 ((-3 (-1262 |#1|) "failed") (-1262 |#2|) |#2|)) (-15 -1997 ((-3 (-1262 (-407 |#1|)) "failed") (-1262 |#2|) |#2|)))) (-556) (-637 |#1|)) (T -636))
+((-1997 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 *5)) (-2268 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1262 (-407 *5))) (-5 *1 (-636 *5 *4)))) (-1997 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-1262 *5)) (-5 *1 (-636 *5 *4)))) (-1891 (*1 *2 *3) (|partial| -12 (-5 *3 (-1262 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-1262 *4)) (-5 *1 (-636 *4 *5)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-1262 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
+(-10 -7 (-15 -3243 ((-112) (-1262 |#2|))) (-15 -1891 ((-3 (-1262 |#1|) "failed") (-1262 |#2|))) (IF (|has| |#1| (-363)) (-15 -1997 ((-3 (-1262 |#1|) "failed") (-1262 |#2|) |#2|)) (-15 -1997 ((-3 (-1262 (-407 |#1|)) "failed") (-1262 |#2|) |#2|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-4315 (((-687 |#1|) (-687 $)) 40) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 39)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-637 |#1|) (-140) (-1047)) (T -637))
+((-4315 (*1 *2 *3) (-12 (-5 *3 (-687 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1047)) (-5 *2 (-687 *4)))) (-4315 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *1)) (-5 *4 (-1262 *1)) (-4 *1 (-637 *5)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -1780 (-687 *5)) (|:| |vec| (-1262 *5)))))))
+(-13 (-1047) (-10 -8 (-15 -4315 ((-687 |t#1|) (-687 $))) (-15 -4315 ((-2 (|:| -1780 (-687 |t#1|)) (|:| |vec| (-1262 |t#1|))) (-687 $) (-1262 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 16 T CONST)) (-2872 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
+(((-638 |#1|) (-140) (-1055)) (T -638))
+NIL
+(-13 (-644 |t#1|) (-1049 |t#1|))
+(((-102) . T) ((-611 (-860)) . T) ((-644 |#1|) . T) ((-1049 |#1|) . T) ((-1097) . T))
+((-2072 ((|#2| (-642 |#1|) (-642 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-642 |#1|) (-642 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) |#2|) 17) ((|#2| (-642 |#1|) (-642 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|)) 12)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -2072 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|))) (-15 -2072 (|#2| (-642 |#1|) (-642 |#2|) |#1|)) (-15 -2072 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) |#2|)) (-15 -2072 (|#2| (-642 |#1|) (-642 |#2|) |#1| |#2|)) (-15 -2072 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) (-1 |#2| |#1|))) (-15 -2072 (|#2| (-642 |#1|) (-642 |#2|) |#1| (-1 |#2| |#1|)))) (-1097) (-1212)) (T -639))
+((-2072 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1097)) (-4 *2 (-1212)) (-5 *1 (-639 *5 *2)))) (-2072 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-642 *5)) (-5 *4 (-642 *6)) (-4 *5 (-1097)) (-4 *6 (-1212)) (-5 *1 (-639 *5 *6)))) (-2072 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-4 *5 (-1097)) (-4 *2 (-1212)) (-5 *1 (-639 *5 *2)))) (-2072 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 *5)) (-4 *6 (-1097)) (-4 *5 (-1212)) (-5 *2 (-1 *5 *6)) (-5 *1 (-639 *6 *5)))) (-2072 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-4 *5 (-1097)) (-4 *2 (-1212)) (-5 *1 (-639 *5 *2)))) (-2072 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *6)) (-4 *5 (-1097)) (-4 *6 (-1212)) (-5 *2 (-1 *6 *5)) (-5 *1 (-639 *5 *6)))))
+(-10 -7 (-15 -2072 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|))) (-15 -2072 (|#2| (-642 |#1|) (-642 |#2|) |#1|)) (-15 -2072 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) |#2|)) (-15 -2072 (|#2| (-642 |#1|) (-642 |#2|) |#1| |#2|)) (-15 -2072 ((-1 |#2| |#1|) (-642 |#1|) (-642 |#2|) (-1 |#2| |#1|))) (-15 -2072 (|#2| (-642 |#1|) (-642 |#2|) |#1| (-1 |#2| |#1|))))
+((-1910 (((-642 |#2|) (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|) 16)) (-1320 ((|#2| (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|) 18)) (-4358 (((-642 |#2|) (-1 |#2| |#1|) (-642 |#1|)) 13)))
+(((-640 |#1| |#2|) (-10 -7 (-15 -1910 ((-642 |#2|) (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|)) (-15 -1320 (|#2| (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|)) (-15 -4358 ((-642 |#2|) (-1 |#2| |#1|) (-642 |#1|)))) (-1212) (-1212)) (T -640))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-642 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-642 *6)) (-5 *1 (-640 *5 *6)))) (-1320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-642 *5)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-640 *5 *2)))) (-1910 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-642 *6)) (-4 *6 (-1212)) (-4 *5 (-1212)) (-5 *2 (-642 *5)) (-5 *1 (-640 *6 *5)))))
+(-10 -7 (-15 -1910 ((-642 |#2|) (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|)) (-15 -1320 (|#2| (-1 |#2| |#1| |#2|) (-642 |#1|) |#2|)) (-15 -4358 ((-642 |#2|) (-1 |#2| |#1|) (-642 |#1|))))
+((-4358 (((-642 |#3|) (-1 |#3| |#1| |#2|) (-642 |#1|) (-642 |#2|)) 21)))
+(((-641 |#1| |#2| |#3|) (-10 -7 (-15 -4358 ((-642 |#3|) (-1 |#3| |#1| |#2|) (-642 |#1|) (-642 |#2|)))) (-1212) (-1212) (-1212)) (T -641))
+((-4358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-642 *6)) (-5 *5 (-642 *7)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-642 *8)) (-5 *1 (-641 *6 *7 *8)))))
+(-10 -7 (-15 -4358 ((-642 |#3|) (-1 |#3| |#1| |#2|) (-642 |#1|) (-642 |#2|))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2085 ((|#1| $) NIL)) (-1807 ((|#1| $) NIL)) (-1416 (($ $) NIL)) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3256 (($ $ (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) $) NIL (|has| |#1| (-848))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2239 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2383 (($ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-3070 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-1505 (($ $ $) NIL (|has| $ (-6 -4411)))) (-2153 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-4059 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "rest" $) NIL (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-2484 (($ $ $) 37 (|has| |#1| (-1097)))) (-2471 (($ $ $) 41 (|has| |#1| (-1097)))) (-2457 (($ $ $) 44 (|has| |#1| (-1097)))) (-2462 (($ (-1 (-112) |#1|) $) NIL)) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1799 ((|#1| $) NIL)) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2570 (($ $) 23) (($ $ (-769)) NIL)) (-1938 (($ $) NIL (|has| |#1| (-1097)))) (-2595 (($ $) 36 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) NIL)) (-2490 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2625 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) NIL)) (-3297 (((-112) $) NIL)) (-3979 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097))) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) (-1 (-112) |#1|) $) NIL)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2259 (((-112) $) 11)) (-2622 (((-642 $) $) NIL)) (-1847 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3570 (($) 9)) (-4227 (($ (-769) |#1|) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-3427 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2740 (($ $ $) NIL (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2421 (($ |#1|) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-2628 (((-642 |#1|) $) NIL)) (-2376 (((-112) $) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2514 ((|#1| $) NIL) (($ $ (-769)) NIL)) (-3183 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-4238 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2557 ((|#1| $) 20) (($ $ (-769)) NIL)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-2531 (((-112) $) NIL)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) 39)) (-2972 (($) 38)) (-4368 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1229 (-564))) NIL) ((|#1| $ (-564)) 42) ((|#1| $ (-564) |#1|) NIL)) (-2137 (((-564) $ $) NIL)) (-3184 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-2073 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-1392 (((-112) $) NIL)) (-1444 (($ $) NIL)) (-2960 (($ $) NIL (|has| $ (-6 -4411)))) (-3399 (((-769) $) NIL)) (-3848 (($ $) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) 53 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) NIL)) (-1750 (($ |#1| $) 12)) (-2582 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3651 (($ $ $) 35) (($ |#1| $) 43) (($ (-642 $)) NIL) (($ $ |#1|) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) NIL)) (-3820 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2066 (($ $ $) 13)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1605 (((-1155) $) 31 (|has| |#1| (-826))) (((-1155) $ (-112)) 32 (|has| |#1| (-826))) (((-1267) (-820) $) 33 (|has| |#1| (-826))) (((-1267) (-820) $ (-112)) 34 (|has| |#1| (-826)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-642 |#1|) (-13 (-664 |#1|) (-10 -8 (-15 -3570 ($)) (-15 -2259 ((-112) $)) (-15 -1750 ($ |#1| $)) (-15 -2066 ($ $ $)) (IF (|has| |#1| (-1097)) (PROGN (-15 -2484 ($ $ $)) (-15 -2471 ($ $ $)) (-15 -2457 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|))) (-1212)) (T -642))
+((-3570 (*1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1212)))) (-1750 (*1 *1 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212)))) (-2066 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212)))) (-2484 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)))) (-2471 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)))) (-2457 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)))))
+(-13 (-664 |#1|) (-10 -8 (-15 -3570 ($)) (-15 -2259 ((-112) $)) (-15 -1750 ($ |#1| $)) (-15 -2066 ($ $ $)) (IF (|has| |#1| (-1097)) (PROGN (-15 -2484 ($ $ $)) (-15 -2471 ($ $ $)) (-15 -2457 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-826)) (-6 (-826)) |%noBranch|)))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 11) (($ (-1178)) NIL) (((-1178) $) NIL) ((|#1| $) 8)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-643 |#1|) (-13 (-1080) (-611 |#1|)) (-1097)) (T -643))
+NIL
+(-13 (-1080) (-611 |#1|))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 16 T CONST)) (-2872 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
+(((-644 |#1|) (-140) (-1055)) (T -644))
+((-2312 (*1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1055)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1055)))))
+(-13 (-1097) (-10 -8 (-15 (-2312) ($) -2858) (-15 -2952 ((-112) $)) (-15 * ($ |t#1| $))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2583 (($ |#1| |#1| $) 46)) (-3697 (((-112) $ (-769)) NIL)) (-2462 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-1938 (($ $) 48)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2265 (($ |#1| $) 59 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4410)))) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2936 (((-642 |#1|) $) 9 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 37)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2730 ((|#1| $) 50)) (-3183 (($ |#1| $) 29) (($ |#1| $ (-769)) 45)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3388 ((|#1| $) 53)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 23)) (-2972 (($) 28)) (-3641 (((-112) $) 57)) (-4381 (((-642 (-2 (|:| -3778 |#1|) (|:| -4043 (-769)))) $) 69)) (-2593 (($) 26) (($ (-642 |#1|)) 19)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) 66 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) 20)) (-1314 (((-536) $) 34 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) NIL)) (-2327 (((-860) $) 14 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) 24)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 71 (|has| |#1| (-1097)))) (-2127 (((-769) $) 17 (|has| $ (-6 -4410)))))
+(((-645 |#1|) (-13 (-693 |#1|) (-10 -8 (-6 -4410) (-15 -3641 ((-112) $)) (-15 -2583 ($ |#1| |#1| $)))) (-1097)) (T -645))
+((-3641 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1097)))) (-2583 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1097)))))
+(-13 (-693 |#1|) (-10 -8 (-6 -4410) (-15 -3641 ((-112) $)) (-15 -2583 ($ |#1| |#1| $))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27)))
+(((-646 |#1|) (-140) (-1055)) (T -646))
+NIL
+(-13 (-21) (-644 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769) $) 17)) (-3152 (($ $ |#1|) 69)) (-2087 (($ $) 39)) (-3115 (($ $) 37)) (-4278 (((-3 |#1| "failed") $) 61)) (-3027 ((|#1| $) NIL)) (-3116 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-4057 (((-860) $ (-1 (-860) (-860) (-860)) (-1 (-860) (-860) (-860)) (-564)) 56)) (-2123 ((|#1| $ (-564)) 35)) (-2659 ((|#2| $ (-564)) 34)) (-4317 (($ (-1 |#1| |#1|) $) 41)) (-2733 (($ (-1 |#2| |#2|) $) 47)) (-2553 (($) 11)) (-4142 (($ |#1| |#2|) 24)) (-1936 (($ (-642 (-2 (|:| |gen| |#1|) (|:| -1723 |#2|)))) 25)) (-3571 (((-642 (-2 (|:| |gen| |#1|) (|:| -1723 |#2|))) $) 14)) (-2224 (($ |#1| $) 71)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3033 (((-112) $ $) 76)) (-2327 (((-860) $) 21) (($ |#1|) 18)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 27)))
+(((-647 |#1| |#2| |#3|) (-13 (-1097) (-1036 |#1|) (-10 -8 (-15 -4057 ((-860) $ (-1 (-860) (-860) (-860)) (-1 (-860) (-860) (-860)) (-564))) (-15 -3571 ((-642 (-2 (|:| |gen| |#1|) (|:| -1723 |#2|))) $)) (-15 -4142 ($ |#1| |#2|)) (-15 -1936 ($ (-642 (-2 (|:| |gen| |#1|) (|:| -1723 |#2|))))) (-15 -2659 (|#2| $ (-564))) (-15 -2123 (|#1| $ (-564))) (-15 -3115 ($ $)) (-15 -2087 ($ $)) (-15 -2521 ((-769) $)) (-15 -2553 ($)) (-15 -3152 ($ $ |#1|)) (-15 -2224 ($ |#1| $)) (-15 -3116 ($ |#1| |#2| $)) (-15 -3116 ($ $ $)) (-15 -3033 ((-112) $ $)) (-15 -2733 ($ (-1 |#2| |#2|) $)) (-15 -4317 ($ (-1 |#1| |#1|) $)))) (-1097) (-23) |#2|) (T -647))
+((-4057 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-860) (-860) (-860))) (-5 *4 (-564)) (-5 *2 (-860)) (-5 *1 (-647 *5 *6 *7)) (-4 *5 (-1097)) (-4 *6 (-23)) (-14 *7 *6))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 *4)))) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4))) (-4142 (*1 *1 *2 *3) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 *4)))) (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-647 *3 *4 *5)))) (-2659 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-647 *4 *2 *5)) (-4 *4 (-1097)) (-14 *5 *2))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-1097)) (-5 *1 (-647 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3115 (*1 *1 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-2087 (*1 *1 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4))) (-2553 (*1 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-3152 (*1 *1 *1 *2) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-2224 (*1 *1 *2 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-3116 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-3116 (*1 *1 *1 *1) (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23)) (-14 *4 *3))) (-3033 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4))) (-2733 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)))) (-4317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-647 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1097) (-1036 |#1|) (-10 -8 (-15 -4057 ((-860) $ (-1 (-860) (-860) (-860)) (-1 (-860) (-860) (-860)) (-564))) (-15 -3571 ((-642 (-2 (|:| |gen| |#1|) (|:| -1723 |#2|))) $)) (-15 -4142 ($ |#1| |#2|)) (-15 -1936 ($ (-642 (-2 (|:| |gen| |#1|) (|:| -1723 |#2|))))) (-15 -2659 (|#2| $ (-564))) (-15 -2123 (|#1| $ (-564))) (-15 -3115 ($ $)) (-15 -2087 ($ $)) (-15 -2521 ((-769) $)) (-15 -2553 ($)) (-15 -3152 ($ $ |#1|)) (-15 -2224 ($ |#1| $)) (-15 -3116 ($ |#1| |#2| $)) (-15 -3116 ($ $ $)) (-15 -3033 ((-112) $ $)) (-15 -2733 ($ (-1 |#2| |#2|) $)) (-15 -4317 ($ (-1 |#1| |#1|) $))))
+((-3421 (((-564) $) 30)) (-4238 (($ |#2| $ (-564)) 26) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) 12)) (-4145 (((-112) (-564) $) 17)) (-3651 (($ $ |#2|) 23) (($ |#2| $) 24) (($ $ $) NIL) (($ (-642 $)) NIL)))
+(((-648 |#1| |#2|) (-10 -8 (-15 -4238 (|#1| |#1| |#1| (-564))) (-15 -4238 (|#1| |#2| |#1| (-564))) (-15 -3651 (|#1| (-642 |#1|))) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#2|)) (-15 -3421 ((-564) |#1|)) (-15 -3997 ((-642 (-564)) |#1|)) (-15 -4145 ((-112) (-564) |#1|))) (-649 |#2|) (-1212)) (T -648))
+NIL
+(-10 -8 (-15 -4238 (|#1| |#1| |#1| (-564))) (-15 -4238 (|#1| |#2| |#1| (-564))) (-15 -3651 (|#1| (-642 |#1|))) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#2|)) (-15 -3421 ((-564) |#1|)) (-15 -3997 ((-642 (-564)) |#1|)) (-15 -4145 ((-112) (-564) |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-1765 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) 8)) (-3877 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-2595 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 52)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-4227 (($ (-769) |#1|) 70)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 44 (|has| (-564) (-848)))) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 45 (|has| (-564) (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3997 (((-642 (-564)) $) 47)) (-4145 (((-112) (-564) $) 48)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2557 ((|#1| $) 43 (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2696 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-2073 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 71)) (-3651 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-649 |#1|) (-140) (-1212)) (T -649))
+((-4227 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-3651 (*1 *1 *1 *2) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212)))) (-3651 (*1 *1 *2 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212)))) (-3651 (*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-4358 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-2073 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-2073 (*1 *1 *1 *2) (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-4238 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-649 *2)) (-4 *2 (-1212)))) (-4238 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))) (-3877 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1229 (-564))) (|has| *1 (-6 -4411)) (-4 *1 (-649 *2)) (-4 *2 (-1212)))))
+(-13 (-602 (-564) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4227 ($ (-769) |t#1|)) (-15 -3651 ($ $ |t#1|)) (-15 -3651 ($ |t#1| $)) (-15 -3651 ($ $ $)) (-15 -3651 ($ (-642 $))) (-15 -4358 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4368 ($ $ (-1229 (-564)))) (-15 -2073 ($ $ (-564))) (-15 -2073 ($ $ (-1229 (-564)))) (-15 -4238 ($ |t#1| $ (-564))) (-15 -4238 ($ $ $ (-564))) (IF (|has| $ (-6 -4411)) (-15 -3877 (|t#1| $ (-1229 (-564)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-1616 (((-3 |#2| "failed") |#3| |#2| (-1173) |#2| (-642 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) "failed") |#3| |#2| (-1173)) 44)))
+(((-650 |#1| |#2| |#3|) (-10 -7 (-15 -1616 ((-3 (-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) "failed") |#3| |#2| (-1173))) (-15 -1616 ((-3 |#2| "failed") |#3| |#2| (-1173) |#2| (-642 |#2|)))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1197) (-957)) (-654 |#2|)) (T -650))
+((-1616 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 *2)) (-4 *2 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *1 (-650 *6 *2 *3)) (-4 *3 (-654 *2)))) (-1616 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1173)) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1197) (-957))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4263 (-642 *4)))) (-5 *1 (-650 *6 *4 *3)) (-4 *3 (-654 *4)))))
+(-10 -7 (-15 -1616 ((-3 (-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) "failed") |#3| |#2| (-1173))) (-15 -1616 ((-3 |#2| "failed") |#3| |#2| (-1173) |#2| (-642 |#2|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2163 (($ $) NIL (|has| |#1| (-363)))) (-2210 (($ $ $) NIL (|has| |#1| (-363)))) (-3662 (($ $ (-769)) NIL (|has| |#1| (-363)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-2164 (($ $ $) NIL (|has| |#1| (-363)))) (-2345 (($ $ $) NIL (|has| |#1| (-363)))) (-2901 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (($ $ $) NIL (|has| |#1| (-363)))) (-3208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-1517 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3480 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-452)))) (-3953 (((-112) $) NIL)) (-3774 (($ |#1| (-769)) NIL)) (-3082 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-556)))) (-2670 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-556)))) (-1398 (((-769) $) NIL)) (-4137 (($ $ $) NIL (|has| |#1| (-363)))) (-1555 (($ $ $) NIL (|has| |#1| (-363)))) (-2578 (($ $ $) NIL (|has| |#1| (-363)))) (-3813 (($ $ $) NIL (|has| |#1| (-363)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3531 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2603 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4368 ((|#1| $ |#1|) NIL)) (-4030 (($ $ $) NIL (|has| |#1| (-363)))) (-2775 (((-769) $) NIL)) (-4028 ((|#1| $) NIL (|has| |#1| (-452)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) NIL)) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-769)) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2497 ((|#1| $ |#1| |#1|) NIL)) (-3899 (($ $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($) NIL)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-651 |#1|) (-654 |#1|) (-233)) (T -651))
+NIL
+(-654 |#1|)
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2163 (($ $) NIL (|has| |#1| (-363)))) (-2210 (($ $ $) NIL (|has| |#1| (-363)))) (-3662 (($ $ (-769)) NIL (|has| |#1| (-363)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-2164 (($ $ $) NIL (|has| |#1| (-363)))) (-2345 (($ $ $) NIL (|has| |#1| (-363)))) (-2901 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (($ $ $) NIL (|has| |#1| (-363)))) (-3208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-1517 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3480 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-452)))) (-3953 (((-112) $) NIL)) (-3774 (($ |#1| (-769)) NIL)) (-3082 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-556)))) (-2670 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-556)))) (-1398 (((-769) $) NIL)) (-4137 (($ $ $) NIL (|has| |#1| (-363)))) (-1555 (($ $ $) NIL (|has| |#1| (-363)))) (-2578 (($ $ $) NIL (|has| |#1| (-363)))) (-3813 (($ $ $) NIL (|has| |#1| (-363)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3531 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2603 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4368 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4030 (($ $ $) NIL (|has| |#1| (-363)))) (-2775 (((-769) $) NIL)) (-4028 ((|#1| $) NIL (|has| |#1| (-452)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) NIL)) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-769)) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2497 ((|#1| $ |#1| |#1|) NIL)) (-3899 (($ $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($) NIL)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-652 |#1| |#2|) (-13 (-654 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-646 |#1|) (-10 -8 (-15 -3175 ($ $))))) (T -652))
+NIL
+(-13 (-654 |#1|) (-286 |#2| |#2|))
+((-2163 (($ $) 29)) (-3899 (($ $) 27)) (-4044 (($) 13)))
+(((-653 |#1| |#2|) (-10 -8 (-15 -2163 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -4044 (|#1|))) (-654 |#2|) (-1047)) (T -653))
+NIL
+(-10 -8 (-15 -2163 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -4044 (|#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-2163 (($ $) 87 (|has| |#1| (-363)))) (-2210 (($ $ $) 89 (|has| |#1| (-363)))) (-3662 (($ $ (-769)) 88 (|has| |#1| (-363)))) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-2164 (($ $ $) 50 (|has| |#1| (-363)))) (-2345 (($ $ $) 51 (|has| |#1| (-363)))) (-2901 (($ $ $) 53 (|has| |#1| (-363)))) (-3286 (($ $ $) 48 (|has| |#1| (-363)))) (-3208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 47 (|has| |#1| (-363)))) (-1517 (((-3 $ "failed") $ $) 49 (|has| |#1| (-363)))) (-3480 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 52 (|has| |#1| (-363)))) (-4278 (((-3 (-564) "failed") $) 80 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 77 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 74)) (-3027 (((-564) $) 79 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 76 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 75)) (-1718 (($ $) 69)) (-3104 (((-3 $ "failed") $) 37)) (-3246 (($ $) 60 (|has| |#1| (-452)))) (-3953 (((-112) $) 35)) (-3774 (($ |#1| (-769)) 67)) (-3082 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 62 (|has| |#1| (-556)))) (-2670 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63 (|has| |#1| (-556)))) (-1398 (((-769) $) 71)) (-4137 (($ $ $) 57 (|has| |#1| (-363)))) (-1555 (($ $ $) 58 (|has| |#1| (-363)))) (-2578 (($ $ $) 46 (|has| |#1| (-363)))) (-3813 (($ $ $) 55 (|has| |#1| (-363)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 54 (|has| |#1| (-363)))) (-3531 (((-3 $ "failed") $ $) 56 (|has| |#1| (-363)))) (-2603 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 59 (|has| |#1| (-363)))) (-3962 ((|#1| $) 70)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2896 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-556)))) (-4368 ((|#1| $ |#1|) 92)) (-4030 (($ $ $) 86 (|has| |#1| (-363)))) (-2775 (((-769) $) 72)) (-4028 ((|#1| $) 61 (|has| |#1| (-452)))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 78 (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) 73)) (-3849 (((-642 |#1|) $) 66)) (-2102 ((|#1| $ (-769)) 68)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2497 ((|#1| $ |#1| |#1|) 65)) (-3899 (($ $) 90)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($) 91)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-654 |#1|) (-140) (-1047)) (T -654))
+((-4044 (*1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)))) (-3899 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)))) (-2210 (*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3662 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-654 *3)) (-4 *3 (-1047)) (-4 *3 (-363)))) (-2163 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-4030 (*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(-13 (-850 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -4044 ($)) (-15 -3899 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -2210 ($ $ $)) (-15 -3662 ($ $ (-769))) (-15 -2163 ($ $)) (-15 -4030 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-286 |#1| |#1|) . T) ((-411 |#1|) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) |has| |#1| (-172)) ((-715 |#1|) |has| |#1| (-172)) ((-724) . T) ((-1036 #0#) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-850 |#1|) . T))
+((-1697 (((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|))) 88 (|has| |#1| (-27)))) (-3643 (((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|))) 87 (|has| |#1| (-27))) (((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|)) 19)))
+(((-655 |#1| |#2|) (-10 -7 (-15 -3643 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3643 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|)))) (-15 -1697 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))) (-1238 |#1|)) (T -655))
+((-1697 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-651 (-407 *5)))) (-5 *1 (-655 *4 *5)) (-5 *3 (-651 (-407 *5))))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-651 (-407 *5)))) (-5 *1 (-655 *4 *5)) (-5 *3 (-651 (-407 *5))))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-651 (-407 *6)))) (-5 *1 (-655 *5 *6)) (-5 *3 (-651 (-407 *6))))))
+(-10 -7 (-15 -3643 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3643 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|)))) (-15 -1697 ((-642 (-651 (-407 |#2|))) (-651 (-407 |#2|))))) |%noBranch|))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2163 (($ $) NIL (|has| |#1| (-363)))) (-2210 (($ $ $) 28 (|has| |#1| (-363)))) (-3662 (($ $ (-769)) 31 (|has| |#1| (-363)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-2164 (($ $ $) NIL (|has| |#1| (-363)))) (-2345 (($ $ $) NIL (|has| |#1| (-363)))) (-2901 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (($ $ $) NIL (|has| |#1| (-363)))) (-3208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-1517 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3480 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-452)))) (-3953 (((-112) $) NIL)) (-3774 (($ |#1| (-769)) NIL)) (-3082 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-556)))) (-2670 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-556)))) (-1398 (((-769) $) NIL)) (-4137 (($ $ $) NIL (|has| |#1| (-363)))) (-1555 (($ $ $) NIL (|has| |#1| (-363)))) (-2578 (($ $ $) NIL (|has| |#1| (-363)))) (-3813 (($ $ $) NIL (|has| |#1| (-363)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3531 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2603 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4368 ((|#1| $ |#1|) 24)) (-4030 (($ $ $) 33 (|has| |#1| (-363)))) (-2775 (((-769) $) NIL)) (-4028 ((|#1| $) NIL (|has| |#1| (-452)))) (-2327 (((-860) $) 20) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) NIL)) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-769)) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2497 ((|#1| $ |#1| |#1|) 23)) (-3899 (($ $) NIL)) (-2312 (($) 21 T CONST)) (-2322 (($) 8 T CONST)) (-4044 (($) NIL)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-656 |#1| |#2|) (-654 |#1|) (-1047) (-1 |#1| |#1|)) (T -656))
+NIL
+(-654 |#1|)
+((-2210 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-3662 ((|#2| |#2| (-769) (-1 |#1| |#1|)) 48)) (-4030 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
+(((-657 |#1| |#2|) (-10 -7 (-15 -2210 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3662 (|#2| |#2| (-769) (-1 |#1| |#1|))) (-15 -4030 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-654 |#1|)) (T -657))
+((-4030 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-657 *4 *2)) (-4 *2 (-654 *4)))) (-3662 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-657 *5 *2)) (-4 *2 (-654 *5)))) (-2210 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-657 *4 *2)) (-4 *2 (-654 *4)))))
+(-10 -7 (-15 -2210 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3662 (|#2| |#2| (-769) (-1 |#1| |#1|))) (-15 -4030 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2971 (($ $ $) 9)))
+(((-658 |#1|) (-10 -8 (-15 -2971 (|#1| |#1| |#1|))) (-659)) (T -658))
+NIL
+(-10 -8 (-15 -2971 (|#1| |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2918 (($ $) 10)) (-2971 (($ $ $) 8)) (-2872 (((-112) $ $) 6)) (-2958 (($ $ $) 9)))
+(((-659) (-140)) (T -659))
+((-2918 (*1 *1 *1) (-4 *1 (-659))) (-2958 (*1 *1 *1 *1) (-4 *1 (-659))) (-2971 (*1 *1 *1 *1) (-4 *1 (-659))))
+(-13 (-102) (-10 -8 (-15 -2918 ($ $)) (-15 -2958 ($ $ $)) (-15 -2971 ($ $ $))))
(((-102) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 15)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-2323 ((|#1| $) 23)) (-2855 (($ $ $) NIL (|has| |#1| (-787)))) (-1497 (($ $ $) NIL (|has| |#1| (-787)))) (-2766 (((-1152) $) 48)) (-4052 (((-1114) $) NIL)) (-2336 ((|#3| $) 24)) (-2423 (((-858) $) 43)) (-1860 (((-112) $ $) 22)) (-2403 (($) 10 T CONST)) (-3034 (((-112) $ $) NIL (|has| |#1| (-787)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-787)))) (-2974 (((-112) $ $) 20)) (-3023 (((-112) $ $) NIL (|has| |#1| (-787)))) (-2999 (((-112) $ $) 26 (|has| |#1| (-787)))) (-3092 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3082 (($ $) 17) (($ $ $) NIL)) (-3070 (($ $ $) 29)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
-(((-658 |#1| |#2| |#3|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -3092 ($ $ |#3|)) (-15 -3092 ($ |#1| |#3|)) (-15 -2323 (|#1| $)) (-15 -2336 (|#3| $)))) (-713 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -658))
-((-3092 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-713 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-3092 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-658 *2 *4 *3)) (-4 *2 (-713 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-2323 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-658 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-2336 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-713 *4)))))
-(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -3092 ($ $ |#3|)) (-15 -3092 ($ |#1| |#3|)) (-15 -2323 (|#1| $)) (-15 -2336 (|#3| $))))
-((-3355 (((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)) 33)))
-(((-659 |#1|) (-10 -7 (-15 -3355 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)))) (-905)) (T -659))
-((-3355 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4)) (-4 *4 (-905)) (-5 *1 (-659 *4)))))
-(-10 -7 (-15 -3355 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3058 (((-641 |#1|) $) 84)) (-1661 (($ $ (-767)) 94)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1662 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 50)) (-4284 (((-3 (-668 |#1|) "failed") $) NIL)) (-3120 (((-668 |#1|) $) NIL)) (-1684 (($ $) 93)) (-2497 (((-767) $) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3290 (($ (-668 |#1|) |#2|) 70)) (-4275 (($ $) 89)) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-4107 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 49)) (-3171 (((-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3971 (((-668 |#1|) $) NIL)) (-3982 ((|#2| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3291 (($ $ |#1| $) 32) (($ $ (-641 |#1|) (-641 $)) 34)) (-1568 (((-767) $) 91)) (-2435 (($ $ $) 20) (($ (-668 |#1|) (-668 |#1|)) 79) (($ (-668 |#1|) $) 77) (($ $ (-668 |#1|)) 78)) (-2423 (((-858) $) NIL) (($ |#1|) 76) (((-1274 |#1| |#2|) $) 60) (((-1283 |#1| |#2|) $) 43) (($ (-668 |#1|)) 27)) (-3191 (((-641 |#2|) $) NIL)) (-2007 ((|#2| $ (-668 |#1|)) NIL)) (-4376 ((|#2| (-1283 |#1| |#2|) $) 45)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 23 T CONST)) (-2404 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2194 (((-3 $ "failed") (-1274 |#1| |#2|)) 62)) (-3435 (($ (-668 |#1|)) 14)) (-2974 (((-112) $ $) 46)) (-3092 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3082 (($ $) 68) (($ $ $) NIL)) (-3070 (($ $ $) 31)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-668 |#1|)) NIL)))
-(((-660 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -2194 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -2435 ($ (-668 |#1|) (-668 |#1|))) (-15 -2435 ($ (-668 |#1|) $)) (-15 -2435 ($ $ (-668 |#1|))))) (-846) (-172)) (T -660))
-((-2194 (*1 *1 *2) (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-660 *3 *4)))) (-2435 (*1 *1 *2 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-2435 (*1 *1 *2 *1) (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))))
-(-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -2194 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -2435 ($ (-668 |#1|) (-668 |#1|))) (-15 -2435 ($ (-668 |#1|) $)) (-15 -2435 ($ $ (-668 |#1|)))))
-((-3833 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-3963 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1466 (($ (-1 (-112) |#2|) $) 29)) (-2563 (($ $) 67)) (-2679 (($ $) 78)) (-1945 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-1316 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-3998 (((-564) |#2| $ (-564)) 75) (((-564) |#2| $) NIL) (((-564) (-1 (-112) |#2|) $) 56)) (-4238 (($ (-767) |#2|) 65)) (-2087 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3669 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4357 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-2522 (($ |#2|) 15)) (-2566 (($ $ $ (-564)) 42) (($ |#2| $ (-564)) 40)) (-2139 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2251 (($ $ (-1226 (-564))) 51) (($ $ (-564)) 44)) (-3806 (($ $ $ (-564)) 74)) (-3926 (($ $) 72)) (-2999 (((-112) $ $) 80)))
-(((-661 |#1| |#2|) (-10 -8 (-15 -2522 (|#1| |#2|)) (-15 -2251 (|#1| |#1| (-564))) (-15 -2251 (|#1| |#1| (-1226 (-564)))) (-15 -1945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2566 (|#1| |#2| |#1| (-564))) (-15 -2566 (|#1| |#1| |#1| (-564))) (-15 -2087 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1466 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -2679 (|#1| |#1|)) (-15 -2087 (|#1| |#1| |#1|)) (-15 -3669 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3833 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3998 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3998 ((-564) |#2| |#1|)) (-15 -3998 ((-564) |#2| |#1| (-564))) (-15 -3669 (|#1| |#1| |#1|)) (-15 -3833 ((-112) |#1|)) (-15 -3806 (|#1| |#1| |#1| (-564))) (-15 -2563 (|#1| |#1|)) (-15 -3963 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -2999 ((-112) |#1| |#1|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2139 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4238 (|#1| (-767) |#2|)) (-15 -4357 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3926 (|#1| |#1|))) (-662 |#2|) (-1209)) (T -661))
-NIL
-(-10 -8 (-15 -2522 (|#1| |#2|)) (-15 -2251 (|#1| |#1| (-564))) (-15 -2251 (|#1| |#1| (-1226 (-564)))) (-15 -1945 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2566 (|#1| |#2| |#1| (-564))) (-15 -2566 (|#1| |#1| |#1| (-564))) (-15 -2087 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1466 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -2679 (|#1| |#1|)) (-15 -2087 (|#1| |#1| |#1|)) (-15 -3669 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3833 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3998 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3998 ((-564) |#2| |#1|)) (-15 -3998 ((-564) |#2| |#1| (-564))) (-15 -3669 (|#1| |#1| |#1|)) (-15 -3833 ((-112) |#1|)) (-15 -3806 (|#1| |#1| |#1| (-564))) (-15 -2563 (|#1| |#1|)) (-15 -3963 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -2999 ((-112) |#1| |#1|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1316 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2139 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4238 (|#1| (-767) |#2|)) (-15 -4357 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3926 (|#1| |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2128 ((|#1| $) 49)) (-1783 ((|#1| $) 66)) (-1403 (($ $) 68)) (-3236 (((-1264) $ (-564) (-564)) 98 (|has| $ (-6 -4408)))) (-3611 (($ $ (-564)) 53 (|has| $ (-6 -4408)))) (-3833 (((-112) $) 143 (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-3963 (($ $) 147 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4408)))) (-2484 (($ $) 142 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1876 (((-112) $ (-767)) 8)) (-2925 ((|#1| $ |#1|) 40 (|has| $ (-6 -4408)))) (-1886 (($ $ $) 57 (|has| $ (-6 -4408)))) (-1776 ((|#1| $ |#1|) 55 (|has| $ (-6 -4408)))) (-4265 ((|#1| $ |#1|) 59 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4408))) (($ $ "rest" $) 56 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) 118 (|has| $ (-6 -4408))) ((|#1| $ (-564) |#1|) 87 (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 42 (|has| $ (-6 -4408)))) (-1466 (($ (-1 (-112) |#1|) $) 130)) (-1667 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4407)))) (-1772 ((|#1| $) 67)) (-4080 (($) 7 T CONST)) (-2563 (($ $) 145 (|has| $ (-6 -4408)))) (-3200 (($ $) 135)) (-2671 (($ $) 74) (($ $ (-767)) 72)) (-2679 (($ $) 132 (|has| |#1| (-1094)))) (-2696 (($ $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1945 (($ |#1| $) 131 (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 126)) (-2591 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4407))) (($ |#1| $) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2726 ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 88)) (-2643 (((-112) $) 84)) (-3998 (((-564) |#1| $ (-564)) 140 (|has| |#1| (-1094))) (((-564) |#1| $) 139 (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) 138)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) 51)) (-1675 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4238 (($ (-767) |#1|) 109)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 96 (|has| (-564) (-846)))) (-2855 (($ $ $) 148 (|has| |#1| (-846)))) (-2087 (($ $ $) 133 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-3669 (($ $ $) 141 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 95 (|has| (-564) (-846)))) (-1497 (($ $ $) 149 (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2522 (($ |#1|) 123)) (-3619 (((-112) $ (-767)) 10)) (-2730 (((-641 |#1|) $) 46)) (-1841 (((-112) $) 50)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2615 ((|#1| $) 71) (($ $ (-767)) 69)) (-2566 (($ $ $ (-564)) 128) (($ |#1| $ (-564)) 127)) (-4248 (($ $ $ (-564)) 117) (($ |#1| $ (-564)) 116)) (-3050 (((-641 (-564)) $) 93)) (-1563 (((-112) (-564) $) 92)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2658 ((|#1| $) 77) (($ $ (-767)) 75)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1592 (($ $ |#1|) 97 (|has| $ (-6 -4408)))) (-1555 (((-112) $) 85)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) 91)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1226 (-564))) 113) ((|#1| $ (-564)) 90) ((|#1| $ (-564) |#1|) 89)) (-3277 (((-564) $ $) 45)) (-2251 (($ $ (-1226 (-564))) 125) (($ $ (-564)) 124)) (-2114 (($ $ (-1226 (-564))) 115) (($ $ (-564)) 114)) (-3206 (((-112) $) 47)) (-3068 (($ $) 63)) (-2602 (($ $) 60 (|has| $ (-6 -4408)))) (-3004 (((-767) $) 64)) (-1977 (($ $) 65)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3806 (($ $ $ (-564)) 144 (|has| $ (-6 -4408)))) (-3926 (($ $) 13)) (-1311 (((-536) $) 99 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 108)) (-3634 (($ $ $) 62) (($ $ |#1|) 61)) (-3696 (($ $ $) 79) (($ |#1| $) 78) (($ (-641 $)) 111) (($ $ |#1|) 110)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) 52)) (-4059 (((-112) $ $) 44 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) 151 (|has| |#1| (-846)))) (-3011 (((-112) $ $) 152 (|has| |#1| (-846)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3023 (((-112) $ $) 150 (|has| |#1| (-846)))) (-2999 (((-112) $ $) 153 (|has| |#1| (-846)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-662 |#1|) (-140) (-1209)) (T -662))
-((-2522 (*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209)))))
-(-13 (-1143 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -2522 ($ |t#1|))))
-(((-34) . T) ((-102) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1006 |#1|) . T) ((-1094) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T))
-((-4256 (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|))) 22) (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 14)) (-2514 (((-767) (-685 |#1|) (-1259 |#1|)) 30)) (-4319 (((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|)) 24)) (-2329 (((-112) (-685 |#1|) (-1259 |#1|)) 27)))
-(((-663 |#1|) (-10 -7 (-15 -4256 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -4256 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -4256 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -4256 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -4319 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -2329 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -2514 ((-767) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -663))
-((-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-663 *5)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-663 *5)))) (-4319 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *1 (-663 *4)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -2047 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -2047 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -2047 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -2047 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))))
-(-10 -7 (-15 -4256 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -4256 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -4256 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -4256 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -4319 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -2329 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -2514 ((-767) (-685 |#1|) (-1259 |#1|))))
-((-4256 (((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2047 (-641 |#3|)))) |#4| (-641 |#3|)) 65) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2047 (-641 |#3|))) |#4| |#3|) 59)) (-2514 (((-767) |#4| |#3|) 18)) (-4319 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2329 (((-112) |#4| |#3|) 14)))
-(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4256 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2047 (-641 |#3|))) |#4| |#3|)) (-15 -4256 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2047 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -4319 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2329 ((-112) |#4| |#3|)) (-15 -2514 ((-767) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4408))) (-13 (-373 |#1|) (-10 -7 (-6 -4408))) (-683 |#1| |#2| |#3|)) (T -664))
-((-2514 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-767)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-2329 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-112)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-4319 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4408)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))) (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2)))) (-4256 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-641 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2047 (-641 *7))))) (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7)) (-4 *3 (-683 *5 *6 *7)))) (-4256 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4)))) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))))
-(-10 -7 (-15 -4256 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2047 (-641 |#3|))) |#4| |#3|)) (-15 -4256 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2047 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -4319 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2329 ((-112) |#4| |#3|)) (-15 -2514 ((-767) |#4| |#3|)))
-((-1463 (((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -2047 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)) 54)))
-(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1463 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -2047 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)))) (-556) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -665))
-((-1463 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed")) (|:| -2047 (-641 (-1259 (-407 *8)))))) (-5 *1 (-665 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1463 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -2047 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2885 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3847 ((|#2| $) NIL)) (-4239 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1472 (((-1259 (-685 |#2|))) NIL) (((-1259 (-685 |#2|)) (-1259 $)) NIL)) (-3999 (((-112) $) NIL)) (-1336 (((-1259 $)) 44)) (-1876 (((-112) $ (-767)) NIL)) (-3483 (($ |#2|) NIL)) (-4080 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| |#2| (-307)))) (-4086 (((-240 |#1| |#2|) $ (-564)) NIL)) (-1441 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-3436 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-1955 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-1774 ((|#2| $) NIL)) (-1765 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-4015 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-4317 (((-1166 (-948 |#2|))) NIL (|has| |#2| (-363)))) (-3232 (($ $ (-917)) NIL)) (-2335 ((|#2| $) NIL)) (-2140 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-3216 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-2280 (((-1166 |#2|) $) NIL)) (-1804 (((-112)) NIL)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) ((|#2| $) NIL)) (-3474 (($ (-1259 |#2|)) NIL) (($ (-1259 |#2|) (-1259 $)) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2514 (((-767) $) NIL (|has| |#2| (-556))) (((-917)) 45)) (-2652 ((|#2| $ (-564) (-564)) NIL)) (-3117 (((-112)) NIL)) (-3532 (($ $ (-917)) NIL)) (-3035 (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-4112 (((-112) $) NIL)) (-2907 (((-767) $) NIL (|has| |#2| (-556)))) (-2383 (((-641 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-556)))) (-2667 (((-767) $) NIL)) (-3502 (((-112)) NIL)) (-2681 (((-767) $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-2665 ((|#2| $) NIL (|has| |#2| (-6 (-4409 "*"))))) (-1795 (((-564) $) NIL)) (-2980 (((-564) $) NIL)) (-1554 (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2283 (((-564) $) NIL)) (-2287 (((-564) $) NIL)) (-2322 (($ (-641 (-641 |#2|))) NIL)) (-2714 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3587 (((-641 (-641 |#2|)) $) NIL)) (-1506 (((-112)) NIL)) (-1873 (((-112)) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2330 (((-3 (-2 (|:| |particular| $) (|:| -2047 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-4005 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3803 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-2415 ((|#2| $) NIL)) (-2069 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-2378 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-3189 (((-1166 (-948 |#2|))) NIL (|has| |#2| (-363)))) (-2105 (($ $ (-917)) NIL)) (-3188 ((|#2| $) NIL)) (-2739 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-1960 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-4254 (((-1166 |#2|) $) NIL)) (-3172 (((-112)) NIL)) (-2766 (((-1152) $) NIL)) (-4312 (((-112)) NIL)) (-2654 (((-112)) NIL)) (-3642 (((-112)) NIL)) (-2540 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-4052 (((-1114) $) NIL)) (-3353 (((-112)) NIL)) (-2998 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-4377 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) 30) ((|#2| $ (-564)) NIL)) (-3254 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2868 ((|#2| $) NIL)) (-2006 (($ (-641 |#2|)) NIL)) (-2701 (((-112) $) NIL)) (-1773 (((-240 |#1| |#2|) $) NIL)) (-1540 ((|#2| $) NIL (|has| |#2| (-6 (-4409 "*"))))) (-4062 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-3926 (($ $) NIL)) (-4225 (((-685 |#2|) (-1259 $)) NIL) (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $ (-1259 $)) 33)) (-1311 (($ (-1259 |#2|)) NIL) (((-1259 |#2|) $) NIL)) (-3620 (((-641 (-948 |#2|))) NIL) (((-641 (-948 |#2|)) (-1259 $)) NIL)) (-1542 (($ $ $) NIL)) (-2151 (((-112)) NIL)) (-1575 (((-240 |#1| |#2|) $ (-564)) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1034 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) 43)) (-2363 (((-641 (-1259 |#2|))) NIL (|has| |#2| (-556)))) (-3099 (($ $ $ $) NIL)) (-2846 (((-112)) NIL)) (-2598 (($ (-685 |#2|) $) NIL)) (-1368 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3113 (((-112) $) NIL)) (-3163 (($ $ $) NIL)) (-2620 (((-112)) NIL)) (-2896 (((-112)) NIL)) (-4103 (((-112)) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-666 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-417 |#2|)) (-917) (-172)) (T -666))
-NIL
-(-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-417 |#2|))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-4202 (((-641 (-1129)) $) 10)) (-2423 (((-858) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-667) (-13 (-1077) (-10 -8 (-15 -4202 ((-641 (-1129)) $))))) (T -667))
-((-4202 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667)))))
-(-13 (-1077) (-10 -8 (-15 -4202 ((-641 (-1129)) $))))
-((-3009 (((-112) $ $) NIL)) (-3058 (((-641 |#1|) $) NIL)) (-4337 (($ $) 67)) (-1884 (((-112) $) NIL)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-4144 (((-3 $ "failed") (-815 |#1|)) 27)) (-3284 (((-112) (-815 |#1|)) 17)) (-2881 (($ (-815 |#1|)) 28)) (-1582 (((-112) $ $) 36)) (-2581 (((-917) $) 43)) (-4328 (($ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3688 (((-641 $) (-815 |#1|)) 19)) (-2423 (((-858) $) 51) (($ |#1|) 40) (((-815 |#1|) $) 47) (((-673 |#1|) $) 52)) (-1860 (((-112) $ $) NIL)) (-3529 (((-59 (-641 $)) (-641 |#1|) (-917)) 72)) (-1847 (((-641 $) (-641 |#1|) (-917)) 76)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 68)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 46)))
-(((-668 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 -1884 ((-112) $)) (-15 -4328 ($ $)) (-15 -4337 ($ $)) (-15 -2581 ((-917) $)) (-15 -1582 ((-112) $ $)) (-15 -2423 ((-815 |#1|) $)) (-15 -2423 ((-673 |#1|) $)) (-15 -3688 ((-641 $) (-815 |#1|))) (-15 -3284 ((-112) (-815 |#1|))) (-15 -2881 ($ (-815 |#1|))) (-15 -4144 ((-3 $ "failed") (-815 |#1|))) (-15 -3058 ((-641 |#1|) $)) (-15 -3529 ((-59 (-641 $)) (-641 |#1|) (-917))) (-15 -1847 ((-641 $) (-641 |#1|) (-917))))) (-846)) (T -668))
-((-1884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-4328 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-846)))) (-4337 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-846)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-1582 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-641 (-668 *4))) (-5 *1 (-668 *4)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112)) (-5 *1 (-668 *4)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-668 *3)))) (-4144 (*1 *1 *2) (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-668 *3)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-917)) (-4 *5 (-846)) (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5)))) (-1847 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-917)) (-4 *5 (-846)) (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5)))))
-(-13 (-846) (-1034 |#1|) (-10 -8 (-15 -1884 ((-112) $)) (-15 -4328 ($ $)) (-15 -4337 ($ $)) (-15 -2581 ((-917) $)) (-15 -1582 ((-112) $ $)) (-15 -2423 ((-815 |#1|) $)) (-15 -2423 ((-673 |#1|) $)) (-15 -3688 ((-641 $) (-815 |#1|))) (-15 -3284 ((-112) (-815 |#1|))) (-15 -2881 ($ (-815 |#1|))) (-15 -4144 ((-3 $ "failed") (-815 |#1|))) (-15 -3058 ((-641 |#1|) $)) (-15 -3529 ((-59 (-641 $)) (-641 |#1|) (-917))) (-15 -1847 ((-641 $) (-641 |#1|) (-917)))))
-((-2128 ((|#2| $) 103)) (-1403 (($ $) 124)) (-1876 (((-112) $ (-767)) 35)) (-2671 (($ $) 112) (($ $ (-767)) 115)) (-2643 (((-112) $) 125)) (-3573 (((-641 $) $) 99)) (-1675 (((-112) $ $) 95)) (-3097 (((-112) $ (-767)) 33)) (-1956 (((-564) $) 69)) (-2898 (((-564) $) 68)) (-3619 (((-112) $ (-767)) 31)) (-1841 (((-112) $) 101)) (-2615 ((|#2| $) 116) (($ $ (-767)) 120)) (-4248 (($ $ $ (-564)) 86) (($ |#2| $ (-564)) 85)) (-3050 (((-641 (-564)) $) 67)) (-1563 (((-112) (-564) $) 61)) (-2658 ((|#2| $) NIL) (($ $ (-767)) 111)) (-4016 (($ $ (-564)) 128)) (-1555 (((-112) $) 127)) (-4377 (((-112) (-1 (-112) |#2|) $) 44)) (-2075 (((-641 |#2|) $) 48)) (-4366 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1226 (-564))) 82) ((|#2| $ (-564)) 59) ((|#2| $ (-564) |#2|) 60)) (-3277 (((-564) $ $) 94)) (-2114 (($ $ (-1226 (-564))) 81) (($ $ (-564)) 75)) (-3206 (((-112) $) 90)) (-3068 (($ $) 108)) (-3004 (((-767) $) 107)) (-1977 (($ $) 106)) (-2435 (($ (-641 |#2|)) 55)) (-2732 (($ $) 129)) (-3154 (((-641 $) $) 93)) (-4059 (((-112) $ $) 92)) (-1368 (((-112) (-1 (-112) |#2|) $) 43)) (-2974 (((-112) $ $) 20)) (-2181 (((-767) $) 41)))
-(((-669 |#1| |#2|) (-10 -8 (-15 -2732 (|#1| |#1|)) (-15 -4016 (|#1| |#1| (-564))) (-15 -2643 ((-112) |#1|)) (-15 -1555 ((-112) |#1|)) (-15 -4366 (|#2| |#1| (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564))) (-15 -2075 ((-641 |#2|) |#1|)) (-15 -1563 ((-112) (-564) |#1|)) (-15 -3050 ((-641 (-564)) |#1|)) (-15 -2898 ((-564) |#1|)) (-15 -1956 ((-564) |#1|)) (-15 -2435 (|#1| (-641 |#2|))) (-15 -4366 (|#1| |#1| (-1226 (-564)))) (-15 -2114 (|#1| |#1| (-564))) (-15 -2114 (|#1| |#1| (-1226 (-564)))) (-15 -4248 (|#1| |#2| |#1| (-564))) (-15 -4248 (|#1| |#1| |#1| (-564))) (-15 -3068 (|#1| |#1|)) (-15 -3004 ((-767) |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -2615 (|#1| |#1| (-767))) (-15 -4366 (|#2| |#1| "last")) (-15 -2615 (|#2| |#1|)) (-15 -2671 (|#1| |#1| (-767))) (-15 -4366 (|#1| |#1| "rest")) (-15 -2671 (|#1| |#1|)) (-15 -2658 (|#1| |#1| (-767))) (-15 -4366 (|#2| |#1| "first")) (-15 -2658 (|#2| |#1|)) (-15 -1675 ((-112) |#1| |#1|)) (-15 -4059 ((-112) |#1| |#1|)) (-15 -3277 ((-564) |#1| |#1|)) (-15 -3206 ((-112) |#1|)) (-15 -4366 (|#2| |#1| "value")) (-15 -2128 (|#2| |#1|)) (-15 -1841 ((-112) |#1|)) (-15 -3573 ((-641 |#1|) |#1|)) (-15 -3154 ((-641 |#1|) |#1|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -4377 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2181 ((-767) |#1|)) (-15 -1876 ((-112) |#1| (-767))) (-15 -3097 ((-112) |#1| (-767))) (-15 -3619 ((-112) |#1| (-767)))) (-670 |#2|) (-1209)) (T -669))
-NIL
-(-10 -8 (-15 -2732 (|#1| |#1|)) (-15 -4016 (|#1| |#1| (-564))) (-15 -2643 ((-112) |#1|)) (-15 -1555 ((-112) |#1|)) (-15 -4366 (|#2| |#1| (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564))) (-15 -2075 ((-641 |#2|) |#1|)) (-15 -1563 ((-112) (-564) |#1|)) (-15 -3050 ((-641 (-564)) |#1|)) (-15 -2898 ((-564) |#1|)) (-15 -1956 ((-564) |#1|)) (-15 -2435 (|#1| (-641 |#2|))) (-15 -4366 (|#1| |#1| (-1226 (-564)))) (-15 -2114 (|#1| |#1| (-564))) (-15 -2114 (|#1| |#1| (-1226 (-564)))) (-15 -4248 (|#1| |#2| |#1| (-564))) (-15 -4248 (|#1| |#1| |#1| (-564))) (-15 -3068 (|#1| |#1|)) (-15 -3004 ((-767) |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -2615 (|#1| |#1| (-767))) (-15 -4366 (|#2| |#1| "last")) (-15 -2615 (|#2| |#1|)) (-15 -2671 (|#1| |#1| (-767))) (-15 -4366 (|#1| |#1| "rest")) (-15 -2671 (|#1| |#1|)) (-15 -2658 (|#1| |#1| (-767))) (-15 -4366 (|#2| |#1| "first")) (-15 -2658 (|#2| |#1|)) (-15 -1675 ((-112) |#1| |#1|)) (-15 -4059 ((-112) |#1| |#1|)) (-15 -3277 ((-564) |#1| |#1|)) (-15 -3206 ((-112) |#1|)) (-15 -4366 (|#2| |#1| "value")) (-15 -2128 (|#2| |#1|)) (-15 -1841 ((-112) |#1|)) (-15 -3573 ((-641 |#1|) |#1|)) (-15 -3154 ((-641 |#1|) |#1|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -4377 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2181 ((-767) |#1|)) (-15 -1876 ((-112) |#1| (-767))) (-15 -3097 ((-112) |#1| (-767))) (-15 -3619 ((-112) |#1| (-767))))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2128 ((|#1| $) 49)) (-1783 ((|#1| $) 66)) (-1403 (($ $) 68)) (-3236 (((-1264) $ (-564) (-564)) 98 (|has| $ (-6 -4408)))) (-3611 (($ $ (-564)) 53 (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) 8)) (-2925 ((|#1| $ |#1|) 40 (|has| $ (-6 -4408)))) (-1886 (($ $ $) 57 (|has| $ (-6 -4408)))) (-1776 ((|#1| $ |#1|) 55 (|has| $ (-6 -4408)))) (-4265 ((|#1| $ |#1|) 59 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4408))) (($ $ "rest" $) 56 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) 118 (|has| $ (-6 -4408))) ((|#1| $ (-564) |#1|) 87 (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 42 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) 103)) (-1772 ((|#1| $) 67)) (-4080 (($) 7 T CONST)) (-3716 (($ $) 125)) (-2671 (($ $) 74) (($ $ (-767)) 72)) (-2696 (($ $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#1| $) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 104)) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2726 ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 88)) (-2643 (((-112) $) 84)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-2056 (((-767) $) 124)) (-3573 (((-641 $) $) 51)) (-1675 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4238 (($ (-767) |#1|) 109)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 96 (|has| (-564) (-846)))) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 95 (|has| (-564) (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3619 (((-112) $ (-767)) 10)) (-2730 (((-641 |#1|) $) 46)) (-1841 (((-112) $) 50)) (-3773 (($ $) 127)) (-3258 (((-112) $) 128)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2615 ((|#1| $) 71) (($ $ (-767)) 69)) (-4248 (($ $ $ (-564)) 117) (($ |#1| $ (-564)) 116)) (-3050 (((-641 (-564)) $) 93)) (-1563 (((-112) (-564) $) 92)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3758 ((|#1| $) 126)) (-2658 ((|#1| $) 77) (($ $ (-767)) 75)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1592 (($ $ |#1|) 97 (|has| $ (-6 -4408)))) (-4016 (($ $ (-564)) 123)) (-1555 (((-112) $) 85)) (-4348 (((-112) $) 129)) (-1828 (((-112) $) 130)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) 91)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1226 (-564))) 113) ((|#1| $ (-564)) 90) ((|#1| $ (-564) |#1|) 89)) (-3277 (((-564) $ $) 45)) (-2114 (($ $ (-1226 (-564))) 115) (($ $ (-564)) 114)) (-3206 (((-112) $) 47)) (-3068 (($ $) 63)) (-2602 (($ $) 60 (|has| $ (-6 -4408)))) (-3004 (((-767) $) 64)) (-1977 (($ $) 65)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 99 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 108)) (-3634 (($ $ $) 62 (|has| $ (-6 -4408))) (($ $ |#1|) 61 (|has| $ (-6 -4408)))) (-3696 (($ $ $) 79) (($ |#1| $) 78) (($ (-641 $)) 111) (($ $ |#1|) 110)) (-2732 (($ $) 122)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) 52)) (-4059 (((-112) $ $) 44 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-670 |#1|) (-140) (-1209)) (T -670))
-((-2591 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-1667 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-1828 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-4348 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-3716 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-2056 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-2732 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
-(-13 (-1143 |t#1|) (-10 -8 (-15 -2591 ($ (-1 (-112) |t#1|) $)) (-15 -1667 ($ (-1 (-112) |t#1|) $)) (-15 -1828 ((-112) $)) (-15 -4348 ((-112) $)) (-15 -3258 ((-112) $)) (-15 -3773 ($ $)) (-15 -3758 (|t#1| $)) (-15 -3716 ($ $)) (-15 -2056 ((-767) $)) (-15 -4016 ($ $ (-564))) (-15 -2732 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3794 (($ (-767) (-767) (-767)) 55 (|has| |#1| (-1045)))) (-1876 (((-112) $ (-767)) NIL)) (-3371 ((|#1| $ (-767) (-767) (-767) |#1|) 49)) (-4080 (($) NIL T CONST)) (-3201 (($ $ $) 60 (|has| |#1| (-1045)))) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1635 (((-1259 (-767)) $) 12)) (-1346 (($ (-1170) $ $) 37)) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2492 (($ (-767)) 57 (|has| |#1| (-1045)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-767) (-767) (-767)) 46)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-2435 (($ (-641 (-641 (-641 |#1|)))) 70)) (-2423 (($ (-954 (-954 (-954 |#1|)))) 23) (((-954 (-954 (-954 |#1|))) $) 19) (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-671 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -3794 ($ (-767) (-767) (-767))) (-15 -2492 ($ (-767))) (-15 -3201 ($ $ $))) |%noBranch|) (-15 -2435 ($ (-641 (-641 (-641 |#1|))))) (-15 -4366 (|#1| $ (-767) (-767) (-767))) (-15 -3371 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -2423 ($ (-954 (-954 (-954 |#1|))))) (-15 -2423 ((-954 (-954 (-954 |#1|))) $)) (-15 -1346 ($ (-1170) $ $)) (-15 -1635 ((-1259 (-767)) $)))) (-1094)) (T -671))
-((-3794 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-671 *3)) (-4 *3 (-1045)) (-4 *3 (-1094)))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-671 *3)) (-4 *3 (-1045)) (-4 *3 (-1094)))) (-3201 (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-1045)) (-4 *2 (-1094)))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-4366 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-767)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-3371 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-1346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-1259 (-767))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))))
-(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -3794 ($ (-767) (-767) (-767))) (-15 -2492 ($ (-767))) (-15 -3201 ($ $ $))) |%noBranch|) (-15 -2435 ($ (-641 (-641 (-641 |#1|))))) (-15 -4366 (|#1| $ (-767) (-767) (-767))) (-15 -3371 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -2423 ($ (-954 (-954 (-954 |#1|))))) (-15 -2423 ((-954 (-954 (-954 |#1|))) $)) (-15 -1346 ($ (-1170) $ $)) (-15 -1635 ((-1259 (-767)) $))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-2944 (((-483) $) 10)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2575 (((-1129) $) 12)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-672) (-13 (-1077) (-10 -8 (-15 -2944 ((-483) $)) (-15 -2575 ((-1129) $))))) (T -672))
-((-2944 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-672)))))
-(-13 (-1077) (-10 -8 (-15 -2944 ((-483) $)) (-15 -2575 ((-1129) $))))
-((-3009 (((-112) $ $) NIL)) (-3058 (((-641 |#1|) $) 15)) (-4337 (($ $) 19)) (-1884 (((-112) $) 20)) (-4284 (((-3 |#1| "failed") $) 23)) (-3120 ((|#1| $) 21)) (-2671 (($ $) 37)) (-4275 (($ $) 25)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-1582 (((-112) $ $) 46)) (-2581 (((-917) $) 40)) (-4328 (($ $) 18)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 ((|#1| $) 36)) (-2423 (((-858) $) 32) (($ |#1|) 24) (((-815 |#1|) $) 28)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 13)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 44)) (* (($ $ $) 35)))
-(((-673 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2423 ((-815 |#1|) $)) (-15 -2658 (|#1| $)) (-15 -4328 ($ $)) (-15 -2581 ((-917) $)) (-15 -1582 ((-112) $ $)) (-15 -4275 ($ $)) (-15 -2671 ($ $)) (-15 -1884 ((-112) $)) (-15 -4337 ($ $)) (-15 -3058 ((-641 |#1|) $)))) (-846)) (T -673))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) (-2658 (*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-4328 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) (-1582 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) (-4275 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-2671 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-846)))) (-4337 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-673 *3)) (-4 *3 (-846)))))
-(-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2423 ((-815 |#1|) $)) (-15 -2658 (|#1| $)) (-15 -4328 ($ $)) (-15 -2581 ((-917) $)) (-15 -1582 ((-112) $ $)) (-15 -4275 ($ $)) (-15 -2671 ($ $)) (-15 -1884 ((-112) $)) (-15 -4337 ($ $)) (-15 -3058 ((-641 |#1|) $))))
-((-4210 ((|#1| (-1 |#1| (-767) |#1|) (-767) |#1|) 14)) (-1616 ((|#1| (-1 |#1| |#1|) (-767) |#1|) 12)))
-(((-674 |#1|) (-10 -7 (-15 -1616 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -4210 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|))) (-1094)) (T -674))
-((-4210 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1094)) (-5 *1 (-674 *2)))) (-1616 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1094)) (-5 *1 (-674 *2)))))
-(-10 -7 (-15 -1616 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -4210 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|)))
-((-2077 ((|#2| |#1| |#2|) 9)) (-2066 ((|#1| |#1| |#2|) 8)))
-(((-675 |#1| |#2|) (-10 -7 (-15 -2066 (|#1| |#1| |#2|)) (-15 -2077 (|#2| |#1| |#2|))) (-1094) (-1094)) (T -675))
-((-2077 (*1 *2 *3 *2) (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-2066 (*1 *2 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(-10 -7 (-15 -2066 (|#1| |#1| |#2|)) (-15 -2077 (|#2| |#1| |#2|)))
-((-3245 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-676 |#1| |#2| |#3|) (-10 -7 (-15 -3245 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1094) (-1094) (-1094)) (T -676))
-((-3245 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2)))))
-(-10 -7 (-15 -3245 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-3830 (((-1208) $) 21)) (-3771 (((-641 (-1208)) $) 19)) (-1614 (($ (-641 (-1208)) (-1208)) 14)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 29) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 22) (($ (-1112)) 10)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-677) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -2423 ($ (-1112))) (-15 -1614 ($ (-641 (-1208)) (-1208))) (-15 -3771 ((-641 (-1208)) $)) (-15 -3830 ((-1208) $))))) (T -677))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677)))) (-1614 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677)))))
-(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -2423 ($ (-1112))) (-15 -1614 ($ (-641 (-1208)) (-1208))) (-15 -3771 ((-641 (-1208)) $)) (-15 -3830 ((-1208) $))))
-((-4210 (((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)) 29)) (-1413 (((-1 |#1|) |#1|) 8)) (-4215 ((|#1| |#1|) 23)) (-4229 (((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-2423 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-767)) 26)))
-(((-678 |#1|) (-10 -7 (-15 -1413 ((-1 |#1|) |#1|)) (-15 -2423 ((-1 |#1|) |#1|)) (-15 -4229 (|#1| (-1 |#1| |#1|))) (-15 -4229 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -4215 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -4210 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)))) (-1094)) (T -678))
-((-4210 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1094)) (-5 *1 (-678 *4)))) (-4215 (*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564)) (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094)))) (-4229 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-2423 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))) (-1413 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))))
-(-10 -7 (-15 -1413 ((-1 |#1|) |#1|)) (-15 -2423 ((-1 |#1|) |#1|)) (-15 -4229 (|#1| (-1 |#1| |#1|))) (-15 -4229 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -4215 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -4210 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|))))
-((-4240 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4179 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2959 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2018 (((-1 |#2| |#1|) |#2|) 11)))
-(((-679 |#1| |#2|) (-10 -7 (-15 -2018 ((-1 |#2| |#1|) |#2|)) (-15 -4179 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2959 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4240 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1094) (-1094)) (T -679))
-((-4240 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)) (-4 *4 (-1094)))) (-4179 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5)))) (-2018 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1094)))))
-(-10 -7 (-15 -2018 ((-1 |#2| |#1|) |#2|)) (-15 -4179 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2959 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4240 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2810 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1657 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2704 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3941 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2033 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-680 |#1| |#2| |#3|) (-10 -7 (-15 -1657 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2704 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3941 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2033 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2810 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1094) (-1094) (-1094)) (T -680))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) (-5 *1 (-680 *5 *6 *7)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6)))) (-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6)))))
-(-10 -7 (-15 -1657 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2704 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3941 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2033 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2810 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-1316 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4357 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-681 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4357 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4357 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1316 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1045) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-1045) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -681))
-((-1316 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9)))) (-4357 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))))
-(-10 -7 (-15 -4357 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4357 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1316 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-4122 (($ (-767) (-767)) 43)) (-1837 (($ $ $) 71)) (-3816 (($ |#3|) 66) (($ $) 67)) (-4239 (((-112) $) 38)) (-3152 (($ $ (-564) (-564)) 81)) (-2190 (($ $ (-564) (-564)) 82)) (-2886 (($ $ (-564) (-564) (-564) (-564)) 87)) (-3468 (($ $) 69)) (-3999 (((-112) $) 15)) (-2255 (($ $ (-564) (-564) $) 88)) (-3904 ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) 86)) (-3483 (($ (-767) |#2|) 53)) (-2322 (($ (-641 (-641 |#2|))) 51)) (-3587 (((-641 (-641 |#2|)) $) 78)) (-1796 (($ $ $) 70)) (-2998 (((-3 $ "failed") $ |#2|) 120)) (-4366 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-2006 (($ (-641 |#2|)) 54) (($ (-641 $)) 56)) (-2701 (((-112) $) 28)) (-2423 (($ |#4|) 61) (((-858) $) NIL)) (-3113 (((-112) $) 40)) (-3092 (($ $ |#2|) 122)) (-3082 (($ $ $) 92) (($ $) 95)) (-3070 (($ $ $) 90)) (** (($ $ (-767)) 109) (($ $ (-564)) 127)) (* (($ $ $) 101) (($ |#2| $) 97) (($ $ |#2|) 98) (($ (-564) $) 100) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
-(((-682 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2423 ((-858) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3092 (|#1| |#1| |#2|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -2255 (|#1| |#1| (-564) (-564) |#1|)) (-15 -2886 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -2190 (|#1| |#1| (-564) (-564))) (-15 -3152 (|#1| |#1| (-564) (-564))) (-15 -3904 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -4366 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -3587 ((-641 (-641 |#2|)) |#1|)) (-15 -1837 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3816 (|#1| |#3|)) (-15 -2423 (|#1| |#4|)) (-15 -2006 (|#1| (-641 |#1|))) (-15 -2006 (|#1| (-641 |#2|))) (-15 -3483 (|#1| (-767) |#2|)) (-15 -2322 (|#1| (-641 (-641 |#2|)))) (-15 -4122 (|#1| (-767) (-767))) (-15 -3113 ((-112) |#1|)) (-15 -4239 ((-112) |#1|)) (-15 -2701 ((-112) |#1|)) (-15 -3999 ((-112) |#1|)) (-15 -3904 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564) (-564)))) (-683 |#2| |#3| |#4|) (-1045) (-373 |#2|) (-373 |#2|)) (T -682))
-NIL
-(-10 -8 (-15 -2423 ((-858) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3092 (|#1| |#1| |#2|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -2255 (|#1| |#1| (-564) (-564) |#1|)) (-15 -2886 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -2190 (|#1| |#1| (-564) (-564))) (-15 -3152 (|#1| |#1| (-564) (-564))) (-15 -3904 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -4366 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -3587 ((-641 (-641 |#2|)) |#1|)) (-15 -1837 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3816 (|#1| |#3|)) (-15 -2423 (|#1| |#4|)) (-15 -2006 (|#1| (-641 |#1|))) (-15 -2006 (|#1| (-641 |#2|))) (-15 -3483 (|#1| (-767) |#2|)) (-15 -2322 (|#1| (-641 (-641 |#2|)))) (-15 -4122 (|#1| (-767) (-767))) (-15 -3113 ((-112) |#1|)) (-15 -4239 ((-112) |#1|)) (-15 -2701 ((-112) |#1|)) (-15 -3999 ((-112) |#1|)) (-15 -3904 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564) (-564))))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4122 (($ (-767) (-767)) 98)) (-1837 (($ $ $) 88)) (-3816 (($ |#2|) 92) (($ $) 91)) (-4239 (((-112) $) 100)) (-3152 (($ $ (-564) (-564)) 84)) (-2190 (($ $ (-564) (-564)) 83)) (-2886 (($ $ (-564) (-564) (-564) (-564)) 82)) (-3468 (($ $) 90)) (-3999 (((-112) $) 102)) (-1876 (((-112) $ (-767)) 8)) (-2255 (($ $ (-564) (-564) $) 81)) (-3904 ((|#1| $ (-564) (-564) |#1|) 45) (($ $ (-641 (-564)) (-641 (-564)) $) 85)) (-1440 (($ $ (-564) |#2|) 43)) (-3404 (($ $ (-564) |#3|) 42)) (-3483 (($ (-767) |#1|) 96)) (-4080 (($) 7 T CONST)) (-1679 (($ $) 68 (|has| |#1| (-307)))) (-4086 ((|#2| $ (-564)) 47)) (-2514 (((-767) $) 67 (|has| |#1| (-556)))) (-2726 ((|#1| $ (-564) (-564) |#1|) 44)) (-2652 ((|#1| $ (-564) (-564)) 49)) (-3035 (((-641 |#1|) $) 31)) (-2907 (((-767) $) 66 (|has| |#1| (-556)))) (-2383 (((-641 |#3|) $) 65 (|has| |#1| (-556)))) (-2667 (((-767) $) 52)) (-4238 (($ (-767) (-767) |#1|) 58)) (-2681 (((-767) $) 51)) (-3097 (((-112) $ (-767)) 9)) (-2665 ((|#1| $) 63 (|has| |#1| (-6 (-4409 "*"))))) (-1795 (((-564) $) 56)) (-2980 (((-564) $) 54)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2283 (((-564) $) 55)) (-2287 (((-564) $) 53)) (-2322 (($ (-641 (-641 |#1|))) 97)) (-2714 (($ (-1 |#1| |#1|) $) 35)) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3587 (((-641 (-641 |#1|)) $) 87)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2540 (((-3 $ "failed") $) 62 (|has| |#1| (-363)))) (-1796 (($ $ $) 89)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1592 (($ $ |#1|) 57)) (-2998 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-556)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ (-564) (-564)) 50) ((|#1| $ (-564) (-564) |#1|) 48) (($ $ (-641 (-564)) (-641 (-564))) 86)) (-2006 (($ (-641 |#1|)) 95) (($ (-641 $)) 94)) (-2701 (((-112) $) 101)) (-1540 ((|#1| $) 64 (|has| |#1| (-6 (-4409 "*"))))) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1575 ((|#3| $ (-564)) 46)) (-2423 (($ |#3|) 93) (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-3113 (((-112) $) 99)) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3092 (($ $ |#1|) 69 (|has| |#1| (-363)))) (-3082 (($ $ $) 79) (($ $) 78)) (-3070 (($ $ $) 80)) (** (($ $ (-767)) 71) (($ $ (-564)) 61 (|has| |#1| (-363)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-564) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-683 |#1| |#2| |#3|) (-140) (-1045) (-373 |t#1|) (-373 |t#1|)) (T -683))
-((-3999 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-4122 (*1 *1 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3483 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2006 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2006 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2423 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-3816 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-3816 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3468 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1796 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1837 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3587 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3))))) (-4366 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3904 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3152 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2190 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2886 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2255 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3070 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3082 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3082 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2998 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) (-3092 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-1679 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-767)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-767)))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))) (-2540 (*1 *1 *1) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4408) (-6 -4407) (-15 -3999 ((-112) $)) (-15 -2701 ((-112) $)) (-15 -4239 ((-112) $)) (-15 -3113 ((-112) $)) (-15 -4122 ($ (-767) (-767))) (-15 -2322 ($ (-641 (-641 |t#1|)))) (-15 -3483 ($ (-767) |t#1|)) (-15 -2006 ($ (-641 |t#1|))) (-15 -2006 ($ (-641 $))) (-15 -2423 ($ |t#3|)) (-15 -3816 ($ |t#2|)) (-15 -3816 ($ $)) (-15 -3468 ($ $)) (-15 -1796 ($ $ $)) (-15 -1837 ($ $ $)) (-15 -3587 ((-641 (-641 |t#1|)) $)) (-15 -4366 ($ $ (-641 (-564)) (-641 (-564)))) (-15 -3904 ($ $ (-641 (-564)) (-641 (-564)) $)) (-15 -3152 ($ $ (-564) (-564))) (-15 -2190 ($ $ (-564) (-564))) (-15 -2886 ($ $ (-564) (-564) (-564) (-564))) (-15 -2255 ($ $ (-564) (-564) $)) (-15 -3070 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -3082 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-564) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-767))) (IF (|has| |t#1| (-556)) (-15 -2998 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -3092 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -1679 ($ $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2514 ((-767) $)) (-15 -2907 ((-767) $)) (-15 -2383 ((-641 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4409 "*"))) (PROGN (-15 -1540 (|t#1| $)) (-15 -2665 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -2540 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-57 |#1| |#2| |#3|) . T) ((-1209) . T))
-((-1679 ((|#4| |#4|) 97 (|has| |#1| (-307)))) (-2514 (((-767) |#4|) 126 (|has| |#1| (-556)))) (-2907 (((-767) |#4|) 101 (|has| |#1| (-556)))) (-2383 (((-641 |#3|) |#4|) 108 (|has| |#1| (-556)))) (-1829 (((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|) 140 (|has| |#1| (-307)))) (-2665 ((|#1| |#4|) 57)) (-3795 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-556)))) (-2540 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-363)))) (-3419 ((|#4| |#4|) 93 (|has| |#1| (-556)))) (-1894 ((|#4| |#4| |#1| (-564) (-564)) 65)) (-4315 ((|#4| |#4| (-564) (-564)) 60)) (-3694 ((|#4| |#4| |#1| (-564) (-564)) 70)) (-1540 ((|#1| |#4|) 103)) (-3527 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-556)))))
-(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1540 (|#1| |#4|)) (-15 -2665 (|#1| |#4|)) (-15 -4315 (|#4| |#4| (-564) (-564))) (-15 -1894 (|#4| |#4| |#1| (-564) (-564))) (-15 -3694 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -2514 ((-767) |#4|)) (-15 -2907 ((-767) |#4|)) (-15 -2383 ((-641 |#3|) |#4|)) (-15 -3419 (|#4| |#4|)) (-15 -3795 ((-3 |#4| "failed") |#4|)) (-15 -3527 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -1679 (|#4| |#4|)) (-15 -1829 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2540 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -684))
-((-2540 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1829 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5)))) (-1679 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3527 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3795 (*1 *2 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3419 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2383 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2907 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2514 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3694 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-1894 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-4315 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2)) (-4 *2 (-683 *4 *5 *6)))) (-2665 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-1540 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))))
-(-10 -7 (-15 -1540 (|#1| |#4|)) (-15 -2665 (|#1| |#4|)) (-15 -4315 (|#4| |#4| (-564) (-564))) (-15 -1894 (|#4| |#4| |#1| (-564) (-564))) (-15 -3694 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -2514 ((-767) |#4|)) (-15 -2907 ((-767) |#4|)) (-15 -2383 ((-641 |#3|) |#4|)) (-15 -3419 (|#4| |#4|)) (-15 -3795 ((-3 |#4| "failed") |#4|)) (-15 -3527 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -1679 (|#4| |#4|)) (-15 -1829 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2540 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4122 (($ (-767) (-767)) 63)) (-1837 (($ $ $) NIL)) (-3816 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-4239 (((-112) $) NIL)) (-3152 (($ $ (-564) (-564)) 21)) (-2190 (($ $ (-564) (-564)) NIL)) (-2886 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3468 (($ $) NIL)) (-3999 (((-112) $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-2255 (($ $ (-564) (-564) $) NIL)) (-3904 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-1440 (($ $ (-564) (-1259 |#1|)) NIL)) (-3404 (($ $ (-564) (-1259 |#1|)) NIL)) (-3483 (($ (-767) |#1|) 36)) (-4080 (($) NIL T CONST)) (-1679 (($ $) 45 (|has| |#1| (-307)))) (-4086 (((-1259 |#1|) $ (-564)) NIL)) (-2514 (((-767) $) 47 (|has| |#1| (-556)))) (-2726 ((|#1| $ (-564) (-564) |#1|) 68)) (-2652 ((|#1| $ (-564) (-564)) NIL)) (-3035 (((-641 |#1|) $) NIL)) (-2907 (((-767) $) 49 (|has| |#1| (-556)))) (-2383 (((-641 (-1259 |#1|)) $) 52 (|has| |#1| (-556)))) (-2667 (((-767) $) 31)) (-4238 (($ (-767) (-767) |#1|) 27)) (-2681 (((-767) $) 32)) (-3097 (((-112) $ (-767)) NIL)) (-2665 ((|#1| $) 43 (|has| |#1| (-6 (-4409 "*"))))) (-1795 (((-564) $) 10)) (-2980 (((-564) $) 11)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2283 (((-564) $) 14)) (-2287 (((-564) $) 64)) (-2322 (($ (-641 (-641 |#1|))) NIL)) (-2714 (($ (-1 |#1| |#1|) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3587 (((-641 (-641 |#1|)) $) 75)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2540 (((-3 $ "failed") $) 59 (|has| |#1| (-363)))) (-1796 (($ $ $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1592 (($ $ |#1|) NIL)) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-2006 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL) (($ (-1259 |#1|)) 69)) (-2701 (((-112) $) NIL)) (-1540 ((|#1| $) 41 (|has| |#1| (-6 (-4409 "*"))))) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-1311 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1575 (((-1259 |#1|) $ (-564)) NIL)) (-2423 (($ (-1259 |#1|)) NIL) (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3113 (((-112) $) NIL)) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $ $) NIL) (($ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-767)) 37) (($ $ (-564)) 61 (|has| |#1| (-363)))) (* (($ $ $) 23) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) NIL) (((-1259 |#1|) (-1259 |#1|) $) NIL)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-685 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -2006 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2540 ((-3 $ "failed") $)) |%noBranch|))) (-1045)) (T -685))
-((-2540 (*1 *1 *1) (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1045)))) (-2006 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))))
-(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -2006 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2540 ((-3 $ "failed") $)) |%noBranch|)))
-((-3032 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 37)) (-3498 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 34)) (-4321 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-767)) 43)) (-3761 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 27)) (-4165 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 31) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 29)) (-4260 (((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|)) 33)) (-1858 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 25)) (** (((-685 |#1|) (-685 |#1|) (-767)) 46)))
-(((-686 |#1|) (-10 -7 (-15 -1858 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3761 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4165 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4165 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4260 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -3498 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -3032 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4321 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-767))) (-15 ** ((-685 |#1|) (-685 |#1|) (-767)))) (-1045)) (T -686))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-686 *4)))) (-4321 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-686 *4)))) (-3032 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-3498 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-4260 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-4165 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-4165 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-3761 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))) (-1858 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))))
-(-10 -7 (-15 -1858 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3761 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4165 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4165 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4260 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -3498 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -3032 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4321 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-767))) (-15 ** ((-685 |#1|) (-685 |#1|) (-767))))
-((-4284 (((-3 |#1| "failed") $) 18)) (-3120 ((|#1| $) NIL)) (-3413 (($) 7 T CONST)) (-3542 (($ |#1|) 8)) (-2423 (($ |#1|) 16) (((-858) $) 23)) (-2396 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3413)) 11)) (-3961 ((|#1| $) 15)))
-(((-687 |#1|) (-13 (-1254) (-1034 |#1|) (-611 (-858)) (-10 -8 (-15 -3542 ($ |#1|)) (-15 -2396 ((-112) $ (|[\|\|]| |#1|))) (-15 -2396 ((-112) $ (|[\|\|]| -3413))) (-15 -3961 (|#1| $)) (-15 -3413 ($) -2959))) (-611 (-858))) (T -687))
-((-3542 (*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858))))) (-2396 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-858))) (-5 *2 (-112)) (-5 *1 (-687 *4)))) (-2396 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3413)) (-5 *2 (-112)) (-5 *1 (-687 *4)) (-4 *4 (-611 (-858))))) (-3961 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858))))) (-3413 (*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858))))))
-(-13 (-1254) (-1034 |#1|) (-611 (-858)) (-10 -8 (-15 -3542 ($ |#1|)) (-15 -2396 ((-112) $ (|[\|\|]| |#1|))) (-15 -2396 ((-112) $ (|[\|\|]| -3413))) (-15 -3961 (|#1| $)) (-15 -3413 ($) -2959)))
-((-2527 ((|#2| |#2| |#4|) 33)) (-2862 (((-685 |#2|) |#3| |#4|) 39)) (-1556 (((-685 |#2|) |#2| |#4|) 38)) (-1672 (((-1259 |#2|) |#2| |#4|) 16)) (-4190 ((|#2| |#3| |#4|) 32)) (-3940 (((-685 |#2|) |#3| |#4| (-767) (-767)) 50)) (-2635 (((-685 |#2|) |#2| |#4| (-767)) 49)))
-(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1672 ((-1259 |#2|) |#2| |#4|)) (-15 -4190 (|#2| |#3| |#4|)) (-15 -2527 (|#2| |#2| |#4|)) (-15 -1556 ((-685 |#2|) |#2| |#4|)) (-15 -2635 ((-685 |#2|) |#2| |#4| (-767))) (-15 -2862 ((-685 |#2|) |#3| |#4|)) (-15 -3940 ((-685 |#2|) |#3| |#4| (-767) (-767)))) (-1094) (-896 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4407)))) (T -688))
-((-3940 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *7 (-896 *6)) (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4407)))))) (-2862 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-896 *5)) (-5 *2 (-685 *6)) (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))) (-2635 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *3 (-896 *6)) (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4407)))))) (-1556 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-685 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))) (-2527 (*1 *2 *2 *3) (-12 (-4 *4 (-1094)) (-4 *2 (-896 *4)) (-5 *1 (-688 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4407)))))) (-4190 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *2 (-896 *5)) (-5 *1 (-688 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))) (-1672 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-1259 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))))
-(-10 -7 (-15 -1672 ((-1259 |#2|) |#2| |#4|)) (-15 -4190 (|#2| |#3| |#4|)) (-15 -2527 (|#2| |#2| |#4|)) (-15 -1556 ((-685 |#2|) |#2| |#4|)) (-15 -2635 ((-685 |#2|) |#2| |#4| (-767))) (-15 -2862 ((-685 |#2|) |#3| |#4|)) (-15 -3940 ((-685 |#2|) |#3| |#4| (-767) (-767))))
-((-1566 (((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)) 20)) (-2201 ((|#1| (-685 |#2|)) 9)) (-1434 (((-685 |#1|) (-685 |#2|)) 18)))
-(((-689 |#1| |#2|) (-10 -7 (-15 -2201 (|#1| (-685 |#2|))) (-15 -1434 ((-685 |#1|) (-685 |#2|))) (-15 -1566 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)))) (-556) (-988 |#1|)) (T -689))
-((-1566 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-988 *4)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4))) (-5 *1 (-689 *4 *5)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-988 *4)) (-4 *4 (-556)) (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-689 *2 *4)))))
-(-10 -7 (-15 -2201 (|#1| (-685 |#2|))) (-15 -1434 ((-685 |#1|) (-685 |#2|))) (-15 -1566 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-2270 (((-685 (-695))) NIL) (((-685 (-695)) (-1259 $)) NIL)) (-3847 (((-695) $) NIL)) (-3880 (($ $) NIL (|has| (-695) (-1194)))) (-3745 (($ $) NIL (|has| (-695) (-1194)))) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-695) (-349)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-905))))) (-2683 (($ $) NIL (-2807 (-12 (|has| (-695) (-307)) (|has| (-695) (-905))) (|has| (-695) (-363))))) (-2753 (((-418 $) $) NIL (-2807 (-12 (|has| (-695) (-307)) (|has| (-695) (-905))) (|has| (-695) (-363))))) (-3700 (($ $) NIL (-12 (|has| (-695) (-998)) (|has| (-695) (-1194))))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-905))))) (-3162 (((-112) $ $) NIL (|has| (-695) (-307)))) (-2622 (((-767)) NIL (|has| (-695) (-368)))) (-3858 (($ $) NIL (|has| (-695) (-1194)))) (-3722 (($ $) NIL (|has| (-695) (-1194)))) (-3902 (($ $) NIL (|has| (-695) (-1194)))) (-3766 (($ $) NIL (|has| (-695) (-1194)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-695) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-1034 (-407 (-564)))))) (-3120 (((-564) $) NIL) (((-695) $) NIL) (((-407 (-564)) $) NIL (|has| (-695) (-1034 (-407 (-564)))))) (-3474 (($ (-1259 (-695))) NIL) (($ (-1259 (-695)) (-1259 $)) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-695) (-349)))) (-2946 (($ $ $) NIL (|has| (-695) (-307)))) (-4057 (((-685 (-695)) $) NIL) (((-685 (-695)) $ (-1259 $)) NIL)) (-4277 (((-685 (-695)) (-685 $)) NIL) (((-2 (|:| -2511 (-685 (-695))) (|:| |vec| (-1259 (-695)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-695) (-637 (-564)))) (((-685 (-564)) (-685 $)) NIL (|has| (-695) (-637 (-564))))) (-1316 (((-3 $ "failed") (-407 (-1166 (-695)))) NIL (|has| (-695) (-363))) (($ (-1166 (-695))) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-3712 (((-695) $) 29)) (-2450 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-545)))) (-1364 (((-112) $) NIL (|has| (-695) (-545)))) (-2553 (((-407 (-564)) $) NIL (|has| (-695) (-545)))) (-2514 (((-917)) NIL)) (-2534 (($) NIL (|has| (-695) (-368)))) (-2960 (($ $ $) NIL (|has| (-695) (-307)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| (-695) (-307)))) (-1471 (($) NIL (|has| (-695) (-349)))) (-1436 (((-112) $) NIL (|has| (-695) (-349)))) (-3456 (($ $) NIL (|has| (-695) (-349))) (($ $ (-767)) NIL (|has| (-695) (-349)))) (-1339 (((-112) $) NIL (-2807 (-12 (|has| (-695) (-307)) (|has| (-695) (-905))) (|has| (-695) (-363))))) (-1409 (((-2 (|:| |r| (-695)) (|:| |phi| (-695))) $) NIL (-12 (|has| (-695) (-1054)) (|has| (-695) (-1194))))) (-4274 (($) NIL (|has| (-695) (-1194)))) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-695) (-882 (-379)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-695) (-882 (-564))))) (-3744 (((-829 (-917)) $) NIL (|has| (-695) (-349))) (((-917) $) NIL (|has| (-695) (-349)))) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL (-12 (|has| (-695) (-998)) (|has| (-695) (-1194))))) (-2499 (((-695) $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| (-695) (-349)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-3514 (((-1166 (-695)) $) NIL (|has| (-695) (-363)))) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-4357 (($ (-1 (-695) (-695)) $) NIL)) (-3256 (((-917) $) NIL (|has| (-695) (-368)))) (-3657 (($ $) NIL (|has| (-695) (-1194)))) (-1305 (((-1166 (-695)) $) NIL)) (-2084 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| (-695) (-363)))) (-3431 (($) NIL (|has| (-695) (-349)) CONST)) (-2083 (($ (-917)) NIL (|has| (-695) (-368)))) (-3451 (($) NIL)) (-3723 (((-695) $) 31)) (-4052 (((-1114) $) NIL)) (-2249 (($) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-695) (-307)))) (-2123 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| (-695) (-349)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-905))))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-905))))) (-3688 (((-418 $) $) NIL (-2807 (-12 (|has| (-695) (-307)) (|has| (-695) (-905))) (|has| (-695) (-363))))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-695) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| (-695) (-307)))) (-2998 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-695)) NIL (|has| (-695) (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-1689 (($ $) NIL (|has| (-695) (-1194)))) (-3291 (($ $ (-1170) (-695)) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-1170)) (-641 (-695))) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-294 (-695)))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-294 (-695))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-695) (-695)) NIL (|has| (-695) (-309 (-695)))) (($ $ (-641 (-695)) (-641 (-695))) NIL (|has| (-695) (-309 (-695))))) (-1700 (((-767) $) NIL (|has| (-695) (-307)))) (-4366 (($ $ (-695)) NIL (|has| (-695) (-286 (-695) (-695))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| (-695) (-307)))) (-1330 (((-695)) NIL) (((-695) (-1259 $)) NIL)) (-4255 (((-3 (-767) "failed") $ $) NIL (|has| (-695) (-349))) (((-767) $) NIL (|has| (-695) (-349)))) (-3254 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-767)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-1942 (((-685 (-695)) (-1259 $) (-1 (-695) (-695))) NIL (|has| (-695) (-363)))) (-3721 (((-1166 (-695))) NIL)) (-3914 (($ $) NIL (|has| (-695) (-1194)))) (-3777 (($ $) NIL (|has| (-695) (-1194)))) (-3826 (($) NIL (|has| (-695) (-349)))) (-3891 (($ $) NIL (|has| (-695) (-1194)))) (-3756 (($ $) NIL (|has| (-695) (-1194)))) (-3869 (($ $) NIL (|has| (-695) (-1194)))) (-3735 (($ $) NIL (|has| (-695) (-1194)))) (-4225 (((-685 (-695)) (-1259 $)) NIL) (((-1259 (-695)) $) NIL) (((-685 (-695)) (-1259 $) (-1259 $)) NIL) (((-1259 (-695)) $ (-1259 $)) NIL)) (-1311 (((-536) $) NIL (|has| (-695) (-612 (-536)))) (((-169 (-225)) $) NIL (|has| (-695) (-1018))) (((-169 (-379)) $) NIL (|has| (-695) (-1018))) (((-888 (-379)) $) NIL (|has| (-695) (-612 (-888 (-379))))) (((-888 (-564)) $) NIL (|has| (-695) (-612 (-888 (-564))))) (($ (-1166 (-695))) NIL) (((-1166 (-695)) $) NIL) (($ (-1259 (-695))) NIL) (((-1259 (-695)) $) NIL)) (-3185 (($ $) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-2807 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-905))) (|has| (-695) (-349))))) (-3654 (($ (-695) (-695)) 12)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-695)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-564))) 19) (($ (-169 (-695))) 28) (($ (-169 (-697))) 25) (((-169 (-379)) $) 33) (($ (-407 (-564))) NIL (-2807 (|has| (-695) (-1034 (-407 (-564)))) (|has| (-695) (-363))))) (-2420 (($ $) NIL (|has| (-695) (-349))) (((-3 $ "failed") $) NIL (-2807 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-905))) (|has| (-695) (-145))))) (-2134 (((-1166 (-695)) $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) NIL)) (-3949 (($ $) NIL (|has| (-695) (-1194)))) (-3811 (($ $) NIL (|has| (-695) (-1194)))) (-2119 (((-112) $ $) NIL)) (-3925 (($ $) NIL (|has| (-695) (-1194)))) (-3787 (($ $) NIL (|has| (-695) (-1194)))) (-3972 (($ $) NIL (|has| (-695) (-1194)))) (-3837 (($ $) NIL (|has| (-695) (-1194)))) (-3862 (((-695) $) NIL (|has| (-695) (-1194)))) (-2784 (($ $) NIL (|has| (-695) (-1194)))) (-3848 (($ $) NIL (|has| (-695) (-1194)))) (-3960 (($ $) NIL (|has| (-695) (-1194)))) (-3825 (($ $) NIL (|has| (-695) (-1194)))) (-3937 (($ $) NIL (|has| (-695) (-1194)))) (-3799 (($ $) NIL (|has| (-695) (-1194)))) (-3673 (($ $) NIL (|has| (-695) (-1054)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-896 (-1170)))) (($ $ (-767)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL (|has| (-695) (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| (-695) (-1194))) (($ $ (-407 (-564))) NIL (-12 (|has| (-695) (-998)) (|has| (-695) (-1194)))) (($ $ (-564)) NIL (|has| (-695) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-695) $) NIL) (($ $ (-695)) NIL) (($ (-407 (-564)) $) NIL (|has| (-695) (-363))) (($ $ (-407 (-564))) NIL (|has| (-695) (-363)))))
-(((-690) (-13 (-387) (-166 (-695)) (-10 -8 (-15 -2423 ($ (-169 (-379)))) (-15 -2423 ($ (-169 (-564)))) (-15 -2423 ($ (-169 (-695)))) (-15 -2423 ($ (-169 (-697)))) (-15 -2423 ((-169 (-379)) $))))) (T -690))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-690)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-169 (-695))) (-5 *1 (-690)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))))
-(-13 (-387) (-166 (-695)) (-10 -8 (-15 -2423 ($ (-169 (-379)))) (-15 -2423 ($ (-169 (-564)))) (-15 -2423 ($ (-169 (-695)))) (-15 -2423 ($ (-169 (-697)))) (-15 -2423 ((-169 (-379)) $))))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) 8)) (-1466 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2679 (($ $) 63)) (-2696 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1945 (($ |#1| $) 48 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4407)))) (-2591 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4407)))) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3149 ((|#1| $) 40)) (-2566 (($ |#1| $) 41) (($ |#1| $ (-767)) 64)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-2680 (((-641 (-2 (|:| -3813 |#1|) (|:| -4062 (-767)))) $) 62)) (-3853 (($) 50) (($ (-641 |#1|)) 49)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 51)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) 43)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-691 |#1|) (-140) (-1094)) (T -691))
-((-2566 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-2679 (*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094)) (-5 *2 (-641 (-2 (|:| -3813 *3) (|:| -4062 (-767))))))))
-(-13 (-235 |t#1|) (-10 -8 (-15 -2566 ($ |t#1| $ (-767))) (-15 -2679 ($ $)) (-15 -2680 ((-641 (-2 (|:| -3813 |t#1|) (|:| -4062 (-767)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-2226 (((-641 |#1|) (-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564)))) (-564)) 65)) (-3785 ((|#1| |#1| (-564)) 61)) (-2123 ((|#1| |#1| |#1| (-564)) 45)) (-3688 (((-641 |#1|) |#1| (-564)) 48)) (-3520 ((|#1| |#1| (-564) |#1| (-564)) 39)) (-1329 (((-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564)))) |#1| (-564)) 60)))
-(((-692 |#1|) (-10 -7 (-15 -2123 (|#1| |#1| |#1| (-564))) (-15 -3785 (|#1| |#1| (-564))) (-15 -3688 ((-641 |#1|) |#1| (-564))) (-15 -1329 ((-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564)))) |#1| (-564))) (-15 -2226 ((-641 |#1|) (-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564)))) (-564))) (-15 -3520 (|#1| |#1| (-564) |#1| (-564)))) (-1235 (-564))) (T -692))
-((-3520 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| -3688 *5) (|:| -1568 (-564))))) (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5)) (-5 *1 (-692 *5)))) (-1329 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -3688 *3) (|:| -1568 *4)))) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-3785 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-2123 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))))
-(-10 -7 (-15 -2123 (|#1| |#1| |#1| (-564))) (-15 -3785 (|#1| |#1| (-564))) (-15 -3688 ((-641 |#1|) |#1| (-564))) (-15 -1329 ((-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564)))) |#1| (-564))) (-15 -2226 ((-641 |#1|) (-641 (-2 (|:| -3688 |#1|) (|:| -1568 (-564)))) (-564))) (-15 -3520 (|#1| |#1| (-564) |#1| (-564))))
-((-2809 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-3695 (((-1127 (-225)) (-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 56) (((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 58) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 60)) (-3165 (((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263))) NIL)) (-1896 (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 61)))
-(((-693) (-10 -7 (-15 -3695 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3695 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3695 ((-1127 (-225)) (-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -1896 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3165 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2809 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -693))
-((-2809 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-693)))) (-3165 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-1896 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-3695 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693)))) (-3695 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-3695 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))))
-(-10 -7 (-15 -3695 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3695 ((-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3695 ((-1127 (-225)) (-1127 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -1896 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3165 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2809 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
-((-3688 (((-418 (-1166 |#4|)) (-1166 |#4|)) 89) (((-418 |#4|) |#4|) 270)))
-(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3688 ((-418 |#4|) |#4|)) (-15 -3688 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-846) (-789) (-349) (-945 |#3| |#2| |#1|)) (T -694))
-((-3688 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-694 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))))
-(-10 -7 (-15 -3688 ((-418 |#4|) |#4|)) (-15 -3688 ((-418 (-1166 |#4|)) (-1166 |#4|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 99)) (-4198 (((-564) $) 34)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1709 (($ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3700 (($ $) NIL)) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL)) (-4080 (($) NIL T CONST)) (-2192 (($ $) NIL)) (-4284 (((-3 (-564) "failed") $) 88) (((-3 (-407 (-564)) "failed") $) 28) (((-3 (-379) "failed") $) 85)) (-3120 (((-564) $) 90) (((-407 (-564)) $) 82) (((-379) $) 83)) (-2946 (($ $ $) 111)) (-3293 (((-3 $ "failed") $) 102)) (-2960 (($ $ $) 110)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2234 (((-917)) 92) (((-917) (-917)) 91)) (-2384 (((-112) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-3744 (((-564) $) NIL)) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL)) (-2499 (($ $) NIL)) (-3326 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2579 (((-564) (-564)) 96) (((-564)) 97)) (-2855 (($ $ $) NIL) (($) NIL (-12 (-2351 (|has| $ (-6 -4390))) (-2351 (|has| $ (-6 -4398)))))) (-3115 (((-564) (-564)) 94) (((-564)) 95)) (-1497 (($ $ $) NIL) (($) NIL (-12 (-2351 (|has| $ (-6 -4390))) (-2351 (|has| $ (-6 -4398)))))) (-3725 (((-564) $) 17)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 106)) (-3549 (((-917) (-564)) NIL (|has| $ (-6 -4398)))) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL)) (-2882 (($ $) NIL)) (-2962 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-917)) NIL)) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) 107)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1838 (((-564) $) 24)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 109)) (-1982 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4398)))) (-2494 (((-917) (-564)) NIL (|has| $ (-6 -4398)))) (-1311 (((-379) $) NIL) (((-225) $) NIL) (((-888 (-379)) $) NIL)) (-2423 (((-858) $) 67) (($ (-564)) 78) (($ $) NIL) (($ (-407 (-564))) 81) (($ (-564)) 78) (($ (-407 (-564))) 81) (($ (-379)) 75) (((-379) $) 65) (($ (-697)) 70)) (-3719 (((-767)) 121 T CONST)) (-4116 (($ (-564) (-564) (-917)) 58)) (-3448 (($ $) NIL)) (-1987 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4398)))) (-1860 (((-112) $ $) NIL)) (-2648 (((-917)) 45) (((-917) (-917)) 93)) (-2119 (((-112) $ $) NIL)) (-3673 (($ $) NIL)) (-2403 (($) 37 T CONST)) (-2417 (($) 18 T CONST)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 98)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 120)) (-3092 (($ $ $) 80)) (-3082 (($ $) 117) (($ $ $) 118)) (-3070 (($ $ $) 116)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 105)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 112) (($ $ $) 103) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-695) (-13 (-404) (-387) (-363) (-1034 (-379)) (-1034 (-407 (-564))) (-147) (-10 -8 (-15 -2234 ((-917) (-917))) (-15 -2234 ((-917))) (-15 -2648 ((-917) (-917))) (-15 -3115 ((-564) (-564))) (-15 -3115 ((-564))) (-15 -2579 ((-564) (-564))) (-15 -2579 ((-564))) (-15 -2423 ((-379) $)) (-15 -2423 ($ (-697))) (-15 -3725 ((-564) $)) (-15 -1838 ((-564) $)) (-15 -4116 ($ (-564) (-564) (-917)))))) (T -695))
-((-1838 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2234 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695)))) (-2648 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-3115 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2579 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-697)) (-5 *1 (-695)))) (-4116 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-917)) (-5 *1 (-695)))))
-(-13 (-404) (-387) (-363) (-1034 (-379)) (-1034 (-407 (-564))) (-147) (-10 -8 (-15 -2234 ((-917) (-917))) (-15 -2234 ((-917))) (-15 -2648 ((-917) (-917))) (-15 -3115 ((-564) (-564))) (-15 -3115 ((-564))) (-15 -2579 ((-564) (-564))) (-15 -2579 ((-564))) (-15 -2423 ((-379) $)) (-15 -2423 ($ (-697))) (-15 -3725 ((-564) $)) (-15 -1838 ((-564) $)) (-15 -4116 ($ (-564) (-564) (-917)))))
-((-1502 (((-685 |#1|) (-685 |#1|) |#1| |#1|) 87)) (-1679 (((-685 |#1|) (-685 |#1|) |#1|) 67)) (-1445 (((-685 |#1|) (-685 |#1|) |#1|) 88)) (-3286 (((-685 |#1|) (-685 |#1|)) 68)) (-1829 (((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|) 86)))
-(((-696 |#1|) (-10 -7 (-15 -3286 ((-685 |#1|) (-685 |#1|))) (-15 -1679 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -1445 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -1502 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -1829 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|))) (-307)) (T -696))
-((-1829 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-696 *3)) (-4 *3 (-307)))) (-1502 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-1445 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-1679 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
-(-10 -7 (-15 -3286 ((-685 |#1|) (-685 |#1|))) (-15 -1679 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -1445 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -1502 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -1829 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-2149 (($ $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2997 (($ $ $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL)) (-2410 (($ $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) 31)) (-3120 (((-564) $) 29)) (-2946 (($ $ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2450 (((-3 (-407 (-564)) "failed") $) NIL)) (-1364 (((-112) $) NIL)) (-2553 (((-407 (-564)) $) NIL)) (-2534 (($ $) NIL) (($) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2142 (($ $ $ $) NIL)) (-3409 (($ $ $) NIL)) (-2384 (((-112) $) NIL)) (-3737 (($ $ $) NIL)) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL)) (-4112 (((-112) $) NIL)) (-3177 (((-112) $) NIL)) (-1846 (((-3 $ "failed") $) NIL)) (-3326 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3842 (($ $ $ $) NIL)) (-2855 (($ $ $) NIL)) (-3946 (((-917) (-917)) 10) (((-917)) 9)) (-1497 (($ $ $) NIL)) (-2924 (($ $) NIL)) (-2581 (($ $) NIL)) (-2084 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4037 (($ $ $) NIL)) (-3431 (($) NIL T CONST)) (-2468 (($ $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1986 (($ $) NIL)) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2663 (((-112) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $) NIL) (($ $ (-767)) NIL)) (-2198 (($ $) NIL)) (-3926 (($ $) NIL)) (-1311 (((-225) $) NIL) (((-379) $) NIL) (((-888 (-564)) $) NIL) (((-536) $) NIL) (((-564) $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) 28) (($ $) NIL) (($ (-564)) 28) (((-316 $) (-316 (-564))) 18)) (-3719 (((-767)) NIL T CONST)) (-2631 (((-112) $ $) NIL)) (-2020 (($ $ $) NIL)) (-1860 (((-112) $ $) NIL)) (-2648 (($) NIL)) (-2119 (((-112) $ $) NIL)) (-2111 (($ $ $ $) NIL)) (-3673 (($ $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $) NIL) (($ $ (-767)) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
-(((-697) (-13 (-387) (-545) (-10 -8 (-15 -3946 ((-917) (-917))) (-15 -3946 ((-917))) (-15 -2423 ((-316 $) (-316 (-564))))))) (T -697))
-((-3946 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-697)))) (-3946 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-697)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697)))))
-(-13 (-387) (-545) (-10 -8 (-15 -3946 ((-917) (-917))) (-15 -3946 ((-917))) (-15 -2423 ((-316 $) (-316 (-564))))))
-((-3561 (((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)) 19)) (-4166 (((-1 |#4| |#2| |#3|) (-1170)) 12)))
-(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4166 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -3561 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)))) (-612 (-536)) (-1209) (-1209) (-1209)) (T -698))
-((-3561 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209)))))
-(-10 -7 (-15 -4166 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -3561 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170))))
-((-1367 (((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)) 36) (((-1 (-225) (-225)) |#1| (-1170)) 41)))
-(((-699 |#1|) (-10 -7 (-15 -1367 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -1367 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)))) (-612 (-536))) (T -699))
-((-1367 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-612 (-536))))) (-1367 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-612 (-536))))))
-(-10 -7 (-15 -1367 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -1367 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170))))
-((-3269 (((-1170) |#1| (-1170) (-641 (-1170))) 10) (((-1170) |#1| (-1170) (-1170) (-1170)) 13) (((-1170) |#1| (-1170) (-1170)) 12) (((-1170) |#1| (-1170)) 11)))
-(((-700 |#1|) (-10 -7 (-15 -3269 ((-1170) |#1| (-1170))) (-15 -3269 ((-1170) |#1| (-1170) (-1170))) (-15 -3269 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -3269 ((-1170) |#1| (-1170) (-641 (-1170))))) (-612 (-536))) (T -700))
-((-3269 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) (-3269 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) (-3269 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) (-3269 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))))
-(-10 -7 (-15 -3269 ((-1170) |#1| (-1170))) (-15 -3269 ((-1170) |#1| (-1170) (-1170))) (-15 -3269 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -3269 ((-1170) |#1| (-1170) (-641 (-1170)))))
-((-1722 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-701 |#1| |#2|) (-10 -7 (-15 -1722 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1209) (-1209)) (T -701))
-((-1722 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-701 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209)))))
-(-10 -7 (-15 -1722 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-1314 (((-1 |#3| |#2|) (-1170)) 11)) (-3561 (((-1 |#3| |#2|) |#1| (-1170)) 21)))
-(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -1314 ((-1 |#3| |#2|) (-1170))) (-15 -3561 ((-1 |#3| |#2|) |#1| (-1170)))) (-612 (-536)) (-1209) (-1209)) (T -702))
-((-3561 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))))
-(-10 -7 (-15 -1314 ((-1 |#3| |#2|) (-1170))) (-15 -3561 ((-1 |#3| |#2|) |#1| (-1170))))
-((-1424 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -4369 (-767)) (|:| |pcoef| |#4|)))) (-641 (-767)) (-1259 (-641 (-1166 |#3|))) |#3|) 95)) (-3022 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-767)) |#3|) 113)) (-2143 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-767)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|) 47)))
-(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2143 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-767)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -3022 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-767)) |#3|)) (-15 -1424 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -4369 (-767)) (|:| |pcoef| |#4|)))) (-641 (-767)) (-1259 (-641 (-1166 |#3|))) |#3|))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -703))
-((-1424 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13)) (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13)) (-5 *7 (-641 (-641 (-2 (|:| -4369 (-767)) (|:| |pcoef| *13))))) (-5 *8 (-641 (-767))) (-5 *9 (-1259 (-641 (-1166 *10)))) (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-945 *10 *11 *12)) (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13)))) (-3022 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9))) (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-767))) (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-945 *9 *10 *11)) (-4 *10 (-789)) (-5 *2 (-641 (-1166 *12))) (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1166 *12)))) (-2143 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11)) (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-767))) (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-846)) (-4 *8 (-307)) (-4 *11 (-945 *8 *9 *10)) (-4 *9 (-789)) (-5 *1 (-703 *9 *10 *8 *11)))))
-(-10 -7 (-15 -2143 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-767)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -3022 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-767)) |#3|)) (-15 -1424 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -4369 (-767)) (|:| |pcoef| |#4|)))) (-641 (-767)) (-1259 (-641 (-1166 |#3|))) |#3|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-1684 (($ $) 43)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-3810 (($ |#1| (-767)) 41)) (-2043 (((-767) $) 45)) (-3982 ((|#1| $) 44)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1568 (((-767) $) 46)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 40 (|has| |#1| (-172)))) (-2007 ((|#1| $ (-767)) 42)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 48) (($ |#1| $) 47)))
-(((-704 |#1|) (-140) (-1045)) (T -704))
-((-1568 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-1684 (*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-3810 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))))
-(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1568 ((-767) $)) (-15 -2043 ((-767) $)) (-15 -3982 (|t#1| $)) (-15 -1684 ($ $)) (-15 -2007 (|t#1| $ (-767))) (-15 -3810 ($ |t#1| (-767)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-4357 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-705 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4357 (|#6| (-1 |#4| |#1|) |#3|))) (-556) (-1235 |#1|) (-1235 (-407 |#2|)) (-556) (-1235 |#4|) (-1235 (-407 |#5|))) (T -705))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1235 *5)) (-4 *2 (-1235 (-407 *8))) (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1235 (-407 *6))) (-4 *8 (-1235 *7)))))
-(-10 -7 (-15 -4357 (|#6| (-1 |#4| |#1|) |#3|)))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-4329 (((-1152) (-858)) 39)) (-1630 (((-1264) (-1152)) 32)) (-3114 (((-1152) (-858)) 28)) (-3491 (((-1152) (-858)) 29)) (-2423 (((-858) $) NIL) (((-1152) (-858)) 27)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-706) (-13 (-1094) (-10 -7 (-15 -2423 ((-1152) (-858))) (-15 -3114 ((-1152) (-858))) (-15 -3491 ((-1152) (-858))) (-15 -4329 ((-1152) (-858))) (-15 -1630 ((-1264) (-1152)))))) (T -706))
-((-2423 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-706)))))
-(-13 (-1094) (-10 -7 (-15 -2423 ((-1152) (-858))) (-15 -3114 ((-1152) (-858))) (-15 -3491 ((-1152) (-858))) (-15 -4329 ((-1152) (-858))) (-15 -1630 ((-1264) (-1152)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-2946 (($ $ $) NIL)) (-1316 (($ |#1| |#2|) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-4112 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3056 ((|#2| $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2296 (((-3 $ "failed") $ $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) ((|#1| $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-707 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -3056 (|#2| $)) (-15 -2423 (|#1| $)) (-15 -1316 ($ |#1| |#2|)) (-15 -2296 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -707))
-((-3056 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2423 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1316 (*1 *1 *2 *3) (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2296 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-363) (-10 -8 (-15 -3056 (|#2| $)) (-15 -2423 (|#1| $)) (-15 -1316 ($ |#1| |#2|)) (-15 -2296 ((-3 $ "failed") $ $))))
-((-3009 (((-112) $ $) 92)) (-1494 (((-112) $) 36)) (-3690 (((-1259 |#1|) $ (-767)) NIL)) (-3836 (((-641 (-1076)) $) NIL)) (-2039 (($ (-1166 |#1|)) NIL)) (-3660 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-1076))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2931 (($ $ $) NIL (|has| |#1| (-556)))) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2683 (($ $) NIL (|has| |#1| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2622 (((-767)) 56 (|has| |#1| (-368)))) (-1668 (($ $ (-767)) NIL)) (-3715 (($ $ (-767)) NIL)) (-2751 ((|#2| |#2|) 52)) (-2899 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-3120 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-1076) $) NIL)) (-2746 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) 40)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1316 (($ |#2|) 50)) (-3293 (((-3 $ "failed") $) 101)) (-2534 (($) 61 (|has| |#1| (-368)))) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-1843 (($ $ $) NIL)) (-1835 (($ $ $) NIL (|has| |#1| (-556)))) (-4300 (((-2 (|:| -4376 |#1|) (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-556)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2571 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#1| (-905)))) (-2173 (((-954 $)) 94)) (-3850 (($ $ |#1| (-767) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1076) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1076) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3744 (((-767) $ $) NIL (|has| |#1| (-556)))) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-3824 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-1747 (($ $ (-767)) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-767)) 88) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-1076)) NIL) (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3056 ((|#2|) 53)) (-2043 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1948 (($ (-1 (-767) (-767)) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-2806 (((-1166 |#1|) $) NIL)) (-3025 (((-3 (-1076) "failed") $) NIL)) (-3256 (((-917) $) NIL (|has| |#1| (-368)))) (-1305 ((|#2| $) 49)) (-3971 (($ $) NIL)) (-3982 ((|#1| $) 34)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2766 (((-1152) $) NIL)) (-1429 (((-2 (|:| -3979 $) (|:| -4071 $)) $ (-767)) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-1076)) (|:| -1838 (-767))) "failed") $) NIL)) (-2070 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3431 (($) NIL (|has| |#1| (-1145)) CONST)) (-2083 (($ (-917)) NIL (|has| |#1| (-368)))) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 ((|#1| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4047 (($ $) 93 (|has| |#1| (-349)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3296 (((-3 $ "failed") $ (-767)) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 102 (|has| |#1| (-363)))) (-1330 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3254 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1568 (((-767) $) 38) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4090 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2168 (((-954 $)) 42)) (-4244 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2423 (((-858) $) 71) (($ (-564)) NIL) (($ |#1|) 68) (($ (-1076)) NIL) (($ |#2|) 78) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-767)) 73) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2403 (($) 25 T CONST)) (-3545 (((-1259 |#1|) $) 86)) (-3387 (($ (-1259 |#1|)) 60)) (-2417 (($) 8 T CONST)) (-4063 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3864 (((-1259 |#1|) $) NIL)) (-2974 (((-112) $ $) 79)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) 82) (($ $ $) NIL)) (-3070 (($ $ $) 39)) (** (($ $ (-917)) NIL) (($ $ (-767)) 96)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 67) (($ $ $) 85) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 65) (($ $ |#1|) NIL)))
-(((-708 |#1| |#2|) (-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -2751 (|#2| |#2|)) (-15 -3056 (|#2|)) (-15 -1316 ($ |#2|)) (-15 -1305 (|#2| $)) (-15 -3545 ((-1259 |#1|) $)) (-15 -3387 ($ (-1259 |#1|))) (-15 -3864 ((-1259 |#1|) $)) (-15 -2173 ((-954 $))) (-15 -2168 ((-954 $))) (IF (|has| |#1| (-349)) (-15 -4047 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1045) (-1235 |#1|)) (T -708))
-((-2751 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1235 *3)))) (-3056 (*1 *2) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-1316 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1235 *3)))) (-1305 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-3545 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1259 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1235 *3)))) (-3387 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1235 *3)))) (-3864 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1259 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1235 *3)))) (-2173 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1235 *3)))) (-2168 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1235 *3)))) (-4047 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3)) (-4 *3 (-1235 *2)))))
-(-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -2751 (|#2| |#2|)) (-15 -3056 (|#2|)) (-15 -1316 ($ |#2|)) (-15 -1305 (|#2| $)) (-15 -3545 ((-1259 |#1|) $)) (-15 -3387 ($ (-1259 |#1|))) (-15 -3864 ((-1259 |#1|) $)) (-15 -2173 ((-954 $))) (-15 -2168 ((-954 $))) (IF (|has| |#1| (-349)) (-15 -4047 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 ((|#1| $) 13)) (-4052 (((-1114) $) NIL)) (-1838 ((|#2| $) 12)) (-2435 (($ |#1| |#2|) 16)) (-2423 (((-858) $) NIL) (($ (-2 (|:| -2083 |#1|) (|:| -1838 |#2|))) 15) (((-2 (|:| -2083 |#1|) (|:| -1838 |#2|)) $) 14)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 11)))
-(((-709 |#1| |#2| |#3|) (-13 (-846) (-490 (-2 (|:| -2083 |#1|) (|:| -1838 |#2|))) (-10 -8 (-15 -1838 (|#2| $)) (-15 -2083 (|#1| $)) (-15 -2435 ($ |#1| |#2|)))) (-846) (-1094) (-1 (-112) (-2 (|:| -2083 |#1|) (|:| -1838 |#2|)) (-2 (|:| -2083 |#1|) (|:| -1838 |#2|)))) (T -709))
-((-1838 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846)) (-14 *4 (-1 (-112) (-2 (|:| -2083 *3) (|:| -1838 *2)) (-2 (|:| -2083 *3) (|:| -1838 *2)))))) (-2083 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -2083 *2) (|:| -1838 *3)) (-2 (|:| -2083 *2) (|:| -1838 *3)))))) (-2435 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -2083 *2) (|:| -1838 *3)) (-2 (|:| -2083 *2) (|:| -1838 *3)))))))
-(-13 (-846) (-490 (-2 (|:| -2083 |#1|) (|:| -1838 |#2|))) (-10 -8 (-15 -1838 (|#2| $)) (-15 -2083 (|#1| $)) (-15 -2435 ($ |#1| |#2|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 66)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-3120 ((|#1| $) NIL) (((-114) $) 39)) (-3293 (((-3 $ "failed") $) 106)) (-3112 ((|#2| (-114) |#2|) 92)) (-4112 (((-112) $) NIL)) (-3121 (($ |#1| (-361 (-114))) 14)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1978 (($ $ (-1 |#2| |#2|)) 65)) (-3195 (($ $ (-1 |#2| |#2|)) 44)) (-4366 ((|#2| $ |#2|) 33)) (-4093 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-2423 (((-858) $) 73) (($ (-564)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) 37 T CONST)) (-1860 (((-112) $ $) NIL)) (-3527 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-2403 (($) 21 T CONST)) (-2417 (($) 9 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) 48) (($ $ $) NIL)) (-3070 (($ $ $) 83)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) 64)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172)))))
-(((-710 |#1| |#2|) (-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3527 ($ $)) (-15 -3527 ($ $ $)) (-15 -4093 (|#1| |#1|))) |%noBranch|) (-15 -3195 ($ $ (-1 |#2| |#2|))) (-15 -1978 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3112 (|#2| (-114) |#2|)) (-15 -3121 ($ |#1| (-361 (-114)))))) (-1045) (-644 |#1|)) (T -710))
-((-3527 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-644 *2)))) (-3527 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-644 *2)))) (-4093 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-644 *2)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (-1978 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *5)) (-4 *5 (-644 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)) (-4 *4 (-644 *3)))) (-3112 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2)) (-4 *2 (-644 *4)))) (-3121 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4)) (-4 *4 (-644 *2)))))
-(-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3527 ($ $)) (-15 -3527 ($ $ $)) (-15 -4093 (|#1| |#1|))) |%noBranch|) (-15 -3195 ($ $ (-1 |#2| |#2|))) (-15 -1978 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3112 (|#2| (-114) |#2|)) (-15 -3121 ($ |#1| (-361 (-114))))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 33)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1316 (($ |#1| |#2|) 25)) (-3293 (((-3 $ "failed") $) 51)) (-4112 (((-112) $) 35)) (-3056 ((|#2| $) 12)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 52)) (-4052 (((-1114) $) NIL)) (-2296 (((-3 $ "failed") $ $) 50)) (-2423 (((-858) $) 24) (($ (-564)) 19) ((|#1| $) 13)) (-3719 (((-767)) 28 T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 16 T CONST)) (-2417 (($) 30 T CONST)) (-2974 (((-112) $ $) 41)) (-3082 (($ $) 46) (($ $ $) 40)) (-3070 (($ $ $) 43)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 21) (($ $ $) 20)))
-(((-711 |#1| |#2| |#3| |#4| |#5|) (-13 (-1045) (-10 -8 (-15 -3056 (|#2| $)) (-15 -2423 (|#1| $)) (-15 -1316 ($ |#1| |#2|)) (-15 -2296 ((-3 $ "failed") $ $)) (-15 -3293 ((-3 $ "failed") $)) (-15 -3936 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -711))
-((-3293 (*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3056 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2423 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1316 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2296 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1045) (-10 -8 (-15 -3056 (|#2| $)) (-15 -2423 (|#1| $)) (-15 -1316 ($ |#1| |#2|)) (-15 -2296 ((-3 $ "failed") $ $)) (-15 -3293 ((-3 $ "failed") $)) (-15 -3936 ($ $))))
-((* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-712 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-713 |#2|) (-172)) (T -712))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ |#1| $) 24) (($ $ |#1|) 27)))
-(((-713 |#1|) (-140) (-172)) (T -713))
-NIL
-(-13 (-111 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-1051 |#1|) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-2410 (($ |#1|) 17) (($ $ |#1|) 20)) (-2052 (($ |#1|) 18) (($ $ |#1|) 21)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4112 (((-112) $) NIL)) (-1833 (($ |#1| |#1| |#1| |#1|) 8)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 16)) (-4052 (((-1114) $) NIL)) (-3291 ((|#1| $ |#1|) 24) (((-829 |#1|) $ (-829 |#1|)) 32)) (-3185 (($ $ $) NIL)) (-1542 (($ $ $) NIL)) (-2423 (((-858) $) 39)) (-1860 (((-112) $ $) NIL)) (-2417 (($) 9 T CONST)) (-2974 (((-112) $ $) 48)) (-3092 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 14)))
-(((-714 |#1|) (-13 (-473) (-10 -8 (-15 -1833 ($ |#1| |#1| |#1| |#1|)) (-15 -2410 ($ |#1|)) (-15 -2052 ($ |#1|)) (-15 -3293 ($)) (-15 -2410 ($ $ |#1|)) (-15 -2052 ($ $ |#1|)) (-15 -3293 ($ $)) (-15 -3291 (|#1| $ |#1|)) (-15 -3291 ((-829 |#1|) $ (-829 |#1|))))) (-363)) (T -714))
-((-1833 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2410 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2052 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3293 (*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2052 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3293 (*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3291 (*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3291 (*1 *2 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3)))))
-(-13 (-473) (-10 -8 (-15 -1833 ($ |#1| |#1| |#1| |#1|)) (-15 -2410 ($ |#1|)) (-15 -2052 ($ |#1|)) (-15 -3293 ($)) (-15 -2410 ($ $ |#1|)) (-15 -2052 ($ $ |#1|)) (-15 -3293 ($ $)) (-15 -3291 (|#1| $ |#1|)) (-15 -3291 ((-829 |#1|) $ (-829 |#1|)))))
-((-3232 (($ $ (-917)) 21)) (-2105 (($ $ (-917)) 22)) (** (($ $ (-917)) 10)))
-(((-715 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -2105 (|#1| |#1| (-917))) (-15 -3232 (|#1| |#1| (-917)))) (-716)) (T -715))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -2105 (|#1| |#1| (-917))) (-15 -3232 (|#1| |#1| (-917))))
-((-3009 (((-112) $ $) 7)) (-3232 (($ $ (-917)) 16)) (-2105 (($ $ (-917)) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)) (** (($ $ (-917)) 14)) (* (($ $ $) 17)))
-(((-716) (-140)) (T -716))
-((* (*1 *1 *1 *1) (-4 *1 (-716))) (-3232 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) (-2105 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))))
-(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 -3232 ($ $ (-917))) (-15 -2105 ($ $ (-917))) (-15 ** ($ $ (-917)))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3232 (($ $ (-917)) NIL) (($ $ (-767)) 21)) (-4112 (((-112) $) 10)) (-2105 (($ $ (-917)) NIL) (($ $ (-767)) 22)) (** (($ $ (-917)) NIL) (($ $ (-767)) 16)))
-(((-717 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -2105 (|#1| |#1| (-767))) (-15 -3232 (|#1| |#1| (-767))) (-15 -4112 ((-112) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -2105 (|#1| |#1| (-917))) (-15 -3232 (|#1| |#1| (-917)))) (-718)) (T -717))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -2105 (|#1| |#1| (-767))) (-15 -3232 (|#1| |#1| (-767))) (-15 -4112 ((-112) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -2105 (|#1| |#1| (-917))) (-15 -3232 (|#1| |#1| (-917))))
-((-3009 (((-112) $ $) 7)) (-4015 (((-3 $ "failed") $) 18)) (-3232 (($ $ (-917)) 16) (($ $ (-767)) 23)) (-3293 (((-3 $ "failed") $) 20)) (-4112 (((-112) $) 24)) (-2378 (((-3 $ "failed") $) 19)) (-2105 (($ $ (-917)) 15) (($ $ (-767)) 22)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2417 (($) 25 T CONST)) (-2974 (((-112) $ $) 6)) (** (($ $ (-917)) 14) (($ $ (-767)) 21)) (* (($ $ $) 17)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 15)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-2245 ((|#1| $) 23)) (-2755 (($ $ $) NIL (|has| |#1| (-789)))) (-1520 (($ $ $) NIL (|has| |#1| (-789)))) (-3315 (((-1155) $) 48)) (-4033 (((-1117) $) NIL)) (-2255 ((|#3| $) 24)) (-2327 (((-860) $) 43)) (-1648 (((-112) $ $) 22)) (-2312 (($) 10 T CONST)) (-2934 (((-112) $ $) NIL (|has| |#1| (-789)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-789)))) (-2872 (((-112) $ $) 20)) (-2922 (((-112) $ $) NIL (|has| |#1| (-789)))) (-2897 (((-112) $ $) 26 (|has| |#1| (-789)))) (-2998 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-2987 (($ $) 17) (($ $ $) NIL)) (-2974 (($ $ $) 29)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
+(((-660 |#1| |#2| |#3|) (-13 (-715 |#2|) (-10 -8 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|) (-15 -2998 ($ $ |#3|)) (-15 -2998 ($ |#1| |#3|)) (-15 -2245 (|#1| $)) (-15 -2255 (|#3| $)))) (-715 |#2|) (-172) (|SubsetCategory| (-724) |#2|)) (T -660))
+((-2998 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-660 *3 *4 *2)) (-4 *3 (-715 *4)) (-4 *2 (|SubsetCategory| (-724) *4)))) (-2998 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-660 *2 *4 *3)) (-4 *2 (-715 *4)) (-4 *3 (|SubsetCategory| (-724) *4)))) (-2245 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-715 *3)) (-5 *1 (-660 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-724) *3)))) (-2255 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-724) *4)) (-5 *1 (-660 *3 *4 *2)) (-4 *3 (-715 *4)))))
+(-13 (-715 |#2|) (-10 -8 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|) (-15 -2998 ($ $ |#3|)) (-15 -2998 ($ |#1| |#3|)) (-15 -2245 (|#1| $)) (-15 -2255 (|#3| $))))
+((-1437 (((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|)) 33)))
+(((-661 |#1|) (-10 -7 (-15 -1437 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|)))) (-907)) (T -661))
+((-1437 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 *4))) (-5 *3 (-1169 *4)) (-4 *4 (-907)) (-5 *1 (-661 *4)))))
+(-10 -7 (-15 -1437 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2961 (((-642 |#1|) $) 84)) (-2526 (($ $ (-769)) 94)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-3842 (((-1286 |#1| |#2|) (-1286 |#1| |#2|) $) 50)) (-4278 (((-3 (-670 |#1|) "failed") $) NIL)) (-3027 (((-670 |#1|) $) NIL)) (-1718 (($ $) 93)) (-3934 (((-769) $) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3214 (($ (-670 |#1|) |#2|) 70)) (-3298 (($ $) 89)) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-4093 (((-1286 |#1| |#2|) (-1286 |#1| |#2|) $) 49)) (-4234 (((-2 (|:| |k| (-670 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3950 (((-670 |#1|) $) NIL)) (-3962 ((|#2| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3215 (($ $ |#1| $) 32) (($ $ (-642 |#1|) (-642 $)) 34)) (-2775 (((-769) $) 91)) (-2337 (($ $ $) 20) (($ (-670 |#1|) (-670 |#1|)) 79) (($ (-670 |#1|) $) 77) (($ $ (-670 |#1|)) 78)) (-2327 (((-860) $) NIL) (($ |#1|) 76) (((-1277 |#1| |#2|) $) 60) (((-1286 |#1| |#2|) $) 43) (($ (-670 |#1|)) 27)) (-3849 (((-642 |#2|) $) NIL)) (-2102 ((|#2| $ (-670 |#1|)) NIL)) (-4378 ((|#2| (-1286 |#1| |#2|) $) 45)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 23 T CONST)) (-3692 (((-642 (-2 (|:| |k| (-670 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3321 (((-3 $ "failed") (-1277 |#1| |#2|)) 62)) (-1737 (($ (-670 |#1|)) 14)) (-2872 (((-112) $ $) 46)) (-2998 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2987 (($ $) 68) (($ $ $) NIL)) (-2974 (($ $ $) 31)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-670 |#1|)) NIL)))
+(((-662 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-670 |#1|)) (-10 -8 (-15 -3321 ((-3 $ "failed") (-1277 |#1| |#2|))) (-15 -2337 ($ (-670 |#1|) (-670 |#1|))) (-15 -2337 ($ (-670 |#1|) $)) (-15 -2337 ($ $ (-670 |#1|))))) (-848) (-172)) (T -662))
+((-3321 (*1 *1 *2) (|partial| -12 (-5 *2 (-1277 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *1 (-662 *3 *4)))) (-2337 (*1 *1 *2 *2) (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4)) (-4 *4 (-172)))) (-2337 (*1 *1 *2 *1) (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4)) (-4 *4 (-172)))) (-2337 (*1 *1 *1 *2) (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4)) (-4 *4 (-172)))))
+(-13 (-374 |#1| |#2|) (-382 |#2| (-670 |#1|)) (-10 -8 (-15 -3321 ((-3 $ "failed") (-1277 |#1| |#2|))) (-15 -2337 ($ (-670 |#1|) (-670 |#1|))) (-15 -2337 ($ (-670 |#1|) $)) (-15 -2337 ($ $ (-670 |#1|)))))
+((-1757 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-2239 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2462 (($ (-1 (-112) |#2|) $) 29)) (-2087 (($ $) 67)) (-1938 (($ $) 78)) (-2265 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-1320 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-3979 (((-564) |#2| $ (-564)) 75) (((-564) |#2| $) NIL) (((-564) (-1 (-112) |#2|) $) 56)) (-4227 (($ (-769) |#2|) 65)) (-3427 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2740 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4358 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-2421 (($ |#2|) 15)) (-3183 (($ $ $ (-564)) 42) (($ |#2| $ (-564)) 40)) (-3254 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3184 (($ $ (-1229 (-564))) 51) (($ $ (-564)) 44)) (-2568 (($ $ $ (-564)) 74)) (-3901 (($ $) 72)) (-2897 (((-112) $ $) 80)))
+(((-663 |#1| |#2|) (-10 -8 (-15 -2421 (|#1| |#2|)) (-15 -3184 (|#1| |#1| (-564))) (-15 -3184 (|#1| |#1| (-1229 (-564)))) (-15 -2265 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3183 (|#1| |#2| |#1| (-564))) (-15 -3183 (|#1| |#1| |#1| (-564))) (-15 -3427 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2462 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -1938 (|#1| |#1|)) (-15 -3427 (|#1| |#1| |#1|)) (-15 -2740 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1757 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3979 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3979 ((-564) |#2| |#1|)) (-15 -3979 ((-564) |#2| |#1| (-564))) (-15 -2740 (|#1| |#1| |#1|)) (-15 -1757 ((-112) |#1|)) (-15 -2568 (|#1| |#1| |#1| (-564))) (-15 -2087 (|#1| |#1|)) (-15 -2239 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2239 (|#1| |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3254 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4227 (|#1| (-769) |#2|)) (-15 -4358 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3901 (|#1| |#1|))) (-664 |#2|) (-1212)) (T -663))
+NIL
+(-10 -8 (-15 -2421 (|#1| |#2|)) (-15 -3184 (|#1| |#1| (-564))) (-15 -3184 (|#1| |#1| (-1229 (-564)))) (-15 -2265 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3183 (|#1| |#2| |#1| (-564))) (-15 -3183 (|#1| |#1| |#1| (-564))) (-15 -3427 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2462 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -1938 (|#1| |#1|)) (-15 -3427 (|#1| |#1| |#1|)) (-15 -2740 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1757 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3979 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3979 ((-564) |#2| |#1|)) (-15 -3979 ((-564) |#2| |#1| (-564))) (-15 -2740 (|#1| |#1| |#1|)) (-15 -1757 ((-112) |#1|)) (-15 -2568 (|#1| |#1| |#1| (-564))) (-15 -2087 (|#1| |#1|)) (-15 -2239 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2239 (|#1| |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1320 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3254 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4227 (|#1| (-769) |#2|)) (-15 -4358 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3901 (|#1| |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2085 ((|#1| $) 49)) (-1807 ((|#1| $) 66)) (-1416 (($ $) 68)) (-1765 (((-1267) $ (-564) (-564)) 98 (|has| $ (-6 -4411)))) (-3256 (($ $ (-564)) 53 (|has| $ (-6 -4411)))) (-1757 (((-112) $) 143 (|has| |#1| (-848))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-2239 (($ $) 147 (-12 (|has| |#1| (-848)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4411)))) (-2383 (($ $) 142 (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-3697 (((-112) $ (-769)) 8)) (-3070 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-1505 (($ $ $) 57 (|has| $ (-6 -4411)))) (-2153 ((|#1| $ |#1|) 55 (|has| $ (-6 -4411)))) (-4059 ((|#1| $ |#1|) 59 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4411))) (($ $ "rest" $) 56 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 118 (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) 87 (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-2462 (($ (-1 (-112) |#1|) $) 130)) (-1700 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4410)))) (-1799 ((|#1| $) 67)) (-1976 (($) 7 T CONST)) (-2087 (($ $) 145 (|has| $ (-6 -4411)))) (-3115 (($ $) 135)) (-2570 (($ $) 74) (($ $ (-769)) 72)) (-1938 (($ $) 132 (|has| |#1| (-1097)))) (-2595 (($ $) 100 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2265 (($ |#1| $) 131 (|has| |#1| (-1097))) (($ (-1 (-112) |#1|) $) 126)) (-2490 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4410))) (($ |#1| $) 101 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2625 ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 88)) (-3297 (((-112) $) 84)) (-3979 (((-564) |#1| $ (-564)) 140 (|has| |#1| (-1097))) (((-564) |#1| $) 139 (|has| |#1| (-1097))) (((-564) (-1 (-112) |#1|) $) 138)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) 51)) (-1847 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-4227 (($ (-769) |#1|) 109)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 96 (|has| (-564) (-848)))) (-2755 (($ $ $) 148 (|has| |#1| (-848)))) (-3427 (($ $ $) 133 (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-2740 (($ $ $) 141 (|has| |#1| (-848))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 95 (|has| (-564) (-848)))) (-1520 (($ $ $) 149 (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2421 (($ |#1|) 123)) (-3576 (((-112) $ (-769)) 10)) (-2628 (((-642 |#1|) $) 46)) (-2376 (((-112) $) 50)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2514 ((|#1| $) 71) (($ $ (-769)) 69)) (-3183 (($ $ $ (-564)) 128) (($ |#1| $ (-564)) 127)) (-4238 (($ $ $ (-564)) 117) (($ |#1| $ (-564)) 116)) (-3997 (((-642 (-564)) $) 93)) (-4145 (((-112) (-564) $) 92)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2557 ((|#1| $) 77) (($ $ (-769)) 75)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2696 (($ $ |#1|) 97 (|has| $ (-6 -4411)))) (-2531 (((-112) $) 85)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) 91)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1229 (-564))) 113) ((|#1| $ (-564)) 90) ((|#1| $ (-564) |#1|) 89)) (-2137 (((-564) $ $) 45)) (-3184 (($ $ (-1229 (-564))) 125) (($ $ (-564)) 124)) (-2073 (($ $ (-1229 (-564))) 115) (($ $ (-564)) 114)) (-1392 (((-112) $) 47)) (-1444 (($ $) 63)) (-2960 (($ $) 60 (|has| $ (-6 -4411)))) (-3399 (((-769) $) 64)) (-3848 (($ $) 65)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2568 (($ $ $ (-564)) 144 (|has| $ (-6 -4411)))) (-3901 (($ $) 13)) (-1314 (((-536) $) 99 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 108)) (-2582 (($ $ $) 62) (($ $ |#1|) 61)) (-3651 (($ $ $) 79) (($ |#1| $) 78) (($ (-642 $)) 111) (($ $ |#1|) 110)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) 52)) (-3820 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) 151 (|has| |#1| (-848)))) (-2908 (((-112) $ $) 152 (|has| |#1| (-848)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2922 (((-112) $ $) 150 (|has| |#1| (-848)))) (-2897 (((-112) $ $) 153 (|has| |#1| (-848)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-664 |#1|) (-140) (-1212)) (T -664))
+((-2421 (*1 *1 *2) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1212)))))
+(-13 (-1146 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -2421 ($ |t#1|))))
+(((-34) . T) ((-102) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-848) |has| |#1| (-848)) ((-1008 |#1|) . T) ((-1097) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-1146 |#1|) . T) ((-1212) . T) ((-1250 |#1|) . T))
+((-1616 (((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|))))) (-642 (-642 |#1|)) (-642 (-1262 |#1|))) 22) (((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|))))) (-687 |#1|) (-642 (-1262 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|)))) (-642 (-642 |#1|)) (-1262 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|)) 14)) (-2414 (((-769) (-687 |#1|) (-1262 |#1|)) 30)) (-2247 (((-3 (-1262 |#1|) "failed") (-687 |#1|) (-1262 |#1|)) 24)) (-3038 (((-112) (-687 |#1|) (-1262 |#1|)) 27)))
+(((-665 |#1|) (-10 -7 (-15 -1616 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|))) (-15 -1616 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|)))) (-642 (-642 |#1|)) (-1262 |#1|))) (-15 -1616 ((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|))))) (-687 |#1|) (-642 (-1262 |#1|)))) (-15 -1616 ((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|))))) (-642 (-642 |#1|)) (-642 (-1262 |#1|)))) (-15 -2247 ((-3 (-1262 |#1|) "failed") (-687 |#1|) (-1262 |#1|))) (-15 -3038 ((-112) (-687 |#1|) (-1262 |#1|))) (-15 -2414 ((-769) (-687 |#1|) (-1262 |#1|)))) (-363)) (T -665))
+((-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-363)) (-5 *2 (-769)) (-5 *1 (-665 *5)))) (-3038 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-665 *5)))) (-2247 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1262 *4)) (-5 *3 (-687 *4)) (-4 *4 (-363)) (-5 *1 (-665 *4)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-642 *5))) (-4 *5 (-363)) (-5 *2 (-642 (-2 (|:| |particular| (-3 (-1262 *5) "failed")) (|:| -4263 (-642 (-1262 *5)))))) (-5 *1 (-665 *5)) (-5 *4 (-642 (-1262 *5))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *5)) (-4 *5 (-363)) (-5 *2 (-642 (-2 (|:| |particular| (-3 (-1262 *5) "failed")) (|:| -4263 (-642 (-1262 *5)))))) (-5 *1 (-665 *5)) (-5 *4 (-642 (-1262 *5))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-642 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1262 *5) "failed")) (|:| -4263 (-642 (-1262 *5))))) (-5 *1 (-665 *5)) (-5 *4 (-1262 *5)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1262 *5) "failed")) (|:| -4263 (-642 (-1262 *5))))) (-5 *1 (-665 *5)) (-5 *4 (-1262 *5)))))
+(-10 -7 (-15 -1616 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|))) (-15 -1616 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|)))) (-642 (-642 |#1|)) (-1262 |#1|))) (-15 -1616 ((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|))))) (-687 |#1|) (-642 (-1262 |#1|)))) (-15 -1616 ((-642 (-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|))))) (-642 (-642 |#1|)) (-642 (-1262 |#1|)))) (-15 -2247 ((-3 (-1262 |#1|) "failed") (-687 |#1|) (-1262 |#1|))) (-15 -3038 ((-112) (-687 |#1|) (-1262 |#1|))) (-15 -2414 ((-769) (-687 |#1|) (-1262 |#1|))))
+((-1616 (((-642 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4263 (-642 |#3|)))) |#4| (-642 |#3|)) 65) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4263 (-642 |#3|))) |#4| |#3|) 59)) (-2414 (((-769) |#4| |#3|) 18)) (-2247 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3038 (((-112) |#4| |#3|) 14)))
+(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1616 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4263 (-642 |#3|))) |#4| |#3|)) (-15 -1616 ((-642 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4263 (-642 |#3|)))) |#4| (-642 |#3|))) (-15 -2247 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3038 ((-112) |#4| |#3|)) (-15 -2414 ((-769) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4411))) (-13 (-373 |#1|) (-10 -7 (-6 -4411))) (-685 |#1| |#2| |#3|)) (T -666))
+((-2414 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-769)) (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))) (-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-112)) (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))) (-2247 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4411)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))) (-5 *1 (-666 *4 *5 *2 *3)) (-4 *3 (-685 *4 *5 *2)))) (-1616 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-642 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4263 (-642 *7))))) (-5 *1 (-666 *5 *6 *7 *3)) (-5 *4 (-642 *7)) (-4 *3 (-685 *5 *6 *7)))) (-1616 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4)))) (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))))
+(-10 -7 (-15 -1616 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4263 (-642 |#3|))) |#4| |#3|)) (-15 -1616 ((-642 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4263 (-642 |#3|)))) |#4| (-642 |#3|))) (-15 -2247 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3038 ((-112) |#4| |#3|)) (-15 -2414 ((-769) |#4| |#3|)))
+((-3904 (((-2 (|:| |particular| (-3 (-1262 (-407 |#4|)) "failed")) (|:| -4263 (-642 (-1262 (-407 |#4|))))) (-642 |#4|) (-642 |#3|)) 54)))
+(((-667 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3904 ((-2 (|:| |particular| (-3 (-1262 (-407 |#4|)) "failed")) (|:| -4263 (-642 (-1262 (-407 |#4|))))) (-642 |#4|) (-642 |#3|)))) (-556) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -667))
+((-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *7)) (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-5 *2 (-2 (|:| |particular| (-3 (-1262 (-407 *8)) "failed")) (|:| -4263 (-642 (-1262 (-407 *8)))))) (-5 *1 (-667 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3904 ((-2 (|:| |particular| (-3 (-1262 (-407 |#4|)) "failed")) (|:| -4263 (-642 (-1262 (-407 |#4|))))) (-642 |#4|) (-642 |#3|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3587 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3815 ((|#2| $) NIL)) (-4129 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4361 (((-1262 (-687 |#2|))) NIL) (((-1262 (-687 |#2|)) (-1262 $)) NIL)) (-3873 (((-112) $) NIL)) (-2954 (((-1262 $)) 44)) (-3697 (((-112) $ (-769)) NIL)) (-2540 (($ |#2|) NIL)) (-1976 (($) NIL T CONST)) (-4239 (($ $) NIL (|has| |#2| (-307)))) (-2600 (((-240 |#1| |#2|) $ (-564)) NIL)) (-2074 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) NIL (|has| |#2| (-556)))) (-2093 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3043 (((-687 |#2|)) NIL) (((-687 |#2|) (-1262 $)) NIL)) (-4280 ((|#2| $) NIL)) (-3636 (((-687 |#2|) $) NIL) (((-687 |#2|) $ (-1262 $)) NIL)) (-2564 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-1393 (((-1169 (-950 |#2|))) NIL (|has| |#2| (-363)))) (-2013 (($ $ (-919)) NIL)) (-3518 ((|#2| $) NIL)) (-2640 (((-1169 |#2|) $) NIL (|has| |#2| (-556)))) (-1933 ((|#2|) NIL) ((|#2| (-1262 $)) NIL)) (-3205 (((-1169 |#2|) $) NIL)) (-3539 (((-112)) NIL)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) ((|#2| $) NIL)) (-4221 (($ (-1262 |#2|)) NIL) (($ (-1262 |#2|) (-1262 $)) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2414 (((-769) $) NIL (|has| |#2| (-556))) (((-919)) 45)) (-2551 ((|#2| $ (-564) (-564)) NIL)) (-1422 (((-112)) NIL)) (-3285 (($ $ (-919)) NIL)) (-2936 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3953 (((-112) $) NIL)) (-2054 (((-769) $) NIL (|has| |#2| (-556)))) (-4286 (((-642 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-556)))) (-2567 (((-769) $) NIL)) (-1734 (((-112)) NIL)) (-2579 (((-769) $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-3422 ((|#2| $) NIL (|has| |#2| (-6 (-4412 "*"))))) (-3491 (((-564) $) NIL)) (-3865 (((-564) $) NIL)) (-3234 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3054 (((-564) $) NIL)) (-2977 (((-564) $) NIL)) (-2244 (($ (-642 (-642 |#2|))) NIL)) (-2613 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1624 (((-642 (-642 |#2|)) $) NIL)) (-4041 (((-112)) NIL)) (-2289 (((-112)) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3250 (((-3 (-2 (|:| |particular| $) (|:| -4263 (-642 $))) "failed")) NIL (|has| |#2| (-556)))) (-1306 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-1499 (((-687 |#2|)) NIL) (((-687 |#2|) (-1262 $)) NIL)) (-1490 ((|#2| $) NIL)) (-4070 (((-687 |#2|) $) NIL) (((-687 |#2|) $ (-1262 $)) NIL)) (-4125 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-3956 (((-1169 (-950 |#2|))) NIL (|has| |#2| (-363)))) (-1522 (($ $ (-919)) NIL)) (-2034 ((|#2| $) NIL)) (-3720 (((-1169 |#2|) $) NIL (|has| |#2| (-556)))) (-1617 ((|#2|) NIL) ((|#2| (-1262 $)) NIL)) (-1769 (((-1169 |#2|) $) NIL)) (-3573 (((-112)) NIL)) (-3315 (((-1155) $) NIL)) (-2443 (((-112)) NIL)) (-2038 (((-112)) NIL)) (-2152 (((-112)) NIL)) (-4168 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-4033 (((-1117) $) NIL)) (-2682 (((-112)) NIL)) (-2896 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-2121 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) 30) ((|#2| $ (-564)) NIL)) (-3175 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1921 ((|#2| $) NIL)) (-3548 (($ (-642 |#2|)) NIL)) (-2877 (((-112) $) NIL)) (-1925 (((-240 |#1| |#2|) $) NIL)) (-1504 ((|#2| $) NIL (|has| |#2| (-6 (-4412 "*"))))) (-4043 (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3901 (($ $) NIL)) (-2067 (((-687 |#2|) (-1262 $)) NIL) (((-1262 |#2|) $) NIL) (((-687 |#2|) (-1262 $) (-1262 $)) NIL) (((-1262 |#2|) $ (-1262 $)) 33)) (-1314 (($ (-1262 |#2|)) NIL) (((-1262 |#2|) $) NIL)) (-2815 (((-642 (-950 |#2|))) NIL) (((-642 (-950 |#2|)) (-1262 $)) NIL)) (-3759 (($ $ $) NIL)) (-1953 (((-112)) NIL)) (-3022 (((-240 |#1| |#2|) $ (-564)) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1036 (-407 (-564))))) (($ |#2|) NIL) (((-687 |#2|) $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) 43)) (-1309 (((-642 (-1262 |#2|))) NIL (|has| |#2| (-556)))) (-3088 (($ $ $ $) NIL)) (-1349 (((-112)) NIL)) (-2497 (($ (-687 |#2|) $) NIL)) (-2710 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-1332 (((-112) $) NIL)) (-2920 (($ $ $) NIL)) (-3459 (((-112)) NIL)) (-4171 (((-112)) NIL)) (-1579 (((-112)) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#2| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-668 |#1| |#2|) (-13 (-1120 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-687 |#2|)) (-417 |#2|)) (-919) (-172)) (T -668))
+NIL
+(-13 (-1120 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-687 |#2|)) (-417 |#2|))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1773 (((-642 (-1132)) $) 10)) (-2327 (((-860) $) 16) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-669) (-13 (-1080) (-10 -8 (-15 -1773 ((-642 (-1132)) $))))) (T -669))
+((-1773 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-669)))))
+(-13 (-1080) (-10 -8 (-15 -1773 ((-642 (-1132)) $))))
+((-2907 (((-112) $ $) NIL)) (-2961 (((-642 |#1|) $) NIL)) (-4336 (($ $) 67)) (-2672 (((-112) $) NIL)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3600 (((-3 $ "failed") (-817 |#1|)) 27)) (-3316 (((-112) (-817 |#1|)) 17)) (-2993 (($ (-817 |#1|)) 28)) (-1894 (((-112) $ $) 36)) (-2480 (((-919) $) 43)) (-4326 (($ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3643 (((-642 $) (-817 |#1|)) 19)) (-2327 (((-860) $) 51) (($ |#1|) 40) (((-817 |#1|) $) 47) (((-675 |#1|) $) 52)) (-1648 (((-112) $ $) NIL)) (-3706 (((-59 (-642 $)) (-642 |#1|) (-919)) 72)) (-1979 (((-642 $) (-642 |#1|) (-919)) 76)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 68)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 46)))
+(((-670 |#1|) (-13 (-848) (-1036 |#1|) (-10 -8 (-15 -2672 ((-112) $)) (-15 -4326 ($ $)) (-15 -4336 ($ $)) (-15 -2480 ((-919) $)) (-15 -1894 ((-112) $ $)) (-15 -2327 ((-817 |#1|) $)) (-15 -2327 ((-675 |#1|) $)) (-15 -3643 ((-642 $) (-817 |#1|))) (-15 -3316 ((-112) (-817 |#1|))) (-15 -2993 ($ (-817 |#1|))) (-15 -3600 ((-3 $ "failed") (-817 |#1|))) (-15 -2961 ((-642 |#1|) $)) (-15 -3706 ((-59 (-642 $)) (-642 |#1|) (-919))) (-15 -1979 ((-642 $) (-642 |#1|) (-919))))) (-848)) (T -670))
+((-2672 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-4326 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-848)))) (-4336 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-848)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-675 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-817 *4)) (-4 *4 (-848)) (-5 *2 (-642 (-670 *4))) (-5 *1 (-670 *4)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-817 *4)) (-4 *4 (-848)) (-5 *2 (-112)) (-5 *1 (-670 *4)))) (-2993 (*1 *1 *2) (-12 (-5 *2 (-817 *3)) (-4 *3 (-848)) (-5 *1 (-670 *3)))) (-3600 (*1 *1 *2) (|partial| -12 (-5 *2 (-817 *3)) (-4 *3 (-848)) (-5 *1 (-670 *3)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848)))) (-3706 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-919)) (-4 *5 (-848)) (-5 *2 (-59 (-642 (-670 *5)))) (-5 *1 (-670 *5)))) (-1979 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-919)) (-4 *5 (-848)) (-5 *2 (-642 (-670 *5))) (-5 *1 (-670 *5)))))
+(-13 (-848) (-1036 |#1|) (-10 -8 (-15 -2672 ((-112) $)) (-15 -4326 ($ $)) (-15 -4336 ($ $)) (-15 -2480 ((-919) $)) (-15 -1894 ((-112) $ $)) (-15 -2327 ((-817 |#1|) $)) (-15 -2327 ((-675 |#1|) $)) (-15 -3643 ((-642 $) (-817 |#1|))) (-15 -3316 ((-112) (-817 |#1|))) (-15 -2993 ($ (-817 |#1|))) (-15 -3600 ((-3 $ "failed") (-817 |#1|))) (-15 -2961 ((-642 |#1|) $)) (-15 -3706 ((-59 (-642 $)) (-642 |#1|) (-919))) (-15 -1979 ((-642 $) (-642 |#1|) (-919)))))
+((-2085 ((|#2| $) 103)) (-1416 (($ $) 124)) (-3697 (((-112) $ (-769)) 35)) (-2570 (($ $) 112) (($ $ (-769)) 115)) (-3297 (((-112) $) 125)) (-2622 (((-642 $) $) 99)) (-1847 (((-112) $ $) 95)) (-3462 (((-112) $ (-769)) 33)) (-2040 (((-564) $) 69)) (-3421 (((-564) $) 68)) (-3576 (((-112) $ (-769)) 31)) (-2376 (((-112) $) 101)) (-2514 ((|#2| $) 116) (($ $ (-769)) 120)) (-4238 (($ $ $ (-564)) 86) (($ |#2| $ (-564)) 85)) (-3997 (((-642 (-564)) $) 67)) (-4145 (((-112) (-564) $) 61)) (-2557 ((|#2| $) NIL) (($ $ (-769)) 111)) (-3804 (($ $ (-564)) 128)) (-2531 (((-112) $) 127)) (-2121 (((-112) (-1 (-112) |#2|) $) 44)) (-2724 (((-642 |#2|) $) 48)) (-4368 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1229 (-564))) 82) ((|#2| $ (-564)) 59) ((|#2| $ (-564) |#2|) 60)) (-2137 (((-564) $ $) 94)) (-2073 (($ $ (-1229 (-564))) 81) (($ $ (-564)) 75)) (-1392 (((-112) $) 90)) (-1444 (($ $) 108)) (-3399 (((-769) $) 107)) (-3848 (($ $) 106)) (-2337 (($ (-642 |#2|)) 55)) (-4318 (($ $) 129)) (-1512 (((-642 $) $) 93)) (-3820 (((-112) $ $) 92)) (-2710 (((-112) (-1 (-112) |#2|) $) 43)) (-2872 (((-112) $ $) 20)) (-2127 (((-769) $) 41)))
+(((-671 |#1| |#2|) (-10 -8 (-15 -4318 (|#1| |#1|)) (-15 -3804 (|#1| |#1| (-564))) (-15 -3297 ((-112) |#1|)) (-15 -2531 ((-112) |#1|)) (-15 -4368 (|#2| |#1| (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564))) (-15 -2724 ((-642 |#2|) |#1|)) (-15 -4145 ((-112) (-564) |#1|)) (-15 -3997 ((-642 (-564)) |#1|)) (-15 -3421 ((-564) |#1|)) (-15 -2040 ((-564) |#1|)) (-15 -2337 (|#1| (-642 |#2|))) (-15 -4368 (|#1| |#1| (-1229 (-564)))) (-15 -2073 (|#1| |#1| (-564))) (-15 -2073 (|#1| |#1| (-1229 (-564)))) (-15 -4238 (|#1| |#2| |#1| (-564))) (-15 -4238 (|#1| |#1| |#1| (-564))) (-15 -1444 (|#1| |#1|)) (-15 -3399 ((-769) |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -1416 (|#1| |#1|)) (-15 -2514 (|#1| |#1| (-769))) (-15 -4368 (|#2| |#1| "last")) (-15 -2514 (|#2| |#1|)) (-15 -2570 (|#1| |#1| (-769))) (-15 -4368 (|#1| |#1| "rest")) (-15 -2570 (|#1| |#1|)) (-15 -2557 (|#1| |#1| (-769))) (-15 -4368 (|#2| |#1| "first")) (-15 -2557 (|#2| |#1|)) (-15 -1847 ((-112) |#1| |#1|)) (-15 -3820 ((-112) |#1| |#1|)) (-15 -2137 ((-564) |#1| |#1|)) (-15 -1392 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -2085 (|#2| |#1|)) (-15 -2376 ((-112) |#1|)) (-15 -2622 ((-642 |#1|) |#1|)) (-15 -1512 ((-642 |#1|) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-769) |#1|)) (-15 -3697 ((-112) |#1| (-769))) (-15 -3462 ((-112) |#1| (-769))) (-15 -3576 ((-112) |#1| (-769)))) (-672 |#2|) (-1212)) (T -671))
+NIL
+(-10 -8 (-15 -4318 (|#1| |#1|)) (-15 -3804 (|#1| |#1| (-564))) (-15 -3297 ((-112) |#1|)) (-15 -2531 ((-112) |#1|)) (-15 -4368 (|#2| |#1| (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564))) (-15 -2724 ((-642 |#2|) |#1|)) (-15 -4145 ((-112) (-564) |#1|)) (-15 -3997 ((-642 (-564)) |#1|)) (-15 -3421 ((-564) |#1|)) (-15 -2040 ((-564) |#1|)) (-15 -2337 (|#1| (-642 |#2|))) (-15 -4368 (|#1| |#1| (-1229 (-564)))) (-15 -2073 (|#1| |#1| (-564))) (-15 -2073 (|#1| |#1| (-1229 (-564)))) (-15 -4238 (|#1| |#2| |#1| (-564))) (-15 -4238 (|#1| |#1| |#1| (-564))) (-15 -1444 (|#1| |#1|)) (-15 -3399 ((-769) |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -1416 (|#1| |#1|)) (-15 -2514 (|#1| |#1| (-769))) (-15 -4368 (|#2| |#1| "last")) (-15 -2514 (|#2| |#1|)) (-15 -2570 (|#1| |#1| (-769))) (-15 -4368 (|#1| |#1| "rest")) (-15 -2570 (|#1| |#1|)) (-15 -2557 (|#1| |#1| (-769))) (-15 -4368 (|#2| |#1| "first")) (-15 -2557 (|#2| |#1|)) (-15 -1847 ((-112) |#1| |#1|)) (-15 -3820 ((-112) |#1| |#1|)) (-15 -2137 ((-564) |#1| |#1|)) (-15 -1392 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -2085 (|#2| |#1|)) (-15 -2376 ((-112) |#1|)) (-15 -2622 ((-642 |#1|) |#1|)) (-15 -1512 ((-642 |#1|) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-769) |#1|)) (-15 -3697 ((-112) |#1| (-769))) (-15 -3462 ((-112) |#1| (-769))) (-15 -3576 ((-112) |#1| (-769))))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2085 ((|#1| $) 49)) (-1807 ((|#1| $) 66)) (-1416 (($ $) 68)) (-1765 (((-1267) $ (-564) (-564)) 98 (|has| $ (-6 -4411)))) (-3256 (($ $ (-564)) 53 (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) 8)) (-3070 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-1505 (($ $ $) 57 (|has| $ (-6 -4411)))) (-2153 ((|#1| $ |#1|) 55 (|has| $ (-6 -4411)))) (-4059 ((|#1| $ |#1|) 59 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4411))) (($ $ "rest" $) 56 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 118 (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) 87 (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) 103)) (-1799 ((|#1| $) 67)) (-1976 (($) 7 T CONST)) (-4309 (($ $) 125)) (-2570 (($ $) 74) (($ $ (-769)) 72)) (-2595 (($ $) 100 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#1| $) 101 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 104)) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2625 ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 88)) (-3297 (((-112) $) 84)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1954 (((-769) $) 124)) (-2622 (((-642 $) $) 51)) (-1847 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-4227 (($ (-769) |#1|) 109)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 96 (|has| (-564) (-848)))) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 95 (|has| (-564) (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3576 (((-112) $ (-769)) 10)) (-2628 (((-642 |#1|) $) 46)) (-2376 (((-112) $) 50)) (-4355 (($ $) 127)) (-1896 (((-112) $) 128)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2514 ((|#1| $) 71) (($ $ (-769)) 69)) (-4238 (($ $ $ (-564)) 117) (($ |#1| $ (-564)) 116)) (-3997 (((-642 (-564)) $) 93)) (-4145 (((-112) (-564) $) 92)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2467 ((|#1| $) 126)) (-2557 ((|#1| $) 77) (($ $ (-769)) 75)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2696 (($ $ |#1|) 97 (|has| $ (-6 -4411)))) (-3804 (($ $ (-564)) 123)) (-2531 (((-112) $) 85)) (-2537 (((-112) $) 129)) (-3728 (((-112) $) 130)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) 91)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1229 (-564))) 113) ((|#1| $ (-564)) 90) ((|#1| $ (-564) |#1|) 89)) (-2137 (((-564) $ $) 45)) (-2073 (($ $ (-1229 (-564))) 115) (($ $ (-564)) 114)) (-1392 (((-112) $) 47)) (-1444 (($ $) 63)) (-2960 (($ $) 60 (|has| $ (-6 -4411)))) (-3399 (((-769) $) 64)) (-3848 (($ $) 65)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 99 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 108)) (-2582 (($ $ $) 62 (|has| $ (-6 -4411))) (($ $ |#1|) 61 (|has| $ (-6 -4411)))) (-3651 (($ $ $) 79) (($ |#1| $) 78) (($ (-642 $)) 111) (($ $ |#1|) 110)) (-4318 (($ $) 122)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) 52)) (-3820 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-672 |#1|) (-140) (-1212)) (T -672))
+((-2490 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-672 *3)) (-4 *3 (-1212)))) (-1700 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-672 *3)) (-4 *3 (-1212)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-4355 (*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))) (-4309 (*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-672 *3)) (-4 *3 (-1212)))) (-4318 (*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))))
+(-13 (-1146 |t#1|) (-10 -8 (-15 -2490 ($ (-1 (-112) |t#1|) $)) (-15 -1700 ($ (-1 (-112) |t#1|) $)) (-15 -3728 ((-112) $)) (-15 -2537 ((-112) $)) (-15 -1896 ((-112) $)) (-15 -4355 ($ $)) (-15 -2467 (|t#1| $)) (-15 -4309 ($ $)) (-15 -1954 ((-769) $)) (-15 -3804 ($ $ (-564))) (-15 -4318 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1146 |#1|) . T) ((-1212) . T) ((-1250 |#1|) . T))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2720 (($ (-769) (-769) (-769)) 55 (|has| |#1| (-1047)))) (-3697 (((-112) $ (-769)) NIL)) (-1653 ((|#1| $ (-769) (-769) (-769) |#1|) 49)) (-1976 (($) NIL T CONST)) (-3116 (($ $ $) 60 (|has| |#1| (-1047)))) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1943 (((-1262 (-769)) $) 12)) (-3660 (($ (-1173) $ $) 37)) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2064 (($ (-769)) 57 (|has| |#1| (-1047)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-769) (-769) (-769)) 46)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-2337 (($ (-642 (-642 (-642 |#1|)))) 70)) (-2327 (($ (-956 (-956 (-956 |#1|)))) 23) (((-956 (-956 (-956 |#1|))) $) 19) (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-673 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1047)) (PROGN (-15 -2720 ($ (-769) (-769) (-769))) (-15 -2064 ($ (-769))) (-15 -3116 ($ $ $))) |%noBranch|) (-15 -2337 ($ (-642 (-642 (-642 |#1|))))) (-15 -4368 (|#1| $ (-769) (-769) (-769))) (-15 -1653 (|#1| $ (-769) (-769) (-769) |#1|)) (-15 -2327 ($ (-956 (-956 (-956 |#1|))))) (-15 -2327 ((-956 (-956 (-956 |#1|))) $)) (-15 -3660 ($ (-1173) $ $)) (-15 -1943 ((-1262 (-769)) $)))) (-1097)) (T -673))
+((-2720 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-769)) (-5 *1 (-673 *3)) (-4 *3 (-1047)) (-4 *3 (-1097)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-673 *3)) (-4 *3 (-1047)) (-4 *3 (-1097)))) (-3116 (*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-1047)) (-4 *2 (-1097)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-642 *3)))) (-4 *3 (-1097)) (-5 *1 (-673 *3)))) (-4368 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-769)) (-5 *1 (-673 *2)) (-4 *2 (-1097)))) (-1653 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-673 *2)) (-4 *2 (-1097)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-956 (-956 (-956 *3)))) (-4 *3 (-1097)) (-5 *1 (-673 *3)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-956 (-956 (-956 *3)))) (-5 *1 (-673 *3)) (-4 *3 (-1097)))) (-3660 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-673 *3)) (-4 *3 (-1097)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-1262 (-769))) (-5 *1 (-673 *3)) (-4 *3 (-1097)))))
+(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1047)) (PROGN (-15 -2720 ($ (-769) (-769) (-769))) (-15 -2064 ($ (-769))) (-15 -3116 ($ $ $))) |%noBranch|) (-15 -2337 ($ (-642 (-642 (-642 |#1|))))) (-15 -4368 (|#1| $ (-769) (-769) (-769))) (-15 -1653 (|#1| $ (-769) (-769) (-769) |#1|)) (-15 -2327 ($ (-956 (-956 (-956 |#1|))))) (-15 -2327 ((-956 (-956 (-956 |#1|))) $)) (-15 -3660 ($ (-1173) $ $)) (-15 -1943 ((-1262 (-769)) $))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-3345 (((-483) $) 10)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 19) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2474 (((-1132) $) 12)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-674) (-13 (-1080) (-10 -8 (-15 -3345 ((-483) $)) (-15 -2474 ((-1132) $))))) (T -674))
+((-3345 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-674)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-674)))))
+(-13 (-1080) (-10 -8 (-15 -3345 ((-483) $)) (-15 -2474 ((-1132) $))))
+((-2907 (((-112) $ $) NIL)) (-2961 (((-642 |#1|) $) 15)) (-4336 (($ $) 19)) (-2672 (((-112) $) 20)) (-4278 (((-3 |#1| "failed") $) 23)) (-3027 ((|#1| $) 21)) (-2570 (($ $) 37)) (-3298 (($ $) 25)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-1894 (((-112) $ $) 46)) (-2480 (((-919) $) 40)) (-4326 (($ $) 18)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 ((|#1| $) 36)) (-2327 (((-860) $) 32) (($ |#1|) 24) (((-817 |#1|) $) 28)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 13)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 44)) (* (($ $ $) 35)))
+(((-675 |#1|) (-13 (-848) (-1036 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2327 ((-817 |#1|) $)) (-15 -2557 (|#1| $)) (-15 -4326 ($ $)) (-15 -2480 ((-919) $)) (-15 -1894 ((-112) $ $)) (-15 -3298 ($ $)) (-15 -2570 ($ $)) (-15 -2672 ((-112) $)) (-15 -4336 ($ $)) (-15 -2961 ((-642 |#1|) $)))) (-848)) (T -675))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) (-2557 (*1 *2 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-4326 (*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) (-3298 (*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-2570 (*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-848)))) (-4336 (*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-675 *3)) (-4 *3 (-848)))))
+(-13 (-848) (-1036 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2327 ((-817 |#1|) $)) (-15 -2557 (|#1| $)) (-15 -4326 ($ $)) (-15 -2480 ((-919) $)) (-15 -1894 ((-112) $ $)) (-15 -3298 ($ $)) (-15 -2570 ($ $)) (-15 -2672 ((-112) $)) (-15 -4336 ($ $)) (-15 -2961 ((-642 |#1|) $))))
+((-1867 ((|#1| (-1 |#1| (-769) |#1|) (-769) |#1|) 14)) (-1650 ((|#1| (-1 |#1| |#1|) (-769) |#1|) 12)))
+(((-676 |#1|) (-10 -7 (-15 -1650 (|#1| (-1 |#1| |#1|) (-769) |#1|)) (-15 -1867 (|#1| (-1 |#1| (-769) |#1|) (-769) |#1|))) (-1097)) (T -676))
+((-1867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-769) *2)) (-5 *4 (-769)) (-4 *2 (-1097)) (-5 *1 (-676 *2)))) (-1650 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-769)) (-4 *2 (-1097)) (-5 *1 (-676 *2)))))
+(-10 -7 (-15 -1650 (|#1| (-1 |#1| |#1|) (-769) |#1|)) (-15 -1867 (|#1| (-1 |#1| (-769) |#1|) (-769) |#1|)))
+((-2042 ((|#2| |#1| |#2|) 9)) (-2033 ((|#1| |#1| |#2|) 8)))
+(((-677 |#1| |#2|) (-10 -7 (-15 -2033 (|#1| |#1| |#2|)) (-15 -2042 (|#2| |#1| |#2|))) (-1097) (-1097)) (T -677))
+((-2042 (*1 *2 *3 *2) (-12 (-5 *1 (-677 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))) (-2033 (*1 *2 *2 *3) (-12 (-5 *1 (-677 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))))
+(-10 -7 (-15 -2033 (|#1| |#1| |#2|)) (-15 -2042 (|#2| |#1| |#2|)))
+((-3164 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-678 |#1| |#2| |#3|) (-10 -7 (-15 -3164 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1097) (-1097) (-1097)) (T -678))
+((-3164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)) (-5 *1 (-678 *5 *6 *2)))))
+(-10 -7 (-15 -3164 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-3796 (((-1211) $) 21)) (-3732 (((-642 (-1211)) $) 19)) (-3870 (($ (-642 (-1211)) (-1211)) 14)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 29) (($ (-1178)) NIL) (((-1178) $) NIL) (((-1211) $) 22) (($ (-1115)) 10)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-679) (-13 (-1080) (-611 (-1211)) (-10 -8 (-15 -2327 ($ (-1115))) (-15 -3870 ($ (-642 (-1211)) (-1211))) (-15 -3732 ((-642 (-1211)) $)) (-15 -3796 ((-1211) $))))) (T -679))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-679)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-642 (-1211))) (-5 *3 (-1211)) (-5 *1 (-679)))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-679)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-679)))))
+(-13 (-1080) (-611 (-1211)) (-10 -8 (-15 -2327 ($ (-1115))) (-15 -3870 ($ (-642 (-1211)) (-1211))) (-15 -3732 ((-642 (-1211)) $)) (-15 -3796 ((-1211) $))))
+((-1867 (((-1 |#1| (-769) |#1|) (-1 |#1| (-769) |#1|)) 29)) (-1904 (((-1 |#1|) |#1|) 8)) (-4199 ((|#1| |#1|) 23)) (-3557 (((-642 |#1|) (-1 (-642 |#1|) (-642 |#1|)) (-564)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-2327 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-769)) 26)))
+(((-680 |#1|) (-10 -7 (-15 -1904 ((-1 |#1|) |#1|)) (-15 -2327 ((-1 |#1|) |#1|)) (-15 -3557 (|#1| (-1 |#1| |#1|))) (-15 -3557 ((-642 |#1|) (-1 (-642 |#1|) (-642 |#1|)) (-564))) (-15 -4199 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-769))) (-15 -1867 ((-1 |#1| (-769) |#1|) (-1 |#1| (-769) |#1|)))) (-1097)) (T -680))
+((-1867 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-769) *3)) (-4 *3 (-1097)) (-5 *1 (-680 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *4 (-1097)) (-5 *1 (-680 *4)))) (-4199 (*1 *2 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1097)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-642 *5) (-642 *5))) (-5 *4 (-564)) (-5 *2 (-642 *5)) (-5 *1 (-680 *5)) (-4 *5 (-1097)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-680 *2)) (-4 *2 (-1097)))) (-2327 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1097)))) (-1904 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1097)))))
+(-10 -7 (-15 -1904 ((-1 |#1|) |#1|)) (-15 -2327 ((-1 |#1|) |#1|)) (-15 -3557 (|#1| (-1 |#1| |#1|))) (-15 -3557 ((-642 |#1|) (-1 (-642 |#1|) (-642 |#1|)) (-564))) (-15 -4199 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-769))) (-15 -1867 ((-1 |#1| (-769) |#1|) (-1 |#1| (-769) |#1|))))
+((-4243 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1424 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2858 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1529 (((-1 |#2| |#1|) |#2|) 11)))
+(((-681 |#1| |#2|) (-10 -7 (-15 -1529 ((-1 |#2| |#1|) |#2|)) (-15 -1424 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2858 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4243 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1097) (-1097)) (T -681))
+((-4243 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-5 *2 (-1 *5 *4)) (-5 *1 (-681 *4 *5)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1097)) (-5 *2 (-1 *5 *4)) (-5 *1 (-681 *4 *5)) (-4 *4 (-1097)))) (-1424 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-5 *2 (-1 *5)) (-5 *1 (-681 *4 *5)))) (-1529 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-681 *4 *3)) (-4 *4 (-1097)) (-4 *3 (-1097)))))
+(-10 -7 (-15 -1529 ((-1 |#2| |#1|) |#2|)) (-15 -1424 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2858 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4243 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-3510 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1785 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2290 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3471 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1378 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-682 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2290 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3471 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1378 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3510 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1097) (-1097) (-1097)) (T -682))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-1 *7 *5)) (-5 *1 (-682 *5 *6 *7)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-682 *4 *5 *6)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-682 *4 *5 *6)) (-4 *4 (-1097)))) (-3471 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1097)) (-4 *6 (-1097)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-682 *4 *5 *6)) (-4 *5 (-1097)))) (-2290 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-1 *6 *5)) (-5 *1 (-682 *4 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1097)) (-4 *4 (-1097)) (-4 *6 (-1097)) (-5 *2 (-1 *6 *5)) (-5 *1 (-682 *5 *4 *6)))))
+(-10 -7 (-15 -1785 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2290 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3471 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1378 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3510 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-1320 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4358 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-683 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4358 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4358 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1320 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1047) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|) (-1047) (-373 |#5|) (-373 |#5|) (-685 |#5| |#6| |#7|)) (T -683))
+((-1320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1047)) (-4 *2 (-1047)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-683 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-685 *5 *6 *7)) (-4 *10 (-685 *2 *8 *9)))) (-4358 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-685 *8 *9 *10)) (-5 *1 (-683 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-685 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-685 *8 *9 *10)) (-5 *1 (-683 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-685 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))))
+(-10 -7 (-15 -4358 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4358 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1320 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-4103 (($ (-769) (-769)) 43)) (-1698 (($ $ $) 71)) (-3673 (($ |#3|) 66) (($ $) 67)) (-4129 (((-112) $) 38)) (-2772 (($ $ (-564) (-564)) 81)) (-2767 (($ $ (-564) (-564)) 82)) (-2184 (($ $ (-564) (-564) (-564) (-564)) 87)) (-3705 (($ $) 69)) (-3873 (((-112) $) 15)) (-3149 (($ $ (-564) (-564) $) 88)) (-3877 ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-642 (-564)) (-642 (-564)) $) 86)) (-2540 (($ (-769) |#2|) 53)) (-2244 (($ (-642 (-642 |#2|))) 51)) (-1624 (((-642 (-642 |#2|)) $) 78)) (-4334 (($ $ $) 70)) (-2896 (((-3 $ "failed") $ |#2|) 120)) (-4368 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-642 (-564)) (-642 (-564))) 85)) (-3548 (($ (-642 |#2|)) 54) (($ (-642 $)) 56)) (-2877 (((-112) $) 28)) (-2327 (($ |#4|) 61) (((-860) $) NIL)) (-1332 (((-112) $) 40)) (-2998 (($ $ |#2|) 122)) (-2987 (($ $ $) 92) (($ $) 95)) (-2974 (($ $ $) 90)) (** (($ $ (-769)) 109) (($ $ (-564)) 127)) (* (($ $ $) 101) (($ |#2| $) 97) (($ $ |#2|) 98) (($ (-564) $) 100) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
+(((-684 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2327 ((-860) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2998 (|#1| |#1| |#2|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-769))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1| (-564) (-564) |#1|)) (-15 -2184 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -2767 (|#1| |#1| (-564) (-564))) (-15 -2772 (|#1| |#1| (-564) (-564))) (-15 -3877 (|#1| |#1| (-642 (-564)) (-642 (-564)) |#1|)) (-15 -4368 (|#1| |#1| (-642 (-564)) (-642 (-564)))) (-15 -1624 ((-642 (-642 |#2|)) |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -4334 (|#1| |#1| |#1|)) (-15 -3705 (|#1| |#1|)) (-15 -3673 (|#1| |#1|)) (-15 -3673 (|#1| |#3|)) (-15 -2327 (|#1| |#4|)) (-15 -3548 (|#1| (-642 |#1|))) (-15 -3548 (|#1| (-642 |#2|))) (-15 -2540 (|#1| (-769) |#2|)) (-15 -2244 (|#1| (-642 (-642 |#2|)))) (-15 -4103 (|#1| (-769) (-769))) (-15 -1332 ((-112) |#1|)) (-15 -4129 ((-112) |#1|)) (-15 -2877 ((-112) |#1|)) (-15 -3873 ((-112) |#1|)) (-15 -3877 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564) (-564)))) (-685 |#2| |#3| |#4|) (-1047) (-373 |#2|) (-373 |#2|)) (T -684))
+NIL
+(-10 -8 (-15 -2327 ((-860) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2998 (|#1| |#1| |#2|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-769))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1| (-564) (-564) |#1|)) (-15 -2184 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -2767 (|#1| |#1| (-564) (-564))) (-15 -2772 (|#1| |#1| (-564) (-564))) (-15 -3877 (|#1| |#1| (-642 (-564)) (-642 (-564)) |#1|)) (-15 -4368 (|#1| |#1| (-642 (-564)) (-642 (-564)))) (-15 -1624 ((-642 (-642 |#2|)) |#1|)) (-15 -1698 (|#1| |#1| |#1|)) (-15 -4334 (|#1| |#1| |#1|)) (-15 -3705 (|#1| |#1|)) (-15 -3673 (|#1| |#1|)) (-15 -3673 (|#1| |#3|)) (-15 -2327 (|#1| |#4|)) (-15 -3548 (|#1| (-642 |#1|))) (-15 -3548 (|#1| (-642 |#2|))) (-15 -2540 (|#1| (-769) |#2|)) (-15 -2244 (|#1| (-642 (-642 |#2|)))) (-15 -4103 (|#1| (-769) (-769))) (-15 -1332 ((-112) |#1|)) (-15 -4129 ((-112) |#1|)) (-15 -2877 ((-112) |#1|)) (-15 -3873 ((-112) |#1|)) (-15 -3877 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564) (-564))))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-4103 (($ (-769) (-769)) 98)) (-1698 (($ $ $) 88)) (-3673 (($ |#2|) 92) (($ $) 91)) (-4129 (((-112) $) 100)) (-2772 (($ $ (-564) (-564)) 84)) (-2767 (($ $ (-564) (-564)) 83)) (-2184 (($ $ (-564) (-564) (-564) (-564)) 82)) (-3705 (($ $) 90)) (-3873 (((-112) $) 102)) (-3697 (((-112) $ (-769)) 8)) (-3149 (($ $ (-564) (-564) $) 81)) (-3877 ((|#1| $ (-564) (-564) |#1|) 45) (($ $ (-642 (-564)) (-642 (-564)) $) 85)) (-2950 (($ $ (-564) |#2|) 43)) (-1919 (($ $ (-564) |#3|) 42)) (-2540 (($ (-769) |#1|) 96)) (-1976 (($) 7 T CONST)) (-4239 (($ $) 68 (|has| |#1| (-307)))) (-2600 ((|#2| $ (-564)) 47)) (-2414 (((-769) $) 67 (|has| |#1| (-556)))) (-2625 ((|#1| $ (-564) (-564) |#1|) 44)) (-2551 ((|#1| $ (-564) (-564)) 49)) (-2936 (((-642 |#1|) $) 31)) (-2054 (((-769) $) 66 (|has| |#1| (-556)))) (-4286 (((-642 |#3|) $) 65 (|has| |#1| (-556)))) (-2567 (((-769) $) 52)) (-4227 (($ (-769) (-769) |#1|) 58)) (-2579 (((-769) $) 51)) (-3462 (((-112) $ (-769)) 9)) (-3422 ((|#1| $) 63 (|has| |#1| (-6 (-4412 "*"))))) (-3491 (((-564) $) 56)) (-3865 (((-564) $) 54)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3054 (((-564) $) 55)) (-2977 (((-564) $) 53)) (-2244 (($ (-642 (-642 |#1|))) 97)) (-2613 (($ (-1 |#1| |#1|) $) 35)) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1624 (((-642 (-642 |#1|)) $) 87)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4168 (((-3 $ "failed") $) 62 (|has| |#1| (-363)))) (-4334 (($ $ $) 89)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2696 (($ $ |#1|) 57)) (-2896 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-556)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ (-564) (-564)) 50) ((|#1| $ (-564) (-564) |#1|) 48) (($ $ (-642 (-564)) (-642 (-564))) 86)) (-3548 (($ (-642 |#1|)) 95) (($ (-642 $)) 94)) (-2877 (((-112) $) 101)) (-1504 ((|#1| $) 64 (|has| |#1| (-6 (-4412 "*"))))) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-3022 ((|#3| $ (-564)) 46)) (-2327 (($ |#3|) 93) (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-1332 (((-112) $) 99)) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2998 (($ $ |#1|) 69 (|has| |#1| (-363)))) (-2987 (($ $ $) 79) (($ $) 78)) (-2974 (($ $ $) 80)) (** (($ $ (-769)) 71) (($ $ (-564)) 61 (|has| |#1| (-363)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-564) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-685 |#1| |#2| |#3|) (-140) (-1047) (-373 |t#1|) (-373 |t#1|)) (T -685))
+((-3873 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1332 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-4103 (*1 *1 *2 *2) (-12 (-5 *2 (-769)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2244 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2540 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2327 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-3673 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-685 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-3673 (*1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3705 (*1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-4334 (*1 *1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1698 (*1 *1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-642 (-642 *3))))) (-4368 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-642 (-564))) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3877 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-642 (-564))) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2772 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2767 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2184 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3149 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2974 (*1 *1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2987 (*1 *1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2987 (*1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-685 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-685 *3 *2 *4)) (-4 *3 (-1047)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2896 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) (-2998 (*1 *1 *1 *2) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-4239 (*1 *1 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-769)))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-769)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-642 *5)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))) (-4168 (*1 *1 *1) (|partial| -12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4411) (-6 -4410) (-15 -3873 ((-112) $)) (-15 -2877 ((-112) $)) (-15 -4129 ((-112) $)) (-15 -1332 ((-112) $)) (-15 -4103 ($ (-769) (-769))) (-15 -2244 ($ (-642 (-642 |t#1|)))) (-15 -2540 ($ (-769) |t#1|)) (-15 -3548 ($ (-642 |t#1|))) (-15 -3548 ($ (-642 $))) (-15 -2327 ($ |t#3|)) (-15 -3673 ($ |t#2|)) (-15 -3673 ($ $)) (-15 -3705 ($ $)) (-15 -4334 ($ $ $)) (-15 -1698 ($ $ $)) (-15 -1624 ((-642 (-642 |t#1|)) $)) (-15 -4368 ($ $ (-642 (-564)) (-642 (-564)))) (-15 -3877 ($ $ (-642 (-564)) (-642 (-564)) $)) (-15 -2772 ($ $ (-564) (-564))) (-15 -2767 ($ $ (-564) (-564))) (-15 -2184 ($ $ (-564) (-564) (-564) (-564))) (-15 -3149 ($ $ (-564) (-564) $)) (-15 -2974 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -2987 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-564) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-769))) (IF (|has| |t#1| (-556)) (-15 -2896 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -2998 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -4239 ($ $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2414 ((-769) $)) (-15 -2054 ((-769) $)) (-15 -4286 ((-642 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4412 "*"))) (PROGN (-15 -1504 (|t#1| $)) (-15 -3422 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -4168 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-57 |#1| |#2| |#3|) . T) ((-1212) . T))
+((-4239 ((|#4| |#4|) 97 (|has| |#1| (-307)))) (-2414 (((-769) |#4|) 126 (|has| |#1| (-556)))) (-2054 (((-769) |#4|) 101 (|has| |#1| (-556)))) (-4286 (((-642 |#3|) |#4|) 108 (|has| |#1| (-556)))) (-2344 (((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|) 140 (|has| |#1| (-307)))) (-3422 ((|#1| |#4|) 57)) (-2302 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-556)))) (-4168 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-363)))) (-4139 ((|#4| |#4|) 93 (|has| |#1| (-556)))) (-3702 ((|#4| |#4| |#1| (-564) (-564)) 65)) (-3338 ((|#4| |#4| (-564) (-564)) 60)) (-1328 ((|#4| |#4| |#1| (-564) (-564)) 70)) (-1504 ((|#1| |#4|) 103)) (-3899 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-556)))))
+(((-686 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1504 (|#1| |#4|)) (-15 -3422 (|#1| |#4|)) (-15 -3338 (|#4| |#4| (-564) (-564))) (-15 -3702 (|#4| |#4| |#1| (-564) (-564))) (-15 -1328 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -2414 ((-769) |#4|)) (-15 -2054 ((-769) |#4|)) (-15 -4286 ((-642 |#3|) |#4|)) (-15 -4139 (|#4| |#4|)) (-15 -2302 ((-3 |#4| "failed") |#4|)) (-15 -3899 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -4239 (|#4| |#4|)) (-15 -2344 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4168 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|)) (T -686))
+((-4168 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-2344 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-686 *3 *4 *5 *6)) (-4 *6 (-685 *3 *4 *5)))) (-4239 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-3899 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-686 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-2302 (*1 *2 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-4139 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-4286 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-642 *6)) (-5 *1 (-686 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-2054 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-686 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-686 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-1328 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-686 *3 *5 *6 *2)) (-4 *2 (-685 *3 *5 *6)))) (-3702 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-686 *3 *5 *6 *2)) (-4 *2 (-685 *3 *5 *6)))) (-3338 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-686 *4 *5 *6 *2)) (-4 *2 (-685 *4 *5 *6)))) (-3422 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-686 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5)))) (-1504 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-686 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5)))))
+(-10 -7 (-15 -1504 (|#1| |#4|)) (-15 -3422 (|#1| |#4|)) (-15 -3338 (|#4| |#4| (-564) (-564))) (-15 -3702 (|#4| |#4| |#1| (-564) (-564))) (-15 -1328 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -2414 ((-769) |#4|)) (-15 -2054 ((-769) |#4|)) (-15 -4286 ((-642 |#3|) |#4|)) (-15 -4139 (|#4| |#4|)) (-15 -2302 ((-3 |#4| "failed") |#4|)) (-15 -3899 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -4239 (|#4| |#4|)) (-15 -2344 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4168 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4103 (($ (-769) (-769)) 63)) (-1698 (($ $ $) NIL)) (-3673 (($ (-1262 |#1|)) NIL) (($ $) NIL)) (-4129 (((-112) $) NIL)) (-2772 (($ $ (-564) (-564)) 21)) (-2767 (($ $ (-564) (-564)) NIL)) (-2184 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-3705 (($ $) NIL)) (-3873 (((-112) $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-3149 (($ $ (-564) (-564) $) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564)) $) NIL)) (-2950 (($ $ (-564) (-1262 |#1|)) NIL)) (-1919 (($ $ (-564) (-1262 |#1|)) NIL)) (-2540 (($ (-769) |#1|) 36)) (-1976 (($) NIL T CONST)) (-4239 (($ $) 45 (|has| |#1| (-307)))) (-2600 (((-1262 |#1|) $ (-564)) NIL)) (-2414 (((-769) $) 47 (|has| |#1| (-556)))) (-2625 ((|#1| $ (-564) (-564) |#1|) 68)) (-2551 ((|#1| $ (-564) (-564)) NIL)) (-2936 (((-642 |#1|) $) NIL)) (-2054 (((-769) $) 49 (|has| |#1| (-556)))) (-4286 (((-642 (-1262 |#1|)) $) 52 (|has| |#1| (-556)))) (-2567 (((-769) $) 31)) (-4227 (($ (-769) (-769) |#1|) 27)) (-2579 (((-769) $) 32)) (-3462 (((-112) $ (-769)) NIL)) (-3422 ((|#1| $) 43 (|has| |#1| (-6 (-4412 "*"))))) (-3491 (((-564) $) 10)) (-3865 (((-564) $) 11)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3054 (((-564) $) 14)) (-2977 (((-564) $) 64)) (-2244 (($ (-642 (-642 |#1|))) NIL)) (-2613 (($ (-1 |#1| |#1|) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1624 (((-642 (-642 |#1|)) $) 75)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4168 (((-3 $ "failed") $) 59 (|has| |#1| (-363)))) (-4334 (($ $ $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2696 (($ $ |#1|) NIL)) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-642 (-564)) (-642 (-564))) NIL)) (-3548 (($ (-642 |#1|)) NIL) (($ (-642 $)) NIL) (($ (-1262 |#1|)) 69)) (-2877 (((-112) $) NIL)) (-1504 ((|#1| $) 41 (|has| |#1| (-6 (-4412 "*"))))) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-1314 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3022 (((-1262 |#1|) $ (-564)) NIL)) (-2327 (($ (-1262 |#1|)) NIL) (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1332 (((-112) $) NIL)) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $ $) NIL) (($ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-769)) 37) (($ $ (-564)) 61 (|has| |#1| (-363)))) (* (($ $ $) 23) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1262 |#1|) $ (-1262 |#1|)) NIL) (((-1262 |#1|) (-1262 |#1|) $) NIL)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-687 |#1|) (-13 (-685 |#1| (-1262 |#1|) (-1262 |#1|)) (-10 -8 (-15 -3548 ($ (-1262 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4168 ((-3 $ "failed") $)) |%noBranch|))) (-1047)) (T -687))
+((-4168 (*1 *1 *1) (|partial| -12 (-5 *1 (-687 *2)) (-4 *2 (-363)) (-4 *2 (-1047)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1047)) (-5 *1 (-687 *3)))))
+(-13 (-685 |#1| (-1262 |#1|) (-1262 |#1|)) (-10 -8 (-15 -3548 ($ (-1262 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4168 ((-3 $ "failed") $)) |%noBranch|)))
+((-2779 (((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|)) 37)) (-1346 (((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|) 34)) (-3330 (((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-769)) 43)) (-3276 (((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|)) 27)) (-3948 (((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|)) 31) (((-687 |#1|) (-687 |#1|) (-687 |#1|)) 29)) (-2386 (((-687 |#1|) (-687 |#1|) |#1| (-687 |#1|)) 33)) (-2871 (((-687 |#1|) (-687 |#1|) (-687 |#1|)) 25)) (** (((-687 |#1|) (-687 |#1|) (-769)) 46)))
+(((-688 |#1|) (-10 -7 (-15 -2871 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3276 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3948 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3948 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -2386 ((-687 |#1|) (-687 |#1|) |#1| (-687 |#1|))) (-15 -1346 ((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|)) (-15 -2779 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3330 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-769))) (-15 ** ((-687 |#1|) (-687 |#1|) (-769)))) (-1047)) (T -688))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-687 *4)) (-5 *3 (-769)) (-4 *4 (-1047)) (-5 *1 (-688 *4)))) (-3330 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-687 *4)) (-5 *3 (-769)) (-4 *4 (-1047)) (-5 *1 (-688 *4)))) (-2779 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-1346 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-2386 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-3948 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-3948 (*1 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-3276 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))) (-2871 (*1 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))))
+(-10 -7 (-15 -2871 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3276 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3948 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3948 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -2386 ((-687 |#1|) (-687 |#1|) |#1| (-687 |#1|))) (-15 -1346 ((-687 |#1|) (-687 |#1|) (-687 |#1|) |#1|)) (-15 -2779 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3330 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-687 |#1|) (-769))) (-15 ** ((-687 |#1|) (-687 |#1|) (-769))))
+((-4278 (((-3 |#1| "failed") $) 18)) (-3027 ((|#1| $) NIL)) (-3348 (($) 7 T CONST)) (-1594 (($ |#1|) 8)) (-2327 (($ |#1|) 16) (((-860) $) 23)) (-2305 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3348)) 11)) (-3939 ((|#1| $) 15)))
+(((-689 |#1|) (-13 (-1257) (-1036 |#1|) (-611 (-860)) (-10 -8 (-15 -1594 ($ |#1|)) (-15 -2305 ((-112) $ (|[\|\|]| |#1|))) (-15 -2305 ((-112) $ (|[\|\|]| -3348))) (-15 -3939 (|#1| $)) (-15 -3348 ($) -2858))) (-611 (-860))) (T -689))
+((-1594 (*1 *1 *2) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860))))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-860))) (-5 *2 (-112)) (-5 *1 (-689 *4)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3348)) (-5 *2 (-112)) (-5 *1 (-689 *4)) (-4 *4 (-611 (-860))))) (-3939 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860))))) (-3348 (*1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860))))))
+(-13 (-1257) (-1036 |#1|) (-611 (-860)) (-10 -8 (-15 -1594 ($ |#1|)) (-15 -2305 ((-112) $ (|[\|\|]| |#1|))) (-15 -2305 ((-112) $ (|[\|\|]| -3348))) (-15 -3939 (|#1| $)) (-15 -3348 ($) -2858)))
+((-2610 ((|#2| |#2| |#4|) 33)) (-2243 (((-687 |#2|) |#3| |#4|) 39)) (-1468 (((-687 |#2|) |#2| |#4|) 38)) (-3810 (((-1262 |#2|) |#2| |#4|) 16)) (-1724 ((|#2| |#3| |#4|) 32)) (-2313 (((-687 |#2|) |#3| |#4| (-769) (-769)) 50)) (-2734 (((-687 |#2|) |#2| |#4| (-769)) 49)))
+(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 ((-1262 |#2|) |#2| |#4|)) (-15 -1724 (|#2| |#3| |#4|)) (-15 -2610 (|#2| |#2| |#4|)) (-15 -1468 ((-687 |#2|) |#2| |#4|)) (-15 -2734 ((-687 |#2|) |#2| |#4| (-769))) (-15 -2243 ((-687 |#2|) |#3| |#4|)) (-15 -2313 ((-687 |#2|) |#3| |#4| (-769) (-769)))) (-1097) (-898 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4410)))) (T -690))
+((-2313 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-769)) (-4 *6 (-1097)) (-4 *7 (-898 *6)) (-5 *2 (-687 *7)) (-5 *1 (-690 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4410)))))) (-2243 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-4 *6 (-898 *5)) (-5 *2 (-687 *6)) (-5 *1 (-690 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))) (-2734 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-769)) (-4 *6 (-1097)) (-4 *3 (-898 *6)) (-5 *2 (-687 *3)) (-5 *1 (-690 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4410)))))) (-1468 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-4 *3 (-898 *5)) (-5 *2 (-687 *3)) (-5 *1 (-690 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))) (-2610 (*1 *2 *2 *3) (-12 (-4 *4 (-1097)) (-4 *2 (-898 *4)) (-5 *1 (-690 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4410)))))) (-1724 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-4 *2 (-898 *5)) (-5 *1 (-690 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))) (-3810 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-4 *3 (-898 *5)) (-5 *2 (-1262 *3)) (-5 *1 (-690 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))))
+(-10 -7 (-15 -3810 ((-1262 |#2|) |#2| |#4|)) (-15 -1724 (|#2| |#3| |#4|)) (-15 -2610 (|#2| |#2| |#4|)) (-15 -1468 ((-687 |#2|) |#2| |#4|)) (-15 -2734 ((-687 |#2|) |#2| |#4| (-769))) (-15 -2243 ((-687 |#2|) |#3| |#4|)) (-15 -2313 ((-687 |#2|) |#3| |#4| (-769) (-769))))
+((-3356 (((-2 (|:| |num| (-687 |#1|)) (|:| |den| |#1|)) (-687 |#2|)) 20)) (-1602 ((|#1| (-687 |#2|)) 9)) (-3283 (((-687 |#1|) (-687 |#2|)) 18)))
+(((-691 |#1| |#2|) (-10 -7 (-15 -1602 (|#1| (-687 |#2|))) (-15 -3283 ((-687 |#1|) (-687 |#2|))) (-15 -3356 ((-2 (|:| |num| (-687 |#1|)) (|:| |den| |#1|)) (-687 |#2|)))) (-556) (-990 |#1|)) (T -691))
+((-3356 (*1 *2 *3) (-12 (-5 *3 (-687 *5)) (-4 *5 (-990 *4)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| (-687 *4)) (|:| |den| *4))) (-5 *1 (-691 *4 *5)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-687 *5)) (-4 *5 (-990 *4)) (-4 *4 (-556)) (-5 *2 (-687 *4)) (-5 *1 (-691 *4 *5)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-687 *4)) (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-691 *2 *4)))))
+(-10 -7 (-15 -1602 (|#1| (-687 |#2|))) (-15 -3283 ((-687 |#1|) (-687 |#2|))) (-15 -3356 ((-2 (|:| |num| (-687 |#1|)) (|:| |den| |#1|)) (-687 |#2|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-3166 (((-687 (-697))) NIL) (((-687 (-697)) (-1262 $)) NIL)) (-3815 (((-697) $) NIL)) (-3851 (($ $) NIL (|has| (-697) (-1197)))) (-3704 (($ $) NIL (|has| (-697) (-1197)))) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-697) (-349)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-697) (-307)) (|has| (-697) (-907))))) (-4316 (($ $) NIL (-2706 (-12 (|has| (-697) (-307)) (|has| (-697) (-907))) (|has| (-697) (-363))))) (-1978 (((-418 $) $) NIL (-2706 (-12 (|has| (-697) (-307)) (|has| (-697) (-907))) (|has| (-697) (-363))))) (-3655 (($ $) NIL (-12 (|has| (-697) (-1000)) (|has| (-697) (-1197))))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-697) (-307)) (|has| (-697) (-907))))) (-4010 (((-112) $ $) NIL (|has| (-697) (-307)))) (-2521 (((-769)) NIL (|has| (-697) (-368)))) (-3827 (($ $) NIL (|has| (-697) (-1197)))) (-3679 (($ $) NIL (|has| (-697) (-1197)))) (-3875 (($ $) NIL (|has| (-697) (-1197)))) (-3727 (($ $) NIL (|has| (-697) (-1197)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-697) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-697) (-1036 (-407 (-564)))))) (-3027 (((-564) $) NIL) (((-697) $) NIL) (((-407 (-564)) $) NIL (|has| (-697) (-1036 (-407 (-564)))))) (-4221 (($ (-1262 (-697))) NIL) (($ (-1262 (-697)) (-1262 $)) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-697) (-349)))) (-2845 (($ $ $) NIL (|has| (-697) (-307)))) (-1984 (((-687 (-697)) $) NIL) (((-687 (-697)) $ (-1262 $)) NIL)) (-4315 (((-687 (-697)) (-687 $)) NIL) (((-2 (|:| -1780 (-687 (-697))) (|:| |vec| (-1262 (-697)))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-697) (-637 (-564)))) (((-687 (-564)) (-687 $)) NIL (|has| (-697) (-637 (-564))))) (-1320 (((-3 $ "failed") (-407 (-1169 (-697)))) NIL (|has| (-697) (-363))) (($ (-1169 (-697))) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3668 (((-697) $) 29)) (-3838 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-697) (-545)))) (-2881 (((-112) $) NIL (|has| (-697) (-545)))) (-4034 (((-407 (-564)) $) NIL (|has| (-697) (-545)))) (-2414 (((-919)) NIL)) (-2433 (($) NIL (|has| (-697) (-368)))) (-2859 (($ $ $) NIL (|has| (-697) (-307)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| (-697) (-307)))) (-1363 (($) NIL (|has| (-697) (-349)))) (-3424 (((-112) $) NIL (|has| (-697) (-349)))) (-3607 (($ $) NIL (|has| (-697) (-349))) (($ $ (-769)) NIL (|has| (-697) (-349)))) (-1469 (((-112) $) NIL (-2706 (-12 (|has| (-697) (-307)) (|has| (-697) (-907))) (|has| (-697) (-363))))) (-2573 (((-2 (|:| |r| (-697)) (|:| |phi| (-697))) $) NIL (-12 (|has| (-697) (-1057)) (|has| (-697) (-1197))))) (-4265 (($) NIL (|has| (-697) (-1197)))) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-697) (-884 (-379)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-697) (-884 (-564))))) (-1427 (((-831 (-919)) $) NIL (|has| (-697) (-349))) (((-919) $) NIL (|has| (-697) (-349)))) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL (-12 (|has| (-697) (-1000)) (|has| (-697) (-1197))))) (-2218 (((-697) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| (-697) (-349)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-697) (-307)))) (-3947 (((-1169 (-697)) $) NIL (|has| (-697) (-363)))) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-4358 (($ (-1 (-697) (-697)) $) NIL)) (-1945 (((-919) $) NIL (|has| (-697) (-368)))) (-3612 (($ $) NIL (|has| (-697) (-1197)))) (-1308 (((-1169 (-697)) $) NIL)) (-2049 (($ (-642 $)) NIL (|has| (-697) (-307))) (($ $ $) NIL (|has| (-697) (-307)))) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| (-697) (-363)))) (-3366 (($) NIL (|has| (-697) (-349)) CONST)) (-2047 (($ (-919)) NIL (|has| (-697) (-368)))) (-3541 (($) NIL)) (-3680 (((-697) $) 31)) (-4033 (((-1117) $) NIL)) (-2185 (($) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| (-697) (-307)))) (-2080 (($ (-642 $)) NIL (|has| (-697) (-307))) (($ $ $) NIL (|has| (-697) (-307)))) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| (-697) (-349)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-697) (-307)) (|has| (-697) (-907))))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-697) (-307)) (|has| (-697) (-907))))) (-3643 (((-418 $) $) NIL (-2706 (-12 (|has| (-697) (-307)) (|has| (-697) (-907))) (|has| (-697) (-363))))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-697) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| (-697) (-307)))) (-2896 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-697)) NIL (|has| (-697) (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-697) (-307)))) (-1723 (($ $) NIL (|has| (-697) (-1197)))) (-3215 (($ $ (-1173) (-697)) NIL (|has| (-697) (-514 (-1173) (-697)))) (($ $ (-642 (-1173)) (-642 (-697))) NIL (|has| (-697) (-514 (-1173) (-697)))) (($ $ (-642 (-294 (-697)))) NIL (|has| (-697) (-309 (-697)))) (($ $ (-294 (-697))) NIL (|has| (-697) (-309 (-697)))) (($ $ (-697) (-697)) NIL (|has| (-697) (-309 (-697)))) (($ $ (-642 (-697)) (-642 (-697))) NIL (|has| (-697) (-309 (-697))))) (-2048 (((-769) $) NIL (|has| (-697) (-307)))) (-4368 (($ $ (-697)) NIL (|has| (-697) (-286 (-697) (-697))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| (-697) (-307)))) (-1846 (((-697)) NIL) (((-697) (-1262 $)) NIL)) (-2136 (((-3 (-769) "failed") $ $) NIL (|has| (-697) (-349))) (((-769) $) NIL (|has| (-697) (-349)))) (-3175 (($ $ (-1 (-697) (-697))) NIL) (($ $ (-1 (-697) (-697)) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-1173)) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-769)) NIL (|has| (-697) (-233))) (($ $) NIL (|has| (-697) (-233)))) (-2382 (((-687 (-697)) (-1262 $) (-1 (-697) (-697))) NIL (|has| (-697) (-363)))) (-3280 (((-1169 (-697))) NIL)) (-3888 (($ $) NIL (|has| (-697) (-1197)))) (-3739 (($ $) NIL (|has| (-697) (-1197)))) (-2668 (($) NIL (|has| (-697) (-349)))) (-3863 (($ $) NIL (|has| (-697) (-1197)))) (-3716 (($ $) NIL (|has| (-697) (-1197)))) (-3839 (($ $) NIL (|has| (-697) (-1197)))) (-3693 (($ $) NIL (|has| (-697) (-1197)))) (-2067 (((-687 (-697)) (-1262 $)) NIL) (((-1262 (-697)) $) NIL) (((-687 (-697)) (-1262 $) (-1262 $)) NIL) (((-1262 (-697)) $ (-1262 $)) NIL)) (-1314 (((-536) $) NIL (|has| (-697) (-612 (-536)))) (((-169 (-225)) $) NIL (|has| (-697) (-1020))) (((-169 (-379)) $) NIL (|has| (-697) (-1020))) (((-890 (-379)) $) NIL (|has| (-697) (-612 (-890 (-379))))) (((-890 (-564)) $) NIL (|has| (-697) (-612 (-890 (-564))))) (($ (-1169 (-697))) NIL) (((-1169 (-697)) $) NIL) (($ (-1262 (-697))) NIL) (((-1262 (-697)) $) NIL)) (-1389 (($ $) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-2706 (-12 (|has| (-697) (-307)) (|has| $ (-145)) (|has| (-697) (-907))) (|has| (-697) (-349))))) (-3609 (($ (-697) (-697)) 12)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-697)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-564))) 19) (($ (-169 (-697))) 28) (($ (-169 (-699))) 25) (((-169 (-379)) $) 33) (($ (-407 (-564))) NIL (-2706 (|has| (-697) (-1036 (-407 (-564)))) (|has| (-697) (-363))))) (-2439 (($ $) NIL (|has| (-697) (-349))) (((-3 $ "failed") $) NIL (-2706 (-12 (|has| (-697) (-307)) (|has| $ (-145)) (|has| (-697) (-907))) (|has| (-697) (-145))))) (-3011 (((-1169 (-697)) $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) NIL)) (-3926 (($ $) NIL (|has| (-697) (-1197)))) (-3776 (($ $) NIL (|has| (-697) (-1197)))) (-2103 (((-112) $ $) NIL)) (-3900 (($ $) NIL (|has| (-697) (-1197)))) (-3750 (($ $) NIL (|has| (-697) (-1197)))) (-3951 (($ $) NIL (|has| (-697) (-1197)))) (-3803 (($ $) NIL (|has| (-697) (-1197)))) (-3417 (((-697) $) NIL (|has| (-697) (-1197)))) (-2683 (($ $) NIL (|has| (-697) (-1197)))) (-3816 (($ $) NIL (|has| (-697) (-1197)))) (-3938 (($ $) NIL (|has| (-697) (-1197)))) (-3791 (($ $) NIL (|has| (-697) (-1197)))) (-3913 (($ $) NIL (|has| (-697) (-1197)))) (-3763 (($ $) NIL (|has| (-697) (-1197)))) (-1381 (($ $) NIL (|has| (-697) (-1057)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-1 (-697) (-697))) NIL) (($ $ (-1 (-697) (-697)) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-1173)) NIL (|has| (-697) (-898 (-1173)))) (($ $ (-769)) NIL (|has| (-697) (-233))) (($ $) NIL (|has| (-697) (-233)))) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL (|has| (-697) (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ $) NIL (|has| (-697) (-1197))) (($ $ (-407 (-564))) NIL (-12 (|has| (-697) (-1000)) (|has| (-697) (-1197)))) (($ $ (-564)) NIL (|has| (-697) (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-697) $) NIL) (($ $ (-697)) NIL) (($ (-407 (-564)) $) NIL (|has| (-697) (-363))) (($ $ (-407 (-564))) NIL (|has| (-697) (-363)))))
+(((-692) (-13 (-387) (-166 (-697)) (-10 -8 (-15 -2327 ($ (-169 (-379)))) (-15 -2327 ($ (-169 (-564)))) (-15 -2327 ($ (-169 (-697)))) (-15 -2327 ($ (-169 (-699)))) (-15 -2327 ((-169 (-379)) $))))) (T -692))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-692)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-692)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-692)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-169 (-699))) (-5 *1 (-692)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-692)))))
+(-13 (-387) (-166 (-697)) (-10 -8 (-15 -2327 ($ (-169 (-379)))) (-15 -2327 ($ (-169 (-564)))) (-15 -2327 ($ (-169 (-697)))) (-15 -2327 ($ (-169 (-699)))) (-15 -2327 ((-169 (-379)) $))))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) 8)) (-2462 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-1938 (($ $) 63)) (-2595 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2265 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2490 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2730 ((|#1| $) 40)) (-3183 (($ |#1| $) 41) (($ |#1| $ (-769)) 64)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4381 (((-642 (-2 (|:| -3778 |#1|) (|:| -4043 (-769)))) $) 62)) (-2593 (($) 50) (($ (-642 |#1|)) 49)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 51)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) 43)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-693 |#1|) (-140) (-1097)) (T -693))
+((-3183 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-693 *2)) (-4 *2 (-1097)))) (-1938 (*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1097)))) (-4381 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1097)) (-5 *2 (-642 (-2 (|:| -3778 *3) (|:| -4043 (-769))))))))
+(-13 (-235 |t#1|) (-10 -8 (-15 -3183 ($ |t#1| $ (-769))) (-15 -1938 ($ $)) (-15 -4381 ((-642 (-2 (|:| -3778 |t#1|) (|:| -4043 (-769)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-4078 (((-642 |#1|) (-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564)))) (-564)) 65)) (-2681 ((|#1| |#1| (-564)) 61)) (-2080 ((|#1| |#1| |#1| (-564)) 45)) (-3643 (((-642 |#1|) |#1| (-564)) 48)) (-3288 ((|#1| |#1| (-564) |#1| (-564)) 39)) (-1585 (((-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564)))) |#1| (-564)) 60)))
+(((-694 |#1|) (-10 -7 (-15 -2080 (|#1| |#1| |#1| (-564))) (-15 -2681 (|#1| |#1| (-564))) (-15 -3643 ((-642 |#1|) |#1| (-564))) (-15 -1585 ((-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564)))) |#1| (-564))) (-15 -4078 ((-642 |#1|) (-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564)))) (-564))) (-15 -3288 (|#1| |#1| (-564) |#1| (-564)))) (-1238 (-564))) (T -694))
+((-3288 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3)))) (-4078 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-2 (|:| -3643 *5) (|:| -2775 (-564))))) (-5 *4 (-564)) (-4 *5 (-1238 *4)) (-5 *2 (-642 *5)) (-5 *1 (-694 *5)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-642 (-2 (|:| -3643 *3) (|:| -2775 *4)))) (-5 *1 (-694 *3)) (-4 *3 (-1238 *4)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-642 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1238 *4)))) (-2681 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3)))) (-2080 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3)))))
+(-10 -7 (-15 -2080 (|#1| |#1| |#1| (-564))) (-15 -2681 (|#1| |#1| (-564))) (-15 -3643 ((-642 |#1|) |#1| (-564))) (-15 -1585 ((-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564)))) |#1| (-564))) (-15 -4078 ((-642 |#1|) (-642 (-2 (|:| -3643 |#1|) (|:| -2775 (-564)))) (-564))) (-15 -3288 (|#1| |#1| (-564) |#1| (-564))))
+((-3755 (((-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2933 (((-1130 (-225)) (-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263))) 56) (((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263))) 58) (((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263))) 60)) (-3387 (((-1130 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-642 (-263))) NIL)) (-3124 (((-1130 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263))) 61)))
+(((-695) (-10 -7 (-15 -2933 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -2933 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -2933 ((-1130 (-225)) (-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -3124 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -3387 ((-1130 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -3755 ((-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -695))
+((-3755 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-941 (-225)) (-225) (-225))) (-5 *1 (-695)))) (-3387 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-695)))) (-3124 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-695)))) (-2933 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-225))) (-5 *5 (-642 (-263))) (-5 *1 (-695)))) (-2933 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-225))) (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-695)))) (-2933 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-695)))))
+(-10 -7 (-15 -2933 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -2933 ((-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -2933 ((-1130 (-225)) (-1130 (-225)) (-1 (-941 (-225)) (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -3124 ((-1130 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1091 (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -3387 ((-1130 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1091 (-225)) (-642 (-263)))) (-15 -3755 ((-1 (-941 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
+((-3643 (((-418 (-1169 |#4|)) (-1169 |#4|)) 89) (((-418 |#4|) |#4|) 270)))
+(((-696 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3643 ((-418 |#4|) |#4|)) (-15 -3643 ((-418 (-1169 |#4|)) (-1169 |#4|)))) (-848) (-791) (-349) (-947 |#3| |#2| |#1|)) (T -696))
+((-3643 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-349)) (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-696 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-947 *6 *5 *4)))))
+(-10 -7 (-15 -3643 ((-418 |#4|) |#4|)) (-15 -3643 ((-418 (-1169 |#4|)) (-1169 |#4|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 99)) (-3703 (((-564) $) 34)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1726 (($ $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-3655 (($ $) NIL)) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL)) (-1976 (($) NIL T CONST)) (-1971 (($ $) NIL)) (-4278 (((-3 (-564) "failed") $) 88) (((-3 (-407 (-564)) "failed") $) 28) (((-3 (-379) "failed") $) 85)) (-3027 (((-564) $) 90) (((-407 (-564)) $) 82) (((-379) $) 83)) (-2845 (($ $ $) 111)) (-3104 (((-3 $ "failed") $) 102)) (-2859 (($ $ $) 110)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2170 (((-919)) 92) (((-919) (-919)) 91)) (-2538 (((-112) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL)) (-1427 (((-564) $) NIL)) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL)) (-2218 (($ $) NIL)) (-3333 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1618 (((-564) (-564)) 96) (((-564)) 97)) (-2755 (($ $ $) NIL) (($) NIL (-12 (-2268 (|has| $ (-6 -4393))) (-2268 (|has| $ (-6 -4401)))))) (-2129 (((-564) (-564)) 94) (((-564)) 95)) (-1520 (($ $ $) NIL) (($) NIL (-12 (-2268 (|has| $ (-6 -4393))) (-2268 (|has| $ (-6 -4401)))))) (-3683 (((-564) $) 17)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 106)) (-1582 (((-919) (-564)) NIL (|has| $ (-6 -4401)))) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL)) (-2759 (($ $) NIL)) (-2861 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-919)) NIL)) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) 107)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2700 (((-564) $) 24)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 109)) (-3918 (((-919)) NIL) (((-919) (-919)) NIL (|has| $ (-6 -4401)))) (-4163 (((-919) (-564)) NIL (|has| $ (-6 -4401)))) (-1314 (((-379) $) NIL) (((-225) $) NIL) (((-890 (-379)) $) NIL)) (-2327 (((-860) $) 67) (($ (-564)) 78) (($ $) NIL) (($ (-407 (-564))) 81) (($ (-564)) 78) (($ (-407 (-564))) 81) (($ (-379)) 75) (((-379) $) 65) (($ (-699)) 70)) (-2756 (((-769)) 121 T CONST)) (-1741 (($ (-564) (-564) (-919)) 58)) (-3264 (($ $) NIL)) (-1497 (((-919)) NIL) (((-919) (-919)) NIL (|has| $ (-6 -4401)))) (-1648 (((-112) $ $) NIL)) (-2547 (((-919)) 45) (((-919) (-919)) 93)) (-2103 (((-112) $ $) NIL)) (-1381 (($ $) NIL)) (-2312 (($) 37 T CONST)) (-2322 (($) 18 T CONST)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 98)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 120)) (-2998 (($ $ $) 80)) (-2987 (($ $) 117) (($ $ $) 118)) (-2974 (($ $ $) 116)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 105)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 112) (($ $ $) 103) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-697) (-13 (-404) (-387) (-363) (-1036 (-379)) (-1036 (-407 (-564))) (-147) (-10 -8 (-15 -2170 ((-919) (-919))) (-15 -2170 ((-919))) (-15 -2547 ((-919) (-919))) (-15 -2129 ((-564) (-564))) (-15 -2129 ((-564))) (-15 -1618 ((-564) (-564))) (-15 -1618 ((-564))) (-15 -2327 ((-379) $)) (-15 -2327 ($ (-699))) (-15 -3683 ((-564) $)) (-15 -2700 ((-564) $)) (-15 -1741 ($ (-564) (-564) (-919)))))) (T -697))
+((-2700 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-2170 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697)))) (-2170 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697)))) (-2547 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697)))) (-2129 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-2129 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-1618 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-697)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-699)) (-5 *1 (-697)))) (-1741 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-919)) (-5 *1 (-697)))))
+(-13 (-404) (-387) (-363) (-1036 (-379)) (-1036 (-407 (-564))) (-147) (-10 -8 (-15 -2170 ((-919) (-919))) (-15 -2170 ((-919))) (-15 -2547 ((-919) (-919))) (-15 -2129 ((-564) (-564))) (-15 -2129 ((-564))) (-15 -1618 ((-564) (-564))) (-15 -1618 ((-564))) (-15 -2327 ((-379) $)) (-15 -2327 ($ (-699))) (-15 -3683 ((-564) $)) (-15 -2700 ((-564) $)) (-15 -1741 ($ (-564) (-564) (-919)))))
+((-3707 (((-687 |#1|) (-687 |#1|) |#1| |#1|) 87)) (-4239 (((-687 |#1|) (-687 |#1|) |#1|) 67)) (-3713 (((-687 |#1|) (-687 |#1|) |#1|) 88)) (-3811 (((-687 |#1|) (-687 |#1|)) 68)) (-2344 (((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|) 86)))
+(((-698 |#1|) (-10 -7 (-15 -3811 ((-687 |#1|) (-687 |#1|))) (-15 -4239 ((-687 |#1|) (-687 |#1|) |#1|)) (-15 -3713 ((-687 |#1|) (-687 |#1|) |#1|)) (-15 -3707 ((-687 |#1|) (-687 |#1|) |#1| |#1|)) (-15 -2344 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|))) (-307)) (T -698))
+((-2344 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-698 *3)) (-4 *3 (-307)))) (-3707 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))) (-3713 (*1 *2 *2 *3) (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))) (-4239 (*1 *2 *2 *3) (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))))
+(-10 -7 (-15 -3811 ((-687 |#1|) (-687 |#1|))) (-15 -4239 ((-687 |#1|) (-687 |#1|) |#1|)) (-15 -3713 ((-687 |#1|) (-687 |#1|) |#1|)) (-15 -3707 ((-687 |#1|) (-687 |#1|) |#1| |#1|)) (-15 -2344 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2968 (($ $ $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1337 (($ $ $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL)) (-2317 (($ $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) 31)) (-3027 (((-564) $) 29)) (-2845 (($ $ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3838 (((-3 (-407 (-564)) "failed") $) NIL)) (-2881 (((-112) $) NIL)) (-4034 (((-407 (-564)) $) NIL)) (-2433 (($ $) NIL) (($) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-3398 (($ $ $ $) NIL)) (-3903 (($ $ $) NIL)) (-2538 (((-112) $) NIL)) (-1588 (($ $ $) NIL)) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL)) (-3953 (((-112) $) NIL)) (-3076 (((-112) $) NIL)) (-3157 (((-3 $ "failed") $) NIL)) (-3333 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2172 (($ $ $ $) NIL)) (-2755 (($ $ $) NIL)) (-4194 (((-919) (-919)) 10) (((-919)) 9)) (-1520 (($ $ $) NIL)) (-2819 (($ $) NIL)) (-2480 (($ $) NIL)) (-2049 (($ (-642 $)) NIL) (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-2182 (($ $ $) NIL)) (-3366 (($) NIL T CONST)) (-2367 (($ $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ (-642 $)) NIL) (($ $ $) NIL)) (-4303 (($ $) NIL)) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2519 (((-112) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $) NIL) (($ $ (-769)) NIL)) (-2142 (($ $) NIL)) (-3901 (($ $) NIL)) (-1314 (((-225) $) NIL) (((-379) $) NIL) (((-890 (-564)) $) NIL) (((-536) $) NIL) (((-564) $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) 28) (($ $) NIL) (($ (-564)) 28) (((-316 $) (-316 (-564))) 18)) (-2756 (((-769)) NIL T CONST)) (-1866 (((-112) $ $) NIL)) (-3310 (($ $ $) NIL)) (-1648 (((-112) $ $) NIL)) (-2547 (($) NIL)) (-2103 (((-112) $ $) NIL)) (-3618 (($ $ $ $) NIL)) (-1381 (($ $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $) NIL) (($ $ (-769)) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
+(((-699) (-13 (-387) (-545) (-10 -8 (-15 -4194 ((-919) (-919))) (-15 -4194 ((-919))) (-15 -2327 ((-316 $) (-316 (-564))))))) (T -699))
+((-4194 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-699)))) (-4194 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-699)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-699))) (-5 *1 (-699)))))
+(-13 (-387) (-545) (-10 -8 (-15 -4194 ((-919) (-919))) (-15 -4194 ((-919))) (-15 -2327 ((-316 $) (-316 (-564))))))
+((-1712 (((-1 |#4| |#2| |#3|) |#1| (-1173) (-1173)) 19)) (-3977 (((-1 |#4| |#2| |#3|) (-1173)) 12)))
+(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3977 ((-1 |#4| |#2| |#3|) (-1173))) (-15 -1712 ((-1 |#4| |#2| |#3|) |#1| (-1173) (-1173)))) (-612 (-536)) (-1212) (-1212) (-1212)) (T -700))
+((-1712 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1173)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-700 *3 *5 *6 *7)) (-4 *3 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)) (-4 *7 (-1212)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-700 *4 *5 *6 *7)) (-4 *4 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)) (-4 *7 (-1212)))))
+(-10 -7 (-15 -3977 ((-1 |#4| |#2| |#3|) (-1173))) (-15 -1712 ((-1 |#4| |#2| |#3|) |#1| (-1173) (-1173))))
+((-3519 (((-1 (-225) (-225) (-225)) |#1| (-1173) (-1173)) 36) (((-1 (-225) (-225)) |#1| (-1173)) 41)))
+(((-701 |#1|) (-10 -7 (-15 -3519 ((-1 (-225) (-225)) |#1| (-1173))) (-15 -3519 ((-1 (-225) (-225) (-225)) |#1| (-1173) (-1173)))) (-612 (-536))) (T -701))
+((-3519 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1173)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-3519 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))))
+(-10 -7 (-15 -3519 ((-1 (-225) (-225)) |#1| (-1173))) (-15 -3519 ((-1 (-225) (-225) (-225)) |#1| (-1173) (-1173))))
+((-3192 (((-1173) |#1| (-1173) (-642 (-1173))) 10) (((-1173) |#1| (-1173) (-1173) (-1173)) 13) (((-1173) |#1| (-1173) (-1173)) 12) (((-1173) |#1| (-1173)) 11)))
+(((-702 |#1|) (-10 -7 (-15 -3192 ((-1173) |#1| (-1173))) (-15 -3192 ((-1173) |#1| (-1173) (-1173))) (-15 -3192 ((-1173) |#1| (-1173) (-1173) (-1173))) (-15 -3192 ((-1173) |#1| (-1173) (-642 (-1173))))) (-612 (-536))) (T -702))
+((-3192 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-642 (-1173))) (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536))))) (-3192 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536))))) (-3192 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536))))) (-3192 (*1 *2 *3 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536))))))
+(-10 -7 (-15 -3192 ((-1173) |#1| (-1173))) (-15 -3192 ((-1173) |#1| (-1173) (-1173))) (-15 -3192 ((-1173) |#1| (-1173) (-1173) (-1173))) (-15 -3192 ((-1173) |#1| (-1173) (-642 (-1173)))))
+((-1753 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-703 |#1| |#2|) (-10 -7 (-15 -1753 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1212) (-1212)) (T -703))
+((-1753 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-703 *3 *4)) (-4 *3 (-1212)) (-4 *4 (-1212)))))
+(-10 -7 (-15 -1753 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2397 (((-1 |#3| |#2|) (-1173)) 11)) (-1712 (((-1 |#3| |#2|) |#1| (-1173)) 21)))
+(((-704 |#1| |#2| |#3|) (-10 -7 (-15 -2397 ((-1 |#3| |#2|) (-1173))) (-15 -1712 ((-1 |#3| |#2|) |#1| (-1173)))) (-612 (-536)) (-1212) (-1212)) (T -704))
+((-1712 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *3 *5 *6)) (-4 *3 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *4 *5 *6)) (-4 *4 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)))))
+(-10 -7 (-15 -2397 ((-1 |#3| |#2|) (-1173))) (-15 -1712 ((-1 |#3| |#2|) |#1| (-1173))))
+((-1601 (((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#4|)) (-642 |#3|) (-642 |#4|) (-642 (-642 (-2 (|:| -1831 (-769)) (|:| |pcoef| |#4|)))) (-642 (-769)) (-1262 (-642 (-1169 |#3|))) |#3|) 95)) (-1842 (((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#3|)) (-642 |#3|) (-642 |#4|) (-642 (-769)) |#3|) 113)) (-2620 (((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 |#3|) (-642 (-769)) (-642 (-1169 |#4|)) (-1262 (-642 (-1169 |#3|))) |#3|) 47)))
+(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2620 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 |#3|) (-642 (-769)) (-642 (-1169 |#4|)) (-1262 (-642 (-1169 |#3|))) |#3|)) (-15 -1842 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#3|)) (-642 |#3|) (-642 |#4|) (-642 (-769)) |#3|)) (-15 -1601 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#4|)) (-642 |#3|) (-642 |#4|) (-642 (-642 (-2 (|:| -1831 (-769)) (|:| |pcoef| |#4|)))) (-642 (-769)) (-1262 (-642 (-1169 |#3|))) |#3|))) (-791) (-848) (-307) (-947 |#3| |#1| |#2|)) (T -705))
+((-1601 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-642 (-1169 *13))) (-5 *3 (-1169 *13)) (-5 *4 (-642 *12)) (-5 *5 (-642 *10)) (-5 *6 (-642 *13)) (-5 *7 (-642 (-642 (-2 (|:| -1831 (-769)) (|:| |pcoef| *13))))) (-5 *8 (-642 (-769))) (-5 *9 (-1262 (-642 (-1169 *10)))) (-4 *12 (-848)) (-4 *10 (-307)) (-4 *13 (-947 *10 *11 *12)) (-4 *11 (-791)) (-5 *1 (-705 *11 *12 *10 *13)))) (-1842 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-642 *11)) (-5 *5 (-642 (-1169 *9))) (-5 *6 (-642 *9)) (-5 *7 (-642 *12)) (-5 *8 (-642 (-769))) (-4 *11 (-848)) (-4 *9 (-307)) (-4 *12 (-947 *9 *10 *11)) (-4 *10 (-791)) (-5 *2 (-642 (-1169 *12))) (-5 *1 (-705 *10 *11 *9 *12)) (-5 *3 (-1169 *12)))) (-2620 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-642 (-1169 *11))) (-5 *3 (-1169 *11)) (-5 *4 (-642 *10)) (-5 *5 (-642 *8)) (-5 *6 (-642 (-769))) (-5 *7 (-1262 (-642 (-1169 *8)))) (-4 *10 (-848)) (-4 *8 (-307)) (-4 *11 (-947 *8 *9 *10)) (-4 *9 (-791)) (-5 *1 (-705 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2620 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 |#3|) (-642 (-769)) (-642 (-1169 |#4|)) (-1262 (-642 (-1169 |#3|))) |#3|)) (-15 -1842 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#3|)) (-642 |#3|) (-642 |#4|) (-642 (-769)) |#3|)) (-15 -1601 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-642 |#2|) (-642 (-1169 |#4|)) (-642 |#3|) (-642 |#4|) (-642 (-642 (-2 (|:| -1831 (-769)) (|:| |pcoef| |#4|)))) (-642 (-769)) (-1262 (-642 (-1169 |#3|))) |#3|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-1718 (($ $) 48)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3774 (($ |#1| (-769)) 46)) (-1398 (((-769) $) 50)) (-3962 ((|#1| $) 49)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2775 (((-769) $) 51)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-2102 ((|#1| $ (-769)) 47)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
+(((-706 |#1|) (-140) (-1047)) (T -706))
+((-2775 (*1 *2 *1) (-12 (-4 *1 (-706 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-706 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1047)))) (-1718 (*1 *1 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1047)))) (-2102 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-706 *2)) (-4 *2 (-1047)))) (-3774 (*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-706 *2)) (-4 *2 (-1047)))))
+(-13 (-1047) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2775 ((-769) $)) (-15 -1398 ((-769) $)) (-15 -3962 (|t#1| $)) (-15 -1718 ($ $)) (-15 -2102 (|t#1| $ (-769))) (-15 -3774 ($ |t#1| (-769)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) |has| |#1| (-172)) ((-715 |#1|) |has| |#1| (-172)) ((-724) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-4358 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-707 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4358 (|#6| (-1 |#4| |#1|) |#3|))) (-556) (-1238 |#1|) (-1238 (-407 |#2|)) (-556) (-1238 |#4|) (-1238 (-407 |#5|))) (T -707))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1238 *5)) (-4 *2 (-1238 (-407 *8))) (-5 *1 (-707 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1238 (-407 *6))) (-4 *8 (-1238 *7)))))
+(-10 -7 (-15 -4358 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3064 (((-1155) (-860)) 39)) (-1664 (((-1267) (-1155)) 32)) (-1708 (((-1155) (-860)) 28)) (-1703 (((-1155) (-860)) 29)) (-2327 (((-860) $) NIL) (((-1155) (-860)) 27)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-708) (-13 (-1097) (-10 -7 (-15 -2327 ((-1155) (-860))) (-15 -1708 ((-1155) (-860))) (-15 -1703 ((-1155) (-860))) (-15 -3064 ((-1155) (-860))) (-15 -1664 ((-1267) (-1155)))))) (T -708))
+((-2327 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-708)))))
+(-13 (-1097) (-10 -7 (-15 -2327 ((-1155) (-860))) (-15 -1708 ((-1155) (-860))) (-15 -1703 ((-1155) (-860))) (-15 -3064 ((-1155) (-860))) (-15 -1664 ((-1267) (-1155)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-2845 (($ $ $) NIL)) (-1320 (($ |#1| |#2|) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-3953 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1472 ((|#2| $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2752 (((-3 $ "failed") $ $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) ((|#1| $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-709 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -1472 (|#2| $)) (-15 -2327 (|#1| $)) (-15 -1320 ($ |#1| |#2|)) (-15 -2752 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -709))
+((-1472 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2327 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1320 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2752 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-363) (-10 -8 (-15 -1472 (|#2| $)) (-15 -2327 (|#1| $)) (-15 -1320 ($ |#1| |#2|)) (-15 -2752 ((-3 $ "failed") $ $))))
+((-2907 (((-112) $ $) 92)) (-2952 (((-112) $) 36)) (-4159 (((-1262 |#1|) $ (-769)) NIL)) (-3802 (((-642 (-1079)) $) NIL)) (-3742 (($ (-1169 |#1|)) NIL)) (-3615 (((-1169 $) $ (-1079)) NIL) (((-1169 |#1|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-1079))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1804 (($ $ $) NIL (|has| |#1| (-556)))) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4316 (($ $) NIL (|has| |#1| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2521 (((-769)) 56 (|has| |#1| (-368)))) (-3047 (($ $ (-769)) NIL)) (-1537 (($ $ (-769)) NIL)) (-3150 ((|#2| |#2|) 52)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-1079) "failed") $) NIL)) (-3027 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-1079) $) NIL)) (-2022 (($ $ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) 40)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-1320 (($ |#2|) 50)) (-3104 (((-3 $ "failed") $) 101)) (-2433 (($) 61 (|has| |#1| (-368)))) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-1307 (($ $ $) NIL)) (-4036 (($ $ $) NIL (|has| |#1| (-556)))) (-3437 (((-2 (|:| -4378 |#1|) (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-556)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3246 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#1| (-907)))) (-3672 (((-956 $)) 94)) (-2575 (($ $ |#1| (-769) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1079) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1079) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-1427 (((-769) $ $) NIL (|has| |#1| (-556)))) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-1148)))) (-3790 (($ (-1169 |#1|) (-1079)) NIL) (($ (-1169 $) (-1079)) NIL)) (-3267 (($ $ (-769)) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-769)) 88) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-1079)) NIL) (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-1472 ((|#2|) 53)) (-1398 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-2026 (($ (-1 (-769) (-769)) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-2099 (((-1169 |#1|) $) NIL)) (-4184 (((-3 (-1079) "failed") $) NIL)) (-1945 (((-919) $) NIL (|has| |#1| (-368)))) (-1308 ((|#2| $) 49)) (-3950 (($ $) NIL)) (-3962 ((|#1| $) 34)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3315 (((-1155) $) NIL)) (-4148 (((-2 (|:| -1420 $) (|:| -3045 $)) $ (-769)) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-1079)) (|:| -2700 (-769))) "failed") $) NIL)) (-4107 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3366 (($) NIL (|has| |#1| (-1148)) CONST)) (-2047 (($ (-919)) NIL (|has| |#1| (-368)))) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 ((|#1| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2475 (($ $) 93 (|has| |#1| (-349)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-907)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1079) |#1|) NIL) (($ $ (-642 (-1079)) (-642 |#1|)) NIL) (($ $ (-1079) $) NIL) (($ $ (-642 (-1079)) (-642 $)) NIL)) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-2863 (((-3 $ "failed") $ (-769)) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 102 (|has| |#1| (-363)))) (-1846 (($ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3175 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2775 (((-769) $) 38) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1079) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4028 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2363 (((-956 $)) 42)) (-2065 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2327 (((-860) $) 71) (($ (-564)) NIL) (($ |#1|) 68) (($ (-1079)) NIL) (($ |#2|) 78) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-769)) 73) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2312 (($) 25 T CONST)) (-3793 (((-1262 |#1|) $) 86)) (-2546 (($ (-1262 |#1|)) 60)) (-2322 (($) 8 T CONST)) (-4044 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4370 (((-1262 |#1|) $) NIL)) (-2872 (((-112) $ $) 79)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) 82) (($ $ $) NIL)) (-2974 (($ $ $) 39)) (** (($ $ (-919)) NIL) (($ $ (-769)) 96)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 67) (($ $ $) 85) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 65) (($ $ |#1|) NIL)))
+(((-710 |#1| |#2|) (-13 (-1238 |#1|) (-614 |#2|) (-10 -8 (-15 -3150 (|#2| |#2|)) (-15 -1472 (|#2|)) (-15 -1320 ($ |#2|)) (-15 -1308 (|#2| $)) (-15 -3793 ((-1262 |#1|) $)) (-15 -2546 ($ (-1262 |#1|))) (-15 -4370 ((-1262 |#1|) $)) (-15 -3672 ((-956 $))) (-15 -2363 ((-956 $))) (IF (|has| |#1| (-349)) (-15 -2475 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1047) (-1238 |#1|)) (T -710))
+((-3150 (*1 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-710 *3 *2)) (-4 *2 (-1238 *3)))) (-1472 (*1 *2) (-12 (-4 *2 (-1238 *3)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1047)))) (-1320 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-710 *3 *2)) (-4 *2 (-1238 *3)))) (-1308 (*1 *2 *1) (-12 (-4 *2 (-1238 *3)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1047)))) (-3793 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-1262 *3)) (-5 *1 (-710 *3 *4)) (-4 *4 (-1238 *3)))) (-2546 (*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1047)) (-5 *1 (-710 *3 *4)) (-4 *4 (-1238 *3)))) (-4370 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-1262 *3)) (-5 *1 (-710 *3 *4)) (-4 *4 (-1238 *3)))) (-3672 (*1 *2) (-12 (-4 *3 (-1047)) (-5 *2 (-956 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *4 (-1238 *3)))) (-2363 (*1 *2) (-12 (-4 *3 (-1047)) (-5 *2 (-956 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *4 (-1238 *3)))) (-2475 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1047)) (-5 *1 (-710 *2 *3)) (-4 *3 (-1238 *2)))))
+(-13 (-1238 |#1|) (-614 |#2|) (-10 -8 (-15 -3150 (|#2| |#2|)) (-15 -1472 (|#2|)) (-15 -1320 ($ |#2|)) (-15 -1308 (|#2| $)) (-15 -3793 ((-1262 |#1|) $)) (-15 -2546 ($ (-1262 |#1|))) (-15 -4370 ((-1262 |#1|) $)) (-15 -3672 ((-956 $))) (-15 -2363 ((-956 $))) (IF (|has| |#1| (-349)) (-15 -2475 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|)))
+((-2907 (((-112) $ $) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 ((|#1| $) 13)) (-4033 (((-1117) $) NIL)) (-2700 ((|#2| $) 12)) (-2337 (($ |#1| |#2|) 16)) (-2327 (((-860) $) NIL) (($ (-2 (|:| -2047 |#1|) (|:| -2700 |#2|))) 15) (((-2 (|:| -2047 |#1|) (|:| -2700 |#2|)) $) 14)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 11)))
+(((-711 |#1| |#2| |#3|) (-13 (-848) (-490 (-2 (|:| -2047 |#1|) (|:| -2700 |#2|))) (-10 -8 (-15 -2700 (|#2| $)) (-15 -2047 (|#1| $)) (-15 -2337 ($ |#1| |#2|)))) (-848) (-1097) (-1 (-112) (-2 (|:| -2047 |#1|) (|:| -2700 |#2|)) (-2 (|:| -2047 |#1|) (|:| -2700 |#2|)))) (T -711))
+((-2700 (*1 *2 *1) (-12 (-4 *2 (-1097)) (-5 *1 (-711 *3 *2 *4)) (-4 *3 (-848)) (-14 *4 (-1 (-112) (-2 (|:| -2047 *3) (|:| -2700 *2)) (-2 (|:| -2047 *3) (|:| -2700 *2)))))) (-2047 (*1 *2 *1) (-12 (-4 *2 (-848)) (-5 *1 (-711 *2 *3 *4)) (-4 *3 (-1097)) (-14 *4 (-1 (-112) (-2 (|:| -2047 *2) (|:| -2700 *3)) (-2 (|:| -2047 *2) (|:| -2700 *3)))))) (-2337 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4)) (-4 *2 (-848)) (-4 *3 (-1097)) (-14 *4 (-1 (-112) (-2 (|:| -2047 *2) (|:| -2700 *3)) (-2 (|:| -2047 *2) (|:| -2700 *3)))))))
+(-13 (-848) (-490 (-2 (|:| -2047 |#1|) (|:| -2700 |#2|))) (-10 -8 (-15 -2700 (|#2| $)) (-15 -2047 (|#1| $)) (-15 -2337 ($ |#1| |#2|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 66)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-3027 ((|#1| $) NIL) (((-114) $) 39)) (-3104 (((-3 $ "failed") $) 106)) (-3748 ((|#2| (-114) |#2|) 92)) (-3953 (((-112) $) NIL)) (-1863 (($ |#1| (-361 (-114))) 14)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2459 (($ $ (-1 |#2| |#2|)) 65)) (-2180 (($ $ (-1 |#2| |#2|)) 44)) (-4368 ((|#2| $ |#2|) 33)) (-2330 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-2327 (((-860) $) 73) (($ (-564)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) 37 T CONST)) (-1648 (((-112) $ $) NIL)) (-3899 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-2312 (($) 21 T CONST)) (-2322 (($) 9 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) 48) (($ $ $) NIL)) (-2974 (($ $ $) 83)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) 64)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172)))))
+(((-712 |#1| |#2|) (-13 (-1047) (-1036 |#1|) (-1036 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3899 ($ $)) (-15 -3899 ($ $ $)) (-15 -2330 (|#1| |#1|))) |%noBranch|) (-15 -2180 ($ $ (-1 |#2| |#2|))) (-15 -2459 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3748 (|#2| (-114) |#2|)) (-15 -1863 ($ |#1| (-361 (-114)))))) (-1047) (-646 |#1|)) (T -712))
+((-3899 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3)) (-4 *3 (-646 *2)))) (-3899 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3)) (-4 *3 (-646 *2)))) (-2330 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3)) (-4 *3 (-646 *2)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-646 *3)) (-4 *3 (-1047)) (-5 *1 (-712 *3 *4)))) (-2459 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-646 *3)) (-4 *3 (-1047)) (-5 *1 (-712 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1047)) (-5 *1 (-712 *4 *5)) (-4 *5 (-646 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *3 (-1047)) (-5 *1 (-712 *3 *4)) (-4 *4 (-646 *3)))) (-3748 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1047)) (-5 *1 (-712 *4 *2)) (-4 *2 (-646 *4)))) (-1863 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1047)) (-5 *1 (-712 *2 *4)) (-4 *4 (-646 *2)))))
+(-13 (-1047) (-1036 |#1|) (-1036 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3899 ($ $)) (-15 -3899 ($ $ $)) (-15 -2330 (|#1| |#1|))) |%noBranch|) (-15 -2180 ($ $ (-1 |#2| |#2|))) (-15 -2459 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3748 (|#2| (-114) |#2|)) (-15 -1863 ($ |#1| (-361 (-114))))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 33)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-1320 (($ |#1| |#2|) 25)) (-3104 (((-3 $ "failed") $) 51)) (-3953 (((-112) $) 35)) (-1472 ((|#2| $) 12)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 52)) (-4033 (((-1117) $) NIL)) (-2752 (((-3 $ "failed") $ $) 50)) (-2327 (((-860) $) 24) (($ (-564)) 19) ((|#1| $) 13)) (-2756 (((-769)) 28 T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 16 T CONST)) (-2322 (($) 30 T CONST)) (-2872 (((-112) $ $) 41)) (-2987 (($ $) 46) (($ $ $) 40)) (-2974 (($ $ $) 43)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 21) (($ $ $) 20)))
+(((-713 |#1| |#2| |#3| |#4| |#5|) (-13 (-1047) (-10 -8 (-15 -1472 (|#2| $)) (-15 -2327 (|#1| $)) (-15 -1320 ($ |#1| |#2|)) (-15 -2752 ((-3 $ "failed") $ $)) (-15 -3104 ((-3 $ "failed") $)) (-15 -3911 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -713))
+((-3104 (*1 *1 *1) (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1472 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-713 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2327 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1320 (*1 *1 *2 *3) (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2752 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3911 (*1 *1 *1) (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1047) (-10 -8 (-15 -1472 (|#2| $)) (-15 -2327 (|#1| $)) (-15 -1320 ($ |#1| |#2|)) (-15 -2752 ((-3 $ "failed") $ $)) (-15 -3104 ((-3 $ "failed") $)) (-15 -3911 ($ $))))
+((* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-714 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) (-715 |#2|) (-172)) (T -714))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-715 |#1|) (-140) (-172)) (T -715))
+NIL
+(-13 (-111 |t#1| |t#1|) (-638 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2317 (($ |#1|) 17) (($ $ |#1|) 20)) (-4352 (($ |#1|) 18) (($ $ |#1|) 21)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3953 (((-112) $) NIL)) (-3346 (($ |#1| |#1| |#1| |#1|) 8)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 16)) (-4033 (((-1117) $) NIL)) (-3215 ((|#1| $ |#1|) 24) (((-831 |#1|) $ (-831 |#1|)) 32)) (-1389 (($ $ $) NIL)) (-3759 (($ $ $) NIL)) (-2327 (((-860) $) 39)) (-1648 (((-112) $ $) NIL)) (-2322 (($) 9 T CONST)) (-2872 (((-112) $ $) 48)) (-2998 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 14)))
+(((-716 |#1|) (-13 (-473) (-10 -8 (-15 -3346 ($ |#1| |#1| |#1| |#1|)) (-15 -2317 ($ |#1|)) (-15 -4352 ($ |#1|)) (-15 -3104 ($)) (-15 -2317 ($ $ |#1|)) (-15 -4352 ($ $ |#1|)) (-15 -3104 ($ $)) (-15 -3215 (|#1| $ |#1|)) (-15 -3215 ((-831 |#1|) $ (-831 |#1|))))) (-363)) (T -716))
+((-3346 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-2317 (*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-4352 (*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-3104 (*1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-2317 (*1 *1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-4352 (*1 *1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-3104 (*1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-3215 (*1 *2 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))) (-3215 (*1 *2 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-363)) (-5 *1 (-716 *3)))))
+(-13 (-473) (-10 -8 (-15 -3346 ($ |#1| |#1| |#1| |#1|)) (-15 -2317 ($ |#1|)) (-15 -4352 ($ |#1|)) (-15 -3104 ($)) (-15 -2317 ($ $ |#1|)) (-15 -4352 ($ $ |#1|)) (-15 -3104 ($ $)) (-15 -3215 (|#1| $ |#1|)) (-15 -3215 ((-831 |#1|) $ (-831 |#1|)))))
+((-2013 (($ $ (-919)) 21)) (-1522 (($ $ (-919)) 22)) (** (($ $ (-919)) 10)))
+(((-717 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-919))) (-15 -1522 (|#1| |#1| (-919))) (-15 -2013 (|#1| |#1| (-919)))) (-718)) (T -717))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-919))) (-15 -1522 (|#1| |#1| (-919))) (-15 -2013 (|#1| |#1| (-919))))
+((-2907 (((-112) $ $) 7)) (-2013 (($ $ (-919)) 16)) (-1522 (($ $ (-919)) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)) (** (($ $ (-919)) 14)) (* (($ $ $) 17)))
(((-718) (-140)) (T -718))
-((-2417 (*1 *1) (-4 *1 (-718))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112)))) (-3232 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-2105 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-3293 (*1 *1 *1) (|partial| -4 *1 (-718))) (-2378 (*1 *1 *1) (|partial| -4 *1 (-718))) (-4015 (*1 *1 *1) (|partial| -4 *1 (-718))))
-(-13 (-716) (-10 -8 (-15 (-2417) ($) -2959) (-15 -4112 ((-112) $)) (-15 -3232 ($ $ (-767))) (-15 -2105 ($ $ (-767))) (-15 ** ($ $ (-767))) (-15 -3293 ((-3 $ "failed") $)) (-15 -2378 ((-3 $ "failed") $)) (-15 -4015 ((-3 $ "failed") $))))
-(((-102) . T) ((-611 (-858)) . T) ((-716) . T) ((-1094) . T))
-((-2622 (((-767)) 42)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3120 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 23)) (-1316 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 53)) (-3293 (((-3 $ "failed") $) 73)) (-2534 (($) 47)) (-2499 ((|#2| $) 21)) (-2249 (($) 18)) (-3254 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-1942 (((-685 |#2|) (-1259 $) (-1 |#2| |#2|)) 68)) (-1311 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2134 ((|#3| $) 39)) (-2047 (((-1259 $)) 36)))
-(((-719 |#1| |#2| |#3|) (-10 -8 (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -2534 (|#1|)) (-15 -2622 ((-767))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1942 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -1316 ((-3 |#1| "failed") (-407 |#3|))) (-15 -1311 (|#1| |#3|)) (-15 -1316 (|#1| |#3|)) (-15 -2249 (|#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -1311 (|#3| |#1|)) (-15 -1311 (|#1| (-1259 |#2|))) (-15 -1311 ((-1259 |#2|) |#1|)) (-15 -2047 ((-1259 |#1|))) (-15 -2134 (|#3| |#1|)) (-15 -2499 (|#2| |#1|)) (-15 -3293 ((-3 |#1| "failed") |#1|))) (-720 |#2| |#3|) (-172) (-1235 |#2|)) (T -719))
-((-2622 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-767)) (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5)))))
-(-10 -8 (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -2534 (|#1|)) (-15 -2622 ((-767))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1942 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -1316 ((-3 |#1| "failed") (-407 |#3|))) (-15 -1311 (|#1| |#3|)) (-15 -1316 (|#1| |#3|)) (-15 -2249 (|#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -1311 (|#3| |#1|)) (-15 -1311 (|#1| (-1259 |#2|))) (-15 -1311 ((-1259 |#2|) |#1|)) (-15 -2047 ((-1259 |#1|))) (-15 -2134 (|#3| |#1|)) (-15 -2499 (|#2| |#1|)) (-15 -3293 ((-3 |#1| "failed") |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 94 (|has| |#1| (-363)))) (-3063 (($ $) 95 (|has| |#1| (-363)))) (-3330 (((-112) $) 97 (|has| |#1| (-363)))) (-2270 (((-685 |#1|) (-1259 $)) 48) (((-685 |#1|)) 63)) (-3847 ((|#1| $) 54)) (-4373 (((-1182 (-917) (-767)) (-564)) 147 (|has| |#1| (-349)))) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 114 (|has| |#1| (-363)))) (-2753 (((-418 $) $) 115 (|has| |#1| (-363)))) (-3162 (((-112) $ $) 105 (|has| |#1| (-363)))) (-2622 (((-767)) 88 (|has| |#1| (-368)))) (-4080 (($) 18 T CONST)) (-4284 (((-3 (-564) "failed") $) 170 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 168 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 165)) (-3120 (((-564) $) 169 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 167 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 166)) (-3474 (($ (-1259 |#1|) (-1259 $)) 50) (($ (-1259 |#1|)) 66)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-349)))) (-2946 (($ $ $) 109 (|has| |#1| (-363)))) (-4057 (((-685 |#1|) $ (-1259 $)) 55) (((-685 |#1|) $) 61)) (-4277 (((-685 (-564)) (-685 $)) 164 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 162) (((-685 |#1|) (-685 $)) 161)) (-1316 (($ |#2|) 158) (((-3 $ "failed") (-407 |#2|)) 155 (|has| |#1| (-363)))) (-3293 (((-3 $ "failed") $) 34)) (-2514 (((-917)) 56)) (-2534 (($) 91 (|has| |#1| (-368)))) (-2960 (($ $ $) 108 (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 103 (|has| |#1| (-363)))) (-1471 (($) 149 (|has| |#1| (-349)))) (-1436 (((-112) $) 150 (|has| |#1| (-349)))) (-3456 (($ $ (-767)) 141 (|has| |#1| (-349))) (($ $) 140 (|has| |#1| (-349)))) (-1339 (((-112) $) 116 (|has| |#1| (-363)))) (-3744 (((-917) $) 152 (|has| |#1| (-349))) (((-829 (-917)) $) 138 (|has| |#1| (-349)))) (-4112 (((-112) $) 32)) (-2499 ((|#1| $) 53)) (-1846 (((-3 $ "failed") $) 142 (|has| |#1| (-349)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 112 (|has| |#1| (-363)))) (-3514 ((|#2| $) 46 (|has| |#1| (-363)))) (-3256 (((-917) $) 90 (|has| |#1| (-368)))) (-1305 ((|#2| $) 156)) (-2084 (($ (-641 $)) 101 (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-2766 (((-1152) $) 10)) (-3936 (($ $) 117 (|has| |#1| (-363)))) (-3431 (($) 143 (|has| |#1| (-349)) CONST)) (-2083 (($ (-917)) 89 (|has| |#1| (-368)))) (-4052 (((-1114) $) 11)) (-2249 (($) 160)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 102 (|has| |#1| (-363)))) (-2123 (($ (-641 $)) 99 (|has| |#1| (-363))) (($ $ $) 98 (|has| |#1| (-363)))) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) 146 (|has| |#1| (-349)))) (-3688 (((-418 $) $) 113 (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 111 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 110 (|has| |#1| (-363)))) (-2998 (((-3 $ "failed") $ $) 93 (|has| |#1| (-363)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 104 (|has| |#1| (-363)))) (-1700 (((-767) $) 106 (|has| |#1| (-363)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 107 (|has| |#1| (-363)))) (-1330 ((|#1| (-1259 $)) 49) ((|#1|) 62)) (-4255 (((-767) $) 151 (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) 139 (|has| |#1| (-349)))) (-3254 (($ $) 137 (-2807 (-2358 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) 135 (-2807 (-2358 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 133 (-2358 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 132 (-2358 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-767)) 131 (-2358 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-767))) 130 (-2358 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 123 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-363)))) (-1942 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-363)))) (-3721 ((|#2|) 159)) (-3826 (($) 148 (|has| |#1| (-349)))) (-4225 (((-1259 |#1|) $ (-1259 $)) 52) (((-685 |#1|) (-1259 $) (-1259 $)) 51) (((-1259 |#1|) $) 68) (((-685 |#1|) (-1259 $)) 67)) (-1311 (((-1259 |#1|) $) 65) (($ (-1259 |#1|)) 64) ((|#2| $) 171) (($ |#2|) 157)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 145 (|has| |#1| (-349)))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 39) (($ $) 92 (|has| |#1| (-363))) (($ (-407 (-564))) 87 (-2807 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564))))))) (-2420 (($ $) 144 (|has| |#1| (-349))) (((-3 $ "failed") $) 45 (|has| |#1| (-145)))) (-2134 ((|#2| $) 47)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2047 (((-1259 $)) 69)) (-2119 (((-112) $ $) 96 (|has| |#1| (-363)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $) 136 (-2807 (-2358 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) 134 (-2807 (-2358 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 129 (-2358 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 128 (-2358 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-767)) 127 (-2358 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-767))) 126 (-2358 (|has| |#1| (-896 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 125 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-363)))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 121 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 118 (|has| |#1| (-363)))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 41) (($ |#1| $) 40) (($ (-407 (-564)) $) 120 (|has| |#1| (-363))) (($ $ (-407 (-564))) 119 (|has| |#1| (-363)))))
-(((-720 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -720))
-((-2249 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1235 *2)))) (-3721 (*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-1316 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1235 *3)))) (-1311 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1235 *3)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-1316 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-720 *3 *4)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *5)))))
-(-13 (-409 |t#1| |t#2|) (-172) (-612 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -2249 ($)) (-15 -3721 (|t#2|)) (-15 -1316 ($ |t#2|)) (-15 -1311 ($ |t#2|)) (-15 -1305 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -1316 ((-3 $ "failed") (-407 |t#2|))) (-15 -1942 ((-685 |t#1|) (-1259 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2807 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) . T) ((-612 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -2807 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -2807 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-556) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 #0#) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170)))) ((-916) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 #0#) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1213) -2807 (|has| |#1| (-349)) (|has| |#1| (-363))))
-((-4080 (($) 11)) (-3293 (((-3 $ "failed") $) 14)) (-4112 (((-112) $) 10)) (** (($ $ (-917)) NIL) (($ $ (-767)) 20)))
-(((-721 |#1|) (-10 -8 (-15 -3293 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -4112 ((-112) |#1|)) (-15 -4080 (|#1|)) (-15 ** (|#1| |#1| (-917)))) (-722)) (T -721))
-NIL
-(-10 -8 (-15 -3293 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -4112 ((-112) |#1|)) (-15 -4080 (|#1|)) (-15 ** (|#1| |#1| (-917))))
-((-3009 (((-112) $ $) 7)) (-4080 (($) 19 T CONST)) (-3293 (((-3 $ "failed") $) 16)) (-4112 (((-112) $) 18)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2417 (($) 20 T CONST)) (-2974 (((-112) $ $) 6)) (** (($ $ (-917)) 14) (($ $ (-767)) 17)) (* (($ $ $) 15)))
-(((-722) (-140)) (T -722))
-((-2417 (*1 *1) (-4 *1 (-722))) (-4080 (*1 *1) (-4 *1 (-722))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767)))) (-3293 (*1 *1 *1) (|partial| -4 *1 (-722))))
-(-13 (-1106) (-10 -8 (-15 (-2417) ($) -2959) (-15 -4080 ($) -2959) (-15 -4112 ((-112) $)) (-15 ** ($ $ (-767))) (-15 -3293 ((-3 $ "failed") $))))
-(((-102) . T) ((-611 (-858)) . T) ((-1106) . T) ((-1094) . T))
-((-3060 (((-2 (|:| -1887 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-1335 (((-2 (|:| -1887 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2655 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-3384 (((-2 (|:| |poly| |#2|) (|:| -1887 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 48)))
-(((-723 |#1| |#2|) (-10 -7 (-15 -1335 ((-2 (|:| -1887 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3060 ((-2 (|:| -1887 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2655 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3384 ((-2 (|:| |poly| |#2|) (|:| -1887 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -723))
-((-3384 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1887 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6)))) (-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-723 *5 *2)) (-4 *5 (-363)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -1887 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-723 *5 *3)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -1887 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3)))))
-(-10 -7 (-15 -1335 ((-2 (|:| -1887 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3060 ((-2 (|:| -1887 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2655 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3384 ((-2 (|:| |poly| |#2|) (|:| -1887 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|))))
-((-3886 ((|#7| (-641 |#5|) |#6|) NIL)) (-4357 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
-(((-724 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4357 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3886 (|#7| (-641 |#5|) |#6|))) (-846) (-789) (-789) (-1045) (-1045) (-945 |#4| |#2| |#1|) (-945 |#5| |#3| |#1|)) (T -724))
-((-3886 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-1045)) (-4 *2 (-945 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-945 *8 *6 *5)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-945 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-945 *8 *6 *5)))))
-(-10 -7 (-15 -4357 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3886 (|#7| (-641 |#5|) |#6|)))
-((-4357 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-725 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4357 (|#7| (-1 |#2| |#1|) |#6|))) (-846) (-846) (-789) (-789) (-1045) (-945 |#5| |#3| |#1|) (-945 |#5| |#4| |#2|)) (T -725))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789)) (-4 *9 (-1045)) (-4 *2 (-945 *9 *8 *6)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789)) (-4 *4 (-945 *9 *7 *5)))))
-(-10 -7 (-15 -4357 (|#7| (-1 |#2| |#1|) |#6|)))
-((-3688 (((-418 |#4|) |#4|) 42)))
-(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3688 ((-418 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)) (-15 -3395 ((-3 $ "failed") (-1170))))) (-307) (-945 (-948 |#3|) |#1| |#2|)) (T -726))
-((-3688 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)) (-15 -3395 ((-3 $ "failed") (-1170)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-945 (-948 *6) *4 *5)))))
-(-10 -7 (-15 -3688 ((-418 |#4|) |#4|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-860 |#1|)) $) NIL)) (-3660 (((-1166 $) $ (-860 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-3063 (($ $) NIL (|has| |#2| (-556)))) (-3330 (((-112) $) NIL (|has| |#2| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-860 |#1|))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2683 (($ $) NIL (|has| |#2| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#2| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-3120 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-860 |#1|) $) NIL)) (-2746 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1684 (($ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#2| (-905)))) (-3850 (($ $ |#2| (-531 (-860 |#1|)) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-3824 (($ (-1166 |#2|) (-860 |#1|)) NIL) (($ (-1166 $) (-860 |#1|)) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#2| (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-860 |#1|)) NIL)) (-2043 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-1948 (($ (-1 (-531 (-860 |#1|)) (-531 (-860 |#1|))) $) NIL)) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-3025 (((-3 (-860 |#1|) "failed") $) NIL)) (-3971 (($ $) NIL)) (-3982 ((|#2| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2766 (((-1152) $) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -1838 (-767))) "failed") $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 ((|#2| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#2| (-905)))) (-2998 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-641 (-860 |#1|)) (-641 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-641 (-860 |#1|)) (-641 $)) NIL)) (-1330 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3254 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-1568 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-641 (-767)) $ (-641 (-860 |#1|))) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-860 |#1|) (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4090 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ $) NIL (|has| |#2| (-556))) (($ (-407 (-564))) NIL (-2807 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564))))))) (-3191 (((-641 |#2|) $) NIL)) (-2007 ((|#2| $ (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-860 |#1|)) NIL) (($ $ (-641 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-641 (-860 |#1|)) (-641 (-767))) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-727 |#1| |#2|) (-945 |#2| (-531 (-860 |#1|)) (-860 |#1|)) (-641 (-1170)) (-1045)) (T -727))
-NIL
-(-945 |#2| (-531 (-860 |#1|)) (-860 |#1|))
-((-2586 (((-2 (|:| -3878 (-948 |#3|)) (|:| -2122 (-948 |#3|))) |#4|) 14)) (-3957 ((|#4| |#4| |#2|) 33)) (-4110 ((|#4| (-407 (-948 |#3|)) |#2|) 64)) (-4290 ((|#4| (-1166 (-948 |#3|)) |#2|) 80)) (-1483 ((|#4| (-1166 |#4|) |#2|) 51)) (-1505 ((|#4| |#4| |#2|) 54)) (-3688 (((-418 |#4|) |#4|) 40)))
-(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2586 ((-2 (|:| -3878 (-948 |#3|)) (|:| -2122 (-948 |#3|))) |#4|)) (-15 -1505 (|#4| |#4| |#2|)) (-15 -1483 (|#4| (-1166 |#4|) |#2|)) (-15 -3957 (|#4| |#4| |#2|)) (-15 -4290 (|#4| (-1166 (-948 |#3|)) |#2|)) (-15 -4110 (|#4| (-407 (-948 |#3|)) |#2|)) (-15 -3688 ((-418 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)))) (-556) (-945 (-407 (-948 |#3|)) |#1| |#2|)) (T -728))
-((-3688 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))) (-4110 (*1 *2 *3 *4) (-12 (-4 *6 (-556)) (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-948 *6))) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))))) (-4290 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 (-948 *6))) (-4 *6 (-556)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))))) (-3957 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))) (-4 *6 (-556)))) (-1505 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) (-2586 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-2 (|:| -3878 (-948 *6)) (|:| -2122 (-948 *6)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))))
-(-10 -7 (-15 -2586 ((-2 (|:| -3878 (-948 |#3|)) (|:| -2122 (-948 |#3|))) |#4|)) (-15 -1505 (|#4| |#4| |#2|)) (-15 -1483 (|#4| (-1166 |#4|) |#2|)) (-15 -3957 (|#4| |#4| |#2|)) (-15 -4290 (|#4| (-1166 (-948 |#3|)) |#2|)) (-15 -4110 (|#4| (-407 (-948 |#3|)) |#2|)) (-15 -3688 ((-418 |#4|) |#4|)))
-((-3688 (((-418 |#4|) |#4|) 54)))
-(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3688 ((-418 |#4|) |#4|))) (-789) (-846) (-13 (-307) (-147)) (-945 (-407 |#3|) |#1| |#2|)) (T -729))
-((-3688 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-945 (-407 *6) *4 *5)))))
-(-10 -7 (-15 -3688 ((-418 |#4|) |#4|)))
-((-4357 (((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)) 18)))
-(((-730 |#1| |#2| |#3|) (-10 -7 (-15 -4357 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)))) (-1045) (-1045) (-722)) (T -730))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7)) (-5 *1 (-730 *5 *6 *7)))))
-(-10 -7 (-15 -4357 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 39)) (-4289 (((-641 (-2 (|:| -4376 |#1|) (|:| -3290 |#2|))) $) 40)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2622 (((-767)) 22 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-3120 ((|#2| $) NIL) ((|#1| $) NIL)) (-1684 (($ $) 104 (|has| |#2| (-846)))) (-3293 (((-3 $ "failed") $) 87)) (-2534 (($) 51 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) 72)) (-2210 (((-641 $) $) 55)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| |#2|) 17)) (-4357 (($ (-1 |#1| |#1|) $) 70)) (-3256 (((-917) $) 46 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3971 ((|#2| $) 103 (|has| |#2| (-846)))) (-3982 ((|#1| $) 102 (|has| |#2| (-846)))) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) 38 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 101) (($ (-564)) 61) (($ |#2|) 58) (($ |#1|) 59) (($ (-641 (-2 (|:| -4376 |#1|) (|:| -3290 |#2|)))) 11)) (-3191 (((-641 |#1|) $) 57)) (-2007 ((|#1| $ |#2|) 116)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 12 T CONST)) (-2417 (($) 47 T CONST)) (-2974 (((-112) $ $) 107)) (-3082 (($ $) 63) (($ $ $) NIL)) (-3070 (($ $ $) 36)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 68) (($ $ $) 119) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-731 |#1| |#2|) (-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -3810 ($ |#1| |#2|)) (-15 -2007 (|#1| $ |#2|)) (-15 -2423 ($ (-641 (-2 (|:| -4376 |#1|) (|:| -3290 |#2|))))) (-15 -4289 ((-641 (-2 (|:| -4376 |#1|) (|:| -3290 |#2|))) $)) (-15 -4357 ($ (-1 |#1| |#1|) $)) (-15 -4003 ((-112) $)) (-15 -3191 ((-641 |#1|) $)) (-15 -2210 ((-641 $) $)) (-15 -2497 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -3971 (|#2| $)) (-15 -3982 (|#1| $)) (-15 -1684 ($ $))) |%noBranch|))) (-1045) (-722)) (T -731))
-((-3810 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722)))) (-2007 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -4376 *3) (|:| -3290 *4)))) (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -4376 *3) (|:| -3290 *4)))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4)) (-4 *4 (-722)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-641 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3971 (*1 *2 *1) (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1045)))) (-3982 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *3 (-722)))) (-1684 (*1 *1 *1) (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045)) (-4 *3 (-722)))))
-(-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -3810 ($ |#1| |#2|)) (-15 -2007 (|#1| $ |#2|)) (-15 -2423 ($ (-641 (-2 (|:| -4376 |#1|) (|:| -3290 |#2|))))) (-15 -4289 ((-641 (-2 (|:| -4376 |#1|) (|:| -3290 |#2|))) $)) (-15 -4357 ($ (-1 |#1| |#1|) $)) (-15 -4003 ((-112) $)) (-15 -3191 ((-641 |#1|) $)) (-15 -2210 ((-641 $) $)) (-15 -2497 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -3971 (|#2| $)) (-15 -3982 (|#1| $)) (-15 -1684 ($ $))) |%noBranch|)))
-((-3009 (((-112) $ $) 19)) (-1682 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2340 (($ $ $) 73)) (-2521 (((-112) $ $) 74)) (-1876 (((-112) $ (-767)) 8)) (-1724 (($ (-641 |#1|)) 69) (($) 68)) (-1466 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2679 (($ $) 63)) (-2696 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1945 (($ |#1| $) 48 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4407)))) (-2591 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4407)))) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-2342 (((-112) $ $) 65)) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22)) (-3888 (($ $ $) 70)) (-3149 ((|#1| $) 40)) (-2566 (($ |#1| $) 41) (($ |#1| $ (-767)) 64)) (-4052 (((-1114) $) 21)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-2680 (((-641 (-2 (|:| -3813 |#1|) (|:| -4062 (-767)))) $) 62)) (-2085 (($ $ |#1|) 72) (($ $ $) 71)) (-3853 (($) 50) (($ (-641 |#1|)) 49)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 51)) (-2423 (((-858) $) 18)) (-3755 (($ (-641 |#1|)) 67) (($) 66)) (-1860 (((-112) $ $) 23)) (-1863 (($ (-641 |#1|)) 43)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20)) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-732 |#1|) (-140) (-1094)) (T -732))
-NIL
-(-13 (-691 |t#1|) (-1092 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-691 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T))
-((-3009 (((-112) $ $) NIL)) (-1682 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-2340 (($ $ $) 99)) (-2521 (((-112) $ $) 105)) (-1876 (((-112) $ (-767)) NIL)) (-1724 (($ (-641 |#1|)) 26) (($) 17)) (-1466 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2679 (($ $) 85)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1945 (($ |#1| $) 70 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4407))) (($ |#1| $ (-564)) 75) (($ (-1 (-112) |#1|) $ (-564)) 78)) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (($ |#1| $ (-564)) 80) (($ (-1 (-112) |#1|) $ (-564)) 81)) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-3035 (((-641 |#1|) $) 32 (|has| $ (-6 -4407)))) (-2342 (((-112) $ $) 104)) (-1694 (($) 15) (($ |#1|) 28) (($ (-641 |#1|)) 23)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) 38)) (-3369 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 89)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-3888 (($ $ $) 97)) (-3149 ((|#1| $) 62)) (-2566 (($ |#1| $) 63) (($ |#1| $ (-767)) 86)) (-4052 (((-1114) $) NIL)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2554 ((|#1| $) 61)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 56)) (-2994 (($) 14)) (-2680 (((-641 (-2 (|:| -3813 |#1|) (|:| -4062 (-767)))) $) 55)) (-2085 (($ $ |#1|) NIL) (($ $ $) 98)) (-3853 (($) 16) (($ (-641 |#1|)) 25)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) 68 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) 79)) (-1311 (((-536) $) 36 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 22)) (-2423 (((-858) $) 49)) (-3755 (($ (-641 |#1|)) 27) (($) 18)) (-1860 (((-112) $ $) NIL)) (-1863 (($ (-641 |#1|)) 24)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 103)) (-2181 (((-767) $) 67 (|has| $ (-6 -4407)))))
-(((-733 |#1|) (-13 (-732 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -1694 ($)) (-15 -1694 ($ |#1|)) (-15 -1694 ($ (-641 |#1|))) (-15 -1554 ((-641 |#1|) $)) (-15 -2591 ($ |#1| $ (-564))) (-15 -2591 ($ (-1 (-112) |#1|) $ (-564))) (-15 -1945 ($ |#1| $ (-564))) (-15 -1945 ($ (-1 (-112) |#1|) $ (-564))))) (-1094)) (T -733))
-((-1694 (*1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1094)))) (-1694 (*1 *1 *2) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1094)))) (-1694 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-733 *3)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-733 *3)) (-4 *3 (-1094)))) (-2591 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-733 *2)) (-4 *2 (-1094)))) (-2591 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-733 *4)))) (-1945 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-733 *2)) (-4 *2 (-1094)))) (-1945 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-733 *4)))))
-(-13 (-732 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -1694 ($)) (-15 -1694 ($ |#1|)) (-15 -1694 ($ (-641 |#1|))) (-15 -1554 ((-641 |#1|) $)) (-15 -2591 ($ |#1| $ (-564))) (-15 -2591 ($ (-1 (-112) |#1|) $ (-564))) (-15 -1945 ($ |#1| $ (-564))) (-15 -1945 ($ (-1 (-112) |#1|) $ (-564)))))
-((-1848 (((-1264) (-1152)) 8)))
-(((-734) (-10 -7 (-15 -1848 ((-1264) (-1152))))) (T -734))
-((-1848 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-734)))))
-(-10 -7 (-15 -1848 ((-1264) (-1152))))
-((-1917 (((-641 |#1|) (-641 |#1|) (-641 |#1|)) 15)))
-(((-735 |#1|) (-10 -7 (-15 -1917 ((-641 |#1|) (-641 |#1|) (-641 |#1|)))) (-846)) (T -735))
-((-1917 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3)))))
-(-10 -7 (-15 -1917 ((-641 |#1|) (-641 |#1|) (-641 |#1|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3836 (((-641 |#2|) $) 140)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 133 (|has| |#1| (-556)))) (-3063 (($ $) 132 (|has| |#1| (-556)))) (-3330 (((-112) $) 130 (|has| |#1| (-556)))) (-3880 (($ $) 89 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 72 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) 20)) (-3700 (($ $) 71 (|has| |#1| (-38 (-407 (-564)))))) (-3858 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 73 (|has| |#1| (-38 (-407 (-564)))))) (-3902 (($ $) 87 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 74 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) 18 T CONST)) (-1684 (($ $) 124)) (-3293 (((-3 $ "failed") $) 34)) (-3423 (((-948 |#1|) $ (-767)) 102) (((-948 |#1|) $ (-767) (-767)) 101)) (-4243 (((-112) $) 141)) (-4274 (($) 99 (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-767) $ |#2|) 104) (((-767) $ |#2| (-767)) 103)) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 70 (|has| |#1| (-38 (-407 (-564)))))) (-4003 (((-112) $) 122)) (-3810 (($ $ (-641 |#2|) (-641 (-531 |#2|))) 139) (($ $ |#2| (-531 |#2|)) 138) (($ |#1| (-531 |#2|)) 123) (($ $ |#2| (-767)) 106) (($ $ (-641 |#2|) (-641 (-767))) 105)) (-4357 (($ (-1 |#1| |#1|) $) 121)) (-3657 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) 119)) (-3982 ((|#1| $) 118)) (-2766 (((-1152) $) 10)) (-2070 (($ $ |#2|) 100 (|has| |#1| (-38 (-407 (-564)))))) (-4052 (((-1114) $) 11)) (-4016 (($ $ (-767)) 107)) (-2998 (((-3 $ "failed") $ $) 134 (|has| |#1| (-556)))) (-1689 (($ $) 97 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (($ $ |#2| $) 115) (($ $ (-641 |#2|) (-641 $)) 114) (($ $ (-641 (-294 $))) 113) (($ $ (-294 $)) 112) (($ $ $ $) 111) (($ $ (-641 $) (-641 $)) 110)) (-3254 (($ $ |#2|) 43) (($ $ (-641 |#2|)) 42) (($ $ |#2| (-767)) 41) (($ $ (-641 |#2|) (-641 (-767))) 40)) (-1568 (((-531 |#2|) $) 120)) (-3914 (($ $) 86 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 75 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 85 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 76 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 84 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 77 (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) 142)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 137 (|has| |#1| (-172))) (($ $) 135 (|has| |#1| (-556))) (($ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2007 ((|#1| $ (-531 |#2|)) 125) (($ $ |#2| (-767)) 109) (($ $ (-641 |#2|) (-641 (-767))) 108)) (-2420 (((-3 $ "failed") $) 136 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-3949 (($ $) 95 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 83 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) 131 (|has| |#1| (-556)))) (-3925 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 93 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-2784 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 80 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 91 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 79 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 78 (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ |#2|) 39) (($ $ (-641 |#2|)) 38) (($ $ |#2| (-767)) 37) (($ $ (-641 |#2|) (-641 (-767))) 36)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 126 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ $) 98 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 129 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 128 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 117) (($ $ |#1|) 116)))
-(((-736 |#1| |#2|) (-140) (-1045) (-846)) (T -736))
-((-2007 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-2007 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-846)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-3744 (*1 *2 *1 *3) (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3744 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)))) (-3423 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-948 *4)))) (-3423 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-948 *4)))) (-2070 (*1 *1 *1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)) (-4 *3 (-38 (-407 (-564)))))))
-(-13 (-896 |t#2|) (-969 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -2007 ($ $ |t#2| (-767))) (-15 -2007 ($ $ (-641 |t#2|) (-641 (-767)))) (-15 -4016 ($ $ (-767))) (-15 -3810 ($ $ |t#2| (-767))) (-15 -3810 ($ $ (-641 |t#2|) (-641 (-767)))) (-15 -3744 ((-767) $ |t#2|)) (-15 -3744 ((-767) $ |t#2| (-767))) (-15 -3423 ((-948 |t#1|) $ (-767))) (-15 -3423 ((-948 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ($ $ |t#2|)) (-6 (-998)) (-6 (-1194))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-290) |has| |#1| (-556)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-896 |#2|) . T) ((-969 |#1| #0# |#2|) . T) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1051 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))))
-((-3688 (((-418 (-1166 |#4|)) (-1166 |#4|)) 30) (((-418 |#4|) |#4|) 26)))
-(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3688 ((-418 |#4|) |#4|)) (-15 -3688 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-846) (-789) (-13 (-307) (-147)) (-945 |#3| |#2| |#1|)) (T -737))
-((-3688 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))))
-(-10 -7 (-15 -3688 ((-418 |#4|) |#4|)) (-15 -3688 ((-418 (-1166 |#4|)) (-1166 |#4|))))
-((-3010 (((-418 |#4|) |#4| |#2|) 142)) (-3145 (((-418 |#4|) |#4|) NIL)) (-2753 (((-418 (-1166 |#4|)) (-1166 |#4|)) 127) (((-418 |#4|) |#4|) 52)) (-2781 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -3688 (-1166 |#4|)) (|:| -1838 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 81)) (-2776 (((-1166 |#3|) (-1166 |#3|) (-564)) 167)) (-3691 (((-641 (-767)) (-1166 |#4|) (-641 |#2|) (-767)) 75)) (-1305 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-767)) (-641 |#3|)) 79)) (-2315 (((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 27)) (-2564 (((-2 (|:| -1744 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564)) 72)) (-3515 (((-564) (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564))))) 163)) (-2191 ((|#4| (-564) (-418 |#4|)) 73)) (-1698 (((-112) (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564)))) (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564))))) NIL)))
-(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2753 ((-418 |#4|) |#4|)) (-15 -2753 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3145 ((-418 |#4|) |#4|)) (-15 -3515 ((-564) (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564)))))) (-15 -3010 ((-418 |#4|) |#4| |#2|)) (-15 -2564 ((-2 (|:| -1744 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -2781 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -3688 (-1166 |#4|)) (|:| -1838 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2315 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2191 (|#4| (-564) (-418 |#4|))) (-15 -1698 ((-112) (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564)))) (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564)))))) (-15 -1305 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-767)) (-641 |#3|))) (-15 -3691 ((-641 (-767)) (-1166 |#4|) (-641 |#2|) (-767))) (-15 -2776 ((-1166 |#3|) (-1166 |#3|) (-564)))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -738))
-((-2776 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-3691 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-846)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307)) (-5 *2 (-641 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767)))) (-1305 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10)) (-5 *7 (-641 (-767))) (-5 *8 (-641 *11)) (-4 *10 (-846)) (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-945 *11 *9 *10)) (-5 *2 (-641 (-1166 *5))) (-5 *1 (-738 *9 *10 *11 *5)) (-5 *3 (-1166 *5)))) (-1698 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-2 (|:| -3688 (-1166 *6)) (|:| -1838 (-564))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-945 *7 *5 *6)) (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-307)))) (-2315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8)) (|:| |Lfact| (-641 (-2 (|:| -3688 (-1166 *8)) (|:| -1838 (-564))))) (|:| |ctpol| *8))) (-5 *1 (-738 *6 *7 *8 *9)))) (-2781 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-945 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-641 (-2 (|:| -3688 (-1166 *9)) (|:| -1838 (-564))))))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1166 *9)))) (-2564 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-564)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-5 *2 (-2 (|:| -1744 (-1166 *9)) (|:| |polval| (-1166 *8)))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8)))) (-3010 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3688 (-1166 *6)) (|:| -1838 (-564))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-564)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-3145 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))) (-2753 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-2753 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))))
-(-10 -7 (-15 -2753 ((-418 |#4|) |#4|)) (-15 -2753 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3145 ((-418 |#4|) |#4|)) (-15 -3515 ((-564) (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564)))))) (-15 -3010 ((-418 |#4|) |#4| |#2|)) (-15 -2564 ((-2 (|:| -1744 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -2781 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -3688 (-1166 |#4|)) (|:| -1838 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2315 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2191 (|#4| (-564) (-418 |#4|))) (-15 -1698 ((-112) (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564)))) (-641 (-2 (|:| -3688 (-1166 |#3|)) (|:| -1838 (-564)))))) (-15 -1305 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-767)) (-641 |#3|))) (-15 -3691 ((-641 (-767)) (-1166 |#4|) (-641 |#2|) (-767))) (-15 -2776 ((-1166 |#3|) (-1166 |#3|) (-564))))
-((-3532 (($ $ (-917)) 17)))
-(((-739 |#1| |#2|) (-10 -8 (-15 -3532 (|#1| |#1| (-917)))) (-740 |#2|) (-172)) (T -739))
-NIL
-(-10 -8 (-15 -3532 (|#1| |#1| (-917))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3232 (($ $ (-917)) 29)) (-3532 (($ $ (-917)) 34)) (-2105 (($ $ (-917)) 30)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1542 (($ $ $) 26)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-3099 (($ $ $ $) 27)) (-3163 (($ $ $) 25)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 31)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 28) (($ $ |#1|) 36) (($ |#1| $) 35)))
-(((-740 |#1|) (-140) (-172)) (T -740))
-((-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-740 *3)) (-4 *3 (-172)))))
-(-13 (-757) (-713 |t#1|) (-10 -8 (-15 -3532 ($ $ (-917)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1094) . T))
-((-2937 (((-1031) (-685 (-225)) (-564) (-112) (-564)) 25)) (-2916 (((-1031) (-685 (-225)) (-564) (-112) (-564)) 24)))
-(((-741) (-10 -7 (-15 -2916 ((-1031) (-685 (-225)) (-564) (-112) (-564))) (-15 -2937 ((-1031) (-685 (-225)) (-564) (-112) (-564))))) (T -741))
-((-2937 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741)))) (-2916 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741)))))
-(-10 -7 (-15 -2916 ((-1031) (-685 (-225)) (-564) (-112) (-564))) (-15 -2937 ((-1031) (-685 (-225)) (-564) (-112) (-564))))
-((-4286 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-1787 (((-1031) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-2858 (((-1031) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) 32)))
-(((-742) (-10 -7 (-15 -2858 ((-1031) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))) (-15 -1787 ((-1031) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -4286 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -742))
-((-4286 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-1787 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-2858 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) (-5 *2 (-1031)) (-5 *1 (-742)))))
-(-10 -7 (-15 -2858 ((-1031) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))) (-15 -1787 ((-1031) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -4286 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))
-((-2995 (((-1031) (-564) (-564) (-685 (-225)) (-564)) 34)) (-3530 (((-1031) (-564) (-564) (-685 (-225)) (-564)) 33)) (-1617 (((-1031) (-564) (-685 (-225)) (-564)) 32)) (-2950 (((-1031) (-564) (-685 (-225)) (-564)) 31)) (-4374 (((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 30)) (-2917 (((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-2661 (((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-4031 (((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-3866 (((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-2453 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-2889 (((-1031) (-564) (-685 (-225)) (-564)) 22)) (-3808 (((-1031) (-564) (-685 (-225)) (-564)) 21)))
-(((-743) (-10 -7 (-15 -3808 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -2889 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -2453 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3866 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4031 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2661 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2917 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4374 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2950 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -1617 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -3530 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -2995 ((-1031) (-564) (-564) (-685 (-225)) (-564))))) (T -743))
-((-2995 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3530 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1617 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2950 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-4374 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2917 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2661 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-4031 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3866 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2453 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-2889 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3808 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))))
-(-10 -7 (-15 -3808 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -2889 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -2453 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3866 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4031 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2661 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2917 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4374 ((-1031) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2950 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -1617 ((-1031) (-564) (-685 (-225)) (-564))) (-15 -3530 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -2995 ((-1031) (-564) (-564) (-685 (-225)) (-564))))
-((-2973 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-4363 (((-1031) (-685 (-225)) (-685 (-225)) (-564) (-564)) 51)) (-3033 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3759 (((-1031) (-225) (-225) (-564) (-564) (-564) (-564)) 46)) (-2470 (((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-4380 (((-1031) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-4273 (((-1031) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-1730 (((-1031) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-2345 (((-1031) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) 38)) (-1993 (((-1031) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) 37)) (-1618 (((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) 33)) (-3918 (((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) 32)))
-(((-744) (-10 -7 (-15 -3918 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))) (-15 -1618 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))) (-15 -1993 ((-1031) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))) (-15 -2345 ((-1031) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))) (-15 -1730 ((-1031) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -4273 ((-1031) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -4380 ((-1031) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2470 ((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3759 ((-1031) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -3033 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -4363 ((-1031) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -2973 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -744))
-((-2973 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-4363 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3033 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3759 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2470 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-4380 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-4273 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1730 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2345 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1993 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1618 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3918 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) (-5 *2 (-1031)) (-5 *1 (-744)))))
-(-10 -7 (-15 -3918 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))) (-15 -1618 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))) (-15 -1993 ((-1031) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))) (-15 -2345 ((-1031) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))) (-15 -1730 ((-1031) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -4273 ((-1031) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -4380 ((-1031) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2470 ((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3759 ((-1031) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -3033 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -4363 ((-1031) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -2973 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))
-((-2877 (((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-4318 (((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3391 (((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-2759 (((-1031) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-3478 (((-1031) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3622 (((-1031) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2236 (((-1031) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-3440 (((-1031) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-745) (-10 -7 (-15 -3440 ((-1031) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2236 ((-1031) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3622 ((-1031) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3478 ((-1031) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2759 ((-1031) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3391 ((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -4318 ((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -4318 ((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -2877 ((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -745))
-((-2877 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-4318 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-4318 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-3391 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2759 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-3478 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-3622 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2236 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-3440 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(-10 -7 (-15 -3440 ((-1031) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2236 ((-1031) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3622 ((-1031) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3478 ((-1031) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2759 ((-1031) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3391 ((-1031) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -4318 ((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -4318 ((-1031) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -2877 ((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-2596 (((-1031) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564)) 45)) (-3564 (((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-3038 (((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 23)))
-(((-746) (-10 -7 (-15 -3038 ((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3564 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2596 ((-1031) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564))))) (T -746))
-((-2596 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))) (-3564 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1031)) (-5 *1 (-746)))) (-3038 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))))
-(-10 -7 (-15 -3038 ((-1031) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3564 ((-1031) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2596 ((-1031) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564))))
-((-1543 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564)) 35)) (-1303 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564)) 34)) (-2000 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564)) 33)) (-4069 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-2803 (((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-3574 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564)) 27)) (-2474 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 24)) (-1855 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 23)) (-2754 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564)) 22)) (-2021 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 21)))
-(((-747) (-10 -7 (-15 -2021 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -2754 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1855 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2474 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3574 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2803 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4069 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2000 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -1303 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -1543 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564))))) (T -747))
-((-1543 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-1303 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2000 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4069 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2803 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-3574 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2474 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-1855 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2754 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2021 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))))
-(-10 -7 (-15 -2021 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -2754 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1855 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2474 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3574 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2803 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4069 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2000 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -1303 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -1543 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564))))
-((-2013 (((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 45)) (-2117 (((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564)) 44)) (-1337 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 43)) (-3555 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 42)) (-3280 (((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564)) 41)) (-1781 (((-1031) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 40)) (-3306 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564)) 39)) (-4246 (((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564))) 38)) (-4123 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564)) 35)) (-1437 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564)) 34)) (-4118 (((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564)) 33)) (-1394 (((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 32)) (-3083 (((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564)) 31)) (-2074 (((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564)) 30)) (-4383 (((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 29)) (-1811 (((-1031) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564)) 28)) (-2371 (((-1031) (-564) (-685 (-225)) (-225) (-564)) 24)) (-2093 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 21)))
-(((-748) (-10 -7 (-15 -2093 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2371 ((-1031) (-564) (-685 (-225)) (-225) (-564))) (-15 -1811 ((-1031) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -4383 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2074 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -3083 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -1394 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4118 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -1437 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -4123 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4246 ((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -3306 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -1781 ((-1031) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -3280 ((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3555 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1337 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -2117 ((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2013 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))))) (T -748))
-((-2013 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2117 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1337 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3555 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3280 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1781 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3306 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4246 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4123 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1437 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4118 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1394 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3083 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2074 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4383 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1811 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2371 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2093 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(-10 -7 (-15 -2093 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2371 ((-1031) (-564) (-685 (-225)) (-225) (-564))) (-15 -1811 ((-1031) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -4383 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2074 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -3083 ((-1031) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -1394 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4118 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -1437 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -4123 ((-1031) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4246 ((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -3306 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -1781 ((-1031) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -3280 ((-1031) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3555 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1337 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -2117 ((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2013 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))))
-((-3054 (((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564)) 63)) (-3427 (((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3975 (((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-3923 (((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564)) 51)) (-4077 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3187 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2529 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1788 (((-1031) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-749) (-10 -7 (-15 -1788 ((-1031) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2529 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -3187 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -4077 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -3923 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -3975 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -3427 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -3054 ((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564))))) (T -749))
-((-3054 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3427 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3975 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3923 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4077 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3187 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2529 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-1788 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))))
-(-10 -7 (-15 -1788 ((-1031) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2529 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -3187 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -4077 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -3923 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -3975 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -3427 ((-1031) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -3054 ((-1031) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564))))
-((-3487 (((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 47)) (-3865 (((-1031) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564)) 46)) (-1943 (((-1031) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 45)) (-3386 (((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 40)) (-1752 (((-1031) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564)) 39)) (-1625 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-564)) 36)) (-4044 (((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564)) 35)) (-2949 (((-1031) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564)) 34)) (-2780 (((-1031) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564)) 33)) (-2098 (((-1031) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564)) 32)))
-(((-750) (-10 -7 (-15 -2098 ((-1031) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -2780 ((-1031) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -2949 ((-1031) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -4044 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -1625 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -1752 ((-1031) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -3386 ((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1943 ((-1031) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3865 ((-1031) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3487 ((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -750))
-((-3487 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-3865 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1943 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-3386 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1752 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1625 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-4044 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2949 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2780 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225))) (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2098 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225))) (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-750)))))
-(-10 -7 (-15 -2098 ((-1031) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -2780 ((-1031) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -2949 ((-1031) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -4044 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -1625 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -1752 ((-1031) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -3386 ((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1943 ((-1031) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3865 ((-1031) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3487 ((-1031) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))
-((-2791 (((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 80)) (-1395 (((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 69)) (-3618 (((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-2072 (((-1031) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 37)) (-3952 (((-1031) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564)) 33)) (-3383 (((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 30)) (-1974 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-2426 (((-1031) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-2945 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-1701 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564)) 26)) (-2651 (((-1031) (-564) (-564) (-685 (-225)) (-564)) 25)) (-2240 (((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-2722 (((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-2610 (((-1031) (-685 (-225)) (-564) (-564) (-564) (-564)) 22)) (-3065 (((-1031) (-564) (-564) (-685 (-225)) (-564)) 21)))
-(((-751) (-10 -7 (-15 -3065 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -2610 ((-1031) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -2722 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2240 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2651 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -1701 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -2945 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2426 ((-1031) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1974 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3383 ((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -3952 ((-1031) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -2072 ((-1031) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3618 ((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -3618 ((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1395 ((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2791 ((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -751))
-((-2791 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1395 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3618 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3618 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2072 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3952 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3383 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1974 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2426 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2945 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1701 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2651 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2240 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2722 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2610 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3065 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))))
-(-10 -7 (-15 -3065 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -2610 ((-1031) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -2722 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2240 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2651 ((-1031) (-564) (-564) (-685 (-225)) (-564))) (-15 -1701 ((-1031) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -2945 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2426 ((-1031) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1974 ((-1031) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3383 ((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -3952 ((-1031) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -2072 ((-1031) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3618 ((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -3618 ((-1031) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1395 ((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2791 ((-1031) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))
-((-3360 (((-1031) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 64)) (-1650 (((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564)) 60)) (-1663 (((-1031) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1524 (((-1031) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 37)) (-2967 (((-1031) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564)) 36)) (-1355 (((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 33)) (-1839 (((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225))) 32)) (-2599 (((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564)) 28)) (-1750 (((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 27)) (-3205 (((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 26)) (-2393 (((-1031) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 22)))
-(((-752) (-10 -7 (-15 -2393 ((-1031) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3205 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -1750 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2599 ((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -1839 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -1355 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2967 ((-1031) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1524 ((-1031) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -1663 ((-1031) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -1650 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -3360 ((-1031) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -752))
-((-3360 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1650 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1663 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1524 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2967 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1355 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1839 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2599 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1750 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3205 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2393 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-752)))))
-(-10 -7 (-15 -2393 ((-1031) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3205 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -1750 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2599 ((-1031) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -1839 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -1355 ((-1031) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2967 ((-1031) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1524 ((-1031) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -1663 ((-1031) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -1650 ((-1031) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -3360 ((-1031) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))
-((-2465 (((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225))) 29)) (-3174 (((-1031) (-1152) (-564) (-564) (-685 (-225))) 28)) (-2397 (((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225))) 27)) (-2471 (((-1031) (-564) (-564) (-564) (-685 (-225))) 21)))
-(((-753) (-10 -7 (-15 -2471 ((-1031) (-564) (-564) (-564) (-685 (-225)))) (-15 -2397 ((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -3174 ((-1031) (-1152) (-564) (-564) (-685 (-225)))) (-15 -2465 ((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)))))) (T -753))
-((-2465 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-3174 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-2397 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-753)))) (-2471 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))))
-(-10 -7 (-15 -2471 ((-1031) (-564) (-564) (-564) (-685 (-225)))) (-15 -2397 ((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -3174 ((-1031) (-1152) (-564) (-564) (-685 (-225)))) (-15 -2465 ((-1031) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)))))
-((-1295 (((-1031) (-225) (-225) (-225) (-225) (-564)) 62)) (-1677 (((-1031) (-225) (-225) (-225) (-564)) 61)) (-3264 (((-1031) (-225) (-225) (-225) (-564)) 60)) (-4226 (((-1031) (-225) (-225) (-564)) 59)) (-4032 (((-1031) (-225) (-564)) 58)) (-1799 (((-1031) (-225) (-564)) 57)) (-2755 (((-1031) (-225) (-564)) 56)) (-4026 (((-1031) (-225) (-564)) 55)) (-3861 (((-1031) (-225) (-564)) 54)) (-3394 (((-1031) (-225) (-564)) 53)) (-4121 (((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564)) 52)) (-3994 (((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564)) 51)) (-1532 (((-1031) (-225) (-564)) 50)) (-3146 (((-1031) (-225) (-564)) 49)) (-3067 (((-1031) (-225) (-564)) 48)) (-3420 (((-1031) (-225) (-564)) 47)) (-3953 (((-1031) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564)) 46)) (-1493 (((-1031) (-1152) (-169 (-225)) (-1152) (-564)) 45)) (-2633 (((-1031) (-1152) (-169 (-225)) (-1152) (-564)) 44)) (-3867 (((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564)) 43)) (-2857 (((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564)) 42)) (-2723 (((-1031) (-225) (-564)) 39)) (-1913 (((-1031) (-225) (-564)) 38)) (-1769 (((-1031) (-225) (-564)) 37)) (-3492 (((-1031) (-225) (-564)) 36)) (-3116 (((-1031) (-225) (-564)) 35)) (-1455 (((-1031) (-225) (-564)) 34)) (-3868 (((-1031) (-225) (-564)) 33)) (-1897 (((-1031) (-225) (-564)) 32)) (-2050 (((-1031) (-225) (-564)) 31)) (-1312 (((-1031) (-225) (-564)) 30)) (-3950 (((-1031) (-225) (-225) (-225) (-564)) 29)) (-3705 (((-1031) (-225) (-564)) 28)) (-3767 (((-1031) (-225) (-564)) 27)) (-4036 (((-1031) (-225) (-564)) 26)) (-3873 (((-1031) (-225) (-564)) 25)) (-3645 (((-1031) (-225) (-564)) 24)) (-4106 (((-1031) (-169 (-225)) (-564)) 21)))
-(((-754) (-10 -7 (-15 -4106 ((-1031) (-169 (-225)) (-564))) (-15 -3645 ((-1031) (-225) (-564))) (-15 -3873 ((-1031) (-225) (-564))) (-15 -4036 ((-1031) (-225) (-564))) (-15 -3767 ((-1031) (-225) (-564))) (-15 -3705 ((-1031) (-225) (-564))) (-15 -3950 ((-1031) (-225) (-225) (-225) (-564))) (-15 -1312 ((-1031) (-225) (-564))) (-15 -2050 ((-1031) (-225) (-564))) (-15 -1897 ((-1031) (-225) (-564))) (-15 -3868 ((-1031) (-225) (-564))) (-15 -1455 ((-1031) (-225) (-564))) (-15 -3116 ((-1031) (-225) (-564))) (-15 -3492 ((-1031) (-225) (-564))) (-15 -1769 ((-1031) (-225) (-564))) (-15 -1913 ((-1031) (-225) (-564))) (-15 -2723 ((-1031) (-225) (-564))) (-15 -2857 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3867 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2633 ((-1031) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -1493 ((-1031) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -3953 ((-1031) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3420 ((-1031) (-225) (-564))) (-15 -3067 ((-1031) (-225) (-564))) (-15 -3146 ((-1031) (-225) (-564))) (-15 -1532 ((-1031) (-225) (-564))) (-15 -3994 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -4121 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3394 ((-1031) (-225) (-564))) (-15 -3861 ((-1031) (-225) (-564))) (-15 -4026 ((-1031) (-225) (-564))) (-15 -2755 ((-1031) (-225) (-564))) (-15 -1799 ((-1031) (-225) (-564))) (-15 -4032 ((-1031) (-225) (-564))) (-15 -4226 ((-1031) (-225) (-225) (-564))) (-15 -3264 ((-1031) (-225) (-225) (-225) (-564))) (-15 -1677 ((-1031) (-225) (-225) (-225) (-564))) (-15 -1295 ((-1031) (-225) (-225) (-225) (-225) (-564))))) (T -754))
-((-1295 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1677 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3264 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4226 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4032 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4026 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3861 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4121 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3994 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1532 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3953 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1493 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2633 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3867 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2857 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2723 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1913 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1769 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1312 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3950 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4036 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3873 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4106 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(-10 -7 (-15 -4106 ((-1031) (-169 (-225)) (-564))) (-15 -3645 ((-1031) (-225) (-564))) (-15 -3873 ((-1031) (-225) (-564))) (-15 -4036 ((-1031) (-225) (-564))) (-15 -3767 ((-1031) (-225) (-564))) (-15 -3705 ((-1031) (-225) (-564))) (-15 -3950 ((-1031) (-225) (-225) (-225) (-564))) (-15 -1312 ((-1031) (-225) (-564))) (-15 -2050 ((-1031) (-225) (-564))) (-15 -1897 ((-1031) (-225) (-564))) (-15 -3868 ((-1031) (-225) (-564))) (-15 -1455 ((-1031) (-225) (-564))) (-15 -3116 ((-1031) (-225) (-564))) (-15 -3492 ((-1031) (-225) (-564))) (-15 -1769 ((-1031) (-225) (-564))) (-15 -1913 ((-1031) (-225) (-564))) (-15 -2723 ((-1031) (-225) (-564))) (-15 -2857 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3867 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2633 ((-1031) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -1493 ((-1031) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -3953 ((-1031) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3420 ((-1031) (-225) (-564))) (-15 -3067 ((-1031) (-225) (-564))) (-15 -3146 ((-1031) (-225) (-564))) (-15 -1532 ((-1031) (-225) (-564))) (-15 -3994 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -4121 ((-1031) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3394 ((-1031) (-225) (-564))) (-15 -3861 ((-1031) (-225) (-564))) (-15 -4026 ((-1031) (-225) (-564))) (-15 -2755 ((-1031) (-225) (-564))) (-15 -1799 ((-1031) (-225) (-564))) (-15 -4032 ((-1031) (-225) (-564))) (-15 -4226 ((-1031) (-225) (-225) (-564))) (-15 -3264 ((-1031) (-225) (-225) (-225) (-564))) (-15 -1677 ((-1031) (-225) (-225) (-225) (-564))) (-15 -1295 ((-1031) (-225) (-225) (-225) (-225) (-564))))
-((-3345 (((-1264)) 21)) (-3815 (((-1152)) 32)) (-2977 (((-1152)) 31)) (-4115 (((-1098) (-1170) (-685 (-564))) 46) (((-1098) (-1170) (-685 (-225))) 42)) (-1528 (((-112)) 19)) (-1707 (((-1152) (-1152)) 35)))
-(((-755) (-10 -7 (-15 -2977 ((-1152))) (-15 -3815 ((-1152))) (-15 -1707 ((-1152) (-1152))) (-15 -4115 ((-1098) (-1170) (-685 (-225)))) (-15 -4115 ((-1098) (-1170) (-685 (-564)))) (-15 -1528 ((-112))) (-15 -3345 ((-1264))))) (T -755))
-((-3345 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-755)))) (-1528 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098)) (-5 *1 (-755)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098)) (-5 *1 (-755)))) (-1707 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755)))) (-3815 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755)))) (-2977 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755)))))
-(-10 -7 (-15 -2977 ((-1152))) (-15 -3815 ((-1152))) (-15 -1707 ((-1152) (-1152))) (-15 -4115 ((-1098) (-1170) (-685 (-225)))) (-15 -4115 ((-1098) (-1170) (-685 (-564)))) (-15 -1528 ((-112))) (-15 -3345 ((-1264))))
-((-1542 (($ $ $) 10)) (-3099 (($ $ $ $) 9)) (-3163 (($ $ $) 12)))
-(((-756 |#1|) (-10 -8 (-15 -3163 (|#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1| |#1|))) (-757)) (T -756))
-NIL
-(-10 -8 (-15 -3163 (|#1| |#1| |#1|)) (-15 -1542 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3232 (($ $ (-917)) 29)) (-2105 (($ $ (-917)) 30)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1542 (($ $ $) 26)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-3099 (($ $ $ $) 27)) (-3163 (($ $ $) 25)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 31)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 28)))
-(((-757) (-140)) (T -757))
-((-3099 (*1 *1 *1 *1 *1) (-4 *1 (-757))) (-1542 (*1 *1 *1 *1) (-4 *1 (-757))) (-3163 (*1 *1 *1 *1) (-4 *1 (-757))))
-(-13 (-21) (-716) (-10 -8 (-15 -3099 ($ $ $ $)) (-15 -1542 ($ $ $)) (-15 -3163 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-716) . T) ((-1094) . T))
-((-2423 (((-858) $) NIL) (($ (-564)) 10)))
-(((-758 |#1|) (-10 -8 (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|))) (-759)) (T -758))
-NIL
-(-10 -8 (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-4015 (((-3 $ "failed") $) 41)) (-3232 (($ $ (-917)) 29) (($ $ (-767)) 36)) (-3293 (((-3 $ "failed") $) 39)) (-4112 (((-112) $) 35)) (-2378 (((-3 $ "failed") $) 40)) (-2105 (($ $ (-917)) 30) (($ $ (-767)) 37)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1542 (($ $ $) 26)) (-2423 (((-858) $) 12) (($ (-564)) 32)) (-3719 (((-767)) 33 T CONST)) (-1860 (((-112) $ $) 9)) (-3099 (($ $ $ $) 27)) (-3163 (($ $ $) 25)) (-2403 (($) 19 T CONST)) (-2417 (($) 34 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 31) (($ $ (-767)) 38)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 28)))
+((* (*1 *1 *1 *1) (-4 *1 (-718))) (-2013 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919)))) (-1522 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919)))))
+(-13 (-1097) (-10 -8 (-15 * ($ $ $)) (-15 -2013 ($ $ (-919))) (-15 -1522 ($ $ (-919))) (-15 ** ($ $ (-919)))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2013 (($ $ (-919)) NIL) (($ $ (-769)) 21)) (-3953 (((-112) $) 10)) (-1522 (($ $ (-919)) NIL) (($ $ (-769)) 22)) (** (($ $ (-919)) NIL) (($ $ (-769)) 16)))
+(((-719 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-769))) (-15 -1522 (|#1| |#1| (-769))) (-15 -2013 (|#1| |#1| (-769))) (-15 -3953 ((-112) |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 -1522 (|#1| |#1| (-919))) (-15 -2013 (|#1| |#1| (-919)))) (-720)) (T -719))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-769))) (-15 -1522 (|#1| |#1| (-769))) (-15 -2013 (|#1| |#1| (-769))) (-15 -3953 ((-112) |#1|)) (-15 ** (|#1| |#1| (-919))) (-15 -1522 (|#1| |#1| (-919))) (-15 -2013 (|#1| |#1| (-919))))
+((-2907 (((-112) $ $) 7)) (-2564 (((-3 $ "failed") $) 18)) (-2013 (($ $ (-919)) 16) (($ $ (-769)) 23)) (-3104 (((-3 $ "failed") $) 20)) (-3953 (((-112) $) 24)) (-4125 (((-3 $ "failed") $) 19)) (-1522 (($ $ (-919)) 15) (($ $ (-769)) 22)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2322 (($) 25 T CONST)) (-2872 (((-112) $ $) 6)) (** (($ $ (-919)) 14) (($ $ (-769)) 21)) (* (($ $ $) 17)))
+(((-720) (-140)) (T -720))
+((-2322 (*1 *1) (-4 *1 (-720))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112)))) (-2013 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769)))) (-1522 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769)))) (-3104 (*1 *1 *1) (|partial| -4 *1 (-720))) (-4125 (*1 *1 *1) (|partial| -4 *1 (-720))) (-2564 (*1 *1 *1) (|partial| -4 *1 (-720))))
+(-13 (-718) (-10 -8 (-15 (-2322) ($) -2858) (-15 -3953 ((-112) $)) (-15 -2013 ($ $ (-769))) (-15 -1522 ($ $ (-769))) (-15 ** ($ $ (-769))) (-15 -3104 ((-3 $ "failed") $)) (-15 -4125 ((-3 $ "failed") $)) (-15 -2564 ((-3 $ "failed") $))))
+(((-102) . T) ((-611 (-860)) . T) ((-718) . T) ((-1097) . T))
+((-2521 (((-769)) 42)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3027 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 23)) (-1320 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 53)) (-3104 (((-3 $ "failed") $) 73)) (-2433 (($) 47)) (-2218 ((|#2| $) 21)) (-2185 (($) 18)) (-3175 (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)) (-2382 (((-687 |#2|) (-1262 $) (-1 |#2| |#2|)) 68)) (-1314 (((-1262 |#2|) $) NIL) (($ (-1262 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3011 ((|#3| $) 39)) (-4263 (((-1262 $)) 36)))
+(((-721 |#1| |#2| |#3|) (-10 -8 (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2433 (|#1|)) (-15 -2521 ((-769))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2382 ((-687 |#2|) (-1262 |#1|) (-1 |#2| |#2|))) (-15 -1320 ((-3 |#1| "failed") (-407 |#3|))) (-15 -1314 (|#1| |#3|)) (-15 -1320 (|#1| |#3|)) (-15 -2185 (|#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -1314 (|#3| |#1|)) (-15 -1314 (|#1| (-1262 |#2|))) (-15 -1314 ((-1262 |#2|) |#1|)) (-15 -4263 ((-1262 |#1|))) (-15 -3011 (|#3| |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|))) (-722 |#2| |#3|) (-172) (-1238 |#2|)) (T -721))
+((-2521 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-769)) (-5 *1 (-721 *3 *4 *5)) (-4 *3 (-722 *4 *5)))))
+(-10 -8 (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -2433 (|#1|)) (-15 -2521 ((-769))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -2382 ((-687 |#2|) (-1262 |#1|) (-1 |#2| |#2|))) (-15 -1320 ((-3 |#1| "failed") (-407 |#3|))) (-15 -1314 (|#1| |#3|)) (-15 -1320 (|#1| |#3|)) (-15 -2185 (|#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -1314 (|#3| |#1|)) (-15 -1314 (|#1| (-1262 |#2|))) (-15 -1314 ((-1262 |#2|) |#1|)) (-15 -4263 ((-1262 |#1|))) (-15 -3011 (|#3| |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 102 (|has| |#1| (-363)))) (-1387 (($ $) 103 (|has| |#1| (-363)))) (-2037 (((-112) $) 105 (|has| |#1| (-363)))) (-3166 (((-687 |#1|) (-1262 $)) 53) (((-687 |#1|)) 68)) (-3815 ((|#1| $) 59)) (-1964 (((-1185 (-919) (-769)) (-564)) 155 (|has| |#1| (-349)))) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 122 (|has| |#1| (-363)))) (-1978 (((-418 $) $) 123 (|has| |#1| (-363)))) (-4010 (((-112) $ $) 113 (|has| |#1| (-363)))) (-2521 (((-769)) 96 (|has| |#1| (-368)))) (-1976 (($) 18 T CONST)) (-4278 (((-3 (-564) "failed") $) 178 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 176 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 173)) (-3027 (((-564) $) 177 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 175 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 174)) (-4221 (($ (-1262 |#1|) (-1262 $)) 55) (($ (-1262 |#1|)) 71)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-349)))) (-2845 (($ $ $) 117 (|has| |#1| (-363)))) (-1984 (((-687 |#1|) $ (-1262 $)) 60) (((-687 |#1|) $) 66)) (-4315 (((-687 (-564)) (-687 $)) 172 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 171 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 170) (((-687 |#1|) (-687 $)) 169)) (-1320 (($ |#2|) 166) (((-3 $ "failed") (-407 |#2|)) 163 (|has| |#1| (-363)))) (-3104 (((-3 $ "failed") $) 37)) (-2414 (((-919)) 61)) (-2433 (($) 99 (|has| |#1| (-368)))) (-2859 (($ $ $) 116 (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 111 (|has| |#1| (-363)))) (-1363 (($) 157 (|has| |#1| (-349)))) (-3424 (((-112) $) 158 (|has| |#1| (-349)))) (-3607 (($ $ (-769)) 149 (|has| |#1| (-349))) (($ $) 148 (|has| |#1| (-349)))) (-1469 (((-112) $) 124 (|has| |#1| (-363)))) (-1427 (((-919) $) 160 (|has| |#1| (-349))) (((-831 (-919)) $) 146 (|has| |#1| (-349)))) (-3953 (((-112) $) 35)) (-2218 ((|#1| $) 58)) (-3157 (((-3 $ "failed") $) 150 (|has| |#1| (-349)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 120 (|has| |#1| (-363)))) (-3947 ((|#2| $) 51 (|has| |#1| (-363)))) (-1945 (((-919) $) 98 (|has| |#1| (-368)))) (-1308 ((|#2| $) 164)) (-2049 (($ (-642 $)) 109 (|has| |#1| (-363))) (($ $ $) 108 (|has| |#1| (-363)))) (-3315 (((-1155) $) 10)) (-3911 (($ $) 125 (|has| |#1| (-363)))) (-3366 (($) 151 (|has| |#1| (-349)) CONST)) (-2047 (($ (-919)) 97 (|has| |#1| (-368)))) (-4033 (((-1117) $) 11)) (-2185 (($) 168)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 110 (|has| |#1| (-363)))) (-2080 (($ (-642 $)) 107 (|has| |#1| (-363))) (($ $ $) 106 (|has| |#1| (-363)))) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) 154 (|has| |#1| (-349)))) (-3643 (((-418 $) $) 121 (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 118 (|has| |#1| (-363)))) (-2896 (((-3 $ "failed") $ $) 101 (|has| |#1| (-363)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 112 (|has| |#1| (-363)))) (-2048 (((-769) $) 114 (|has| |#1| (-363)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 115 (|has| |#1| (-363)))) (-1846 ((|#1| (-1262 $)) 54) ((|#1|) 67)) (-2136 (((-769) $) 159 (|has| |#1| (-349))) (((-3 (-769) "failed") $ $) 147 (|has| |#1| (-349)))) (-3175 (($ $) 145 (-2706 (-2275 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-769)) 143 (-2706 (-2275 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1173)) 141 (-2275 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-642 (-1173))) 140 (-2275 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-1173) (-769)) 139 (-2275 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 (-769))) 138 (-2275 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-769)) 131 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-363)))) (-2382 (((-687 |#1|) (-1262 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-363)))) (-3280 ((|#2|) 167)) (-2668 (($) 156 (|has| |#1| (-349)))) (-2067 (((-1262 |#1|) $ (-1262 $)) 57) (((-687 |#1|) (-1262 $) (-1262 $)) 56) (((-1262 |#1|) $) 73) (((-687 |#1|) (-1262 $)) 72)) (-1314 (((-1262 |#1|) $) 70) (($ (-1262 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 153 (|has| |#1| (-349)))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-363))) (($ (-407 (-564))) 95 (-2706 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564))))))) (-2439 (($ $) 152 (|has| |#1| (-349))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3011 ((|#2| $) 52)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-4263 (((-1262 $)) 74)) (-2103 (((-112) $ $) 104 (|has| |#1| (-363)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $) 144 (-2706 (-2275 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-769)) 142 (-2706 (-2275 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1173)) 137 (-2275 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-642 (-1173))) 136 (-2275 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-1173) (-769)) 135 (-2275 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 (-769))) 134 (-2275 (|has| |#1| (-898 (-1173))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-769)) 133 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-363)))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 129 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 126 (|has| |#1| (-363)))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-407 (-564)) $) 128 (|has| |#1| (-363))) (($ $ (-407 (-564))) 127 (|has| |#1| (-363)))))
+(((-722 |#1| |#2|) (-140) (-172) (-1238 |t#1|)) (T -722))
+((-2185 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-722 *2 *3)) (-4 *3 (-1238 *2)))) (-3280 (*1 *2) (-12 (-4 *1 (-722 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3)))) (-1320 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-722 *3 *2)) (-4 *2 (-1238 *3)))) (-1314 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-722 *3 *2)) (-4 *2 (-1238 *3)))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-722 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3)))) (-1320 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-722 *3 *4)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-1262 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-722 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1238 *5)) (-5 *2 (-687 *5)))))
+(-13 (-409 |t#1| |t#2|) (-172) (-612 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -2185 ($)) (-15 -3280 (|t#2|)) (-15 -1320 ($ |t#2|)) (-15 -1314 ($ |t#2|)) (-15 -1308 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -1320 ((-3 $ "failed") (-407 |t#2|))) (-15 -2382 ((-687 |t#1|) (-1262 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2706 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) . T) ((-612 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -2706 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -2706 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-556) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-638 |#1|) . T) ((-638 $) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-715 |#1|) . T) ((-715 $) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173)))) ((-918) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1049 |#1|) . T) ((-1049 $) . T) ((-1054 #0#) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| |#1| (-349)) ((-1216) -2706 (|has| |#1| (-349)) (|has| |#1| (-363))))
+((-1976 (($) 11)) (-3104 (((-3 $ "failed") $) 14)) (-3953 (((-112) $) 10)) (** (($ $ (-919)) NIL) (($ $ (-769)) 20)))
+(((-723 |#1|) (-10 -8 (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 -3953 ((-112) |#1|)) (-15 -1976 (|#1|)) (-15 ** (|#1| |#1| (-919)))) (-724)) (T -723))
+NIL
+(-10 -8 (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-769))) (-15 -3953 ((-112) |#1|)) (-15 -1976 (|#1|)) (-15 ** (|#1| |#1| (-919))))
+((-2907 (((-112) $ $) 7)) (-1976 (($) 19 T CONST)) (-3104 (((-3 $ "failed") $) 16)) (-3953 (((-112) $) 18)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2322 (($) 20 T CONST)) (-2872 (((-112) $ $) 6)) (** (($ $ (-919)) 14) (($ $ (-769)) 17)) (* (($ $ $) 15)))
+(((-724) (-140)) (T -724))
+((-2322 (*1 *1) (-4 *1 (-724))) (-1976 (*1 *1) (-4 *1 (-724))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-724)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-769)))) (-3104 (*1 *1 *1) (|partial| -4 *1 (-724))))
+(-13 (-1109) (-10 -8 (-15 (-2322) ($) -2858) (-15 -1976 ($) -2858) (-15 -3953 ((-112) $)) (-15 ** ($ $ (-769))) (-15 -3104 ((-3 $ "failed") $))))
+(((-102) . T) ((-611 (-860)) . T) ((-1109) . T) ((-1097) . T))
+((-4104 (((-2 (|:| -1895 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-1414 (((-2 (|:| -1895 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3553 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-3412 (((-2 (|:| |poly| |#2|) (|:| -1895 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 48)))
+(((-725 |#1| |#2|) (-10 -7 (-15 -1414 ((-2 (|:| -1895 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4104 ((-2 (|:| -1895 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3553 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3412 ((-2 (|:| |poly| |#2|) (|:| -1895 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1238 |#1|)) (T -725))
+((-3412 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1895 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-725 *5 *6)) (-5 *3 (-407 *6)))) (-3553 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1238 *5)) (-5 *1 (-725 *5 *2)) (-4 *5 (-363)))) (-4104 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -1895 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-725 *5 *3)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -1895 *3) (|:| |special| *3))) (-5 *1 (-725 *5 *3)))))
+(-10 -7 (-15 -1414 ((-2 (|:| -1895 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4104 ((-2 (|:| -1895 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3553 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3412 ((-2 (|:| |poly| |#2|) (|:| -1895 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|))))
+((-3858 ((|#7| (-642 |#5|) |#6|) NIL)) (-4358 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
+(((-726 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4358 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3858 (|#7| (-642 |#5|) |#6|))) (-848) (-791) (-791) (-1047) (-1047) (-947 |#4| |#2| |#1|) (-947 |#5| |#3| |#1|)) (T -726))
+((-3858 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *9)) (-4 *9 (-1047)) (-4 *5 (-848)) (-4 *6 (-791)) (-4 *8 (-1047)) (-4 *2 (-947 *9 *7 *5)) (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-791)) (-4 *4 (-947 *8 *6 *5)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1047)) (-4 *9 (-1047)) (-4 *5 (-848)) (-4 *6 (-791)) (-4 *2 (-947 *9 *7 *5)) (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-791)) (-4 *4 (-947 *8 *6 *5)))))
+(-10 -7 (-15 -4358 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3858 (|#7| (-642 |#5|) |#6|)))
+((-4358 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-727 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4358 (|#7| (-1 |#2| |#1|) |#6|))) (-848) (-848) (-791) (-791) (-1047) (-947 |#5| |#3| |#1|) (-947 |#5| |#4| |#2|)) (T -727))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-848)) (-4 *6 (-848)) (-4 *7 (-791)) (-4 *9 (-1047)) (-4 *2 (-947 *9 *8 *6)) (-5 *1 (-727 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-791)) (-4 *4 (-947 *9 *7 *5)))))
+(-10 -7 (-15 -4358 (|#7| (-1 |#2| |#1|) |#6|)))
+((-3643 (((-418 |#4|) |#4|) 42)))
+(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3643 ((-418 |#4|) |#4|))) (-791) (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)) (-15 -3329 ((-3 $ "failed") (-1173))))) (-307) (-947 (-950 |#3|) |#1| |#2|)) (T -728))
+((-3643 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)) (-15 -3329 ((-3 $ "failed") (-1173)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-947 (-950 *6) *4 *5)))))
+(-10 -7 (-15 -3643 ((-418 |#4|) |#4|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-862 |#1|)) $) NIL)) (-3615 (((-1169 $) $ (-862 |#1|)) NIL) (((-1169 |#2|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1387 (($ $) NIL (|has| |#2| (-556)))) (-2037 (((-112) $) NIL (|has| |#2| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-862 |#1|))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-4316 (($ $) NIL (|has| |#2| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#2| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-862 |#1|) "failed") $) NIL)) (-3027 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-862 |#1|) $) NIL)) (-2022 (($ $ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-1718 (($ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#2| (-907)))) (-2575 (($ $ |#2| (-531 (-862 |#1|)) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-862 |#1|) (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-3790 (($ (-1169 |#2|) (-862 |#1|)) NIL) (($ (-1169 $) (-862 |#1|)) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#2| (-531 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-862 |#1|)) NIL)) (-1398 (((-531 (-862 |#1|)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-2026 (($ (-1 (-531 (-862 |#1|)) (-531 (-862 |#1|))) $) NIL)) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-4184 (((-3 (-862 |#1|) "failed") $) NIL)) (-3950 (($ $) NIL)) (-3962 ((|#2| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3315 (((-1155) $) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-862 |#1|)) (|:| -2700 (-769))) "failed") $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 ((|#2| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#2| (-907)))) (-2896 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-862 |#1|) |#2|) NIL) (($ $ (-642 (-862 |#1|)) (-642 |#2|)) NIL) (($ $ (-862 |#1|) $) NIL) (($ $ (-642 (-862 |#1|)) (-642 $)) NIL)) (-1846 (($ $ (-862 |#1|)) NIL (|has| |#2| (-172)))) (-3175 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2775 (((-531 (-862 |#1|)) $) NIL) (((-769) $ (-862 |#1|)) NIL) (((-642 (-769)) $ (-642 (-862 |#1|))) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-862 |#1|) (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-862 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4028 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-862 |#1|)) NIL (|has| |#2| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-862 |#1|)) NIL) (($ $) NIL (|has| |#2| (-556))) (($ (-407 (-564))) NIL (-2706 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564))))))) (-3849 (((-642 |#2|) $) NIL)) (-2102 ((|#2| $ (-531 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#2| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-862 |#1|)) NIL) (($ $ (-642 (-862 |#1|))) NIL) (($ $ (-862 |#1|) (-769)) NIL) (($ $ (-642 (-862 |#1|)) (-642 (-769))) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-729 |#1| |#2|) (-947 |#2| (-531 (-862 |#1|)) (-862 |#1|)) (-642 (-1173)) (-1047)) (T -729))
+NIL
+(-947 |#2| (-531 (-862 |#1|)) (-862 |#1|))
+((-4295 (((-2 (|:| -3532 (-950 |#3|)) (|:| -3305 (-950 |#3|))) |#4|) 14)) (-3028 ((|#4| |#4| |#2|) 33)) (-2158 ((|#4| (-407 (-950 |#3|)) |#2|) 64)) (-2714 ((|#4| (-1169 (-950 |#3|)) |#2|) 80)) (-3933 ((|#4| (-1169 |#4|) |#2|) 51)) (-3830 ((|#4| |#4| |#2|) 54)) (-3643 (((-418 |#4|) |#4|) 40)))
+(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4295 ((-2 (|:| -3532 (-950 |#3|)) (|:| -3305 (-950 |#3|))) |#4|)) (-15 -3830 (|#4| |#4| |#2|)) (-15 -3933 (|#4| (-1169 |#4|) |#2|)) (-15 -3028 (|#4| |#4| |#2|)) (-15 -2714 (|#4| (-1169 (-950 |#3|)) |#2|)) (-15 -2158 (|#4| (-407 (-950 |#3|)) |#2|)) (-15 -3643 ((-418 |#4|) |#4|))) (-791) (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)))) (-556) (-947 (-407 (-950 |#3|)) |#1| |#2|)) (T -730))
+((-3643 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))) (-4 *6 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-947 (-407 (-950 *6)) *4 *5)))) (-2158 (*1 *2 *3 *4) (-12 (-4 *6 (-556)) (-4 *2 (-947 *3 *5 *4)) (-5 *1 (-730 *5 *4 *6 *2)) (-5 *3 (-407 (-950 *6))) (-4 *5 (-791)) (-4 *4 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 (-950 *6))) (-4 *6 (-556)) (-4 *2 (-947 (-407 (-950 *6)) *5 *4)) (-5 *1 (-730 *5 *4 *6 *2)) (-4 *5 (-791)) (-4 *4 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))))) (-3028 (*1 *2 *2 *3) (-12 (-4 *4 (-791)) (-4 *3 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))) (-4 *5 (-556)) (-5 *1 (-730 *4 *3 *5 *2)) (-4 *2 (-947 (-407 (-950 *5)) *4 *3)))) (-3933 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *2)) (-4 *2 (-947 (-407 (-950 *6)) *5 *4)) (-5 *1 (-730 *5 *4 *6 *2)) (-4 *5 (-791)) (-4 *4 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))) (-4 *6 (-556)))) (-3830 (*1 *2 *2 *3) (-12 (-4 *4 (-791)) (-4 *3 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))) (-4 *5 (-556)) (-5 *1 (-730 *4 *3 *5 *2)) (-4 *2 (-947 (-407 (-950 *5)) *4 *3)))) (-4295 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))) (-4 *6 (-556)) (-5 *2 (-2 (|:| -3532 (-950 *6)) (|:| -3305 (-950 *6)))) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-947 (-407 (-950 *6)) *4 *5)))))
+(-10 -7 (-15 -4295 ((-2 (|:| -3532 (-950 |#3|)) (|:| -3305 (-950 |#3|))) |#4|)) (-15 -3830 (|#4| |#4| |#2|)) (-15 -3933 (|#4| (-1169 |#4|) |#2|)) (-15 -3028 (|#4| |#4| |#2|)) (-15 -2714 (|#4| (-1169 (-950 |#3|)) |#2|)) (-15 -2158 (|#4| (-407 (-950 |#3|)) |#2|)) (-15 -3643 ((-418 |#4|) |#4|)))
+((-3643 (((-418 |#4|) |#4|) 54)))
+(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3643 ((-418 |#4|) |#4|))) (-791) (-848) (-13 (-307) (-147)) (-947 (-407 |#3|) |#1| |#2|)) (T -731))
+((-3643 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-731 *4 *5 *6 *3)) (-4 *3 (-947 (-407 *6) *4 *5)))))
+(-10 -7 (-15 -3643 ((-418 |#4|) |#4|)))
+((-4358 (((-733 |#2| |#3|) (-1 |#2| |#1|) (-733 |#1| |#3|)) 18)))
+(((-732 |#1| |#2| |#3|) (-10 -7 (-15 -4358 ((-733 |#2| |#3|) (-1 |#2| |#1|) (-733 |#1| |#3|)))) (-1047) (-1047) (-724)) (T -732))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-733 *5 *7)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *7 (-724)) (-5 *2 (-733 *6 *7)) (-5 *1 (-732 *5 *6 *7)))))
+(-10 -7 (-15 -4358 ((-733 |#2| |#3|) (-1 |#2| |#1|) (-733 |#1| |#3|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 39)) (-2674 (((-642 (-2 (|:| -4378 |#1|) (|:| -3214 |#2|))) $) 40)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2521 (((-769)) 22 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-3027 ((|#2| $) NIL) ((|#1| $) NIL)) (-1718 (($ $) 104 (|has| |#2| (-848)))) (-3104 (((-3 $ "failed") $) 87)) (-2433 (($) 51 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) 72)) (-1763 (((-642 $) $) 55)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| |#2|) 17)) (-4358 (($ (-1 |#1| |#1|) $) 70)) (-1945 (((-919) $) 46 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3950 ((|#2| $) 103 (|has| |#2| (-848)))) (-3962 ((|#1| $) 102 (|has| |#2| (-848)))) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) 38 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 101) (($ (-564)) 61) (($ |#2|) 58) (($ |#1|) 59) (($ (-642 (-2 (|:| -4378 |#1|) (|:| -3214 |#2|)))) 11)) (-3849 (((-642 |#1|) $) 57)) (-2102 ((|#1| $ |#2|) 116)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 12 T CONST)) (-2322 (($) 47 T CONST)) (-2872 (((-112) $ $) 107)) (-2987 (($ $) 63) (($ $ $) NIL)) (-2974 (($ $ $) 36)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 68) (($ $ $) 119) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-733 |#1| |#2|) (-13 (-1047) (-1036 |#2|) (-1036 |#1|) (-10 -8 (-15 -3774 ($ |#1| |#2|)) (-15 -2102 (|#1| $ |#2|)) (-15 -2327 ($ (-642 (-2 (|:| -4378 |#1|) (|:| -3214 |#2|))))) (-15 -2674 ((-642 (-2 (|:| -4378 |#1|) (|:| -3214 |#2|))) $)) (-15 -4358 ($ (-1 |#1| |#1|) $)) (-15 -2316 ((-112) $)) (-15 -3849 ((-642 |#1|) $)) (-15 -1763 ((-642 $) $)) (-15 -3934 ((-769) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-848)) (PROGN (-15 -3950 (|#2| $)) (-15 -3962 (|#1| $)) (-15 -1718 ($ $))) |%noBranch|))) (-1047) (-724)) (T -733))
+((-3774 (*1 *1 *2 *3) (-12 (-5 *1 (-733 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-724)))) (-2102 (*1 *2 *1 *3) (-12 (-4 *2 (-1047)) (-5 *1 (-733 *2 *3)) (-4 *3 (-724)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -4378 *3) (|:| -3214 *4)))) (-4 *3 (-1047)) (-4 *4 (-724)) (-5 *1 (-733 *3 *4)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| -4378 *3) (|:| -3214 *4)))) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) (-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-733 *3 *4)) (-4 *4 (-724)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) (-3849 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-642 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724)))) (-3950 (*1 *2 *1) (-12 (-4 *2 (-724)) (-4 *2 (-848)) (-5 *1 (-733 *3 *2)) (-4 *3 (-1047)))) (-3962 (*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-733 *2 *3)) (-4 *3 (-848)) (-4 *3 (-724)))) (-1718 (*1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-4 *3 (-848)) (-4 *2 (-1047)) (-4 *3 (-724)))))
+(-13 (-1047) (-1036 |#2|) (-1036 |#1|) (-10 -8 (-15 -3774 ($ |#1| |#2|)) (-15 -2102 (|#1| $ |#2|)) (-15 -2327 ($ (-642 (-2 (|:| -4378 |#1|) (|:| -3214 |#2|))))) (-15 -2674 ((-642 (-2 (|:| -4378 |#1|) (|:| -3214 |#2|))) $)) (-15 -4358 ($ (-1 |#1| |#1|) $)) (-15 -2316 ((-112) $)) (-15 -3849 ((-642 |#1|) $)) (-15 -1763 ((-642 $) $)) (-15 -3934 ((-769) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-848)) (PROGN (-15 -3950 (|#2| $)) (-15 -3962 (|#1| $)) (-15 -1718 ($ $))) |%noBranch|)))
+((-2907 (((-112) $ $) 19)) (-1717 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2633 (($ $ $) 73)) (-2869 (((-112) $ $) 74)) (-3697 (((-112) $ (-769)) 8)) (-1754 (($ (-642 |#1|)) 69) (($) 68)) (-2462 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-1938 (($ $) 63)) (-2595 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2265 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2490 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1899 (((-112) $ $) 65)) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22)) (-2452 (($ $ $) 70)) (-2730 ((|#1| $) 40)) (-3183 (($ |#1| $) 41) (($ |#1| $ (-769)) 64)) (-4033 (((-1117) $) 21)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4381 (((-642 (-2 (|:| -3778 |#1|) (|:| -4043 (-769)))) $) 62)) (-1438 (($ $ |#1|) 72) (($ $ $) 71)) (-2593 (($) 50) (($ (-642 |#1|)) 49)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 51)) (-2327 (((-860) $) 18)) (-3715 (($ (-642 |#1|)) 67) (($) 66)) (-1648 (((-112) $ $) 23)) (-4386 (($ (-642 |#1|)) 43)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20)) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-734 |#1|) (-140) (-1097)) (T -734))
+NIL
+(-13 (-693 |t#1|) (-1095 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-693 |#1|) . T) ((-1095 |#1|) . T) ((-1097) . T) ((-1212) . T))
+((-2907 (((-112) $ $) NIL)) (-1717 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-2633 (($ $ $) 99)) (-2869 (((-112) $ $) 105)) (-3697 (((-112) $ (-769)) NIL)) (-1754 (($ (-642 |#1|)) 26) (($) 17)) (-2462 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-1938 (($ $) 85)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2265 (($ |#1| $) 70 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4410))) (($ |#1| $ (-564)) 75) (($ (-1 (-112) |#1|) $ (-564)) 78)) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (($ |#1| $ (-564)) 80) (($ (-1 (-112) |#1|) $ (-564)) 81)) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2936 (((-642 |#1|) $) 32 (|has| $ (-6 -4410)))) (-1899 (((-112) $ $) 104)) (-2675 (($) 15) (($ |#1|) 28) (($ (-642 |#1|)) 23)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) 38)) (-2776 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 89)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-2452 (($ $ $) 97)) (-2730 ((|#1| $) 62)) (-3183 (($ |#1| $) 63) (($ |#1| $ (-769)) 86)) (-4033 (((-1117) $) NIL)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3388 ((|#1| $) 61)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 56)) (-2972 (($) 14)) (-4381 (((-642 (-2 (|:| -3778 |#1|) (|:| -4043 (-769)))) $) 55)) (-1438 (($ $ |#1|) NIL) (($ $ $) 98)) (-2593 (($) 16) (($ (-642 |#1|)) 25)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) 68 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) 79)) (-1314 (((-536) $) 36 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 22)) (-2327 (((-860) $) 49)) (-3715 (($ (-642 |#1|)) 27) (($) 18)) (-1648 (((-112) $ $) NIL)) (-4386 (($ (-642 |#1|)) 24)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 103)) (-2127 (((-769) $) 67 (|has| $ (-6 -4410)))))
+(((-735 |#1|) (-13 (-734 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -2675 ($)) (-15 -2675 ($ |#1|)) (-15 -2675 ($ (-642 |#1|))) (-15 -3234 ((-642 |#1|) $)) (-15 -2490 ($ |#1| $ (-564))) (-15 -2490 ($ (-1 (-112) |#1|) $ (-564))) (-15 -2265 ($ |#1| $ (-564))) (-15 -2265 ($ (-1 (-112) |#1|) $ (-564))))) (-1097)) (T -735))
+((-2675 (*1 *1) (-12 (-5 *1 (-735 *2)) (-4 *2 (-1097)))) (-2675 (*1 *1 *2) (-12 (-5 *1 (-735 *2)) (-4 *2 (-1097)))) (-2675 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-735 *3)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-735 *3)) (-4 *3 (-1097)))) (-2490 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-735 *2)) (-4 *2 (-1097)))) (-2490 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1097)) (-5 *1 (-735 *4)))) (-2265 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-735 *2)) (-4 *2 (-1097)))) (-2265 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1097)) (-5 *1 (-735 *4)))))
+(-13 (-734 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -2675 ($)) (-15 -2675 ($ |#1|)) (-15 -2675 ($ (-642 |#1|))) (-15 -3234 ((-642 |#1|) $)) (-15 -2490 ($ |#1| $ (-564))) (-15 -2490 ($ (-1 (-112) |#1|) $ (-564))) (-15 -2265 ($ |#1| $ (-564))) (-15 -2265 ($ (-1 (-112) |#1|) $ (-564)))))
+((-1860 (((-1267) (-1155)) 8)))
+(((-736) (-10 -7 (-15 -1860 ((-1267) (-1155))))) (T -736))
+((-1860 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-736)))))
+(-10 -7 (-15 -1860 ((-1267) (-1155))))
+((-3629 (((-642 |#1|) (-642 |#1|) (-642 |#1|)) 15)))
+(((-737 |#1|) (-10 -7 (-15 -3629 ((-642 |#1|) (-642 |#1|) (-642 |#1|)))) (-848)) (T -737))
+((-3629 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-737 *3)))))
+(-10 -7 (-15 -3629 ((-642 |#1|) (-642 |#1|) (-642 |#1|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3802 (((-642 |#2|) $) 148)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 141 (|has| |#1| (-556)))) (-1387 (($ $) 140 (|has| |#1| (-556)))) (-2037 (((-112) $) 138 (|has| |#1| (-556)))) (-3851 (($ $) 97 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 80 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) 20)) (-3655 (($ $) 79 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-3875 (($ $) 95 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) 18 T CONST)) (-1718 (($ $) 132)) (-3104 (((-3 $ "failed") $) 37)) (-3359 (((-950 |#1|) $ (-769)) 110) (((-950 |#1|) $ (-769) (-769)) 109)) (-1941 (((-112) $) 149)) (-4265 (($) 107 (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-769) $ |#2|) 112) (((-769) $ |#2| (-769)) 111)) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 78 (|has| |#1| (-38 (-407 (-564)))))) (-2316 (((-112) $) 130)) (-3774 (($ $ (-642 |#2|) (-642 (-531 |#2|))) 147) (($ $ |#2| (-531 |#2|)) 146) (($ |#1| (-531 |#2|)) 131) (($ $ |#2| (-769)) 114) (($ $ (-642 |#2|) (-642 (-769))) 113)) (-4358 (($ (-1 |#1| |#1|) $) 129)) (-3612 (($ $) 104 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) 127)) (-3962 ((|#1| $) 126)) (-3315 (((-1155) $) 10)) (-4107 (($ $ |#2|) 108 (|has| |#1| (-38 (-407 (-564)))))) (-4033 (((-1117) $) 11)) (-3804 (($ $ (-769)) 115)) (-2896 (((-3 $ "failed") $ $) 142 (|has| |#1| (-556)))) (-1723 (($ $) 105 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (($ $ |#2| $) 123) (($ $ (-642 |#2|) (-642 $)) 122) (($ $ (-642 (-294 $))) 121) (($ $ (-294 $)) 120) (($ $ $ $) 119) (($ $ (-642 $) (-642 $)) 118)) (-3175 (($ $ |#2|) 46) (($ $ (-642 |#2|)) 45) (($ $ |#2| (-769)) 44) (($ $ (-642 |#2|) (-642 (-769))) 43)) (-2775 (((-531 |#2|) $) 128)) (-3888 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 83 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 93 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 84 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 85 (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) 150)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-556))) (($ (-407 (-564))) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2102 ((|#1| $ (-531 |#2|)) 133) (($ $ |#2| (-769)) 117) (($ $ (-642 |#2|) (-642 (-769))) 116)) (-2439 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-3926 (($ $) 103 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 91 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) 139 (|has| |#1| (-556)))) (-3900 (($ $) 102 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 101 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 89 (|has| |#1| (-38 (-407 (-564)))))) (-2683 (($ $) 100 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 99 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 87 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 98 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 86 (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ |#2|) 42) (($ $ (-642 |#2|)) 41) (($ $ |#2| (-769)) 40) (($ $ (-642 |#2|) (-642 (-769))) 39)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 134 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ $) 106 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 77 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 137 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 136 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
+(((-738 |#1| |#2|) (-140) (-1047) (-848)) (T -738))
+((-2102 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *2)) (-4 *4 (-1047)) (-4 *2 (-848)))) (-2102 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *5)) (-5 *3 (-642 (-769))) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-848)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-738 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-848)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *2)) (-4 *4 (-1047)) (-4 *2 (-848)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *5)) (-5 *3 (-642 (-769))) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-848)))) (-1427 (*1 *2 *1 *3) (-12 (-4 *1 (-738 *4 *3)) (-4 *4 (-1047)) (-4 *3 (-848)) (-5 *2 (-769)))) (-1427 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-769)) (-4 *1 (-738 *4 *3)) (-4 *4 (-1047)) (-4 *3 (-848)))) (-3359 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-848)) (-5 *2 (-950 *4)))) (-3359 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-848)) (-5 *2 (-950 *4)))) (-4107 (*1 *1 *1 *2) (-12 (-4 *1 (-738 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-848)) (-4 *3 (-38 (-407 (-564)))))))
+(-13 (-898 |t#2|) (-971 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -2102 ($ $ |t#2| (-769))) (-15 -2102 ($ $ (-642 |t#2|) (-642 (-769)))) (-15 -3804 ($ $ (-769))) (-15 -3774 ($ $ |t#2| (-769))) (-15 -3774 ($ $ (-642 |t#2|) (-642 (-769)))) (-15 -1427 ((-769) $ |t#2|)) (-15 -1427 ((-769) $ |t#2| (-769))) (-15 -3359 ((-950 |t#1|) $ (-769))) (-15 -3359 ((-950 |t#1|) $ (-769) (-769))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ($ $ |t#2|)) (-6 (-1000)) (-6 (-1197))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-290) |has| |#1| (-556)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #1#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-898 |#2|) . T) ((-971 |#1| #0# |#2|) . T) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1049 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))))
+((-3643 (((-418 (-1169 |#4|)) (-1169 |#4|)) 30) (((-418 |#4|) |#4|) 26)))
+(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3643 ((-418 |#4|) |#4|)) (-15 -3643 ((-418 (-1169 |#4|)) (-1169 |#4|)))) (-848) (-791) (-13 (-307) (-147)) (-947 |#3| |#2| |#1|)) (T -739))
+((-3643 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-947 *6 *5 *4)))))
+(-10 -7 (-15 -3643 ((-418 |#4|) |#4|)) (-15 -3643 ((-418 (-1169 |#4|)) (-1169 |#4|))))
+((-3812 (((-418 |#4|) |#4| |#2|) 142)) (-4357 (((-418 |#4|) |#4|) NIL)) (-1978 (((-418 (-1169 |#4|)) (-1169 |#4|)) 127) (((-418 |#4|) |#4|) 52)) (-4197 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-642 (-2 (|:| -3643 (-1169 |#4|)) (|:| -2700 (-564)))))) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|))) 81)) (-4247 (((-1169 |#3|) (-1169 |#3|) (-564)) 167)) (-2631 (((-642 (-769)) (-1169 |#4|) (-642 |#2|) (-769)) 75)) (-1308 (((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-1169 |#3|) (-1169 |#3|) |#4| (-642 |#2|) (-642 (-769)) (-642 |#3|)) 79)) (-2394 (((-2 (|:| |upol| (-1169 |#3|)) (|:| |Lval| (-642 |#3|)) (|:| |Lfact| (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564))))) (|:| |ctpol| |#3|)) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|))) 27)) (-3712 (((-2 (|:| -4229 (-1169 |#4|)) (|:| |polval| (-1169 |#3|))) (-1169 |#4|) (-1169 |#3|) (-564)) 72)) (-1527 (((-564) (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564))))) 163)) (-1361 ((|#4| (-564) (-418 |#4|)) 73)) (-3217 (((-112) (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564)))) (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564))))) NIL)))
+(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1978 ((-418 |#4|) |#4|)) (-15 -1978 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -4357 ((-418 |#4|) |#4|)) (-15 -1527 ((-564) (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564)))))) (-15 -3812 ((-418 |#4|) |#4| |#2|)) (-15 -3712 ((-2 (|:| -4229 (-1169 |#4|)) (|:| |polval| (-1169 |#3|))) (-1169 |#4|) (-1169 |#3|) (-564))) (-15 -4197 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-642 (-2 (|:| -3643 (-1169 |#4|)) (|:| -2700 (-564)))))) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|)))) (-15 -2394 ((-2 (|:| |upol| (-1169 |#3|)) (|:| |Lval| (-642 |#3|)) (|:| |Lfact| (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564))))) (|:| |ctpol| |#3|)) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|)))) (-15 -1361 (|#4| (-564) (-418 |#4|))) (-15 -3217 ((-112) (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564)))) (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564)))))) (-15 -1308 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-1169 |#3|) (-1169 |#3|) |#4| (-642 |#2|) (-642 (-769)) (-642 |#3|))) (-15 -2631 ((-642 (-769)) (-1169 |#4|) (-642 |#2|) (-769))) (-15 -4247 ((-1169 |#3|) (-1169 |#3|) (-564)))) (-791) (-848) (-307) (-947 |#3| |#1| |#2|)) (T -740))
+((-4247 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) (-2631 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-4 *7 (-848)) (-4 *9 (-947 *8 *6 *7)) (-4 *6 (-791)) (-4 *8 (-307)) (-5 *2 (-642 (-769))) (-5 *1 (-740 *6 *7 *8 *9)) (-5 *5 (-769)))) (-1308 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1169 *11)) (-5 *6 (-642 *10)) (-5 *7 (-642 (-769))) (-5 *8 (-642 *11)) (-4 *10 (-848)) (-4 *11 (-307)) (-4 *9 (-791)) (-4 *5 (-947 *11 *9 *10)) (-5 *2 (-642 (-1169 *5))) (-5 *1 (-740 *9 *10 *11 *5)) (-5 *3 (-1169 *5)))) (-3217 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-2 (|:| -3643 (-1169 *6)) (|:| -2700 (-564))))) (-4 *6 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)) (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-947 *7 *5 *6)) (-5 *1 (-740 *5 *6 *7 *2)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-307)))) (-2394 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-5 *5 (-642 (-642 *8))) (-4 *7 (-848)) (-4 *8 (-307)) (-4 *9 (-947 *8 *6 *7)) (-4 *6 (-791)) (-5 *2 (-2 (|:| |upol| (-1169 *8)) (|:| |Lval| (-642 *8)) (|:| |Lfact| (-642 (-2 (|:| -3643 (-1169 *8)) (|:| -2700 (-564))))) (|:| |ctpol| *8))) (-5 *1 (-740 *6 *7 *8 *9)))) (-4197 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-642 *7)) (-5 *5 (-642 (-642 *8))) (-4 *7 (-848)) (-4 *8 (-307)) (-4 *6 (-791)) (-4 *9 (-947 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-642 (-2 (|:| -3643 (-1169 *9)) (|:| -2700 (-564))))))) (-5 *1 (-740 *6 *7 *8 *9)) (-5 *3 (-1169 *9)))) (-3712 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-564)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-307)) (-4 *9 (-947 *8 *6 *7)) (-5 *2 (-2 (|:| -4229 (-1169 *9)) (|:| |polval| (-1169 *8)))) (-5 *1 (-740 *6 *7 *8 *9)) (-5 *3 (-1169 *9)) (-5 *4 (-1169 *8)))) (-3812 (*1 *2 *3 *4) (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-740 *5 *4 *6 *3)) (-4 *3 (-947 *6 *5 *4)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -3643 (-1169 *6)) (|:| -2700 (-564))))) (-4 *6 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-564)) (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) (-4357 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-947 *6 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-740 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-1978 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-947 *6 *4 *5)))))
+(-10 -7 (-15 -1978 ((-418 |#4|) |#4|)) (-15 -1978 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -4357 ((-418 |#4|) |#4|)) (-15 -1527 ((-564) (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564)))))) (-15 -3812 ((-418 |#4|) |#4| |#2|)) (-15 -3712 ((-2 (|:| -4229 (-1169 |#4|)) (|:| |polval| (-1169 |#3|))) (-1169 |#4|) (-1169 |#3|) (-564))) (-15 -4197 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-642 (-2 (|:| -3643 (-1169 |#4|)) (|:| -2700 (-564)))))) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|)))) (-15 -2394 ((-2 (|:| |upol| (-1169 |#3|)) (|:| |Lval| (-642 |#3|)) (|:| |Lfact| (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564))))) (|:| |ctpol| |#3|)) (-1169 |#4|) (-642 |#2|) (-642 (-642 |#3|)))) (-15 -1361 (|#4| (-564) (-418 |#4|))) (-15 -3217 ((-112) (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564)))) (-642 (-2 (|:| -3643 (-1169 |#3|)) (|:| -2700 (-564)))))) (-15 -1308 ((-3 (-642 (-1169 |#4|)) "failed") (-1169 |#4|) (-1169 |#3|) (-1169 |#3|) |#4| (-642 |#2|) (-642 (-769)) (-642 |#3|))) (-15 -2631 ((-642 (-769)) (-1169 |#4|) (-642 |#2|) (-769))) (-15 -4247 ((-1169 |#3|) (-1169 |#3|) (-564))))
+((-3285 (($ $ (-919)) 17)))
+(((-741 |#1| |#2|) (-10 -8 (-15 -3285 (|#1| |#1| (-919)))) (-742 |#2|) (-172)) (T -741))
+NIL
+(-10 -8 (-15 -3285 (|#1| |#1| (-919))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-2013 (($ $ (-919)) 31)) (-3285 (($ $ (-919)) 38)) (-1522 (($ $ (-919)) 32)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3759 (($ $ $) 28)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-3088 (($ $ $ $) 29)) (-2920 (($ $ $) 27)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 33)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-742 |#1|) (-140) (-172)) (T -742))
+((-3285 (*1 *1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-742 *3)) (-4 *3 (-172)))))
+(-13 (-759) (-715 |t#1|) (-10 -8 (-15 -3285 ($ $ (-919)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-718) . T) ((-759) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T))
+((-2780 (((-1033) (-687 (-225)) (-564) (-112) (-564)) 25)) (-1612 (((-1033) (-687 (-225)) (-564) (-112) (-564)) 24)))
+(((-743) (-10 -7 (-15 -1612 ((-1033) (-687 (-225)) (-564) (-112) (-564))) (-15 -2780 ((-1033) (-687 (-225)) (-564) (-112) (-564))))) (T -743))
+((-2780 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1033)) (-5 *1 (-743)))) (-1612 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1033)) (-5 *1 (-743)))))
+(-10 -7 (-15 -1612 ((-1033) (-687 (-225)) (-564) (-112) (-564))) (-15 -2780 ((-1033) (-687 (-225)) (-564) (-112) (-564))))
+((-2990 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-3516 (((-1033) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-2387 (((-1033) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) 32)))
+(((-744) (-10 -7 (-15 -2387 ((-1033) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))) (-15 -3516 ((-1033) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2990 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -744))
+((-2990 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1033)) (-5 *1 (-744)))) (-3516 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1033)) (-5 *1 (-744)))) (-2387 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) (-5 *2 (-1033)) (-5 *1 (-744)))))
+(-10 -7 (-15 -2387 ((-1033) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))) (-15 -3516 ((-1033) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2990 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))
+((-4075 (((-1033) (-564) (-564) (-687 (-225)) (-564)) 34)) (-2233 (((-1033) (-564) (-564) (-687 (-225)) (-564)) 33)) (-2698 (((-1033) (-564) (-687 (-225)) (-564)) 32)) (-3961 (((-1033) (-564) (-687 (-225)) (-564)) 31)) (-2517 (((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 30)) (-3409 (((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 29)) (-3846 (((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564)) 28)) (-2605 (((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564)) 27)) (-3758 (((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 24)) (-3128 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564)) 23)) (-3639 (((-1033) (-564) (-687 (-225)) (-564)) 22)) (-1408 (((-1033) (-564) (-687 (-225)) (-564)) 21)))
+(((-745) (-10 -7 (-15 -1408 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -3639 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -3128 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3758 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2605 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3846 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3409 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2517 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3961 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -2698 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -2233 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -4075 ((-1033) (-564) (-564) (-687 (-225)) (-564))))) (T -745))
+((-4075 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-2233 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-2698 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3961 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-2517 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3409 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3846 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-2605 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3758 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3128 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-3639 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))) (-1408 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-745)))))
+(-10 -7 (-15 -1408 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -3639 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -3128 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3758 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2605 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3846 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3409 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2517 ((-1033) (-564) (-564) (-1155) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3961 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -2698 ((-1033) (-564) (-687 (-225)) (-564))) (-15 -2233 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -4075 ((-1033) (-564) (-564) (-687 (-225)) (-564))))
+((-1977 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1606 (((-1033) (-687 (-225)) (-687 (-225)) (-564) (-564)) 51)) (-2925 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3125 (((-1033) (-225) (-225) (-564) (-564) (-564) (-564)) 46)) (-2686 (((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-1620 (((-1033) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-2621 (((-1033) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-2543 (((-1033) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-3580 (((-1033) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) 38)) (-2430 (((-1033) (-225) (-225) (-564) (-687 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) 37)) (-3717 (((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) 33)) (-4102 (((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) 32)))
+(((-746) (-10 -7 (-15 -4102 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))) (-15 -3717 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))) (-15 -2430 ((-1033) (-225) (-225) (-564) (-687 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))) (-15 -3580 ((-1033) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))) (-15 -2543 ((-1033) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2621 ((-1033) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1620 ((-1033) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2686 ((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3125 ((-1033) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -2925 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -1606 ((-1033) (-687 (-225)) (-687 (-225)) (-564) (-564))) (-15 -1977 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -746))
+((-1977 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-1606 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-746)))) (-2925 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-3125 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-746)))) (-2686 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-1620 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-2621 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-2543 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-3580 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-2430 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-746)))) (-3717 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) (-5 *2 (-1033)) (-5 *1 (-746)))) (-4102 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) (-5 *2 (-1033)) (-5 *1 (-746)))))
+(-10 -7 (-15 -4102 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))) (-15 -3717 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))) (-15 -2430 ((-1033) (-225) (-225) (-564) (-687 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))) (-15 -3580 ((-1033) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))) (-15 -2543 ((-1033) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2621 ((-1033) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1620 ((-1033) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2686 ((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3125 ((-1033) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -2925 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -1606 ((-1033) (-687 (-225)) (-687 (-225)) (-564) (-564))) (-15 -1977 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-225) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))
+((-2900 (((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3564 (((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3834 (((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-3377 (((-1033) (-687 (-225)) (-687 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-3542 (((-1033) (-225) (-564) (-564) (-1155) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2358 (((-1033) (-225) (-564) (-564) (-225) (-1155) (-225) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3385 (((-1033) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-2155 (((-1033) (-225) (-564) (-564) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-747) (-10 -7 (-15 -2155 ((-1033) (-225) (-564) (-564) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3385 ((-1033) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2358 ((-1033) (-225) (-564) (-564) (-225) (-1155) (-225) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3542 ((-1033) (-225) (-564) (-564) (-1155) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3377 ((-1033) (-687 (-225)) (-687 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3834 ((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -3564 ((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -3564 ((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -2900 ((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -747))
+((-2900 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3564 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3564 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3834 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3377 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3542 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-564)) (-5 *5 (-1155)) (-5 *6 (-687 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-2358 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-564)) (-5 *5 (-1155)) (-5 *6 (-687 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-3385 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))) (-2155 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))))
+(-10 -7 (-15 -2155 ((-1033) (-225) (-564) (-564) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3385 ((-1033) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2358 ((-1033) (-225) (-564) (-564) (-225) (-1155) (-225) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3542 ((-1033) (-225) (-564) (-564) (-1155) (-564) (-225) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3377 ((-1033) (-687 (-225)) (-687 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3834 ((-1033) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -3564 ((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -3564 ((-1033) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -2900 ((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-3347 (((-1033) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-673 (-225)) (-564)) 45)) (-2219 (((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1155) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-3914 (((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 23)))
+(((-748) (-10 -7 (-15 -3914 ((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2219 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1155) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -3347 ((-1033) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-673 (-225)) (-564))))) (T -748))
+((-3347 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-673 (-225))) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-748)))) (-2219 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1155)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1033)) (-5 *1 (-748)))) (-3914 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-748)))))
+(-10 -7 (-15 -3914 ((-1033) (-564) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2219 ((-1033) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1155) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -3347 ((-1033) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-673 (-225)) (-564))))
+((-1622 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-687 (-225)) (-225) (-225) (-564)) 35)) (-2942 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-225) (-225) (-564)) 34)) (-2364 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-687 (-225)) (-225) (-225) (-564)) 33)) (-2641 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 29)) (-3836 (((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 28)) (-4016 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564)) 27)) (-2045 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564)) 24)) (-3002 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564)) 23)) (-3261 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564)) 22)) (-2270 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564)) 21)))
+(((-749) (-10 -7 (-15 -2270 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))) (-15 -3261 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3002 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -2045 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -4016 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564))) (-15 -3836 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2641 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2364 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-687 (-225)) (-225) (-225) (-564))) (-15 -2942 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -1622 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-687 (-225)) (-225) (-225) (-564))))) (T -749))
+((-1622 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-749)))) (-2942 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-749)))) (-2364 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-749)))) (-2641 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))) (-3836 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))) (-4016 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-749)))) (-2045 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))) (-3002 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))) (-3261 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))) (-2270 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-749)))))
+(-10 -7 (-15 -2270 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))) (-15 -3261 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3002 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -2045 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -4016 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-225) (-564))) (-15 -3836 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2641 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2364 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-687 (-225)) (-225) (-225) (-564))) (-15 -2942 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -1622 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-687 (-225)) (-225) (-225) (-564))))
+((-2821 (((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564)) 45)) (-2046 (((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-564)) 44)) (-3608 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564)) 43)) (-1439 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 42)) (-3771 (((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564)) 41)) (-2307 (((-1033) (-1155) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564)) 40)) (-2375 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564) (-564) (-564) (-225) (-687 (-225)) (-564)) 39)) (-3817 (((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564))) 38)) (-4178 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564)) 35)) (-1607 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564)) 34)) (-2188 (((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564)) 33)) (-3881 (((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 32)) (-3782 (((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564)) 31)) (-3515 (((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-564)) 30)) (-3995 (((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-564) (-564) (-564)) 29)) (-1636 (((-1033) (-564) (-564) (-564) (-225) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-564)) (-564) (-564) (-564)) 28)) (-2523 (((-1033) (-564) (-687 (-225)) (-225) (-564)) 24)) (-3046 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 21)))
+(((-750) (-10 -7 (-15 -3046 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2523 ((-1033) (-564) (-687 (-225)) (-225) (-564))) (-15 -1636 ((-1033) (-564) (-564) (-564) (-225) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-564)) (-564) (-564) (-564))) (-15 -3995 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -3515 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -3782 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564))) (-15 -3881 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2188 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564))) (-15 -1607 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564))) (-15 -4178 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3817 ((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564)))) (-15 -2375 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564) (-564) (-564) (-225) (-687 (-225)) (-564))) (-15 -2307 ((-1033) (-1155) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564))) (-15 -3771 ((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1439 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3608 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))) (-15 -2046 ((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2821 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))))) (T -750))
+((-2821 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2046 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3608 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))) (-1439 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3771 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2307 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-225)) (-5 *7 (-687 (-564))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2375 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3817 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-225)) (-5 *7 (-687 (-564))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-4178 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))) (-1607 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2188 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3881 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3782 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3515 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3995 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-1636 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-687 (-225))) (-5 *6 (-687 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-2523 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))) (-3046 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-750)))))
+(-10 -7 (-15 -3046 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2523 ((-1033) (-564) (-687 (-225)) (-225) (-564))) (-15 -1636 ((-1033) (-564) (-564) (-564) (-225) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-564)) (-564) (-564) (-564))) (-15 -3995 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -3515 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -3782 ((-1033) (-564) (-225) (-225) (-687 (-225)) (-564) (-564) (-225) (-564))) (-15 -3881 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2188 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564))) (-15 -1607 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564))) (-15 -4178 ((-1033) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3817 ((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564)))) (-15 -2375 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564) (-564) (-564) (-225) (-687 (-225)) (-564))) (-15 -2307 ((-1033) (-1155) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564))) (-15 -3771 ((-1033) (-1155) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1439 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3608 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))) (-15 -2046 ((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2821 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564) (-687 (-225)) (-687 (-225)) (-564) (-564) (-564))))
+((-2271 (((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-564) (-687 (-225)) (-564)) 63)) (-2938 (((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4256 (((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-112) (-112) (-564) (-564) (-687 (-225)) (-687 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-4127 (((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-564) (-564) (-687 (-225)) (-564)) 51)) (-2138 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-1548 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2556 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3241 (((-1033) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-751) (-10 -7 (-15 -3241 ((-1033) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2556 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -1548 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -2138 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -4127 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-564) (-564) (-687 (-225)) (-564))) (-15 -4256 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-112) (-112) (-564) (-564) (-687 (-225)) (-687 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -2938 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2271 ((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-564) (-687 (-225)) (-564))))) (T -751))
+((-2271 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-751)))) (-2938 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-687 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-751)))) (-4256 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-687 (-225))) (-5 *6 (-112)) (-5 *7 (-687 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-751)))) (-4127 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-112)) (-5 *2 (-1033)) (-5 *1 (-751)))) (-2138 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1033)) (-5 *1 (-751)))) (-1548 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1033)) (-5 *1 (-751)))) (-2556 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1033)) (-5 *1 (-751)))) (-3241 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-687 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-751)))))
+(-10 -7 (-15 -3241 ((-1033) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2556 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -1548 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -2138 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -4127 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-564) (-564) (-687 (-225)) (-564))) (-15 -4256 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-112) (-112) (-112) (-564) (-564) (-687 (-225)) (-687 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -2938 ((-1033) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2271 ((-1033) (-564) (-564) (-564) (-225) (-687 (-225)) (-564) (-687 (-225)) (-564))))
+((-3318 (((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564)) 47)) (-1892 (((-1033) (-1155) (-1155) (-564) (-564) (-687 (-169 (-225))) (-564) (-687 (-169 (-225))) (-564) (-564) (-687 (-169 (-225))) (-564)) 46)) (-2214 (((-1033) (-564) (-564) (-564) (-687 (-169 (-225))) (-564)) 45)) (-1452 (((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 40)) (-2725 (((-1033) (-1155) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-687 (-225)) (-564)) 39)) (-2749 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-564)) 36)) (-1810 (((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564)) 35)) (-4087 (((-1033) (-564) (-564) (-564) (-564) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-225) (-225) (-564)) 34)) (-1355 (((-1033) (-564) (-564) (-564) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-112) (-225) (-112) (-687 (-564)) (-687 (-225)) (-564)) 33)) (-3426 (((-1033) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-564)) 32)))
+(((-752) (-10 -7 (-15 -3426 ((-1033) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-564))) (-15 -1355 ((-1033) (-564) (-564) (-564) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-112) (-225) (-112) (-687 (-564)) (-687 (-225)) (-564))) (-15 -4087 ((-1033) (-564) (-564) (-564) (-564) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-225) (-225) (-564))) (-15 -1810 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564))) (-15 -2749 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-564))) (-15 -2725 ((-1033) (-1155) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-687 (-225)) (-564))) (-15 -1452 ((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2214 ((-1033) (-564) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -1892 ((-1033) (-1155) (-1155) (-564) (-564) (-687 (-169 (-225))) (-564) (-687 (-169 (-225))) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -3318 ((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564))))) (T -752))
+((-3318 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-169 (-225)))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-1892 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-169 (-225)))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-2214 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-169 (-225)))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-1452 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-2725 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-2749 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-752)))) (-1810 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-752)))) (-4087 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-642 (-112))) (-5 *5 (-687 (-225))) (-5 *6 (-687 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-752)))) (-1355 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-687 (-564))) (-5 *5 (-112)) (-5 *7 (-687 (-225))) (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1033)) (-5 *1 (-752)))) (-3426 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-642 (-112))) (-5 *7 (-687 (-225))) (-5 *8 (-687 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1033)) (-5 *1 (-752)))))
+(-10 -7 (-15 -3426 ((-1033) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-564))) (-15 -1355 ((-1033) (-564) (-564) (-564) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-687 (-564)) (-112) (-225) (-112) (-687 (-564)) (-687 (-225)) (-564))) (-15 -4087 ((-1033) (-564) (-564) (-564) (-564) (-642 (-112)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-225) (-225) (-564))) (-15 -1810 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564))) (-15 -2749 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-564))) (-15 -2725 ((-1033) (-1155) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-687 (-225)) (-564))) (-15 -1452 ((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2214 ((-1033) (-564) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -1892 ((-1033) (-1155) (-1155) (-564) (-564) (-687 (-169 (-225))) (-564) (-687 (-169 (-225))) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -3318 ((-1033) (-1155) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564))))
+((-3935 (((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564)) 80)) (-2906 (((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564)) 69)) (-2995 (((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-2804 (((-1033) (-564) (-564) (-564) (-225) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564)) 37)) (-2284 (((-1033) (-564) (-564) (-225) (-225) (-564) (-564) (-687 (-225)) (-564)) 33)) (-1747 (((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564) (-564)) 30)) (-3328 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 29)) (-4079 (((-1033) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 28)) (-1849 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 27)) (-3262 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564)) 26)) (-1373 (((-1033) (-564) (-564) (-687 (-225)) (-564)) 25)) (-1797 (((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 24)) (-2215 (((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564)) 23)) (-3171 (((-1033) (-687 (-225)) (-564) (-564) (-564) (-564)) 22)) (-3955 (((-1033) (-564) (-564) (-687 (-225)) (-564)) 21)))
+(((-753) (-10 -7 (-15 -3955 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -3171 ((-1033) (-687 (-225)) (-564) (-564) (-564) (-564))) (-15 -2215 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1797 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1373 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -3262 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564))) (-15 -1849 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4079 ((-1033) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3328 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1747 ((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2284 ((-1033) (-564) (-564) (-225) (-225) (-564) (-564) (-687 (-225)) (-564))) (-15 -2804 ((-1033) (-564) (-564) (-564) (-225) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2995 ((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2995 ((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -2906 ((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3935 ((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564))))) (T -753))
+((-3935 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-687 (-169 (-225)))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-2906 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-2995 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-2995 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-2804 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-2284 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-1747 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-3328 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-4079 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-1849 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-3262 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-1373 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-1797 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-2215 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))) (-3171 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-753)))) (-3955 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-753)))))
+(-10 -7 (-15 -3955 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -3171 ((-1033) (-687 (-225)) (-564) (-564) (-564) (-564))) (-15 -2215 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1797 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1373 ((-1033) (-564) (-564) (-687 (-225)) (-564))) (-15 -3262 ((-1033) (-564) (-564) (-564) (-564) (-687 (-225)) (-564))) (-15 -1849 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4079 ((-1033) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3328 ((-1033) (-564) (-564) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -1747 ((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2284 ((-1033) (-564) (-564) (-225) (-225) (-564) (-564) (-687 (-225)) (-564))) (-15 -2804 ((-1033) (-564) (-564) (-564) (-225) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2995 ((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2995 ((-1033) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -2906 ((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -3935 ((-1033) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-687 (-169 (-225))) (-687 (-169 (-225))) (-564))))
+((-2571 (((-1033) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 64)) (-2171 (((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564)) 60)) (-4281 (((-1033) (-564) (-687 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2483 (((-1033) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564)) 37)) (-4332 (((-1033) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-564)) 36)) (-2902 (((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564)) 33)) (-2035 (((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225))) 32)) (-1404 (((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564)) 28)) (-3408 (((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564)) 27)) (-3360 (((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564)) 26)) (-1728 (((-1033) (-564) (-687 (-169 (-225))) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-564)) 22)))
+(((-754) (-10 -7 (-15 -1728 ((-1033) (-564) (-687 (-169 (-225))) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -3360 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -3408 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -1404 ((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564))) (-15 -2035 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225)))) (-15 -2902 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4332 ((-1033) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2483 ((-1033) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564))) (-15 -4281 ((-1033) (-564) (-687 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -2171 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564))) (-15 -2571 ((-1033) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -754))
+((-2571 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-2171 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-4281 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1033)) (-5 *1 (-754)))) (-2483 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-4332 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-2902 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-754)))) (-2035 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-1404 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-754)))) (-3408 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-754)))) (-3360 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-754)))) (-1728 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-169 (-225)))) (-5 *2 (-1033)) (-5 *1 (-754)))))
+(-10 -7 (-15 -1728 ((-1033) (-564) (-687 (-169 (-225))) (-564) (-564) (-564) (-564) (-687 (-169 (-225))) (-564))) (-15 -3360 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -3408 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-564))) (-15 -1404 ((-1033) (-687 (-225)) (-564) (-687 (-225)) (-564) (-564) (-564))) (-15 -2035 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-564)) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225)))) (-15 -2902 ((-1033) (-564) (-564) (-687 (-225)) (-687 (-225)) (-687 (-225)) (-564))) (-15 -4332 ((-1033) (-564) (-564) (-564) (-225) (-564) (-687 (-225)) (-687 (-225)) (-564))) (-15 -2483 ((-1033) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-564)) (-687 (-225)) (-687 (-564)) (-687 (-564)) (-687 (-225)) (-687 (-225)) (-687 (-564)) (-564))) (-15 -4281 ((-1033) (-564) (-687 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -2171 ((-1033) (-564) (-687 (-225)) (-564) (-687 (-225)) (-687 (-564)) (-564) (-687 (-225)) (-564) (-564) (-564) (-564))) (-15 -2571 ((-1033) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-687 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))
+((-3167 (((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-564) (-687 (-225))) 29)) (-4117 (((-1033) (-1155) (-564) (-564) (-687 (-225))) 28)) (-3081 (((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-225))) 27)) (-3794 (((-1033) (-564) (-564) (-564) (-687 (-225))) 21)))
+(((-755) (-10 -7 (-15 -3794 ((-1033) (-564) (-564) (-564) (-687 (-225)))) (-15 -3081 ((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-225)))) (-15 -4117 ((-1033) (-1155) (-564) (-564) (-687 (-225)))) (-15 -3167 ((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-564) (-687 (-225)))))) (T -755))
+((-3167 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-755)))) (-4117 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-755)))) (-3081 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-687 (-564))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-755)))) (-3794 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033)) (-5 *1 (-755)))))
+(-10 -7 (-15 -3794 ((-1033) (-564) (-564) (-564) (-687 (-225)))) (-15 -3081 ((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-687 (-564)) (-564) (-687 (-225)))) (-15 -4117 ((-1033) (-1155) (-564) (-564) (-687 (-225)))) (-15 -3167 ((-1033) (-1155) (-564) (-564) (-687 (-225)) (-564) (-564) (-687 (-225)))))
+((-2350 (((-1033) (-225) (-225) (-225) (-225) (-564)) 62)) (-1411 (((-1033) (-225) (-225) (-225) (-564)) 61)) (-4314 (((-1033) (-225) (-225) (-225) (-564)) 60)) (-2154 (((-1033) (-225) (-225) (-564)) 59)) (-1304 (((-1033) (-225) (-564)) 58)) (-1463 (((-1033) (-225) (-564)) 57)) (-1959 (((-1033) (-225) (-564)) 56)) (-3574 (((-1033) (-225) (-564)) 55)) (-3341 (((-1033) (-225) (-564)) 54)) (-2202 (((-1033) (-225) (-564)) 53)) (-2178 (((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564)) 52)) (-4331 (((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564)) 51)) (-1806 (((-1033) (-225) (-564)) 50)) (-2398 (((-1033) (-225) (-564)) 49)) (-3005 (((-1033) (-225) (-564)) 48)) (-2986 (((-1033) (-225) (-564)) 47)) (-2642 (((-1033) (-564) (-225) (-169 (-225)) (-564) (-1155) (-564)) 46)) (-2562 (((-1033) (-1155) (-169 (-225)) (-1155) (-564)) 45)) (-2079 (((-1033) (-1155) (-169 (-225)) (-1155) (-564)) 44)) (-3335 (((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564)) 43)) (-4108 (((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564)) 42)) (-4360 (((-1033) (-225) (-564)) 39)) (-1814 (((-1033) (-225) (-564)) 38)) (-3369 (((-1033) (-225) (-564)) 37)) (-2927 (((-1033) (-225) (-564)) 36)) (-2254 (((-1033) (-225) (-564)) 35)) (-4186 (((-1033) (-225) (-564)) 34)) (-2117 (((-1033) (-225) (-564)) 33)) (-1412 (((-1033) (-225) (-564)) 32)) (-3224 (((-1033) (-225) (-564)) 31)) (-3526 (((-1033) (-225) (-564)) 30)) (-2237 (((-1033) (-225) (-225) (-225) (-564)) 29)) (-3411 (((-1033) (-225) (-564)) 28)) (-3824 (((-1033) (-225) (-564)) 27)) (-2227 (((-1033) (-225) (-564)) 26)) (-1705 (((-1033) (-225) (-564)) 25)) (-3499 (((-1033) (-225) (-564)) 24)) (-3177 (((-1033) (-169 (-225)) (-564)) 21)))
+(((-756) (-10 -7 (-15 -3177 ((-1033) (-169 (-225)) (-564))) (-15 -3499 ((-1033) (-225) (-564))) (-15 -1705 ((-1033) (-225) (-564))) (-15 -2227 ((-1033) (-225) (-564))) (-15 -3824 ((-1033) (-225) (-564))) (-15 -3411 ((-1033) (-225) (-564))) (-15 -2237 ((-1033) (-225) (-225) (-225) (-564))) (-15 -3526 ((-1033) (-225) (-564))) (-15 -3224 ((-1033) (-225) (-564))) (-15 -1412 ((-1033) (-225) (-564))) (-15 -2117 ((-1033) (-225) (-564))) (-15 -4186 ((-1033) (-225) (-564))) (-15 -2254 ((-1033) (-225) (-564))) (-15 -2927 ((-1033) (-225) (-564))) (-15 -3369 ((-1033) (-225) (-564))) (-15 -1814 ((-1033) (-225) (-564))) (-15 -4360 ((-1033) (-225) (-564))) (-15 -4108 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -3335 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -2079 ((-1033) (-1155) (-169 (-225)) (-1155) (-564))) (-15 -2562 ((-1033) (-1155) (-169 (-225)) (-1155) (-564))) (-15 -2642 ((-1033) (-564) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -2986 ((-1033) (-225) (-564))) (-15 -3005 ((-1033) (-225) (-564))) (-15 -2398 ((-1033) (-225) (-564))) (-15 -1806 ((-1033) (-225) (-564))) (-15 -4331 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -2178 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -2202 ((-1033) (-225) (-564))) (-15 -3341 ((-1033) (-225) (-564))) (-15 -3574 ((-1033) (-225) (-564))) (-15 -1959 ((-1033) (-225) (-564))) (-15 -1463 ((-1033) (-225) (-564))) (-15 -1304 ((-1033) (-225) (-564))) (-15 -2154 ((-1033) (-225) (-225) (-564))) (-15 -4314 ((-1033) (-225) (-225) (-225) (-564))) (-15 -1411 ((-1033) (-225) (-225) (-225) (-564))) (-15 -2350 ((-1033) (-225) (-225) (-225) (-225) (-564))))) (T -756))
+((-2350 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1411 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4314 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2154 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1463 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2178 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4331 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2398 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2986 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2642 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1155)) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2562 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1155)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2079 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1155)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3335 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4108 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155)) (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4360 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2117 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2237 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3411 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(-10 -7 (-15 -3177 ((-1033) (-169 (-225)) (-564))) (-15 -3499 ((-1033) (-225) (-564))) (-15 -1705 ((-1033) (-225) (-564))) (-15 -2227 ((-1033) (-225) (-564))) (-15 -3824 ((-1033) (-225) (-564))) (-15 -3411 ((-1033) (-225) (-564))) (-15 -2237 ((-1033) (-225) (-225) (-225) (-564))) (-15 -3526 ((-1033) (-225) (-564))) (-15 -3224 ((-1033) (-225) (-564))) (-15 -1412 ((-1033) (-225) (-564))) (-15 -2117 ((-1033) (-225) (-564))) (-15 -4186 ((-1033) (-225) (-564))) (-15 -2254 ((-1033) (-225) (-564))) (-15 -2927 ((-1033) (-225) (-564))) (-15 -3369 ((-1033) (-225) (-564))) (-15 -1814 ((-1033) (-225) (-564))) (-15 -4360 ((-1033) (-225) (-564))) (-15 -4108 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -3335 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -2079 ((-1033) (-1155) (-169 (-225)) (-1155) (-564))) (-15 -2562 ((-1033) (-1155) (-169 (-225)) (-1155) (-564))) (-15 -2642 ((-1033) (-564) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -2986 ((-1033) (-225) (-564))) (-15 -3005 ((-1033) (-225) (-564))) (-15 -2398 ((-1033) (-225) (-564))) (-15 -1806 ((-1033) (-225) (-564))) (-15 -4331 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -2178 ((-1033) (-225) (-169 (-225)) (-564) (-1155) (-564))) (-15 -2202 ((-1033) (-225) (-564))) (-15 -3341 ((-1033) (-225) (-564))) (-15 -3574 ((-1033) (-225) (-564))) (-15 -1959 ((-1033) (-225) (-564))) (-15 -1463 ((-1033) (-225) (-564))) (-15 -1304 ((-1033) (-225) (-564))) (-15 -2154 ((-1033) (-225) (-225) (-564))) (-15 -4314 ((-1033) (-225) (-225) (-225) (-564))) (-15 -1411 ((-1033) (-225) (-225) (-225) (-564))) (-15 -2350 ((-1033) (-225) (-225) (-225) (-225) (-564))))
+((-3451 (((-1267)) 21)) (-2314 (((-1155)) 32)) (-2615 (((-1155)) 31)) (-3138 (((-1101) (-1173) (-687 (-564))) 46) (((-1101) (-1173) (-687 (-225))) 42)) (-1554 (((-112)) 19)) (-2043 (((-1155) (-1155)) 35)))
+(((-757) (-10 -7 (-15 -2615 ((-1155))) (-15 -2314 ((-1155))) (-15 -2043 ((-1155) (-1155))) (-15 -3138 ((-1101) (-1173) (-687 (-225)))) (-15 -3138 ((-1101) (-1173) (-687 (-564)))) (-15 -1554 ((-112))) (-15 -3451 ((-1267))))) (T -757))
+((-3451 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-757)))) (-1554 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-757)))) (-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-687 (-564))) (-5 *2 (-1101)) (-5 *1 (-757)))) (-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-687 (-225))) (-5 *2 (-1101)) (-5 *1 (-757)))) (-2043 (*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757)))) (-2314 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757)))) (-2615 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757)))))
+(-10 -7 (-15 -2615 ((-1155))) (-15 -2314 ((-1155))) (-15 -2043 ((-1155) (-1155))) (-15 -3138 ((-1101) (-1173) (-687 (-225)))) (-15 -3138 ((-1101) (-1173) (-687 (-564)))) (-15 -1554 ((-112))) (-15 -3451 ((-1267))))
+((-3759 (($ $ $) 10)) (-3088 (($ $ $ $) 9)) (-2920 (($ $ $) 12)))
+(((-758 |#1|) (-10 -8 (-15 -2920 (|#1| |#1| |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -3088 (|#1| |#1| |#1| |#1|))) (-759)) (T -758))
+NIL
+(-10 -8 (-15 -2920 (|#1| |#1| |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -3088 (|#1| |#1| |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-2013 (($ $ (-919)) 31)) (-1522 (($ $ (-919)) 32)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3759 (($ $ $) 28)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-3088 (($ $ $ $) 29)) (-2920 (($ $ $) 27)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 33)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 30)))
(((-759) (-140)) (T -759))
-((-3719 (*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-759)))))
-(-13 (-757) (-718) (-10 -8 (-15 -3719 ((-767)) -2959) (-15 -2423 ($ (-564)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-716) . T) ((-718) . T) ((-757) . T) ((-1094) . T))
-((-2909 (((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|) 33)) (-3678 (((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|) 23)) (-2134 (((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170)) 20) (((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564))))) 19)))
-(((-760 |#1|) (-10 -7 (-15 -2134 ((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -2134 ((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -3678 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -2909 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|))) (-13 (-363) (-844))) (T -760))
-((-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 *4))))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-2134 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170)) (-5 *2 (-948 (-169 (-407 (-564))))) (-5 *1 (-760 *5)) (-4 *5 (-13 (-363) (-844))))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-948 (-169 (-407 (-564))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))))
-(-10 -7 (-15 -2134 ((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -2134 ((-948 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -3678 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -2909 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|)))
-((-3316 (((-174 (-564)) |#1|) 27)))
-(((-761 |#1|) (-10 -7 (-15 -3316 ((-174 (-564)) |#1|))) (-404)) (T -761))
-((-3316 (*1 *2 *3) (-12 (-5 *2 (-174 (-564))) (-5 *1 (-761 *3)) (-4 *3 (-404)))))
-(-10 -7 (-15 -3316 ((-174 (-564)) |#1|)))
-((-3268 ((|#1| |#1| |#1|) 28)) (-1430 ((|#1| |#1| |#1|) 27)) (-3182 ((|#1| |#1| |#1|) 38)) (-2567 ((|#1| |#1| |#1|) 34)) (-1921 (((-3 |#1| "failed") |#1| |#1|) 31)) (-1911 (((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|) 26)))
-(((-762 |#1| |#2|) (-10 -7 (-15 -1911 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -1430 (|#1| |#1| |#1|)) (-15 -3268 (|#1| |#1| |#1|)) (-15 -1921 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -3182 (|#1| |#1| |#1|))) (-704 |#2|) (-363)) (T -762))
-((-3182 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-2567 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-1921 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-3268 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-1430 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-1911 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4)))))
-(-10 -7 (-15 -1911 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -1430 (|#1| |#1| |#1|)) (-15 -3268 (|#1| |#1| |#1|)) (-15 -1921 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -3182 (|#1| |#1| |#1|)))
-((-2666 (((-687 (-1217)) $ (-1217)) 26)) (-3976 (((-687 (-549)) $ (-549)) 25)) (-1965 (((-767) $ (-128)) 27)) (-3126 (((-687 (-129)) $ (-129)) 24)) (-4137 (((-687 (-1217)) $) 12)) (-3046 (((-687 (-1215)) $) 8)) (-2914 (((-687 (-1214)) $) 10)) (-1447 (((-687 (-549)) $) 13)) (-1637 (((-687 (-547)) $) 9)) (-1879 (((-687 (-546)) $) 11)) (-3235 (((-767) $ (-128)) 7)) (-1880 (((-687 (-129)) $) 14)) (-2958 (((-112) $) 31)) (-3598 (((-687 $) |#1| (-950)) 32)) (-3179 (($ $) 6)))
-(((-763 |#1|) (-140) (-1094)) (T -763))
-((-3598 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-4 *3 (-1094)) (-5 *2 (-687 *1)) (-4 *1 (-763 *3)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(-13 (-576) (-10 -8 (-15 -3598 ((-687 $) |t#1| (-950))) (-15 -2958 ((-112) $))))
-(((-173) . T) ((-527) . T) ((-576) . T) ((-856) . T))
-((-3838 (((-2 (|:| -2047 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)) 71)) (-2457 (((-2 (|:| -2047 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) 69)) (-1330 (((-564)) 85)))
-(((-764 |#1| |#2|) (-10 -7 (-15 -1330 ((-564))) (-15 -2457 ((-2 (|:| -2047 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -3838 ((-2 (|:| -2047 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)))) (-1235 (-564)) (-409 (-564) |#1|)) (T -764))
-((-3838 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-764 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2457 (*1 *2) (-12 (-4 *3 (-1235 (-564))) (-5 *2 (-2 (|:| -2047 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) (-5 *1 (-764 *3 *4)) (-4 *4 (-409 (-564) *3)))) (-1330 (*1 *2) (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-764 *3 *4)) (-4 *4 (-409 *2 *3)))))
-(-10 -7 (-15 -1330 ((-564))) (-15 -2457 ((-2 (|:| -2047 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -3838 ((-2 (|:| -2047 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564))))
-((-3009 (((-112) $ $) NIL)) (-3120 (((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 20) (($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-765) (-13 (-1094) (-10 -8 (-15 -2423 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2423 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2423 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3120 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -765))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765)))))
-(-13 (-1094) (-10 -8 (-15 -2423 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2423 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2423 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3120 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))
-((-3198 (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|))) 18) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170))) 17)) (-4256 (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|))) 20) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170))) 19)))
-(((-766 |#1|) (-10 -7 (-15 -3198 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -3198 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|))))) (-556)) (T -766))
-((-4256 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) (-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))))
-(-10 -7 (-15 -3198 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -3198 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-948 |#1|)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3878 (($ $ $) 10)) (-4012 (((-3 $ "failed") $ $) 14)) (-2410 (($ $ (-564)) 11)) (-4080 (($) NIL T CONST)) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($ $) NIL)) (-2960 (($ $ $) NIL)) (-4112 (((-112) $) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2123 (($ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 6 T CONST)) (-2417 (($) NIL T CONST)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ $ $) NIL)))
-(((-767) (-13 (-789) (-722) (-10 -8 (-15 -2960 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2123 ($ $ $)) (-15 -1389 ((-2 (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -2998 ((-3 $ "failed") $ $)) (-15 -2410 ($ $ (-564))) (-15 -2534 ($ $)) (-6 (-4409 "*"))))) (T -767))
-((-2960 (*1 *1 *1 *1) (-5 *1 (-767))) (-2946 (*1 *1 *1 *1) (-5 *1 (-767))) (-2123 (*1 *1 *1 *1) (-5 *1 (-767))) (-1389 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3979 (-767)) (|:| -4071 (-767)))) (-5 *1 (-767)))) (-2998 (*1 *1 *1 *1) (|partial| -5 *1 (-767))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-767)))) (-2534 (*1 *1 *1) (-5 *1 (-767))))
-(-13 (-789) (-722) (-10 -8 (-15 -2960 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2123 ($ $ $)) (-15 -1389 ((-2 (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -2998 ((-3 $ "failed") $ $)) (-15 -2410 ($ $ (-564))) (-15 -2534 ($ $)) (-6 (-4409 "*"))))
+((-3088 (*1 *1 *1 *1 *1) (-4 *1 (-759))) (-3759 (*1 *1 *1 *1) (-4 *1 (-759))) (-2920 (*1 *1 *1 *1) (-4 *1 (-759))))
+(-13 (-21) (-718) (-10 -8 (-15 -3088 ($ $ $ $)) (-15 -3759 ($ $ $)) (-15 -2920 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-718) . T) ((-1097) . T))
+((-2327 (((-860) $) NIL) (($ (-564)) 10)))
+(((-760 |#1|) (-10 -8 (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|))) (-761)) (T -760))
+NIL
+(-10 -8 (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-2564 (((-3 $ "failed") $) 43)) (-2013 (($ $ (-919)) 31) (($ $ (-769)) 38)) (-3104 (((-3 $ "failed") $) 41)) (-3953 (((-112) $) 37)) (-4125 (((-3 $ "failed") $) 42)) (-1522 (($ $ (-919)) 32) (($ $ (-769)) 39)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3759 (($ $ $) 28)) (-2327 (((-860) $) 12) (($ (-564)) 34)) (-2756 (((-769)) 35 T CONST)) (-1648 (((-112) $ $) 9)) (-3088 (($ $ $ $) 29)) (-2920 (($ $ $) 27)) (-2312 (($) 19 T CONST)) (-2322 (($) 36 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 33) (($ $ (-769)) 40)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 30)))
+(((-761) (-140)) (T -761))
+((-2756 (*1 *2) (-12 (-4 *1 (-761)) (-5 *2 (-769)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-761)))))
+(-13 (-759) (-720) (-10 -8 (-15 -2756 ((-769)) -2858) (-15 -2327 ($ (-564)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-718) . T) ((-720) . T) ((-759) . T) ((-1097) . T))
+((-2423 (((-642 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 (-169 |#1|)))))) (-687 (-169 (-407 (-564)))) |#1|) 33)) (-1425 (((-642 (-169 |#1|)) (-687 (-169 (-407 (-564)))) |#1|) 23)) (-3011 (((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564)))) (-1173)) 20) (((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564))))) 19)))
+(((-762 |#1|) (-10 -7 (-15 -3011 ((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564)))))) (-15 -3011 ((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564)))) (-1173))) (-15 -1425 ((-642 (-169 |#1|)) (-687 (-169 (-407 (-564)))) |#1|)) (-15 -2423 ((-642 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 (-169 |#1|)))))) (-687 (-169 (-407 (-564)))) |#1|))) (-13 (-363) (-846))) (T -762))
+((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *2 (-642 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 (-169 *4))))))) (-5 *1 (-762 *4)) (-4 *4 (-13 (-363) (-846))))) (-1425 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *2 (-642 (-169 *4))) (-5 *1 (-762 *4)) (-4 *4 (-13 (-363) (-846))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *4 (-1173)) (-5 *2 (-950 (-169 (-407 (-564))))) (-5 *1 (-762 *5)) (-4 *5 (-13 (-363) (-846))))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *2 (-950 (-169 (-407 (-564))))) (-5 *1 (-762 *4)) (-4 *4 (-13 (-363) (-846))))))
+(-10 -7 (-15 -3011 ((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564)))))) (-15 -3011 ((-950 (-169 (-407 (-564)))) (-687 (-169 (-407 (-564)))) (-1173))) (-15 -1425 ((-642 (-169 |#1|)) (-687 (-169 (-407 (-564)))) |#1|)) (-15 -2423 ((-642 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 (-169 |#1|)))))) (-687 (-169 (-407 (-564)))) |#1|)))
+((-2587 (((-174 (-564)) |#1|) 27)))
+(((-763 |#1|) (-10 -7 (-15 -2587 ((-174 (-564)) |#1|))) (-404)) (T -763))
+((-2587 (*1 *2 *3) (-12 (-5 *2 (-174 (-564))) (-5 *1 (-763 *3)) (-4 *3 (-404)))))
+(-10 -7 (-15 -2587 ((-174 (-564)) |#1|)))
+((-4137 ((|#1| |#1| |#1|) 28)) (-1555 ((|#1| |#1| |#1|) 27)) (-2578 ((|#1| |#1| |#1|) 38)) (-3813 ((|#1| |#1| |#1|) 34)) (-3531 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2603 (((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|) 26)))
+(((-764 |#1| |#2|) (-10 -7 (-15 -2603 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -1555 (|#1| |#1| |#1|)) (-15 -4137 (|#1| |#1| |#1|)) (-15 -3531 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -2578 (|#1| |#1| |#1|))) (-706 |#2|) (-363)) (T -764))
+((-2578 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) (-3813 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) (-3531 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) (-4137 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) (-1555 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3)))) (-2603 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-764 *3 *4)) (-4 *3 (-706 *4)))))
+(-10 -7 (-15 -2603 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -1555 (|#1| |#1| |#1|)) (-15 -4137 (|#1| |#1| |#1|)) (-15 -3531 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -2578 (|#1| |#1| |#1|)))
+((-3866 (((-689 (-1220)) $ (-1220)) 26)) (-3490 (((-689 (-549)) $ (-549)) 25)) (-3343 (((-769) $ (-128)) 27)) (-3760 (((-689 (-129)) $ (-129)) 24)) (-3375 (((-689 (-1220)) $) 12)) (-3320 (((-689 (-1218)) $) 8)) (-3364 (((-689 (-1217)) $) 10)) (-3017 (((-689 (-549)) $) 13)) (-4113 (((-689 (-547)) $) 9)) (-3653 (((-689 (-546)) $) 11)) (-1711 (((-769) $ (-128)) 7)) (-2347 (((-689 (-129)) $) 14)) (-3009 (((-112) $) 31)) (-1626 (((-689 $) |#1| (-952)) 32)) (-2528 (($ $) 6)))
+(((-765 |#1|) (-140) (-1097)) (T -765))
+((-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-952)) (-4 *3 (-1097)) (-5 *2 (-689 *1)) (-4 *1 (-765 *3)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-765 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))))
+(-13 (-576) (-10 -8 (-15 -1626 ((-689 $) |t#1| (-952))) (-15 -3009 ((-112) $))))
+(((-173) . T) ((-527) . T) ((-576) . T) ((-858) . T))
+((-3814 (((-2 (|:| -4263 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564)))) (-564)) 71)) (-3620 (((-2 (|:| -4263 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564))))) 69)) (-1846 (((-564)) 85)))
+(((-766 |#1| |#2|) (-10 -7 (-15 -1846 ((-564))) (-15 -3620 ((-2 (|:| -4263 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564)))))) (-15 -3814 ((-2 (|:| -4263 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564)))) (-564)))) (-1238 (-564)) (-409 (-564) |#1|)) (T -766))
+((-3814 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1238 *3)) (-5 *2 (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-5 *1 (-766 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3620 (*1 *2) (-12 (-4 *3 (-1238 (-564))) (-5 *2 (-2 (|:| -4263 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564))))) (-5 *1 (-766 *3 *4)) (-4 *4 (-409 (-564) *3)))) (-1846 (*1 *2) (-12 (-4 *3 (-1238 *2)) (-5 *2 (-564)) (-5 *1 (-766 *3 *4)) (-4 *4 (-409 *2 *3)))))
+(-10 -7 (-15 -1846 ((-564))) (-15 -3620 ((-2 (|:| -4263 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564)))))) (-15 -3814 ((-2 (|:| -4263 (-687 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-687 (-564)))) (-564))))
+((-2907 (((-112) $ $) NIL)) (-3027 (((-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 20) (($ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-767) (-13 (-1097) (-10 -8 (-15 -2327 ($ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2327 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2327 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3027 ((-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -767))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-767)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-767)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-767)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-767)))))
+(-13 (-1097) (-10 -8 (-15 -2327 ($ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2327 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2327 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3027 ((-3 (|:| |nia| (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))
+((-1706 (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|))) 18) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173))) 17)) (-1616 (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|))) 20) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173))) 19)))
+(((-768 |#1|) (-10 -7 (-15 -1706 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1706 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|))))) (-556)) (T -768))
+((-1616 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-768 *4)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-768 *5)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-768 *4)))) (-1706 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-768 *5)))))
+(-10 -7 (-15 -1706 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1706 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-950 |#1|)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3532 (($ $ $) 10)) (-1532 (((-3 $ "failed") $ $) 14)) (-2317 (($ $ (-564)) 11)) (-1976 (($) NIL T CONST)) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($ $) NIL)) (-2859 (($ $ $) NIL)) (-3953 (((-112) $) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2080 (($ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 6 T CONST)) (-2322 (($) NIL T CONST)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ $ $) NIL)))
+(((-769) (-13 (-791) (-724) (-10 -8 (-15 -2859 ($ $ $)) (-15 -2845 ($ $ $)) (-15 -2080 ($ $ $)) (-15 -4376 ((-2 (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -2896 ((-3 $ "failed") $ $)) (-15 -2317 ($ $ (-564))) (-15 -2433 ($ $)) (-6 (-4412 "*"))))) (T -769))
+((-2859 (*1 *1 *1 *1) (-5 *1 (-769))) (-2845 (*1 *1 *1 *1) (-5 *1 (-769))) (-2080 (*1 *1 *1 *1) (-5 *1 (-769))) (-4376 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1420 (-769)) (|:| -3045 (-769)))) (-5 *1 (-769)))) (-2896 (*1 *1 *1 *1) (|partial| -5 *1 (-769))) (-2317 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-769)))) (-2433 (*1 *1 *1) (-5 *1 (-769))))
+(-13 (-791) (-724) (-10 -8 (-15 -2859 ($ $ $)) (-15 -2845 ($ $ $)) (-15 -2080 ($ $ $)) (-15 -4376 ((-2 (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -2896 ((-3 $ "failed") $ $)) (-15 -2317 ($ $ (-564))) (-15 -2433 ($ $)) (-6 (-4412 "*"))))
((|Integer|) (NOT (< |#1| 0)))
-((-4256 (((-3 |#2| "failed") |#2| |#2| (-114) (-1170)) 37)))
-(((-768 |#1| |#2|) (-10 -7 (-15 -4256 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170)))) (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-955))) (T -768))
-((-4256 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-955))))))
-(-10 -7 (-15 -4256 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170))))
-((-2423 (((-770) |#1|) 8)))
-(((-769 |#1|) (-10 -7 (-15 -2423 ((-770) |#1|))) (-1209)) (T -769))
-((-2423 (*1 *2 *3) (-12 (-5 *2 (-770)) (-5 *1 (-769 *3)) (-4 *3 (-1209)))))
-(-10 -7 (-15 -2423 ((-770) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 7)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 9)))
-(((-770) (-1094)) (T -770))
-NIL
-(-1094)
-((-2499 ((|#2| |#4|) 35)))
-(((-771 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2499 (|#2| |#4|))) (-452) (-1235 |#1|) (-720 |#1| |#2|) (-1235 |#3|)) (T -771))
-((-2499 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1235 *5)))))
-(-10 -7 (-15 -2499 (|#2| |#4|)))
-((-3293 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1806 (((-1264) (-1152) (-1152) |#4| |#5|) 33)) (-3900 ((|#4| |#4| |#5|) 74)) (-2520 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#5|) 79)) (-2217 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|) 16)))
-(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3293 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3900 (|#4| |#4| |#5|)) (-15 -2520 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#5|)) (-15 -1806 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -2217 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -772))
-((-2217 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1806 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1264)) (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4)))) (-2520 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3900 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3)) (-4 *3 (-1065 *4 *5 *6 *2)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3293 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3900 (|#4| |#4| |#5|)) (-15 -2520 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#5|)) (-15 -1806 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -2217 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|)))
-((-4284 (((-3 (-1166 (-1166 |#1|)) "failed") |#4|) 53)) (-2693 (((-641 |#4|) |#4|) 24)) (-3037 ((|#4| |#4|) 19)))
-(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2693 ((-641 |#4|) |#4|)) (-15 -4284 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -3037 (|#4| |#4|))) (-349) (-329 |#1|) (-1235 |#2|) (-1235 |#3|) (-917)) (T -773))
-((-3037 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4)) (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-917)))) (-4284 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-917)))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-641 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-917)))))
-(-10 -7 (-15 -2693 ((-641 |#4|) |#4|)) (-15 -4284 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -3037 (|#4| |#4|)))
-((-4084 (((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -4369 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|)) 75)) (-3896 (((-641 (-767)) |#1|) 20)))
-(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4084 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -4369 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -3896 ((-641 (-767)) |#1|))) (-1235 |#4|) (-789) (-846) (-307) (-945 |#4| |#2| |#3|)) (T -774))
-((-3896 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-641 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *6)) (-4 *7 (-945 *6 *4 *5)))) (-4084 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1235 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307)) (-4 *10 (-945 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-641 (-1166 *10))) (|:| |dterm| (-641 (-641 (-2 (|:| -4369 (-767)) (|:| |pcoef| *10))))) (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10)))) (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6)) (-5 *5 (-641 *10)))))
-(-10 -7 (-15 -4084 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -4369 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -3896 ((-641 (-767)) |#1|)))
-((-2910 (((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|) 31)) (-4336 (((-641 |#1|) (-685 (-407 (-564))) |#1|) 21)) (-2134 (((-948 (-407 (-564))) (-685 (-407 (-564))) (-1170)) 18) (((-948 (-407 (-564))) (-685 (-407 (-564)))) 17)))
-(((-775 |#1|) (-10 -7 (-15 -2134 ((-948 (-407 (-564))) (-685 (-407 (-564))))) (-15 -2134 ((-948 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -4336 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -2910 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|))) (-13 (-363) (-844))) (T -775))
-((-2910 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 (-2 (|:| |outval| *4) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *4)))))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-4336 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-2134 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170)) (-5 *2 (-948 (-407 (-564)))) (-5 *1 (-775 *5)) (-4 *5 (-13 (-363) (-844))))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-948 (-407 (-564)))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))))
-(-10 -7 (-15 -2134 ((-948 (-407 (-564))) (-685 (-407 (-564))))) (-15 -2134 ((-948 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -4336 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -2910 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 36)) (-3836 (((-641 |#2|) $) NIL)) (-3660 (((-1166 $) $ |#2|) NIL) (((-1166 |#1|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 |#2|)) NIL)) (-1403 (($ $) 30)) (-2040 (((-112) $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2931 (($ $ $) 109 (|has| |#1| (-556)))) (-1317 (((-641 $) $ $) 122 (|has| |#1| (-556)))) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2683 (($ $) NIL (|has| |#1| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-948 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (((-3 $ "failed") (-948 (-564))) NIL (-2807 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-2351 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (((-3 $ "failed") (-948 |#1|)) NIL (-2807 (-12 (|has| |#2| (-612 (-1170))) (-2351 (|has| |#1| (-38 (-407 (-564))))) (-2351 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-2351 (|has| |#1| (-38 (-407 (-564))))) (-2351 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-2351 (|has| |#1| (-988 (-564))))))) (((-3 (-1119 |#1| |#2|) "failed") $) 21)) (-3120 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) ((|#2| $) NIL) (($ (-948 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-948 (-564))) NIL (-2807 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-2351 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-948 |#1|)) NIL (-2807 (-12 (|has| |#2| (-612 (-1170))) (-2351 (|has| |#1| (-38 (-407 (-564))))) (-2351 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-2351 (|has| |#1| (-38 (-407 (-564))))) (-2351 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-2351 (|has| |#1| (-988 (-564))))))) (((-1119 |#1| |#2|) $) NIL)) (-2746 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 120 (|has| |#1| (-556)))) (-1684 (($ $) NIL) (($ $ |#2|) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3870 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-4252 (((-112) $) NIL)) (-4300 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 80)) (-3444 (($ $) 135 (|has| |#1| (-452)))) (-2571 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#1| (-905)))) (-4152 (($ $) NIL (|has| |#1| (-556)))) (-1885 (($ $) NIL (|has| |#1| (-556)))) (-1966 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3594 (($ $ $) 78) (($ $ $ |#2|) NIL)) (-3850 (($ $ |#1| (-531 |#2|) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| |#1| (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-4112 (((-112) $) 56)) (-2497 (((-767) $) NIL)) (-2675 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-2741 (($ $ $ $ $) 106 (|has| |#1| (-556)))) (-3378 ((|#2| $) 22)) (-3824 (($ (-1166 |#1|) |#2|) NIL) (($ (-1166 $) |#2|) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 38) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-3652 (($ $ $) 62)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ |#2|) NIL)) (-2856 (((-112) $) NIL)) (-2043 (((-531 |#2|) $) NIL) (((-767) $ |#2|) NIL) (((-641 (-767)) $ (-641 |#2|)) NIL)) (-2904 (((-767) $) 23)) (-1948 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3025 (((-3 |#2| "failed") $) NIL)) (-2813 (($ $) NIL (|has| |#1| (-452)))) (-4269 (($ $) NIL (|has| |#1| (-452)))) (-2970 (((-641 $) $) NIL)) (-3426 (($ $) 39)) (-3416 (($ $) NIL (|has| |#1| (-452)))) (-1866 (((-641 $) $) 43)) (-3361 (($ $) 41)) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3180 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3196 (-767))) $ $) 95)) (-1643 (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $) 77) (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $ |#2|) NIL)) (-1923 (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -4071 $)) $ $) NIL) (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -4071 $)) $ $ |#2|) NIL)) (-3938 (($ $ $) 82) (($ $ $ |#2|) NIL)) (-3466 (($ $ $) 85) (($ $ $ |#2|) NIL)) (-2766 (((-1152) $) NIL)) (-2146 (($ $ $) 124 (|has| |#1| (-556)))) (-2447 (((-641 $) $) 32)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| |#2|) (|:| -1838 (-767))) "failed") $) NIL)) (-3441 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-4241 (($ $ $) NIL)) (-3431 (($ $) 24)) (-2582 (((-112) $ $) NIL)) (-1929 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-3347 (($ $ $) NIL)) (-2944 (($ $) 26)) (-4052 (((-1114) $) NIL)) (-3959 (((-2 (|:| -2123 $) (|:| |coef2| $)) $ $) 115 (|has| |#1| (-556)))) (-3877 (((-2 (|:| -2123 $) (|:| |coef1| $)) $ $) 112 (|has| |#1| (-556)))) (-3944 (((-112) $) 55)) (-3954 ((|#1| $) 57)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2123 ((|#1| |#1| $) 132 (|has| |#1| (-452))) (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-905)))) (-1946 (((-2 (|:| -2123 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 118 (|has| |#1| (-556)))) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 97 (|has| |#1| (-556)))) (-2402 (($ $ |#1|) 128 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3496 (($ $ |#1|) 127 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-641 |#2|) (-641 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-641 |#2|) (-641 $)) NIL)) (-1330 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3254 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-1568 (((-531 |#2|) $) NIL) (((-767) $ |#2|) 45) (((-641 (-767)) $ (-641 |#2|)) NIL)) (-3899 (($ $) NIL)) (-2884 (($ $) 35)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) (($ (-948 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-948 (-564))) NIL (-2807 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-2351 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-948 |#1|)) NIL (|has| |#2| (-612 (-1170)))) (((-1152) $) NIL (-12 (|has| |#1| (-1034 (-564))) (|has| |#2| (-612 (-1170))))) (((-948 |#1|) $) NIL (|has| |#2| (-612 (-1170))))) (-4090 ((|#1| $) 131 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-948 |#1|) $) NIL (|has| |#2| (-612 (-1170)))) (((-1119 |#1| |#2|) $) 18) (($ (-1119 |#1| |#2|)) 19) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) 47) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2403 (($) 13 T CONST)) (-2815 (((-3 (-112) "failed") $ $) NIL)) (-2417 (($) 37 T CONST)) (-2821 (($ $ $ $ (-767)) 104 (|has| |#1| (-556)))) (-2254 (($ $ $ (-767)) 103 (|has| |#1| (-556)))) (-4063 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) 74)) (-3070 (($ $ $) 84)) (** (($ $ (-917)) NIL) (($ $ (-767)) 69)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 61) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 60) (($ $ |#1|) NIL)))
-(((-776 |#1| |#2|) (-13 (-1059 |#1| (-531 |#2|) |#2|) (-611 (-1119 |#1| |#2|)) (-1034 (-1119 |#1| |#2|))) (-1045) (-846)) (T -776))
-NIL
-(-13 (-1059 |#1| (-531 |#2|) |#2|) (-611 (-1119 |#1| |#2|)) (-1034 (-1119 |#1| |#2|)))
-((-4357 (((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)) 13)))
-(((-777 |#1| |#2|) (-10 -7 (-15 -4357 ((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)))) (-1045) (-1045)) (T -777))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-778 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-778 *6)) (-5 *1 (-777 *5 *6)))))
-(-10 -7 (-15 -4357 ((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 12)) (-3690 (((-1259 |#1|) $ (-767)) NIL)) (-3836 (((-641 (-1076)) $) NIL)) (-2039 (($ (-1166 |#1|)) NIL)) (-3660 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-1076))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-1423 (((-641 $) $ $) 54 (|has| |#1| (-556)))) (-2931 (($ $ $) 50 (|has| |#1| (-556)))) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2683 (($ $) NIL (|has| |#1| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1668 (($ $ (-767)) NIL)) (-3715 (($ $ (-767)) NIL)) (-2899 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-1076) "failed") $) NIL) (((-3 (-1166 |#1|) "failed") $) 10)) (-3120 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-1076) $) NIL) (((-1166 |#1|) $) NIL)) (-2746 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-1843 (($ $ $) NIL)) (-1835 (($ $ $) 87 (|has| |#1| (-556)))) (-4300 (((-2 (|:| -4376 |#1|) (|:| -3979 $) (|:| -4071 $)) $ $) 86 (|has| |#1| (-556)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2571 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#1| (-905)))) (-3850 (($ $ |#1| (-767) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1076) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1076) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3744 (((-767) $ $) NIL (|has| |#1| (-556)))) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-3824 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-1747 (($ $ (-767)) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-767)) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-3652 (($ $ $) 27)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-1076)) NIL) (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-2043 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1948 (($ (-1 (-767) (-767)) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-2806 (((-1166 |#1|) $) NIL)) (-3025 (((-3 (-1076) "failed") $) NIL)) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3180 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3196 (-767))) $ $) 37)) (-2326 (($ $ $) 41)) (-3233 (($ $ $) 47)) (-1643 (((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $) 46)) (-2766 (((-1152) $) NIL)) (-2146 (($ $ $) 56 (|has| |#1| (-556)))) (-1429 (((-2 (|:| -3979 $) (|:| -4071 $)) $ (-767)) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-1076)) (|:| -1838 (-767))) "failed") $) NIL)) (-2070 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3431 (($) NIL (|has| |#1| (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-3959 (((-2 (|:| -2123 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-556)))) (-3877 (((-2 (|:| -2123 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-556)))) (-3289 (((-2 (|:| -2746 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-556)))) (-3014 (((-2 (|:| -2746 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-556)))) (-3944 (((-112) $) 13)) (-3954 ((|#1| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2736 (($ $ (-767) |#1| $) 26)) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-905)))) (-1946 (((-2 (|:| -2123 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-556)))) (-1633 (((-2 (|:| -2746 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-556)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3296 (((-3 $ "failed") $ (-767)) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-1330 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3254 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1568 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4090 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-4244 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1076)) NIL) (((-1166 |#1|) $) 7) (($ (-1166 |#1|)) 8) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-767)) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2403 (($) 28 T CONST)) (-2417 (($) 32 T CONST)) (-4063 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) 40) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
-(((-778 |#1|) (-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1034 (-1166 |#1|)) (-10 -8 (-15 -2736 ($ $ (-767) |#1| $)) (-15 -3652 ($ $ $)) (-15 -3180 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3196 (-767))) $ $)) (-15 -2326 ($ $ $)) (-15 -1643 ((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -3233 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -1423 ((-641 $) $ $)) (-15 -2146 ($ $ $)) (-15 -1946 ((-2 (|:| -2123 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3877 ((-2 (|:| -2123 $) (|:| |coef1| $)) $ $)) (-15 -3959 ((-2 (|:| -2123 $) (|:| |coef2| $)) $ $)) (-15 -1633 ((-2 (|:| -2746 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3014 ((-2 (|:| -2746 |#1|) (|:| |coef1| $)) $ $)) (-15 -3289 ((-2 (|:| -2746 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1045)) (T -778))
-((-2736 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-3652 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-3180 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-778 *3)) (|:| |polden| *3) (|:| -3196 (-767)))) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-2326 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-1643 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4376 *3) (|:| |gap| (-767)) (|:| -3979 (-778 *3)) (|:| -4071 (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-3233 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-1423 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-778 *3))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-2146 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-556)) (-4 *2 (-1045)))) (-1946 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2123 (-778 *3)) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-3877 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2123 (-778 *3)) (|:| |coef1| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-3959 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2123 (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-1633 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2746 *3) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-3014 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2746 *3) (|:| |coef1| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))) (-3289 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2746 *3) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))))
-(-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1034 (-1166 |#1|)) (-10 -8 (-15 -2736 ($ $ (-767) |#1| $)) (-15 -3652 ($ $ $)) (-15 -3180 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3196 (-767))) $ $)) (-15 -2326 ($ $ $)) (-15 -1643 ((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -3233 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -1423 ((-641 $) $ $)) (-15 -2146 ($ $ $)) (-15 -1946 ((-2 (|:| -2123 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3877 ((-2 (|:| -2123 $) (|:| |coef1| $)) $ $)) (-15 -3959 ((-2 (|:| -2123 $) (|:| |coef2| $)) $ $)) (-15 -1633 ((-2 (|:| -2746 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3014 ((-2 (|:| -2746 |#1|) (|:| |coef1| $)) $ $)) (-15 -3289 ((-2 (|:| -2746 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-3202 ((|#1| (-767) |#1|) 33 (|has| |#1| (-38 (-407 (-564)))))) (-2900 ((|#1| (-767) |#1|) 23)) (-2424 ((|#1| (-767) |#1|) 35 (|has| |#1| (-38 (-407 (-564)))))))
-(((-779 |#1|) (-10 -7 (-15 -2900 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2424 (|#1| (-767) |#1|)) (-15 -3202 (|#1| (-767) |#1|))) |%noBranch|)) (-172)) (T -779))
-((-3202 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-2424 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-2900 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172)))))
-(-10 -7 (-15 -2900 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2424 (|#1| (-767) |#1|)) (-15 -3202 (|#1| (-767) |#1|))) |%noBranch|))
-((-3009 (((-112) $ $) 7)) (-3605 (((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 |#4|)))) (-641 |#4|)) 86)) (-2578 (((-641 $) (-641 |#4|)) 87) (((-641 $) (-641 |#4|) (-112)) 112)) (-3836 (((-641 |#3|) $) 34)) (-3342 (((-112) $) 27)) (-1594 (((-112) $) 18 (|has| |#1| (-556)))) (-3631 (((-112) |#4| $) 102) (((-112) $) 98)) (-3494 ((|#4| |#4| $) 93)) (-2683 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| $) 127)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) 28)) (-1876 (((-112) $ (-767)) 45)) (-1667 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 80)) (-4080 (($) 46 T CONST)) (-1968 (((-112) $) 23 (|has| |#1| (-556)))) (-2238 (((-112) $ $) 25 (|has| |#1| (-556)))) (-3956 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1489 (((-112) $) 26 (|has| |#1| (-556)))) (-2961 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3703 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) 20 (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) 37)) (-3120 (($ (-641 |#4|)) 36)) (-2671 (((-3 $ "failed") $) 83)) (-2405 ((|#4| |#4| $) 90)) (-2696 (($ $) 69 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#4| $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3870 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2248 ((|#4| |#4| $) 88)) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4020 (((-2 (|:| -1604 (-641 |#4|)) (|:| -2319 (-641 |#4|))) $) 106)) (-4014 (((-112) |#4| $) 137)) (-3071 (((-112) |#4| $) 134)) (-1865 (((-112) |#4| $) 138) (((-112) $) 135)) (-3035 (((-641 |#4|) $) 53 (|has| $ (-6 -4407)))) (-2675 (((-112) |#4| $) 105) (((-112) $) 104)) (-3378 ((|#3| $) 35)) (-3097 (((-112) $ (-767)) 44)) (-1554 (((-641 |#4|) $) 54 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) 48)) (-2814 (((-641 |#3|) $) 33)) (-3169 (((-112) |#3| $) 32)) (-3619 (((-112) $ (-767)) 43)) (-2766 (((-1152) $) 10)) (-2227 (((-3 |#4| (-641 $)) |#4| |#4| $) 129)) (-2146 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| |#4| $) 128)) (-2615 (((-3 |#4| "failed") $) 84)) (-4022 (((-641 $) |#4| $) 130)) (-1995 (((-3 (-112) (-641 $)) |#4| $) 133)) (-4259 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3888 (((-641 $) |#4| $) 126) (((-641 $) (-641 |#4|) $) 125) (((-641 $) (-641 |#4|) (-641 $)) 124) (((-641 $) |#4| (-641 $)) 123)) (-3531 (($ |#4| $) 118) (($ (-641 |#4|) $) 117)) (-3167 (((-641 |#4|) $) 108)) (-3441 (((-112) |#4| $) 100) (((-112) $) 96)) (-4241 ((|#4| |#4| $) 91)) (-2582 (((-112) $ $) 111)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-1929 (((-112) |#4| $) 101) (((-112) $) 97)) (-3347 ((|#4| |#4| $) 92)) (-4052 (((-1114) $) 11)) (-2658 (((-3 |#4| "failed") $) 85)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2533 (((-3 $ "failed") $ |#4|) 79)) (-4016 (($ $ |#4|) 78) (((-641 $) |#4| $) 116) (((-641 $) |#4| (-641 $)) 115) (((-641 $) (-641 |#4|) $) 114) (((-641 $) (-641 |#4|) (-641 $)) 113)) (-4377 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) 39)) (-1976 (((-112) $) 42)) (-2994 (($) 41)) (-1568 (((-767) $) 107)) (-4062 (((-767) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4407)))) (-3926 (($ $) 40)) (-1311 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2435 (($ (-641 |#4|)) 61)) (-1834 (($ $ |#3|) 29)) (-1648 (($ $ |#3|) 31)) (-1492 (($ $) 89)) (-2577 (($ $ |#3|) 30)) (-2423 (((-858) $) 12) (((-641 |#4|) $) 38)) (-3840 (((-767) $) 77 (|has| |#3| (-368)))) (-1860 (((-112) $ $) 9)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3212 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 99)) (-3418 (((-641 $) |#4| $) 122) (((-641 $) |#4| (-641 $)) 121) (((-641 $) (-641 |#4|) $) 120) (((-641 $) (-641 |#4|) (-641 $)) 119)) (-1368 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-3579 (((-641 |#3|) $) 82)) (-1947 (((-112) |#4| $) 136)) (-1816 (((-112) |#3| $) 81)) (-2974 (((-112) $ $) 6)) (-2181 (((-767) $) 47 (|has| $ (-6 -4407)))))
-(((-780 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -780))
-NIL
-(-13 (-1065 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T))
-((-2952 (((-3 (-379) "failed") (-316 |#1|) (-917)) 62 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-379) "failed") (-407 (-948 |#1|)) (-917)) 41 (|has| |#1| (-556))) (((-3 (-379) "failed") (-407 (-948 |#1|))) 40 (|has| |#1| (-556))) (((-3 (-379) "failed") (-948 |#1|) (-917)) 31 (|has| |#1| (-1045))) (((-3 (-379) "failed") (-948 |#1|)) 30 (|has| |#1| (-1045)))) (-3582 (((-379) (-316 |#1|) (-917)) 99 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-379) (-407 (-948 |#1|)) (-917)) 91 (|has| |#1| (-556))) (((-379) (-407 (-948 |#1|))) 90 (|has| |#1| (-556))) (((-379) (-948 |#1|) (-917)) 86 (|has| |#1| (-1045))) (((-379) (-948 |#1|)) 85 (|has| |#1| (-1045))) (((-379) |#1| (-917)) 76) (((-379) |#1|) 22)) (-2785 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)) 71 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-917)) 63 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917)) 46 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|)))) 45 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917)) 39 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-948 |#1|))) 38 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)) 28 (|has| |#1| (-1045))) (((-3 (-169 (-379)) "failed") (-948 |#1|)) 26 (|has| |#1| (-1045))) (((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-948 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-3628 (((-169 (-379)) (-316 (-169 |#1|)) (-917)) 102 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 |#1|) (-917)) 100 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-556)) (|has| |#1| (-846)))) (((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917)) 93 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-948 (-169 |#1|)))) 92 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-948 |#1|)) (-917)) 89 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-948 |#1|))) 88 (|has| |#1| (-556))) (((-169 (-379)) (-948 |#1|) (-917)) 84 (|has| |#1| (-1045))) (((-169 (-379)) (-948 |#1|)) 83 (|has| |#1| (-1045))) (((-169 (-379)) (-948 (-169 |#1|)) (-917)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-948 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-917)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-917)) 27) (((-169 (-379)) |#1|) 25)))
-(((-781 |#1|) (-10 -7 (-15 -3582 ((-379) |#1|)) (-15 -3582 ((-379) |#1| (-917))) (-15 -3628 ((-169 (-379)) |#1|)) (-15 -3628 ((-169 (-379)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -3628 ((-169 (-379)) (-169 |#1|))) (-15 -3628 ((-169 (-379)) (-169 |#1|) (-917))) (-15 -3628 ((-169 (-379)) (-948 (-169 |#1|)))) (-15 -3628 ((-169 (-379)) (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3582 ((-379) (-948 |#1|))) (-15 -3582 ((-379) (-948 |#1|) (-917))) (-15 -3628 ((-169 (-379)) (-948 |#1|))) (-15 -3628 ((-169 (-379)) (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3582 ((-379) (-407 (-948 |#1|)))) (-15 -3582 ((-379) (-407 (-948 |#1|)) (-917))) (-15 -3628 ((-169 (-379)) (-407 (-948 |#1|)))) (-15 -3628 ((-169 (-379)) (-407 (-948 |#1|)) (-917))) (-15 -3628 ((-169 (-379)) (-407 (-948 (-169 |#1|))))) (-15 -3628 ((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3582 ((-379) (-316 |#1|))) (-15 -3582 ((-379) (-316 |#1|) (-917))) (-15 -3628 ((-169 (-379)) (-316 |#1|))) (-15 -3628 ((-169 (-379)) (-316 |#1|) (-917))) (-15 -3628 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -3628 ((-169 (-379)) (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2785 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -2952 ((-3 (-379) "failed") (-948 |#1|))) (-15 -2952 ((-3 (-379) "failed") (-948 |#1|) (-917))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-948 |#1|))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2952 ((-3 (-379) "failed") (-407 (-948 |#1|)))) (-15 -2952 ((-3 (-379) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -2952 ((-3 (-379) "failed") (-316 |#1|))) (-15 -2952 ((-3 (-379) "failed") (-316 |#1|) (-917))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-917))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|)) (-612 (-379))) (T -781))
-((-2785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-2952 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-2952 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-2952 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-612 (-379))))) (-3628 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-612 (-379))))) (-3582 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-612 *2)))) (-3582 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-612 *2)))))
-(-10 -7 (-15 -3582 ((-379) |#1|)) (-15 -3582 ((-379) |#1| (-917))) (-15 -3628 ((-169 (-379)) |#1|)) (-15 -3628 ((-169 (-379)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -3628 ((-169 (-379)) (-169 |#1|))) (-15 -3628 ((-169 (-379)) (-169 |#1|) (-917))) (-15 -3628 ((-169 (-379)) (-948 (-169 |#1|)))) (-15 -3628 ((-169 (-379)) (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3582 ((-379) (-948 |#1|))) (-15 -3582 ((-379) (-948 |#1|) (-917))) (-15 -3628 ((-169 (-379)) (-948 |#1|))) (-15 -3628 ((-169 (-379)) (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3582 ((-379) (-407 (-948 |#1|)))) (-15 -3582 ((-379) (-407 (-948 |#1|)) (-917))) (-15 -3628 ((-169 (-379)) (-407 (-948 |#1|)))) (-15 -3628 ((-169 (-379)) (-407 (-948 |#1|)) (-917))) (-15 -3628 ((-169 (-379)) (-407 (-948 (-169 |#1|))))) (-15 -3628 ((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3582 ((-379) (-316 |#1|))) (-15 -3582 ((-379) (-316 |#1|) (-917))) (-15 -3628 ((-169 (-379)) (-316 |#1|))) (-15 -3628 ((-169 (-379)) (-316 |#1|) (-917))) (-15 -3628 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -3628 ((-169 (-379)) (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2785 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -2952 ((-3 (-379) "failed") (-948 |#1|))) (-15 -2952 ((-3 (-379) "failed") (-948 |#1|) (-917))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-948 |#1|))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2952 ((-3 (-379) "failed") (-407 (-948 |#1|)))) (-15 -2952 ((-3 (-379) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -2952 ((-3 (-379) "failed") (-316 |#1|))) (-15 -2952 ((-3 (-379) "failed") (-316 |#1|) (-917))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-917))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -2785 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|))
-((-1324 (((-917) (-1152)) 91)) (-3626 (((-3 (-379) "failed") (-1152)) 36)) (-1763 (((-379) (-1152)) 34)) (-2483 (((-917) (-1152)) 63)) (-1817 (((-1152) (-917)) 77)) (-3061 (((-1152) (-917)) 62)))
-(((-782) (-10 -7 (-15 -3061 ((-1152) (-917))) (-15 -2483 ((-917) (-1152))) (-15 -1817 ((-1152) (-917))) (-15 -1324 ((-917) (-1152))) (-15 -1763 ((-379) (-1152))) (-15 -3626 ((-3 (-379) "failed") (-1152))))) (T -782))
-((-3626 (*1 *2 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-782)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-782)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-917)) (-5 *1 (-782)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1152)) (-5 *1 (-782)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-917)) (-5 *1 (-782)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1152)) (-5 *1 (-782)))))
-(-10 -7 (-15 -3061 ((-1152) (-917))) (-15 -2483 ((-917) (-1152))) (-15 -1817 ((-1152) (-917))) (-15 -1324 ((-917) (-1152))) (-15 -1763 ((-379) (-1152))) (-15 -3626 ((-3 (-379) "failed") (-1152))))
-((-3009 (((-112) $ $) 7)) (-3382 (((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 16) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 14)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
-(((-783) (-140)) (T -783))
-((-3644 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031)))))) (-3382 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-3644 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031)))))) (-3382 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
-(-13 (-1094) (-10 -7 (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3382 ((-1031) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3382 ((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-1386 (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2715 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 54) (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2715 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 51)) (-4281 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 60)) (-3681 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 49)) (-1313 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 62) (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 61)))
-(((-784) (-10 -7 (-15 -1313 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1313 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3681 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1386 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2715 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1386 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2715 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -4281 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))))) (T -784))
-((-4281 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))) (-1386 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2715 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))) (-1386 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2715 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))) (-3681 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))) (-1313 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))) (-1313 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-784)))))
-(-10 -7 (-15 -1313 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1313 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3681 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1386 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2715 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1386 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2715 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -4281 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))))
-((-1918 (((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 65)) (-4085 (((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 42)) (-3397 (((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 64)) (-1392 (((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 40)) (-4159 (((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 63)) (-1570 (((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 26)) (-3332 (((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 43)) (-2905 (((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 41)) (-3315 (((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 39)))
-(((-785) (-10 -7 (-15 -3315 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2905 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3332 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1570 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1392 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4085 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4159 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3397 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1918 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))) (T -785))
-((-1918 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-3397 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-4159 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-4085 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-1392 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-1570 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-3332 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-2905 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))) (-3315 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-564)))))
-(-10 -7 (-15 -3315 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2905 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3332 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1570 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1392 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4085 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4159 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3397 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1918 ((-2 (|:| -2128 (-379)) (|:| -1433 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))
-((-3473 (((-1204 |#1|) |#1| (-225) (-564)) 68)))
-(((-786 |#1|) (-10 -7 (-15 -3473 ((-1204 |#1|) |#1| (-225) (-564)))) (-970)) (T -786))
-((-3473 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3)) (-5 *1 (-786 *3)) (-4 *3 (-970)))))
-(-10 -7 (-15 -3473 ((-1204 |#1|) |#1| (-225) (-564))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 25)) (-4012 (((-3 $ "failed") $ $) 27)) (-4080 (($) 24 T CONST)) (-2855 (($ $ $) 14)) (-1497 (($ $ $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 23 T CONST)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)) (-3082 (($ $ $) 29) (($ $) 28)) (-3070 (($ $ $) 21)) (* (($ (-917) $) 22) (($ (-767) $) 26) (($ (-564) $) 30)))
-(((-787) (-140)) (T -787))
-NIL
-(-13 (-791) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 25)) (-4080 (($) 24 T CONST)) (-2855 (($ $ $) 14)) (-1497 (($ $ $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 23 T CONST)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)) (-3070 (($ $ $) 21)) (* (($ (-917) $) 22) (($ (-767) $) 26)))
-(((-788) (-140)) (T -788))
-NIL
-(-13 (-790) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-790) . T) ((-846) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 25)) (-3878 (($ $ $) 28)) (-4012 (((-3 $ "failed") $ $) 27)) (-4080 (($) 24 T CONST)) (-2855 (($ $ $) 14)) (-1497 (($ $ $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 23 T CONST)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)) (-3070 (($ $ $) 21)) (* (($ (-917) $) 22) (($ (-767) $) 26)))
+((-1616 (((-3 |#2| "failed") |#2| |#2| (-114) (-1173)) 37)))
+(((-770 |#1| |#2|) (-10 -7 (-15 -1616 ((-3 |#2| "failed") |#2| |#2| (-114) (-1173)))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1197) (-957))) (T -770))
+((-1616 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *1 (-770 *5 *2)) (-4 *2 (-13 (-29 *5) (-1197) (-957))))))
+(-10 -7 (-15 -1616 ((-3 |#2| "failed") |#2| |#2| (-114) (-1173))))
+((-2327 (((-772) |#1|) 8)))
+(((-771 |#1|) (-10 -7 (-15 -2327 ((-772) |#1|))) (-1212)) (T -771))
+((-2327 (*1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-771 *3)) (-4 *3 (-1212)))))
+(-10 -7 (-15 -2327 ((-772) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 7)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 9)))
+(((-772) (-1097)) (T -772))
+NIL
+(-1097)
+((-2218 ((|#2| |#4|) 35)))
+(((-773 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2218 (|#2| |#4|))) (-452) (-1238 |#1|) (-722 |#1| |#2|) (-1238 |#3|)) (T -773))
+((-2218 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-722 *4 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-773 *4 *2 *5 *3)) (-4 *3 (-1238 *5)))))
+(-10 -7 (-15 -2218 (|#2| |#4|)))
+((-3104 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1388 (((-1267) (-1155) (-1155) |#4| |#5|) 33)) (-1356 ((|#4| |#4| |#5|) 74)) (-3941 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#5|) 79)) (-4200 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|) 16)))
+(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3104 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1356 (|#4| |#4| |#5|)) (-15 -3941 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#5|)) (-15 -1388 ((-1267) (-1155) (-1155) |#4| |#5|)) (-15 -4200 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -774))
+((-4200 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *4)))) (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1388 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1155)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *4 (-1062 *6 *7 *8)) (-5 *2 (-1267)) (-5 *1 (-774 *6 *7 *8 *4 *5)) (-4 *5 (-1068 *6 *7 *8 *4)))) (-3941 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4)))) (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1356 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *2 (-1062 *4 *5 *6)) (-5 *1 (-774 *4 *5 *6 *2 *3)) (-4 *3 (-1068 *4 *5 *6 *2)))) (-3104 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3104 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1356 (|#4| |#4| |#5|)) (-15 -3941 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#5|)) (-15 -1388 ((-1267) (-1155) (-1155) |#4| |#5|)) (-15 -4200 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|)))
+((-4278 (((-3 (-1169 (-1169 |#1|)) "failed") |#4|) 53)) (-3613 (((-642 |#4|) |#4|) 24)) (-3623 ((|#4| |#4|) 19)))
+(((-775 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3613 ((-642 |#4|) |#4|)) (-15 -4278 ((-3 (-1169 (-1169 |#1|)) "failed") |#4|)) (-15 -3623 (|#4| |#4|))) (-349) (-329 |#1|) (-1238 |#2|) (-1238 |#3|) (-919)) (T -775))
+((-3623 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1238 *4)) (-5 *1 (-775 *3 *4 *5 *2 *6)) (-4 *2 (-1238 *5)) (-14 *6 (-919)))) (-4278 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1238 *5)) (-5 *2 (-1169 (-1169 *4))) (-5 *1 (-775 *4 *5 *6 *3 *7)) (-4 *3 (-1238 *6)) (-14 *7 (-919)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1238 *5)) (-5 *2 (-642 *3)) (-5 *1 (-775 *4 *5 *6 *3 *7)) (-4 *3 (-1238 *6)) (-14 *7 (-919)))))
+(-10 -7 (-15 -3613 ((-642 |#4|) |#4|)) (-15 -4278 ((-3 (-1169 (-1169 |#1|)) "failed") |#4|)) (-15 -3623 (|#4| |#4|)))
+((-4202 (((-2 (|:| |deter| (-642 (-1169 |#5|))) (|:| |dterm| (-642 (-642 (-2 (|:| -1831 (-769)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-642 |#1|)) (|:| |nlead| (-642 |#5|))) (-1169 |#5|) (-642 |#1|) (-642 |#5|)) 75)) (-1630 (((-642 (-769)) |#1|) 20)))
+(((-776 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4202 ((-2 (|:| |deter| (-642 (-1169 |#5|))) (|:| |dterm| (-642 (-642 (-2 (|:| -1831 (-769)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-642 |#1|)) (|:| |nlead| (-642 |#5|))) (-1169 |#5|) (-642 |#1|) (-642 |#5|))) (-15 -1630 ((-642 (-769)) |#1|))) (-1238 |#4|) (-791) (-848) (-307) (-947 |#4| |#2| |#3|)) (T -776))
+((-1630 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-642 (-769))) (-5 *1 (-776 *3 *4 *5 *6 *7)) (-4 *3 (-1238 *6)) (-4 *7 (-947 *6 *4 *5)))) (-4202 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1238 *9)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-307)) (-4 *10 (-947 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-642 (-1169 *10))) (|:| |dterm| (-642 (-642 (-2 (|:| -1831 (-769)) (|:| |pcoef| *10))))) (|:| |nfacts| (-642 *6)) (|:| |nlead| (-642 *10)))) (-5 *1 (-776 *6 *7 *8 *9 *10)) (-5 *3 (-1169 *10)) (-5 *4 (-642 *6)) (-5 *5 (-642 *10)))))
+(-10 -7 (-15 -4202 ((-2 (|:| |deter| (-642 (-1169 |#5|))) (|:| |dterm| (-642 (-642 (-2 (|:| -1831 (-769)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-642 |#1|)) (|:| |nlead| (-642 |#5|))) (-1169 |#5|) (-642 |#1|) (-642 |#5|))) (-15 -1630 ((-642 (-769)) |#1|)))
+((-2412 (((-642 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#1|))))) (-687 (-407 (-564))) |#1|) 31)) (-3148 (((-642 |#1|) (-687 (-407 (-564))) |#1|) 21)) (-3011 (((-950 (-407 (-564))) (-687 (-407 (-564))) (-1173)) 18) (((-950 (-407 (-564))) (-687 (-407 (-564)))) 17)))
+(((-777 |#1|) (-10 -7 (-15 -3011 ((-950 (-407 (-564))) (-687 (-407 (-564))))) (-15 -3011 ((-950 (-407 (-564))) (-687 (-407 (-564))) (-1173))) (-15 -3148 ((-642 |#1|) (-687 (-407 (-564))) |#1|)) (-15 -2412 ((-642 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#1|))))) (-687 (-407 (-564))) |#1|))) (-13 (-363) (-846))) (T -777))
+((-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *2 (-642 (-2 (|:| |outval| *4) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 *4)))))) (-5 *1 (-777 *4)) (-4 *4 (-13 (-363) (-846))))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *2 (-642 *4)) (-5 *1 (-777 *4)) (-4 *4 (-13 (-363) (-846))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *4 (-1173)) (-5 *2 (-950 (-407 (-564)))) (-5 *1 (-777 *5)) (-4 *5 (-13 (-363) (-846))))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *2 (-950 (-407 (-564)))) (-5 *1 (-777 *4)) (-4 *4 (-13 (-363) (-846))))))
+(-10 -7 (-15 -3011 ((-950 (-407 (-564))) (-687 (-407 (-564))))) (-15 -3011 ((-950 (-407 (-564))) (-687 (-407 (-564))) (-1173))) (-15 -3148 ((-642 |#1|) (-687 (-407 (-564))) |#1|)) (-15 -2412 ((-642 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-642 (-687 |#1|))))) (-687 (-407 (-564))) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 36)) (-3802 (((-642 |#2|) $) NIL)) (-3615 (((-1169 $) $ |#2|) NIL) (((-1169 |#1|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 |#2|)) NIL)) (-1416 (($ $) 30)) (-4306 (((-112) $ $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1804 (($ $ $) 109 (|has| |#1| (-556)))) (-3097 (((-642 $) $ $) 122 (|has| |#1| (-556)))) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4316 (($ $) NIL (|has| |#1| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-950 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173))))) (((-3 $ "failed") (-950 (-564))) NIL (-2706 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1173))) (-2268 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173)))))) (((-3 $ "failed") (-950 |#1|)) NIL (-2706 (-12 (|has| |#2| (-612 (-1173))) (-2268 (|has| |#1| (-38 (-407 (-564))))) (-2268 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1173))) (-2268 (|has| |#1| (-38 (-407 (-564))))) (-2268 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173))) (-2268 (|has| |#1| (-990 (-564))))))) (((-3 (-1122 |#1| |#2|) "failed") $) 21)) (-3027 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) ((|#2| $) NIL) (($ (-950 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173))))) (($ (-950 (-564))) NIL (-2706 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1173))) (-2268 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173)))))) (($ (-950 |#1|)) NIL (-2706 (-12 (|has| |#2| (-612 (-1173))) (-2268 (|has| |#1| (-38 (-407 (-564))))) (-2268 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1173))) (-2268 (|has| |#1| (-38 (-407 (-564))))) (-2268 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173))) (-2268 (|has| |#1| (-990 (-564))))))) (((-1122 |#1| |#2|) $) NIL)) (-2022 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 120 (|has| |#1| (-556)))) (-1718 (($ $) NIL) (($ $ |#2|) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-1597 (((-112) $ $) NIL) (((-112) $ (-642 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3060 (((-112) $) NIL)) (-3437 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 80)) (-3103 (($ $) 135 (|has| |#1| (-452)))) (-3246 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#1| (-907)))) (-2359 (($ $) NIL (|has| |#1| (-556)))) (-4099 (($ $) NIL (|has| |#1| (-556)))) (-3260 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2664 (($ $ $) 78) (($ $ $ |#2|) NIL)) (-2575 (($ $ |#1| (-531 |#2|) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| |#1| (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| |#1| (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3953 (((-112) $) 56)) (-3934 (((-769) $) NIL)) (-2846 (((-112) $ $) NIL) (((-112) $ (-642 $)) NIL)) (-2694 (($ $ $ $ $) 106 (|has| |#1| (-556)))) (-3290 ((|#2| $) 22)) (-3790 (($ (-1169 |#1|) |#2|) NIL) (($ (-1169 $) |#2|) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-769)) 38) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2044 (($ $ $) 62)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ |#2|) NIL)) (-2606 (((-112) $) NIL)) (-1398 (((-531 |#2|) $) NIL) (((-769) $ |#2|) NIL) (((-642 (-769)) $ (-642 |#2|)) NIL)) (-3251 (((-769) $) 23)) (-2026 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-4184 (((-3 |#2| "failed") $) NIL)) (-1928 (($ $) NIL (|has| |#1| (-452)))) (-3419 (($ $) NIL (|has| |#1| (-452)))) (-2492 (((-642 $) $) NIL)) (-4095 (($ $) 39)) (-2488 (($ $) NIL (|has| |#1| (-452)))) (-2124 (((-642 $) $) 43)) (-1501 (($ $) 41)) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4130 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3752 (-769))) $ $) 95)) (-3431 (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $) 77) (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $ |#2|) NIL)) (-3403 (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -3045 $)) $ $) NIL) (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -3045 $)) $ $ |#2|) NIL)) (-1376 (($ $ $) 82) (($ $ $ |#2|) NIL)) (-3219 (($ $ $) 85) (($ $ $ |#2|) NIL)) (-3315 (((-1155) $) NIL)) (-2899 (($ $ $) 124 (|has| |#1| (-556)))) (-2889 (((-642 $) $) 32)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| |#2|) (|:| -2700 (-769))) "failed") $) NIL)) (-3350 (((-112) $ $) NIL) (((-112) $ (-642 $)) NIL)) (-1415 (($ $ $) NIL)) (-3366 (($ $) 24)) (-3819 (((-112) $ $) NIL)) (-2262 (((-112) $ $) NIL) (((-112) $ (-642 $)) NIL)) (-1372 (($ $ $) NIL)) (-3345 (($ $) 26)) (-4033 (((-1117) $) NIL)) (-3024 (((-2 (|:| -2080 $) (|:| |coef2| $)) $ $) 115 (|has| |#1| (-556)))) (-2973 (((-2 (|:| -2080 $) (|:| |coef1| $)) $ $) 112 (|has| |#1| (-556)))) (-3921 (((-112) $) 55)) (-3932 ((|#1| $) 57)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2080 ((|#1| |#1| $) 132 (|has| |#1| (-452))) (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-907)))) (-4385 (((-2 (|:| -2080 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 118 (|has| |#1| (-556)))) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 97 (|has| |#1| (-556)))) (-3099 (($ $ |#1|) 128 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-1557 (($ $ |#1|) 127 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-642 |#2|) (-642 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-642 |#2|) (-642 $)) NIL)) (-1846 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3175 (($ $ |#2|) NIL) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2775 (((-531 |#2|) $) NIL) (((-769) $ |#2|) 45) (((-642 (-769)) $ (-642 |#2|)) NIL)) (-3354 (($ $) NIL)) (-3136 (($ $) 35)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) (($ (-950 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173))))) (($ (-950 (-564))) NIL (-2706 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1173))) (-2268 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1173)))))) (($ (-950 |#1|)) NIL (|has| |#2| (-612 (-1173)))) (((-1155) $) NIL (-12 (|has| |#1| (-1036 (-564))) (|has| |#2| (-612 (-1173))))) (((-950 |#1|) $) NIL (|has| |#2| (-612 (-1173))))) (-4028 ((|#1| $) 131 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-950 |#1|) $) NIL (|has| |#2| (-612 (-1173)))) (((-1122 |#1| |#2|) $) 18) (($ (-1122 |#1| |#2|)) 19) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-769)) 47) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2312 (($) 13 T CONST)) (-2635 (((-3 (-112) "failed") $ $) NIL)) (-2322 (($) 37 T CONST)) (-3867 (($ $ $ $ (-769)) 104 (|has| |#1| (-556)))) (-1341 (($ $ $ (-769)) 103 (|has| |#1| (-556)))) (-4044 (($ $ |#2|) NIL) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) 74)) (-2974 (($ $ $) 84)) (** (($ $ (-919)) NIL) (($ $ (-769)) 69)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 61) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 60) (($ $ |#1|) NIL)))
+(((-778 |#1| |#2|) (-13 (-1062 |#1| (-531 |#2|) |#2|) (-611 (-1122 |#1| |#2|)) (-1036 (-1122 |#1| |#2|))) (-1047) (-848)) (T -778))
+NIL
+(-13 (-1062 |#1| (-531 |#2|) |#2|) (-611 (-1122 |#1| |#2|)) (-1036 (-1122 |#1| |#2|)))
+((-4358 (((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|)) 13)))
+(((-779 |#1| |#2|) (-10 -7 (-15 -4358 ((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|)))) (-1047) (-1047)) (T -779))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-780 *6)) (-5 *1 (-779 *5 *6)))))
+(-10 -7 (-15 -4358 ((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 12)) (-4159 (((-1262 |#1|) $ (-769)) NIL)) (-3802 (((-642 (-1079)) $) NIL)) (-3742 (($ (-1169 |#1|)) NIL)) (-3615 (((-1169 $) $ (-1079)) NIL) (((-1169 |#1|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-1079))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2653 (((-642 $) $ $) 54 (|has| |#1| (-556)))) (-1804 (($ $ $) 50 (|has| |#1| (-556)))) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4316 (($ $) NIL (|has| |#1| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3047 (($ $ (-769)) NIL)) (-1537 (($ $ (-769)) NIL)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-1079) "failed") $) NIL) (((-3 (-1169 |#1|) "failed") $) 10)) (-3027 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-1079) $) NIL) (((-1169 |#1|) $) NIL)) (-2022 (($ $ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-1307 (($ $ $) NIL)) (-4036 (($ $ $) 87 (|has| |#1| (-556)))) (-3437 (((-2 (|:| -4378 |#1|) (|:| -1420 $) (|:| -3045 $)) $ $) 86 (|has| |#1| (-556)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3246 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#1| (-907)))) (-2575 (($ $ |#1| (-769) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1079) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1079) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-1427 (((-769) $ $) NIL (|has| |#1| (-556)))) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-1148)))) (-3790 (($ (-1169 |#1|) (-1079)) NIL) (($ (-1169 $) (-1079)) NIL)) (-3267 (($ $ (-769)) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-769)) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-2044 (($ $ $) 27)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-1079)) NIL) (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-1398 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-2026 (($ (-1 (-769) (-769)) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-2099 (((-1169 |#1|) $) NIL)) (-4184 (((-3 (-1079) "failed") $) NIL)) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4130 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3752 (-769))) $ $) 37)) (-3886 (($ $ $) 41)) (-4246 (($ $ $) 47)) (-3431 (((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $) 46)) (-3315 (((-1155) $) NIL)) (-2899 (($ $ $) 56 (|has| |#1| (-556)))) (-4148 (((-2 (|:| -1420 $) (|:| -3045 $)) $ (-769)) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-1079)) (|:| -2700 (-769))) "failed") $) NIL)) (-4107 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3366 (($) NIL (|has| |#1| (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-3024 (((-2 (|:| -2080 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-556)))) (-2973 (((-2 (|:| -2080 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-556)))) (-4180 (((-2 (|:| -2022 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-556)))) (-3044 (((-2 (|:| -2022 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-556)))) (-3921 (((-112) $) 13)) (-3932 ((|#1| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2914 (($ $ (-769) |#1| $) 26)) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-907)))) (-4385 (((-2 (|:| -2080 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-556)))) (-4189 (((-2 (|:| -2022 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-556)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1079) |#1|) NIL) (($ $ (-642 (-1079)) (-642 |#1|)) NIL) (($ $ (-1079) $) NIL) (($ $ (-642 (-1079)) (-642 $)) NIL)) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-2863 (((-3 $ "failed") $ (-769)) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-1846 (($ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3175 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2775 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1079) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4028 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2065 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1079)) NIL) (((-1169 |#1|) $) 7) (($ (-1169 |#1|)) 8) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-769)) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2312 (($) 28 T CONST)) (-2322 (($) 32 T CONST)) (-4044 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) 40) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
+(((-780 |#1|) (-13 (-1238 |#1|) (-611 (-1169 |#1|)) (-1036 (-1169 |#1|)) (-10 -8 (-15 -2914 ($ $ (-769) |#1| $)) (-15 -2044 ($ $ $)) (-15 -4130 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3752 (-769))) $ $)) (-15 -3886 ($ $ $)) (-15 -3431 ((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -4246 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -2653 ((-642 $) $ $)) (-15 -2899 ($ $ $)) (-15 -4385 ((-2 (|:| -2080 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2973 ((-2 (|:| -2080 $) (|:| |coef1| $)) $ $)) (-15 -3024 ((-2 (|:| -2080 $) (|:| |coef2| $)) $ $)) (-15 -4189 ((-2 (|:| -2022 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3044 ((-2 (|:| -2022 |#1|) (|:| |coef1| $)) $ $)) (-15 -4180 ((-2 (|:| -2022 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1047)) (T -780))
+((-2914 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-769)) (-5 *1 (-780 *3)) (-4 *3 (-1047)))) (-2044 (*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047)))) (-4130 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-780 *3)) (|:| |polden| *3) (|:| -3752 (-769)))) (-5 *1 (-780 *3)) (-4 *3 (-1047)))) (-3886 (*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047)))) (-3431 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4378 *3) (|:| |gap| (-769)) (|:| -1420 (-780 *3)) (|:| -3045 (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-1047)))) (-4246 (*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047)))) (-2653 (*1 *2 *1 *1) (-12 (-5 *2 (-642 (-780 *3))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-2899 (*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-556)) (-4 *2 (-1047)))) (-4385 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2080 (-780 *3)) (|:| |coef1| (-780 *3)) (|:| |coef2| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-2973 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2080 (-780 *3)) (|:| |coef1| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-3024 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2080 (-780 *3)) (|:| |coef2| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-4189 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2022 *3) (|:| |coef1| (-780 *3)) (|:| |coef2| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-3044 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2022 *3) (|:| |coef1| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))) (-4180 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2022 *3) (|:| |coef2| (-780 *3)))) (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))))
+(-13 (-1238 |#1|) (-611 (-1169 |#1|)) (-1036 (-1169 |#1|)) (-10 -8 (-15 -2914 ($ $ (-769) |#1| $)) (-15 -2044 ($ $ $)) (-15 -4130 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3752 (-769))) $ $)) (-15 -3886 ($ $ $)) (-15 -3431 ((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -4246 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -2653 ((-642 $) $ $)) (-15 -2899 ($ $ $)) (-15 -4385 ((-2 (|:| -2080 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2973 ((-2 (|:| -2080 $) (|:| |coef1| $)) $ $)) (-15 -3024 ((-2 (|:| -2080 $) (|:| |coef2| $)) $ $)) (-15 -4189 ((-2 (|:| -2022 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3044 ((-2 (|:| -2022 |#1|) (|:| |coef1| $)) $ $)) (-15 -4180 ((-2 (|:| -2022 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-4261 ((|#1| (-769) |#1|) 33 (|has| |#1| (-38 (-407 (-564)))))) (-1690 ((|#1| (-769) |#1|) 23)) (-2300 ((|#1| (-769) |#1|) 35 (|has| |#1| (-38 (-407 (-564)))))))
+(((-781 |#1|) (-10 -7 (-15 -1690 (|#1| (-769) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2300 (|#1| (-769) |#1|)) (-15 -4261 (|#1| (-769) |#1|))) |%noBranch|)) (-172)) (T -781))
+((-4261 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-2300 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-1690 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-172)))))
+(-10 -7 (-15 -1690 (|#1| (-769) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2300 (|#1| (-769) |#1|)) (-15 -4261 (|#1| (-769) |#1|))) |%noBranch|))
+((-2907 (((-112) $ $) 7)) (-3126 (((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 |#4|)))) (-642 |#4|)) 86)) (-4208 (((-642 $) (-642 |#4|)) 87) (((-642 $) (-642 |#4|) (-112)) 112)) (-3802 (((-642 |#3|) $) 34)) (-3317 (((-112) $) 27)) (-4293 (((-112) $) 18 (|has| |#1| (-556)))) (-3831 (((-112) |#4| $) 102) (((-112) $) 98)) (-3923 ((|#4| |#4| $) 93)) (-4316 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| $) 127)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) 28)) (-3697 (((-112) $ (-769)) 45)) (-1700 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 80)) (-1976 (($) 46 T CONST)) (-1496 (((-112) $) 23 (|has| |#1| (-556)))) (-4375 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2888 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2850 (((-112) $) 26 (|has| |#1| (-556)))) (-1975 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2627 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) 37)) (-3027 (($ (-642 |#4|)) 36)) (-2570 (((-3 $ "failed") $) 83)) (-1493 ((|#4| |#4| $) 90)) (-2595 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1597 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1821 ((|#4| |#4| $) 88)) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1738 (((-2 (|:| -1639 (-642 |#4|)) (|:| -2241 (-642 |#4|))) $) 106)) (-2561 (((-112) |#4| $) 137)) (-3204 (((-112) |#4| $) 134)) (-3936 (((-112) |#4| $) 138) (((-112) $) 135)) (-2936 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-2846 (((-112) |#4| $) 105) (((-112) $) 104)) (-3290 ((|#3| $) 35)) (-3462 (((-112) $ (-769)) 44)) (-3234 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) 48)) (-3370 (((-642 |#3|) $) 33)) (-4120 (((-112) |#3| $) 32)) (-3576 (((-112) $ (-769)) 43)) (-3315 (((-1155) $) 10)) (-4162 (((-3 |#4| (-642 $)) |#4| |#4| $) 129)) (-2899 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| |#4| $) 128)) (-2514 (((-3 |#4| "failed") $) 84)) (-2340 (((-642 $) |#4| $) 130)) (-3902 (((-3 (-112) (-642 $)) |#4| $) 133)) (-2685 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2452 (((-642 $) |#4| $) 126) (((-642 $) (-642 |#4|) $) 125) (((-642 $) (-642 |#4|) (-642 $)) 124) (((-642 $) |#4| (-642 $)) 123)) (-4193 (($ |#4| $) 118) (($ (-642 |#4|) $) 117)) (-2743 (((-642 |#4|) $) 108)) (-3350 (((-112) |#4| $) 100) (((-112) $) 96)) (-1415 ((|#4| |#4| $) 91)) (-3819 (((-112) $ $) 111)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-2262 (((-112) |#4| $) 101) (((-112) $) 97)) (-1372 ((|#4| |#4| $) 92)) (-4033 (((-1117) $) 11)) (-2557 (((-3 |#4| "failed") $) 85)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3724 (((-3 $ "failed") $ |#4|) 79)) (-3804 (($ $ |#4|) 78) (((-642 $) |#4| $) 116) (((-642 $) |#4| (-642 $)) 115) (((-642 $) (-642 |#4|) $) 114) (((-642 $) (-642 |#4|) (-642 $)) 113)) (-2121 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) 39)) (-3719 (((-112) $) 42)) (-2972 (($) 41)) (-2775 (((-769) $) 107)) (-4043 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3901 (($ $) 40)) (-1314 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2337 (($ (-642 |#4|)) 61)) (-3153 (($ $ |#3|) 29)) (-3696 (($ $ |#3|) 31)) (-3114 (($ $) 89)) (-1749 (($ $ |#3|) 30)) (-2327 (((-860) $) 12) (((-642 |#4|) $) 38)) (-4195 (((-769) $) 77 (|has| |#3| (-368)))) (-1648 (((-112) $ $) 9)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3497 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) 99)) (-4325 (((-642 $) |#4| $) 122) (((-642 $) |#4| (-642 $)) 121) (((-642 $) (-642 |#4|) $) 120) (((-642 $) (-642 |#4|) (-642 $)) 119)) (-2710 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-2240 (((-642 |#3|) $) 82)) (-3503 (((-112) |#4| $) 136)) (-1362 (((-112) |#3| $) 81)) (-2872 (((-112) $ $) 6)) (-2127 (((-769) $) 47 (|has| $ (-6 -4410)))))
+(((-782 |#1| |#2| |#3| |#4|) (-140) (-452) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -782))
+NIL
+(-13 (-1068 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-974 |#1| |#2| |#3| |#4|) . T) ((-1068 |#1| |#2| |#3| |#4|) . T) ((-1097) . T) ((-1205 |#1| |#2| |#3| |#4|) . T) ((-1212) . T))
+((-2373 (((-3 (-379) "failed") (-316 |#1|) (-919)) 62 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-379) "failed") (-407 (-950 |#1|)) (-919)) 41 (|has| |#1| (-556))) (((-3 (-379) "failed") (-407 (-950 |#1|))) 40 (|has| |#1| (-556))) (((-3 (-379) "failed") (-950 |#1|) (-919)) 31 (|has| |#1| (-1047))) (((-3 (-379) "failed") (-950 |#1|)) 30 (|has| |#1| (-1047)))) (-3534 (((-379) (-316 |#1|) (-919)) 99 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-379) (-407 (-950 |#1|)) (-919)) 91 (|has| |#1| (-556))) (((-379) (-407 (-950 |#1|))) 90 (|has| |#1| (-556))) (((-379) (-950 |#1|) (-919)) 86 (|has| |#1| (-1047))) (((-379) (-950 |#1|)) 85 (|has| |#1| (-1047))) (((-379) |#1| (-919)) 76) (((-379) |#1|) 22)) (-2424 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-919)) 71 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-919)) 63 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|))) (-919)) 46 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|)))) 45 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-950 |#1|)) (-919)) 39 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-950 |#1|))) 38 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-950 |#1|) (-919)) 28 (|has| |#1| (-1047))) (((-3 (-169 (-379)) "failed") (-950 |#1|)) 26 (|has| |#1| (-1047))) (((-3 (-169 (-379)) "failed") (-950 (-169 |#1|)) (-919)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-950 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-3583 (((-169 (-379)) (-316 (-169 |#1|)) (-919)) 102 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-169 (-379)) (-316 |#1|) (-919)) 100 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-556)) (|has| |#1| (-848)))) (((-169 (-379)) (-407 (-950 (-169 |#1|))) (-919)) 93 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-950 (-169 |#1|)))) 92 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-950 |#1|)) (-919)) 89 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-950 |#1|))) 88 (|has| |#1| (-556))) (((-169 (-379)) (-950 |#1|) (-919)) 84 (|has| |#1| (-1047))) (((-169 (-379)) (-950 |#1|)) 83 (|has| |#1| (-1047))) (((-169 (-379)) (-950 (-169 |#1|)) (-919)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-950 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-919)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-919)) 27) (((-169 (-379)) |#1|) 25)))
+(((-783 |#1|) (-10 -7 (-15 -3534 ((-379) |#1|)) (-15 -3534 ((-379) |#1| (-919))) (-15 -3583 ((-169 (-379)) |#1|)) (-15 -3583 ((-169 (-379)) |#1| (-919))) (IF (|has| |#1| (-172)) (PROGN (-15 -3583 ((-169 (-379)) (-169 |#1|))) (-15 -3583 ((-169 (-379)) (-169 |#1|) (-919))) (-15 -3583 ((-169 (-379)) (-950 (-169 |#1|)))) (-15 -3583 ((-169 (-379)) (-950 (-169 |#1|)) (-919)))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -3534 ((-379) (-950 |#1|))) (-15 -3534 ((-379) (-950 |#1|) (-919))) (-15 -3583 ((-169 (-379)) (-950 |#1|))) (-15 -3583 ((-169 (-379)) (-950 |#1|) (-919)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3534 ((-379) (-407 (-950 |#1|)))) (-15 -3534 ((-379) (-407 (-950 |#1|)) (-919))) (-15 -3583 ((-169 (-379)) (-407 (-950 |#1|)))) (-15 -3583 ((-169 (-379)) (-407 (-950 |#1|)) (-919))) (-15 -3583 ((-169 (-379)) (-407 (-950 (-169 |#1|))))) (-15 -3583 ((-169 (-379)) (-407 (-950 (-169 |#1|))) (-919))) (IF (|has| |#1| (-848)) (PROGN (-15 -3534 ((-379) (-316 |#1|))) (-15 -3534 ((-379) (-316 |#1|) (-919))) (-15 -3583 ((-169 (-379)) (-316 |#1|))) (-15 -3583 ((-169 (-379)) (-316 |#1|) (-919))) (-15 -3583 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -3583 ((-169 (-379)) (-316 (-169 |#1|)) (-919)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2424 ((-3 (-169 (-379)) "failed") (-950 (-169 |#1|)))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-950 (-169 |#1|)) (-919)))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -2373 ((-3 (-379) "failed") (-950 |#1|))) (-15 -2373 ((-3 (-379) "failed") (-950 |#1|) (-919))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-950 |#1|))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-950 |#1|) (-919)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2373 ((-3 (-379) "failed") (-407 (-950 |#1|)))) (-15 -2373 ((-3 (-379) "failed") (-407 (-950 |#1|)) (-919))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-407 (-950 |#1|)))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-407 (-950 |#1|)) (-919))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|))))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|))) (-919))) (IF (|has| |#1| (-848)) (PROGN (-15 -2373 ((-3 (-379) "failed") (-316 |#1|))) (-15 -2373 ((-3 (-379) "failed") (-316 |#1|) (-919))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-919))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-919)))) |%noBranch|)) |%noBranch|)) (-612 (-379))) (T -783))
+((-2424 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2424 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2424 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2424 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2373 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-2373 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-2424 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-950 (-169 *5)))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2424 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-950 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2424 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2424 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2373 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-2373 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-2424 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2424 (*1 *2 *3) (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-2373 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-2373 (*1 *2 *3) (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-2424 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-2424 (*1 *2 *3) (|partial| -12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 (-169 *5)))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-919)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-5 *2 (-169 (-379))) (-5 *1 (-783 *3)) (-4 *3 (-612 (-379))))) (-3583 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-783 *3)) (-4 *3 (-612 (-379))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-5 *2 (-379)) (-5 *1 (-783 *3)) (-4 *3 (-612 *2)))) (-3534 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-783 *3)) (-4 *3 (-612 *2)))))
+(-10 -7 (-15 -3534 ((-379) |#1|)) (-15 -3534 ((-379) |#1| (-919))) (-15 -3583 ((-169 (-379)) |#1|)) (-15 -3583 ((-169 (-379)) |#1| (-919))) (IF (|has| |#1| (-172)) (PROGN (-15 -3583 ((-169 (-379)) (-169 |#1|))) (-15 -3583 ((-169 (-379)) (-169 |#1|) (-919))) (-15 -3583 ((-169 (-379)) (-950 (-169 |#1|)))) (-15 -3583 ((-169 (-379)) (-950 (-169 |#1|)) (-919)))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -3534 ((-379) (-950 |#1|))) (-15 -3534 ((-379) (-950 |#1|) (-919))) (-15 -3583 ((-169 (-379)) (-950 |#1|))) (-15 -3583 ((-169 (-379)) (-950 |#1|) (-919)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3534 ((-379) (-407 (-950 |#1|)))) (-15 -3534 ((-379) (-407 (-950 |#1|)) (-919))) (-15 -3583 ((-169 (-379)) (-407 (-950 |#1|)))) (-15 -3583 ((-169 (-379)) (-407 (-950 |#1|)) (-919))) (-15 -3583 ((-169 (-379)) (-407 (-950 (-169 |#1|))))) (-15 -3583 ((-169 (-379)) (-407 (-950 (-169 |#1|))) (-919))) (IF (|has| |#1| (-848)) (PROGN (-15 -3534 ((-379) (-316 |#1|))) (-15 -3534 ((-379) (-316 |#1|) (-919))) (-15 -3583 ((-169 (-379)) (-316 |#1|))) (-15 -3583 ((-169 (-379)) (-316 |#1|) (-919))) (-15 -3583 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -3583 ((-169 (-379)) (-316 (-169 |#1|)) (-919)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2424 ((-3 (-169 (-379)) "failed") (-950 (-169 |#1|)))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-950 (-169 |#1|)) (-919)))) |%noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -2373 ((-3 (-379) "failed") (-950 |#1|))) (-15 -2373 ((-3 (-379) "failed") (-950 |#1|) (-919))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-950 |#1|))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-950 |#1|) (-919)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2373 ((-3 (-379) "failed") (-407 (-950 |#1|)))) (-15 -2373 ((-3 (-379) "failed") (-407 (-950 |#1|)) (-919))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-407 (-950 |#1|)))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-407 (-950 |#1|)) (-919))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|))))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-407 (-950 (-169 |#1|))) (-919))) (IF (|has| |#1| (-848)) (PROGN (-15 -2373 ((-3 (-379) "failed") (-316 |#1|))) (-15 -2373 ((-3 (-379) "failed") (-316 |#1|) (-919))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-919))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -2424 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-919)))) |%noBranch|)) |%noBranch|))
+((-4021 (((-919) (-1155)) 91)) (-1312 (((-3 (-379) "failed") (-1155)) 36)) (-2176 (((-379) (-1155)) 34)) (-3907 (((-919) (-1155)) 63)) (-2101 (((-1155) (-919)) 77)) (-1371 (((-1155) (-919)) 62)))
+(((-784) (-10 -7 (-15 -1371 ((-1155) (-919))) (-15 -3907 ((-919) (-1155))) (-15 -2101 ((-1155) (-919))) (-15 -4021 ((-919) (-1155))) (-15 -2176 ((-379) (-1155))) (-15 -1312 ((-3 (-379) "failed") (-1155))))) (T -784))
+((-1312 (*1 *2 *3) (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-784)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-784)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-919)) (-5 *1 (-784)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1155)) (-5 *1 (-784)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-919)) (-5 *1 (-784)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1155)) (-5 *1 (-784)))))
+(-10 -7 (-15 -1371 ((-1155) (-919))) (-15 -3907 ((-919) (-1155))) (-15 -2101 ((-1155) (-919))) (-15 -4021 ((-919) (-1155))) (-15 -2176 ((-379) (-1155))) (-15 -1312 ((-3 (-379) "failed") (-1155))))
+((-2907 (((-112) $ $) 7)) (-1710 (((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 16) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)) 14)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
+(((-785) (-140)) (T -785))
+((-3978 (*1 *2 *3 *4) (-12 (-4 *1 (-785)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033)))))) (-1710 (*1 *2 *3 *2) (-12 (-4 *1 (-785)) (-5 *2 (-1033)) (-5 *3 (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-3978 (*1 *2 *3 *4) (-12 (-4 *1 (-785)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033)))))) (-1710 (*1 *2 *3 *2) (-12 (-4 *1 (-785)) (-5 *2 (-1033)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
+(-13 (-1097) (-10 -7 (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1710 ((-1033) (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225))) (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)) (|:| |extra| (-1033))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1710 ((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1033)))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-1549 (((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2612 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379))) 54) (((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2612 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379))) 51)) (-2354 (((-1267) (-1262 (-379)) (-564) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379))) 60)) (-2041 (((-1267) (-1262 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379))) 49)) (-3897 (((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379))) 62) (((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379))) 61)))
+(((-786) (-10 -7 (-15 -3897 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -3897 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)))) (-15 -2041 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -1549 ((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2612 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -1549 ((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2612 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)))) (-15 -2354 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))))) (T -786))
+((-2354 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))) (-1549 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2612 (-379)))) (-5 *7 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))) (-1549 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2612 (-379)))) (-5 *7 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))) (-2041 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))) (-3897 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))) (-3897 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379))) (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267)) (-5 *1 (-786)))))
+(-10 -7 (-15 -3897 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -3897 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)))) (-15 -2041 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -1549 ((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2612 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))) (-15 -1549 ((-1267) (-1262 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2612 (-379))) (-379) (-1262 (-379)) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)) (-1262 (-379)))) (-15 -2354 ((-1267) (-1262 (-379)) (-564) (-379) (-379) (-564) (-1 (-1267) (-1262 (-379)) (-1262 (-379)) (-379)))))
+((-2070 (((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 65)) (-3661 (((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 42)) (-4123 (((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 64)) (-3628 (((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 40)) (-3677 (((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 63)) (-2374 (((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 26)) (-1684 (((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 43)) (-2196 (((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 41)) (-3511 (((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 39)))
+(((-787) (-10 -7 (-15 -3511 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2196 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1684 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2374 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3628 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3661 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3677 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4123 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2070 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))) (T -787))
+((-2070 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-4123 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-3677 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-3661 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-3628 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-2374 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-1684 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-2196 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))) (-3511 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-787)) (-5 *5 (-564)))))
+(-10 -7 (-15 -3511 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2196 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1684 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2374 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3628 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3661 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3677 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4123 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2070 ((-2 (|:| -2085 (-379)) (|:| -1449 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))
+((-3861 (((-1207 |#1|) |#1| (-225) (-564)) 68)))
+(((-788 |#1|) (-10 -7 (-15 -3861 ((-1207 |#1|) |#1| (-225) (-564)))) (-972)) (T -788))
+((-3861 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1207 *3)) (-5 *1 (-788 *3)) (-4 *3 (-972)))))
+(-10 -7 (-15 -3861 ((-1207 |#1|) |#1| (-225) (-564))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 25)) (-1532 (((-3 $ "failed") $ $) 27)) (-1976 (($) 24 T CONST)) (-2755 (($ $ $) 14)) (-1520 (($ $ $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 23 T CONST)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)) (-2987 (($ $ $) 31) (($ $) 30)) (-2974 (($ $ $) 21)) (* (($ (-919) $) 22) (($ (-769) $) 26) (($ (-564) $) 29)))
(((-789) (-140)) (T -789))
-((-3878 (*1 *1 *1 *1) (-4 *1 (-789))))
-(-13 (-791) (-10 -8 (-15 -3878 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 7)) (-2855 (($ $ $) 14)) (-1497 (($ $ $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)) (-3070 (($ $ $) 21)) (* (($ (-917) $) 22)))
+NIL
+(-13 (-793) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-848) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 25)) (-1976 (($) 24 T CONST)) (-2755 (($ $ $) 14)) (-1520 (($ $ $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 23 T CONST)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)) (-2974 (($ $ $) 21)) (* (($ (-919) $) 22) (($ (-769) $) 26)))
(((-790) (-140)) (T -790))
NIL
-(-13 (-846) (-25))
-(((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-846) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 25)) (-4012 (((-3 $ "failed") $ $) 27)) (-4080 (($) 24 T CONST)) (-2855 (($ $ $) 14)) (-1497 (($ $ $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 23 T CONST)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)) (-3070 (($ $ $) 21)) (* (($ (-917) $) 22) (($ (-767) $) 26)))
+(-13 (-792) (-23))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-792) . T) ((-848) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 25)) (-3532 (($ $ $) 28)) (-1532 (((-3 $ "failed") $ $) 27)) (-1976 (($) 24 T CONST)) (-2755 (($ $ $) 14)) (-1520 (($ $ $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 23 T CONST)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)) (-2974 (($ $ $) 21)) (* (($ (-919) $) 22) (($ (-769) $) 26)))
(((-791) (-140)) (T -791))
-NIL
-(-13 (-788) (-131))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-788) . T) ((-790) . T) ((-846) . T) ((-1094) . T))
-((-1494 (((-112) $) 42)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3120 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 43)) (-2450 (((-3 (-407 (-564)) "failed") $) 78)) (-1364 (((-112) $) 72)) (-2553 (((-407 (-564)) $) 76)) (-2499 ((|#2| $) 26)) (-4357 (($ (-1 |#2| |#2|) $) 23)) (-3936 (($ $) 58)) (-1311 (((-536) $) 67)) (-3185 (($ $) 21)) (-2423 (((-858) $) 53) (($ (-564)) 40) (($ |#2|) 38) (($ (-407 (-564))) NIL)) (-3719 (((-767)) 10)) (-3673 ((|#2| $) 71)) (-2974 (((-112) $ $) 30)) (-2999 (((-112) $ $) 69)) (-3082 (($ $) 32) (($ $ $) NIL)) (-3070 (($ $ $) 31)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
-(((-792 |#1| |#2|) (-10 -8 (-15 -2999 ((-112) |#1| |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -2450 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2553 ((-407 (-564)) |#1|)) (-15 -1364 ((-112) |#1|)) (-15 -3673 (|#2| |#1|)) (-15 -2499 (|#2| |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -2423 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -1494 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|))) (-793 |#2|) (-172)) (T -792))
-((-3719 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-792 *3 *4)) (-4 *3 (-793 *4)))))
-(-10 -8 (-15 -2999 ((-112) |#1| |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -2450 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2553 ((-407 (-564)) |#1|)) (-15 -1364 ((-112) |#1|)) (-15 -3673 (|#2| |#1|)) (-15 -2499 (|#2| |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -2423 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -1494 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-2622 (((-767)) 53 (|has| |#1| (-368)))) (-4080 (($) 18 T CONST)) (-4284 (((-3 (-564) "failed") $) 95 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 92 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 89)) (-3120 (((-564) $) 94 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 91 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 90)) (-3293 (((-3 $ "failed") $) 34)) (-3712 ((|#1| $) 79)) (-2450 (((-3 (-407 (-564)) "failed") $) 66 (|has| |#1| (-545)))) (-1364 (((-112) $) 68 (|has| |#1| (-545)))) (-2553 (((-407 (-564)) $) 67 (|has| |#1| (-545)))) (-2534 (($) 56 (|has| |#1| (-368)))) (-4112 (((-112) $) 32)) (-1920 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2499 ((|#1| $) 71)) (-2855 (($ $ $) 62 (|has| |#1| (-846)))) (-1497 (($ $ $) 61 (|has| |#1| (-846)))) (-4357 (($ (-1 |#1| |#1|) $) 81)) (-3256 (((-917) $) 55 (|has| |#1| (-368)))) (-2766 (((-1152) $) 10)) (-3936 (($ $) 65 (|has| |#1| (-363)))) (-2083 (($ (-917)) 54 (|has| |#1| (-368)))) (-3990 ((|#1| $) 76)) (-3425 ((|#1| $) 77)) (-3664 ((|#1| $) 78)) (-1407 ((|#1| $) 72)) (-1620 ((|#1| $) 73)) (-1473 ((|#1| $) 74)) (-3392 ((|#1| $) 75)) (-4052 (((-1114) $) 11)) (-3291 (($ $ (-641 |#1|) (-641 |#1|)) 87 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 85 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 84 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 83 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 82 (|has| |#1| (-514 (-1170) |#1|)))) (-4366 (($ $ |#1|) 88 (|has| |#1| (-286 |#1| |#1|)))) (-1311 (((-536) $) 63 (|has| |#1| (-612 (-536))))) (-3185 (($ $) 80)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 39) (($ (-407 (-564))) 93 (|has| |#1| (-1034 (-407 (-564)))))) (-2420 (((-3 $ "failed") $) 64 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-3673 ((|#1| $) 69 (|has| |#1| (-1054)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-3034 (((-112) $ $) 59 (|has| |#1| (-846)))) (-3011 (((-112) $ $) 58 (|has| |#1| (-846)))) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 60 (|has| |#1| (-846)))) (-2999 (((-112) $ $) 57 (|has| |#1| (-846)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 41) (($ |#1| $) 40)))
-(((-793 |#1|) (-140) (-172)) (T -793))
-((-3185 (*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3990 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1920 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2450 (*1 *2 *1) (|partial| -12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3936 (*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
-(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -3185 ($ $)) (-15 -3712 (|t#1| $)) (-15 -3664 (|t#1| $)) (-15 -3425 (|t#1| $)) (-15 -3990 (|t#1| $)) (-15 -3392 (|t#1| $)) (-15 -1473 (|t#1| $)) (-15 -1620 (|t#1| $)) (-15 -1407 (|t#1| $)) (-15 -2499 (|t#1| $)) (-15 -1920 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3673 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -1364 ((-112) $)) (-15 -2553 ((-407 (-564)) $)) (-15 -2450 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -3936 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0=(-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-1034 #0#) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-4357 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-794 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4357 (|#3| (-1 |#4| |#2|) |#1|))) (-793 |#2|) (-172) (-793 |#4|) (-172)) (T -794))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-793 *6)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *4 (-793 *5)))))
-(-10 -7 (-15 -4357 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2622 (((-767)) NIL (|has| |#1| (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL) (((-3 (-995 |#1|) "failed") $) 35) (((-3 (-564) "failed") $) NIL (-2807 (|has| (-995 |#1|) (-1034 (-564))) (|has| |#1| (-1034 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL (-2807 (|has| (-995 |#1|) (-1034 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-3120 ((|#1| $) NIL) (((-995 |#1|) $) 33) (((-564) $) NIL (-2807 (|has| (-995 |#1|) (-1034 (-564))) (|has| |#1| (-1034 (-564))))) (((-407 (-564)) $) NIL (-2807 (|has| (-995 |#1|) (-1034 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-3293 (((-3 $ "failed") $) NIL)) (-3712 ((|#1| $) 16)) (-2450 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-1364 (((-112) $) NIL (|has| |#1| (-545)))) (-2553 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2534 (($) NIL (|has| |#1| (-368)))) (-4112 (((-112) $) NIL)) (-1920 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-995 |#1|) (-995 |#1|)) 29)) (-2499 ((|#1| $) NIL)) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3256 (((-917) $) NIL (|has| |#1| (-368)))) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-363)))) (-2083 (($ (-917)) NIL (|has| |#1| (-368)))) (-3990 ((|#1| $) 22)) (-3425 ((|#1| $) 20)) (-3664 ((|#1| $) 18)) (-1407 ((|#1| $) 26)) (-1620 ((|#1| $) 25)) (-1473 ((|#1| $) 24)) (-3392 ((|#1| $) 23)) (-4052 (((-1114) $) NIL)) (-3291 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4366 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3185 (($ $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-995 |#1|)) 30) (($ (-407 (-564))) NIL (-2807 (|has| (-995 |#1|) (-1034 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-3673 ((|#1| $) NIL (|has| |#1| (-1054)))) (-2403 (($) 8 T CONST)) (-2417 (($) 12 T CONST)) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-795 |#1|) (-13 (-793 |#1|) (-411 (-995 |#1|)) (-10 -8 (-15 -1920 ($ (-995 |#1|) (-995 |#1|))))) (-172)) (T -795))
-((-1920 (*1 *1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-172)) (-5 *1 (-795 *3)))))
-(-13 (-793 |#1|) (-411 (-995 |#1|)) (-10 -8 (-15 -1920 ($ (-995 |#1|) (-995 |#1|)))))
-((-3009 (((-112) $ $) 7)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2969 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2974 (((-112) $ $) 6)))
-(((-796) (-140)) (T -796))
-((-3644 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)))))) (-2969 (*1 *2 *3) (-12 (-4 *1 (-796)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1031)))))
-(-13 (-1094) (-10 -7 (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2969 ((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3351 (((-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) |#3| |#2| (-1170)) 19)))
-(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -3351 ((-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) |#3| |#2| (-1170)))) (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-955)) (-652 |#2|)) (T -797))
-((-3351 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1170)) (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-955))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2047 (-641 *4)))) (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-652 *4)))))
-(-10 -7 (-15 -3351 ((-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) |#3| |#2| (-1170))))
-((-4256 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170)) 18) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -2047 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170)) 24) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -2047 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170)) 26) (((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170)) 37) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -2047 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170)) 35)))
-(((-798 |#1| |#2|) (-10 -7 (-15 -4256 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -2047 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -4256 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -4256 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -2047 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -4256 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -2047 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -4256 ((-3 (-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -4256 ((-3 (-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -4256 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -4256 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-955))) (T -798))
-((-4256 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *1 (-798 *6 *2)))) (-4256 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-955))) (-5 *1 (-798 *6 *2)) (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2047 (-641 *3))) *3 "failed")) (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-955))))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2047 (-641 *7))) *7 "failed")) (-5 *1 (-798 *6 *7)))) (-4256 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -2047 (-641 (-1259 *7))))) (-5 *1 (-798 *6 *7)))) (-4256 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -2047 (-641 (-1259 *7))))) (-5 *1 (-798 *6 *7)))) (-4256 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170)) (-4 *6 (-13 (-29 *5) (-1194) (-955))) (-4 *5 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-1259 *6))) (-5 *1 (-798 *5 *6)))) (-4256 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955))) (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -2047 (-641 (-1259 *7))))) (-5 *1 (-798 *6 *7)) (-5 *4 (-1259 *7)))))
-(-10 -7 (-15 -4256 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -2047 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -4256 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -4256 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -2047 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -4256 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -2047 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -4256 ((-3 (-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -4256 ((-3 (-2 (|:| |particular| |#2|) (|:| -2047 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -4256 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -4256 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|))))
-((-2034 (($) 9)) (-1495 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-3454 (((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-2566 (($ (-2 (|:| -1901 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-3322 (($ (-641 (-2 (|:| -1901 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-1479 (((-1264)) 12)))
-(((-799) (-10 -8 (-15 -2034 ($)) (-15 -1479 ((-1264))) (-15 -3454 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3322 ($ (-641 (-2 (|:| -1901 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -2566 ($ (-2 (|:| -1901 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -1495 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -799))
-((-1495 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-799)))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1901 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-799)))) (-3322 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1901 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-799)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-799)))) (-1479 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-799)))) (-2034 (*1 *1) (-5 *1 (-799))))
-(-10 -8 (-15 -2034 ($)) (-15 -1479 ((-1264))) (-15 -3454 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3322 ($ (-641 (-2 (|:| -1901 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -2566 ($ (-2 (|:| -1901 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3813 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -1495 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-1452 ((|#2| |#2| (-1170)) 17)) (-3591 ((|#2| |#2| (-1170)) 56)) (-4234 (((-1 |#2| |#2|) (-1170)) 11)))
-(((-800 |#1| |#2|) (-10 -7 (-15 -1452 (|#2| |#2| (-1170))) (-15 -3591 (|#2| |#2| (-1170))) (-15 -4234 ((-1 |#2| |#2|) (-1170)))) (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-955))) (T -800))
-((-4234 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5)) (-4 *5 (-13 (-29 *4) (-1194) (-955))))) (-3591 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-955))))) (-1452 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-955))))))
-(-10 -7 (-15 -1452 (|#2| |#2| (-1170))) (-15 -3591 (|#2| |#2| (-1170))) (-15 -4234 ((-1 |#2| |#2|) (-1170))))
-((-4256 (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379)) 131) (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379)) 132) (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379)) 134) (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379)) 136) (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379)) 137) (((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379))) 139) (((-1031) (-804) (-1057)) 123) (((-1031) (-804)) 124)) (-3644 (((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804) (-1057)) 83) (((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804)) 85)))
-(((-801) (-10 -7 (-15 -4256 ((-1031) (-804))) (-15 -4256 ((-1031) (-804) (-1057))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804) (-1057))))) (T -801))
-((-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-801)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-801)))) (-4256 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-4256 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-4256 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-4256 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-4256 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-4256 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801)))))
-(-10 -7 (-15 -4256 ((-1031) (-804))) (-15 -4256 ((-1031) (-804) (-1057))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -4256 ((-1031) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-804) (-1057))))
-((-3651 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2047 (-641 |#4|))) (-649 |#4|) |#4|) 35)))
-(((-802 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3651 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2047 (-641 |#4|))) (-649 |#4|) |#4|))) (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -802))
-((-3651 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4)))) (-5 *1 (-802 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3651 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2047 (-641 |#4|))) (-649 |#4|) |#4|)))
-((-1566 (((-2 (|:| -1606 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))) 53)) (-3027 (((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#4| |#2|) 62) (((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#4|) 61) (((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#3| |#2|) 20) (((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#3|) 21)) (-4167 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2787 ((|#2| |#3| (-641 (-407 |#2|))) 113) (((-3 |#2| "failed") |#3| (-407 |#2|)) 109)))
-(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2787 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -2787 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -3027 ((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#3|)) (-15 -3027 ((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#3| |#2|)) (-15 -4167 (|#2| |#3| |#1|)) (-15 -3027 ((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#4|)) (-15 -3027 ((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#4| |#2|)) (-15 -4167 (|#2| |#4| |#1|)) (-15 -1566 ((-2 (|:| -1606 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -803))
-((-1566 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -1606 *7) (|:| |rh| (-641 (-407 *6))))) (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6))) (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6))))) (-4167 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-803 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-652 *2)) (-4 *3 (-652 (-407 *2))))) (-3027 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3639 *4) (|:| -3796 *4)))) (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-652 *4)) (-4 *3 (-652 (-407 *4))))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -3639 *5) (|:| -3796 *5)))) (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 (-407 *5))))) (-4167 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-803 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2))))) (-3027 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3639 *4) (|:| -3796 *4)))) (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-652 *4)) (-4 *6 (-652 (-407 *4))))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -3639 *5) (|:| -3796 *5)))) (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-2787 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 (-407 *2))))) (-2787 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 *4)))))
-(-10 -7 (-15 -2787 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -2787 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -3027 ((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#3|)) (-15 -3027 ((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#3| |#2|)) (-15 -4167 (|#2| |#3| |#1|)) (-15 -3027 ((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#4|)) (-15 -3027 ((-641 (-2 (|:| -3639 |#2|) (|:| -3796 |#2|))) |#4| |#2|)) (-15 -4167 (|#2| |#4| |#1|)) (-15 -1566 ((-2 (|:| -1606 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|)))))
-((-3009 (((-112) $ $) NIL)) (-3120 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-804) (-13 (-1094) (-10 -8 (-15 -2423 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3120 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -804))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804)))))
-(-13 (-1094) (-10 -8 (-15 -2423 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3120 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))
-((-1830 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -1606 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|)) 158)) (-4242 (((-641 (-2 (|:| |poly| |#2|) (|:| -1606 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 56)) (-3302 (((-641 (-2 (|:| |deg| (-767)) (|:| -1606 |#2|))) |#3|) 127)) (-2253 ((|#2| |#3|) 45)) (-1989 (((-641 (-2 (|:| -2959 |#1|) (|:| -1606 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 105)) (-4101 ((|#3| |#3| (-407 |#2|)) 76) ((|#3| |#3| |#2|) 102)))
-(((-805 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2253 (|#2| |#3|)) (-15 -3302 ((-641 (-2 (|:| |deg| (-767)) (|:| -1606 |#2|))) |#3|)) (-15 -1989 ((-641 (-2 (|:| -2959 |#1|) (|:| -1606 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -4242 ((-641 (-2 (|:| |poly| |#2|) (|:| -1606 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -1830 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -1606 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4101 (|#3| |#3| |#2|)) (-15 -4101 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -805))
-((-4101 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3)))) (-4101 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-1235 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-652 *3)) (-4 *5 (-652 (-407 *3))))) (-1830 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -1606 *3)))) (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-652 *7)) (-4 *8 (-652 (-407 *7))))) (-4242 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -1606 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-1989 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2959 *5) (|:| -1606 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-3302 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| |deg| (-767)) (|:| -1606 *5)))) (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-2253 (*1 *2 *3) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-805 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2))))))
-(-10 -7 (-15 -2253 (|#2| |#3|)) (-15 -3302 ((-641 (-2 (|:| |deg| (-767)) (|:| -1606 |#2|))) |#3|)) (-15 -1989 ((-641 (-2 (|:| -2959 |#1|) (|:| -1606 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -4242 ((-641 (-2 (|:| |poly| |#2|) (|:| -1606 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -1830 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -1606 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4101 (|#3| |#3| |#2|)) (-15 -4101 (|#3| |#3| (-407 |#2|))))
-((-3393 (((-2 (|:| -2047 (-641 (-407 |#2|))) (|:| -2511 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|))) 151) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2047 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|)) 150) (((-2 (|:| -2047 (-641 (-407 |#2|))) (|:| -2511 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|))) 145) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2047 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|)) 143)) (-3362 ((|#2| (-650 |#2| (-407 |#2|))) 93) ((|#2| (-649 (-407 |#2|))) 96)))
-(((-806 |#1| |#2|) (-10 -7 (-15 -3393 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2047 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -3393 ((-2 (|:| -2047 (-641 (-407 |#2|))) (|:| -2511 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3393 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2047 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -3393 ((-2 (|:| -2047 (-641 (-407 |#2|))) (|:| -2511 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3362 (|#2| (-649 (-407 |#2|)))) (-15 -3362 (|#2| (-650 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))) (-1235 |#1|)) (T -806))
-((-3362 (*1 *2 *3) (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-2 (|:| -2047 (-641 (-407 *6))) (|:| -2511 (-685 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4)))) (-5 *1 (-806 *5 *6)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-2 (|:| -2047 (-641 (-407 *6))) (|:| -2511 (-685 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4)))) (-5 *1 (-806 *5 *6)))))
-(-10 -7 (-15 -3393 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2047 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -3393 ((-2 (|:| -2047 (-641 (-407 |#2|))) (|:| -2511 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3393 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -2047 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -3393 ((-2 (|:| -2047 (-641 (-407 |#2|))) (|:| -2511 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3362 (|#2| (-649 (-407 |#2|)))) (-15 -3362 (|#2| (-650 |#2| (-407 |#2|)))))
-((-2842 (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|) 52)))
-(((-807 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2842 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|))) (-363) (-652 |#1|) (-1235 |#1|) (-720 |#1| |#3|) (-652 |#4|)) (T -807))
-((-2842 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-720 *5 *7)) (-5 *2 (-2 (|:| -2511 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4)))))
-(-10 -7 (-15 -2842 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|)))
-((-1830 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -1606 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-2687 (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|))) 168 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|))) 170 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 39) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 37)) (-4242 (((-641 (-2 (|:| |poly| |#2|) (|:| -1606 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 99)))
-(((-808 |#1| |#2|) (-10 -7 (-15 -2687 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -2687 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2687 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -2687 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -1830 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -1606 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4242 ((-641 (-2 (|:| |poly| |#2|) (|:| -1606 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2687 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -2687 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2687 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -2687 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))) (-1235 |#1|)) (T -808))
-((-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2687 (*1 *2 *3) (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2687 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-4242 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -1606 (-650 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-1830 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *6)) (|:| -1606 (-650 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-2687 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2687 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))))
-(-10 -7 (-15 -2687 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -2687 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2687 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -2687 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -1830 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -1606 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4242 ((-641 (-2 (|:| |poly| |#2|) (|:| -1606 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2687 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -2687 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2687 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -2687 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|))
-((-4335 (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|)) 109) (((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -1606 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|)) 15)) (-3198 (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2047 (-641 |#1|))) |#2| |#1|)) 115)) (-4256 (((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -2047 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2047 (-641 |#1|))) "failed") |#2| |#1|)) 52)))
-(((-809 |#1| |#2|) (-10 -7 (-15 -4335 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -1606 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -4335 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -4256 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -2047 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2047 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -3198 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2047 (-641 |#1|))) |#2| |#1|)))) (-363) (-652 |#1|)) (T -809))
-((-3198 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2047 (-641 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *6) "failed")) (|:| -2047 (-641 (-1259 *6))))) (-5 *1 (-809 *6 *7)) (-5 *4 (-1259 *6)))) (-4256 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2047 (-641 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -2047 (-685 *6)))) (-5 *1 (-809 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6)))) (-4335 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-652 *5)) (-5 *2 (-2 (|:| -2511 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-809 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5)))) (-4335 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-685 *5)) (|:| |eqs| (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -1606 *6) (|:| |rh| *5)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *6 (-652 *5)))))
-(-10 -7 (-15 -4335 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -1606 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -4335 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -4256 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -2047 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2047 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -3198 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -2047 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2047 (-641 |#1|))) |#2| |#1|))))
-((-1910 (((-685 |#1|) (-641 |#1|) (-767)) 14) (((-685 |#1|) (-641 |#1|)) 15)) (-4212 (((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|)) 39)) (-4319 (((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)) 46)))
-(((-810 |#1| |#2|) (-10 -7 (-15 -1910 ((-685 |#1|) (-641 |#1|))) (-15 -1910 ((-685 |#1|) (-641 |#1|) (-767))) (-15 -4212 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -4319 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -810))
-((-4319 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-810 *2 *3)) (-4 *3 (-652 *2)))) (-4212 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4)) (-5 *1 (-810 *4 *3)) (-4 *3 (-652 *4)))) (-1910 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-685 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-652 *5)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)) (-5 *1 (-810 *4 *5)) (-4 *5 (-652 *4)))))
-(-10 -7 (-15 -1910 ((-685 |#1|) (-641 |#1|))) (-15 -1910 ((-685 |#1|) (-641 |#1|) (-767))) (-15 -4212 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -4319 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|))))
-((-3009 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1494 (((-112) $) NIL (|has| |#2| (-131)))) (-3586 (($ (-917)) NIL (|has| |#2| (-1045)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3878 (($ $ $) NIL (|has| |#2| (-789)))) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1876 (((-112) $ (-767)) NIL)) (-2622 (((-767)) NIL (|has| |#2| (-368)))) (-3249 (((-564) $) NIL (|has| |#2| (-844)))) (-3904 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-3120 (((-564) $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-4277 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1045)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1045))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1045)))) (-3293 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-2534 (($) NIL (|has| |#2| (-368)))) (-2726 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#2| $ (-564)) NIL)) (-2384 (((-112) $) NIL (|has| |#2| (-844)))) (-3035 (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-4112 (((-112) $) NIL (|has| |#2| (-722)))) (-3326 (((-112) $) NIL (|has| |#2| (-844)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1554 (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2714 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-3256 (((-917) $) NIL (|has| |#2| (-368)))) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-2083 (($ (-917)) NIL (|has| |#2| (-368)))) (-4052 (((-1114) $) NIL (|has| |#2| (-1094)))) (-2658 ((|#2| $) NIL (|has| (-564) (-846)))) (-1592 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-3270 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-3729 (($ (-1259 |#2|)) NIL)) (-4327 (((-134)) NIL (|has| |#2| (-363)))) (-3254 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-4062 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-2807 (-12 (|has| |#2| (-1034 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1034 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-858) $) NIL (|has| |#2| (-611 (-858))))) (-3719 (((-767)) NIL (|has| |#2| (-1045)) CONST)) (-1860 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1368 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3673 (($ $) NIL (|has| |#2| (-844)))) (-2403 (($) NIL (|has| |#2| (-131)) CONST)) (-2417 (($) NIL (|has| |#2| (-722)) CONST)) (-4063 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#2| (-896 (-1170))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-3034 (((-112) $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3011 (((-112) $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2974 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3023 (((-112) $ $) NIL (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2999 (((-112) $ $) 11 (-2807 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3092 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3082 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-3070 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-564) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-811 |#1| |#2| |#3|) (-238 |#1| |#2|) (-767) (-789) (-1 (-112) (-1259 |#2|) (-1259 |#2|))) (T -811))
+((-3532 (*1 *1 *1 *1) (-4 *1 (-791))))
+(-13 (-793) (-10 -8 (-15 -3532 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-848) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 7)) (-2755 (($ $ $) 14)) (-1520 (($ $ $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)) (-2974 (($ $ $) 21)) (* (($ (-919) $) 22)))
+(((-792) (-140)) (T -792))
+NIL
+(-13 (-848) (-25))
+(((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-848) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 25)) (-1532 (((-3 $ "failed") $ $) 27)) (-1976 (($) 24 T CONST)) (-2755 (($ $ $) 14)) (-1520 (($ $ $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 23 T CONST)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)) (-2974 (($ $ $) 21)) (* (($ (-919) $) 22) (($ (-769) $) 26)))
+(((-793) (-140)) (T -793))
+NIL
+(-13 (-790) (-131))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-790) . T) ((-792) . T) ((-848) . T) ((-1097) . T))
+((-2952 (((-112) $) 42)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3027 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 43)) (-3838 (((-3 (-407 (-564)) "failed") $) 78)) (-2881 (((-112) $) 72)) (-4034 (((-407 (-564)) $) 76)) (-2218 ((|#2| $) 26)) (-4358 (($ (-1 |#2| |#2|) $) 23)) (-3911 (($ $) 58)) (-1314 (((-536) $) 67)) (-1389 (($ $) 21)) (-2327 (((-860) $) 53) (($ (-564)) 40) (($ |#2|) 38) (($ (-407 (-564))) NIL)) (-2756 (((-769)) 10)) (-1381 ((|#2| $) 71)) (-2872 (((-112) $ $) 30)) (-2897 (((-112) $ $) 69)) (-2987 (($ $) 32) (($ $ $) NIL)) (-2974 (($ $ $) 31)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
+(((-794 |#1| |#2|) (-10 -8 (-15 -2897 ((-112) |#1| |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3838 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4034 ((-407 (-564)) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -2327 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 -2952 ((-112) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|))) (-795 |#2|) (-172)) (T -794))
+((-2756 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-794 *3 *4)) (-4 *3 (-795 *4)))))
+(-10 -8 (-15 -2897 ((-112) |#1| |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3838 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4034 ((-407 (-564)) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -2327 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 -2952 ((-112) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-2521 (((-769)) 58 (|has| |#1| (-368)))) (-1976 (($) 18 T CONST)) (-4278 (((-3 (-564) "failed") $) 100 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 97 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 94)) (-3027 (((-564) $) 99 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 96 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 95)) (-3104 (((-3 $ "failed") $) 37)) (-3668 ((|#1| $) 84)) (-3838 (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-545)))) (-2881 (((-112) $) 73 (|has| |#1| (-545)))) (-4034 (((-407 (-564)) $) 72 (|has| |#1| (-545)))) (-2433 (($) 61 (|has| |#1| (-368)))) (-3953 (((-112) $) 35)) (-4006 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2218 ((|#1| $) 76)) (-2755 (($ $ $) 67 (|has| |#1| (-848)))) (-1520 (($ $ $) 66 (|has| |#1| (-848)))) (-4358 (($ (-1 |#1| |#1|) $) 86)) (-1945 (((-919) $) 60 (|has| |#1| (-368)))) (-3315 (((-1155) $) 10)) (-3911 (($ $) 70 (|has| |#1| (-363)))) (-2047 (($ (-919)) 59 (|has| |#1| (-368)))) (-1993 ((|#1| $) 81)) (-1968 ((|#1| $) 82)) (-3344 ((|#1| $) 83)) (-2197 ((|#1| $) 77)) (-2703 ((|#1| $) 78)) (-3390 ((|#1| $) 79)) (-4211 ((|#1| $) 80)) (-4033 (((-1117) $) 11)) (-3215 (($ $ (-642 |#1|) (-642 |#1|)) 92 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 90 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) 89 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 88 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) 87 (|has| |#1| (-514 (-1173) |#1|)))) (-4368 (($ $ |#1|) 93 (|has| |#1| (-286 |#1| |#1|)))) (-1314 (((-536) $) 68 (|has| |#1| (-612 (-536))))) (-1389 (($ $) 85)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44) (($ (-407 (-564))) 98 (|has| |#1| (-1036 (-407 (-564)))))) (-2439 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-1381 ((|#1| $) 74 (|has| |#1| (-1057)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2934 (((-112) $ $) 64 (|has| |#1| (-848)))) (-2908 (((-112) $ $) 63 (|has| |#1| (-848)))) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 65 (|has| |#1| (-848)))) (-2897 (((-112) $ $) 62 (|has| |#1| (-848)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-795 |#1|) (-140) (-172)) (T -795))
+((-1389 (*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-4006 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)) (-4 *2 (-1057)))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3838 (*1 *2 *1) (|partial| -12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3911 (*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
+(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -1389 ($ $)) (-15 -3668 (|t#1| $)) (-15 -3344 (|t#1| $)) (-15 -1968 (|t#1| $)) (-15 -1993 (|t#1| $)) (-15 -4211 (|t#1| $)) (-15 -3390 (|t#1| $)) (-15 -2703 (|t#1| $)) (-15 -2197 (|t#1| $)) (-15 -2218 (|t#1| $)) (-15 -4006 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1057)) (-15 -1381 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2881 ((-112) $)) (-15 -4034 ((-407 (-564)) $)) (-15 -3838 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -3911 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0=(-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-724) . T) ((-848) |has| |#1| (-848)) ((-1036 #0#) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-4358 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-796 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 (|#3| (-1 |#4| |#2|) |#1|))) (-795 |#2|) (-172) (-795 |#4|) (-172)) (T -796))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-795 *6)) (-5 *1 (-796 *4 *5 *2 *6)) (-4 *4 (-795 *5)))))
+(-10 -7 (-15 -4358 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2521 (((-769)) NIL (|has| |#1| (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL) (((-3 (-997 |#1|) "failed") $) 35) (((-3 (-564) "failed") $) NIL (-2706 (|has| (-997 |#1|) (-1036 (-564))) (|has| |#1| (-1036 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL (-2706 (|has| (-997 |#1|) (-1036 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-3027 ((|#1| $) NIL) (((-997 |#1|) $) 33) (((-564) $) NIL (-2706 (|has| (-997 |#1|) (-1036 (-564))) (|has| |#1| (-1036 (-564))))) (((-407 (-564)) $) NIL (-2706 (|has| (-997 |#1|) (-1036 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-3104 (((-3 $ "failed") $) NIL)) (-3668 ((|#1| $) 16)) (-3838 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2881 (((-112) $) NIL (|has| |#1| (-545)))) (-4034 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2433 (($) NIL (|has| |#1| (-368)))) (-3953 (((-112) $) NIL)) (-4006 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-997 |#1|) (-997 |#1|)) 29)) (-2218 ((|#1| $) NIL)) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-1945 (((-919) $) NIL (|has| |#1| (-368)))) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| |#1| (-363)))) (-2047 (($ (-919)) NIL (|has| |#1| (-368)))) (-1993 ((|#1| $) 22)) (-1968 ((|#1| $) 20)) (-3344 ((|#1| $) 18)) (-2197 ((|#1| $) 26)) (-2703 ((|#1| $) 25)) (-3390 ((|#1| $) 24)) (-4211 ((|#1| $) 23)) (-4033 (((-1117) $) NIL)) (-3215 (($ $ (-642 |#1|) (-642 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-514 (-1173) |#1|)))) (-4368 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1389 (($ $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-997 |#1|)) 30) (($ (-407 (-564))) NIL (-2706 (|has| (-997 |#1|) (-1036 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-1381 ((|#1| $) NIL (|has| |#1| (-1057)))) (-2312 (($) 8 T CONST)) (-2322 (($) 12 T CONST)) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-797 |#1|) (-13 (-795 |#1|) (-411 (-997 |#1|)) (-10 -8 (-15 -4006 ($ (-997 |#1|) (-997 |#1|))))) (-172)) (T -797))
+((-4006 (*1 *1 *2 *2) (-12 (-5 *2 (-997 *3)) (-4 *3 (-172)) (-5 *1 (-797 *3)))))
+(-13 (-795 |#1|) (-411 (-997 |#1|)) (-10 -8 (-15 -4006 ($ (-997 |#1|) (-997 |#1|)))))
+((-2907 (((-112) $ $) 7)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2916 (((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2872 (((-112) $ $) 6)))
+(((-798) (-140)) (T -798))
+((-3978 (*1 *2 *3 *4) (-12 (-4 *1 (-798)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)))))) (-2916 (*1 *2 *3) (-12 (-4 *1 (-798)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1033)))))
+(-13 (-1097) (-10 -7 (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2916 ((-1033) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-3442 (((-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) |#3| |#2| (-1173)) 19)))
+(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -3442 ((-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) |#3| |#2| (-1173)))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1197) (-957)) (-654 |#2|)) (T -799))
+((-3442 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1173)) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1197) (-957))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4263 (-642 *4)))) (-5 *1 (-799 *6 *4 *3)) (-4 *3 (-654 *4)))))
+(-10 -7 (-15 -3442 ((-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) |#3| |#2| (-1173))))
+((-1616 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-642 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) |#2| "failed") |#2| (-114) (-1173)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1173)) 18) (((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -4263 (-642 (-1262 |#2|)))) "failed") (-642 |#2|) (-642 (-114)) (-1173)) 24) (((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -4263 (-642 (-1262 |#2|)))) "failed") (-642 (-294 |#2|)) (-642 (-114)) (-1173)) 26) (((-3 (-642 (-1262 |#2|)) "failed") (-687 |#2|) (-1173)) 37) (((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -4263 (-642 (-1262 |#2|)))) "failed") (-687 |#2|) (-1262 |#2|) (-1173)) 35)))
+(((-800 |#1| |#2|) (-10 -7 (-15 -1616 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -4263 (-642 (-1262 |#2|)))) "failed") (-687 |#2|) (-1262 |#2|) (-1173))) (-15 -1616 ((-3 (-642 (-1262 |#2|)) "failed") (-687 |#2|) (-1173))) (-15 -1616 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -4263 (-642 (-1262 |#2|)))) "failed") (-642 (-294 |#2|)) (-642 (-114)) (-1173))) (-15 -1616 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -4263 (-642 (-1262 |#2|)))) "failed") (-642 |#2|) (-642 (-114)) (-1173))) (-15 -1616 ((-3 (-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1173))) (-15 -1616 ((-3 (-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) |#2| "failed") |#2| (-114) (-1173))) (-15 -1616 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|))) (-15 -1616 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-642 |#2|)))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1197) (-957))) (T -800))
+((-1616 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-642 *2)) (-4 *2 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *1 (-800 *6 *2)))) (-1616 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-642 *2)) (-4 *2 (-13 (-29 *6) (-1197) (-957))) (-5 *1 (-800 *6 *2)) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1173)) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4263 (-642 *3))) *3 "failed")) (-5 *1 (-800 *6 *3)) (-4 *3 (-13 (-29 *6) (-1197) (-957))))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4263 (-642 *7))) *7 "failed")) (-5 *1 (-800 *6 *7)))) (-1616 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-642 *7)) (-5 *4 (-642 (-114))) (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1262 *7)) (|:| -4263 (-642 (-1262 *7))))) (-5 *1 (-800 *6 *7)))) (-1616 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-642 (-294 *7))) (-5 *4 (-642 (-114))) (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1262 *7)) (|:| -4263 (-642 (-1262 *7))))) (-5 *1 (-800 *6 *7)))) (-1616 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-687 *6)) (-5 *4 (-1173)) (-4 *6 (-13 (-29 *5) (-1197) (-957))) (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-1262 *6))) (-5 *1 (-800 *5 *6)))) (-1616 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-687 *7)) (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957))) (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1262 *7)) (|:| -4263 (-642 (-1262 *7))))) (-5 *1 (-800 *6 *7)) (-5 *4 (-1262 *7)))))
+(-10 -7 (-15 -1616 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -4263 (-642 (-1262 |#2|)))) "failed") (-687 |#2|) (-1262 |#2|) (-1173))) (-15 -1616 ((-3 (-642 (-1262 |#2|)) "failed") (-687 |#2|) (-1173))) (-15 -1616 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -4263 (-642 (-1262 |#2|)))) "failed") (-642 (-294 |#2|)) (-642 (-114)) (-1173))) (-15 -1616 ((-3 (-2 (|:| |particular| (-1262 |#2|)) (|:| -4263 (-642 (-1262 |#2|)))) "failed") (-642 |#2|) (-642 (-114)) (-1173))) (-15 -1616 ((-3 (-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1173))) (-15 -1616 ((-3 (-2 (|:| |particular| |#2|) (|:| -4263 (-642 |#2|))) |#2| "failed") |#2| (-114) (-1173))) (-15 -1616 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-642 |#2|))) (-15 -1616 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-642 |#2|))))
+((-3989 (($) 9)) (-4109 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-3393 (((-642 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-3183 (($ (-2 (|:| -1907 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-1319 (($ (-642 (-2 (|:| -1907 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-3868 (((-1267)) 12)))
+(((-801) (-10 -8 (-15 -3989 ($)) (-15 -3868 ((-1267))) (-15 -3393 ((-642 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1319 ($ (-642 (-2 (|:| -1907 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -3183 ($ (-2 (|:| -1907 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -4109 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -801))
+((-4109 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-801)))) (-3183 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1907 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-801)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -1907 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-801)))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-801)))) (-3868 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-801)))) (-3989 (*1 *1) (-5 *1 (-801))))
+(-10 -8 (-15 -3989 ($)) (-15 -3868 ((-1267))) (-15 -3393 ((-642 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1319 ($ (-642 (-2 (|:| -1907 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -3183 ($ (-2 (|:| -1907 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3778 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -4109 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-1470 ((|#2| |#2| (-1173)) 17)) (-3444 ((|#2| |#2| (-1173)) 56)) (-2297 (((-1 |#2| |#2|) (-1173)) 11)))
+(((-802 |#1| |#2|) (-10 -7 (-15 -1470 (|#2| |#2| (-1173))) (-15 -3444 (|#2| |#2| (-1173))) (-15 -2297 ((-1 |#2| |#2|) (-1173)))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1197) (-957))) (T -802))
+((-2297 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-13 (-29 *4) (-1197) (-957))))) (-3444 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *1 (-802 *4 *2)) (-4 *2 (-13 (-29 *4) (-1197) (-957))))) (-1470 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *1 (-802 *4 *2)) (-4 *2 (-13 (-29 *4) (-1197) (-957))))))
+(-10 -7 (-15 -1470 (|#2| |#2| (-1173))) (-15 -3444 (|#2| |#2| (-1173))) (-15 -2297 ((-1 |#2| |#2|) (-1173))))
+((-1616 (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379) (-379)) 131) (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379)) 132) (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-642 (-379)) (-379)) 134) (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-379)) 136) (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-379)) 137) (((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379))) 139) (((-1033) (-806) (-1060)) 123) (((-1033) (-806)) 124)) (-3978 (((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806) (-1060)) 83) (((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806)) 85)))
+(((-803) (-10 -7 (-15 -1616 ((-1033) (-806))) (-15 -1616 ((-1033) (-806) (-1060))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-379))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-379))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-642 (-379)) (-379))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379) (-379))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806) (-1060))))) (T -803))
+((-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-806)) (-5 *4 (-1060)) (-5 *2 (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-803)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-803)))) (-1616 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1616 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1616 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1616 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1616 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1616 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-806)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-803)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1033)) (-5 *1 (-803)))))
+(-10 -7 (-15 -1616 ((-1033) (-806))) (-15 -1616 ((-1033) (-806) (-1060))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-379))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-379))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-642 (-379)) (-379))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379))) (-15 -1616 ((-1033) (-1262 (-316 (-379))) (-379) (-379) (-642 (-379)) (-316 (-379)) (-642 (-379)) (-379) (-379))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-806) (-1060))))
+((-3448 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4263 (-642 |#4|))) (-651 |#4|) |#4|) 35)))
+(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3448 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4263 (-642 |#4|))) (-651 |#4|) |#4|))) (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -804))
+((-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-651 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4)))) (-5 *1 (-804 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3448 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4263 (-642 |#4|))) (-651 |#4|) |#4|)))
+((-3356 (((-2 (|:| -1640 |#3|) (|:| |rh| (-642 (-407 |#2|)))) |#4| (-642 (-407 |#2|))) 53)) (-1748 (((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#4| |#2|) 62) (((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#4|) 61) (((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#3| |#2|) 20) (((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#3|) 21)) (-4031 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-1440 ((|#2| |#3| (-642 (-407 |#2|))) 113) (((-3 |#2| "failed") |#3| (-407 |#2|)) 109)))
+(((-805 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1440 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -1440 (|#2| |#3| (-642 (-407 |#2|)))) (-15 -1748 ((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#3|)) (-15 -1748 ((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#3| |#2|)) (-15 -4031 (|#2| |#3| |#1|)) (-15 -1748 ((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#4|)) (-15 -1748 ((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#4| |#2|)) (-15 -4031 (|#2| |#4| |#1|)) (-15 -3356 ((-2 (|:| -1640 |#3|) (|:| |rh| (-642 (-407 |#2|)))) |#4| (-642 (-407 |#2|))))) (-13 (-363) (-147) (-1036 (-407 (-564)))) (-1238 |#1|) (-654 |#2|) (-654 (-407 |#2|))) (T -805))
+((-3356 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-2 (|:| -1640 *7) (|:| |rh| (-642 (-407 *6))))) (-5 *1 (-805 *5 *6 *7 *3)) (-5 *4 (-642 (-407 *6))) (-4 *7 (-654 *6)) (-4 *3 (-654 (-407 *6))))) (-4031 (*1 *2 *3 *4) (-12 (-4 *2 (-1238 *4)) (-5 *1 (-805 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-654 *2)) (-4 *3 (-654 (-407 *2))))) (-1748 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *4 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -3594 *4) (|:| -3761 *4)))) (-5 *1 (-805 *5 *4 *6 *3)) (-4 *6 (-654 *4)) (-4 *3 (-654 (-407 *4))))) (-1748 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-2 (|:| -3594 *5) (|:| -3761 *5)))) (-5 *1 (-805 *4 *5 *6 *3)) (-4 *6 (-654 *5)) (-4 *3 (-654 (-407 *5))))) (-4031 (*1 *2 *3 *4) (-12 (-4 *2 (-1238 *4)) (-5 *1 (-805 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) (-4 *5 (-654 (-407 *2))))) (-1748 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *4 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -3594 *4) (|:| -3761 *4)))) (-5 *1 (-805 *5 *4 *3 *6)) (-4 *3 (-654 *4)) (-4 *6 (-654 (-407 *4))))) (-1748 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-2 (|:| -3594 *5) (|:| -3761 *5)))) (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-654 *5)) (-4 *6 (-654 (-407 *5))))) (-1440 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-407 *2))) (-4 *2 (-1238 *5)) (-5 *1 (-805 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) (-4 *6 (-654 (-407 *2))))) (-1440 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1238 *5)) (-5 *1 (-805 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) (-4 *6 (-654 *4)))))
+(-10 -7 (-15 -1440 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -1440 (|#2| |#3| (-642 (-407 |#2|)))) (-15 -1748 ((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#3|)) (-15 -1748 ((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#3| |#2|)) (-15 -4031 (|#2| |#3| |#1|)) (-15 -1748 ((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#4|)) (-15 -1748 ((-642 (-2 (|:| -3594 |#2|) (|:| -3761 |#2|))) |#4| |#2|)) (-15 -4031 (|#2| |#4| |#1|)) (-15 -3356 ((-2 (|:| -1640 |#3|) (|:| |rh| (-642 (-407 |#2|)))) |#4| (-642 (-407 |#2|)))))
+((-2907 (((-112) $ $) NIL)) (-3027 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-806) (-13 (-1097) (-10 -8 (-15 -2327 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3027 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -806))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-806)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-806)))))
+(-13 (-1097) (-10 -8 (-15 -2327 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3027 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))
+((-3659 (((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -1640 |#3|))) |#3| (-1 (-642 |#2|) |#2| (-1169 |#2|)) (-1 (-418 |#2|) |#2|)) 158)) (-2186 (((-642 (-2 (|:| |poly| |#2|) (|:| -1640 |#3|))) |#3| (-1 (-642 |#1|) |#2|)) 56)) (-4150 (((-642 (-2 (|:| |deg| (-769)) (|:| -1640 |#2|))) |#3|) 127)) (-3012 ((|#2| |#3|) 45)) (-3558 (((-642 (-2 (|:| -2858 |#1|) (|:| -1640 |#3|))) |#3| (-1 (-642 |#1|) |#2|)) 105)) (-3405 ((|#3| |#3| (-407 |#2|)) 76) ((|#3| |#3| |#2|) 102)))
+(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3012 (|#2| |#3|)) (-15 -4150 ((-642 (-2 (|:| |deg| (-769)) (|:| -1640 |#2|))) |#3|)) (-15 -3558 ((-642 (-2 (|:| -2858 |#1|) (|:| -1640 |#3|))) |#3| (-1 (-642 |#1|) |#2|))) (-15 -2186 ((-642 (-2 (|:| |poly| |#2|) (|:| -1640 |#3|))) |#3| (-1 (-642 |#1|) |#2|))) (-15 -3659 ((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -1640 |#3|))) |#3| (-1 (-642 |#2|) |#2| (-1169 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3405 (|#3| |#3| |#2|)) (-15 -3405 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1036 (-407 (-564)))) (-1238 |#1|) (-654 |#2|) (-654 (-407 |#2|))) (T -807))
+((-3405 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *1 (-807 *4 *5 *2 *6)) (-4 *2 (-654 *5)) (-4 *6 (-654 *3)))) (-3405 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-1238 *4)) (-5 *1 (-807 *4 *3 *2 *5)) (-4 *2 (-654 *3)) (-4 *5 (-654 (-407 *3))))) (-3659 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-642 *7) *7 (-1169 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1238 *6)) (-4 *6 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-5 *2 (-642 (-2 (|:| |frac| (-407 *7)) (|:| -1640 *3)))) (-5 *1 (-807 *6 *7 *3 *8)) (-4 *3 (-654 *7)) (-4 *8 (-654 (-407 *7))))) (-2186 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-2 (|:| |poly| *6) (|:| -1640 *3)))) (-5 *1 (-807 *5 *6 *3 *7)) (-4 *3 (-654 *6)) (-4 *7 (-654 (-407 *6))))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -2858 *5) (|:| -1640 *3)))) (-5 *1 (-807 *5 *6 *3 *7)) (-4 *3 (-654 *6)) (-4 *7 (-654 (-407 *6))))) (-4150 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-2 (|:| |deg| (-769)) (|:| -1640 *5)))) (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-654 *5)) (-4 *6 (-654 (-407 *5))))) (-3012 (*1 *2 *3) (-12 (-4 *2 (-1238 *4)) (-5 *1 (-807 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2)) (-4 *5 (-654 (-407 *2))))))
+(-10 -7 (-15 -3012 (|#2| |#3|)) (-15 -4150 ((-642 (-2 (|:| |deg| (-769)) (|:| -1640 |#2|))) |#3|)) (-15 -3558 ((-642 (-2 (|:| -2858 |#1|) (|:| -1640 |#3|))) |#3| (-1 (-642 |#1|) |#2|))) (-15 -2186 ((-642 (-2 (|:| |poly| |#2|) (|:| -1640 |#3|))) |#3| (-1 (-642 |#1|) |#2|))) (-15 -3659 ((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -1640 |#3|))) |#3| (-1 (-642 |#2|) |#2| (-1169 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3405 (|#3| |#3| |#2|)) (-15 -3405 (|#3| |#3| (-407 |#2|))))
+((-4258 (((-2 (|:| -4263 (-642 (-407 |#2|))) (|:| -1780 (-687 |#1|))) (-652 |#2| (-407 |#2|)) (-642 (-407 |#2|))) 151) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4263 (-642 (-407 |#2|)))) (-652 |#2| (-407 |#2|)) (-407 |#2|)) 150) (((-2 (|:| -4263 (-642 (-407 |#2|))) (|:| -1780 (-687 |#1|))) (-651 (-407 |#2|)) (-642 (-407 |#2|))) 145) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4263 (-642 (-407 |#2|)))) (-651 (-407 |#2|)) (-407 |#2|)) 143)) (-4248 ((|#2| (-652 |#2| (-407 |#2|))) 93) ((|#2| (-651 (-407 |#2|))) 96)))
+(((-808 |#1| |#2|) (-10 -7 (-15 -4258 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4263 (-642 (-407 |#2|)))) (-651 (-407 |#2|)) (-407 |#2|))) (-15 -4258 ((-2 (|:| -4263 (-642 (-407 |#2|))) (|:| -1780 (-687 |#1|))) (-651 (-407 |#2|)) (-642 (-407 |#2|)))) (-15 -4258 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4263 (-642 (-407 |#2|)))) (-652 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -4258 ((-2 (|:| -4263 (-642 (-407 |#2|))) (|:| -1780 (-687 |#1|))) (-652 |#2| (-407 |#2|)) (-642 (-407 |#2|)))) (-15 -4248 (|#2| (-651 (-407 |#2|)))) (-15 -4248 (|#2| (-652 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))) (-1238 |#1|)) (T -808))
+((-4248 (*1 *2 *3) (-12 (-5 *3 (-652 *2 (-407 *2))) (-4 *2 (-1238 *4)) (-5 *1 (-808 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-651 (-407 *2))) (-4 *2 (-1238 *4)) (-5 *1 (-808 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6 (-407 *6))) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-2 (|:| -4263 (-642 (-407 *6))) (|:| -1780 (-687 *5)))) (-5 *1 (-808 *5 *6)) (-5 *4 (-642 (-407 *6))))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4)))) (-5 *1 (-808 *5 *6)))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-651 (-407 *6))) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-2 (|:| -4263 (-642 (-407 *6))) (|:| -1780 (-687 *5)))) (-5 *1 (-808 *5 *6)) (-5 *4 (-642 (-407 *6))))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4)))) (-5 *1 (-808 *5 *6)))))
+(-10 -7 (-15 -4258 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4263 (-642 (-407 |#2|)))) (-651 (-407 |#2|)) (-407 |#2|))) (-15 -4258 ((-2 (|:| -4263 (-642 (-407 |#2|))) (|:| -1780 (-687 |#1|))) (-651 (-407 |#2|)) (-642 (-407 |#2|)))) (-15 -4258 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4263 (-642 (-407 |#2|)))) (-652 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -4258 ((-2 (|:| -4263 (-642 (-407 |#2|))) (|:| -1780 (-687 |#1|))) (-652 |#2| (-407 |#2|)) (-642 (-407 |#2|)))) (-15 -4248 (|#2| (-651 (-407 |#2|)))) (-15 -4248 (|#2| (-652 |#2| (-407 |#2|)))))
+((-3631 (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) |#5| |#4|) 52)))
+(((-809 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3631 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) |#5| |#4|))) (-363) (-654 |#1|) (-1238 |#1|) (-722 |#1| |#3|) (-654 |#4|)) (T -809))
+((-3631 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1238 *5)) (-4 *4 (-722 *5 *7)) (-5 *2 (-2 (|:| -1780 (-687 *6)) (|:| |vec| (-1262 *5)))) (-5 *1 (-809 *5 *6 *7 *4 *3)) (-4 *6 (-654 *5)) (-4 *3 (-654 *4)))))
+(-10 -7 (-15 -3631 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) |#5| |#4|)))
+((-3659 (((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -1640 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-3117 (((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|))) 168 (|has| |#1| (-27))) (((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-642 (-407 |#2|)) (-651 (-407 |#2|))) 170 (|has| |#1| (-27))) (((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|)) 39) (((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|)) 37)) (-2186 (((-642 (-2 (|:| |poly| |#2|) (|:| -1640 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|)) 99)))
+(((-810 |#1| |#2|) (-10 -7 (-15 -3117 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (-15 -3117 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3117 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (-15 -3117 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3659 ((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -1640 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2186 ((-642 (-2 (|:| |poly| |#2|) (|:| -1640 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3117 ((-642 (-407 |#2|)) (-651 (-407 |#2|)))) (-15 -3117 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3117 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)))) (-15 -3117 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))) (-1238 |#1|)) (T -810))
+((-3117 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-652 *5 (-407 *5))) (-4 *5 (-1238 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-642 (-407 *5))) (-5 *1 (-810 *4 *5)))) (-3117 (*1 *2 *3 *4) (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-651 (-407 *5))) (-4 *5 (-1238 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-642 (-407 *5))) (-5 *1 (-810 *4 *5)))) (-2186 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-2 (|:| |poly| *6) (|:| -1640 (-652 *6 (-407 *6)))))) (-5 *1 (-810 *5 *6)) (-5 *3 (-652 *6 (-407 *6))))) (-3659 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-5 *2 (-642 (-2 (|:| |frac| (-407 *6)) (|:| -1640 (-652 *6 (-407 *6)))))) (-5 *1 (-810 *5 *6)) (-5 *3 (-652 *6 (-407 *6))))) (-3117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 *7 (-407 *7))) (-5 *4 (-1 (-642 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *7 (-1238 *6)) (-5 *2 (-642 (-407 *7))) (-5 *1 (-810 *6 *7)))) (-3117 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))) (-3117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-651 (-407 *7))) (-5 *4 (-1 (-642 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *7 (-1238 *6)) (-5 *2 (-642 (-407 *7))) (-5 *1 (-810 *6 *7)))) (-3117 (*1 *2 *3 *4) (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-1 (-642 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5)) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))))
+(-10 -7 (-15 -3117 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (-15 -3117 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3117 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (-15 -3117 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3659 ((-642 (-2 (|:| |frac| (-407 |#2|)) (|:| -1640 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2186 ((-642 (-2 (|:| |poly| |#2|) (|:| -1640 (-652 |#2| (-407 |#2|))))) (-652 |#2| (-407 |#2|)) (-1 (-642 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3117 ((-642 (-407 |#2|)) (-651 (-407 |#2|)))) (-15 -3117 ((-642 (-407 |#2|)) (-651 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3117 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)))) (-15 -3117 ((-642 (-407 |#2|)) (-652 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|))
+((-3912 (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) (-687 |#2|) (-1262 |#1|)) 109) (((-2 (|:| A (-687 |#1|)) (|:| |eqs| (-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)) (|:| -1640 |#2|) (|:| |rh| |#1|))))) (-687 |#1|) (-1262 |#1|)) 15)) (-1706 (((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|)))) (-687 |#2|) (-1262 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4263 (-642 |#1|))) |#2| |#1|)) 115)) (-1616 (((-3 (-2 (|:| |particular| (-1262 |#1|)) (|:| -4263 (-687 |#1|))) "failed") (-687 |#1|) (-1262 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4263 (-642 |#1|))) "failed") |#2| |#1|)) 52)))
+(((-811 |#1| |#2|) (-10 -7 (-15 -3912 ((-2 (|:| A (-687 |#1|)) (|:| |eqs| (-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)) (|:| -1640 |#2|) (|:| |rh| |#1|))))) (-687 |#1|) (-1262 |#1|))) (-15 -3912 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) (-687 |#2|) (-1262 |#1|))) (-15 -1616 ((-3 (-2 (|:| |particular| (-1262 |#1|)) (|:| -4263 (-687 |#1|))) "failed") (-687 |#1|) (-1262 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4263 (-642 |#1|))) "failed") |#2| |#1|))) (-15 -1706 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|)))) (-687 |#2|) (-1262 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4263 (-642 |#1|))) |#2| |#1|)))) (-363) (-654 |#1|)) (T -811))
+((-1706 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4263 (-642 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-654 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1262 *6) "failed")) (|:| -4263 (-642 (-1262 *6))))) (-5 *1 (-811 *6 *7)) (-5 *4 (-1262 *6)))) (-1616 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4263 (-642 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-654 *6)) (-5 *2 (-2 (|:| |particular| (-1262 *6)) (|:| -4263 (-687 *6)))) (-5 *1 (-811 *6 *7)) (-5 *3 (-687 *6)) (-5 *4 (-1262 *6)))) (-3912 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-654 *5)) (-5 *2 (-2 (|:| -1780 (-687 *6)) (|:| |vec| (-1262 *5)))) (-5 *1 (-811 *5 *6)) (-5 *3 (-687 *6)) (-5 *4 (-1262 *5)))) (-3912 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-687 *5)) (|:| |eqs| (-642 (-2 (|:| C (-687 *5)) (|:| |g| (-1262 *5)) (|:| -1640 *6) (|:| |rh| *5)))))) (-5 *1 (-811 *5 *6)) (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) (-4 *6 (-654 *5)))))
+(-10 -7 (-15 -3912 ((-2 (|:| A (-687 |#1|)) (|:| |eqs| (-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)) (|:| -1640 |#2|) (|:| |rh| |#1|))))) (-687 |#1|) (-1262 |#1|))) (-15 -3912 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#1|))) (-687 |#2|) (-1262 |#1|))) (-15 -1616 ((-3 (-2 (|:| |particular| (-1262 |#1|)) (|:| -4263 (-687 |#1|))) "failed") (-687 |#1|) (-1262 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4263 (-642 |#1|))) "failed") |#2| |#1|))) (-15 -1706 ((-2 (|:| |particular| (-3 (-1262 |#1|) "failed")) (|:| -4263 (-642 (-1262 |#1|)))) (-687 |#2|) (-1262 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4263 (-642 |#1|))) |#2| |#1|))))
+((-1489 (((-687 |#1|) (-642 |#1|) (-769)) 14) (((-687 |#1|) (-642 |#1|)) 15)) (-3524 (((-3 (-1262 |#1|) "failed") |#2| |#1| (-642 |#1|)) 39)) (-2247 (((-3 |#1| "failed") |#2| |#1| (-642 |#1|) (-1 |#1| |#1|)) 46)))
+(((-812 |#1| |#2|) (-10 -7 (-15 -1489 ((-687 |#1|) (-642 |#1|))) (-15 -1489 ((-687 |#1|) (-642 |#1|) (-769))) (-15 -3524 ((-3 (-1262 |#1|) "failed") |#2| |#1| (-642 |#1|))) (-15 -2247 ((-3 |#1| "failed") |#2| |#1| (-642 |#1|) (-1 |#1| |#1|)))) (-363) (-654 |#1|)) (T -812))
+((-2247 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-642 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-812 *2 *3)) (-4 *3 (-654 *2)))) (-3524 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-642 *4)) (-4 *4 (-363)) (-5 *2 (-1262 *4)) (-5 *1 (-812 *4 *3)) (-4 *3 (-654 *4)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-769)) (-4 *5 (-363)) (-5 *2 (-687 *5)) (-5 *1 (-812 *5 *6)) (-4 *6 (-654 *5)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-363)) (-5 *2 (-687 *4)) (-5 *1 (-812 *4 *5)) (-4 *5 (-654 *4)))))
+(-10 -7 (-15 -1489 ((-687 |#1|) (-642 |#1|))) (-15 -1489 ((-687 |#1|) (-642 |#1|) (-769))) (-15 -3524 ((-3 (-1262 |#1|) "failed") |#2| |#1| (-642 |#1|))) (-15 -2247 ((-3 |#1| "failed") |#2| |#1| (-642 |#1|) (-1 |#1| |#1|))))
+((-2907 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2952 (((-112) $) NIL (|has| |#2| (-131)))) (-3638 (($ (-919)) NIL (|has| |#2| (-1047)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3532 (($ $ $) NIL (|has| |#2| (-791)))) (-1532 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3697 (((-112) $ (-769)) NIL)) (-2521 (((-769)) NIL (|has| |#2| (-368)))) (-2959 (((-564) $) NIL (|has| |#2| (-846)))) (-3877 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1097)))) (-3027 (((-564) $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) ((|#2| $) NIL (|has| |#2| (-1097)))) (-4315 (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1047)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL (|has| |#2| (-1047))) (((-687 |#2|) (-687 $)) NIL (|has| |#2| (-1047)))) (-3104 (((-3 $ "failed") $) NIL (|has| |#2| (-724)))) (-2433 (($) NIL (|has| |#2| (-368)))) (-2625 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#2| $ (-564)) NIL)) (-2538 (((-112) $) NIL (|has| |#2| (-846)))) (-2936 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3953 (((-112) $) NIL (|has| |#2| (-724)))) (-3333 (((-112) $) NIL (|has| |#2| (-846)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-3234 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2613 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-1945 (((-919) $) NIL (|has| |#2| (-368)))) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#2| (-1097)))) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-2047 (($ (-919)) NIL (|has| |#2| (-368)))) (-4033 (((-1117) $) NIL (|has| |#2| (-1097)))) (-2557 ((|#2| $) NIL (|has| (-564) (-848)))) (-2696 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-2619 ((|#2| $ $) NIL (|has| |#2| (-1047)))) (-3685 (($ (-1262 |#2|)) NIL)) (-3474 (((-134)) NIL (|has| |#2| (-363)))) (-3175 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-4043 (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-1262 |#2|) $) NIL) (($ (-564)) NIL (-2706 (-12 (|has| |#2| (-1036 (-564))) (|has| |#2| (-1097))) (|has| |#2| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1036 (-407 (-564)))) (|has| |#2| (-1097)))) (($ |#2|) NIL (|has| |#2| (-1097))) (((-860) $) NIL (|has| |#2| (-611 (-860))))) (-2756 (((-769)) NIL (|has| |#2| (-1047)) CONST)) (-1648 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2710 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-1381 (($ $) NIL (|has| |#2| (-846)))) (-2312 (($) NIL (|has| |#2| (-131)) CONST)) (-2322 (($) NIL (|has| |#2| (-724)) CONST)) (-4044 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#2| (-898 (-1173))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-2934 (((-112) $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2908 (((-112) $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2872 (((-112) $ $) NIL (|has| |#2| (-1097)))) (-2922 (((-112) $ $) NIL (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2897 (((-112) $ $) 11 (-2706 (|has| |#2| (-791)) (|has| |#2| (-846))))) (-2998 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2987 (($ $ $) NIL (|has| |#2| (-1047))) (($ $) NIL (|has| |#2| (-1047)))) (-2974 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-769)) NIL (|has| |#2| (-724))) (($ $ (-919)) NIL (|has| |#2| (-724)))) (* (($ (-564) $) NIL (|has| |#2| (-1047))) (($ $ $) NIL (|has| |#2| (-724))) (($ $ |#2|) NIL (|has| |#2| (-724))) (($ |#2| $) NIL (|has| |#2| (-724))) (($ (-769) $) NIL (|has| |#2| (-131))) (($ (-919) $) NIL (|has| |#2| (-25)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-813 |#1| |#2| |#3|) (-238 |#1| |#2|) (-769) (-791) (-1 (-112) (-1262 |#2|) (-1262 |#2|))) (T -813))
NIL
(-238 |#1| |#2|)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2828 (((-641 (-767)) $) NIL) (((-641 (-767)) $ (-1170)) NIL)) (-3476 (((-767) $) NIL) (((-767) $ (-1170)) NIL)) (-3836 (((-641 (-814 (-1170))) $) NIL)) (-3660 (((-1166 $) $ (-814 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-814 (-1170)))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2683 (($ $) NIL (|has| |#1| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3505 (($ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-814 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-3120 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-814 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-2746 (($ $ $ (-814 (-1170))) NIL (|has| |#1| (-172)))) (-1684 (($ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1170))) NIL (|has| |#1| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#1| (-905)))) (-3850 (($ $ |#1| (-531 (-814 (-1170))) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-814 (-1170)) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-814 (-1170)) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3744 (((-767) $ (-1170)) NIL) (((-767) $) NIL)) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-3824 (($ (-1166 |#1|) (-814 (-1170))) NIL) (($ (-1166 $) (-814 (-1170))) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-531 (-814 (-1170)))) NIL) (($ $ (-814 (-1170)) (-767)) NIL) (($ $ (-641 (-814 (-1170))) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-814 (-1170))) NIL)) (-2043 (((-531 (-814 (-1170))) $) NIL) (((-767) $ (-814 (-1170))) NIL) (((-641 (-767)) $ (-641 (-814 (-1170)))) NIL)) (-1948 (($ (-1 (-531 (-814 (-1170))) (-531 (-814 (-1170)))) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-4206 (((-1 $ (-767)) (-1170)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-3025 (((-3 (-814 (-1170)) "failed") $) NIL)) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-1453 (((-814 (-1170)) $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2766 (((-1152) $) NIL)) (-4384 (((-112) $) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-814 (-1170))) (|:| -1838 (-767))) "failed") $) NIL)) (-3252 (($ $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 ((|#1| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-814 (-1170)) |#1|) NIL) (($ $ (-641 (-814 (-1170))) (-641 |#1|)) NIL) (($ $ (-814 (-1170)) $) NIL) (($ $ (-641 (-814 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-1330 (($ $ (-814 (-1170))) NIL (|has| |#1| (-172)))) (-3254 (($ $ (-814 (-1170))) NIL) (($ $ (-641 (-814 (-1170)))) NIL) (($ $ (-814 (-1170)) (-767)) NIL) (($ $ (-641 (-814 (-1170))) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2576 (((-641 (-1170)) $) NIL)) (-1568 (((-531 (-814 (-1170))) $) NIL) (((-767) $ (-814 (-1170))) NIL) (((-641 (-767)) $ (-641 (-814 (-1170)))) NIL) (((-767) $ (-1170)) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-814 (-1170)) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-814 (-1170)) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-814 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4090 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1170))) NIL (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-814 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-531 (-814 (-1170)))) NIL) (($ $ (-814 (-1170)) (-767)) NIL) (($ $ (-641 (-814 (-1170))) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-814 (-1170))) NIL) (($ $ (-641 (-814 (-1170)))) NIL) (($ $ (-814 (-1170)) (-767)) NIL) (($ $ (-641 (-814 (-1170))) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-812 |#1|) (-13 (-253 |#1| (-1170) (-814 (-1170)) (-531 (-814 (-1170)))) (-1034 (-1119 |#1| (-1170)))) (-1045)) (T -812))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2773 (((-642 (-769)) $) NIL) (((-642 (-769)) $ (-1173)) NIL)) (-1915 (((-769) $) NIL) (((-769) $ (-1173)) NIL)) (-3802 (((-642 (-816 (-1173))) $) NIL)) (-3615 (((-1169 $) $ (-816 (-1173))) NIL) (((-1169 |#1|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-816 (-1173)))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4316 (($ $) NIL (|has| |#1| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (($ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-816 (-1173)) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL) (((-3 (-1122 |#1| (-1173)) "failed") $) NIL)) (-3027 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-816 (-1173)) $) NIL) (((-1173) $) NIL) (((-1122 |#1| (-1173)) $) NIL)) (-2022 (($ $ $ (-816 (-1173))) NIL (|has| |#1| (-172)))) (-1718 (($ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-452))) (($ $ (-816 (-1173))) NIL (|has| |#1| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#1| (-907)))) (-2575 (($ $ |#1| (-531 (-816 (-1173))) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-816 (-1173)) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-816 (-1173)) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-1427 (((-769) $ (-1173)) NIL) (((-769) $) NIL)) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-3790 (($ (-1169 |#1|) (-816 (-1173))) NIL) (($ (-1169 $) (-816 (-1173))) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-531 (-816 (-1173)))) NIL) (($ $ (-816 (-1173)) (-769)) NIL) (($ $ (-642 (-816 (-1173))) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-816 (-1173))) NIL)) (-1398 (((-531 (-816 (-1173))) $) NIL) (((-769) $ (-816 (-1173))) NIL) (((-642 (-769)) $ (-642 (-816 (-1173)))) NIL)) (-2026 (($ (-1 (-531 (-816 (-1173))) (-531 (-816 (-1173)))) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-2089 (((-1 $ (-769)) (-1173)) NIL) (((-1 $ (-769)) $) NIL (|has| |#1| (-233)))) (-4184 (((-3 (-816 (-1173)) "failed") $) NIL)) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-1471 (((-816 (-1173)) $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3315 (((-1155) $) NIL)) (-4240 (((-112) $) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-816 (-1173))) (|:| -2700 (-769))) "failed") $) NIL)) (-3173 (($ $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 ((|#1| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-816 (-1173)) |#1|) NIL) (($ $ (-642 (-816 (-1173))) (-642 |#1|)) NIL) (($ $ (-816 (-1173)) $) NIL) (($ $ (-642 (-816 (-1173))) (-642 $)) NIL) (($ $ (-1173) $) NIL (|has| |#1| (-233))) (($ $ (-642 (-1173)) (-642 $)) NIL (|has| |#1| (-233))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-233))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-233)))) (-1846 (($ $ (-816 (-1173))) NIL (|has| |#1| (-172)))) (-3175 (($ $ (-816 (-1173))) NIL) (($ $ (-642 (-816 (-1173)))) NIL) (($ $ (-816 (-1173)) (-769)) NIL) (($ $ (-642 (-816 (-1173))) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1410 (((-642 (-1173)) $) NIL)) (-2775 (((-531 (-816 (-1173))) $) NIL) (((-769) $ (-816 (-1173))) NIL) (((-642 (-769)) $ (-642 (-816 (-1173)))) NIL) (((-769) $ (-1173)) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-816 (-1173)) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-816 (-1173)) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-816 (-1173)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4028 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-816 (-1173))) NIL (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-816 (-1173))) NIL) (($ (-1173)) NIL) (($ (-1122 |#1| (-1173))) NIL) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-531 (-816 (-1173)))) NIL) (($ $ (-816 (-1173)) (-769)) NIL) (($ $ (-642 (-816 (-1173))) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-816 (-1173))) NIL) (($ $ (-642 (-816 (-1173)))) NIL) (($ $ (-816 (-1173)) (-769)) NIL) (($ $ (-642 (-816 (-1173))) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-814 |#1|) (-13 (-253 |#1| (-1173) (-816 (-1173)) (-531 (-816 (-1173)))) (-1036 (-1122 |#1| (-1173)))) (-1047)) (T -814))
NIL
-(-13 (-253 |#1| (-1170) (-814 (-1170)) (-531 (-814 (-1170)))) (-1034 (-1119 |#1| (-1170))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-3063 (($ $) NIL (|has| |#2| (-363)))) (-3330 (((-112) $) NIL (|has| |#2| (-363)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL (|has| |#2| (-363)))) (-2753 (((-418 $) $) NIL (|has| |#2| (-363)))) (-3162 (((-112) $ $) NIL (|has| |#2| (-363)))) (-4080 (($) NIL T CONST)) (-2946 (($ $ $) NIL (|has| |#2| (-363)))) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL (|has| |#2| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-1339 (((-112) $) NIL (|has| |#2| (-363)))) (-4112 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2084 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 20 (|has| |#2| (-363)))) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-3688 (((-418 $) $) NIL (|has| |#2| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#2| (-363)))) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-1700 (((-767) $) NIL (|has| |#2| (-363)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#2| (-363)))) (-3254 (($ $ (-767)) NIL) (($ $) 13)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-564))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#2| (-363)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-767)) NIL) (($ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) 15 (|has| |#2| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL) (($ $ (-564)) 18 (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-564))) NIL (|has| |#2| (-363)))))
-(((-813 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1094) (-896 |#1|) |#1|) (T -813))
+(-13 (-253 |#1| (-1173) (-816 (-1173)) (-531 (-816 (-1173)))) (-1036 (-1122 |#1| (-1173))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-1387 (($ $) NIL (|has| |#2| (-363)))) (-2037 (((-112) $) NIL (|has| |#2| (-363)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL (|has| |#2| (-363)))) (-1978 (((-418 $) $) NIL (|has| |#2| (-363)))) (-4010 (((-112) $ $) NIL (|has| |#2| (-363)))) (-1976 (($) NIL T CONST)) (-2845 (($ $ $) NIL (|has| |#2| (-363)))) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL (|has| |#2| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#2| (-363)))) (-1469 (((-112) $) NIL (|has| |#2| (-363)))) (-3953 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#2| (-363)))) (-2049 (($ (-642 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 20 (|has| |#2| (-363)))) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-3643 (((-418 $) $) NIL (|has| |#2| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#2| (-363)))) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#2| (-363)))) (-2048 (((-769) $) NIL (|has| |#2| (-363)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#2| (-363)))) (-3175 (($ $ (-769)) NIL) (($ $) 13)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-564))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#2| (-363)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-769)) NIL) (($ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) 15 (|has| |#2| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL) (($ $ (-564)) 18 (|has| |#2| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-564))) NIL (|has| |#2| (-363)))))
+(((-815 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1097) (-898 |#1|) |#1|) (T -815))
NIL
(-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-3476 (((-767) $) NIL)) (-3395 ((|#1| $) 10)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-3744 (((-767) $) 11)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-4206 (($ |#1| (-767)) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3254 (($ $) NIL) (($ $ (-767)) NIL)) (-2423 (((-858) $) NIL) (($ |#1|) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-814 |#1|) (-266 |#1|) (-846)) (T -814))
+((-2907 (((-112) $ $) NIL)) (-1915 (((-769) $) NIL)) (-3329 ((|#1| $) 10)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-1427 (((-769) $) 11)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-2089 (($ |#1| (-769)) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3175 (($ $) NIL) (($ $ (-769)) NIL)) (-2327 (((-860) $) NIL) (($ |#1|) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-816 |#1|) (-266 |#1|) (-848)) (T -816))
NIL
(-266 |#1|)
-((-3009 (((-112) $ $) NIL)) (-3058 (((-641 |#1|) $) 38)) (-2622 (((-767) $) NIL)) (-4080 (($) NIL T CONST)) (-1662 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-2671 (($ $) 42)) (-3293 (((-3 $ "failed") $) NIL)) (-3388 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4112 (((-112) $) NIL)) (-4375 ((|#1| $ (-564)) NIL)) (-1325 (((-767) $ (-564)) NIL)) (-4275 (($ $) 52)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-4107 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-1582 (((-112) $ $) 50)) (-2581 (((-767) $) 34)) (-2766 (((-1152) $) NIL)) (-1454 (($ $ $) NIL)) (-4050 (($ $ $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 ((|#1| $) 41)) (-1572 (((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-767)))) $) NIL)) (-2984 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2423 (((-858) $) NIL) (($ |#1|) NIL)) (-1860 (((-112) $ $) NIL)) (-2417 (($) 20 T CONST)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 51)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-815 |#1|) (-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -2658 (|#1| $)) (-15 -2671 ($ $)) (-15 -4275 ($ $)) (-15 -1582 ((-112) $ $)) (-15 -4050 ($ $ $)) (-15 -1454 ($ $ $)) (-15 -4107 ((-3 $ "failed") $ $)) (-15 -1662 ((-3 $ "failed") $ $)) (-15 -4107 ((-3 $ "failed") $ |#1|)) (-15 -1662 ((-3 $ "failed") $ |#1|)) (-15 -2984 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3388 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2622 ((-767) $)) (-15 -1325 ((-767) $ (-564))) (-15 -4375 (|#1| $ (-564))) (-15 -1572 ((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-767)))) $)) (-15 -2581 ((-767) $)) (-15 -3058 ((-641 |#1|) $)))) (-846)) (T -815))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2658 (*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2671 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4275 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1582 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-4050 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1454 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4107 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1662 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4107 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1662 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2984 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3388 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-1325 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846)))) (-4375 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 (-767))))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846)))))
-(-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -2658 (|#1| $)) (-15 -2671 ($ $)) (-15 -4275 ($ $)) (-15 -1582 ((-112) $ $)) (-15 -4050 ($ $ $)) (-15 -1454 ($ $ $)) (-15 -4107 ((-3 $ "failed") $ $)) (-15 -1662 ((-3 $ "failed") $ $)) (-15 -4107 ((-3 $ "failed") $ |#1|)) (-15 -1662 ((-3 $ "failed") $ |#1|)) (-15 -2984 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3388 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2622 ((-767) $)) (-15 -1325 ((-767) $ (-564))) (-15 -4375 (|#1| $ (-564))) (-15 -1572 ((-641 (-2 (|:| |gen| |#1|) (|:| -1689 (-767)))) $)) (-15 -2581 ((-767) $)) (-15 -3058 ((-641 |#1|) $))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-3249 (((-564) $) 55)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-2384 (((-112) $) 53)) (-4112 (((-112) $) 32)) (-3326 (((-112) $) 54)) (-2855 (($ $ $) 52)) (-1497 (($ $ $) 51)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2998 (((-3 $ "failed") $ $) 44)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-3673 (($ $) 56)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-3034 (((-112) $ $) 49)) (-3011 (((-112) $ $) 48)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 50)) (-2999 (((-112) $ $) 47)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-816) (-140)) (T -816))
-NIL
-(-13 (-556) (-844))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-4147 (($ (-1114)) 7)) (-4061 (((-112) $ (-1152) (-1114)) 15)) (-4368 (((-818) $) 12)) (-1334 (((-818) $) 11)) (-2672 (((-1264) $) 9)) (-3985 (((-112) $ (-1114)) 16)))
-(((-817) (-10 -8 (-15 -4147 ($ (-1114))) (-15 -2672 ((-1264) $)) (-15 -1334 ((-818) $)) (-15 -4368 ((-818) $)) (-15 -4061 ((-112) $ (-1152) (-1114))) (-15 -3985 ((-112) $ (-1114))))) (T -817))
-((-3985 (*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-817)))) (-4061 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-817)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-817)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-817)))))
-(-10 -8 (-15 -4147 ($ (-1114))) (-15 -2672 ((-1264) $)) (-15 -1334 ((-818) $)) (-15 -4368 ((-818) $)) (-15 -4061 ((-112) $ (-1152) (-1114))) (-15 -3985 ((-112) $ (-1114))))
-((-1377 (((-1264) $ (-819)) 12)) (-2831 (((-1264) $ (-1170)) 32)) (-2353 (((-1264) $ (-1152) (-1152)) 34)) (-2078 (((-1264) $ (-1152)) 33)) (-3791 (((-1264) $) 19)) (-2200 (((-1264) $ (-564)) 28)) (-3551 (((-1264) $ (-225)) 30)) (-3523 (((-1264) $) 18)) (-2213 (((-1264) $) 26)) (-3562 (((-1264) $) 25)) (-2488 (((-1264) $) 23)) (-4216 (((-1264) $) 24)) (-4054 (((-1264) $) 22)) (-3829 (((-1264) $) 21)) (-1659 (((-1264) $) 20)) (-3047 (((-1264) $) 16)) (-1612 (((-1264) $) 17)) (-2691 (((-1264) $) 15)) (-3969 (((-1264) $) 14)) (-2523 (((-1264) $) 13)) (-3176 (($ (-1152) (-819)) 9)) (-1476 (($ (-1152) (-1152) (-819)) 8)) (-1504 (((-1170) $) 51)) (-4176 (((-1170) $) 55)) (-2685 (((-2 (|:| |cd| (-1152)) (|:| -2562 (-1152))) $) 54)) (-1460 (((-1152) $) 52)) (-2832 (((-1264) $) 41)) (-2409 (((-564) $) 49)) (-2968 (((-225) $) 50)) (-1647 (((-1264) $) 40)) (-3276 (((-1264) $) 48)) (-2188 (((-1264) $) 47)) (-4268 (((-1264) $) 45)) (-3012 (((-1264) $) 46)) (-1853 (((-1264) $) 44)) (-3835 (((-1264) $) 43)) (-3894 (((-1264) $) 42)) (-1634 (((-1264) $) 38)) (-1383 (((-1264) $) 39)) (-3778 (((-1264) $) 37)) (-4382 (((-1264) $) 36)) (-3211 (((-1264) $) 35)) (-2922 (((-1264) $) 11)))
-(((-818) (-10 -8 (-15 -1476 ($ (-1152) (-1152) (-819))) (-15 -3176 ($ (-1152) (-819))) (-15 -2922 ((-1264) $)) (-15 -1377 ((-1264) $ (-819))) (-15 -2523 ((-1264) $)) (-15 -3969 ((-1264) $)) (-15 -2691 ((-1264) $)) (-15 -3047 ((-1264) $)) (-15 -1612 ((-1264) $)) (-15 -3523 ((-1264) $)) (-15 -3791 ((-1264) $)) (-15 -1659 ((-1264) $)) (-15 -3829 ((-1264) $)) (-15 -4054 ((-1264) $)) (-15 -2488 ((-1264) $)) (-15 -4216 ((-1264) $)) (-15 -3562 ((-1264) $)) (-15 -2213 ((-1264) $)) (-15 -2200 ((-1264) $ (-564))) (-15 -3551 ((-1264) $ (-225))) (-15 -2831 ((-1264) $ (-1170))) (-15 -2078 ((-1264) $ (-1152))) (-15 -2353 ((-1264) $ (-1152) (-1152))) (-15 -3211 ((-1264) $)) (-15 -4382 ((-1264) $)) (-15 -3778 ((-1264) $)) (-15 -1634 ((-1264) $)) (-15 -1383 ((-1264) $)) (-15 -1647 ((-1264) $)) (-15 -2832 ((-1264) $)) (-15 -3894 ((-1264) $)) (-15 -3835 ((-1264) $)) (-15 -1853 ((-1264) $)) (-15 -4268 ((-1264) $)) (-15 -3012 ((-1264) $)) (-15 -2188 ((-1264) $)) (-15 -3276 ((-1264) $)) (-15 -2409 ((-564) $)) (-15 -2968 ((-225) $)) (-15 -1504 ((-1170) $)) (-15 -1460 ((-1152) $)) (-15 -2685 ((-2 (|:| |cd| (-1152)) (|:| -2562 (-1152))) $)) (-15 -4176 ((-1170) $)))) (T -818))
-((-4176 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-818)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -2562 (-1152)))) (-5 *1 (-818)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-818)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-818)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-818)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-818)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3211 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-2078 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-2831 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-3551 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4216 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3047 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1377 (*1 *2 *1 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1264)) (-5 *1 (-818)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3176 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-819)) (-5 *1 (-818)))) (-1476 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-819)) (-5 *1 (-818)))))
-(-10 -8 (-15 -1476 ($ (-1152) (-1152) (-819))) (-15 -3176 ($ (-1152) (-819))) (-15 -2922 ((-1264) $)) (-15 -1377 ((-1264) $ (-819))) (-15 -2523 ((-1264) $)) (-15 -3969 ((-1264) $)) (-15 -2691 ((-1264) $)) (-15 -3047 ((-1264) $)) (-15 -1612 ((-1264) $)) (-15 -3523 ((-1264) $)) (-15 -3791 ((-1264) $)) (-15 -1659 ((-1264) $)) (-15 -3829 ((-1264) $)) (-15 -4054 ((-1264) $)) (-15 -2488 ((-1264) $)) (-15 -4216 ((-1264) $)) (-15 -3562 ((-1264) $)) (-15 -2213 ((-1264) $)) (-15 -2200 ((-1264) $ (-564))) (-15 -3551 ((-1264) $ (-225))) (-15 -2831 ((-1264) $ (-1170))) (-15 -2078 ((-1264) $ (-1152))) (-15 -2353 ((-1264) $ (-1152) (-1152))) (-15 -3211 ((-1264) $)) (-15 -4382 ((-1264) $)) (-15 -3778 ((-1264) $)) (-15 -1634 ((-1264) $)) (-15 -1383 ((-1264) $)) (-15 -1647 ((-1264) $)) (-15 -2832 ((-1264) $)) (-15 -3894 ((-1264) $)) (-15 -3835 ((-1264) $)) (-15 -1853 ((-1264) $)) (-15 -4268 ((-1264) $)) (-15 -3012 ((-1264) $)) (-15 -2188 ((-1264) $)) (-15 -3276 ((-1264) $)) (-15 -2409 ((-564) $)) (-15 -2968 ((-225) $)) (-15 -1504 ((-1170) $)) (-15 -1460 ((-1152) $)) (-15 -2685 ((-2 (|:| |cd| (-1152)) (|:| -2562 (-1152))) $)) (-15 -4176 ((-1170) $)))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 13)) (-1860 (((-112) $ $) NIL)) (-4370 (($) 16)) (-1464 (($) 14)) (-1875 (($) 17)) (-3460 (($) 15)) (-2974 (((-112) $ $) 9)))
-(((-819) (-13 (-1094) (-10 -8 (-15 -1464 ($)) (-15 -4370 ($)) (-15 -1875 ($)) (-15 -3460 ($))))) (T -819))
-((-1464 (*1 *1) (-5 *1 (-819))) (-4370 (*1 *1) (-5 *1 (-819))) (-1875 (*1 *1) (-5 *1 (-819))) (-3460 (*1 *1) (-5 *1 (-819))))
-(-13 (-1094) (-10 -8 (-15 -1464 ($)) (-15 -4370 ($)) (-15 -1875 ($)) (-15 -3460 ($))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 23) (($ (-1170)) 19)) (-1860 (((-112) $ $) NIL)) (-1347 (((-112) $) 10)) (-4258 (((-112) $) 9)) (-1704 (((-112) $) 11)) (-3292 (((-112) $) 8)) (-2974 (((-112) $ $) 21)))
-(((-820) (-13 (-1094) (-10 -8 (-15 -2423 ($ (-1170))) (-15 -3292 ((-112) $)) (-15 -4258 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -1704 ((-112) $))))) (T -820))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-820)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-4258 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
-(-13 (-1094) (-10 -8 (-15 -2423 ($ (-1170))) (-15 -3292 ((-112) $)) (-15 -4258 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -1704 ((-112) $))))
-((-3009 (((-112) $ $) NIL)) (-3809 (($ (-820) (-641 (-1170))) 32)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3534 (((-820) $) 33)) (-4070 (((-641 (-1170)) $) 34)) (-2423 (((-858) $) 31)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-821) (-13 (-1094) (-10 -8 (-15 -3534 ((-820) $)) (-15 -4070 ((-641 (-1170)) $)) (-15 -3809 ($ (-820) (-641 (-1170))))))) (T -821))
-((-3534 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-821)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-821)))) (-3809 (*1 *1 *2 *3) (-12 (-5 *2 (-820)) (-5 *3 (-641 (-1170))) (-5 *1 (-821)))))
-(-13 (-1094) (-10 -8 (-15 -3534 ((-820) $)) (-15 -4070 ((-641 (-1170)) $)) (-15 -3809 ($ (-820) (-641 (-1170))))))
-((-1613 (((-1264) (-818) (-316 |#1|) (-112)) 24) (((-1264) (-818) (-316 |#1|)) 90) (((-1152) (-316 |#1|) (-112)) 89) (((-1152) (-316 |#1|)) 88)))
-(((-822 |#1|) (-10 -7 (-15 -1613 ((-1152) (-316 |#1|))) (-15 -1613 ((-1152) (-316 |#1|) (-112))) (-15 -1613 ((-1264) (-818) (-316 |#1|))) (-15 -1613 ((-1264) (-818) (-316 |#1|) (-112)))) (-13 (-824) (-1045))) (T -822))
-((-1613 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-824) (-1045))) (-5 *2 (-1264)) (-5 *1 (-822 *6)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-824) (-1045))) (-5 *2 (-1264)) (-5 *1 (-822 *5)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-824) (-1045))) (-5 *2 (-1152)) (-5 *1 (-822 *5)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-1045))) (-5 *2 (-1152)) (-5 *1 (-822 *4)))))
-(-10 -7 (-15 -1613 ((-1152) (-316 |#1|))) (-15 -1613 ((-1152) (-316 |#1|) (-112))) (-15 -1613 ((-1264) (-818) (-316 |#1|))) (-15 -1613 ((-1264) (-818) (-316 |#1|) (-112))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2059 ((|#1| $) 10)) (-1626 (($ |#1|) 9)) (-4112 (((-112) $) NIL)) (-3810 (($ |#2| (-767)) NIL)) (-2043 (((-767) $) NIL)) (-3982 ((|#2| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3254 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1568 (((-767) $) NIL)) (-2423 (((-858) $) 17) (($ (-564)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-2007 ((|#2| $ (-767)) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-823 |#1| |#2|) (-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1626 ($ |#1|)) (-15 -2059 (|#1| $)))) (-704 |#2|) (-1045)) (T -823))
-((-1626 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-823 *2 *3)) (-4 *2 (-704 *3)))) (-2059 (*1 *2 *1) (-12 (-4 *2 (-704 *3)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1045)))))
-(-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1626 ($ |#1|)) (-15 -2059 (|#1| $))))
-((-1613 (((-1264) (-818) $ (-112)) 9) (((-1264) (-818) $) 8) (((-1152) $ (-112)) 7) (((-1152) $) 6)))
-(((-824) (-140)) (T -824))
-((-1613 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *4 (-112)) (-5 *2 (-1264)))) (-1613 (*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *2 (-1264)))) (-1613 (*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1152)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1152)))))
-(-13 (-10 -8 (-15 -1613 ((-1152) $)) (-15 -1613 ((-1152) $ (-112))) (-15 -1613 ((-1264) (-818) $)) (-15 -1613 ((-1264) (-818) $ (-112)))))
-((-4189 (((-312) (-1152) (-1152)) 12)) (-1378 (((-112) (-1152) (-1152)) 34)) (-3563 (((-112) (-1152)) 33)) (-1856 (((-52) (-1152)) 25)) (-3310 (((-52) (-1152)) 23)) (-1315 (((-52) (-818)) 17)) (-1579 (((-641 (-1152)) (-1152)) 28)) (-1609 (((-641 (-1152))) 27)))
-(((-825) (-10 -7 (-15 -1315 ((-52) (-818))) (-15 -3310 ((-52) (-1152))) (-15 -1856 ((-52) (-1152))) (-15 -1609 ((-641 (-1152)))) (-15 -1579 ((-641 (-1152)) (-1152))) (-15 -3563 ((-112) (-1152))) (-15 -1378 ((-112) (-1152) (-1152))) (-15 -4189 ((-312) (-1152) (-1152))))) (T -825))
-((-4189 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-825)))) (-1378 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-825)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-825)))) (-1579 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-825)) (-5 *3 (-1152)))) (-1609 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-825)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-825)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-825)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-825)))))
-(-10 -7 (-15 -1315 ((-52) (-818))) (-15 -3310 ((-52) (-1152))) (-15 -1856 ((-52) (-1152))) (-15 -1609 ((-641 (-1152)))) (-15 -1579 ((-641 (-1152)) (-1152))) (-15 -3563 ((-112) (-1152))) (-15 -1378 ((-112) (-1152) (-1152))) (-15 -4189 ((-312) (-1152) (-1152))))
-((-3009 (((-112) $ $) 19)) (-1682 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2340 (($ $ $) 73)) (-2521 (((-112) $ $) 74)) (-1876 (((-112) $ (-767)) 8)) (-1724 (($ (-641 |#1|)) 69) (($) 68)) (-1466 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2679 (($ $) 63)) (-2696 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1945 (($ |#1| $) 48 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4407)))) (-2591 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4407)))) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-2342 (((-112) $ $) 65)) (-3097 (((-112) $ (-767)) 9)) (-2855 ((|#1| $) 79)) (-2087 (($ $ $) 82)) (-3669 (($ $ $) 81)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1497 ((|#1| $) 80)) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22)) (-3888 (($ $ $) 70)) (-3149 ((|#1| $) 40)) (-2566 (($ |#1| $) 41) (($ |#1| $ (-767)) 64)) (-4052 (((-1114) $) 21)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-2680 (((-641 (-2 (|:| -3813 |#1|) (|:| -4062 (-767)))) $) 62)) (-2085 (($ $ |#1|) 72) (($ $ $) 71)) (-3853 (($) 50) (($ (-641 |#1|)) 49)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 51)) (-2423 (((-858) $) 18)) (-3755 (($ (-641 |#1|)) 67) (($) 66)) (-1860 (((-112) $ $) 23)) (-1863 (($ (-641 |#1|)) 43)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20)) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-826 |#1|) (-140) (-846)) (T -826))
-((-2855 (*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846)))))
-(-13 (-732 |t#1|) (-964 |t#1|) (-10 -8 (-15 -2855 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-691 |#1|) . T) ((-732 |#1|) . T) ((-964 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T))
-((-2237 (((-1264) (-1114) (-1114)) 48)) (-3911 (((-1264) (-817) (-52)) 45)) (-2491 (((-52) (-817)) 16)))
-(((-827) (-10 -7 (-15 -2491 ((-52) (-817))) (-15 -3911 ((-1264) (-817) (-52))) (-15 -2237 ((-1264) (-1114) (-1114))))) (T -827))
-((-2237 (*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-827)))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-827)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-827)))))
-(-10 -7 (-15 -2491 ((-52) (-817))) (-15 -3911 ((-1264) (-817) (-52))) (-15 -2237 ((-1264) (-1114) (-1114))))
-((-4357 (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)) 12) (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|)) 13)))
-(((-828 |#1| |#2|) (-10 -7 (-15 -4357 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -4357 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)))) (-1094) (-1094)) (T -828))
-((-4357 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-828 *5 *6)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6)))))
-(-10 -7 (-15 -4357 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -4357 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL (|has| |#1| (-21)))) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3249 (((-564) $) NIL (|has| |#1| (-844)))) (-4080 (($) NIL (|has| |#1| (-21)) CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 15)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 9)) (-3293 (((-3 $ "failed") $) 42 (|has| |#1| (-844)))) (-2450 (((-3 (-407 (-564)) "failed") $) 52 (|has| |#1| (-545)))) (-1364 (((-112) $) 46 (|has| |#1| (-545)))) (-2553 (((-407 (-564)) $) 49 (|has| |#1| (-545)))) (-2384 (((-112) $) NIL (|has| |#1| (-844)))) (-4112 (((-112) $) NIL (|has| |#1| (-844)))) (-3326 (((-112) $) NIL (|has| |#1| (-844)))) (-2855 (($ $ $) NIL (|has| |#1| (-844)))) (-1497 (($ $ $) NIL (|has| |#1| (-844)))) (-2766 (((-1152) $) NIL)) (-4282 (($) 13)) (-2976 (((-112) $) 12)) (-4052 (((-1114) $) NIL)) (-4008 (((-112) $) 11)) (-2423 (((-858) $) 18) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-2807 (|has| |#1| (-844)) (|has| |#1| (-1034 (-564)))))) (-3719 (((-767)) 36 (|has| |#1| (-844)) CONST)) (-1860 (((-112) $ $) NIL)) (-3673 (($ $) NIL (|has| |#1| (-844)))) (-2403 (($) 23 (|has| |#1| (-21)) CONST)) (-2417 (($) 33 (|has| |#1| (-844)) CONST)) (-3034 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2974 (((-112) $ $) 21)) (-3023 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2999 (((-112) $ $) 45 (|has| |#1| (-844)))) (-3082 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3070 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 39 (|has| |#1| (-844))) (($ (-564) $) 27 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21)))))
-(((-829 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -4282 ($)) (-15 -4008 ((-112) $)) (-15 -2976 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -1364 ((-112) $)) (-15 -2553 ((-407 (-564)) $)) (-15 -2450 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -829))
-((-4282 (*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1094)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1094)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1094)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2450 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))))
-(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -4282 ($)) (-15 -4008 ((-112) $)) (-15 -2976 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -1364 ((-112) $)) (-15 -2553 ((-407 (-564)) $)) (-15 -2450 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
-((-2423 (((-858) $) 11)))
-(((-830 |#1| |#2|) (-10 -8 (-15 -2423 ((-858) |#1|))) (-831 |#2|) (-1094)) (T -830))
-NIL
-(-10 -8 (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-2562 ((|#1| $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2524 (((-55) $) 14)) (-2974 (((-112) $ $) 6)))
-(((-831 |#1|) (-140) (-1094)) (T -831))
-((-2562 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1094)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1094)) (-5 *2 (-55)))))
-(-13 (-1094) (-10 -8 (-15 -2562 (|t#1| $)) (-15 -2524 ((-55) $))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3120 ((|#1| $) NIL) (((-114) $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-3112 ((|#1| (-114) |#1|) NIL)) (-4112 (((-112) $) NIL)) (-3121 (($ |#1| (-361 (-114))) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1978 (($ $ (-1 |#1| |#1|)) NIL)) (-3195 (($ $ (-1 |#1| |#1|)) NIL)) (-4366 ((|#1| $ |#1|) NIL)) (-4093 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-3527 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-832 |#1|) (-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3527 ($ $)) (-15 -3527 ($ $ $)) (-15 -4093 (|#1| |#1|))) |%noBranch|) (-15 -3195 ($ $ (-1 |#1| |#1|))) (-15 -1978 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3112 (|#1| (-114) |#1|)) (-15 -3121 ($ |#1| (-361 (-114)))))) (-1045)) (T -832))
-((-3527 (*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-3527 (*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-4093 (*1 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))) (-1978 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-832 *4)) (-4 *4 (-1045)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-832 *3)) (-4 *3 (-1045)))) (-3112 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-832 *2)) (-4 *2 (-1045)))) (-3121 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-832 *2)) (-4 *2 (-1045)))))
-(-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3527 ($ $)) (-15 -3527 ($ $ $)) (-15 -4093 (|#1| |#1|))) |%noBranch|) (-15 -3195 ($ $ (-1 |#1| |#1|))) (-15 -1978 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3112 (|#1| (-114) |#1|)) (-15 -3121 ($ |#1| (-361 (-114))))))
-((-2016 (((-214 (-502)) (-1152)) 9)))
-(((-833) (-10 -7 (-15 -2016 ((-214 (-502)) (-1152))))) (T -833))
-((-2016 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-833)))))
-(-10 -7 (-15 -2016 ((-214 (-502)) (-1152))))
-((-3009 (((-112) $ $) NIL)) (-1789 (((-1112) $) 10)) (-2562 (((-506) $) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2435 (($ (-506) (-1112)) 8)) (-2423 (((-858) $) 25)) (-1860 (((-112) $ $) NIL)) (-2524 (((-55) $) 20)) (-2974 (((-112) $ $) 12)))
-(((-834) (-13 (-831 (-506)) (-10 -8 (-15 -1789 ((-1112) $)) (-15 -2435 ($ (-506) (-1112)))))) (T -834))
-((-1789 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-834)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-834)))))
-(-13 (-831 (-506)) (-10 -8 (-15 -1789 ((-1112) $)) (-15 -2435 ($ (-506) (-1112)))))
-((-3009 (((-112) $ $) 7)) (-4033 (((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) 15) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 14)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 17) (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) 16)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
-(((-835) (-140)) (T -835))
-((-3644 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (-5 *2 (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)))))) (-3644 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) (-5 *2 (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)))))) (-4033 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) (-5 *2 (-1031)))) (-4033 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (-5 *2 (-1031)))))
-(-13 (-1094) (-10 -7 (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) (-15 -4033 ((-1031) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) (-15 -4033 ((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-1823 (((-1031) (-641 (-316 (-379))) (-641 (-379))) 169) (((-1031) (-316 (-379)) (-641 (-379))) 167) (((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-839 (-379)))) 165) (((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-316 (-379))) (-641 (-839 (-379)))) 163) (((-1031) (-837)) 128) (((-1031) (-837) (-1057)) 127)) (-3644 (((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837) (-1057)) 88) (((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837)) 90)) (-2895 (((-1031) (-641 (-316 (-379))) (-641 (-379))) 170) (((-1031) (-837)) 153)))
-(((-836) (-10 -7 (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837) (-1057))) (-15 -1823 ((-1031) (-837) (-1057))) (-15 -1823 ((-1031) (-837))) (-15 -2895 ((-1031) (-837))) (-15 -1823 ((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-316 (-379))) (-641 (-839 (-379))))) (-15 -1823 ((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-839 (-379))))) (-15 -1823 ((-1031) (-316 (-379)) (-641 (-379)))) (-15 -1823 ((-1031) (-641 (-316 (-379))) (-641 (-379)))) (-15 -2895 ((-1031) (-641 (-316 (-379))) (-641 (-379)))))) (T -836))
-((-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1823 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *5 (-641 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1823 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-839 (-379)))) (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2895 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-836)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-836)))))
-(-10 -7 (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-837) (-1057))) (-15 -1823 ((-1031) (-837) (-1057))) (-15 -1823 ((-1031) (-837))) (-15 -2895 ((-1031) (-837))) (-15 -1823 ((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-316 (-379))) (-641 (-839 (-379))))) (-15 -1823 ((-1031) (-316 (-379)) (-641 (-379)) (-641 (-839 (-379))) (-641 (-839 (-379))))) (-15 -1823 ((-1031) (-316 (-379)) (-641 (-379)))) (-15 -1823 ((-1031) (-641 (-316 (-379))) (-641 (-379)))) (-15 -2895 ((-1031) (-641 (-316 (-379))) (-641 (-379)))))
-((-3009 (((-112) $ $) NIL)) (-3120 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) $) 21)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) 14) (($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))))) 18)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-837) (-13 (-1094) (-10 -8 (-15 -2423 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))) (-15 -2423 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) (-15 -2423 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))))) (-15 -3120 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) $))))) (T -837))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (-5 *1 (-837)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))) (-5 *1 (-837)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))))) (-5 *1 (-837)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225))))))) (-5 *1 (-837)))))
-(-13 (-1094) (-10 -8 (-15 -2423 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225))))))) (-15 -2423 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) (-15 -2423 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))))) (-15 -3120 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225))) (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))) $))))
-((-4357 (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)) 13) (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|)) 14)))
-(((-838 |#1| |#2|) (-10 -7 (-15 -4357 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -4357 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)))) (-1094) (-1094)) (T -838))
-((-4357 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-838 *5 *6)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6)))))
-(-10 -7 (-15 -4357 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -4357 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL (|has| |#1| (-21)))) (-3798 (((-1114) $) 31)) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3249 (((-564) $) NIL (|has| |#1| (-844)))) (-4080 (($) NIL (|has| |#1| (-21)) CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 18)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 9)) (-3293 (((-3 $ "failed") $) 56 (|has| |#1| (-844)))) (-2450 (((-3 (-407 (-564)) "failed") $) 63 (|has| |#1| (-545)))) (-1364 (((-112) $) 58 (|has| |#1| (-545)))) (-2553 (((-407 (-564)) $) 61 (|has| |#1| (-545)))) (-2384 (((-112) $) NIL (|has| |#1| (-844)))) (-2913 (($) 14)) (-4112 (((-112) $) NIL (|has| |#1| (-844)))) (-3326 (((-112) $) NIL (|has| |#1| (-844)))) (-2926 (($) 16)) (-2855 (($ $ $) NIL (|has| |#1| (-844)))) (-1497 (($ $ $) NIL (|has| |#1| (-844)))) (-2766 (((-1152) $) NIL)) (-2976 (((-112) $) 12)) (-4052 (((-1114) $) NIL)) (-4008 (((-112) $) 11)) (-2423 (((-858) $) 24) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-2807 (|has| |#1| (-844)) (|has| |#1| (-1034 (-564)))))) (-3719 (((-767)) 50 (|has| |#1| (-844)) CONST)) (-1860 (((-112) $ $) NIL)) (-3673 (($ $) NIL (|has| |#1| (-844)))) (-2403 (($) 37 (|has| |#1| (-21)) CONST)) (-2417 (($) 47 (|has| |#1| (-844)) CONST)) (-3034 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2974 (((-112) $ $) 35)) (-3023 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2999 (((-112) $ $) 57 (|has| |#1| (-844)))) (-3082 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3070 (($ $ $) 45 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 53 (|has| |#1| (-844))) (($ (-564) $) 41 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21)))))
-(((-839 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -2913 ($)) (-15 -2926 ($)) (-15 -4008 ((-112) $)) (-15 -2976 ((-112) $)) (-15 -3798 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -1364 ((-112) $)) (-15 -2553 ((-407 (-564)) $)) (-15 -2450 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -839))
-((-2913 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1094)))) (-2926 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1094)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1094)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1094)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-839 *3)) (-4 *3 (-1094)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2450 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))))
-(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -2913 ($)) (-15 -2926 ($)) (-15 -4008 ((-112) $)) (-15 -2976 ((-112) $)) (-15 -3798 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -1364 ((-112) $)) (-15 -2553 ((-407 (-564)) $)) (-15 -2450 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
-((-3009 (((-112) $ $) 7)) (-2622 (((-767)) 23)) (-2534 (($) 26)) (-2855 (($ $ $) 14) (($) 22 T CONST)) (-1497 (($ $ $) 15) (($) 21 T CONST)) (-3256 (((-917) $) 25)) (-2766 (((-1152) $) 10)) (-2083 (($ (-917)) 24)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)))
-(((-840) (-140)) (T -840))
-((-2855 (*1 *1) (-4 *1 (-840))) (-1497 (*1 *1) (-4 *1 (-840))))
-(-13 (-846) (-368) (-10 -8 (-15 -2855 ($) -2959) (-15 -1497 ($) -2959)))
-(((-102) . T) ((-611 (-858)) . T) ((-368) . T) ((-846) . T) ((-1094) . T))
-((-2212 (((-112) (-1259 |#2|) (-1259 |#2|)) 23)) (-3376 (((-112) (-1259 |#2|) (-1259 |#2|)) 24)) (-1791 (((-112) (-1259 |#2|) (-1259 |#2|)) 20)))
-(((-841 |#1| |#2|) (-10 -7 (-15 -1791 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -2212 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -3376 ((-112) (-1259 |#2|) (-1259 |#2|)))) (-767) (-788)) (T -841))
-((-3376 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-2212 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-1791 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))))
-(-10 -7 (-15 -1791 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -2212 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -3376 ((-112) (-1259 |#2|) (-1259 |#2|))))
-((-3009 (((-112) $ $) 7)) (-4080 (($) 24 T CONST)) (-3293 (((-3 $ "failed") $) 27)) (-4112 (((-112) $) 25)) (-2855 (($ $ $) 14)) (-1497 (($ $ $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2417 (($) 23 T CONST)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)) (** (($ $ (-917)) 22) (($ $ (-767)) 26)) (* (($ $ $) 21)))
+((-2907 (((-112) $ $) NIL)) (-2961 (((-642 |#1|) $) 38)) (-2521 (((-769) $) NIL)) (-1976 (($) NIL T CONST)) (-3842 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-2570 (($ $) 42)) (-3104 (((-3 $ "failed") $) NIL)) (-2489 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3953 (((-112) $) NIL)) (-2123 ((|#1| $ (-564)) NIL)) (-2659 (((-769) $ (-564)) NIL)) (-3298 (($ $) 52)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-4093 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-1894 (((-112) $ $) 50)) (-2480 (((-769) $) 34)) (-3315 (((-1155) $) NIL)) (-2267 (($ $ $) NIL)) (-1615 (($ $ $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 ((|#1| $) 41)) (-2649 (((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-769)))) $) NIL)) (-2882 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2327 (((-860) $) NIL) (($ |#1|) NIL)) (-1648 (((-112) $ $) NIL)) (-2322 (($) 20 T CONST)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 51)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ |#1| (-769)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-817 |#1|) (-13 (-844) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-769))) (-15 -2557 (|#1| $)) (-15 -2570 ($ $)) (-15 -3298 ($ $)) (-15 -1894 ((-112) $ $)) (-15 -1615 ($ $ $)) (-15 -2267 ($ $ $)) (-15 -4093 ((-3 $ "failed") $ $)) (-15 -3842 ((-3 $ "failed") $ $)) (-15 -4093 ((-3 $ "failed") $ |#1|)) (-15 -3842 ((-3 $ "failed") $ |#1|)) (-15 -2882 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2489 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2521 ((-769) $)) (-15 -2659 ((-769) $ (-564))) (-15 -2123 (|#1| $ (-564))) (-15 -2649 ((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-769)))) $)) (-15 -2480 ((-769) $)) (-15 -2961 ((-642 |#1|) $)))) (-848)) (T -817))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-2557 (*1 *2 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-2570 (*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-3298 (*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-1615 (*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-2267 (*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-4093 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-3842 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-4093 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-3842 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-2882 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-817 *3)) (|:| |rm| (-817 *3)))) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-2489 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-817 *3)) (|:| |mm| (-817 *3)) (|:| |rm| (-817 *3)))) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-2659 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-769)) (-5 *1 (-817 *4)) (-4 *4 (-848)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-817 *2)) (-4 *2 (-848)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 (-769))))) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-817 *3)) (-4 *3 (-848)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-817 *3)) (-4 *3 (-848)))))
+(-13 (-844) (-1036 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-769))) (-15 -2557 (|#1| $)) (-15 -2570 ($ $)) (-15 -3298 ($ $)) (-15 -1894 ((-112) $ $)) (-15 -1615 ($ $ $)) (-15 -2267 ($ $ $)) (-15 -4093 ((-3 $ "failed") $ $)) (-15 -3842 ((-3 $ "failed") $ $)) (-15 -4093 ((-3 $ "failed") $ |#1|)) (-15 -3842 ((-3 $ "failed") $ |#1|)) (-15 -2882 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2489 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2521 ((-769) $)) (-15 -2659 ((-769) $ (-564))) (-15 -2123 (|#1| $ (-564))) (-15 -2649 ((-642 (-2 (|:| |gen| |#1|) (|:| -1723 (-769)))) $)) (-15 -2480 ((-769) $)) (-15 -2961 ((-642 |#1|) $))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-2959 (((-564) $) 59)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-2538 (((-112) $) 57)) (-3953 (((-112) $) 35)) (-3333 (((-112) $) 58)) (-2755 (($ $ $) 56)) (-1520 (($ $ $) 55)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2896 (((-3 $ "failed") $ $) 48)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-1381 (($ $) 60)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2934 (((-112) $ $) 53)) (-2908 (((-112) $ $) 52)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 54)) (-2897 (((-112) $ $) 51)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-818) (-140)) (T -818))
+NIL
+(-13 (-556) (-846))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-846) . T) ((-848) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-1850 (($ (-1117)) 7)) (-1743 (((-112) $ (-1155) (-1117)) 15)) (-2763 (((-820) $) 12)) (-4207 (((-820) $) 11)) (-4390 (((-1267) $) 9)) (-2308 (((-112) $ (-1117)) 16)))
+(((-819) (-10 -8 (-15 -1850 ($ (-1117))) (-15 -4390 ((-1267) $)) (-15 -4207 ((-820) $)) (-15 -2763 ((-820) $)) (-15 -1743 ((-112) $ (-1155) (-1117))) (-15 -2308 ((-112) $ (-1117))))) (T -819))
+((-2308 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-112)) (-5 *1 (-819)))) (-1743 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-819)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819)))) (-4390 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-819)))) (-1850 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-819)))))
+(-10 -8 (-15 -1850 ($ (-1117))) (-15 -4390 ((-1267) $)) (-15 -4207 ((-820) $)) (-15 -2763 ((-820) $)) (-15 -1743 ((-112) $ (-1155) (-1117))) (-15 -2308 ((-112) $ (-1117))))
+((-3487 (((-1267) $ (-821)) 12)) (-1961 (((-1267) $ (-1173)) 32)) (-2261 (((-1267) $ (-1155) (-1155)) 34)) (-3942 (((-1267) $ (-1155)) 33)) (-3258 (((-1267) $) 19)) (-3937 (((-1267) $ (-564)) 28)) (-2274 (((-1267) $ (-225)) 30)) (-2380 (((-1267) $) 18)) (-2704 (((-1267) $) 26)) (-3520 (((-1267) $) 25)) (-4065 (((-1267) $) 23)) (-1887 (((-1267) $) 24)) (-1595 (((-1267) $) 22)) (-4320 (((-1267) $) 21)) (-3915 (((-1267) $) 20)) (-2758 (((-1267) $) 16)) (-2091 (((-1267) $) 17)) (-3475 (((-1267) $) 15)) (-3924 (((-1267) $) 14)) (-2220 (((-1267) $) 13)) (-1417 (($ (-1155) (-821)) 9)) (-4164 (($ (-1155) (-1155) (-821)) 8)) (-1871 (((-1173) $) 51)) (-3536 (((-1173) $) 55)) (-3226 (((-2 (|:| |cd| (-1155)) (|:| -2461 (-1155))) $) 54)) (-2565 (((-1155) $) 52)) (-2200 (((-1267) $) 41)) (-3373 (((-564) $) 49)) (-3729 (((-225) $) 50)) (-1931 (((-1267) $) 40)) (-3642 (((-1267) $) 48)) (-1893 (((-1267) $) 47)) (-2419 (((-1267) $) 45)) (-1453 (((-1267) $) 46)) (-3940 (((-1267) $) 44)) (-2970 (((-1267) $) 43)) (-2596 (((-1267) $) 42)) (-2238 (((-1267) $) 38)) (-2157 (((-1267) $) 39)) (-1801 (((-1267) $) 37)) (-2368 (((-1267) $) 36)) (-1494 (((-1267) $) 35)) (-3847 (((-1267) $) 11)))
+(((-820) (-10 -8 (-15 -4164 ($ (-1155) (-1155) (-821))) (-15 -1417 ($ (-1155) (-821))) (-15 -3847 ((-1267) $)) (-15 -3487 ((-1267) $ (-821))) (-15 -2220 ((-1267) $)) (-15 -3924 ((-1267) $)) (-15 -3475 ((-1267) $)) (-15 -2758 ((-1267) $)) (-15 -2091 ((-1267) $)) (-15 -2380 ((-1267) $)) (-15 -3258 ((-1267) $)) (-15 -3915 ((-1267) $)) (-15 -4320 ((-1267) $)) (-15 -1595 ((-1267) $)) (-15 -4065 ((-1267) $)) (-15 -1887 ((-1267) $)) (-15 -3520 ((-1267) $)) (-15 -2704 ((-1267) $)) (-15 -3937 ((-1267) $ (-564))) (-15 -2274 ((-1267) $ (-225))) (-15 -1961 ((-1267) $ (-1173))) (-15 -3942 ((-1267) $ (-1155))) (-15 -2261 ((-1267) $ (-1155) (-1155))) (-15 -1494 ((-1267) $)) (-15 -2368 ((-1267) $)) (-15 -1801 ((-1267) $)) (-15 -2238 ((-1267) $)) (-15 -2157 ((-1267) $)) (-15 -1931 ((-1267) $)) (-15 -2200 ((-1267) $)) (-15 -2596 ((-1267) $)) (-15 -2970 ((-1267) $)) (-15 -3940 ((-1267) $)) (-15 -2419 ((-1267) $)) (-15 -1453 ((-1267) $)) (-15 -1893 ((-1267) $)) (-15 -3642 ((-1267) $)) (-15 -3373 ((-564) $)) (-15 -3729 ((-225) $)) (-15 -1871 ((-1173) $)) (-15 -2565 ((-1155) $)) (-15 -3226 ((-2 (|:| |cd| (-1155)) (|:| -2461 (-1155))) $)) (-15 -3536 ((-1173) $)))) (T -820))
+((-3536 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-820)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1155)) (|:| -2461 (-1155)))) (-5 *1 (-820)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-820)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-820)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-820)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-820)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2261 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-2274 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-3937 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-3487 (*1 *2 *1 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1267)) (-5 *1 (-820)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))) (-1417 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-821)) (-5 *1 (-820)))) (-4164 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-821)) (-5 *1 (-820)))))
+(-10 -8 (-15 -4164 ($ (-1155) (-1155) (-821))) (-15 -1417 ($ (-1155) (-821))) (-15 -3847 ((-1267) $)) (-15 -3487 ((-1267) $ (-821))) (-15 -2220 ((-1267) $)) (-15 -3924 ((-1267) $)) (-15 -3475 ((-1267) $)) (-15 -2758 ((-1267) $)) (-15 -2091 ((-1267) $)) (-15 -2380 ((-1267) $)) (-15 -3258 ((-1267) $)) (-15 -3915 ((-1267) $)) (-15 -4320 ((-1267) $)) (-15 -1595 ((-1267) $)) (-15 -4065 ((-1267) $)) (-15 -1887 ((-1267) $)) (-15 -3520 ((-1267) $)) (-15 -2704 ((-1267) $)) (-15 -3937 ((-1267) $ (-564))) (-15 -2274 ((-1267) $ (-225))) (-15 -1961 ((-1267) $ (-1173))) (-15 -3942 ((-1267) $ (-1155))) (-15 -2261 ((-1267) $ (-1155) (-1155))) (-15 -1494 ((-1267) $)) (-15 -2368 ((-1267) $)) (-15 -1801 ((-1267) $)) (-15 -2238 ((-1267) $)) (-15 -2157 ((-1267) $)) (-15 -1931 ((-1267) $)) (-15 -2200 ((-1267) $)) (-15 -2596 ((-1267) $)) (-15 -2970 ((-1267) $)) (-15 -3940 ((-1267) $)) (-15 -2419 ((-1267) $)) (-15 -1453 ((-1267) $)) (-15 -1893 ((-1267) $)) (-15 -3642 ((-1267) $)) (-15 -3373 ((-564) $)) (-15 -3729 ((-225) $)) (-15 -1871 ((-1173) $)) (-15 -2565 ((-1155) $)) (-15 -3226 ((-2 (|:| |cd| (-1155)) (|:| -2461 (-1155))) $)) (-15 -3536 ((-1173) $)))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 13)) (-1648 (((-112) $ $) NIL)) (-2794 (($) 16)) (-2849 (($) 14)) (-3381 (($) 17)) (-2194 (($) 15)) (-2872 (((-112) $ $) 9)))
+(((-821) (-13 (-1097) (-10 -8 (-15 -2849 ($)) (-15 -2794 ($)) (-15 -3381 ($)) (-15 -2194 ($))))) (T -821))
+((-2849 (*1 *1) (-5 *1 (-821))) (-2794 (*1 *1) (-5 *1 (-821))) (-3381 (*1 *1) (-5 *1 (-821))) (-2194 (*1 *1) (-5 *1 (-821))))
+(-13 (-1097) (-10 -8 (-15 -2849 ($)) (-15 -2794 ($)) (-15 -3381 ($)) (-15 -2194 ($))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 23) (($ (-1173)) 19)) (-1648 (((-112) $ $) NIL)) (-2011 (((-112) $) 10)) (-4342 (((-112) $) 9)) (-3042 (((-112) $) 11)) (-4037 (((-112) $) 8)) (-2872 (((-112) $ $) 21)))
+(((-822) (-13 (-1097) (-10 -8 (-15 -2327 ($ (-1173))) (-15 -4037 ((-112) $)) (-15 -4342 ((-112) $)) (-15 -2011 ((-112) $)) (-15 -3042 ((-112) $))))) (T -822))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-822)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))) (-4342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))))
+(-13 (-1097) (-10 -8 (-15 -2327 ($ (-1173))) (-15 -4037 ((-112) $)) (-15 -4342 ((-112) $)) (-15 -2011 ((-112) $)) (-15 -3042 ((-112) $))))
+((-2907 (((-112) $ $) NIL)) (-2857 (($ (-822) (-642 (-1173))) 32)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3954 (((-822) $) 33)) (-2634 (((-642 (-1173)) $) 34)) (-2327 (((-860) $) 31)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-823) (-13 (-1097) (-10 -8 (-15 -3954 ((-822) $)) (-15 -2634 ((-642 (-1173)) $)) (-15 -2857 ($ (-822) (-642 (-1173))))))) (T -823))
+((-3954 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-823)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-823)))) (-2857 (*1 *1 *2 *3) (-12 (-5 *2 (-822)) (-5 *3 (-642 (-1173))) (-5 *1 (-823)))))
+(-13 (-1097) (-10 -8 (-15 -3954 ((-822) $)) (-15 -2634 ((-642 (-1173)) $)) (-15 -2857 ($ (-822) (-642 (-1173))))))
+((-1605 (((-1267) (-820) (-316 |#1|) (-112)) 24) (((-1267) (-820) (-316 |#1|)) 90) (((-1155) (-316 |#1|) (-112)) 89) (((-1155) (-316 |#1|)) 88)))
+(((-824 |#1|) (-10 -7 (-15 -1605 ((-1155) (-316 |#1|))) (-15 -1605 ((-1155) (-316 |#1|) (-112))) (-15 -1605 ((-1267) (-820) (-316 |#1|))) (-15 -1605 ((-1267) (-820) (-316 |#1|) (-112)))) (-13 (-826) (-1047))) (T -824))
+((-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-826) (-1047))) (-5 *2 (-1267)) (-5 *1 (-824 *6)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-826) (-1047))) (-5 *2 (-1267)) (-5 *1 (-824 *5)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-826) (-1047))) (-5 *2 (-1155)) (-5 *1 (-824 *5)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-826) (-1047))) (-5 *2 (-1155)) (-5 *1 (-824 *4)))))
+(-10 -7 (-15 -1605 ((-1155) (-316 |#1|))) (-15 -1605 ((-1155) (-316 |#1|) (-112))) (-15 -1605 ((-1267) (-820) (-316 |#1|))) (-15 -1605 ((-1267) (-820) (-316 |#1|) (-112))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2510 ((|#1| $) 10)) (-1660 (($ |#1|) 9)) (-3953 (((-112) $) NIL)) (-3774 (($ |#2| (-769)) NIL)) (-1398 (((-769) $) NIL)) (-3962 ((|#2| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3175 (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2775 (((-769) $) NIL)) (-2327 (((-860) $) 17) (($ (-564)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-2102 ((|#2| $ (-769)) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-825 |#1| |#2|) (-13 (-706 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1660 ($ |#1|)) (-15 -2510 (|#1| $)))) (-706 |#2|) (-1047)) (T -825))
+((-1660 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-825 *2 *3)) (-4 *2 (-706 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *2 (-706 *3)) (-5 *1 (-825 *2 *3)) (-4 *3 (-1047)))))
+(-13 (-706 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1660 ($ |#1|)) (-15 -2510 (|#1| $))))
+((-1605 (((-1267) (-820) $ (-112)) 9) (((-1267) (-820) $) 8) (((-1155) $ (-112)) 7) (((-1155) $) 6)))
+(((-826) (-140)) (T -826))
+((-1605 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-826)) (-5 *3 (-820)) (-5 *4 (-112)) (-5 *2 (-1267)))) (-1605 (*1 *2 *3 *1) (-12 (-4 *1 (-826)) (-5 *3 (-820)) (-5 *2 (-1267)))) (-1605 (*1 *2 *1 *3) (-12 (-4 *1 (-826)) (-5 *3 (-112)) (-5 *2 (-1155)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-826)) (-5 *2 (-1155)))))
+(-13 (-10 -8 (-15 -1605 ((-1155) $)) (-15 -1605 ((-1155) $ (-112))) (-15 -1605 ((-1267) (-820) $)) (-15 -1605 ((-1267) (-820) $ (-112)))))
+((-3891 (((-312) (-1155) (-1155)) 12)) (-3714 (((-112) (-1155) (-1155)) 34)) (-1817 (((-112) (-1155)) 33)) (-1350 (((-52) (-1155)) 25)) (-2481 (((-52) (-1155)) 23)) (-2851 (((-52) (-820)) 17)) (-1775 (((-642 (-1155)) (-1155)) 28)) (-2824 (((-642 (-1155))) 27)))
+(((-827) (-10 -7 (-15 -2851 ((-52) (-820))) (-15 -2481 ((-52) (-1155))) (-15 -1350 ((-52) (-1155))) (-15 -2824 ((-642 (-1155)))) (-15 -1775 ((-642 (-1155)) (-1155))) (-15 -1817 ((-112) (-1155))) (-15 -3714 ((-112) (-1155) (-1155))) (-15 -3891 ((-312) (-1155) (-1155))))) (T -827))
+((-3891 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-827)))) (-3714 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-112)) (-5 *1 (-827)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-112)) (-5 *1 (-827)))) (-1775 (*1 *2 *3) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-827)) (-5 *3 (-1155)))) (-2824 (*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-827)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-827)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-827)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-52)) (-5 *1 (-827)))))
+(-10 -7 (-15 -2851 ((-52) (-820))) (-15 -2481 ((-52) (-1155))) (-15 -1350 ((-52) (-1155))) (-15 -2824 ((-642 (-1155)))) (-15 -1775 ((-642 (-1155)) (-1155))) (-15 -1817 ((-112) (-1155))) (-15 -3714 ((-112) (-1155) (-1155))) (-15 -3891 ((-312) (-1155) (-1155))))
+((-2907 (((-112) $ $) 19)) (-1717 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2633 (($ $ $) 73)) (-2869 (((-112) $ $) 74)) (-3697 (((-112) $ (-769)) 8)) (-1754 (($ (-642 |#1|)) 69) (($) 68)) (-2462 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-1938 (($ $) 63)) (-2595 (($ $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2265 (($ |#1| $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4410)))) (-2490 (($ |#1| $) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4410)))) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1899 (((-112) $ $) 65)) (-3462 (((-112) $ (-769)) 9)) (-2755 ((|#1| $) 79)) (-3427 (($ $ $) 82)) (-2740 (($ $ $) 81)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1520 ((|#1| $) 80)) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22)) (-2452 (($ $ $) 70)) (-2730 ((|#1| $) 40)) (-3183 (($ |#1| $) 41) (($ |#1| $ (-769)) 64)) (-4033 (((-1117) $) 21)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4381 (((-642 (-2 (|:| -3778 |#1|) (|:| -4043 (-769)))) $) 62)) (-1438 (($ $ |#1|) 72) (($ $ $) 71)) (-2593 (($) 50) (($ (-642 |#1|)) 49)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 51)) (-2327 (((-860) $) 18)) (-3715 (($ (-642 |#1|)) 67) (($) 66)) (-1648 (((-112) $ $) 23)) (-4386 (($ (-642 |#1|)) 43)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20)) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-828 |#1|) (-140) (-848)) (T -828))
+((-2755 (*1 *2 *1) (-12 (-4 *1 (-828 *2)) (-4 *2 (-848)))))
+(-13 (-734 |t#1|) (-966 |t#1|) (-10 -8 (-15 -2755 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-693 |#1|) . T) ((-734 |#1|) . T) ((-966 |#1|) . T) ((-1095 |#1|) . T) ((-1097) . T) ((-1212) . T))
+((-3301 (((-1267) (-1117) (-1117)) 48)) (-1906 (((-1267) (-819) (-52)) 45)) (-2711 (((-52) (-819)) 16)))
+(((-829) (-10 -7 (-15 -2711 ((-52) (-819))) (-15 -1906 ((-1267) (-819) (-52))) (-15 -3301 ((-1267) (-1117) (-1117))))) (T -829))
+((-3301 (*1 *2 *3 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1267)) (-5 *1 (-829)))) (-1906 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-52)) (-5 *2 (-1267)) (-5 *1 (-829)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-829)))))
+(-10 -7 (-15 -2711 ((-52) (-819))) (-15 -1906 ((-1267) (-819) (-52))) (-15 -3301 ((-1267) (-1117) (-1117))))
+((-4358 (((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|) (-831 |#2|)) 12) (((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|)) 13)))
+(((-830 |#1| |#2|) (-10 -7 (-15 -4358 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|))) (-15 -4358 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|) (-831 |#2|)))) (-1097) (-1097)) (T -830))
+((-4358 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-831 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *1 (-830 *5 *6)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-831 *6)) (-5 *1 (-830 *5 *6)))))
+(-10 -7 (-15 -4358 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|))) (-15 -4358 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|) (-831 |#2|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL (|has| |#1| (-21)))) (-1532 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2959 (((-564) $) NIL (|has| |#1| (-846)))) (-1976 (($) NIL (|has| |#1| (-21)) CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 15)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 9)) (-3104 (((-3 $ "failed") $) 42 (|has| |#1| (-846)))) (-3838 (((-3 (-407 (-564)) "failed") $) 52 (|has| |#1| (-545)))) (-2881 (((-112) $) 46 (|has| |#1| (-545)))) (-4034 (((-407 (-564)) $) 49 (|has| |#1| (-545)))) (-2538 (((-112) $) NIL (|has| |#1| (-846)))) (-3953 (((-112) $) NIL (|has| |#1| (-846)))) (-3333 (((-112) $) NIL (|has| |#1| (-846)))) (-2755 (($ $ $) NIL (|has| |#1| (-846)))) (-1520 (($ $ $) NIL (|has| |#1| (-846)))) (-3315 (((-1155) $) NIL)) (-4275 (($) 13)) (-3465 (((-112) $) 12)) (-4033 (((-1117) $) NIL)) (-2574 (((-112) $) 11)) (-2327 (((-860) $) 18) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-2706 (|has| |#1| (-846)) (|has| |#1| (-1036 (-564)))))) (-2756 (((-769)) 36 (|has| |#1| (-846)) CONST)) (-1648 (((-112) $ $) 54)) (-1381 (($ $) NIL (|has| |#1| (-846)))) (-2312 (($) 23 (|has| |#1| (-21)) CONST)) (-2322 (($) 33 (|has| |#1| (-846)) CONST)) (-2934 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2872 (((-112) $ $) 21)) (-2922 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2897 (((-112) $ $) 45 (|has| |#1| (-846)))) (-2987 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-2974 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-919)) NIL (|has| |#1| (-846))) (($ $ (-769)) NIL (|has| |#1| (-846)))) (* (($ $ $) 39 (|has| |#1| (-846))) (($ (-564) $) 27 (|has| |#1| (-21))) (($ (-769) $) NIL (|has| |#1| (-21))) (($ (-919) $) NIL (|has| |#1| (-21)))))
+(((-831 |#1|) (-13 (-1097) (-411 |#1|) (-10 -8 (-15 -4275 ($)) (-15 -2574 ((-112) $)) (-15 -3465 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2881 ((-112) $)) (-15 -4034 ((-407 (-564)) $)) (-15 -3838 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1097)) (T -831))
+((-4275 (*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1097)))) (-2574 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-1097)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-1097)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-831 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))) (-3838 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-831 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))))
+(-13 (-1097) (-411 |#1|) (-10 -8 (-15 -4275 ($)) (-15 -2574 ((-112) $)) (-15 -3465 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2881 ((-112) $)) (-15 -4034 ((-407 (-564)) $)) (-15 -3838 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
+((-1523 (((-112) $ |#2|) 14)) (-2327 (((-860) $) 11)))
+(((-832 |#1| |#2|) (-10 -8 (-15 -1523 ((-112) |#1| |#2|)) (-15 -2327 ((-860) |#1|))) (-833 |#2|) (-1097)) (T -832))
+NIL
+(-10 -8 (-15 -1523 ((-112) |#1| |#2|)) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2461 ((|#1| $) 16)) (-3315 (((-1155) $) 10)) (-1523 (((-112) $ |#1|) 14)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-3055 (((-55) $) 15)) (-2872 (((-112) $ $) 6)))
+(((-833 |#1|) (-140) (-1097)) (T -833))
+((-2461 (*1 *2 *1) (-12 (-4 *1 (-833 *2)) (-4 *2 (-1097)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-833 *3)) (-4 *3 (-1097)) (-5 *2 (-55)))) (-1523 (*1 *2 *1 *3) (-12 (-4 *1 (-833 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))))
+(-13 (-1097) (-10 -8 (-15 -2461 (|t#1| $)) (-15 -3055 ((-55) $)) (-15 -1523 ((-112) $ |t#1|))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3027 ((|#1| $) NIL) (((-114) $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3748 ((|#1| (-114) |#1|) NIL)) (-3953 (((-112) $) NIL)) (-1863 (($ |#1| (-361 (-114))) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2459 (($ $ (-1 |#1| |#1|)) NIL)) (-2180 (($ $ (-1 |#1| |#1|)) NIL)) (-4368 ((|#1| $ |#1|) NIL)) (-2330 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-3899 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-834 |#1|) (-13 (-1047) (-1036 |#1|) (-1036 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3899 ($ $)) (-15 -3899 ($ $ $)) (-15 -2330 (|#1| |#1|))) |%noBranch|) (-15 -2180 ($ $ (-1 |#1| |#1|))) (-15 -2459 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3748 (|#1| (-114) |#1|)) (-15 -1863 ($ |#1| (-361 (-114)))))) (-1047)) (T -834))
+((-3899 (*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) (-3899 (*1 *1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) (-2330 (*1 *2 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-834 *3)))) (-2459 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-834 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-834 *4)) (-4 *4 (-1047)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-834 *3)) (-4 *3 (-1047)))) (-3748 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-834 *2)) (-4 *2 (-1047)))) (-1863 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-834 *2)) (-4 *2 (-1047)))))
+(-13 (-1047) (-1036 |#1|) (-1036 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3899 ($ $)) (-15 -3899 ($ $ $)) (-15 -2330 (|#1| |#1|))) |%noBranch|) (-15 -2180 ($ $ (-1 |#1| |#1|))) (-15 -2459 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3748 (|#1| (-114) |#1|)) (-15 -1863 ($ |#1| (-361 (-114))))))
+((-3294 (((-214 (-502)) (-1155)) 9)))
+(((-835) (-10 -7 (-15 -3294 ((-214 (-502)) (-1155))))) (T -835))
+((-3294 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-214 (-502))) (-5 *1 (-835)))))
+(-10 -7 (-15 -3294 ((-214 (-502)) (-1155))))
+((-2907 (((-112) $ $) NIL)) (-1812 (((-1115) $) 10)) (-2461 (((-506) $) 9)) (-3315 (((-1155) $) NIL)) (-1523 (((-112) $ (-506)) NIL)) (-4033 (((-1117) $) NIL)) (-2337 (($ (-506) (-1115)) 8)) (-2327 (((-860) $) 25)) (-1648 (((-112) $ $) NIL)) (-3055 (((-55) $) 20)) (-2872 (((-112) $ $) 12)))
+(((-836) (-13 (-833 (-506)) (-10 -8 (-15 -1812 ((-1115) $)) (-15 -2337 ($ (-506) (-1115)))))) (T -836))
+((-1812 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-836)))) (-2337 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1115)) (-5 *1 (-836)))))
+(-13 (-833 (-506)) (-10 -8 (-15 -1812 ((-1115) $)) (-15 -2337 ($ (-506) (-1115)))))
+((-2907 (((-112) $ $) 7)) (-1916 (((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) 15) (((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 14)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 17) (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) 16)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
+(((-837) (-140)) (T -837))
+((-3978 (*1 *2 *3 *4) (-12 (-4 *1 (-837)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (-5 *2 (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)))))) (-3978 (*1 *2 *3 *4) (-12 (-4 *1 (-837)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) (-5 *2 (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)))))) (-1916 (*1 *2 *3) (-12 (-4 *1 (-837)) (-5 *3 (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) (-5 *2 (-1033)))) (-1916 (*1 *2 *3) (-12 (-4 *1 (-837)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (-5 *2 (-1033)))))
+(-13 (-1097) (-10 -7 (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) (-15 -1916 ((-1033) (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) (-15 -1916 ((-1033) (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-1841 (((-1033) (-642 (-316 (-379))) (-642 (-379))) 169) (((-1033) (-316 (-379)) (-642 (-379))) 167) (((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-841 (-379)))) 165) (((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-316 (-379))) (-642 (-841 (-379)))) 163) (((-1033) (-839)) 128) (((-1033) (-839) (-1060)) 127)) (-3978 (((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839) (-1060)) 88) (((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839)) 90)) (-1553 (((-1033) (-642 (-316 (-379))) (-642 (-379))) 170) (((-1033) (-839)) 153)))
+(((-838) (-10 -7 (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839) (-1060))) (-15 -1841 ((-1033) (-839) (-1060))) (-15 -1841 ((-1033) (-839))) (-15 -1553 ((-1033) (-839))) (-15 -1841 ((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-316 (-379))) (-642 (-841 (-379))))) (-15 -1841 ((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-841 (-379))))) (-15 -1841 ((-1033) (-316 (-379)) (-642 (-379)))) (-15 -1841 ((-1033) (-642 (-316 (-379))) (-642 (-379)))) (-15 -1553 ((-1033) (-642 (-316 (-379))) (-642 (-379)))))) (T -838))
+((-1553 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-316 (-379)))) (-5 *4 (-642 (-379))) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-316 (-379)))) (-5 *4 (-642 (-379))) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-379))) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1841 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-379))) (-5 *5 (-642 (-841 (-379)))) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1841 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-642 (-379))) (-5 *5 (-642 (-841 (-379)))) (-5 *6 (-642 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1553 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1033)) (-5 *1 (-838)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-838)))) (-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1060)) (-5 *2 (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-838)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-838)))))
+(-10 -7 (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-839) (-1060))) (-15 -1841 ((-1033) (-839) (-1060))) (-15 -1841 ((-1033) (-839))) (-15 -1553 ((-1033) (-839))) (-15 -1841 ((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-316 (-379))) (-642 (-841 (-379))))) (-15 -1841 ((-1033) (-316 (-379)) (-642 (-379)) (-642 (-841 (-379))) (-642 (-841 (-379))))) (-15 -1841 ((-1033) (-316 (-379)) (-642 (-379)))) (-15 -1841 ((-1033) (-642 (-316 (-379))) (-642 (-379)))) (-15 -1553 ((-1033) (-642 (-316 (-379))) (-642 (-379)))))
+((-2907 (((-112) $ $) NIL)) (-3027 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) $) 21)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) 14) (($ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))))) 18)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-839) (-13 (-1097) (-10 -8 (-15 -2327 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))) (-15 -2327 ($ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) (-15 -2327 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))))) (-15 -3027 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) $))))) (T -839))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (-5 *1 (-839)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))) (-5 *1 (-839)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))))) (-5 *1 (-839)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225))))))) (-5 *1 (-839)))))
+(-13 (-1097) (-10 -8 (-15 -2327 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225))))))) (-15 -2327 ($ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) (-15 -2327 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))))) (-15 -3027 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225))) (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225)))) (|:| |ub| (-642 (-841 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))) $))))
+((-4358 (((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|) (-841 |#2|)) 13) (((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|)) 14)))
+(((-840 |#1| |#2|) (-10 -7 (-15 -4358 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|))) (-15 -4358 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|) (-841 |#2|)))) (-1097) (-1097)) (T -840))
+((-4358 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-841 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *1 (-840 *5 *6)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6)))))
+(-10 -7 (-15 -4358 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|))) (-15 -4358 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|) (-841 |#2|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL (|has| |#1| (-21)))) (-3808 (((-1117) $) 31)) (-1532 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2959 (((-564) $) NIL (|has| |#1| (-846)))) (-1976 (($) NIL (|has| |#1| (-21)) CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 18)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 9)) (-3104 (((-3 $ "failed") $) 56 (|has| |#1| (-846)))) (-3838 (((-3 (-407 (-564)) "failed") $) 63 (|has| |#1| (-545)))) (-2881 (((-112) $) 58 (|has| |#1| (-545)))) (-4034 (((-407 (-564)) $) 61 (|has| |#1| (-545)))) (-2538 (((-112) $) NIL (|has| |#1| (-846)))) (-2812 (($) 14)) (-3953 (((-112) $) NIL (|has| |#1| (-846)))) (-3333 (((-112) $) NIL (|has| |#1| (-846)))) (-2825 (($) 16)) (-2755 (($ $ $) NIL (|has| |#1| (-846)))) (-1520 (($ $ $) NIL (|has| |#1| (-846)))) (-3315 (((-1155) $) NIL)) (-3465 (((-112) $) 12)) (-4033 (((-1117) $) NIL)) (-2574 (((-112) $) 11)) (-2327 (((-860) $) 24) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-2706 (|has| |#1| (-846)) (|has| |#1| (-1036 (-564)))))) (-2756 (((-769)) 50 (|has| |#1| (-846)) CONST)) (-1648 (((-112) $ $) NIL)) (-1381 (($ $) NIL (|has| |#1| (-846)))) (-2312 (($) 37 (|has| |#1| (-21)) CONST)) (-2322 (($) 47 (|has| |#1| (-846)) CONST)) (-2934 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2872 (((-112) $ $) 35)) (-2922 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2897 (((-112) $ $) 57 (|has| |#1| (-846)))) (-2987 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-2974 (($ $ $) 45 (|has| |#1| (-21)))) (** (($ $ (-919)) NIL (|has| |#1| (-846))) (($ $ (-769)) NIL (|has| |#1| (-846)))) (* (($ $ $) 53 (|has| |#1| (-846))) (($ (-564) $) 41 (|has| |#1| (-21))) (($ (-769) $) NIL (|has| |#1| (-21))) (($ (-919) $) NIL (|has| |#1| (-21)))))
+(((-841 |#1|) (-13 (-1097) (-411 |#1|) (-10 -8 (-15 -2812 ($)) (-15 -2825 ($)) (-15 -2574 ((-112) $)) (-15 -3465 ((-112) $)) (-15 -3808 ((-1117) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2881 ((-112) $)) (-15 -4034 ((-407 (-564)) $)) (-15 -3838 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1097)) (T -841))
+((-2812 (*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1097)))) (-2825 (*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1097)))) (-2574 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1097)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1097)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-841 *3)) (-4 *3 (-1097)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-841 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))) (-3838 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-841 *3)) (-4 *3 (-545)) (-4 *3 (-1097)))))
+(-13 (-1097) (-411 |#1|) (-10 -8 (-15 -2812 ($)) (-15 -2825 ($)) (-15 -2574 ((-112) $)) (-15 -3465 ((-112) $)) (-15 -3808 ((-1117) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2881 ((-112) $)) (-15 -4034 ((-407 (-564)) $)) (-15 -3838 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
+((-2907 (((-112) $ $) 7)) (-2521 (((-769)) 23)) (-2433 (($) 26)) (-2755 (($ $ $) 14) (($) 22 T CONST)) (-1520 (($ $ $) 15) (($) 21 T CONST)) (-1945 (((-919) $) 25)) (-3315 (((-1155) $) 10)) (-2047 (($ (-919)) 24)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)))
(((-842) (-140)) (T -842))
+((-2755 (*1 *1) (-4 *1 (-842))) (-1520 (*1 *1) (-4 *1 (-842))))
+(-13 (-848) (-368) (-10 -8 (-15 -2755 ($) -2858) (-15 -1520 ($) -2858)))
+(((-102) . T) ((-611 (-860)) . T) ((-368) . T) ((-848) . T) ((-1097) . T))
+((-1467 (((-112) (-1262 |#2|) (-1262 |#2|)) 23)) (-1345 (((-112) (-1262 |#2|) (-1262 |#2|)) 24)) (-1998 (((-112) (-1262 |#2|) (-1262 |#2|)) 20)))
+(((-843 |#1| |#2|) (-10 -7 (-15 -1998 ((-112) (-1262 |#2|) (-1262 |#2|))) (-15 -1467 ((-112) (-1262 |#2|) (-1262 |#2|))) (-15 -1345 ((-112) (-1262 |#2|) (-1262 |#2|)))) (-769) (-790)) (T -843))
+((-1345 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-843 *4 *5)) (-14 *4 (-769)))) (-1467 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-843 *4 *5)) (-14 *4 (-769)))) (-1998 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-843 *4 *5)) (-14 *4 (-769)))))
+(-10 -7 (-15 -1998 ((-112) (-1262 |#2|) (-1262 |#2|))) (-15 -1467 ((-112) (-1262 |#2|) (-1262 |#2|))) (-15 -1345 ((-112) (-1262 |#2|) (-1262 |#2|))))
+((-2907 (((-112) $ $) 7)) (-1976 (($) 24 T CONST)) (-3104 (((-3 $ "failed") $) 27)) (-3953 (((-112) $) 25)) (-2755 (($ $ $) 14)) (-1520 (($ $ $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2322 (($) 23 T CONST)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)) (** (($ $ (-919)) 22) (($ $ (-769)) 26)) (* (($ $ $) 21)))
+(((-844) (-140)) (T -844))
NIL
-(-13 (-853) (-722))
-(((-102) . T) ((-611 (-858)) . T) ((-722) . T) ((-853) . T) ((-846) . T) ((-1106) . T) ((-1094) . T))
-((-3249 (((-564) $) 20)) (-2384 (((-112) $) 10)) (-3326 (((-112) $) 11)) (-3673 (($ $) 22)))
-(((-843 |#1|) (-10 -8 (-15 -3673 (|#1| |#1|)) (-15 -3249 ((-564) |#1|)) (-15 -3326 ((-112) |#1|)) (-15 -2384 ((-112) |#1|))) (-844)) (T -843))
+(-13 (-855) (-724))
+(((-102) . T) ((-611 (-860)) . T) ((-724) . T) ((-855) . T) ((-848) . T) ((-1109) . T) ((-1097) . T))
+((-2959 (((-564) $) 20)) (-2538 (((-112) $) 10)) (-3333 (((-112) $) 11)) (-1381 (($ $) 22)))
+(((-845 |#1|) (-10 -8 (-15 -1381 (|#1| |#1|)) (-15 -2959 ((-564) |#1|)) (-15 -3333 ((-112) |#1|)) (-15 -2538 ((-112) |#1|))) (-846)) (T -845))
NIL
-(-10 -8 (-15 -3673 (|#1| |#1|)) (-15 -3249 ((-564) |#1|)) (-15 -3326 ((-112) |#1|)) (-15 -2384 ((-112) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 25)) (-4012 (((-3 $ "failed") $ $) 27)) (-3249 (((-564) $) 35)) (-4080 (($) 24 T CONST)) (-3293 (((-3 $ "failed") $) 40)) (-2384 (((-112) $) 37)) (-4112 (((-112) $) 42)) (-3326 (((-112) $) 36)) (-2855 (($ $ $) 14)) (-1497 (($ $ $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 44)) (-3719 (((-767)) 45 T CONST)) (-1860 (((-112) $ $) 9)) (-3673 (($ $) 34)) (-2403 (($) 23 T CONST)) (-2417 (($) 43 T CONST)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)) (-3082 (($ $ $) 29) (($ $) 28)) (-3070 (($ $ $) 21)) (** (($ $ (-767)) 41) (($ $ (-917)) 38)) (* (($ (-917) $) 22) (($ (-767) $) 26) (($ (-564) $) 30) (($ $ $) 39)))
-(((-844) (-140)) (T -844))
-((-2384 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-564)))) (-3673 (*1 *1 *1) (-4 *1 (-844))))
-(-13 (-787) (-1045) (-722) (-10 -8 (-15 -2384 ((-112) $)) (-15 -3326 ((-112) $)) (-15 -3249 ((-564) $)) (-15 -3673 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-2855 (($ $ $) 11)) (-1497 (($ $ $) 10)) (-1860 (((-112) $ $) 9)) (-3034 (((-112) $ $) 14)) (-3011 (((-112) $ $) 12)) (-3023 (((-112) $ $) 15)))
-(((-845 |#1|) (-10 -8 (-15 -2855 (|#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| |#1|)) (-15 -3023 ((-112) |#1| |#1|)) (-15 -3034 ((-112) |#1| |#1|)) (-15 -3011 ((-112) |#1| |#1|)) (-15 -1860 ((-112) |#1| |#1|))) (-846)) (T -845))
-NIL
-(-10 -8 (-15 -2855 (|#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| |#1|)) (-15 -3023 ((-112) |#1| |#1|)) (-15 -3034 ((-112) |#1| |#1|)) (-15 -3011 ((-112) |#1| |#1|)) (-15 -1860 ((-112) |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-2855 (($ $ $) 14)) (-1497 (($ $ $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)))
+(-10 -8 (-15 -1381 (|#1| |#1|)) (-15 -2959 ((-564) |#1|)) (-15 -3333 ((-112) |#1|)) (-15 -2538 ((-112) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 25)) (-1532 (((-3 $ "failed") $ $) 27)) (-2959 (((-564) $) 37)) (-1976 (($) 24 T CONST)) (-3104 (((-3 $ "failed") $) 42)) (-2538 (((-112) $) 39)) (-3953 (((-112) $) 44)) (-3333 (((-112) $) 38)) (-2755 (($ $ $) 14)) (-1520 (($ $ $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 46)) (-2756 (((-769)) 47 T CONST)) (-1648 (((-112) $ $) 9)) (-1381 (($ $) 36)) (-2312 (($) 23 T CONST)) (-2322 (($) 45 T CONST)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)) (-2987 (($ $ $) 31) (($ $) 30)) (-2974 (($ $ $) 21)) (** (($ $ (-769)) 43) (($ $ (-919)) 40)) (* (($ (-919) $) 22) (($ (-769) $) 26) (($ (-564) $) 29) (($ $ $) 41)))
(((-846) (-140)) (T -846))
-((-2999 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-3011 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-3034 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-3023 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-1497 (*1 *1 *1 *1) (-4 *1 (-846))) (-2855 (*1 *1 *1 *1) (-4 *1 (-846))))
-(-13 (-1094) (-10 -8 (-15 -2999 ((-112) $ $)) (-15 -3011 ((-112) $ $)) (-15 -3034 ((-112) $ $)) (-15 -3023 ((-112) $ $)) (-15 -1497 ($ $ $)) (-15 -2855 ($ $ $))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-2071 (($ $ $) 49)) (-1597 (($ $ $) 48)) (-2607 (($ $ $) 46)) (-2209 (($ $ $) 55)) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 50)) (-4034 (((-3 $ "failed") $ $) 53)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2571 (($ $) 39)) (-3268 (($ $ $) 43)) (-1430 (($ $ $) 42)) (-3182 (($ $ $) 51)) (-2567 (($ $ $) 57)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 45)) (-1921 (((-3 $ "failed") $ $) 52)) (-2998 (((-3 $ "failed") $ |#2|) 32)) (-4090 ((|#2| $) 36)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#2|) 13)) (-3191 (((-641 |#2|) $) 21)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
-(((-847 |#1| |#2|) (-10 -8 (-15 -3182 (|#1| |#1| |#1|)) (-15 -2086 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2249 |#1|)) |#1| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -4034 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2071 (|#1| |#1| |#1|)) (-15 -1597 (|#1| |#1| |#1|)) (-15 -2607 (|#1| |#1| |#1|)) (-15 -1603 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2249 |#1|)) |#1| |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -1921 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3268 (|#1| |#1| |#1|)) (-15 -1430 (|#1| |#1| |#1|)) (-15 -2571 (|#1| |#1|)) (-15 -4090 (|#2| |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3191 ((-641 |#2|) |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2423 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -2423 ((-858) |#1|))) (-848 |#2|) (-1045)) (T -847))
-NIL
-(-10 -8 (-15 -3182 (|#1| |#1| |#1|)) (-15 -2086 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2249 |#1|)) |#1| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -4034 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2071 (|#1| |#1| |#1|)) (-15 -1597 (|#1| |#1| |#1|)) (-15 -2607 (|#1| |#1| |#1|)) (-15 -1603 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2249 |#1|)) |#1| |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -1921 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3268 (|#1| |#1| |#1|)) (-15 -1430 (|#1| |#1| |#1|)) (-15 -2571 (|#1| |#1|)) (-15 -4090 (|#2| |#1|)) (-15 -2998 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3191 ((-641 |#2|) |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2423 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2071 (($ $ $) 45 (|has| |#1| (-363)))) (-1597 (($ $ $) 46 (|has| |#1| (-363)))) (-2607 (($ $ $) 48 (|has| |#1| (-363)))) (-2209 (($ $ $) 43 (|has| |#1| (-363)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 42 (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $ $) 44 (|has| |#1| (-363)))) (-2298 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 47 (|has| |#1| (-363)))) (-4284 (((-3 (-564) "failed") $) 75 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 72 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 69)) (-3120 (((-564) $) 74 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 71 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 70)) (-1684 (($ $) 64)) (-3293 (((-3 $ "failed") $) 34)) (-2571 (($ $) 55 (|has| |#1| (-452)))) (-4112 (((-112) $) 32)) (-3810 (($ |#1| (-767)) 62)) (-3689 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 57 (|has| |#1| (-556)))) (-2775 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 58 (|has| |#1| (-556)))) (-2043 (((-767) $) 66)) (-3268 (($ $ $) 52 (|has| |#1| (-363)))) (-1430 (($ $ $) 53 (|has| |#1| (-363)))) (-3182 (($ $ $) 41 (|has| |#1| (-363)))) (-2567 (($ $ $) 50 (|has| |#1| (-363)))) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 49 (|has| |#1| (-363)))) (-1921 (((-3 $ "failed") $ $) 51 (|has| |#1| (-363)))) (-1911 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 54 (|has| |#1| (-363)))) (-3982 ((|#1| $) 65)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2998 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-556)))) (-1568 (((-767) $) 67)) (-4090 ((|#1| $) 56 (|has| |#1| (-452)))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ (-407 (-564))) 73 (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) 68)) (-3191 (((-641 |#1|) $) 61)) (-2007 ((|#1| $ (-767)) 63)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2598 ((|#1| $ |#1| |#1|) 60)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-848 |#1|) (-140) (-1045)) (T -848))
-((-1568 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-1684 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3810 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-641 *3)))) (-2598 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-2998 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-2775 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-848 *3)))) (-3689 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-848 *3)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-2571 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-1911 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-848 *3)))) (-1430 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3268 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-1921 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2567 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-1603 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2249 *1))) (-4 *1 (-848 *3)))) (-2607 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2298 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-848 *3)))) (-1597 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2071 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4034 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2209 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2086 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2249 *1))) (-4 *1 (-848 *3)))) (-3182 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(-13 (-1045) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -1568 ((-767) $)) (-15 -2043 ((-767) $)) (-15 -3982 (|t#1| $)) (-15 -1684 ($ $)) (-15 -2007 (|t#1| $ (-767))) (-15 -3810 ($ |t#1| (-767))) (-15 -3191 ((-641 |t#1|) $)) (-15 -2598 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2998 ((-3 $ "failed") $ |t#1|)) (-15 -2775 ((-2 (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -3689 ((-2 (|:| -3979 $) (|:| -4071 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -4090 (|t#1| $)) (-15 -2571 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -1911 ((-2 (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -1430 ($ $ $)) (-15 -3268 ($ $ $)) (-15 -1921 ((-3 $ "failed") $ $)) (-15 -2567 ($ $ $)) (-15 -1603 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $)) (-15 -2607 ($ $ $)) (-15 -2298 ((-2 (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -1597 ($ $ $)) (-15 -2071 ($ $ $)) (-15 -4034 ((-3 $ "failed") $ $)) (-15 -2209 ($ $ $)) (-15 -2086 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $)) (-15 -3182 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-411 |#1|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3247 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2298 (((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-363)))) (-3689 (((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-556)))) (-2775 (((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-556)))) (-1911 (((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-363)))) (-2598 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
-(((-849 |#1| |#2|) (-10 -7 (-15 -3247 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2598 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -2775 ((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3689 ((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -1911 ((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2298 ((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1045) (-848 |#1|)) (T -849))
-((-2298 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-1911 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-3689 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-2775 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-2598 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2)))) (-3247 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045)) (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5)))))
-(-10 -7 (-15 -3247 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2598 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -2775 ((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3689 ((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -1911 ((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2298 ((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-2071 (($ $ $) NIL (|has| |#1| (-363)))) (-1597 (($ $ $) NIL (|has| |#1| (-363)))) (-2607 (($ $ $) NIL (|has| |#1| (-363)))) (-2209 (($ $ $) NIL (|has| |#1| (-363)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2298 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 34 (|has| |#1| (-363)))) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#1| (-452)))) (-2454 (((-858) $ (-858)) NIL)) (-4112 (((-112) $) NIL)) (-3810 (($ |#1| (-767)) NIL)) (-3689 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 30 (|has| |#1| (-556)))) (-2775 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 28 (|has| |#1| (-556)))) (-2043 (((-767) $) NIL)) (-3268 (($ $ $) NIL (|has| |#1| (-363)))) (-1430 (($ $ $) NIL (|has| |#1| (-363)))) (-3182 (($ $ $) NIL (|has| |#1| (-363)))) (-2567 (($ $ $) NIL (|has| |#1| (-363)))) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-1921 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1911 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 32 (|has| |#1| (-363)))) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1568 (((-767) $) NIL)) (-4090 ((|#1| $) NIL (|has| |#1| (-452)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1034 (-407 (-564))))) (($ |#1|) NIL)) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-767)) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2598 ((|#1| $ |#1| |#1|) 15)) (-2403 (($) NIL T CONST)) (-2417 (($) 23 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) 19) (($ $ (-767)) 24)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-850 |#1| |#2| |#3|) (-13 (-848 |#1|) (-10 -8 (-15 -2454 ((-858) $ (-858))))) (-1045) (-99 |#1|) (-1 |#1| |#1|)) (T -850))
-((-2454 (*1 *2 *1 *2) (-12 (-5 *2 (-858)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-848 |#1|) (-10 -8 (-15 -2454 ((-858) $ (-858)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-2071 (($ $ $) NIL (|has| |#2| (-363)))) (-1597 (($ $ $) NIL (|has| |#2| (-363)))) (-2607 (($ $ $) NIL (|has| |#2| (-363)))) (-2209 (($ $ $) NIL (|has| |#2| (-363)))) (-2086 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#2| (-363)))) (-4034 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-2298 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#2| (-363)))) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) ((|#2| $) NIL)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#2| (-452)))) (-4112 (((-112) $) NIL)) (-3810 (($ |#2| (-767)) 17)) (-3689 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#2| (-556)))) (-2775 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#2| (-556)))) (-2043 (((-767) $) NIL)) (-3268 (($ $ $) NIL (|has| |#2| (-363)))) (-1430 (($ $ $) NIL (|has| |#2| (-363)))) (-3182 (($ $ $) NIL (|has| |#2| (-363)))) (-2567 (($ $ $) NIL (|has| |#2| (-363)))) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#2| (-363)))) (-1921 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-1911 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#2| (-363)))) (-3982 ((|#2| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2998 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-1568 (((-767) $) NIL)) (-4090 ((|#2| $) NIL (|has| |#2| (-452)))) (-2423 (((-858) $) 24) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1034 (-407 (-564))))) (($ |#2|) NIL) (($ (-1255 |#1|)) 19)) (-3191 (((-641 |#2|) $) NIL)) (-2007 ((|#2| $ (-767)) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2598 ((|#2| $ |#2| |#2|) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) 13 T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-851 |#1| |#2| |#3| |#4|) (-13 (-848 |#2|) (-614 (-1255 |#1|))) (-1170) (-1045) (-99 |#2|) (-1 |#2| |#2|)) (T -851))
-NIL
-(-13 (-848 |#2|) (-614 (-1255 |#1|)))
-((-2242 ((|#1| (-767) |#1|) 48 (|has| |#1| (-38 (-407 (-564)))))) (-3559 ((|#1| (-767) (-767) |#1|) 39) ((|#1| (-767) |#1|) 27)) (-4073 ((|#1| (-767) |#1|) 43)) (-3762 ((|#1| (-767) |#1|) 41)) (-3665 ((|#1| (-767) |#1|) 40)))
-(((-852 |#1|) (-10 -7 (-15 -3665 (|#1| (-767) |#1|)) (-15 -3762 (|#1| (-767) |#1|)) (-15 -4073 (|#1| (-767) |#1|)) (-15 -3559 (|#1| (-767) |#1|)) (-15 -3559 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2242 (|#1| (-767) |#1|)) |%noBranch|)) (-172)) (T -852))
-((-2242 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-3559 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3559 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-4073 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3762 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3665 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))))
-(-10 -7 (-15 -3665 (|#1| (-767) |#1|)) (-15 -3762 (|#1| (-767) |#1|)) (-15 -4073 (|#1| (-767) |#1|)) (-15 -3559 (|#1| (-767) |#1|)) (-15 -3559 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2242 (|#1| (-767) |#1|)) |%noBranch|))
-((-3009 (((-112) $ $) 7)) (-2855 (($ $ $) 14)) (-1497 (($ $ $) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-3034 (((-112) $ $) 17)) (-3011 (((-112) $ $) 18)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 16)) (-2999 (((-112) $ $) 19)) (** (($ $ (-917)) 22)) (* (($ $ $) 21)))
-(((-853) (-140)) (T -853))
-NIL
-(-13 (-846) (-1106))
-(((-102) . T) ((-611 (-858)) . T) ((-846) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-2128 (((-564) $) 14)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 20) (($ (-564)) 13)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 9)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 11)))
-(((-854) (-13 (-846) (-10 -8 (-15 -2423 ($ (-564))) (-15 -2128 ((-564) $))))) (T -854))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-854)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-854)))))
-(-13 (-846) (-10 -8 (-15 -2423 ($ (-564))) (-15 -2128 ((-564) $))))
-((-2666 (((-687 (-1217)) $ (-1217)) 15)) (-3976 (((-687 (-549)) $ (-549)) 12)) (-1965 (((-767) $ (-128)) 30)))
-(((-855 |#1|) (-10 -8 (-15 -1965 ((-767) |#1| (-128))) (-15 -2666 ((-687 (-1217)) |#1| (-1217))) (-15 -3976 ((-687 (-549)) |#1| (-549)))) (-856)) (T -855))
-NIL
-(-10 -8 (-15 -1965 ((-767) |#1| (-128))) (-15 -2666 ((-687 (-1217)) |#1| (-1217))) (-15 -3976 ((-687 (-549)) |#1| (-549))))
-((-2666 (((-687 (-1217)) $ (-1217)) 8)) (-3976 (((-687 (-549)) $ (-549)) 9)) (-1965 (((-767) $ (-128)) 7)) (-3126 (((-687 (-129)) $ (-129)) 10)) (-3179 (($ $) 6)))
-(((-856) (-140)) (T -856))
-((-3126 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-687 (-129))) (-5 *3 (-129)))) (-3976 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-687 (-549))) (-5 *3 (-549)))) (-2666 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217)))) (-1965 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *3 (-128)) (-5 *2 (-767)))))
-(-13 (-173) (-10 -8 (-15 -3126 ((-687 (-129)) $ (-129))) (-15 -3976 ((-687 (-549)) $ (-549))) (-15 -2666 ((-687 (-1217)) $ (-1217))) (-15 -1965 ((-767) $ (-128)))))
+((-2538 (*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-564)))) (-1381 (*1 *1 *1) (-4 *1 (-846))))
+(-13 (-789) (-1047) (-724) (-10 -8 (-15 -2538 ((-112) $)) (-15 -3333 ((-112) $)) (-15 -2959 ((-564) $)) (-15 -1381 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-848) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2755 (($ $ $) 11)) (-1520 (($ $ $) 10)) (-1648 (((-112) $ $) 9)) (-2934 (((-112) $ $) 14)) (-2908 (((-112) $ $) 12)) (-2922 (((-112) $ $) 15)))
+(((-847 |#1|) (-10 -8 (-15 -2755 (|#1| |#1| |#1|)) (-15 -1520 (|#1| |#1| |#1|)) (-15 -2922 ((-112) |#1| |#1|)) (-15 -2934 ((-112) |#1| |#1|)) (-15 -2908 ((-112) |#1| |#1|)) (-15 -1648 ((-112) |#1| |#1|))) (-848)) (T -847))
+NIL
+(-10 -8 (-15 -2755 (|#1| |#1| |#1|)) (-15 -1520 (|#1| |#1| |#1|)) (-15 -2922 ((-112) |#1| |#1|)) (-15 -2934 ((-112) |#1| |#1|)) (-15 -2908 ((-112) |#1| |#1|)) (-15 -1648 ((-112) |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2755 (($ $ $) 14)) (-1520 (($ $ $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)))
+(((-848) (-140)) (T -848))
+((-2897 (*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2908 (*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2934 (*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2922 (*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-1520 (*1 *1 *1 *1) (-4 *1 (-848))) (-2755 (*1 *1 *1 *1) (-4 *1 (-848))))
+(-13 (-1097) (-10 -8 (-15 -2897 ((-112) $ $)) (-15 -2908 ((-112) $ $)) (-15 -2934 ((-112) $ $)) (-15 -2922 ((-112) $ $)) (-15 -1520 ($ $ $)) (-15 -2755 ($ $ $))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2164 (($ $ $) 49)) (-2345 (($ $ $) 48)) (-2901 (($ $ $) 46)) (-3286 (($ $ $) 55)) (-3208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 50)) (-1517 (((-3 $ "failed") $ $) 53)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3246 (($ $) 39)) (-4137 (($ $ $) 43)) (-1555 (($ $ $) 42)) (-2578 (($ $ $) 51)) (-3813 (($ $ $) 57)) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 45)) (-3531 (((-3 $ "failed") $ $) 52)) (-2896 (((-3 $ "failed") $ |#2|) 32)) (-4028 ((|#2| $) 36)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#2|) 13)) (-3849 (((-642 |#2|) $) 21)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
+(((-849 |#1| |#2|) (-10 -8 (-15 -2578 (|#1| |#1| |#1|)) (-15 -3208 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2185 |#1|)) |#1| |#1|)) (-15 -3286 (|#1| |#1| |#1|)) (-15 -1517 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2164 (|#1| |#1| |#1|)) (-15 -2345 (|#1| |#1| |#1|)) (-15 -2901 (|#1| |#1| |#1|)) (-15 -3249 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2185 |#1|)) |#1| |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -3531 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4137 (|#1| |#1| |#1|)) (-15 -1555 (|#1| |#1| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3849 ((-642 |#2|) |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2327 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2327 ((-860) |#1|))) (-850 |#2|) (-1047)) (T -849))
+NIL
+(-10 -8 (-15 -2578 (|#1| |#1| |#1|)) (-15 -3208 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2185 |#1|)) |#1| |#1|)) (-15 -3286 (|#1| |#1| |#1|)) (-15 -1517 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2164 (|#1| |#1| |#1|)) (-15 -2345 (|#1| |#1| |#1|)) (-15 -2901 (|#1| |#1| |#1|)) (-15 -3249 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2185 |#1|)) |#1| |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -3531 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4137 (|#1| |#1| |#1|)) (-15 -1555 (|#1| |#1| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -2896 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3849 ((-642 |#2|) |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2327 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-2164 (($ $ $) 50 (|has| |#1| (-363)))) (-2345 (($ $ $) 51 (|has| |#1| (-363)))) (-2901 (($ $ $) 53 (|has| |#1| (-363)))) (-3286 (($ $ $) 48 (|has| |#1| (-363)))) (-3208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 47 (|has| |#1| (-363)))) (-1517 (((-3 $ "failed") $ $) 49 (|has| |#1| (-363)))) (-3480 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 52 (|has| |#1| (-363)))) (-4278 (((-3 (-564) "failed") $) 80 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 77 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 74)) (-3027 (((-564) $) 79 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 76 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 75)) (-1718 (($ $) 69)) (-3104 (((-3 $ "failed") $) 37)) (-3246 (($ $) 60 (|has| |#1| (-452)))) (-3953 (((-112) $) 35)) (-3774 (($ |#1| (-769)) 67)) (-3082 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 62 (|has| |#1| (-556)))) (-2670 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63 (|has| |#1| (-556)))) (-1398 (((-769) $) 71)) (-4137 (($ $ $) 57 (|has| |#1| (-363)))) (-1555 (($ $ $) 58 (|has| |#1| (-363)))) (-2578 (($ $ $) 46 (|has| |#1| (-363)))) (-3813 (($ $ $) 55 (|has| |#1| (-363)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 54 (|has| |#1| (-363)))) (-3531 (((-3 $ "failed") $ $) 56 (|has| |#1| (-363)))) (-2603 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 59 (|has| |#1| (-363)))) (-3962 ((|#1| $) 70)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2896 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-556)))) (-2775 (((-769) $) 72)) (-4028 ((|#1| $) 61 (|has| |#1| (-452)))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 78 (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) 73)) (-3849 (((-642 |#1|) $) 66)) (-2102 ((|#1| $ (-769)) 68)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2497 ((|#1| $ |#1| |#1|) 65)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-850 |#1|) (-140) (-1047)) (T -850))
+((-2775 (*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)))) (-1718 (*1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)))) (-2102 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-850 *2)) (-4 *2 (-1047)))) (-3774 (*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-850 *2)) (-4 *2 (-1047)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-642 *3)))) (-2497 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)))) (-2896 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))) (-2670 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-850 *3)))) (-3082 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-850 *3)))) (-4028 (*1 *2 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-452)))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-452)))) (-2603 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-850 *3)))) (-1555 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-4137 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3531 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3813 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3249 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2185 *1))) (-4 *1 (-850 *3)))) (-2901 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3480 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-850 *3)))) (-2345 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-2164 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-1517 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3286 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-3208 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2185 *1))) (-4 *1 (-850 *3)))) (-2578 (*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(-13 (-1047) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -2775 ((-769) $)) (-15 -1398 ((-769) $)) (-15 -3962 (|t#1| $)) (-15 -1718 ($ $)) (-15 -2102 (|t#1| $ (-769))) (-15 -3774 ($ |t#1| (-769))) (-15 -3849 ((-642 |t#1|) $)) (-15 -2497 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2896 ((-3 $ "failed") $ |t#1|)) (-15 -2670 ((-2 (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -3082 ((-2 (|:| -1420 $) (|:| -3045 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -4028 (|t#1| $)) (-15 -3246 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -2603 ((-2 (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -1555 ($ $ $)) (-15 -4137 ($ $ $)) (-15 -3531 ((-3 $ "failed") $ $)) (-15 -3813 ($ $ $)) (-15 -3249 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $)) (-15 -2901 ($ $ $)) (-15 -3480 ((-2 (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -2345 ($ $ $)) (-15 -2164 ($ $ $)) (-15 -1517 ((-3 $ "failed") $ $)) (-15 -3286 ($ $ $)) (-15 -3208 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $)) (-15 -2578 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-411 |#1|) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) |has| |#1| (-172)) ((-715 |#1|) |has| |#1| (-172)) ((-724) . T) ((-1036 #0#) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-3168 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3480 (((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-363)))) (-3082 (((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-556)))) (-2670 (((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-556)))) (-2603 (((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-363)))) (-2497 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
+(((-851 |#1| |#2|) (-10 -7 (-15 -3168 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2497 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -2670 ((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3082 ((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2603 ((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3480 ((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1047) (-850 |#1|)) (T -851))
+((-3480 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-851 *5 *3)) (-4 *3 (-850 *5)))) (-2603 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-851 *5 *3)) (-4 *3 (-850 *5)))) (-3082 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-851 *5 *3)) (-4 *3 (-850 *5)))) (-2670 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-851 *5 *3)) (-4 *3 (-850 *5)))) (-2497 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1047)) (-5 *1 (-851 *2 *3)) (-4 *3 (-850 *2)))) (-3168 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1047)) (-5 *1 (-851 *5 *2)) (-4 *2 (-850 *5)))))
+(-10 -7 (-15 -3168 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2497 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -2670 ((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3082 ((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2603 ((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3480 ((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-2164 (($ $ $) NIL (|has| |#1| (-363)))) (-2345 (($ $ $) NIL (|has| |#1| (-363)))) (-2901 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (($ $ $) NIL (|has| |#1| (-363)))) (-3208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-1517 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3480 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 34 (|has| |#1| (-363)))) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-452)))) (-4057 (((-860) $ (-860)) NIL)) (-3953 (((-112) $) NIL)) (-3774 (($ |#1| (-769)) NIL)) (-3082 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 30 (|has| |#1| (-556)))) (-2670 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 28 (|has| |#1| (-556)))) (-1398 (((-769) $) NIL)) (-4137 (($ $ $) NIL (|has| |#1| (-363)))) (-1555 (($ $ $) NIL (|has| |#1| (-363)))) (-2578 (($ $ $) NIL (|has| |#1| (-363)))) (-3813 (($ $ $) NIL (|has| |#1| (-363)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3531 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2603 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 32 (|has| |#1| (-363)))) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2775 (((-769) $) NIL)) (-4028 ((|#1| $) NIL (|has| |#1| (-452)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1036 (-407 (-564))))) (($ |#1|) NIL)) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-769)) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2497 ((|#1| $ |#1| |#1|) 15)) (-2312 (($) NIL T CONST)) (-2322 (($) 23 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) 19) (($ $ (-769)) 24)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-852 |#1| |#2| |#3|) (-13 (-850 |#1|) (-10 -8 (-15 -4057 ((-860) $ (-860))))) (-1047) (-99 |#1|) (-1 |#1| |#1|)) (T -852))
+((-4057 (*1 *2 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-852 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-850 |#1|) (-10 -8 (-15 -4057 ((-860) $ (-860)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-2164 (($ $ $) NIL (|has| |#2| (-363)))) (-2345 (($ $ $) NIL (|has| |#2| (-363)))) (-2901 (($ $ $) NIL (|has| |#2| (-363)))) (-3286 (($ $ $) NIL (|has| |#2| (-363)))) (-3208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#2| (-363)))) (-1517 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-3480 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#2| (-363)))) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) ((|#2| $) NIL)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-452)))) (-3953 (((-112) $) NIL)) (-3774 (($ |#2| (-769)) 17)) (-3082 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#2| (-556)))) (-2670 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#2| (-556)))) (-1398 (((-769) $) NIL)) (-4137 (($ $ $) NIL (|has| |#2| (-363)))) (-1555 (($ $ $) NIL (|has| |#2| (-363)))) (-2578 (($ $ $) NIL (|has| |#2| (-363)))) (-3813 (($ $ $) NIL (|has| |#2| (-363)))) (-3249 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#2| (-363)))) (-3531 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-2603 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#2| (-363)))) (-3962 ((|#2| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2896 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-2775 (((-769) $) NIL)) (-4028 ((|#2| $) NIL (|has| |#2| (-452)))) (-2327 (((-860) $) 24) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1036 (-407 (-564))))) (($ |#2|) NIL) (($ (-1258 |#1|)) 19)) (-3849 (((-642 |#2|) $) NIL)) (-2102 ((|#2| $ (-769)) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2497 ((|#2| $ |#2| |#2|) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) 13 T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-853 |#1| |#2| |#3| |#4|) (-13 (-850 |#2|) (-614 (-1258 |#1|))) (-1173) (-1047) (-99 |#2|) (-1 |#2| |#2|)) (T -853))
+NIL
+(-13 (-850 |#2|) (-614 (-1258 |#1|)))
+((-2644 ((|#1| (-769) |#1|) 48 (|has| |#1| (-38 (-407 (-564)))))) (-3749 ((|#1| (-769) (-769) |#1|) 39) ((|#1| (-769) |#1|) 27)) (-1685 ((|#1| (-769) |#1|) 43)) (-2450 ((|#1| (-769) |#1|) 41)) (-1676 ((|#1| (-769) |#1|) 40)))
+(((-854 |#1|) (-10 -7 (-15 -1676 (|#1| (-769) |#1|)) (-15 -2450 (|#1| (-769) |#1|)) (-15 -1685 (|#1| (-769) |#1|)) (-15 -3749 (|#1| (-769) |#1|)) (-15 -3749 (|#1| (-769) (-769) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2644 (|#1| (-769) |#1|)) |%noBranch|)) (-172)) (T -854))
+((-2644 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-3749 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) (-3749 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) (-1685 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) (-2450 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))) (-1676 (*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))))
+(-10 -7 (-15 -1676 (|#1| (-769) |#1|)) (-15 -2450 (|#1| (-769) |#1|)) (-15 -1685 (|#1| (-769) |#1|)) (-15 -3749 (|#1| (-769) |#1|)) (-15 -3749 (|#1| (-769) (-769) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2644 (|#1| (-769) |#1|)) |%noBranch|))
+((-2907 (((-112) $ $) 7)) (-2755 (($ $ $) 14)) (-1520 (($ $ $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2934 (((-112) $ $) 17)) (-2908 (((-112) $ $) 18)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 16)) (-2897 (((-112) $ $) 19)) (** (($ $ (-919)) 22)) (* (($ $ $) 21)))
+(((-855) (-140)) (T -855))
+NIL
+(-13 (-848) (-1109))
+(((-102) . T) ((-611 (-860)) . T) ((-848) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2085 (((-564) $) 14)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 20) (($ (-564)) 13)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 9)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 11)))
+(((-856) (-13 (-848) (-10 -8 (-15 -2327 ($ (-564))) (-15 -2085 ((-564) $))))) (T -856))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-856)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-856)))))
+(-13 (-848) (-10 -8 (-15 -2327 ($ (-564))) (-15 -2085 ((-564) $))))
+((-3866 (((-689 (-1220)) $ (-1220)) 15)) (-3490 (((-689 (-549)) $ (-549)) 12)) (-3343 (((-769) $ (-128)) 30)))
+(((-857 |#1|) (-10 -8 (-15 -3343 ((-769) |#1| (-128))) (-15 -3866 ((-689 (-1220)) |#1| (-1220))) (-15 -3490 ((-689 (-549)) |#1| (-549)))) (-858)) (T -857))
+NIL
+(-10 -8 (-15 -3343 ((-769) |#1| (-128))) (-15 -3866 ((-689 (-1220)) |#1| (-1220))) (-15 -3490 ((-689 (-549)) |#1| (-549))))
+((-3866 (((-689 (-1220)) $ (-1220)) 8)) (-3490 (((-689 (-549)) $ (-549)) 9)) (-3343 (((-769) $ (-128)) 7)) (-3760 (((-689 (-129)) $ (-129)) 10)) (-2528 (($ $) 6)))
+(((-858) (-140)) (T -858))
+((-3760 (*1 *2 *1 *3) (-12 (-4 *1 (-858)) (-5 *2 (-689 (-129))) (-5 *3 (-129)))) (-3490 (*1 *2 *1 *3) (-12 (-4 *1 (-858)) (-5 *2 (-689 (-549))) (-5 *3 (-549)))) (-3866 (*1 *2 *1 *3) (-12 (-4 *1 (-858)) (-5 *2 (-689 (-1220))) (-5 *3 (-1220)))) (-3343 (*1 *2 *1 *3) (-12 (-4 *1 (-858)) (-5 *3 (-128)) (-5 *2 (-769)))))
+(-13 (-173) (-10 -8 (-15 -3760 ((-689 (-129)) $ (-129))) (-15 -3490 ((-689 (-549)) $ (-549))) (-15 -3866 ((-689 (-1220)) $ (-1220))) (-15 -3343 ((-769) $ (-128)))))
(((-173) . T))
-((-2666 (((-687 (-1217)) $ (-1217)) NIL)) (-3976 (((-687 (-549)) $ (-549)) NIL)) (-1965 (((-767) $ (-128)) NIL)) (-3126 (((-687 (-129)) $ (-129)) 22)) (-4055 (($ (-388)) 12) (($ (-1152)) 14)) (-3489 (((-112) $) 19)) (-2423 (((-858) $) 26)) (-3179 (($ $) 23)))
-(((-857) (-13 (-856) (-611 (-858)) (-10 -8 (-15 -4055 ($ (-388))) (-15 -4055 ($ (-1152))) (-15 -3489 ((-112) $))))) (T -857))
-((-4055 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-857)))) (-4055 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-857)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857)))))
-(-13 (-856) (-611 (-858)) (-10 -8 (-15 -4055 ($ (-388))) (-15 -4055 ($ (-1152))) (-15 -3489 ((-112) $))))
-((-3009 (((-112) $ $) NIL) (($ $ $) 86)) (-2757 (($ $ $) 126)) (-3469 (((-564) $) 31) (((-564)) 36)) (-2790 (($ (-564)) 54)) (-1371 (($ $ $) 55) (($ (-641 $)) 85)) (-4191 (($ $ (-641 $)) 83)) (-3166 (((-564) $) 34)) (-2022 (($ $ $) 74)) (-4305 (($ $) 141) (($ $ $) 142) (($ $ $ $) 143)) (-2618 (((-564) $) 33)) (-3718 (($ $ $) 73)) (-4293 (($ $) 115)) (-1369 (($ $ $) 130)) (-1656 (($ (-641 $)) 62)) (-2595 (($ $ (-641 $)) 80)) (-3763 (($ (-564) (-564)) 56)) (-3537 (($ $) 127) (($ $ $) 128)) (-4337 (($ $ (-564)) 43) (($ $) 46)) (-2946 (($ $ $) 98)) (-1615 (($ $ $) 133)) (-1743 (($ $) 116)) (-2960 (($ $ $) 99)) (-1770 (($ $) 144) (($ $ $) 145) (($ $ $ $) 146)) (-2938 (((-1264) $) 10)) (-3221 (($ $) 119) (($ $ (-767)) 123)) (-2650 (($ $ $) 76)) (-3122 (($ $ $) 75)) (-1619 (($ $ (-641 $)) 111)) (-1728 (($ $ $) 114)) (-3650 (($ (-641 $)) 60)) (-1387 (($ $) 71) (($ (-641 $)) 72)) (-3516 (($ $ $) 124)) (-3995 (($ $) 117)) (-3750 (($ $ $) 129)) (-2454 (($ (-564)) 21) (($ (-1170)) 23) (($ (-1152)) 30) (($ (-225)) 25)) (-2372 (($ $ $) 102)) (-2351 (($ $) 103)) (-2731 (((-1264) (-1152)) 15)) (-1664 (($ (-1152)) 14)) (-2322 (($ (-641 (-641 $))) 59)) (-4328 (($ $ (-564)) 42) (($ $) 45)) (-2766 (((-1152) $) NIL)) (-1431 (($ $ $) 132)) (-1452 (($ $) 147) (($ $ $) 148) (($ $ $ $) 149)) (-2911 (((-112) $) 109)) (-1710 (($ $ (-641 $)) 112) (($ $ $ $) 113)) (-1935 (($ (-564)) 39)) (-1292 (((-564) $) 32) (((-564)) 35)) (-1507 (($ $ $) 40) (($ (-641 $)) 84)) (-4052 (((-1114) $) NIL)) (-2998 (($ $ $) 100)) (-2994 (($) 13)) (-4366 (($ $ (-641 $)) 110)) (-2782 (((-1152) (-1152)) 8)) (-3270 (($ $) 118) (($ $ (-767)) 122)) (-2984 (($ $ $) 97)) (-3254 (($ $ (-767)) 140)) (-2452 (($ (-641 $)) 61)) (-2423 (((-858) $) 19)) (-3639 (($ $ (-564)) 41) (($ $) 44)) (-2627 (($ $) 69) (($ (-641 $)) 70)) (-3755 (($ $) 67) (($ (-641 $)) 68)) (-2180 (($ $) 125)) (-1328 (($ (-641 $)) 66)) (-2020 (($ $ $) 106)) (-1860 (((-112) $ $) NIL)) (-4288 (($ $ $) 131)) (-2358 (($ $ $) 101)) (-3612 (($ $ $) 104) (($ $) 105)) (-3034 (($ $ $) 90)) (-3011 (($ $ $) 88)) (-2974 (((-112) $ $) 16) (($ $ $) 17)) (-3023 (($ $ $) 89)) (-2999 (($ $ $) 87)) (-3092 (($ $ $) 95)) (-3082 (($ $ $) 92) (($ $) 93)) (-3070 (($ $ $) 91)) (** (($ $ $) 96)) (* (($ $ $) 94)))
-(((-858) (-13 (-1094) (-10 -8 (-15 -2938 ((-1264) $)) (-15 -1664 ($ (-1152))) (-15 -2731 ((-1264) (-1152))) (-15 -2454 ($ (-564))) (-15 -2454 ($ (-1170))) (-15 -2454 ($ (-1152))) (-15 -2454 ($ (-225))) (-15 -2994 ($)) (-15 -2782 ((-1152) (-1152))) (-15 -3469 ((-564) $)) (-15 -1292 ((-564) $)) (-15 -3469 ((-564))) (-15 -1292 ((-564))) (-15 -2618 ((-564) $)) (-15 -3166 ((-564) $)) (-15 -1935 ($ (-564))) (-15 -2790 ($ (-564))) (-15 -3763 ($ (-564) (-564))) (-15 -4328 ($ $ (-564))) (-15 -4337 ($ $ (-564))) (-15 -3639 ($ $ (-564))) (-15 -4328 ($ $)) (-15 -4337 ($ $)) (-15 -3639 ($ $)) (-15 -1507 ($ $ $)) (-15 -1371 ($ $ $)) (-15 -1507 ($ (-641 $))) (-15 -1371 ($ (-641 $))) (-15 -1619 ($ $ (-641 $))) (-15 -1710 ($ $ (-641 $))) (-15 -1710 ($ $ $ $)) (-15 -1728 ($ $ $)) (-15 -2911 ((-112) $)) (-15 -4366 ($ $ (-641 $))) (-15 -4293 ($ $)) (-15 -1431 ($ $ $)) (-15 -2180 ($ $)) (-15 -2322 ($ (-641 (-641 $)))) (-15 -2757 ($ $ $)) (-15 -3537 ($ $)) (-15 -3537 ($ $ $)) (-15 -3750 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -4288 ($ $ $)) (-15 -1615 ($ $ $)) (-15 -3254 ($ $ (-767))) (-15 -2020 ($ $ $)) (-15 -3718 ($ $ $)) (-15 -2022 ($ $ $)) (-15 -3122 ($ $ $)) (-15 -2650 ($ $ $)) (-15 -2595 ($ $ (-641 $))) (-15 -4191 ($ $ (-641 $))) (-15 -1743 ($ $)) (-15 -3270 ($ $)) (-15 -3270 ($ $ (-767))) (-15 -3221 ($ $)) (-15 -3221 ($ $ (-767))) (-15 -3995 ($ $)) (-15 -3516 ($ $ $)) (-15 -4305 ($ $)) (-15 -4305 ($ $ $)) (-15 -4305 ($ $ $ $)) (-15 -1770 ($ $)) (-15 -1770 ($ $ $)) (-15 -1770 ($ $ $ $)) (-15 -1452 ($ $)) (-15 -1452 ($ $ $)) (-15 -1452 ($ $ $ $)) (-15 -3755 ($ $)) (-15 -3755 ($ (-641 $))) (-15 -2627 ($ $)) (-15 -2627 ($ (-641 $))) (-15 -1387 ($ $)) (-15 -1387 ($ (-641 $))) (-15 -3650 ($ (-641 $))) (-15 -2452 ($ (-641 $))) (-15 -1656 ($ (-641 $))) (-15 -1328 ($ (-641 $))) (-15 -2974 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -2999 ($ $ $)) (-15 -3011 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -3070 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -3082 ($ $)) (-15 * ($ $ $)) (-15 -3092 ($ $ $)) (-15 ** ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -2998 ($ $ $)) (-15 -2358 ($ $ $)) (-15 -2372 ($ $ $)) (-15 -2351 ($ $)) (-15 -3612 ($ $ $)) (-15 -3612 ($ $))))) (T -858))
-((-2938 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-858)))) (-1664 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-858)))) (-2454 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-2454 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-858)))) (-2454 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) (-2454 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-858)))) (-2994 (*1 *1) (-5 *1 (-858))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-3469 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-1292 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-1935 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-2790 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-3763 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-4337 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-3639 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))) (-4328 (*1 *1 *1) (-5 *1 (-858))) (-4337 (*1 *1 *1) (-5 *1 (-858))) (-3639 (*1 *1 *1) (-5 *1 (-858))) (-1507 (*1 *1 *1 *1) (-5 *1 (-858))) (-1371 (*1 *1 *1 *1) (-5 *1 (-858))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1371 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1619 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1710 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1710 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-1728 (*1 *1 *1 *1) (-5 *1 (-858))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-4293 (*1 *1 *1) (-5 *1 (-858))) (-1431 (*1 *1 *1 *1) (-5 *1 (-858))) (-2180 (*1 *1 *1) (-5 *1 (-858))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-858)))) (-5 *1 (-858)))) (-2757 (*1 *1 *1 *1) (-5 *1 (-858))) (-3537 (*1 *1 *1) (-5 *1 (-858))) (-3537 (*1 *1 *1 *1) (-5 *1 (-858))) (-3750 (*1 *1 *1 *1) (-5 *1 (-858))) (-1369 (*1 *1 *1 *1) (-5 *1 (-858))) (-4288 (*1 *1 *1 *1) (-5 *1 (-858))) (-1615 (*1 *1 *1 *1) (-5 *1 (-858))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-2020 (*1 *1 *1 *1) (-5 *1 (-858))) (-3718 (*1 *1 *1 *1) (-5 *1 (-858))) (-2022 (*1 *1 *1 *1) (-5 *1 (-858))) (-3122 (*1 *1 *1 *1) (-5 *1 (-858))) (-2650 (*1 *1 *1 *1) (-5 *1 (-858))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1743 (*1 *1 *1) (-5 *1 (-858))) (-3270 (*1 *1 *1) (-5 *1 (-858))) (-3270 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-3221 (*1 *1 *1) (-5 *1 (-858))) (-3221 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-3995 (*1 *1 *1) (-5 *1 (-858))) (-3516 (*1 *1 *1 *1) (-5 *1 (-858))) (-4305 (*1 *1 *1) (-5 *1 (-858))) (-4305 (*1 *1 *1 *1) (-5 *1 (-858))) (-4305 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-1770 (*1 *1 *1) (-5 *1 (-858))) (-1770 (*1 *1 *1 *1) (-5 *1 (-858))) (-1770 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-1452 (*1 *1 *1) (-5 *1 (-858))) (-1452 (*1 *1 *1 *1) (-5 *1 (-858))) (-1452 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-3755 (*1 *1 *1) (-5 *1 (-858))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-2627 (*1 *1 *1) (-5 *1 (-858))) (-2627 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1387 (*1 *1 *1) (-5 *1 (-858))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-3650 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1656 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-1328 (*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))) (-2974 (*1 *1 *1 *1) (-5 *1 (-858))) (-3009 (*1 *1 *1 *1) (-5 *1 (-858))) (-2999 (*1 *1 *1 *1) (-5 *1 (-858))) (-3011 (*1 *1 *1 *1) (-5 *1 (-858))) (-3023 (*1 *1 *1 *1) (-5 *1 (-858))) (-3034 (*1 *1 *1 *1) (-5 *1 (-858))) (-3070 (*1 *1 *1 *1) (-5 *1 (-858))) (-3082 (*1 *1 *1 *1) (-5 *1 (-858))) (-3082 (*1 *1 *1) (-5 *1 (-858))) (* (*1 *1 *1 *1) (-5 *1 (-858))) (-3092 (*1 *1 *1 *1) (-5 *1 (-858))) (** (*1 *1 *1 *1) (-5 *1 (-858))) (-2984 (*1 *1 *1 *1) (-5 *1 (-858))) (-2946 (*1 *1 *1 *1) (-5 *1 (-858))) (-2960 (*1 *1 *1 *1) (-5 *1 (-858))) (-2998 (*1 *1 *1 *1) (-5 *1 (-858))) (-2358 (*1 *1 *1 *1) (-5 *1 (-858))) (-2372 (*1 *1 *1 *1) (-5 *1 (-858))) (-2351 (*1 *1 *1) (-5 *1 (-858))) (-3612 (*1 *1 *1 *1) (-5 *1 (-858))) (-3612 (*1 *1 *1) (-5 *1 (-858))))
-(-13 (-1094) (-10 -8 (-15 -2938 ((-1264) $)) (-15 -1664 ($ (-1152))) (-15 -2731 ((-1264) (-1152))) (-15 -2454 ($ (-564))) (-15 -2454 ($ (-1170))) (-15 -2454 ($ (-1152))) (-15 -2454 ($ (-225))) (-15 -2994 ($)) (-15 -2782 ((-1152) (-1152))) (-15 -3469 ((-564) $)) (-15 -1292 ((-564) $)) (-15 -3469 ((-564))) (-15 -1292 ((-564))) (-15 -2618 ((-564) $)) (-15 -3166 ((-564) $)) (-15 -1935 ($ (-564))) (-15 -2790 ($ (-564))) (-15 -3763 ($ (-564) (-564))) (-15 -4328 ($ $ (-564))) (-15 -4337 ($ $ (-564))) (-15 -3639 ($ $ (-564))) (-15 -4328 ($ $)) (-15 -4337 ($ $)) (-15 -3639 ($ $)) (-15 -1507 ($ $ $)) (-15 -1371 ($ $ $)) (-15 -1507 ($ (-641 $))) (-15 -1371 ($ (-641 $))) (-15 -1619 ($ $ (-641 $))) (-15 -1710 ($ $ (-641 $))) (-15 -1710 ($ $ $ $)) (-15 -1728 ($ $ $)) (-15 -2911 ((-112) $)) (-15 -4366 ($ $ (-641 $))) (-15 -4293 ($ $)) (-15 -1431 ($ $ $)) (-15 -2180 ($ $)) (-15 -2322 ($ (-641 (-641 $)))) (-15 -2757 ($ $ $)) (-15 -3537 ($ $)) (-15 -3537 ($ $ $)) (-15 -3750 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -4288 ($ $ $)) (-15 -1615 ($ $ $)) (-15 -3254 ($ $ (-767))) (-15 -2020 ($ $ $)) (-15 -3718 ($ $ $)) (-15 -2022 ($ $ $)) (-15 -3122 ($ $ $)) (-15 -2650 ($ $ $)) (-15 -2595 ($ $ (-641 $))) (-15 -4191 ($ $ (-641 $))) (-15 -1743 ($ $)) (-15 -3270 ($ $)) (-15 -3270 ($ $ (-767))) (-15 -3221 ($ $)) (-15 -3221 ($ $ (-767))) (-15 -3995 ($ $)) (-15 -3516 ($ $ $)) (-15 -4305 ($ $)) (-15 -4305 ($ $ $)) (-15 -4305 ($ $ $ $)) (-15 -1770 ($ $)) (-15 -1770 ($ $ $)) (-15 -1770 ($ $ $ $)) (-15 -1452 ($ $)) (-15 -1452 ($ $ $)) (-15 -1452 ($ $ $ $)) (-15 -3755 ($ $)) (-15 -3755 ($ (-641 $))) (-15 -2627 ($ $)) (-15 -2627 ($ (-641 $))) (-15 -1387 ($ $)) (-15 -1387 ($ (-641 $))) (-15 -3650 ($ (-641 $))) (-15 -2452 ($ (-641 $))) (-15 -1656 ($ (-641 $))) (-15 -1328 ($ (-641 $))) (-15 -2974 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -2999 ($ $ $)) (-15 -3011 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -3070 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -3082 ($ $)) (-15 * ($ $ $)) (-15 -3092 ($ $ $)) (-15 ** ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -2998 ($ $ $)) (-15 -2358 ($ $ $)) (-15 -2372 ($ $ $)) (-15 -2351 ($ $)) (-15 -3612 ($ $ $)) (-15 -3612 ($ $))))
-((-1428 (((-1264) (-641 (-52))) 24)) (-2632 (((-1264) (-1152) (-858)) 14) (((-1264) (-858)) 9) (((-1264) (-1152)) 11)))
-(((-859) (-10 -7 (-15 -2632 ((-1264) (-1152))) (-15 -2632 ((-1264) (-858))) (-15 -2632 ((-1264) (-1152) (-858))) (-15 -1428 ((-1264) (-641 (-52)))))) (T -859))
-((-1428 (*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-859)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-858)) (-5 *2 (-1264)) (-5 *1 (-859)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-859)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859)))))
-(-10 -7 (-15 -2632 ((-1264) (-1152))) (-15 -2632 ((-1264) (-858))) (-15 -2632 ((-1264) (-1152) (-858))) (-15 -1428 ((-1264) (-641 (-52)))))
-((-3009 (((-112) $ $) NIL)) (-3395 (((-3 $ "failed") (-1170)) 39)) (-2622 (((-767)) 32)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-3256 (((-917) $) 29)) (-2766 (((-1152) $) 46)) (-2083 (($ (-917)) 28)) (-4052 (((-1114) $) NIL)) (-1311 (((-1170) $) 13) (((-536) $) 19) (((-888 (-379)) $) 26) (((-888 (-564)) $) 22)) (-2423 (((-858) $) 16)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 43)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 41)))
-(((-860 |#1|) (-13 (-840) (-612 (-1170)) (-612 (-536)) (-612 (-888 (-379))) (-612 (-888 (-564))) (-10 -8 (-15 -3395 ((-3 $ "failed") (-1170))))) (-641 (-1170))) (T -860))
-((-3395 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-860 *3)) (-14 *3 (-641 *2)))))
-(-13 (-840) (-612 (-1170)) (-612 (-536)) (-612 (-888 (-379))) (-612 (-888 (-564))) (-10 -8 (-15 -3395 ((-3 $ "failed") (-1170)))))
-((-3009 (((-112) $ $) NIL)) (-2562 (((-506) $) 9)) (-1554 (((-641 (-439)) $) 13)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 21)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 16)))
-(((-861) (-13 (-1094) (-10 -8 (-15 -2562 ((-506) $)) (-15 -1554 ((-641 (-439)) $))))) (T -861))
-((-2562 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-861)))))
-(-13 (-1094) (-10 -8 (-15 -2562 ((-506) $)) (-15 -1554 ((-641 (-439)) $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ (-948 |#1|)) NIL) (((-948 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-3719 (((-767)) NIL T CONST)) (-2411 (((-1264) (-767)) NIL)) (-1860 (((-112) $ $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3092 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-862 |#1| |#2| |#3| |#4|) (-13 (-1045) (-490 (-948 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3092 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2411 ((-1264) (-767))))) (-1045) (-641 (-1170)) (-641 (-767)) (-767)) (T -862))
-((-3092 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1045)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-767))) (-14 *5 (-767)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *4 (-1045)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3)) (-14 *7 *3))))
-(-13 (-1045) (-490 (-948 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3092 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2411 ((-1264) (-767)))))
-((-2387 (((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|) 43)) (-2624 (((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|) 34)))
-(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -2624 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -2387 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|))) (-363) (-1250 |#1|) (-1235 |#1|)) (T -863))
-((-2387 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))) (-2624 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))))
-(-10 -7 (-15 -2624 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -2387 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|)))
-((-2624 (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|)) 30) (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) 28)))
-(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -2624 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -2624 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|)))) (-363) (-1170) |#1|) (T -864))
-((-2624 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-864 *5 *6 *7)))) (-2624 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-864 *5 *6 *7)))))
-(-10 -7 (-15 -2624 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -2624 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-767) (-767) (-1251 |#1| |#2| |#3|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-3700 (($ $ (-564)) 64)) (-3162 (((-112) $ $) 61)) (-4080 (($) 18 T CONST)) (-3537 (($ (-1166 (-564)) (-564)) 63)) (-2946 (($ $ $) 57)) (-3293 (((-3 $ "failed") $) 34)) (-4035 (($ $) 66)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-3744 (((-767) $) 71)) (-4112 (((-112) $) 32)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-3056 (((-564)) 68)) (-2028 (((-564) $) 67)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-4016 (($ $ (-564)) 70)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-1700 (((-767) $) 60)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-1982 (((-1150 (-564)) $) 72)) (-2732 (($ $) 69)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-3646 (((-564) $ (-564)) 65)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-865 |#1|) (-140) (-564)) (T -865))
-((-1982 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-1150 (-564))))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-767)))) (-4016 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) (-2732 (*1 *1 *1) (-4 *1 (-865 *2))) (-3056 (*1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) (-4035 (*1 *1 *1) (-4 *1 (-865 *2))) (-3646 (*1 *2 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) (-3700 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))) (-3537 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-865 *4)))))
-(-13 (-307) (-147) (-10 -8 (-15 -1982 ((-1150 (-564)) $)) (-15 -3744 ((-767) $)) (-15 -4016 ($ $ (-564))) (-15 -2732 ($ $)) (-15 -3056 ((-564))) (-15 -2028 ((-564) $)) (-15 -4035 ($ $)) (-15 -3646 ((-564) $ (-564))) (-15 -3700 ($ $ (-564))) (-15 -3537 ($ (-1166 (-564)) (-564)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3700 (($ $ (-564)) NIL)) (-3162 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-3537 (($ (-1166 (-564)) (-564)) NIL)) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-4035 (($ $) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-3744 (((-767) $) NIL)) (-4112 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3056 (((-564)) NIL)) (-2028 (((-564) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4016 (($ $ (-564)) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-1982 (((-1150 (-564)) $) NIL)) (-2732 (($ $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3646 (((-564) $ (-564)) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
-(((-866 |#1|) (-865 |#1|) (-564)) (T -866))
-NIL
-(-865 |#1|)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4198 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-307)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-866 |#1|) (-905)))) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-866 |#1|) (-905)))) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL (|has| (-866 |#1|) (-816)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-866 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-564))))) (-3120 (((-866 |#1|) $) NIL) (((-1170) $) NIL (|has| (-866 |#1|) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-866 |#1|) (-1034 (-564)))) (((-564) $) NIL (|has| (-866 |#1|) (-1034 (-564))))) (-2963 (($ $) NIL) (($ (-564) $) NIL)) (-2946 (($ $ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| (-866 |#1|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-866 |#1|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-866 |#1|))) (|:| |vec| (-1259 (-866 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-866 |#1|)) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-866 |#1|) (-545)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2384 (((-112) $) NIL (|has| (-866 |#1|) (-816)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-866 |#1|) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-866 |#1|) (-882 (-379))))) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL)) (-2323 (((-866 |#1|) $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| (-866 |#1|) (-1145)))) (-3326 (((-112) $) NIL (|has| (-866 |#1|) (-816)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL (|has| (-866 |#1|) (-846)))) (-1497 (($ $ $) NIL (|has| (-866 |#1|) (-846)))) (-4357 (($ (-1 (-866 |#1|) (-866 |#1|)) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-866 |#1|) (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL (|has| (-866 |#1|) (-307)))) (-2882 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-545)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-866 |#1|) (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-866 |#1|) (-905)))) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3291 (($ $ (-641 (-866 |#1|)) (-641 (-866 |#1|))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-866 |#1|) (-866 |#1|)) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-294 (-866 |#1|))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-641 (-294 (-866 |#1|)))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-641 (-1170)) (-641 (-866 |#1|))) NIL (|has| (-866 |#1|) (-514 (-1170) (-866 |#1|)))) (($ $ (-1170) (-866 |#1|)) NIL (|has| (-866 |#1|) (-514 (-1170) (-866 |#1|))))) (-1700 (((-767) $) NIL)) (-4366 (($ $ (-866 |#1|)) NIL (|has| (-866 |#1|) (-286 (-866 |#1|) (-866 |#1|))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $) NIL (|has| (-866 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-866 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-1 (-866 |#1|) (-866 |#1|)) (-767)) NIL) (($ $ (-1 (-866 |#1|) (-866 |#1|))) NIL)) (-2827 (($ $) NIL)) (-2336 (((-866 |#1|) $) NIL)) (-1311 (((-888 (-564)) $) NIL (|has| (-866 |#1|) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-866 |#1|) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-866 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-866 |#1|) (-1018))) (((-225) $) NIL (|has| (-866 |#1|) (-1018)))) (-3316 (((-174 (-407 (-564))) $) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-866 |#1|) (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-866 |#1|)) NIL) (($ (-1170)) NIL (|has| (-866 |#1|) (-1034 (-1170))))) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| (-866 |#1|) (-905))) (|has| (-866 |#1|) (-145))))) (-3719 (((-767)) NIL T CONST)) (-3448 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-545)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3646 (((-407 (-564)) $ (-564)) NIL)) (-3673 (($ $) NIL (|has| (-866 |#1|) (-816)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $) NIL (|has| (-866 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-866 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-866 |#1|) (-896 (-1170)))) (($ $ (-1 (-866 |#1|) (-866 |#1|)) (-767)) NIL) (($ $ (-1 (-866 |#1|) (-866 |#1|))) NIL)) (-3034 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-2999 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-3092 (($ $ $) NIL) (($ (-866 |#1|) (-866 |#1|)) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-866 |#1|) $) NIL) (($ $ (-866 |#1|)) NIL)))
-(((-867 |#1|) (-13 (-988 (-866 |#1|)) (-10 -8 (-15 -3646 ((-407 (-564)) $ (-564))) (-15 -3316 ((-174 (-407 (-564))) $)) (-15 -2963 ($ $)) (-15 -2963 ($ (-564) $)))) (-564)) (T -867))
-((-3646 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-867 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-867 *3)) (-14 *3 (-564)))) (-2963 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-564)))) (-2963 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-867 *3)) (-14 *3 *2))))
-(-13 (-988 (-866 |#1|)) (-10 -8 (-15 -3646 ((-407 (-564)) $ (-564))) (-15 -3316 ((-174 (-407 (-564))) $)) (-15 -2963 ($ $)) (-15 -2963 ($ (-564) $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4198 ((|#2| $) NIL (|has| |#2| (-307)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL (|has| |#2| (-816)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| |#2| (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564))))) (-3120 ((|#2| $) NIL) (((-1170) $) NIL (|has| |#2| (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-564)))) (((-564) $) NIL (|has| |#2| (-1034 (-564))))) (-2963 (($ $) 35) (($ (-564) $) 38)) (-2946 (($ $ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) 63)) (-2534 (($) NIL (|has| |#2| (-545)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2384 (((-112) $) NIL (|has| |#2| (-816)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| |#2| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#2| (-882 (-379))))) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL)) (-2323 ((|#2| $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-3326 (((-112) $) NIL (|has| |#2| (-816)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL (|has| |#2| (-846)))) (-1497 (($ $ $) NIL (|has| |#2| (-846)))) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 59)) (-3431 (($) NIL (|has| |#2| (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL (|has| |#2| (-307)))) (-2882 ((|#2| $) NIL (|has| |#2| (-545)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3291 (($ $ (-641 |#2|) (-641 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (|has| |#2| (-514 (-1170) |#2|))) (($ $ (-1170) |#2|) NIL (|has| |#2| (-514 (-1170) |#2|)))) (-1700 (((-767) $) NIL)) (-4366 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2827 (($ $) NIL)) (-2336 ((|#2| $) NIL)) (-1311 (((-888 (-564)) $) NIL (|has| |#2| (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| |#2| (-612 (-888 (-379))))) (((-536) $) NIL (|has| |#2| (-612 (-536)))) (((-379) $) NIL (|has| |#2| (-1018))) (((-225) $) NIL (|has| |#2| (-1018)))) (-3316 (((-174 (-407 (-564))) $) 77)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2423 (((-858) $) 107) (($ (-564)) 20) (($ $) NIL) (($ (-407 (-564))) 25) (($ |#2|) 19) (($ (-1170)) NIL (|has| |#2| (-1034 (-1170))))) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3448 ((|#2| $) NIL (|has| |#2| (-545)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3646 (((-407 (-564)) $ (-564)) 70)) (-3673 (($ $) NIL (|has| |#2| (-816)))) (-2403 (($) 15 T CONST)) (-2417 (($) 17 T CONST)) (-4063 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3034 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2974 (((-112) $ $) 45)) (-3023 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3092 (($ $ $) 24) (($ |#2| |#2|) 64)) (-3082 (($ $) 49) (($ $ $) 51)) (-3070 (($ $ $) 47)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) 60)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 52) (($ $ $) 54) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#2| $) 65) (($ $ |#2|) NIL)))
-(((-868 |#1| |#2|) (-13 (-988 |#2|) (-10 -8 (-15 -3646 ((-407 (-564)) $ (-564))) (-15 -3316 ((-174 (-407 (-564))) $)) (-15 -2963 ($ $)) (-15 -2963 ($ (-564) $)))) (-564) (-865 |#1|)) (T -868))
-((-3646 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-868 *4 *5)) (-5 *3 (-564)) (-4 *5 (-865 *4)))) (-3316 (*1 *2 *1) (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3)))) (-2963 (*1 *1 *1) (-12 (-14 *2 (-564)) (-5 *1 (-868 *2 *3)) (-4 *3 (-865 *2)))) (-2963 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3)))))
-(-13 (-988 |#2|) (-10 -8 (-15 -3646 ((-407 (-564)) $ (-564))) (-15 -3316 ((-174 (-407 (-564))) $)) (-15 -2963 ($ $)) (-15 -2963 ($ (-564) $))))
-((-3009 (((-112) $ $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-1772 ((|#2| $) 12)) (-2120 (($ |#1| |#2|) 9)) (-2766 (((-1152) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-4052 (((-1114) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-2658 ((|#1| $) 11)) (-2435 (($ |#1| |#2|) 10)) (-2423 (((-858) $) 18 (-2807 (-12 (|has| |#1| (-611 (-858))) (|has| |#2| (-611 (-858)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))) (-1860 (((-112) $ $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-2974 (((-112) $ $) 23 (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))))
-(((-869 |#1| |#2|) (-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-858))) (IF (|has| |#2| (-611 (-858))) (-6 (-611 (-858))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -2120 ($ |#1| |#2|)) (-15 -2435 ($ |#1| |#2|)) (-15 -2658 (|#1| $)) (-15 -1772 (|#2| $)))) (-1209) (-1209)) (T -869))
-((-2120 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-2658 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1209)))) (-1772 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1209)))))
-(-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-858))) (IF (|has| |#2| (-611 (-858))) (-6 (-611 (-858))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -2120 ($ |#1| |#2|)) (-15 -2435 ($ |#1| |#2|)) (-15 -2658 (|#1| $)) (-15 -1772 (|#2| $))))
-((-3009 (((-112) $ $) NIL)) (-3223 (((-564) $) 16)) (-3103 (($ (-157)) 13)) (-2851 (($ (-157)) 14)) (-2766 (((-1152) $) NIL)) (-2878 (((-157) $) 15)) (-4052 (((-1114) $) NIL)) (-3599 (($ (-157)) 11)) (-1585 (($ (-157)) 10)) (-2423 (((-858) $) 24) (($ (-157)) 17)) (-3241 (($ (-157)) 12)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-870) (-13 (-1094) (-10 -8 (-15 -1585 ($ (-157))) (-15 -3599 ($ (-157))) (-15 -3241 ($ (-157))) (-15 -3103 ($ (-157))) (-15 -2851 ($ (-157))) (-15 -2878 ((-157) $)) (-15 -3223 ((-564) $)) (-15 -2423 ($ (-157)))))) (T -870))
-((-1585 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3599 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3103 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-2851 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-870)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
-(-13 (-1094) (-10 -8 (-15 -1585 ($ (-157))) (-15 -3599 ($ (-157))) (-15 -3241 ($ (-157))) (-15 -3103 ($ (-157))) (-15 -2851 ($ (-157))) (-15 -2878 ((-157) $)) (-15 -3223 ((-564) $)) (-15 -2423 ($ (-157)))))
-((-2423 (((-316 (-564)) (-407 (-948 (-48)))) 23) (((-316 (-564)) (-948 (-48))) 18)))
-(((-871) (-10 -7 (-15 -2423 ((-316 (-564)) (-948 (-48)))) (-15 -2423 ((-316 (-564)) (-407 (-948 (-48))))))) (T -871))
-((-2423 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 (-48)))) (-5 *2 (-316 (-564))) (-5 *1 (-871)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-948 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-871)))))
-(-10 -7 (-15 -2423 ((-316 (-564)) (-948 (-48)))) (-15 -2423 ((-316 (-564)) (-407 (-948 (-48))))))
-((-4357 (((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)) 15)))
-(((-872 |#1| |#2|) (-10 -7 (-15 -4357 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) (-1209) (-1209)) (T -872))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6)))))
-(-10 -7 (-15 -4357 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|))))
-((-2012 (($ |#1| |#1|) 8)) (-1297 ((|#1| $ (-767)) 15)))
-(((-873 |#1|) (-10 -8 (-15 -2012 ($ |#1| |#1|)) (-15 -1297 (|#1| $ (-767)))) (-1209)) (T -873))
-((-1297 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1209)))) (-2012 (*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1209)))))
-(-10 -8 (-15 -2012 ($ |#1| |#1|)) (-15 -1297 (|#1| $ (-767))))
-((-4357 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 15)))
-(((-874 |#1| |#2|) (-10 -7 (-15 -4357 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1209) (-1209)) (T -874))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))))
-(-10 -7 (-15 -4357 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|))))
-((-2012 (($ |#1| |#1| |#1|) 8)) (-1297 ((|#1| $ (-767)) 15)))
-(((-875 |#1|) (-10 -8 (-15 -2012 ($ |#1| |#1| |#1|)) (-15 -1297 (|#1| $ (-767)))) (-1209)) (T -875))
-((-1297 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1209)))) (-2012 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1209)))))
-(-10 -8 (-15 -2012 ($ |#1| |#1| |#1|)) (-15 -1297 (|#1| $ (-767))))
-((-3550 (((-641 (-1175)) (-1152)) 9)))
-(((-876) (-10 -7 (-15 -3550 ((-641 (-1175)) (-1152))))) (T -876))
-((-3550 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-876)))))
-(-10 -7 (-15 -3550 ((-641 (-1175)) (-1152))))
-((-4357 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 15)))
-(((-877 |#1| |#2|) (-10 -7 (-15 -4357 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-1209) (-1209)) (T -877))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6)))))
-(-10 -7 (-15 -4357 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))
-((-2919 (($ |#1| |#1| |#1|) 8)) (-1297 ((|#1| $ (-767)) 15)))
-(((-878 |#1|) (-10 -8 (-15 -2919 ($ |#1| |#1| |#1|)) (-15 -1297 (|#1| $ (-767)))) (-1209)) (T -878))
-((-1297 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1209)))) (-2919 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1209)))))
-(-10 -8 (-15 -2919 ($ |#1| |#1| |#1|)) (-15 -1297 (|#1| $ (-767))))
-((-4228 (((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564)))) 48)) (-3304 (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 44)) (-1458 (((-1150 (-641 (-564))) (-641 (-564))) 58) (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 56)) (-4224 (((-1150 (-641 (-564))) (-564)) 59)) (-2939 (((-1150 (-641 (-564))) (-564) (-564)) 34) (((-1150 (-641 (-564))) (-564)) 23) (((-1150 (-641 (-564))) (-564) (-564) (-564)) 19)) (-4186 (((-1150 (-641 (-564))) (-1150 (-641 (-564)))) 42)) (-3185 (((-641 (-564)) (-641 (-564))) 41)))
-(((-879) (-10 -7 (-15 -2939 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -2939 ((-1150 (-641 (-564))) (-564))) (-15 -2939 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -3185 ((-641 (-564)) (-641 (-564)))) (-15 -4186 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -3304 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -4228 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -1458 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -1458 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -4224 ((-1150 (-641 (-564))) (-564))))) (T -879))
-((-4224 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-641 (-564))))) (-1458 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-641 (-564))))) (-4228 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564))) (-5 *1 (-879)))) (-3304 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-641 (-564))))) (-4186 (*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)))) (-3185 (*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-879)))) (-2939 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))) (-2939 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))) (-2939 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))))
-(-10 -7 (-15 -2939 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -2939 ((-1150 (-641 (-564))) (-564))) (-15 -2939 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -3185 ((-641 (-564)) (-641 (-564)))) (-15 -4186 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -3304 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -4228 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -1458 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -1458 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -4224 ((-1150 (-641 (-564))) (-564))))
-((-1311 (((-888 (-379)) $) 9 (|has| |#1| (-612 (-888 (-379))))) (((-888 (-564)) $) 8 (|has| |#1| (-612 (-888 (-564)))))))
-(((-880 |#1|) (-140) (-1209)) (T -880))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-612 (-888 (-564)))) (-6 (-612 (-888 (-564)))) |%noBranch|) (IF (|has| |t#1| (-612 (-888 (-379)))) (-6 (-612 (-888 (-379)))) |%noBranch|)))
-(((-612 (-888 (-379))) |has| |#1| (-612 (-888 (-379)))) ((-612 (-888 (-564))) |has| |#1| (-612 (-888 (-564)))))
-((-3009 (((-112) $ $) NIL)) (-4238 (($) 14)) (-4325 (($ (-885 |#1| |#2|) (-885 |#1| |#3|)) 28)) (-2603 (((-885 |#1| |#3|) $) 16)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2634 (((-112) $) 22)) (-3285 (($) 19)) (-2423 (((-858) $) 31)) (-1860 (((-112) $ $) NIL)) (-1720 (((-885 |#1| |#2|) $) 15)) (-2974 (((-112) $ $) 26)))
-(((-881 |#1| |#2| |#3|) (-13 (-1094) (-10 -8 (-15 -2634 ((-112) $)) (-15 -3285 ($)) (-15 -4238 ($)) (-15 -4325 ($ (-885 |#1| |#2|) (-885 |#1| |#3|))) (-15 -1720 ((-885 |#1| |#2|) $)) (-15 -2603 ((-885 |#1| |#3|) $)))) (-1094) (-1094) (-662 |#2|)) (T -881))
-((-2634 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-3285 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-4238 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-4325 (*1 *1 *2 *3) (-12 (-5 *2 (-885 *4 *5)) (-5 *3 (-885 *4 *6)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-881 *4 *5 *6)))) (-1720 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-885 *3 *4)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-2603 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-885 *3 *5)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))))
-(-13 (-1094) (-10 -8 (-15 -2634 ((-112) $)) (-15 -3285 ($)) (-15 -4238 ($)) (-15 -4325 ($ (-885 |#1| |#2|) (-885 |#1| |#3|))) (-15 -1720 ((-885 |#1| |#2|) $)) (-15 -2603 ((-885 |#1| |#3|) $))))
-((-3009 (((-112) $ $) 7)) (-1513 (((-885 |#1| $) $ (-888 |#1|) (-885 |#1| $)) 14)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
-(((-882 |#1|) (-140) (-1094)) (T -882))
-((-1513 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-885 *4 *1)) (-5 *3 (-888 *4)) (-4 *1 (-882 *4)) (-4 *4 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -1513 ((-885 |t#1| $) $ (-888 |t#1|) (-885 |t#1| $)))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3679 (((-112) (-641 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3203 (((-885 |#1| |#2|) |#2| |#3|) 45 (-12 (-2351 (|has| |#2| (-1034 (-1170)))) (-2351 (|has| |#2| (-1045))))) (((-641 (-294 (-948 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1045)) (-2351 (|has| |#2| (-1034 (-1170)))))) (((-641 (-294 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1034 (-1170)))) (((-881 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|) 21)))
-(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -3679 ((-112) |#2| |#3|)) (-15 -3679 ((-112) (-641 |#2|) |#3|)) (-15 -3203 ((-881 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1170))) (-15 -3203 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -3203 ((-641 (-294 (-948 |#2|))) |#2| |#3|)) (-15 -3203 ((-885 |#1| |#2|) |#2| |#3|))))) (-1094) (-882 |#1|) (-612 (-888 |#1|))) (T -883))
-((-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-885 *5 *3)) (-5 *1 (-883 *5 *3 *4)) (-2351 (-4 *3 (-1034 (-1170)))) (-2351 (-4 *3 (-1045))) (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5))))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-948 *3)))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045)) (-2351 (-4 *3 (-1034 (-1170)))) (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5))))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1034 (-1170))) (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5))))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-641 *6))) (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-888 *5))))) (-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-612 (-888 *5))))) (-3679 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5))))))
-(-10 -7 (-15 -3679 ((-112) |#2| |#3|)) (-15 -3679 ((-112) (-641 |#2|) |#3|)) (-15 -3203 ((-881 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1170))) (-15 -3203 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -3203 ((-641 (-294 (-948 |#2|))) |#2| |#3|)) (-15 -3203 ((-885 |#1| |#2|) |#2| |#3|)))))
-((-4357 (((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)) 22)))
-(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -4357 ((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)))) (-1094) (-1094) (-1094)) (T -884))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-885 *5 *6)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-885 *5 *7)) (-5 *1 (-884 *5 *6 *7)))))
-(-10 -7 (-15 -4357 ((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|))))
-((-3009 (((-112) $ $) NIL)) (-1682 (($ $ $) 40)) (-2109 (((-3 (-112) "failed") $ (-888 |#1|)) 37)) (-4238 (($) 12)) (-2766 (((-1152) $) NIL)) (-3403 (($ (-888 |#1|) |#2| $) 20)) (-4052 (((-1114) $) NIL)) (-4172 (((-3 |#2| "failed") (-888 |#1|) $) 51)) (-2634 (((-112) $) 15)) (-3285 (($) 13)) (-3765 (((-641 (-2 (|:| -1901 (-1170)) (|:| -3813 |#2|))) $) 25)) (-2435 (($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 |#2|)))) 23)) (-2423 (((-858) $) 45)) (-1860 (((-112) $ $) NIL)) (-3846 (($ (-888 |#1|) |#2| $ |#2|) 49)) (-1400 (($ (-888 |#1|) |#2| $) 48)) (-2974 (((-112) $ $) 42)))
-(((-885 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -2634 ((-112) $)) (-15 -3285 ($)) (-15 -4238 ($)) (-15 -1682 ($ $ $)) (-15 -4172 ((-3 |#2| "failed") (-888 |#1|) $)) (-15 -1400 ($ (-888 |#1|) |#2| $)) (-15 -3403 ($ (-888 |#1|) |#2| $)) (-15 -3846 ($ (-888 |#1|) |#2| $ |#2|)) (-15 -3765 ((-641 (-2 (|:| -1901 (-1170)) (|:| -3813 |#2|))) $)) (-15 -2435 ($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 |#2|))))) (-15 -2109 ((-3 (-112) "failed") $ (-888 |#1|))))) (-1094) (-1094)) (T -885))
-((-2634 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3285 (*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4238 (*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1682 (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4172 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) (-5 *1 (-885 *4 *2)))) (-1400 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1094)))) (-3403 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1094)))) (-3846 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1094)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 *4)))) (-5 *1 (-885 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 *4)))) (-4 *4 (-1094)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1094)))) (-2109 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -2634 ((-112) $)) (-15 -3285 ($)) (-15 -4238 ($)) (-15 -1682 ($ $ $)) (-15 -4172 ((-3 |#2| "failed") (-888 |#1|) $)) (-15 -1400 ($ (-888 |#1|) |#2| $)) (-15 -3403 ($ (-888 |#1|) |#2| $)) (-15 -3846 ($ (-888 |#1|) |#2| $ |#2|)) (-15 -3765 ((-641 (-2 (|:| -1901 (-1170)) (|:| -3813 |#2|))) $)) (-15 -2435 ($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 |#2|))))) (-15 -2109 ((-3 (-112) "failed") $ (-888 |#1|)))))
-((-2823 (((-888 |#1|) (-888 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|))) 32) (((-888 |#1|) (-888 |#1|) (-641 (-1 (-112) |#2|))) 46) (((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|)) 35)) (-2109 (((-112) (-641 |#2|) (-888 |#1|)) 42) (((-112) |#2| (-888 |#1|)) 36)) (-4138 (((-1 (-112) |#2|) (-888 |#1|)) 16)) (-3319 (((-641 |#2|) (-888 |#1|)) 24)) (-4088 (((-888 |#1|) (-888 |#1|) |#2|) 20)))
-(((-886 |#1| |#2|) (-10 -7 (-15 -2823 ((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|))) (-15 -2823 ((-888 |#1|) (-888 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -2823 ((-888 |#1|) (-888 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -4138 ((-1 (-112) |#2|) (-888 |#1|))) (-15 -2109 ((-112) |#2| (-888 |#1|))) (-15 -2109 ((-112) (-641 |#2|) (-888 |#1|))) (-15 -4088 ((-888 |#1|) (-888 |#1|) |#2|)) (-15 -3319 ((-641 |#2|) (-888 |#1|)))) (-1094) (-1209)) (T -886))
-((-3319 (*1 *2 *3) (-12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1209)))) (-4088 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1209)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-886 *5 *6)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-886 *5 *3)) (-4 *3 (-1209)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1209)))) (-2823 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-888 *5)) (-5 *3 (-641 (-1170))) (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-886 *5 *6)))) (-2823 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-886 *4 *5)))) (-2823 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-886 *4 *5)))))
-(-10 -7 (-15 -2823 ((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|))) (-15 -2823 ((-888 |#1|) (-888 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -2823 ((-888 |#1|) (-888 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -4138 ((-1 (-112) |#2|) (-888 |#1|))) (-15 -2109 ((-112) |#2| (-888 |#1|))) (-15 -2109 ((-112) (-641 |#2|) (-888 |#1|))) (-15 -4088 ((-888 |#1|) (-888 |#1|) |#2|)) (-15 -3319 ((-641 |#2|) (-888 |#1|))))
-((-4357 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 19)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -4357 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1094) (-1094)) (T -887))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))))
-(-10 -7 (-15 -4357 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|))))
-((-3009 (((-112) $ $) NIL)) (-2407 (($ $ (-641 (-52))) 74)) (-3836 (((-641 $) $) 138)) (-3822 (((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $) 30)) (-2230 (((-112) $) 35)) (-2518 (($ $ (-641 (-1170)) (-52)) 31)) (-3153 (($ $ (-641 (-52))) 73)) (-4284 (((-3 |#1| "failed") $) 71) (((-3 (-1170) "failed") $) 162)) (-3120 ((|#1| $) 68) (((-1170) $) NIL)) (-1973 (($ $) 126)) (-2088 (((-112) $) 55)) (-1467 (((-641 (-52)) $) 50)) (-4322 (($ (-1170) (-112) (-112) (-112)) 75)) (-3168 (((-3 (-641 $) "failed") (-641 $)) 82)) (-3783 (((-112) $) 58)) (-3708 (((-112) $) 57)) (-2766 (((-1152) $) NIL)) (-1958 (((-3 (-641 $) "failed") $) 41)) (-4338 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-4193 (((-3 (-2 (|:| |val| $) (|:| -1838 $)) "failed") $) 97)) (-1301 (((-3 (-641 $) "failed") $) 40)) (-1998 (((-3 (-641 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -1626 (-114)) (|:| |arg| (-641 $))) "failed") $) 107)) (-1996 (((-3 (-641 $) "failed") $) 42)) (-3401 (((-3 (-2 (|:| |val| $) (|:| -1838 (-767))) "failed") $) 45)) (-1293 (((-112) $) 34)) (-4052 (((-1114) $) NIL)) (-3776 (((-112) $) 28)) (-4235 (((-112) $) 52)) (-2688 (((-641 (-52)) $) 130)) (-1756 (((-112) $) 56)) (-4366 (($ (-114) (-641 $)) 104)) (-1928 (((-767) $) 33)) (-3926 (($ $) 72)) (-1311 (($ (-641 $)) 69)) (-2252 (((-112) $) 32)) (-2423 (((-858) $) 63) (($ |#1|) 23) (($ (-1170)) 76)) (-1860 (((-112) $ $) NIL)) (-4088 (($ $ (-52)) 129)) (-2403 (($) 103 T CONST)) (-2417 (($) 83 T CONST)) (-2974 (((-112) $ $) 93)) (-3092 (($ $ $) 117)) (-3070 (($ $ $) 121)) (** (($ $ (-767)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
-(((-888 |#1|) (-13 (-1094) (-1034 |#1|) (-1034 (-1170)) (-10 -8 (-15 0 ($) -2959) (-15 1 ($) -2959) (-15 -1301 ((-3 (-641 $) "failed") $)) (-15 -1958 ((-3 (-641 $) "failed") $)) (-15 -1998 ((-3 (-641 $) "failed") $ (-114))) (-15 -1998 ((-3 (-2 (|:| -1626 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -3401 ((-3 (-2 (|:| |val| $) (|:| -1838 (-767))) "failed") $)) (-15 -4338 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1996 ((-3 (-641 $) "failed") $)) (-15 -4193 ((-3 (-2 (|:| |val| $) (|:| -1838 $)) "failed") $)) (-15 -4366 ($ (-114) (-641 $))) (-15 -3070 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -3092 ($ $ $)) (-15 -1928 ((-767) $)) (-15 -1311 ($ (-641 $))) (-15 -3926 ($ $)) (-15 -1293 ((-112) $)) (-15 -2088 ((-112) $)) (-15 -2230 ((-112) $)) (-15 -2252 ((-112) $)) (-15 -1756 ((-112) $)) (-15 -3708 ((-112) $)) (-15 -3783 ((-112) $)) (-15 -4235 ((-112) $)) (-15 -1467 ((-641 (-52)) $)) (-15 -3153 ($ $ (-641 (-52)))) (-15 -2407 ($ $ (-641 (-52)))) (-15 -4322 ($ (-1170) (-112) (-112) (-112))) (-15 -2518 ($ $ (-641 (-1170)) (-52))) (-15 -3822 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -3776 ((-112) $)) (-15 -1973 ($ $)) (-15 -4088 ($ $ (-52))) (-15 -2688 ((-641 (-52)) $)) (-15 -3836 ((-641 $) $)) (-15 -3168 ((-3 (-641 $) "failed") (-641 $))))) (-1094)) (T -888))
-((-2403 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-2417 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-1301 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1958 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1998 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-888 *4))) (-5 *1 (-888 *4)) (-4 *4 (-1094)))) (-1998 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1626 (-114)) (|:| |arg| (-641 (-888 *3))))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3401 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -1838 (-767)))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-4338 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-888 *3)) (|:| |den| (-888 *3)))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1996 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-4193 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -1838 (-888 *3)))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-4366 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-888 *4))) (-5 *1 (-888 *4)) (-4 *4 (-1094)))) (-3070 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-3092 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3926 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-4235 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3153 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-4322 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-888 *4)) (-4 *4 (-1094)))) (-2518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-888 *4)) (-4 *4 (-1094)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52)))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-1973 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))) (-4088 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))) (-3168 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(-13 (-1094) (-1034 |#1|) (-1034 (-1170)) (-10 -8 (-15 (-2403) ($) -2959) (-15 (-2417) ($) -2959) (-15 -1301 ((-3 (-641 $) "failed") $)) (-15 -1958 ((-3 (-641 $) "failed") $)) (-15 -1998 ((-3 (-641 $) "failed") $ (-114))) (-15 -1998 ((-3 (-2 (|:| -1626 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -3401 ((-3 (-2 (|:| |val| $) (|:| -1838 (-767))) "failed") $)) (-15 -4338 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1996 ((-3 (-641 $) "failed") $)) (-15 -4193 ((-3 (-2 (|:| |val| $) (|:| -1838 $)) "failed") $)) (-15 -4366 ($ (-114) (-641 $))) (-15 -3070 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -3092 ($ $ $)) (-15 -1928 ((-767) $)) (-15 -1311 ($ (-641 $))) (-15 -3926 ($ $)) (-15 -1293 ((-112) $)) (-15 -2088 ((-112) $)) (-15 -2230 ((-112) $)) (-15 -2252 ((-112) $)) (-15 -1756 ((-112) $)) (-15 -3708 ((-112) $)) (-15 -3783 ((-112) $)) (-15 -4235 ((-112) $)) (-15 -1467 ((-641 (-52)) $)) (-15 -3153 ($ $ (-641 (-52)))) (-15 -2407 ($ $ (-641 (-52)))) (-15 -4322 ($ (-1170) (-112) (-112) (-112))) (-15 -2518 ($ $ (-641 (-1170)) (-52))) (-15 -3822 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -3776 ((-112) $)) (-15 -1973 ($ $)) (-15 -4088 ($ $ (-52))) (-15 -2688 ((-641 (-52)) $)) (-15 -3836 ((-641 $) $)) (-15 -3168 ((-3 (-641 $) "failed") (-641 $)))))
-((-3009 (((-112) $ $) NIL)) (-3058 (((-641 |#1|) $) 19)) (-1884 (((-112) $) 49)) (-4284 (((-3 (-668 |#1|) "failed") $) 56)) (-3120 (((-668 |#1|) $) 54)) (-2671 (($ $) 23)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2581 (((-767) $) 61)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 (((-668 |#1|) $) 21)) (-2423 (((-858) $) 47) (($ (-668 |#1|)) 26) (((-815 |#1|) $) 36) (($ |#1|) 25)) (-1860 (((-112) $ $) NIL)) (-2417 (($) 9 T CONST)) (-2404 (((-641 (-668 |#1|)) $) 28)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 12)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 67)))
-(((-889 |#1|) (-13 (-846) (-1034 (-668 |#1|)) (-10 -8 (-15 1 ($) -2959) (-15 -2423 ((-815 |#1|) $)) (-15 -2423 ($ |#1|)) (-15 -2658 ((-668 |#1|) $)) (-15 -2581 ((-767) $)) (-15 -2404 ((-641 (-668 |#1|)) $)) (-15 -2671 ($ $)) (-15 -1884 ((-112) $)) (-15 -3058 ((-641 |#1|) $)))) (-846)) (T -889))
-((-2417 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-2423 (*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-2671 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))))
-(-13 (-846) (-1034 (-668 |#1|)) (-10 -8 (-15 (-2417) ($) -2959) (-15 -2423 ((-815 |#1|) $)) (-15 -2423 ($ |#1|)) (-15 -2658 ((-668 |#1|) $)) (-15 -2581 ((-767) $)) (-15 -2404 ((-641 (-668 |#1|)) $)) (-15 -2671 ($ $)) (-15 -1884 ((-112) $)) (-15 -3058 ((-641 |#1|) $))))
-((-3841 ((|#1| |#1| |#1|) 19)))
-(((-890 |#1| |#2|) (-10 -7 (-15 -3841 (|#1| |#1| |#1|))) (-1235 |#2|) (-1045)) (T -890))
-((-3841 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1235 *3)))))
-(-10 -7 (-15 -3841 (|#1| |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-3644 (((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 15)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-1557 (((-1031) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 14)) (-2974 (((-112) $ $) 6)))
-(((-891) (-140)) (T -891))
-((-3644 (*1 *2 *3 *4) (-12 (-4 *1 (-891)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152)))))) (-1557 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-1031)))))
-(-13 (-1094) (-10 -7 (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))) (-1057) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -1557 ((-1031) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3753 ((|#1| |#1| (-767)) 29)) (-3045 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3384 (((-3 (-2 (|:| -4328 |#1|) (|:| -4337 |#1|)) "failed") |#1| (-767) (-767)) 32) (((-641 |#1|) |#1|) 39)))
-(((-892 |#1| |#2|) (-10 -7 (-15 -3384 ((-641 |#1|) |#1|)) (-15 -3384 ((-3 (-2 (|:| -4328 |#1|) (|:| -4337 |#1|)) "failed") |#1| (-767) (-767))) (-15 -3045 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3753 (|#1| |#1| (-767)))) (-1235 |#2|) (-363)) (T -892))
-((-3753 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4)) (-4 *2 (-1235 *4)))) (-3045 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1235 *3)))) (-3384 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -4328 *3) (|:| -4337 *3))) (-5 *1 (-892 *3 *5)) (-4 *3 (-1235 *5)))) (-3384 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-892 *3 *4)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -3384 ((-641 |#1|) |#1|)) (-15 -3384 ((-3 (-2 (|:| -4328 |#1|) (|:| -4337 |#1|)) "failed") |#1| (-767) (-767))) (-15 -3045 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3753 (|#1| |#1| (-767))))
-((-4256 (((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152)) 106) (((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225)) 102) (((-1031) (-894) (-1057)) 94) (((-1031) (-894)) 95)) (-3644 (((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894) (-1057)) 65) (((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894)) 67)))
-(((-893) (-10 -7 (-15 -4256 ((-1031) (-894))) (-15 -4256 ((-1031) (-894) (-1057))) (-15 -4256 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -4256 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894) (-1057))))) (T -893))
-((-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-893)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-893)))) (-4256 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-767)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-4256 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-767)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893)))))
-(-10 -7 (-15 -4256 ((-1031) (-894))) (-15 -4256 ((-1031) (-894) (-1057))) (-15 -4256 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -4256 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894))) (-15 -3644 ((-2 (|:| -3644 (-379)) (|:| -2562 (-1152)) (|:| |explanations| (-641 (-1152)))) (-894) (-1057))))
-((-3009 (((-112) $ $) NIL)) (-3120 (((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $) 19)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 21) (($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 18)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-894) (-13 (-1094) (-10 -8 (-15 -2423 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -3120 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $))))) (T -894))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-894)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-894)))))
-(-13 (-1094) (-10 -8 (-15 -2423 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -3120 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $))))
-((-3254 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) 10) (($ $ |#2| (-767)) 15) (($ $ (-641 |#2|) (-641 (-767))) 18)) (-4063 (($ $ |#2|) 19) (($ $ (-641 |#2|)) 21) (($ $ |#2| (-767)) 22) (($ $ (-641 |#2|) (-641 (-767))) 24)))
-(((-895 |#1| |#2|) (-10 -8 (-15 -4063 (|#1| |#1| (-641 |#2|) (-641 (-767)))) (-15 -4063 (|#1| |#1| |#2| (-767))) (-15 -4063 (|#1| |#1| (-641 |#2|))) (-15 -4063 (|#1| |#1| |#2|)) (-15 -3254 (|#1| |#1| (-641 |#2|) (-641 (-767)))) (-15 -3254 (|#1| |#1| |#2| (-767))) (-15 -3254 (|#1| |#1| (-641 |#2|))) (-15 -3254 (|#1| |#1| |#2|))) (-896 |#2|) (-1094)) (T -895))
-NIL
-(-10 -8 (-15 -4063 (|#1| |#1| (-641 |#2|) (-641 (-767)))) (-15 -4063 (|#1| |#1| |#2| (-767))) (-15 -4063 (|#1| |#1| (-641 |#2|))) (-15 -4063 (|#1| |#1| |#2|)) (-15 -3254 (|#1| |#1| (-641 |#2|) (-641 (-767)))) (-15 -3254 (|#1| |#1| |#2| (-767))) (-15 -3254 (|#1| |#1| (-641 |#2|))) (-15 -3254 (|#1| |#1| |#2|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-3254 (($ $ |#1|) 43) (($ $ (-641 |#1|)) 42) (($ $ |#1| (-767)) 41) (($ $ (-641 |#1|) (-641 (-767))) 40)) (-2423 (((-858) $) 12) (($ (-564)) 30)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ |#1|) 39) (($ $ (-641 |#1|)) 38) (($ $ |#1| (-767)) 37) (($ $ (-641 |#1|) (-641 (-767))) 36)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-896 |#1|) (-140) (-1094)) (T -896))
-((-3254 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094)))) (-3254 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-3254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1094)))) (-4063 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-4063 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094)))) (-4063 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094)))) (-4063 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1094)))))
-(-13 (-1045) (-10 -8 (-15 -3254 ($ $ |t#1|)) (-15 -3254 ($ $ (-641 |t#1|))) (-15 -3254 ($ $ |t#1| (-767))) (-15 -3254 ($ $ (-641 |t#1|) (-641 (-767)))) (-15 -4063 ($ $ |t#1|)) (-15 -4063 ($ $ (-641 |t#1|))) (-15 -4063 ($ $ |t#1| (-767))) (-15 -4063 ($ $ (-641 |t#1|) (-641 (-767))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2128 ((|#1| $) 26)) (-1876 (((-112) $ (-767)) NIL)) (-2925 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-4221 (($ $ $) NIL (|has| $ (-6 -4408)))) (-2003 (($ $ $) NIL (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "left" $) NIL (|has| $ (-6 -4408))) (($ $ "right" $) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4337 (($ $) 25)) (-4306 (($ |#1|) 12) (($ $ $) 17)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) NIL)) (-1675 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-4328 (($ $) 23)) (-2730 (((-641 |#1|) $) NIL)) (-1841 (((-112) $) 20)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3277 (((-564) $ $) NIL)) (-3206 (((-112) $) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-1195 |#1|) $) 9) (((-858) $) 29 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) NIL)) (-4059 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 21 (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-897 |#1|) (-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -4306 ($ |#1|)) (-15 -4306 ($ $ $)))) (-1094)) (T -897))
-((-4306 (*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094)))) (-4306 (*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094)))))
-(-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -4306 ($ |#1|)) (-15 -4306 ($ $ $))))
-((-1571 ((|#2| (-1136 |#1| |#2|)) 53)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -1571 (|#2| (-1136 |#1| |#2|)))) (-917) (-13 (-1045) (-10 -7 (-6 (-4409 "*"))))) (T -898))
-((-1571 (*1 *2 *3) (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-917)) (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4409 "*"))))) (-5 *1 (-898 *4 *2)))))
-(-10 -7 (-15 -1571 (|#2| (-1136 |#1| |#2|))))
-((-3009 (((-112) $ $) 7)) (-4080 (($) 19 T CONST)) (-3293 (((-3 $ "failed") $) 16)) (-2829 (((-1096 |#1|) $ |#1|) 33)) (-4112 (((-112) $) 18)) (-2855 (($ $ $) 31 (-2807 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1497 (($ $ $) 30 (-2807 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2766 (((-1152) $) 10)) (-3936 (($ $) 25)) (-4052 (((-1114) $) 11)) (-3291 ((|#1| $ |#1|) 35)) (-4366 ((|#1| $ |#1|) 34)) (-4187 (($ (-641 (-641 |#1|))) 36)) (-1842 (($ (-641 |#1|)) 37)) (-3185 (($ $ $) 22)) (-1542 (($ $ $) 21)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2417 (($) 20 T CONST)) (-3034 (((-112) $ $) 28 (-2807 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-3011 (((-112) $ $) 27 (-2807 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 29 (-2807 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2999 (((-112) $ $) 32)) (-3092 (($ $ $) 24)) (** (($ $ (-917)) 14) (($ $ (-767)) 17) (($ $ (-564)) 23)) (* (($ $ $) 15)))
-(((-899 |#1|) (-140) (-1094)) (T -899))
-((-1842 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-899 *3)))) (-4187 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-899 *3)))) (-3291 (*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1094)))) (-4366 (*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1094)))) (-2829 (*1 *2 *1 *3) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3)))) (-2999 (*1 *2 *1 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(-13 (-473) (-10 -8 (-15 -1842 ($ (-641 |t#1|))) (-15 -4187 ($ (-641 (-641 |t#1|)))) (-15 -3291 (|t#1| $ |t#1|)) (-15 -4366 (|t#1| $ |t#1|)) (-15 -2829 ((-1096 |t#1|) $ |t#1|)) (-15 -2999 ((-112) $ $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-846)) |%noBranch|)))
-(((-102) . T) ((-611 (-858)) . T) ((-473) . T) ((-722) . T) ((-846) -2807 (|has| |#1| (-846)) (|has| |#1| (-368))) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-2244 (((-641 (-641 (-767))) $) 165)) (-1840 (((-641 (-767)) (-901 |#1|) $) 193)) (-2414 (((-641 (-767)) (-901 |#1|) $) 194)) (-4250 (((-641 (-901 |#1|)) $) 154)) (-2534 (((-901 |#1|) $ (-564)) 159) (((-901 |#1|) $) 160)) (-2580 (($ (-641 (-901 |#1|))) 167)) (-3744 (((-767) $) 161)) (-2986 (((-1096 (-1096 |#1|)) $) 191)) (-2829 (((-1096 |#1|) $ |#1|) 182) (((-1096 (-1096 |#1|)) $ (-1096 |#1|)) 202) (((-1096 (-641 |#1|)) $ (-641 |#1|)) 205)) (-2923 (((-1096 |#1|) $) 157)) (-3369 (((-112) (-901 |#1|) $) 143)) (-2766 (((-1152) $) NIL)) (-3991 (((-1264) $) 147) (((-1264) $ (-564) (-564)) 206)) (-4052 (((-1114) $) NIL)) (-3207 (((-641 (-901 |#1|)) $) 148)) (-4366 (((-901 |#1|) $ (-767)) 155)) (-1568 (((-767) $) 162)) (-2423 (((-858) $) 179) (((-641 (-901 |#1|)) $) 28) (($ (-641 (-901 |#1|))) 166)) (-1860 (((-112) $ $) NIL)) (-2648 (((-641 |#1|) $) 164)) (-2974 (((-112) $ $) 199)) (-3023 (((-112) $ $) 197)) (-2999 (((-112) $ $) 196)))
-(((-900 |#1|) (-13 (-1094) (-10 -8 (-15 -2423 ((-641 (-901 |#1|)) $)) (-15 -3207 ((-641 (-901 |#1|)) $)) (-15 -4366 ((-901 |#1|) $ (-767))) (-15 -2534 ((-901 |#1|) $ (-564))) (-15 -2534 ((-901 |#1|) $)) (-15 -3744 ((-767) $)) (-15 -1568 ((-767) $)) (-15 -2648 ((-641 |#1|) $)) (-15 -4250 ((-641 (-901 |#1|)) $)) (-15 -2244 ((-641 (-641 (-767))) $)) (-15 -2423 ($ (-641 (-901 |#1|)))) (-15 -2580 ($ (-641 (-901 |#1|)))) (-15 -2829 ((-1096 |#1|) $ |#1|)) (-15 -2986 ((-1096 (-1096 |#1|)) $)) (-15 -2829 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -2829 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -3369 ((-112) (-901 |#1|) $)) (-15 -1840 ((-641 (-767)) (-901 |#1|) $)) (-15 -2414 ((-641 (-767)) (-901 |#1|) $)) (-15 -2923 ((-1096 |#1|) $)) (-15 -2999 ((-112) $ $)) (-15 -3023 ((-112) $ $)) (-15 -3991 ((-1264) $)) (-15 -3991 ((-1264) $ (-564) (-564))))) (-1094)) (T -900))
-((-2423 (*1 *2 *1) (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) (-4 *4 (-1094)))) (-2534 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) (-4 *4 (-1094)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-901 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-767)))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-901 *3))) (-4 *3 (-1094)) (-5 *1 (-900 *3)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-641 (-901 *3))) (-4 *3 (-1094)) (-5 *1 (-900 *3)))) (-2829 (*1 *2 *1 *3) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2829 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-900 *4)) (-5 *3 (-1096 *4)))) (-2829 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-900 *4)) (-5 *3 (-641 *4)))) (-3369 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-900 *4)))) (-1840 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-767))) (-5 *1 (-900 *4)))) (-2414 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-767))) (-5 *1 (-900 *4)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-2999 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-3023 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))) (-3991 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-900 *4)) (-4 *4 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -2423 ((-641 (-901 |#1|)) $)) (-15 -3207 ((-641 (-901 |#1|)) $)) (-15 -4366 ((-901 |#1|) $ (-767))) (-15 -2534 ((-901 |#1|) $ (-564))) (-15 -2534 ((-901 |#1|) $)) (-15 -3744 ((-767) $)) (-15 -1568 ((-767) $)) (-15 -2648 ((-641 |#1|) $)) (-15 -4250 ((-641 (-901 |#1|)) $)) (-15 -2244 ((-641 (-641 (-767))) $)) (-15 -2423 ($ (-641 (-901 |#1|)))) (-15 -2580 ($ (-641 (-901 |#1|)))) (-15 -2829 ((-1096 |#1|) $ |#1|)) (-15 -2986 ((-1096 (-1096 |#1|)) $)) (-15 -2829 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -2829 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -3369 ((-112) (-901 |#1|) $)) (-15 -1840 ((-641 (-767)) (-901 |#1|) $)) (-15 -2414 ((-641 (-767)) (-901 |#1|) $)) (-15 -2923 ((-1096 |#1|) $)) (-15 -2999 ((-112) $ $)) (-15 -3023 ((-112) $ $)) (-15 -3991 ((-1264) $)) (-15 -3991 ((-1264) $ (-564) (-564)))))
-((-3009 (((-112) $ $) NIL)) (-2484 (((-641 $) (-641 $)) 105)) (-3249 (((-564) $) 86)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL)) (-3744 (((-767) $) 83)) (-2829 (((-1096 |#1|) $ |#1|) 74)) (-4112 (((-112) $) NIL)) (-3177 (((-112) $) 90)) (-2804 (((-767) $) 87)) (-2923 (((-1096 |#1|) $) 63)) (-2855 (($ $ $) NIL (-2807 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1497 (($ $ $) NIL (-2807 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1674 (((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $) 58)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 133)) (-4052 (((-1114) $) NIL)) (-3547 (((-1096 |#1|) $) 141 (|has| |#1| (-368)))) (-2663 (((-112) $) 84)) (-3291 ((|#1| $ |#1|) 72)) (-4366 ((|#1| $ |#1|) 135)) (-1568 (((-767) $) 65)) (-4187 (($ (-641 (-641 |#1|))) 120)) (-2377 (((-967) $) 78)) (-1842 (($ (-641 |#1|)) 35)) (-3185 (($ $ $) NIL)) (-1542 (($ $ $) NIL)) (-4222 (($ (-641 (-641 |#1|))) 60)) (-1898 (($ (-641 (-641 |#1|))) 125)) (-2659 (($ (-641 |#1|)) 137)) (-2423 (((-858) $) 119) (($ (-641 (-641 |#1|))) 93) (($ (-641 |#1|)) 94)) (-1860 (((-112) $ $) NIL)) (-2417 (($) 27 T CONST)) (-3034 (((-112) $ $) NIL (-2807 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-3011 (((-112) $ $) NIL (-2807 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2974 (((-112) $ $) 70)) (-3023 (((-112) $ $) NIL (-2807 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2999 (((-112) $ $) 92)) (-3092 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 36)))
-(((-901 |#1|) (-13 (-899 |#1|) (-10 -8 (-15 -1674 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -4222 ($ (-641 (-641 |#1|)))) (-15 -2423 ($ (-641 (-641 |#1|)))) (-15 -2423 ($ (-641 |#1|))) (-15 -1898 ($ (-641 (-641 |#1|)))) (-15 -1568 ((-767) $)) (-15 -2923 ((-1096 |#1|) $)) (-15 -2377 ((-967) $)) (-15 -3744 ((-767) $)) (-15 -2804 ((-767) $)) (-15 -3249 ((-564) $)) (-15 -2663 ((-112) $)) (-15 -3177 ((-112) $)) (-15 -2484 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -3547 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -2659 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -2659 ($ (-641 |#1|))) |%noBranch|)))) (-1094)) (T -901))
-((-1674 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3)))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4222 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-1898 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3547 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-368)) (-4 *3 (-1094)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-901 *3)))))
-(-13 (-899 |#1|) (-10 -8 (-15 -1674 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -4222 ($ (-641 (-641 |#1|)))) (-15 -2423 ($ (-641 (-641 |#1|)))) (-15 -2423 ($ (-641 |#1|))) (-15 -1898 ($ (-641 (-641 |#1|)))) (-15 -1568 ((-767) $)) (-15 -2923 ((-1096 |#1|) $)) (-15 -2377 ((-967) $)) (-15 -3744 ((-767) $)) (-15 -2804 ((-767) $)) (-15 -3249 ((-564) $)) (-15 -2663 ((-112) $)) (-15 -3177 ((-112) $)) (-15 -2484 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -3547 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -2659 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -2659 ($ (-641 |#1|))) |%noBranch|))))
-((-3091 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|)) 163)) (-1401 ((|#1|) 102)) (-2054 (((-418 (-1166 |#4|)) (-1166 |#4|)) 172)) (-3066 (((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)) 89)) (-1939 (((-418 (-1166 |#4|)) (-1166 |#4|)) 182)) (-2747 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|) 118)))
-(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3091 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -1939 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -2054 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -1401 (|#1|)) (-15 -2747 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -3066 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)))) (-905) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -902))
-((-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *7)) (-4 *7 (-846)) (-4 *5 (-905)) (-4 *6 (-789)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-1166 *8)))) (-2747 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-945 *5 *6 *4)) (-4 *5 (-905)) (-4 *6 (-789)) (-4 *4 (-846)) (-5 *1 (-902 *5 *6 *4 *7)))) (-1401 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) (-5 *1 (-902 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2054 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-1939 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3091 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-902 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3091 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -1939 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -2054 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -1401 (|#1|)) (-15 -2747 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -3066 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|))))
-((-3091 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 41)) (-1401 ((|#1|) 75)) (-2054 (((-418 (-1166 |#2|)) (-1166 |#2|)) 131)) (-3066 (((-418 (-1166 |#2|)) (-1166 |#2|)) 115)) (-1939 (((-418 (-1166 |#2|)) (-1166 |#2|)) 142)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -3091 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -1939 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -2054 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -1401 (|#1|)) (-15 -3066 ((-418 (-1166 |#2|)) (-1166 |#2|)))) (-905) (-1235 |#1|)) (T -903))
-((-3066 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5)))) (-1401 (*1 *2) (-12 (-4 *2 (-905)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1235 *2)))) (-2054 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5)))) (-1939 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5)))) (-3091 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-905)) (-5 *1 (-903 *4 *5)))))
-(-10 -7 (-15 -3091 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -1939 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -2054 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -1401 (|#1|)) (-15 -3066 ((-418 (-1166 |#2|)) (-1166 |#2|))))
-((-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 18)) (-2420 (((-3 $ "failed") $) 36)))
-(((-904 |#1|) (-10 -8 (-15 -2420 ((-3 |#1| "failed") |#1|)) (-15 -4192 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2805 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-905)) (T -904))
-NIL
-(-10 -8 (-15 -2420 ((-3 |#1| "failed") |#1|)) (-15 -4192 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2805 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-4199 (((-418 (-1166 $)) (-1166 $)) 62)) (-2683 (($ $) 53)) (-2753 (((-418 $) $) 54)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 59)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-1339 (((-112) $) 55)) (-4112 (((-112) $) 32)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-2037 (((-418 (-1166 $)) (-1166 $)) 60)) (-1348 (((-418 (-1166 $)) (-1166 $)) 61)) (-3688 (((-418 $) $) 52)) (-2998 (((-3 $ "failed") $ $) 44)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 58 (|has| $ (-145)))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45)) (-2420 (((-3 $ "failed") $) 57 (|has| $ (-145)))) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-905) (-140)) (T -905))
-((-2805 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-905)))) (-4199 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-1348 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-2037 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-4192 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1)) (-4 *1 (-905)))) (-3895 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-905)) (-5 *2 (-1259 *1)))) (-2420 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-905)))))
-(-13 (-1213) (-10 -8 (-15 -4199 ((-418 (-1166 $)) (-1166 $))) (-15 -1348 ((-418 (-1166 $)) (-1166 $))) (-15 -2037 ((-418 (-1166 $)) (-1166 $))) (-15 -2805 ((-1166 $) (-1166 $) (-1166 $))) (-15 -4192 ((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $))) (IF (|has| $ (-145)) (PROGN (-15 -3895 ((-3 (-1259 $) "failed") (-685 $))) (-15 -2420 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-1872 (((-112) $) NIL)) (-3497 (((-767)) NIL)) (-3847 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-4373 (((-1182 (-917) (-767)) (-564)) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 $ "failed") $) NIL)) (-3120 (($ $) NIL)) (-3474 (($ (-1259 $)) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1471 (($) NIL)) (-1436 (((-112) $) NIL)) (-3456 (($ $) NIL) (($ $ (-767)) NIL)) (-1339 (((-112) $) NIL)) (-3744 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-4112 (((-112) $) NIL)) (-2908 (($) NIL (|has| $ (-368)))) (-3164 (((-112) $) NIL (|has| $ (-368)))) (-2499 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-1846 (((-3 $ "failed") $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3514 (((-1166 $) $ (-917)) NIL (|has| $ (-368))) (((-1166 $) $) NIL)) (-3256 (((-917) $) NIL)) (-2820 (((-1166 $) $) NIL (|has| $ (-368)))) (-4372 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-3606 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL T CONST)) (-2083 (($ (-917)) NIL)) (-2695 (((-112) $) NIL)) (-4052 (((-1114) $) NIL)) (-2249 (($) NIL (|has| $ (-368)))) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL)) (-3688 (((-418 $) $) NIL)) (-1967 (((-917)) NIL) (((-829 (-917))) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-4255 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-4327 (((-134)) NIL)) (-3254 (($ $ (-767)) NIL) (($ $) NIL)) (-1568 (((-917) $) NIL) (((-829 (-917)) $) NIL)) (-3721 (((-1166 $)) NIL)) (-3826 (($) NIL)) (-1930 (($) NIL (|has| $ (-368)))) (-4225 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) NIL)) (-1311 (((-564) $) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL)) (-2420 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $) (-917)) NIL) (((-1259 $)) NIL)) (-2119 (((-112) $ $) NIL)) (-1816 (((-112) $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-3037 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-4063 (($ $ (-767)) NIL) (($ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-906 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-917)) (T -906))
+((-3866 (((-689 (-1220)) $ (-1220)) NIL)) (-3490 (((-689 (-549)) $ (-549)) NIL)) (-3343 (((-769) $ (-128)) NIL)) (-3760 (((-689 (-129)) $ (-129)) 22)) (-3885 (($ (-388)) 12) (($ (-1155)) 14)) (-2586 (((-112) $) 19)) (-2327 (((-860) $) 26)) (-2528 (($ $) 23)))
+(((-859) (-13 (-858) (-611 (-860)) (-10 -8 (-15 -3885 ($ (-388))) (-15 -3885 ($ (-1155))) (-15 -2586 ((-112) $))))) (T -859))
+((-3885 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-859)))) (-3885 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-859)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859)))))
+(-13 (-858) (-611 (-860)) (-10 -8 (-15 -3885 ($ (-388))) (-15 -3885 ($ (-1155))) (-15 -2586 ((-112) $))))
+((-2907 (((-112) $ $) NIL) (($ $ $) 86)) (-2964 (($ $ $) 126)) (-3410 (((-564) $) 31) (((-564)) 36)) (-2008 (($ (-564)) 54)) (-4051 (($ $ $) 55) (($ (-642 $)) 85)) (-3186 (($ $ (-642 $)) 83)) (-1824 (((-564) $) 34)) (-2000 (($ $ $) 74)) (-4301 (($ $) 141) (($ $ $) 142) (($ $ $ $) 143)) (-2321 (((-564) $) 33)) (-2435 (($ $ $) 73)) (-4287 (($ $) 115)) (-3468 (($ $ $) 130)) (-3085 (($ (-642 $)) 62)) (-2491 (($ $ (-642 $)) 80)) (-1793 (($ (-564) (-564)) 56)) (-3501 (($ $) 127) (($ $ $) 128)) (-4336 (($ $ (-564)) 43) (($ $) 46)) (-2845 (($ $ $) 98)) (-3527 (($ $ $) 133)) (-1778 (($ $) 116)) (-2859 (($ $ $) 99)) (-2118 (($ $) 144) (($ $ $) 145) (($ $ $ $) 146)) (-2837 (((-1267) $) 10)) (-4136 (($ $) 119) (($ $ (-769)) 123)) (-4362 (($ $ $) 76)) (-1969 (($ $ $) 75)) (-1654 (($ $ (-642 $)) 111)) (-3013 (($ $ $) 114)) (-1646 (($ (-642 $)) 60)) (-1301 (($ $) 71) (($ (-642 $)) 72)) (-3266 (($ $ $) 124)) (-3296 (($ $) 117)) (-1589 (($ $ $) 129)) (-4057 (($ (-564)) 21) (($ (-1173)) 23) (($ (-1155)) 30) (($ (-225)) 25)) (-2285 (($ $ $) 102)) (-2268 (($ $) 103)) (-3547 (((-1267) (-1155)) 15)) (-1699 (($ (-1155)) 14)) (-2244 (($ (-642 (-642 $))) 59)) (-4326 (($ $ (-564)) 42) (($ $) 45)) (-3315 (((-1155) $) NIL)) (-1445 (($ $ $) 132)) (-1470 (($ $) 147) (($ $ $) 148) (($ $ $ $) 149)) (-2810 (((-112) $) 109)) (-2466 (($ $ (-642 $)) 112) (($ $ $ $) 113)) (-1918 (($ (-564)) 39)) (-1295 (((-564) $) 32) (((-564)) 35)) (-2879 (($ $ $) 40) (($ (-642 $)) 84)) (-4033 (((-1117) $) NIL)) (-2896 (($ $ $) 100)) (-2972 (($) 13)) (-4368 (($ $ (-642 $)) 110)) (-3363 (((-1155) (-1155)) 8)) (-2619 (($ $) 118) (($ $ (-769)) 122)) (-2882 (($ $ $) 97)) (-3175 (($ $ (-769)) 140)) (-2657 (($ (-642 $)) 61)) (-2327 (((-860) $) 19)) (-3594 (($ $ (-564)) 41) (($ $) 44)) (-1965 (($ $) 69) (($ (-642 $)) 70)) (-3715 (($ $) 67) (($ (-642 $)) 68)) (-2181 (($ $) 125)) (-2820 (($ (-642 $)) 66)) (-3310 (($ $ $) 106)) (-1648 (((-112) $ $) NIL)) (-3525 (($ $ $) 131)) (-2275 (($ $ $) 101)) (-3567 (($ $ $) 104) (($ $) 105)) (-2934 (($ $ $) 90)) (-2908 (($ $ $) 88)) (-2872 (((-112) $ $) 16) (($ $ $) 17)) (-2922 (($ $ $) 89)) (-2897 (($ $ $) 87)) (-2998 (($ $ $) 95)) (-2987 (($ $ $) 92) (($ $) 93)) (-2974 (($ $ $) 91)) (** (($ $ $) 96)) (* (($ $ $) 94)))
+(((-860) (-13 (-1097) (-10 -8 (-15 -2837 ((-1267) $)) (-15 -1699 ($ (-1155))) (-15 -3547 ((-1267) (-1155))) (-15 -4057 ($ (-564))) (-15 -4057 ($ (-1173))) (-15 -4057 ($ (-1155))) (-15 -4057 ($ (-225))) (-15 -2972 ($)) (-15 -3363 ((-1155) (-1155))) (-15 -3410 ((-564) $)) (-15 -1295 ((-564) $)) (-15 -3410 ((-564))) (-15 -1295 ((-564))) (-15 -2321 ((-564) $)) (-15 -1824 ((-564) $)) (-15 -1918 ($ (-564))) (-15 -2008 ($ (-564))) (-15 -1793 ($ (-564) (-564))) (-15 -4326 ($ $ (-564))) (-15 -4336 ($ $ (-564))) (-15 -3594 ($ $ (-564))) (-15 -4326 ($ $)) (-15 -4336 ($ $)) (-15 -3594 ($ $)) (-15 -2879 ($ $ $)) (-15 -4051 ($ $ $)) (-15 -2879 ($ (-642 $))) (-15 -4051 ($ (-642 $))) (-15 -1654 ($ $ (-642 $))) (-15 -2466 ($ $ (-642 $))) (-15 -2466 ($ $ $ $)) (-15 -3013 ($ $ $)) (-15 -2810 ((-112) $)) (-15 -4368 ($ $ (-642 $))) (-15 -4287 ($ $)) (-15 -1445 ($ $ $)) (-15 -2181 ($ $)) (-15 -2244 ($ (-642 (-642 $)))) (-15 -2964 ($ $ $)) (-15 -3501 ($ $)) (-15 -3501 ($ $ $)) (-15 -1589 ($ $ $)) (-15 -3468 ($ $ $)) (-15 -3525 ($ $ $)) (-15 -3527 ($ $ $)) (-15 -3175 ($ $ (-769))) (-15 -3310 ($ $ $)) (-15 -2435 ($ $ $)) (-15 -2000 ($ $ $)) (-15 -1969 ($ $ $)) (-15 -4362 ($ $ $)) (-15 -2491 ($ $ (-642 $))) (-15 -3186 ($ $ (-642 $))) (-15 -1778 ($ $)) (-15 -2619 ($ $)) (-15 -2619 ($ $ (-769))) (-15 -4136 ($ $)) (-15 -4136 ($ $ (-769))) (-15 -3296 ($ $)) (-15 -3266 ($ $ $)) (-15 -4301 ($ $)) (-15 -4301 ($ $ $)) (-15 -4301 ($ $ $ $)) (-15 -2118 ($ $)) (-15 -2118 ($ $ $)) (-15 -2118 ($ $ $ $)) (-15 -1470 ($ $)) (-15 -1470 ($ $ $)) (-15 -1470 ($ $ $ $)) (-15 -3715 ($ $)) (-15 -3715 ($ (-642 $))) (-15 -1965 ($ $)) (-15 -1965 ($ (-642 $))) (-15 -1301 ($ $)) (-15 -1301 ($ (-642 $))) (-15 -1646 ($ (-642 $))) (-15 -2657 ($ (-642 $))) (-15 -3085 ($ (-642 $))) (-15 -2820 ($ (-642 $))) (-15 -2872 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2897 ($ $ $)) (-15 -2908 ($ $ $)) (-15 -2922 ($ $ $)) (-15 -2934 ($ $ $)) (-15 -2974 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -2987 ($ $)) (-15 * ($ $ $)) (-15 -2998 ($ $ $)) (-15 ** ($ $ $)) (-15 -2882 ($ $ $)) (-15 -2845 ($ $ $)) (-15 -2859 ($ $ $)) (-15 -2896 ($ $ $)) (-15 -2275 ($ $ $)) (-15 -2285 ($ $ $)) (-15 -2268 ($ $)) (-15 -3567 ($ $ $)) (-15 -3567 ($ $))))) (T -860))
+((-2837 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-860)))) (-1699 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-860)))) (-4057 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-4057 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-860)))) (-4057 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860)))) (-4057 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-860)))) (-2972 (*1 *1) (-5 *1 (-860))) (-3363 (*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-3410 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-1295 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-1918 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-2008 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-1793 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-4326 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-4336 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-3594 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))) (-4326 (*1 *1 *1) (-5 *1 (-860))) (-4336 (*1 *1 *1) (-5 *1 (-860))) (-3594 (*1 *1 *1) (-5 *1 (-860))) (-2879 (*1 *1 *1 *1) (-5 *1 (-860))) (-4051 (*1 *1 *1 *1) (-5 *1 (-860))) (-2879 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-4051 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-1654 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2466 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2466 (*1 *1 *1 *1 *1) (-5 *1 (-860))) (-3013 (*1 *1 *1 *1) (-5 *1 (-860))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-860)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-4287 (*1 *1 *1) (-5 *1 (-860))) (-1445 (*1 *1 *1 *1) (-5 *1 (-860))) (-2181 (*1 *1 *1) (-5 *1 (-860))) (-2244 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-860)))) (-5 *1 (-860)))) (-2964 (*1 *1 *1 *1) (-5 *1 (-860))) (-3501 (*1 *1 *1) (-5 *1 (-860))) (-3501 (*1 *1 *1 *1) (-5 *1 (-860))) (-1589 (*1 *1 *1 *1) (-5 *1 (-860))) (-3468 (*1 *1 *1 *1) (-5 *1 (-860))) (-3525 (*1 *1 *1 *1) (-5 *1 (-860))) (-3527 (*1 *1 *1 *1) (-5 *1 (-860))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860)))) (-3310 (*1 *1 *1 *1) (-5 *1 (-860))) (-2435 (*1 *1 *1 *1) (-5 *1 (-860))) (-2000 (*1 *1 *1 *1) (-5 *1 (-860))) (-1969 (*1 *1 *1 *1) (-5 *1 (-860))) (-4362 (*1 *1 *1 *1) (-5 *1 (-860))) (-2491 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-3186 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-1778 (*1 *1 *1) (-5 *1 (-860))) (-2619 (*1 *1 *1) (-5 *1 (-860))) (-2619 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860)))) (-4136 (*1 *1 *1) (-5 *1 (-860))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860)))) (-3296 (*1 *1 *1) (-5 *1 (-860))) (-3266 (*1 *1 *1 *1) (-5 *1 (-860))) (-4301 (*1 *1 *1) (-5 *1 (-860))) (-4301 (*1 *1 *1 *1) (-5 *1 (-860))) (-4301 (*1 *1 *1 *1 *1) (-5 *1 (-860))) (-2118 (*1 *1 *1) (-5 *1 (-860))) (-2118 (*1 *1 *1 *1) (-5 *1 (-860))) (-2118 (*1 *1 *1 *1 *1) (-5 *1 (-860))) (-1470 (*1 *1 *1) (-5 *1 (-860))) (-1470 (*1 *1 *1 *1) (-5 *1 (-860))) (-1470 (*1 *1 *1 *1 *1) (-5 *1 (-860))) (-3715 (*1 *1 *1) (-5 *1 (-860))) (-3715 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-1965 (*1 *1 *1) (-5 *1 (-860))) (-1965 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-1301 (*1 *1 *1) (-5 *1 (-860))) (-1301 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-1646 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-3085 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2820 (*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))) (-2872 (*1 *1 *1 *1) (-5 *1 (-860))) (-2907 (*1 *1 *1 *1) (-5 *1 (-860))) (-2897 (*1 *1 *1 *1) (-5 *1 (-860))) (-2908 (*1 *1 *1 *1) (-5 *1 (-860))) (-2922 (*1 *1 *1 *1) (-5 *1 (-860))) (-2934 (*1 *1 *1 *1) (-5 *1 (-860))) (-2974 (*1 *1 *1 *1) (-5 *1 (-860))) (-2987 (*1 *1 *1 *1) (-5 *1 (-860))) (-2987 (*1 *1 *1) (-5 *1 (-860))) (* (*1 *1 *1 *1) (-5 *1 (-860))) (-2998 (*1 *1 *1 *1) (-5 *1 (-860))) (** (*1 *1 *1 *1) (-5 *1 (-860))) (-2882 (*1 *1 *1 *1) (-5 *1 (-860))) (-2845 (*1 *1 *1 *1) (-5 *1 (-860))) (-2859 (*1 *1 *1 *1) (-5 *1 (-860))) (-2896 (*1 *1 *1 *1) (-5 *1 (-860))) (-2275 (*1 *1 *1 *1) (-5 *1 (-860))) (-2285 (*1 *1 *1 *1) (-5 *1 (-860))) (-2268 (*1 *1 *1) (-5 *1 (-860))) (-3567 (*1 *1 *1 *1) (-5 *1 (-860))) (-3567 (*1 *1 *1) (-5 *1 (-860))))
+(-13 (-1097) (-10 -8 (-15 -2837 ((-1267) $)) (-15 -1699 ($ (-1155))) (-15 -3547 ((-1267) (-1155))) (-15 -4057 ($ (-564))) (-15 -4057 ($ (-1173))) (-15 -4057 ($ (-1155))) (-15 -4057 ($ (-225))) (-15 -2972 ($)) (-15 -3363 ((-1155) (-1155))) (-15 -3410 ((-564) $)) (-15 -1295 ((-564) $)) (-15 -3410 ((-564))) (-15 -1295 ((-564))) (-15 -2321 ((-564) $)) (-15 -1824 ((-564) $)) (-15 -1918 ($ (-564))) (-15 -2008 ($ (-564))) (-15 -1793 ($ (-564) (-564))) (-15 -4326 ($ $ (-564))) (-15 -4336 ($ $ (-564))) (-15 -3594 ($ $ (-564))) (-15 -4326 ($ $)) (-15 -4336 ($ $)) (-15 -3594 ($ $)) (-15 -2879 ($ $ $)) (-15 -4051 ($ $ $)) (-15 -2879 ($ (-642 $))) (-15 -4051 ($ (-642 $))) (-15 -1654 ($ $ (-642 $))) (-15 -2466 ($ $ (-642 $))) (-15 -2466 ($ $ $ $)) (-15 -3013 ($ $ $)) (-15 -2810 ((-112) $)) (-15 -4368 ($ $ (-642 $))) (-15 -4287 ($ $)) (-15 -1445 ($ $ $)) (-15 -2181 ($ $)) (-15 -2244 ($ (-642 (-642 $)))) (-15 -2964 ($ $ $)) (-15 -3501 ($ $)) (-15 -3501 ($ $ $)) (-15 -1589 ($ $ $)) (-15 -3468 ($ $ $)) (-15 -3525 ($ $ $)) (-15 -3527 ($ $ $)) (-15 -3175 ($ $ (-769))) (-15 -3310 ($ $ $)) (-15 -2435 ($ $ $)) (-15 -2000 ($ $ $)) (-15 -1969 ($ $ $)) (-15 -4362 ($ $ $)) (-15 -2491 ($ $ (-642 $))) (-15 -3186 ($ $ (-642 $))) (-15 -1778 ($ $)) (-15 -2619 ($ $)) (-15 -2619 ($ $ (-769))) (-15 -4136 ($ $)) (-15 -4136 ($ $ (-769))) (-15 -3296 ($ $)) (-15 -3266 ($ $ $)) (-15 -4301 ($ $)) (-15 -4301 ($ $ $)) (-15 -4301 ($ $ $ $)) (-15 -2118 ($ $)) (-15 -2118 ($ $ $)) (-15 -2118 ($ $ $ $)) (-15 -1470 ($ $)) (-15 -1470 ($ $ $)) (-15 -1470 ($ $ $ $)) (-15 -3715 ($ $)) (-15 -3715 ($ (-642 $))) (-15 -1965 ($ $)) (-15 -1965 ($ (-642 $))) (-15 -1301 ($ $)) (-15 -1301 ($ (-642 $))) (-15 -1646 ($ (-642 $))) (-15 -2657 ($ (-642 $))) (-15 -3085 ($ (-642 $))) (-15 -2820 ($ (-642 $))) (-15 -2872 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2897 ($ $ $)) (-15 -2908 ($ $ $)) (-15 -2922 ($ $ $)) (-15 -2934 ($ $ $)) (-15 -2974 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -2987 ($ $)) (-15 * ($ $ $)) (-15 -2998 ($ $ $)) (-15 ** ($ $ $)) (-15 -2882 ($ $ $)) (-15 -2845 ($ $ $)) (-15 -2859 ($ $ $)) (-15 -2896 ($ $ $)) (-15 -2275 ($ $ $)) (-15 -2285 ($ $ $)) (-15 -2268 ($ $)) (-15 -3567 ($ $ $)) (-15 -3567 ($ $))))
+((-1443 (((-1267) (-642 (-52))) 24)) (-2530 (((-1267) (-1155) (-860)) 14) (((-1267) (-860)) 9) (((-1267) (-1155)) 11)))
+(((-861) (-10 -7 (-15 -2530 ((-1267) (-1155))) (-15 -2530 ((-1267) (-860))) (-15 -2530 ((-1267) (-1155) (-860))) (-15 -1443 ((-1267) (-642 (-52)))))) (T -861))
+((-1443 (*1 *2 *3) (-12 (-5 *3 (-642 (-52))) (-5 *2 (-1267)) (-5 *1 (-861)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-860)) (-5 *2 (-1267)) (-5 *1 (-861)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-861)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-861)))))
+(-10 -7 (-15 -2530 ((-1267) (-1155))) (-15 -2530 ((-1267) (-860))) (-15 -2530 ((-1267) (-1155) (-860))) (-15 -1443 ((-1267) (-642 (-52)))))
+((-2907 (((-112) $ $) NIL)) (-3329 (((-3 $ "failed") (-1173)) 39)) (-2521 (((-769)) 32)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-919) $) 29)) (-3315 (((-1155) $) 46)) (-2047 (($ (-919)) 28)) (-4033 (((-1117) $) NIL)) (-1314 (((-1173) $) 13) (((-536) $) 19) (((-890 (-379)) $) 26) (((-890 (-564)) $) 22)) (-2327 (((-860) $) 16)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 43)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 41)))
+(((-862 |#1|) (-13 (-842) (-612 (-1173)) (-612 (-536)) (-612 (-890 (-379))) (-612 (-890 (-564))) (-10 -8 (-15 -3329 ((-3 $ "failed") (-1173))))) (-642 (-1173))) (T -862))
+((-3329 (*1 *1 *2) (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-862 *3)) (-14 *3 (-642 *2)))))
+(-13 (-842) (-612 (-1173)) (-612 (-536)) (-612 (-890 (-379))) (-612 (-890 (-564))) (-10 -8 (-15 -3329 ((-3 $ "failed") (-1173)))))
+((-2907 (((-112) $ $) NIL)) (-2461 (((-506) $) 9)) (-3234 (((-642 (-439)) $) 13)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 21)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 16)))
+(((-863) (-13 (-1097) (-10 -8 (-15 -2461 ((-506) $)) (-15 -3234 ((-642 (-439)) $))))) (T -863))
+((-2461 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-863)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-642 (-439))) (-5 *1 (-863)))))
+(-13 (-1097) (-10 -8 (-15 -2461 ((-506) $)) (-15 -3234 ((-642 (-439)) $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ (-950 |#1|)) NIL) (((-950 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-2756 (((-769)) NIL T CONST)) (-3207 (((-1267) (-769)) NIL)) (-1648 (((-112) $ $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-864 |#1| |#2| |#3| |#4|) (-13 (-1047) (-490 (-950 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2998 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3207 ((-1267) (-769))))) (-1047) (-642 (-1173)) (-642 (-769)) (-769)) (T -864))
+((-2998 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-864 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1047)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-769))) (-14 *5 (-769)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-864 *4 *5 *6 *7)) (-4 *4 (-1047)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 *3)) (-14 *7 *3))))
+(-13 (-1047) (-490 (-950 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2998 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3207 ((-1267) (-769)))))
+((-3992 (((-3 (-174 |#3|) "failed") (-769) (-769) |#2| |#2|) 43)) (-4077 (((-3 (-407 |#3|) "failed") (-769) (-769) |#2| |#2|) 34)))
+(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -4077 ((-3 (-407 |#3|) "failed") (-769) (-769) |#2| |#2|)) (-15 -3992 ((-3 (-174 |#3|) "failed") (-769) (-769) |#2| |#2|))) (-363) (-1253 |#1|) (-1238 |#1|)) (T -865))
+((-3992 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-769)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-865 *5 *4 *6)) (-4 *4 (-1253 *5)) (-4 *6 (-1238 *5)))) (-4077 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-769)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-865 *5 *4 *6)) (-4 *4 (-1253 *5)) (-4 *6 (-1238 *5)))))
+(-10 -7 (-15 -4077 ((-3 (-407 |#3|) "failed") (-769) (-769) |#2| |#2|)) (-15 -3992 ((-3 (-174 |#3|) "failed") (-769) (-769) |#2| |#2|)))
+((-4077 (((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|)) 30) (((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) 28)))
+(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -4077 ((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) (-15 -4077 ((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|)))) (-363) (-1173) |#1|) (T -866))
+((-4077 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-769)) (-5 *4 (-1254 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1173)) (-14 *7 *5) (-5 *2 (-407 (-1235 *6 *5))) (-5 *1 (-866 *5 *6 *7)))) (-4077 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-769)) (-5 *4 (-1254 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1173)) (-14 *7 *5) (-5 *2 (-407 (-1235 *6 *5))) (-5 *1 (-866 *5 *6 *7)))))
+(-10 -7 (-15 -4077 ((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) (-15 -4077 ((-3 (-407 (-1235 |#2| |#1|)) "failed") (-769) (-769) (-1254 |#1| |#2| |#3|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-3655 (($ $ (-564)) 68)) (-4010 (((-112) $ $) 65)) (-1976 (($) 18 T CONST)) (-3501 (($ (-1169 (-564)) (-564)) 67)) (-2845 (($ $ $) 61)) (-3104 (((-3 $ "failed") $) 37)) (-2590 (($ $) 70)) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-1427 (((-769) $) 75)) (-3953 (((-112) $) 35)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-1472 (((-564)) 72)) (-2016 (((-564) $) 71)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3804 (($ $ (-564)) 74)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2048 (((-769) $) 64)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-3918 (((-1153 (-564)) $) 76)) (-4318 (($ $) 73)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-3601 (((-564) $ (-564)) 69)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-867 |#1|) (-140) (-564)) (T -867))
+((-3918 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-1153 (-564))))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-769)))) (-3804 (*1 *1 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) (-4318 (*1 *1 *1) (-4 *1 (-867 *2))) (-1472 (*1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) (-2590 (*1 *1 *1) (-4 *1 (-867 *2))) (-3601 (*1 *2 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) (-3655 (*1 *1 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))) (-3501 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *3 (-564)) (-4 *1 (-867 *4)))))
+(-13 (-307) (-147) (-10 -8 (-15 -3918 ((-1153 (-564)) $)) (-15 -1427 ((-769) $)) (-15 -3804 ($ $ (-564))) (-15 -4318 ($ $)) (-15 -1472 ((-564))) (-15 -2016 ((-564) $)) (-15 -2590 ($ $)) (-15 -3601 ((-564) $ (-564))) (-15 -3655 ($ $ (-564))) (-15 -3501 ($ (-1169 (-564)) (-564)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-3655 (($ $ (-564)) NIL)) (-4010 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-3501 (($ (-1169 (-564)) (-564)) NIL)) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2590 (($ $) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1427 (((-769) $) NIL)) (-3953 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-1472 (((-564)) NIL)) (-2016 (((-564) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3804 (($ $ (-564)) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3918 (((-1153 (-564)) $) NIL)) (-4318 (($ $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-3601 (((-564) $ (-564)) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
+(((-868 |#1|) (-867 |#1|) (-564)) (T -868))
+NIL
+(-867 |#1|)
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3703 (((-868 |#1|) $) NIL (|has| (-868 |#1|) (-307)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-868 |#1|) (-907)))) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-868 |#1|) (-907)))) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL (|has| (-868 |#1|) (-818)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-868 |#1|) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| (-868 |#1|) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-868 |#1|) (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-868 |#1|) (-1036 (-564))))) (-3027 (((-868 |#1|) $) NIL) (((-1173) $) NIL (|has| (-868 |#1|) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-868 |#1|) (-1036 (-564)))) (((-564) $) NIL (|has| (-868 |#1|) (-1036 (-564))))) (-3517 (($ $) NIL) (($ (-564) $) NIL)) (-2845 (($ $ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| (-868 |#1|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-868 |#1|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-868 |#1|))) (|:| |vec| (-1262 (-868 |#1|)))) (-687 $) (-1262 $)) NIL) (((-687 (-868 |#1|)) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-868 |#1|) (-545)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2538 (((-112) $) NIL (|has| (-868 |#1|) (-818)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-868 |#1|) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-868 |#1|) (-884 (-379))))) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2245 (((-868 |#1|) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| (-868 |#1|) (-1148)))) (-3333 (((-112) $) NIL (|has| (-868 |#1|) (-818)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL (|has| (-868 |#1|) (-848)))) (-1520 (($ $ $) NIL (|has| (-868 |#1|) (-848)))) (-4358 (($ (-1 (-868 |#1|) (-868 |#1|)) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-868 |#1|) (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL (|has| (-868 |#1|) (-307)))) (-2759 (((-868 |#1|) $) NIL (|has| (-868 |#1|) (-545)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-868 |#1|) (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-868 |#1|) (-907)))) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3215 (($ $ (-642 (-868 |#1|)) (-642 (-868 |#1|))) NIL (|has| (-868 |#1|) (-309 (-868 |#1|)))) (($ $ (-868 |#1|) (-868 |#1|)) NIL (|has| (-868 |#1|) (-309 (-868 |#1|)))) (($ $ (-294 (-868 |#1|))) NIL (|has| (-868 |#1|) (-309 (-868 |#1|)))) (($ $ (-642 (-294 (-868 |#1|)))) NIL (|has| (-868 |#1|) (-309 (-868 |#1|)))) (($ $ (-642 (-1173)) (-642 (-868 |#1|))) NIL (|has| (-868 |#1|) (-514 (-1173) (-868 |#1|)))) (($ $ (-1173) (-868 |#1|)) NIL (|has| (-868 |#1|) (-514 (-1173) (-868 |#1|))))) (-2048 (((-769) $) NIL)) (-4368 (($ $ (-868 |#1|)) NIL (|has| (-868 |#1|) (-286 (-868 |#1|) (-868 |#1|))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $) NIL (|has| (-868 |#1|) (-233))) (($ $ (-769)) NIL (|has| (-868 |#1|) (-233))) (($ $ (-1173)) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-1 (-868 |#1|) (-868 |#1|)) (-769)) NIL) (($ $ (-1 (-868 |#1|) (-868 |#1|))) NIL)) (-2618 (($ $) NIL)) (-2255 (((-868 |#1|) $) NIL)) (-1314 (((-890 (-564)) $) NIL (|has| (-868 |#1|) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-868 |#1|) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-868 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-868 |#1|) (-1020))) (((-225) $) NIL (|has| (-868 |#1|) (-1020)))) (-2587 (((-174 (-407 (-564))) $) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-868 |#1|) (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-868 |#1|)) NIL) (($ (-1173)) NIL (|has| (-868 |#1|) (-1036 (-1173))))) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| (-868 |#1|) (-907))) (|has| (-868 |#1|) (-145))))) (-2756 (((-769)) NIL T CONST)) (-3264 (((-868 |#1|) $) NIL (|has| (-868 |#1|) (-545)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-3601 (((-407 (-564)) $ (-564)) NIL)) (-1381 (($ $) NIL (|has| (-868 |#1|) (-818)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $) NIL (|has| (-868 |#1|) (-233))) (($ $ (-769)) NIL (|has| (-868 |#1|) (-233))) (($ $ (-1173)) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-868 |#1|) (-898 (-1173)))) (($ $ (-1 (-868 |#1|) (-868 |#1|)) (-769)) NIL) (($ $ (-1 (-868 |#1|) (-868 |#1|))) NIL)) (-2934 (((-112) $ $) NIL (|has| (-868 |#1|) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-868 |#1|) (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| (-868 |#1|) (-848)))) (-2897 (((-112) $ $) NIL (|has| (-868 |#1|) (-848)))) (-2998 (($ $ $) NIL) (($ (-868 |#1|) (-868 |#1|)) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-868 |#1|) $) NIL) (($ $ (-868 |#1|)) NIL)))
+(((-869 |#1|) (-13 (-990 (-868 |#1|)) (-10 -8 (-15 -3601 ((-407 (-564)) $ (-564))) (-15 -2587 ((-174 (-407 (-564))) $)) (-15 -3517 ($ $)) (-15 -3517 ($ (-564) $)))) (-564)) (T -869))
+((-3601 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-869 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-869 *3)) (-14 *3 (-564)))) (-3517 (*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-14 *2 (-564)))) (-3517 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-869 *3)) (-14 *3 *2))))
+(-13 (-990 (-868 |#1|)) (-10 -8 (-15 -3601 ((-407 (-564)) $ (-564))) (-15 -2587 ((-174 (-407 (-564))) $)) (-15 -3517 ($ $)) (-15 -3517 ($ (-564) $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3703 ((|#2| $) NIL (|has| |#2| (-307)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL (|has| |#2| (-818)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (|has| |#2| (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564))))) (-3027 ((|#2| $) NIL) (((-1173) $) NIL (|has| |#2| (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-564)))) (((-564) $) NIL (|has| |#2| (-1036 (-564))))) (-3517 (($ $) 35) (($ (-564) $) 38)) (-2845 (($ $ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) 63)) (-2433 (($) NIL (|has| |#2| (-545)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2538 (((-112) $) NIL (|has| |#2| (-818)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| |#2| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| |#2| (-884 (-379))))) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2245 ((|#2| $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| |#2| (-1148)))) (-3333 (((-112) $) NIL (|has| |#2| (-818)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL (|has| |#2| (-848)))) (-1520 (($ $ $) NIL (|has| |#2| (-848)))) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 59)) (-3366 (($) NIL (|has| |#2| (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL (|has| |#2| (-307)))) (-2759 ((|#2| $) NIL (|has| |#2| (-545)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3215 (($ $ (-642 |#2|) (-642 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-642 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-642 (-1173)) (-642 |#2|)) NIL (|has| |#2| (-514 (-1173) |#2|))) (($ $ (-1173) |#2|) NIL (|has| |#2| (-514 (-1173) |#2|)))) (-2048 (((-769) $) NIL)) (-4368 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $) NIL (|has| |#2| (-233))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2618 (($ $) NIL)) (-2255 ((|#2| $) NIL)) (-1314 (((-890 (-564)) $) NIL (|has| |#2| (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| |#2| (-612 (-890 (-379))))) (((-536) $) NIL (|has| |#2| (-612 (-536)))) (((-379) $) NIL (|has| |#2| (-1020))) (((-225) $) NIL (|has| |#2| (-1020)))) (-2587 (((-174 (-407 (-564))) $) 77)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2327 (((-860) $) 107) (($ (-564)) 20) (($ $) NIL) (($ (-407 (-564))) 25) (($ |#2|) 19) (($ (-1173)) NIL (|has| |#2| (-1036 (-1173))))) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-2756 (((-769)) NIL T CONST)) (-3264 ((|#2| $) NIL (|has| |#2| (-545)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-3601 (((-407 (-564)) $ (-564)) 70)) (-1381 (($ $) NIL (|has| |#2| (-818)))) (-2312 (($) 15 T CONST)) (-2322 (($) 17 T CONST)) (-4044 (($ $) NIL (|has| |#2| (-233))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2934 (((-112) $ $) NIL (|has| |#2| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#2| (-848)))) (-2872 (((-112) $ $) 45)) (-2922 (((-112) $ $) NIL (|has| |#2| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-848)))) (-2998 (($ $ $) 24) (($ |#2| |#2|) 64)) (-2987 (($ $) 49) (($ $ $) 51)) (-2974 (($ $ $) 47)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) 60)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 52) (($ $ $) 54) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#2| $) 65) (($ $ |#2|) NIL)))
+(((-870 |#1| |#2|) (-13 (-990 |#2|) (-10 -8 (-15 -3601 ((-407 (-564)) $ (-564))) (-15 -2587 ((-174 (-407 (-564))) $)) (-15 -3517 ($ $)) (-15 -3517 ($ (-564) $)))) (-564) (-867 |#1|)) (T -870))
+((-3601 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-870 *4 *5)) (-5 *3 (-564)) (-4 *5 (-867 *4)))) (-2587 (*1 *2 *1) (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-870 *3 *4)) (-4 *4 (-867 *3)))) (-3517 (*1 *1 *1) (-12 (-14 *2 (-564)) (-5 *1 (-870 *2 *3)) (-4 *3 (-867 *2)))) (-3517 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-870 *3 *4)) (-4 *4 (-867 *3)))))
+(-13 (-990 |#2|) (-10 -8 (-15 -3601 ((-407 (-564)) $ (-564))) (-15 -2587 ((-174 (-407 (-564))) $)) (-15 -3517 ($ $)) (-15 -3517 ($ (-564) $))))
+((-2907 (((-112) $ $) NIL (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))))) (-1799 ((|#2| $) 12)) (-2078 (($ |#1| |#2|) 9)) (-3315 (((-1155) $) NIL (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))))) (-4033 (((-1117) $) NIL (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))))) (-2557 ((|#1| $) 11)) (-2337 (($ |#1| |#2|) 10)) (-2327 (((-860) $) 18 (-2706 (-12 (|has| |#1| (-611 (-860))) (|has| |#2| (-611 (-860)))) (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097)))))) (-1648 (((-112) $ $) NIL (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))))) (-2872 (((-112) $ $) 23 (-12 (|has| |#1| (-1097)) (|has| |#2| (-1097))))))
+(((-871 |#1| |#2|) (-13 (-1212) (-10 -8 (IF (|has| |#1| (-611 (-860))) (IF (|has| |#2| (-611 (-860))) (-6 (-611 (-860))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1097)) (IF (|has| |#2| (-1097)) (-6 (-1097)) |%noBranch|) |%noBranch|) (-15 -2078 ($ |#1| |#2|)) (-15 -2337 ($ |#1| |#2|)) (-15 -2557 (|#1| $)) (-15 -1799 (|#2| $)))) (-1212) (-1212)) (T -871))
+((-2078 (*1 *1 *2 *3) (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1212)) (-4 *3 (-1212)))) (-2337 (*1 *1 *2 *3) (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1212)) (-4 *3 (-1212)))) (-2557 (*1 *2 *1) (-12 (-4 *2 (-1212)) (-5 *1 (-871 *2 *3)) (-4 *3 (-1212)))) (-1799 (*1 *2 *1) (-12 (-4 *2 (-1212)) (-5 *1 (-871 *3 *2)) (-4 *3 (-1212)))))
+(-13 (-1212) (-10 -8 (IF (|has| |#1| (-611 (-860))) (IF (|has| |#2| (-611 (-860))) (-6 (-611 (-860))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1097)) (IF (|has| |#2| (-1097)) (-6 (-1097)) |%noBranch|) |%noBranch|) (-15 -2078 ($ |#1| |#2|)) (-15 -2337 ($ |#1| |#2|)) (-15 -2557 (|#1| $)) (-15 -1799 (|#2| $))))
+((-2907 (((-112) $ $) NIL)) (-3871 (((-564) $) 16)) (-4118 (($ (-157)) 13)) (-1822 (($ (-157)) 14)) (-3315 (((-1155) $) NIL)) (-3265 (((-157) $) 15)) (-4033 (((-1117) $) NIL)) (-3554 (($ (-157)) 11)) (-2715 (($ (-157)) 10)) (-2327 (((-860) $) 24) (($ (-157)) 17)) (-3161 (($ (-157)) 12)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-872) (-13 (-1097) (-10 -8 (-15 -2715 ($ (-157))) (-15 -3554 ($ (-157))) (-15 -3161 ($ (-157))) (-15 -4118 ($ (-157))) (-15 -1822 ($ (-157))) (-15 -3265 ((-157) $)) (-15 -3871 ((-564) $)) (-15 -2327 ($ (-157)))))) (T -872))
+((-2715 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-3554 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-3161 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-872)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-872)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))))
+(-13 (-1097) (-10 -8 (-15 -2715 ($ (-157))) (-15 -3554 ($ (-157))) (-15 -3161 ($ (-157))) (-15 -4118 ($ (-157))) (-15 -1822 ($ (-157))) (-15 -3265 ((-157) $)) (-15 -3871 ((-564) $)) (-15 -2327 ($ (-157)))))
+((-2327 (((-316 (-564)) (-407 (-950 (-48)))) 23) (((-316 (-564)) (-950 (-48))) 18)))
+(((-873) (-10 -7 (-15 -2327 ((-316 (-564)) (-950 (-48)))) (-15 -2327 ((-316 (-564)) (-407 (-950 (-48))))))) (T -873))
+((-2327 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 (-48)))) (-5 *2 (-316 (-564))) (-5 *1 (-873)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-950 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-873)))))
+(-10 -7 (-15 -2327 ((-316 (-564)) (-950 (-48)))) (-15 -2327 ((-316 (-564)) (-407 (-950 (-48))))))
+((-4358 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 15)))
+(((-874 |#1| |#2|) (-10 -7 (-15 -4358 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1212) (-1212)) (T -874))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))))
+(-10 -7 (-15 -4358 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|))))
+((-3100 (($ |#1| |#1|) 8)) (-3789 ((|#1| $ (-769)) 15)))
+(((-875 |#1|) (-10 -8 (-15 -3100 ($ |#1| |#1|)) (-15 -3789 (|#1| $ (-769)))) (-1212)) (T -875))
+((-3789 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-875 *2)) (-4 *2 (-1212)))) (-3100 (*1 *1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1212)))))
+(-10 -8 (-15 -3100 ($ |#1| |#1|)) (-15 -3789 (|#1| $ (-769))))
+((-4358 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 15)))
+(((-876 |#1| |#2|) (-10 -7 (-15 -4358 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1212) (-1212)) (T -876))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6)))))
+(-10 -7 (-15 -4358 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))
+((-3100 (($ |#1| |#1| |#1|) 8)) (-3789 ((|#1| $ (-769)) 15)))
+(((-877 |#1|) (-10 -8 (-15 -3100 ($ |#1| |#1| |#1|)) (-15 -3789 (|#1| $ (-769)))) (-1212)) (T -877))
+((-3789 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-877 *2)) (-4 *2 (-1212)))) (-3100 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1212)))))
+(-10 -8 (-15 -3100 ($ |#1| |#1| |#1|)) (-15 -3789 (|#1| $ (-769))))
+((-1503 (((-642 (-1178)) (-1155)) 9)))
+(((-878) (-10 -7 (-15 -1503 ((-642 (-1178)) (-1155))))) (T -878))
+((-1503 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-642 (-1178))) (-5 *1 (-878)))))
+(-10 -7 (-15 -1503 ((-642 (-1178)) (-1155))))
+((-4358 (((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)) 15)))
+(((-879 |#1| |#2|) (-10 -7 (-15 -4358 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) (-1212) (-1212)) (T -879))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6)))))
+(-10 -7 (-15 -4358 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|))))
+((-3533 (($ |#1| |#1| |#1|) 8)) (-3789 ((|#1| $ (-769)) 15)))
+(((-880 |#1|) (-10 -8 (-15 -3533 ($ |#1| |#1| |#1|)) (-15 -3789 (|#1| $ (-769)))) (-1212)) (T -880))
+((-3789 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-880 *2)) (-4 *2 (-1212)))) (-3533 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1212)))))
+(-10 -8 (-15 -3533 ($ |#1| |#1| |#1|)) (-15 -3789 (|#1| $ (-769))))
+((-3627 (((-1153 (-642 (-564))) (-642 (-564)) (-1153 (-642 (-564)))) 48)) (-3826 (((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564))) 44)) (-4308 (((-1153 (-642 (-564))) (-642 (-564))) 58) (((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564))) 56)) (-2165 (((-1153 (-642 (-564))) (-564)) 59)) (-1880 (((-1153 (-642 (-564))) (-564) (-564)) 34) (((-1153 (-642 (-564))) (-564)) 23) (((-1153 (-642 (-564))) (-564) (-564) (-564)) 19)) (-3190 (((-1153 (-642 (-564))) (-1153 (-642 (-564)))) 42)) (-1389 (((-642 (-564)) (-642 (-564))) 41)))
+(((-881) (-10 -7 (-15 -1880 ((-1153 (-642 (-564))) (-564) (-564) (-564))) (-15 -1880 ((-1153 (-642 (-564))) (-564))) (-15 -1880 ((-1153 (-642 (-564))) (-564) (-564))) (-15 -1389 ((-642 (-564)) (-642 (-564)))) (-15 -3190 ((-1153 (-642 (-564))) (-1153 (-642 (-564))))) (-15 -3826 ((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564)))) (-15 -3627 ((-1153 (-642 (-564))) (-642 (-564)) (-1153 (-642 (-564))))) (-15 -4308 ((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564)))) (-15 -4308 ((-1153 (-642 (-564))) (-642 (-564)))) (-15 -2165 ((-1153 (-642 (-564))) (-564))))) (T -881))
+((-2165 (*1 *2 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))) (-4308 (*1 *2 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-642 (-564))))) (-4308 (*1 *2 *3 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-642 (-564))))) (-3627 (*1 *2 *3 *2) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *3 (-642 (-564))) (-5 *1 (-881)))) (-3826 (*1 *2 *3 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-642 (-564))))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)))) (-1389 (*1 *2 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-881)))) (-1880 (*1 *2 *3 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))) (-1880 (*1 *2 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))) (-1880 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))))
+(-10 -7 (-15 -1880 ((-1153 (-642 (-564))) (-564) (-564) (-564))) (-15 -1880 ((-1153 (-642 (-564))) (-564))) (-15 -1880 ((-1153 (-642 (-564))) (-564) (-564))) (-15 -1389 ((-642 (-564)) (-642 (-564)))) (-15 -3190 ((-1153 (-642 (-564))) (-1153 (-642 (-564))))) (-15 -3826 ((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564)))) (-15 -3627 ((-1153 (-642 (-564))) (-642 (-564)) (-1153 (-642 (-564))))) (-15 -4308 ((-1153 (-642 (-564))) (-642 (-564)) (-642 (-564)))) (-15 -4308 ((-1153 (-642 (-564))) (-642 (-564)))) (-15 -2165 ((-1153 (-642 (-564))) (-564))))
+((-1314 (((-890 (-379)) $) 9 (|has| |#1| (-612 (-890 (-379))))) (((-890 (-564)) $) 8 (|has| |#1| (-612 (-890 (-564)))))))
+(((-882 |#1|) (-140) (-1212)) (T -882))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-612 (-890 (-564)))) (-6 (-612 (-890 (-564)))) |%noBranch|) (IF (|has| |t#1| (-612 (-890 (-379)))) (-6 (-612 (-890 (-379)))) |%noBranch|)))
+(((-612 (-890 (-379))) |has| |#1| (-612 (-890 (-379)))) ((-612 (-890 (-564))) |has| |#1| (-612 (-890 (-564)))))
+((-2907 (((-112) $ $) NIL)) (-4227 (($) 14)) (-2626 (($ (-887 |#1| |#2|) (-887 |#1| |#3|)) 28)) (-2502 (((-887 |#1| |#3|) $) 16)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3644 (((-112) $) 22)) (-3209 (($) 19)) (-2327 (((-860) $) 31)) (-1648 (((-112) $ $) NIL)) (-2838 (((-887 |#1| |#2|) $) 15)) (-2872 (((-112) $ $) 26)))
+(((-883 |#1| |#2| |#3|) (-13 (-1097) (-10 -8 (-15 -3644 ((-112) $)) (-15 -3209 ($)) (-15 -4227 ($)) (-15 -2626 ($ (-887 |#1| |#2|) (-887 |#1| |#3|))) (-15 -2838 ((-887 |#1| |#2|) $)) (-15 -2502 ((-887 |#1| |#3|) $)))) (-1097) (-1097) (-664 |#2|)) (T -883))
+((-3644 (*1 *2 *1) (-12 (-4 *4 (-1097)) (-5 *2 (-112)) (-5 *1 (-883 *3 *4 *5)) (-4 *3 (-1097)) (-4 *5 (-664 *4)))) (-3209 (*1 *1) (-12 (-4 *3 (-1097)) (-5 *1 (-883 *2 *3 *4)) (-4 *2 (-1097)) (-4 *4 (-664 *3)))) (-4227 (*1 *1) (-12 (-4 *3 (-1097)) (-5 *1 (-883 *2 *3 *4)) (-4 *2 (-1097)) (-4 *4 (-664 *3)))) (-2626 (*1 *1 *2 *3) (-12 (-5 *2 (-887 *4 *5)) (-5 *3 (-887 *4 *6)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-664 *5)) (-5 *1 (-883 *4 *5 *6)))) (-2838 (*1 *2 *1) (-12 (-4 *4 (-1097)) (-5 *2 (-887 *3 *4)) (-5 *1 (-883 *3 *4 *5)) (-4 *3 (-1097)) (-4 *5 (-664 *4)))) (-2502 (*1 *2 *1) (-12 (-4 *4 (-1097)) (-5 *2 (-887 *3 *5)) (-5 *1 (-883 *3 *4 *5)) (-4 *3 (-1097)) (-4 *5 (-664 *4)))))
+(-13 (-1097) (-10 -8 (-15 -3644 ((-112) $)) (-15 -3209 ($)) (-15 -4227 ($)) (-15 -2626 ($ (-887 |#1| |#2|) (-887 |#1| |#3|))) (-15 -2838 ((-887 |#1| |#2|) $)) (-15 -2502 ((-887 |#1| |#3|) $))))
+((-2907 (((-112) $ $) 7)) (-2453 (((-887 |#1| $) $ (-890 |#1|) (-887 |#1| $)) 14)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
+(((-884 |#1|) (-140) (-1097)) (T -884))
+((-2453 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-887 *4 *1)) (-5 *3 (-890 *4)) (-4 *1 (-884 *4)) (-4 *4 (-1097)))))
+(-13 (-1097) (-10 -8 (-15 -2453 ((-887 |t#1| $) $ (-890 |t#1|) (-887 |t#1| $)))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-1523 (((-112) (-642 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1571 (((-887 |#1| |#2|) |#2| |#3|) 45 (-12 (-2268 (|has| |#2| (-1036 (-1173)))) (-2268 (|has| |#2| (-1047))))) (((-642 (-294 (-950 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1047)) (-2268 (|has| |#2| (-1036 (-1173)))))) (((-642 (-294 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1036 (-1173)))) (((-883 |#1| |#2| (-642 |#2|)) (-642 |#2|) |#3|) 21)))
+(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -1523 ((-112) |#2| |#3|)) (-15 -1523 ((-112) (-642 |#2|) |#3|)) (-15 -1571 ((-883 |#1| |#2| (-642 |#2|)) (-642 |#2|) |#3|)) (IF (|has| |#2| (-1036 (-1173))) (-15 -1571 ((-642 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1047)) (-15 -1571 ((-642 (-294 (-950 |#2|))) |#2| |#3|)) (-15 -1571 ((-887 |#1| |#2|) |#2| |#3|))))) (-1097) (-884 |#1|) (-612 (-890 |#1|))) (T -885))
+((-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-5 *2 (-887 *5 *3)) (-5 *1 (-885 *5 *3 *4)) (-2268 (-4 *3 (-1036 (-1173)))) (-2268 (-4 *3 (-1047))) (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-5 *2 (-642 (-294 (-950 *3)))) (-5 *1 (-885 *5 *3 *4)) (-4 *3 (-1047)) (-2268 (-4 *3 (-1036 (-1173)))) (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-5 *2 (-642 (-294 *3))) (-5 *1 (-885 *5 *3 *4)) (-4 *3 (-1036 (-1173))) (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-4 *6 (-884 *5)) (-5 *2 (-883 *5 *6 (-642 *6))) (-5 *1 (-885 *5 *6 *4)) (-5 *3 (-642 *6)) (-4 *4 (-612 (-890 *5))))) (-1523 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *6)) (-4 *6 (-884 *5)) (-4 *5 (-1097)) (-5 *2 (-112)) (-5 *1 (-885 *5 *6 *4)) (-4 *4 (-612 (-890 *5))))) (-1523 (*1 *2 *3 *4) (-12 (-4 *5 (-1097)) (-5 *2 (-112)) (-5 *1 (-885 *5 *3 *4)) (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5))))))
+(-10 -7 (-15 -1523 ((-112) |#2| |#3|)) (-15 -1523 ((-112) (-642 |#2|) |#3|)) (-15 -1571 ((-883 |#1| |#2| (-642 |#2|)) (-642 |#2|) |#3|)) (IF (|has| |#2| (-1036 (-1173))) (-15 -1571 ((-642 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1047)) (-15 -1571 ((-642 (-294 (-950 |#2|))) |#2| |#3|)) (-15 -1571 ((-887 |#1| |#2|) |#2| |#3|)))))
+((-4358 (((-887 |#1| |#3|) (-1 |#3| |#2|) (-887 |#1| |#2|)) 22)))
+(((-886 |#1| |#2| |#3|) (-10 -7 (-15 -4358 ((-887 |#1| |#3|) (-1 |#3| |#2|) (-887 |#1| |#2|)))) (-1097) (-1097) (-1097)) (T -886))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-887 *5 *6)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-887 *5 *7)) (-5 *1 (-886 *5 *6 *7)))))
+(-10 -7 (-15 -4358 ((-887 |#1| |#3|) (-1 |#3| |#2|) (-887 |#1| |#2|))))
+((-2907 (((-112) $ $) NIL)) (-1717 (($ $ $) 40)) (-2417 (((-3 (-112) "failed") $ (-890 |#1|)) 37)) (-4227 (($) 12)) (-3315 (((-1155) $) NIL)) (-3015 (($ (-890 |#1|) |#2| $) 20)) (-4033 (((-1117) $) NIL)) (-2416 (((-3 |#2| "failed") (-890 |#1|) $) 51)) (-3644 (((-112) $) 15)) (-3209 (($) 13)) (-3726 (((-642 (-2 (|:| -1907 (-1173)) (|:| -3778 |#2|))) $) 25)) (-2337 (($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 |#2|)))) 23)) (-2327 (((-860) $) 45)) (-1648 (((-112) $ $) NIL)) (-2721 (($ (-890 |#1|) |#2| $ |#2|) 49)) (-2352 (($ (-890 |#1|) |#2| $) 48)) (-2872 (((-112) $ $) 42)))
+(((-887 |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -3644 ((-112) $)) (-15 -3209 ($)) (-15 -4227 ($)) (-15 -1717 ($ $ $)) (-15 -2416 ((-3 |#2| "failed") (-890 |#1|) $)) (-15 -2352 ($ (-890 |#1|) |#2| $)) (-15 -3015 ($ (-890 |#1|) |#2| $)) (-15 -2721 ($ (-890 |#1|) |#2| $ |#2|)) (-15 -3726 ((-642 (-2 (|:| -1907 (-1173)) (|:| -3778 |#2|))) $)) (-15 -2337 ($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 |#2|))))) (-15 -2417 ((-3 (-112) "failed") $ (-890 |#1|))))) (-1097) (-1097)) (T -887))
+((-3644 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-3209 (*1 *1) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-4227 (*1 *1) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-1717 (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-2416 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-4 *2 (-1097)) (-5 *1 (-887 *4 *2)))) (-2352 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1097)))) (-3015 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1097)))) (-2721 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1097)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 *4)))) (-5 *1 (-887 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 *4)))) (-4 *4 (-1097)) (-5 *1 (-887 *3 *4)) (-4 *3 (-1097)))) (-2417 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-112)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1097)))))
+(-13 (-1097) (-10 -8 (-15 -3644 ((-112) $)) (-15 -3209 ($)) (-15 -4227 ($)) (-15 -1717 ($ $ $)) (-15 -2416 ((-3 |#2| "failed") (-890 |#1|) $)) (-15 -2352 ($ (-890 |#1|) |#2| $)) (-15 -3015 ($ (-890 |#1|) |#2| $)) (-15 -2721 ($ (-890 |#1|) |#2| $ |#2|)) (-15 -3726 ((-642 (-2 (|:| -1907 (-1173)) (|:| -3778 |#2|))) $)) (-15 -2337 ($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 |#2|))))) (-15 -2417 ((-3 (-112) "failed") $ (-890 |#1|)))))
+((-2722 (((-890 |#1|) (-890 |#1|) (-642 (-1173)) (-1 (-112) (-642 |#2|))) 32) (((-890 |#1|) (-890 |#1|) (-642 (-1 (-112) |#2|))) 46) (((-890 |#1|) (-890 |#1|) (-1 (-112) |#2|)) 35)) (-2417 (((-112) (-642 |#2|) (-890 |#1|)) 42) (((-112) |#2| (-890 |#1|)) 36)) (-4119 (((-1 (-112) |#2|) (-890 |#1|)) 16)) (-1390 (((-642 |#2|) (-890 |#1|)) 24)) (-2179 (((-890 |#1|) (-890 |#1|) |#2|) 20)))
+(((-888 |#1| |#2|) (-10 -7 (-15 -2722 ((-890 |#1|) (-890 |#1|) (-1 (-112) |#2|))) (-15 -2722 ((-890 |#1|) (-890 |#1|) (-642 (-1 (-112) |#2|)))) (-15 -2722 ((-890 |#1|) (-890 |#1|) (-642 (-1173)) (-1 (-112) (-642 |#2|)))) (-15 -4119 ((-1 (-112) |#2|) (-890 |#1|))) (-15 -2417 ((-112) |#2| (-890 |#1|))) (-15 -2417 ((-112) (-642 |#2|) (-890 |#1|))) (-15 -2179 ((-890 |#1|) (-890 |#1|) |#2|)) (-15 -1390 ((-642 |#2|) (-890 |#1|)))) (-1097) (-1212)) (T -888))
+((-1390 (*1 *2 *3) (-12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-642 *5)) (-5 *1 (-888 *4 *5)) (-4 *5 (-1212)))) (-2179 (*1 *2 *2 *3) (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-888 *4 *3)) (-4 *3 (-1212)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-4 *6 (-1212)) (-5 *2 (-112)) (-5 *1 (-888 *5 *6)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-5 *2 (-112)) (-5 *1 (-888 *5 *3)) (-4 *3 (-1212)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-888 *4 *5)) (-4 *5 (-1212)))) (-2722 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-890 *5)) (-5 *3 (-642 (-1173))) (-5 *4 (-1 (-112) (-642 *6))) (-4 *5 (-1097)) (-4 *6 (-1212)) (-5 *1 (-888 *5 *6)))) (-2722 (*1 *2 *2 *3) (-12 (-5 *2 (-890 *4)) (-5 *3 (-642 (-1 (-112) *5))) (-4 *4 (-1097)) (-4 *5 (-1212)) (-5 *1 (-888 *4 *5)))) (-2722 (*1 *2 *2 *3) (-12 (-5 *2 (-890 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1097)) (-4 *5 (-1212)) (-5 *1 (-888 *4 *5)))))
+(-10 -7 (-15 -2722 ((-890 |#1|) (-890 |#1|) (-1 (-112) |#2|))) (-15 -2722 ((-890 |#1|) (-890 |#1|) (-642 (-1 (-112) |#2|)))) (-15 -2722 ((-890 |#1|) (-890 |#1|) (-642 (-1173)) (-1 (-112) (-642 |#2|)))) (-15 -4119 ((-1 (-112) |#2|) (-890 |#1|))) (-15 -2417 ((-112) |#2| (-890 |#1|))) (-15 -2417 ((-112) (-642 |#2|) (-890 |#1|))) (-15 -2179 ((-890 |#1|) (-890 |#1|) |#2|)) (-15 -1390 ((-642 |#2|) (-890 |#1|))))
+((-4358 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 19)))
+(((-889 |#1| |#2|) (-10 -7 (-15 -4358 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1097) (-1097)) (T -889))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))))
+(-10 -7 (-15 -4358 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|))))
+((-2907 (((-112) $ $) NIL)) (-2929 (($ $ (-642 (-52))) 74)) (-3802 (((-642 $) $) 138)) (-2781 (((-2 (|:| |var| (-642 (-1173))) (|:| |pred| (-52))) $) 30)) (-3029 (((-112) $) 35)) (-3540 (($ $ (-642 (-1173)) (-52)) 31)) (-2130 (($ $ (-642 (-52))) 73)) (-4278 (((-3 |#1| "failed") $) 71) (((-3 (-1173) "failed") $) 162)) (-3027 ((|#1| $) 68) (((-1173) $) NIL)) (-2252 (($ $) 126)) (-4024 (((-112) $) 55)) (-1340 (((-642 (-52)) $) 50)) (-2173 (($ (-1173) (-112) (-112) (-112)) 75)) (-3736 (((-3 (-642 $) "failed") (-642 $)) 82)) (-2068 (((-112) $) 58)) (-3026 (((-112) $) 57)) (-3315 (((-1155) $) NIL)) (-1572 (((-3 (-642 $) "failed") $) 41)) (-4339 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-4310 (((-3 (-2 (|:| |val| $) (|:| -2700 $)) "failed") $) 97)) (-1802 (((-3 (-642 $) "failed") $) 40)) (-2084 (((-3 (-642 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -1660 (-114)) (|:| |arg| (-642 $))) "failed") $) 107)) (-2671 (((-3 (-642 $) "failed") $) 42)) (-3611 (((-3 (-2 (|:| |val| $) (|:| -2700 (-769))) "failed") $) 45)) (-3555 (((-112) $) 34)) (-4033 (((-1117) $) NIL)) (-1962 (((-112) $) 28)) (-1515 (((-112) $) 52)) (-4088 (((-642 (-52)) $) 130)) (-2616 (((-112) $) 56)) (-4368 (($ (-114) (-642 $)) 104)) (-1930 (((-769) $) 33)) (-3901 (($ $) 72)) (-1314 (($ (-642 $)) 69)) (-1563 (((-112) $) 32)) (-2327 (((-860) $) 63) (($ |#1|) 23) (($ (-1173)) 76)) (-1648 (((-112) $ $) NIL)) (-2179 (($ $ (-52)) 129)) (-2312 (($) 103 T CONST)) (-2322 (($) 83 T CONST)) (-2872 (((-112) $ $) 93)) (-2998 (($ $ $) 117)) (-2974 (($ $ $) 121)) (** (($ $ (-769)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
+(((-890 |#1|) (-13 (-1097) (-1036 |#1|) (-1036 (-1173)) (-10 -8 (-15 0 ($) -2858) (-15 1 ($) -2858) (-15 -1802 ((-3 (-642 $) "failed") $)) (-15 -1572 ((-3 (-642 $) "failed") $)) (-15 -2084 ((-3 (-642 $) "failed") $ (-114))) (-15 -2084 ((-3 (-2 (|:| -1660 (-114)) (|:| |arg| (-642 $))) "failed") $)) (-15 -3611 ((-3 (-2 (|:| |val| $) (|:| -2700 (-769))) "failed") $)) (-15 -4339 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2671 ((-3 (-642 $) "failed") $)) (-15 -4310 ((-3 (-2 (|:| |val| $) (|:| -2700 $)) "failed") $)) (-15 -4368 ($ (-114) (-642 $))) (-15 -2974 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-769))) (-15 ** ($ $ $)) (-15 -2998 ($ $ $)) (-15 -1930 ((-769) $)) (-15 -1314 ($ (-642 $))) (-15 -3901 ($ $)) (-15 -3555 ((-112) $)) (-15 -4024 ((-112) $)) (-15 -3029 ((-112) $)) (-15 -1563 ((-112) $)) (-15 -2616 ((-112) $)) (-15 -3026 ((-112) $)) (-15 -2068 ((-112) $)) (-15 -1515 ((-112) $)) (-15 -1340 ((-642 (-52)) $)) (-15 -2130 ($ $ (-642 (-52)))) (-15 -2929 ($ $ (-642 (-52)))) (-15 -2173 ($ (-1173) (-112) (-112) (-112))) (-15 -3540 ($ $ (-642 (-1173)) (-52))) (-15 -2781 ((-2 (|:| |var| (-642 (-1173))) (|:| |pred| (-52))) $)) (-15 -1962 ((-112) $)) (-15 -2252 ($ $)) (-15 -2179 ($ $ (-52))) (-15 -4088 ((-642 (-52)) $)) (-15 -3802 ((-642 $) $)) (-15 -3736 ((-3 (-642 $) "failed") (-642 $))))) (-1097)) (T -890))
+((-2312 (*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-2322 (*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-1802 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1572 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2084 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-642 (-890 *4))) (-5 *1 (-890 *4)) (-4 *4 (-1097)))) (-2084 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1660 (-114)) (|:| |arg| (-642 (-890 *3))))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3611 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-890 *3)) (|:| -2700 (-769)))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-4339 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-890 *3)) (|:| |den| (-890 *3)))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2671 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-4310 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-890 *3)) (|:| -2700 (-890 *3)))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-4368 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 (-890 *4))) (-5 *1 (-890 *4)) (-4 *4 (-1097)))) (-2974 (*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-2998 (*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3901 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2929 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2173 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-112)) (-5 *1 (-890 *4)) (-4 *4 (-1097)))) (-3540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-52)) (-5 *1 (-890 *4)) (-4 *4 (-1097)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-642 (-1173))) (|:| |pred| (-52)))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-2252 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))) (-2179 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))) (-3736 (*1 *2 *2) (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(-13 (-1097) (-1036 |#1|) (-1036 (-1173)) (-10 -8 (-15 (-2312) ($) -2858) (-15 (-2322) ($) -2858) (-15 -1802 ((-3 (-642 $) "failed") $)) (-15 -1572 ((-3 (-642 $) "failed") $)) (-15 -2084 ((-3 (-642 $) "failed") $ (-114))) (-15 -2084 ((-3 (-2 (|:| -1660 (-114)) (|:| |arg| (-642 $))) "failed") $)) (-15 -3611 ((-3 (-2 (|:| |val| $) (|:| -2700 (-769))) "failed") $)) (-15 -4339 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2671 ((-3 (-642 $) "failed") $)) (-15 -4310 ((-3 (-2 (|:| |val| $) (|:| -2700 $)) "failed") $)) (-15 -4368 ($ (-114) (-642 $))) (-15 -2974 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-769))) (-15 ** ($ $ $)) (-15 -2998 ($ $ $)) (-15 -1930 ((-769) $)) (-15 -1314 ($ (-642 $))) (-15 -3901 ($ $)) (-15 -3555 ((-112) $)) (-15 -4024 ((-112) $)) (-15 -3029 ((-112) $)) (-15 -1563 ((-112) $)) (-15 -2616 ((-112) $)) (-15 -3026 ((-112) $)) (-15 -2068 ((-112) $)) (-15 -1515 ((-112) $)) (-15 -1340 ((-642 (-52)) $)) (-15 -2130 ($ $ (-642 (-52)))) (-15 -2929 ($ $ (-642 (-52)))) (-15 -2173 ($ (-1173) (-112) (-112) (-112))) (-15 -3540 ($ $ (-642 (-1173)) (-52))) (-15 -2781 ((-2 (|:| |var| (-642 (-1173))) (|:| |pred| (-52))) $)) (-15 -1962 ((-112) $)) (-15 -2252 ($ $)) (-15 -2179 ($ $ (-52))) (-15 -4088 ((-642 (-52)) $)) (-15 -3802 ((-642 $) $)) (-15 -3736 ((-3 (-642 $) "failed") (-642 $)))))
+((-2907 (((-112) $ $) NIL)) (-2961 (((-642 |#1|) $) 19)) (-2672 (((-112) $) 49)) (-4278 (((-3 (-670 |#1|) "failed") $) 56)) (-3027 (((-670 |#1|) $) 54)) (-2570 (($ $) 23)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-2480 (((-769) $) 61)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 (((-670 |#1|) $) 21)) (-2327 (((-860) $) 47) (($ (-670 |#1|)) 26) (((-817 |#1|) $) 36) (($ |#1|) 25)) (-1648 (((-112) $ $) NIL)) (-2322 (($) 9 T CONST)) (-3692 (((-642 (-670 |#1|)) $) 28)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 12)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 67)))
+(((-891 |#1|) (-13 (-848) (-1036 (-670 |#1|)) (-10 -8 (-15 1 ($) -2858) (-15 -2327 ((-817 |#1|) $)) (-15 -2327 ($ |#1|)) (-15 -2557 ((-670 |#1|) $)) (-15 -2480 ((-769) $)) (-15 -3692 ((-642 (-670 |#1|)) $)) (-15 -2570 ($ $)) (-15 -2672 ((-112) $)) (-15 -2961 ((-642 |#1|) $)))) (-848)) (T -891))
+((-2322 (*1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) (-2327 (*1 *1 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-642 (-670 *3))) (-5 *1 (-891 *3)) (-4 *3 (-848)))) (-2570 (*1 *1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-891 *3)) (-4 *3 (-848)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848)))))
+(-13 (-848) (-1036 (-670 |#1|)) (-10 -8 (-15 (-2322) ($) -2858) (-15 -2327 ((-817 |#1|) $)) (-15 -2327 ($ |#1|)) (-15 -2557 ((-670 |#1|) $)) (-15 -2480 ((-769) $)) (-15 -3692 ((-642 (-670 |#1|)) $)) (-15 -2570 ($ $)) (-15 -2672 ((-112) $)) (-15 -2961 ((-642 |#1|) $))))
+((-3909 ((|#1| |#1| |#1|) 19)))
+(((-892 |#1| |#2|) (-10 -7 (-15 -3909 (|#1| |#1| |#1|))) (-1238 |#2|) (-1047)) (T -892))
+((-3909 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1238 *3)))))
+(-10 -7 (-15 -3909 (|#1| |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-3978 (((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2753 (((-1033) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 14)) (-2872 (((-112) $ $) 6)))
+(((-893) (-140)) (T -893))
+((-3978 (*1 *2 *3 *4) (-12 (-4 *1 (-893)) (-5 *3 (-1060)) (-5 *4 (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155)))))) (-2753 (*1 *2 *3) (-12 (-4 *1 (-893)) (-5 *3 (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) (-5 *2 (-1033)))))
+(-13 (-1097) (-10 -7 (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))) (-1060) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))))) (-15 -2753 ((-1033) (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2731 ((|#1| |#1| (-769)) 29)) (-3051 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3412 (((-3 (-2 (|:| -4326 |#1|) (|:| -4336 |#1|)) "failed") |#1| (-769) (-769)) 32) (((-642 |#1|) |#1|) 39)))
+(((-894 |#1| |#2|) (-10 -7 (-15 -3412 ((-642 |#1|) |#1|)) (-15 -3412 ((-3 (-2 (|:| -4326 |#1|) (|:| -4336 |#1|)) "failed") |#1| (-769) (-769))) (-15 -3051 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2731 (|#1| |#1| (-769)))) (-1238 |#2|) (-363)) (T -894))
+((-2731 (*1 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-363)) (-5 *1 (-894 *2 *4)) (-4 *2 (-1238 *4)))) (-3051 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-894 *2 *3)) (-4 *2 (-1238 *3)))) (-3412 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-769)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -4326 *3) (|:| -4336 *3))) (-5 *1 (-894 *3 *5)) (-4 *3 (-1238 *5)))) (-3412 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-894 *3 *4)) (-4 *3 (-1238 *4)))))
+(-10 -7 (-15 -3412 ((-642 |#1|) |#1|)) (-15 -3412 ((-3 (-2 (|:| -4326 |#1|) (|:| -4336 |#1|)) "failed") |#1| (-769) (-769))) (-15 -3051 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2731 (|#1| |#1| (-769))))
+((-1616 (((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155)) 106) (((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155) (-225)) 102) (((-1033) (-896) (-1060)) 94) (((-1033) (-896)) 95)) (-3978 (((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896) (-1060)) 65) (((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896)) 67)))
+(((-895) (-10 -7 (-15 -1616 ((-1033) (-896))) (-15 -1616 ((-1033) (-896) (-1060))) (-15 -1616 ((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155) (-225))) (-15 -1616 ((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896) (-1060))))) (T -895))
+((-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-896)) (-5 *4 (-1060)) (-5 *2 (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-895)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155))))) (-5 *1 (-895)))) (-1616 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-769)) (-5 *6 (-642 (-642 (-316 *3)))) (-5 *7 (-1155)) (-5 *5 (-642 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1033)) (-5 *1 (-895)))) (-1616 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-769)) (-5 *6 (-642 (-642 (-316 *3)))) (-5 *7 (-1155)) (-5 *8 (-225)) (-5 *5 (-642 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1033)) (-5 *1 (-895)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-896)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-895)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-1033)) (-5 *1 (-895)))))
+(-10 -7 (-15 -1616 ((-1033) (-896))) (-15 -1616 ((-1033) (-896) (-1060))) (-15 -1616 ((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155) (-225))) (-15 -1616 ((-1033) (-379) (-379) (-379) (-379) (-769) (-769) (-642 (-316 (-379))) (-642 (-642 (-316 (-379)))) (-1155))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896))) (-15 -3978 ((-2 (|:| -3978 (-379)) (|:| -2461 (-1155)) (|:| |explanations| (-642 (-1155)))) (-896) (-1060))))
+((-2907 (((-112) $ $) NIL)) (-3027 (((-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))) $) 19)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 21) (($ (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) 18)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-896) (-13 (-1097) (-10 -8 (-15 -2327 ($ (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))))) (-15 -3027 ((-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))) $))))) (T -896))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) (-5 *1 (-896)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225)))) (-5 *1 (-896)))))
+(-13 (-1097) (-10 -8 (-15 -2327 ($ (-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))))) (-15 -3027 ((-2 (|:| |pde| (-642 (-316 (-225)))) (|:| |constraints| (-642 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-769)) (|:| |boundaryType| (-564)) (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225)))))) (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155)) (|:| |tol| (-225))) $))))
+((-3175 (($ $ |#2|) NIL) (($ $ (-642 |#2|)) 10) (($ $ |#2| (-769)) 15) (($ $ (-642 |#2|) (-642 (-769))) 18)) (-4044 (($ $ |#2|) 19) (($ $ (-642 |#2|)) 21) (($ $ |#2| (-769)) 22) (($ $ (-642 |#2|) (-642 (-769))) 24)))
+(((-897 |#1| |#2|) (-10 -8 (-15 -4044 (|#1| |#1| (-642 |#2|) (-642 (-769)))) (-15 -4044 (|#1| |#1| |#2| (-769))) (-15 -4044 (|#1| |#1| (-642 |#2|))) (-15 -4044 (|#1| |#1| |#2|)) (-15 -3175 (|#1| |#1| (-642 |#2|) (-642 (-769)))) (-15 -3175 (|#1| |#1| |#2| (-769))) (-15 -3175 (|#1| |#1| (-642 |#2|))) (-15 -3175 (|#1| |#1| |#2|))) (-898 |#2|) (-1097)) (T -897))
+NIL
+(-10 -8 (-15 -4044 (|#1| |#1| (-642 |#2|) (-642 (-769)))) (-15 -4044 (|#1| |#1| |#2| (-769))) (-15 -4044 (|#1| |#1| (-642 |#2|))) (-15 -4044 (|#1| |#1| |#2|)) (-15 -3175 (|#1| |#1| (-642 |#2|) (-642 (-769)))) (-15 -3175 (|#1| |#1| |#2| (-769))) (-15 -3175 (|#1| |#1| (-642 |#2|))) (-15 -3175 (|#1| |#1| |#2|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3175 (($ $ |#1|) 46) (($ $ (-642 |#1|)) 45) (($ $ |#1| (-769)) 44) (($ $ (-642 |#1|) (-642 (-769))) 43)) (-2327 (((-860) $) 12) (($ (-564)) 33)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ |#1|) 42) (($ $ (-642 |#1|)) 41) (($ $ |#1| (-769)) 40) (($ $ (-642 |#1|) (-642 (-769))) 39)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-898 |#1|) (-140) (-1097)) (T -898))
+((-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1097)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *1 (-898 *3)) (-4 *3 (-1097)))) (-3175 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-898 *2)) (-4 *2 (-1097)))) (-3175 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 (-769))) (-4 *1 (-898 *4)) (-4 *4 (-1097)))) (-4044 (*1 *1 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1097)))) (-4044 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *1 (-898 *3)) (-4 *3 (-1097)))) (-4044 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-898 *2)) (-4 *2 (-1097)))) (-4044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 (-769))) (-4 *1 (-898 *4)) (-4 *4 (-1097)))))
+(-13 (-1047) (-10 -8 (-15 -3175 ($ $ |t#1|)) (-15 -3175 ($ $ (-642 |t#1|))) (-15 -3175 ($ $ |t#1| (-769))) (-15 -3175 ($ $ (-642 |t#1|) (-642 (-769)))) (-15 -4044 ($ $ |t#1|)) (-15 -4044 ($ $ (-642 |t#1|))) (-15 -4044 ($ $ |t#1| (-769))) (-15 -4044 ($ $ (-642 |t#1|) (-642 (-769))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2085 ((|#1| $) 26)) (-3697 (((-112) $ (-769)) NIL)) (-3070 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-2015 (($ $ $) NIL (|has| $ (-6 -4411)))) (-2141 (($ $ $) NIL (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) (($ $ "left" $) NIL (|has| $ (-6 -4411))) (($ $ "right" $) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4336 (($ $) 25)) (-4302 (($ |#1|) 12) (($ $ $) 17)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) NIL)) (-1847 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-4326 (($ $) 23)) (-2628 (((-642 |#1|) $) NIL)) (-2376 (((-112) $) 20)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2137 (((-564) $ $) NIL)) (-1392 (((-112) $) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-1198 |#1|) $) 9) (((-860) $) 29 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) NIL)) (-3820 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 21 (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-899 |#1|) (-13 (-119 |#1|) (-611 (-1198 |#1|)) (-10 -8 (-15 -4302 ($ |#1|)) (-15 -4302 ($ $ $)))) (-1097)) (T -899))
+((-4302 (*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1097)))) (-4302 (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1097)))))
+(-13 (-119 |#1|) (-611 (-1198 |#1|)) (-10 -8 (-15 -4302 ($ |#1|)) (-15 -4302 ($ $ $))))
+((-2842 ((|#2| (-1139 |#1| |#2|)) 53)))
+(((-900 |#1| |#2|) (-10 -7 (-15 -2842 (|#2| (-1139 |#1| |#2|)))) (-919) (-13 (-1047) (-10 -7 (-6 (-4412 "*"))))) (T -900))
+((-2842 (*1 *2 *3) (-12 (-5 *3 (-1139 *4 *2)) (-14 *4 (-919)) (-4 *2 (-13 (-1047) (-10 -7 (-6 (-4412 "*"))))) (-5 *1 (-900 *4 *2)))))
+(-10 -7 (-15 -2842 (|#2| (-1139 |#1| |#2|))))
+((-2907 (((-112) $ $) 7)) (-1976 (($) 19 T CONST)) (-3104 (((-3 $ "failed") $) 16)) (-1481 (((-1099 |#1|) $ |#1|) 33)) (-3953 (((-112) $) 18)) (-2755 (($ $ $) 31 (-2706 (|has| |#1| (-848)) (|has| |#1| (-368))))) (-1520 (($ $ $) 30 (-2706 (|has| |#1| (-848)) (|has| |#1| (-368))))) (-3315 (((-1155) $) 10)) (-3911 (($ $) 25)) (-4033 (((-1117) $) 11)) (-3215 ((|#1| $ |#1|) 35)) (-4368 ((|#1| $ |#1|) 34)) (-1661 (($ (-642 (-642 |#1|))) 36)) (-3221 (($ (-642 |#1|)) 37)) (-1389 (($ $ $) 22)) (-3759 (($ $ $) 21)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2322 (($) 20 T CONST)) (-2934 (((-112) $ $) 28 (-2706 (|has| |#1| (-848)) (|has| |#1| (-368))))) (-2908 (((-112) $ $) 27 (-2706 (|has| |#1| (-848)) (|has| |#1| (-368))))) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 29 (-2706 (|has| |#1| (-848)) (|has| |#1| (-368))))) (-2897 (((-112) $ $) 32)) (-2998 (($ $ $) 24)) (** (($ $ (-919)) 14) (($ $ (-769)) 17) (($ $ (-564)) 23)) (* (($ $ $) 15)))
+(((-901 |#1|) (-140) (-1097)) (T -901))
+((-3221 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-901 *3)))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-4 *1 (-901 *3)))) (-3215 (*1 *2 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1097)))) (-4368 (*1 *2 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1097)))) (-1481 (*1 *2 *1 *3) (-12 (-4 *1 (-901 *3)) (-4 *3 (-1097)) (-5 *2 (-1099 *3)))) (-2897 (*1 *2 *1 *1) (-12 (-4 *1 (-901 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))))
+(-13 (-473) (-10 -8 (-15 -3221 ($ (-642 |t#1|))) (-15 -1661 ($ (-642 (-642 |t#1|)))) (-15 -3215 (|t#1| $ |t#1|)) (-15 -4368 (|t#1| $ |t#1|)) (-15 -1481 ((-1099 |t#1|) $ |t#1|)) (-15 -2897 ((-112) $ $)) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-848)) |%noBranch|)))
+(((-102) . T) ((-611 (-860)) . T) ((-473) . T) ((-724) . T) ((-848) -2706 (|has| |#1| (-848)) (|has| |#1| (-368))) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2911 (((-642 (-642 (-769))) $) 165)) (-4214 (((-642 (-769)) (-903 |#1|) $) 193)) (-4081 (((-642 (-769)) (-903 |#1|) $) 194)) (-1591 (((-642 (-903 |#1|)) $) 154)) (-2433 (((-903 |#1|) $ (-564)) 159) (((-903 |#1|) $) 160)) (-3079 (($ (-642 (-903 |#1|))) 167)) (-1427 (((-769) $) 161)) (-4354 (((-1099 (-1099 |#1|)) $) 191)) (-1481 (((-1099 |#1|) $ |#1|) 182) (((-1099 (-1099 |#1|)) $ (-1099 |#1|)) 202) (((-1099 (-642 |#1|)) $ (-642 |#1|)) 205)) (-4066 (((-1099 |#1|) $) 157)) (-2776 (((-112) (-903 |#1|) $) 143)) (-3315 (((-1155) $) NIL)) (-3065 (((-1267) $) 147) (((-1267) $ (-564) (-564)) 206)) (-4033 (((-1117) $) NIL)) (-2919 (((-642 (-903 |#1|)) $) 148)) (-4368 (((-903 |#1|) $ (-769)) 155)) (-2775 (((-769) $) 162)) (-2327 (((-860) $) 179) (((-642 (-903 |#1|)) $) 28) (($ (-642 (-903 |#1|))) 166)) (-1648 (((-112) $ $) NIL)) (-2547 (((-642 |#1|) $) 164)) (-2872 (((-112) $ $) 199)) (-2922 (((-112) $ $) 197)) (-2897 (((-112) $ $) 196)))
+(((-902 |#1|) (-13 (-1097) (-10 -8 (-15 -2327 ((-642 (-903 |#1|)) $)) (-15 -2919 ((-642 (-903 |#1|)) $)) (-15 -4368 ((-903 |#1|) $ (-769))) (-15 -2433 ((-903 |#1|) $ (-564))) (-15 -2433 ((-903 |#1|) $)) (-15 -1427 ((-769) $)) (-15 -2775 ((-769) $)) (-15 -2547 ((-642 |#1|) $)) (-15 -1591 ((-642 (-903 |#1|)) $)) (-15 -2911 ((-642 (-642 (-769))) $)) (-15 -2327 ($ (-642 (-903 |#1|)))) (-15 -3079 ($ (-642 (-903 |#1|)))) (-15 -1481 ((-1099 |#1|) $ |#1|)) (-15 -4354 ((-1099 (-1099 |#1|)) $)) (-15 -1481 ((-1099 (-1099 |#1|)) $ (-1099 |#1|))) (-15 -1481 ((-1099 (-642 |#1|)) $ (-642 |#1|))) (-15 -2776 ((-112) (-903 |#1|) $)) (-15 -4214 ((-642 (-769)) (-903 |#1|) $)) (-15 -4081 ((-642 (-769)) (-903 |#1|) $)) (-15 -4066 ((-1099 |#1|) $)) (-15 -2897 ((-112) $ $)) (-15 -2922 ((-112) $ $)) (-15 -3065 ((-1267) $)) (-15 -3065 ((-1267) $ (-564) (-564))))) (-1097)) (T -902))
+((-2327 (*1 *2 *1) (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2919 (*1 *2 *1) (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-903 *4)) (-5 *1 (-902 *4)) (-4 *4 (-1097)))) (-2433 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-903 *4)) (-5 *1 (-902 *4)) (-4 *4 (-1097)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-903 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-769)))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-903 *3))) (-4 *3 (-1097)) (-5 *1 (-902 *3)))) (-3079 (*1 *1 *2) (-12 (-5 *2 (-642 (-903 *3))) (-4 *3 (-1097)) (-5 *1 (-902 *3)))) (-1481 (*1 *2 *1 *3) (-12 (-5 *2 (-1099 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-1099 (-1099 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-1481 (*1 *2 *1 *3) (-12 (-4 *4 (-1097)) (-5 *2 (-1099 (-1099 *4))) (-5 *1 (-902 *4)) (-5 *3 (-1099 *4)))) (-1481 (*1 *2 *1 *3) (-12 (-4 *4 (-1097)) (-5 *2 (-1099 (-642 *4))) (-5 *1 (-902 *4)) (-5 *3 (-642 *4)))) (-2776 (*1 *2 *3 *1) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-112)) (-5 *1 (-902 *4)))) (-4214 (*1 *2 *3 *1) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-642 (-769))) (-5 *1 (-902 *4)))) (-4081 (*1 *2 *3 *1) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-642 (-769))) (-5 *1 (-902 *4)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-1099 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2897 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-2922 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))) (-3065 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-902 *4)) (-4 *4 (-1097)))))
+(-13 (-1097) (-10 -8 (-15 -2327 ((-642 (-903 |#1|)) $)) (-15 -2919 ((-642 (-903 |#1|)) $)) (-15 -4368 ((-903 |#1|) $ (-769))) (-15 -2433 ((-903 |#1|) $ (-564))) (-15 -2433 ((-903 |#1|) $)) (-15 -1427 ((-769) $)) (-15 -2775 ((-769) $)) (-15 -2547 ((-642 |#1|) $)) (-15 -1591 ((-642 (-903 |#1|)) $)) (-15 -2911 ((-642 (-642 (-769))) $)) (-15 -2327 ($ (-642 (-903 |#1|)))) (-15 -3079 ($ (-642 (-903 |#1|)))) (-15 -1481 ((-1099 |#1|) $ |#1|)) (-15 -4354 ((-1099 (-1099 |#1|)) $)) (-15 -1481 ((-1099 (-1099 |#1|)) $ (-1099 |#1|))) (-15 -1481 ((-1099 (-642 |#1|)) $ (-642 |#1|))) (-15 -2776 ((-112) (-903 |#1|) $)) (-15 -4214 ((-642 (-769)) (-903 |#1|) $)) (-15 -4081 ((-642 (-769)) (-903 |#1|) $)) (-15 -4066 ((-1099 |#1|) $)) (-15 -2897 ((-112) $ $)) (-15 -2922 ((-112) $ $)) (-15 -3065 ((-1267) $)) (-15 -3065 ((-1267) $ (-564) (-564)))))
+((-2907 (((-112) $ $) NIL)) (-2383 (((-642 $) (-642 $)) 105)) (-2959 (((-564) $) 86)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL)) (-1427 (((-769) $) 83)) (-1481 (((-1099 |#1|) $ |#1|) 74)) (-3953 (((-112) $) NIL)) (-3076 (((-112) $) 90)) (-2133 (((-769) $) 87)) (-4066 (((-1099 |#1|) $) 63)) (-2755 (($ $ $) NIL (-2706 (|has| |#1| (-368)) (|has| |#1| (-848))))) (-1520 (($ $ $) NIL (-2706 (|has| |#1| (-368)) (|has| |#1| (-848))))) (-4340 (((-2 (|:| |preimage| (-642 |#1|)) (|:| |image| (-642 |#1|))) $) 58)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 133)) (-4033 (((-1117) $) NIL)) (-2392 (((-1099 |#1|) $) 141 (|has| |#1| (-368)))) (-2519 (((-112) $) 84)) (-3215 ((|#1| $ |#1|) 72)) (-4368 ((|#1| $ |#1|) 135)) (-2775 (((-769) $) 65)) (-1661 (($ (-642 (-642 |#1|))) 120)) (-4122 (((-969) $) 78)) (-3221 (($ (-642 |#1|)) 35)) (-1389 (($ $ $) NIL)) (-3759 (($ $ $) NIL)) (-1477 (($ (-642 (-642 |#1|))) 60)) (-2272 (($ (-642 (-642 |#1|))) 125)) (-3313 (($ (-642 |#1|)) 137)) (-2327 (((-860) $) 119) (($ (-642 (-642 |#1|))) 93) (($ (-642 |#1|)) 94)) (-1648 (((-112) $ $) NIL)) (-2322 (($) 27 T CONST)) (-2934 (((-112) $ $) NIL (-2706 (|has| |#1| (-368)) (|has| |#1| (-848))))) (-2908 (((-112) $ $) NIL (-2706 (|has| |#1| (-368)) (|has| |#1| (-848))))) (-2872 (((-112) $ $) 70)) (-2922 (((-112) $ $) NIL (-2706 (|has| |#1| (-368)) (|has| |#1| (-848))))) (-2897 (((-112) $ $) 92)) (-2998 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 36)))
+(((-903 |#1|) (-13 (-901 |#1|) (-10 -8 (-15 -4340 ((-2 (|:| |preimage| (-642 |#1|)) (|:| |image| (-642 |#1|))) $)) (-15 -1477 ($ (-642 (-642 |#1|)))) (-15 -2327 ($ (-642 (-642 |#1|)))) (-15 -2327 ($ (-642 |#1|))) (-15 -2272 ($ (-642 (-642 |#1|)))) (-15 -2775 ((-769) $)) (-15 -4066 ((-1099 |#1|) $)) (-15 -4122 ((-969) $)) (-15 -1427 ((-769) $)) (-15 -2133 ((-769) $)) (-15 -2959 ((-564) $)) (-15 -2519 ((-112) $)) (-15 -3076 ((-112) $)) (-15 -2383 ((-642 $) (-642 $))) (IF (|has| |#1| (-368)) (-15 -2392 ((-1099 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -3313 ($ (-642 |#1|))) (IF (|has| |#1| (-368)) (-15 -3313 ($ (-642 |#1|))) |%noBranch|)))) (-1097)) (T -903))
+((-4340 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-642 *3)) (|:| |image| (-642 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-903 *3)))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-1099 *3)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-969)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2383 (*1 *2 *2) (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1097)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-1099 *3)) (-5 *1 (-903 *3)) (-4 *3 (-368)) (-4 *3 (-1097)))) (-3313 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-903 *3)))))
+(-13 (-901 |#1|) (-10 -8 (-15 -4340 ((-2 (|:| |preimage| (-642 |#1|)) (|:| |image| (-642 |#1|))) $)) (-15 -1477 ($ (-642 (-642 |#1|)))) (-15 -2327 ($ (-642 (-642 |#1|)))) (-15 -2327 ($ (-642 |#1|))) (-15 -2272 ($ (-642 (-642 |#1|)))) (-15 -2775 ((-769) $)) (-15 -4066 ((-1099 |#1|) $)) (-15 -4122 ((-969) $)) (-15 -1427 ((-769) $)) (-15 -2133 ((-769) $)) (-15 -2959 ((-564) $)) (-15 -2519 ((-112) $)) (-15 -3076 ((-112) $)) (-15 -2383 ((-642 $) (-642 $))) (IF (|has| |#1| (-368)) (-15 -2392 ((-1099 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -3313 ($ (-642 |#1|))) (IF (|has| |#1| (-368)) (-15 -3313 ($ (-642 |#1|))) |%noBranch|))))
+((-3566 (((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|)) 163)) (-3538 ((|#1|) 102)) (-3053 (((-418 (-1169 |#4|)) (-1169 |#4|)) 172)) (-3585 (((-418 (-1169 |#4|)) (-642 |#3|) (-1169 |#4|)) 89)) (-1547 (((-418 (-1169 |#4|)) (-1169 |#4|)) 182)) (-4220 (((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|) |#3|) 118)))
+(((-904 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3566 ((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|))) (-15 -1547 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -3053 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -3538 (|#1|)) (-15 -4220 ((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|) |#3|)) (-15 -3585 ((-418 (-1169 |#4|)) (-642 |#3|) (-1169 |#4|)))) (-907) (-791) (-848) (-947 |#1| |#2| |#3|)) (T -904))
+((-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *7)) (-4 *7 (-848)) (-4 *5 (-907)) (-4 *6 (-791)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-418 (-1169 *8))) (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-1169 *8)))) (-4220 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-642 (-1169 *7))) (-5 *3 (-1169 *7)) (-4 *7 (-947 *5 *6 *4)) (-4 *5 (-907)) (-4 *6 (-791)) (-4 *4 (-848)) (-5 *1 (-904 *5 *6 *4 *7)))) (-3538 (*1 *2) (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-907)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))) (-3053 (*1 *2 *3) (-12 (-4 *4 (-907)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-1547 (*1 *2 *3) (-12 (-4 *4 (-907)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-418 (-1169 *7))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-1169 *7)))) (-3566 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 *7))) (-5 *3 (-1169 *7)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-907)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-904 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3566 ((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|))) (-15 -1547 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -3053 ((-418 (-1169 |#4|)) (-1169 |#4|))) (-15 -3538 (|#1|)) (-15 -4220 ((-3 (-642 (-1169 |#4|)) "failed") (-642 (-1169 |#4|)) (-1169 |#4|) |#3|)) (-15 -3585 ((-418 (-1169 |#4|)) (-642 |#3|) (-1169 |#4|))))
+((-3566 (((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|)) 41)) (-3538 ((|#1|) 75)) (-3053 (((-418 (-1169 |#2|)) (-1169 |#2|)) 131)) (-3585 (((-418 (-1169 |#2|)) (-1169 |#2|)) 115)) (-1547 (((-418 (-1169 |#2|)) (-1169 |#2|)) 142)))
+(((-905 |#1| |#2|) (-10 -7 (-15 -3566 ((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|))) (-15 -1547 ((-418 (-1169 |#2|)) (-1169 |#2|))) (-15 -3053 ((-418 (-1169 |#2|)) (-1169 |#2|))) (-15 -3538 (|#1|)) (-15 -3585 ((-418 (-1169 |#2|)) (-1169 |#2|)))) (-907) (-1238 |#1|)) (T -905))
+((-3585 (*1 *2 *3) (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5))) (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5)))) (-3538 (*1 *2) (-12 (-4 *2 (-907)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1238 *2)))) (-3053 (*1 *2 *3) (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5))) (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5)))) (-1547 (*1 *2 *3) (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5))) (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5)))) (-3566 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 *5))) (-5 *3 (-1169 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-907)) (-5 *1 (-905 *4 *5)))))
+(-10 -7 (-15 -3566 ((-3 (-642 (-1169 |#2|)) "failed") (-642 (-1169 |#2|)) (-1169 |#2|))) (-15 -1547 ((-418 (-1169 |#2|)) (-1169 |#2|))) (-15 -3053 ((-418 (-1169 |#2|)) (-1169 |#2|))) (-15 -3538 (|#1|)) (-15 -3585 ((-418 (-1169 |#2|)) (-1169 |#2|))))
+((-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 42)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 18)) (-2439 (((-3 $ "failed") $) 36)))
+(((-906 |#1|) (-10 -8 (-15 -2439 ((-3 |#1| "failed") |#1|)) (-15 -4094 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -2351 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)))) (-907)) (T -906))
+NIL
+(-10 -8 (-15 -2439 ((-3 |#1| "failed") |#1|)) (-15 -4094 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -2351 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-2951 (((-418 (-1169 $)) (-1169 $)) 66)) (-4316 (($ $) 57)) (-1978 (((-418 $) $) 58)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 63)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-1469 (((-112) $) 59)) (-3953 (((-112) $) 35)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-1643 (((-418 (-1169 $)) (-1169 $)) 64)) (-2923 (((-418 (-1169 $)) (-1169 $)) 65)) (-3643 (((-418 $) $) 56)) (-2896 (((-3 $ "failed") $ $) 48)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 62 (|has| $ (-145)))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-2439 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-907) (-140)) (T -907))
+((-2351 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-907)))) (-2951 (*1 *2 *3) (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1)))) (-2923 (*1 *2 *3) (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1)))) (-1643 (*1 *2 *3) (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1)))) (-4094 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 (-1169 *1))) (-5 *3 (-1169 *1)) (-4 *1 (-907)))) (-3637 (*1 *2 *3) (|partial| -12 (-5 *3 (-687 *1)) (-4 *1 (-145)) (-4 *1 (-907)) (-5 *2 (-1262 *1)))) (-2439 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-907)))))
+(-13 (-1216) (-10 -8 (-15 -2951 ((-418 (-1169 $)) (-1169 $))) (-15 -2923 ((-418 (-1169 $)) (-1169 $))) (-15 -1643 ((-418 (-1169 $)) (-1169 $))) (-15 -2351 ((-1169 $) (-1169 $) (-1169 $))) (-15 -4094 ((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $))) (IF (|has| $ (-145)) (PROGN (-15 -3637 ((-3 (-1262 $) "failed") (-687 $))) (-15 -2439 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2988 (((-112) $) NIL)) (-3237 (((-769)) NIL)) (-3815 (($ $ (-919)) NIL (|has| $ (-368))) (($ $) NIL)) (-1964 (((-1185 (-919) (-769)) (-564)) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 $ "failed") $) NIL)) (-3027 (($ $) NIL)) (-4221 (($ (-1262 $)) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1363 (($) NIL)) (-3424 (((-112) $) NIL)) (-3607 (($ $) NIL) (($ $ (-769)) NIL)) (-1469 (((-112) $) NIL)) (-1427 (((-831 (-919)) $) NIL) (((-919) $) NIL)) (-3953 (((-112) $) NIL)) (-3289 (($) NIL (|has| $ (-368)))) (-3563 (((-112) $) NIL (|has| $ (-368)))) (-2218 (($ $ (-919)) NIL (|has| $ (-368))) (($ $) NIL)) (-3157 (((-3 $ "failed") $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3947 (((-1169 $) $ (-919)) NIL (|has| $ (-368))) (((-1169 $) $) NIL)) (-1945 (((-919) $) NIL)) (-4157 (((-1169 $) $) NIL (|has| $ (-368)))) (-2891 (((-3 (-1169 $) "failed") $ $) NIL (|has| $ (-368))) (((-1169 $) $) NIL (|has| $ (-368)))) (-2393 (($ $ (-1169 $)) NIL (|has| $ (-368)))) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL T CONST)) (-2047 (($ (-919)) NIL)) (-2843 (((-112) $) NIL)) (-4033 (((-1117) $) NIL)) (-2185 (($) NIL (|has| $ (-368)))) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL)) (-3643 (((-418 $) $) NIL)) (-1524 (((-919)) NIL) (((-831 (-919))) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2136 (((-3 (-769) "failed") $ $) NIL) (((-769) $) NIL)) (-3474 (((-134)) NIL)) (-3175 (($ $ (-769)) NIL) (($ $) NIL)) (-2775 (((-919) $) NIL) (((-831 (-919)) $) NIL)) (-3280 (((-1169 $)) NIL)) (-2668 (($) NIL)) (-1627 (($) NIL (|has| $ (-368)))) (-2067 (((-687 $) (-1262 $)) NIL) (((-1262 $) $) NIL)) (-1314 (((-564) $) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL)) (-2439 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $) (-919)) NIL) (((-1262 $)) NIL)) (-2103 (((-112) $ $) NIL)) (-1362 (((-112) $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-3623 (($ $ (-769)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-4044 (($ $ (-769)) NIL) (($ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-908 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-919)) (T -908))
NIL
(-13 (-349) (-329 $) (-612 (-564)))
-((-3028 (((-3 (-2 (|:| -3744 (-767)) (|:| -3269 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 84)) (-2441 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-3744 (((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|)) 15)))
-(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3744 ((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -2441 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -3028 ((-3 (-2 (|:| -3744 (-767)) (|:| -3269 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-556) (-1034 (-564))) (-430 |#1|) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -907))
-((-3028 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-2 (|:| -3744 (-767)) (|:| -3269 *8))) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-112)) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-3744 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-767)) (-5 *1 (-907 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3744 ((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -2441 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -3028 ((-3 (-2 (|:| -3744 (-767)) (|:| -3269 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|))))
-((-3028 (((-3 (-2 (|:| -3744 (-767)) (|:| -3269 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 64)) (-2441 (((-112) (-336 (-407 (-564)) |#1| |#2| |#3|)) 16)) (-3744 (((-3 (-767) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 14)))
-(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3744 ((-3 (-767) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -2441 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -3028 ((-3 (-2 (|:| -3744 (-767)) (|:| -3269 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) (-1235 (-407 (-564))) (-1235 (-407 |#1|)) (-342 (-407 (-564)) |#1| |#2|)) (T -908))
-((-3028 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-2 (|:| -3744 (-767)) (|:| -3269 *6))) (-5 *1 (-908 *4 *5 *6)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-908 *4 *5 *6)))) (-3744 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-767)) (-5 *1 (-908 *4 *5 *6)))))
-(-10 -7 (-15 -3744 ((-3 (-767) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -2441 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -3028 ((-3 (-2 (|:| -3744 (-767)) (|:| -3269 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))))
-((-3556 ((|#2| |#2|) 26)) (-3000 (((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) 15)) (-1372 (((-917) (-564)) 38)) (-3740 (((-564) |#2|) 45)) (-3747 (((-564) |#2|) 21) (((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|) 20)))
-(((-909 |#1| |#2|) (-10 -7 (-15 -1372 ((-917) (-564))) (-15 -3747 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -3747 ((-564) |#2|)) (-15 -3000 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -3740 ((-564) |#2|)) (-15 -3556 (|#2| |#2|))) (-1235 (-407 (-564))) (-1235 (-407 |#1|))) (T -909))
-((-3556 (*1 *2 *2) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-909 *3 *2)) (-4 *2 (-1235 (-407 *3))))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1235 (-407 *4))))) (-3747 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-3747 (*1 *2 *3) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) (-5 *1 (-909 *3 *4)) (-4 *4 (-1235 (-407 *3))))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-917)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1235 (-407 *4))))))
-(-10 -7 (-15 -1372 ((-917) (-564))) (-15 -3747 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -3747 ((-564) |#2|)) (-15 -3000 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -3740 ((-564) |#2|)) (-15 -3556 (|#2| |#2|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4198 ((|#1| $) 99)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-2946 (($ $ $) NIL)) (-3293 (((-3 $ "failed") $) 93)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-1890 (($ |#1| (-418 |#1|)) 91)) (-1642 (((-1166 |#1|) |#1| |#1|) 53)) (-3484 (($ $) 61)) (-4112 (((-112) $) NIL)) (-2044 (((-564) $) 96)) (-4350 (($ $ (-564)) 98)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1588 ((|#1| $) 95)) (-3507 (((-418 |#1|) $) 94)) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) 92)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-1809 (($ $) 50)) (-2423 (((-858) $) 123) (($ (-564)) 72) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 41) (((-407 |#1|) $) 77) (($ (-407 (-418 |#1|))) 85)) (-3719 (((-767)) 70 T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-2403 (($) 26 T CONST)) (-2417 (($) 15 T CONST)) (-2974 (((-112) $ $) 86)) (-3092 (($ $ $) NIL)) (-3082 (($ $) 107) (($ $ $) NIL)) (-3070 (($ $ $) 49)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 109) (($ $ $) 48) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 108) (($ $ |#1|) NIL)))
-(((-910 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -2423 ((-407 |#1|) $)) (-15 -2423 ($ (-407 (-418 |#1|)))) (-15 -1809 ($ $)) (-15 -3507 ((-418 |#1|) $)) (-15 -1588 (|#1| $)) (-15 -4350 ($ $ (-564))) (-15 -2044 ((-564) $)) (-15 -1642 ((-1166 |#1|) |#1| |#1|)) (-15 -3484 ($ $)) (-15 -1890 ($ |#1| (-418 |#1|))) (-15 -4198 (|#1| $)))) (-307)) (T -910))
-((-2423 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3)))) (-1809 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-1588 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-4350 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-1642 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3484 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2)))) (-4198 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
-(-13 (-363) (-38 |#1|) (-10 -8 (-15 -2423 ((-407 |#1|) $)) (-15 -2423 ($ (-407 (-418 |#1|)))) (-15 -1809 ($ $)) (-15 -3507 ((-418 |#1|) $)) (-15 -1588 (|#1| $)) (-15 -4350 ($ $ (-564))) (-15 -2044 ((-564) $)) (-15 -1642 ((-1166 |#1|) |#1| |#1|)) (-15 -3484 ($ $)) (-15 -1890 ($ |#1| (-418 |#1|))) (-15 -4198 (|#1| $))))
-((-1890 (((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1170)) 17) (((-52) (-407 (-948 |#1|)) (-1170)) 18)))
-(((-911 |#1|) (-10 -7 (-15 -1890 ((-52) (-407 (-948 |#1|)) (-1170))) (-15 -1890 ((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1170)))) (-13 (-307) (-147))) (T -911))
-((-1890 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-948 *6))) (-5 *5 (-1170)) (-5 *3 (-948 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *6)))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *5)))))
-(-10 -7 (-15 -1890 ((-52) (-407 (-948 |#1|)) (-1170))) (-15 -1890 ((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1170))))
-((-1644 ((|#4| (-641 |#4|)) 149) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 85) ((|#4| |#4| |#4|) 148)) (-2123 (((-1166 |#4|) (-641 (-1166 |#4|))) 140) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 63) ((|#4| (-641 |#4|)) 71) ((|#4| |#4| |#4|) 108)))
-(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2123 (|#4| |#4| |#4|)) (-15 -2123 (|#4| (-641 |#4|))) (-15 -2123 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2123 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -1644 (|#4| |#4| |#4|)) (-15 -1644 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -1644 (|#4| (-641 |#4|)))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -912))
-((-1644 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-1644 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-1644 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-912 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-2123 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-2123 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))))
-(-10 -7 (-15 -2123 (|#4| |#4| |#4|)) (-15 -2123 (|#4| (-641 |#4|))) (-15 -2123 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2123 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -1644 (|#4| |#4| |#4|)) (-15 -1644 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -1644 (|#4| (-641 |#4|))))
-((-2081 (((-900 (-564)) (-967)) 37) (((-900 (-564)) (-641 (-564))) 34)) (-3399 (((-900 (-564)) (-641 (-564))) 68) (((-900 (-564)) (-917)) 69)) (-4164 (((-900 (-564))) 38)) (-2767 (((-900 (-564))) 54) (((-900 (-564)) (-641 (-564))) 53)) (-2223 (((-900 (-564))) 52) (((-900 (-564)) (-641 (-564))) 51)) (-1892 (((-900 (-564))) 50) (((-900 (-564)) (-641 (-564))) 49)) (-1406 (((-900 (-564))) 48) (((-900 (-564)) (-641 (-564))) 47)) (-3018 (((-900 (-564))) 46) (((-900 (-564)) (-641 (-564))) 45)) (-2947 (((-900 (-564))) 56) (((-900 (-564)) (-641 (-564))) 55)) (-1599 (((-900 (-564)) (-641 (-564))) 73) (((-900 (-564)) (-917)) 75)) (-4330 (((-900 (-564)) (-641 (-564))) 70) (((-900 (-564)) (-917)) 71)) (-2067 (((-900 (-564)) (-641 (-564))) 66) (((-900 (-564)) (-917)) 67)) (-2281 (((-900 (-564)) (-641 (-917))) 59)))
-(((-913) (-10 -7 (-15 -3399 ((-900 (-564)) (-917))) (-15 -3399 ((-900 (-564)) (-641 (-564)))) (-15 -2067 ((-900 (-564)) (-917))) (-15 -2067 ((-900 (-564)) (-641 (-564)))) (-15 -2281 ((-900 (-564)) (-641 (-917)))) (-15 -4330 ((-900 (-564)) (-917))) (-15 -4330 ((-900 (-564)) (-641 (-564)))) (-15 -1599 ((-900 (-564)) (-917))) (-15 -1599 ((-900 (-564)) (-641 (-564)))) (-15 -3018 ((-900 (-564)) (-641 (-564)))) (-15 -3018 ((-900 (-564)))) (-15 -1406 ((-900 (-564)) (-641 (-564)))) (-15 -1406 ((-900 (-564)))) (-15 -1892 ((-900 (-564)) (-641 (-564)))) (-15 -1892 ((-900 (-564)))) (-15 -2223 ((-900 (-564)) (-641 (-564)))) (-15 -2223 ((-900 (-564)))) (-15 -2767 ((-900 (-564)) (-641 (-564)))) (-15 -2767 ((-900 (-564)))) (-15 -2947 ((-900 (-564)) (-641 (-564)))) (-15 -2947 ((-900 (-564)))) (-15 -4164 ((-900 (-564)))) (-15 -2081 ((-900 (-564)) (-641 (-564)))) (-15 -2081 ((-900 (-564)) (-967))))) (T -913))
-((-2081 (*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-4164 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2947 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2767 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2223 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-1892 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-1406 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3018 (*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-641 (-917))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(-10 -7 (-15 -3399 ((-900 (-564)) (-917))) (-15 -3399 ((-900 (-564)) (-641 (-564)))) (-15 -2067 ((-900 (-564)) (-917))) (-15 -2067 ((-900 (-564)) (-641 (-564)))) (-15 -2281 ((-900 (-564)) (-641 (-917)))) (-15 -4330 ((-900 (-564)) (-917))) (-15 -4330 ((-900 (-564)) (-641 (-564)))) (-15 -1599 ((-900 (-564)) (-917))) (-15 -1599 ((-900 (-564)) (-641 (-564)))) (-15 -3018 ((-900 (-564)) (-641 (-564)))) (-15 -3018 ((-900 (-564)))) (-15 -1406 ((-900 (-564)) (-641 (-564)))) (-15 -1406 ((-900 (-564)))) (-15 -1892 ((-900 (-564)) (-641 (-564)))) (-15 -1892 ((-900 (-564)))) (-15 -2223 ((-900 (-564)) (-641 (-564)))) (-15 -2223 ((-900 (-564)))) (-15 -2767 ((-900 (-564)) (-641 (-564)))) (-15 -2767 ((-900 (-564)))) (-15 -2947 ((-900 (-564)) (-641 (-564)))) (-15 -2947 ((-900 (-564)))) (-15 -4164 ((-900 (-564)))) (-15 -2081 ((-900 (-564)) (-641 (-564)))) (-15 -2081 ((-900 (-564)) (-967))))
-((-2090 (((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170))) 14)) (-2669 (((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170))) 13)))
-(((-914 |#1|) (-10 -7 (-15 -2669 ((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -2090 ((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170))))) (-452)) (T -914))
-((-2090 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-948 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-914 *4)))) (-2669 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-948 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-914 *4)))))
-(-10 -7 (-15 -2669 ((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -2090 ((-641 (-948 |#1|)) (-641 (-948 |#1|)) (-641 (-1170)))))
-((-2423 (((-316 |#1|) (-477)) 16)))
-(((-915 |#1|) (-10 -7 (-15 -2423 ((-316 |#1|) (-477)))) (-556)) (T -915))
-((-2423 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-915 *4)) (-4 *4 (-556)))))
-(-10 -7 (-15 -2423 ((-316 |#1|) (-477))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-4112 (((-112) $) 32)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-916) (-140)) (T -916))
-((-1583 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -4376 (-641 *1)) (|:| -2249 *1))) (-5 *3 (-641 *1)))) (-1820 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-916)))))
-(-13 (-452) (-10 -8 (-15 -1583 ((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $))) (-15 -1820 ((-3 (-641 $) "failed") (-641 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2123 (($ $ $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2417 (($) NIL T CONST)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ $ $) NIL)))
-(((-917) (-13 (-790) (-722) (-10 -8 (-15 -2123 ($ $ $)) (-6 (-4409 "*"))))) (T -917))
-((-2123 (*1 *1 *1 *1) (-5 *1 (-917))))
-(-13 (-790) (-722) (-10 -8 (-15 -2123 ($ $ $)) (-6 (-4409 "*"))))
+((-4279 (((-3 (-2 (|:| -1427 (-769)) (|:| -3192 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 84)) (-3949 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-1427 (((-3 (-769) "failed") (-336 |#2| |#3| |#4| |#5|)) 15)))
+(((-909 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1427 ((-3 (-769) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -3949 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -4279 ((-3 (-2 (|:| -1427 (-769)) (|:| -3192 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-556) (-1036 (-564))) (-430 |#1|) (-1238 |#2|) (-1238 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -909))
+((-4279 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-2 (|:| -1427 (-769)) (|:| -3192 *8))) (-5 *1 (-909 *4 *5 *6 *7 *8)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6 *7 *8)))) (-1427 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-769)) (-5 *1 (-909 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1427 ((-3 (-769) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -3949 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -4279 ((-3 (-2 (|:| -1427 (-769)) (|:| -3192 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|))))
+((-4279 (((-3 (-2 (|:| -1427 (-769)) (|:| -3192 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 64)) (-3949 (((-112) (-336 (-407 (-564)) |#1| |#2| |#3|)) 16)) (-1427 (((-3 (-769) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 14)))
+(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -1427 ((-3 (-769) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -3949 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -4279 ((-3 (-2 (|:| -1427 (-769)) (|:| -3192 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) (-1238 (-407 (-564))) (-1238 (-407 |#1|)) (-342 (-407 (-564)) |#1| |#2|)) (T -910))
+((-4279 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-2 (|:| -1427 (-769)) (|:| -3192 *6))) (-5 *1 (-910 *4 *5 *6)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-910 *4 *5 *6)))) (-1427 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-769)) (-5 *1 (-910 *4 *5 *6)))))
+(-10 -7 (-15 -1427 ((-3 (-769) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -3949 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -4279 ((-3 (-2 (|:| -1427 (-769)) (|:| -3192 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))))
+((-3784 ((|#2| |#2|) 26)) (-3463 (((-564) (-642 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) 15)) (-1944 (((-919) (-564)) 38)) (-4212 (((-564) |#2|) 45)) (-3436 (((-564) |#2|) 21) (((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|) 20)))
+(((-911 |#1| |#2|) (-10 -7 (-15 -1944 ((-919) (-564))) (-15 -3436 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -3436 ((-564) |#2|)) (-15 -3463 ((-564) (-642 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -4212 ((-564) |#2|)) (-15 -3784 (|#2| |#2|))) (-1238 (-407 (-564))) (-1238 (-407 |#1|))) (T -911))
+((-3784 (*1 *2 *2) (-12 (-4 *3 (-1238 (-407 (-564)))) (-5 *1 (-911 *3 *2)) (-4 *2 (-1238 (-407 *3))))) (-4212 (*1 *2 *3) (-12 (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *3)) (-4 *3 (-1238 (-407 *4))))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *5)) (-4 *5 (-1238 (-407 *4))))) (-3436 (*1 *2 *3) (-12 (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *3)) (-4 *3 (-1238 (-407 *4))))) (-3436 (*1 *2 *3) (-12 (-4 *3 (-1238 (-407 (-564)))) (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) (-5 *1 (-911 *3 *4)) (-4 *4 (-1238 (-407 *3))))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1238 (-407 *3))) (-5 *2 (-919)) (-5 *1 (-911 *4 *5)) (-4 *5 (-1238 (-407 *4))))))
+(-10 -7 (-15 -1944 ((-919) (-564))) (-15 -3436 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -3436 ((-564) |#2|)) (-15 -3463 ((-564) (-642 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -4212 ((-564) |#2|)) (-15 -3784 (|#2| |#2|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3703 ((|#1| $) 99)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-2845 (($ $ $) NIL)) (-3104 (((-3 $ "failed") $) 93)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-3130 (($ |#1| (-418 |#1|)) 91)) (-3927 (((-1169 |#1|) |#1| |#1|) 53)) (-1534 (($ $) 61)) (-3953 (((-112) $) NIL)) (-2832 (((-564) $) 96)) (-3383 (($ $ (-564)) 98)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2727 ((|#1| $) 95)) (-2217 (((-418 |#1|) $) 94)) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) 92)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3773 (($ $) 50)) (-2327 (((-860) $) 123) (($ (-564)) 72) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 41) (((-407 |#1|) $) 77) (($ (-407 (-418 |#1|))) 85)) (-2756 (((-769)) 70 T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-2312 (($) 26 T CONST)) (-2322 (($) 15 T CONST)) (-2872 (((-112) $ $) 86)) (-2998 (($ $ $) NIL)) (-2987 (($ $) 107) (($ $ $) NIL)) (-2974 (($ $ $) 49)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 109) (($ $ $) 48) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 108) (($ $ |#1|) NIL)))
+(((-912 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -2327 ((-407 |#1|) $)) (-15 -2327 ($ (-407 (-418 |#1|)))) (-15 -3773 ($ $)) (-15 -2217 ((-418 |#1|) $)) (-15 -2727 (|#1| $)) (-15 -3383 ($ $ (-564))) (-15 -2832 ((-564) $)) (-15 -3927 ((-1169 |#1|) |#1| |#1|)) (-15 -1534 ($ $)) (-15 -3130 ($ |#1| (-418 |#1|))) (-15 -3703 (|#1| $)))) (-307)) (T -912))
+((-2327 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-912 *3)))) (-3773 (*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) (-2727 (*1 *2 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))) (-3383 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) (-3927 (*1 *2 *3 *3) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307)))) (-1534 (*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))) (-3130 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-912 *2)))) (-3703 (*1 *2 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))))
+(-13 (-363) (-38 |#1|) (-10 -8 (-15 -2327 ((-407 |#1|) $)) (-15 -2327 ($ (-407 (-418 |#1|)))) (-15 -3773 ($ $)) (-15 -2217 ((-418 |#1|) $)) (-15 -2727 (|#1| $)) (-15 -3383 ($ $ (-564))) (-15 -2832 ((-564) $)) (-15 -3927 ((-1169 |#1|) |#1| |#1|)) (-15 -1534 ($ $)) (-15 -3130 ($ |#1| (-418 |#1|))) (-15 -3703 (|#1| $))))
+((-3130 (((-52) (-950 |#1|) (-418 (-950 |#1|)) (-1173)) 17) (((-52) (-407 (-950 |#1|)) (-1173)) 18)))
+(((-913 |#1|) (-10 -7 (-15 -3130 ((-52) (-407 (-950 |#1|)) (-1173))) (-15 -3130 ((-52) (-950 |#1|) (-418 (-950 |#1|)) (-1173)))) (-13 (-307) (-147))) (T -913))
+((-3130 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-950 *6))) (-5 *5 (-1173)) (-5 *3 (-950 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-913 *6)))) (-3130 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-913 *5)))))
+(-10 -7 (-15 -3130 ((-52) (-407 (-950 |#1|)) (-1173))) (-15 -3130 ((-52) (-950 |#1|) (-418 (-950 |#1|)) (-1173))))
+((-2939 ((|#4| (-642 |#4|)) 149) (((-1169 |#4|) (-1169 |#4|) (-1169 |#4|)) 85) ((|#4| |#4| |#4|) 148)) (-2080 (((-1169 |#4|) (-642 (-1169 |#4|))) 140) (((-1169 |#4|) (-1169 |#4|) (-1169 |#4|)) 63) ((|#4| (-642 |#4|)) 71) ((|#4| |#4| |#4|) 108)))
+(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2080 (|#4| |#4| |#4|)) (-15 -2080 (|#4| (-642 |#4|))) (-15 -2080 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -2080 ((-1169 |#4|) (-642 (-1169 |#4|)))) (-15 -2939 (|#4| |#4| |#4|)) (-15 -2939 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -2939 (|#4| (-642 |#4|)))) (-791) (-848) (-307) (-947 |#3| |#1| |#2|)) (T -914))
+((-2939 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *6 *4 *5)) (-5 *1 (-914 *4 *5 *6 *2)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)))) (-2939 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *6)))) (-2939 (*1 *2 *2 *2) (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-947 *5 *3 *4)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-642 (-1169 *7))) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-1169 *7)) (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))) (-2080 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *6)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *6 *4 *5)) (-5 *1 (-914 *4 *5 *6 *2)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)))) (-2080 (*1 *2 *2 *2) (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-947 *5 *3 *4)))))
+(-10 -7 (-15 -2080 (|#4| |#4| |#4|)) (-15 -2080 (|#4| (-642 |#4|))) (-15 -2080 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -2080 ((-1169 |#4|) (-642 (-1169 |#4|)))) (-15 -2939 (|#4| |#4| |#4|)) (-15 -2939 ((-1169 |#4|) (-1169 |#4|) (-1169 |#4|))) (-15 -2939 (|#4| (-642 |#4|))))
+((-3477 (((-902 (-564)) (-969)) 37) (((-902 (-564)) (-642 (-564))) 34)) (-3485 (((-902 (-564)) (-642 (-564))) 68) (((-902 (-564)) (-919)) 69)) (-3896 (((-902 (-564))) 38)) (-2420 (((-902 (-564))) 54) (((-902 (-564)) (-642 (-564))) 53)) (-2726 (((-902 (-564))) 52) (((-902 (-564)) (-642 (-564))) 51)) (-1890 (((-902 (-564))) 50) (((-902 (-564)) (-642 (-564))) 49)) (-1329 (((-902 (-564))) 48) (((-902 (-564)) (-642 (-564))) 47)) (-4209 (((-902 (-564))) 46) (((-902 (-564)) (-642 (-564))) 45)) (-3850 (((-902 (-564))) 56) (((-902 (-564)) (-642 (-564))) 55)) (-3392 (((-902 (-564)) (-642 (-564))) 73) (((-902 (-564)) (-919)) 75)) (-2348 (((-902 (-564)) (-642 (-564))) 70) (((-902 (-564)) (-919)) 71)) (-1552 (((-902 (-564)) (-642 (-564))) 66) (((-902 (-564)) (-919)) 67)) (-3233 (((-902 (-564)) (-642 (-919))) 59)))
+(((-915) (-10 -7 (-15 -3485 ((-902 (-564)) (-919))) (-15 -3485 ((-902 (-564)) (-642 (-564)))) (-15 -1552 ((-902 (-564)) (-919))) (-15 -1552 ((-902 (-564)) (-642 (-564)))) (-15 -3233 ((-902 (-564)) (-642 (-919)))) (-15 -2348 ((-902 (-564)) (-919))) (-15 -2348 ((-902 (-564)) (-642 (-564)))) (-15 -3392 ((-902 (-564)) (-919))) (-15 -3392 ((-902 (-564)) (-642 (-564)))) (-15 -4209 ((-902 (-564)) (-642 (-564)))) (-15 -4209 ((-902 (-564)))) (-15 -1329 ((-902 (-564)) (-642 (-564)))) (-15 -1329 ((-902 (-564)))) (-15 -1890 ((-902 (-564)) (-642 (-564)))) (-15 -1890 ((-902 (-564)))) (-15 -2726 ((-902 (-564)) (-642 (-564)))) (-15 -2726 ((-902 (-564)))) (-15 -2420 ((-902 (-564)) (-642 (-564)))) (-15 -2420 ((-902 (-564)))) (-15 -3850 ((-902 (-564)) (-642 (-564)))) (-15 -3850 ((-902 (-564)))) (-15 -3896 ((-902 (-564)))) (-15 -3477 ((-902 (-564)) (-642 (-564)))) (-15 -3477 ((-902 (-564)) (-969))))) (T -915))
+((-3477 (*1 *2 *3) (-12 (-5 *3 (-969)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3896 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3850 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2420 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2726 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1890 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1329 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-4209 (*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-642 (-919))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(-10 -7 (-15 -3485 ((-902 (-564)) (-919))) (-15 -3485 ((-902 (-564)) (-642 (-564)))) (-15 -1552 ((-902 (-564)) (-919))) (-15 -1552 ((-902 (-564)) (-642 (-564)))) (-15 -3233 ((-902 (-564)) (-642 (-919)))) (-15 -2348 ((-902 (-564)) (-919))) (-15 -2348 ((-902 (-564)) (-642 (-564)))) (-15 -3392 ((-902 (-564)) (-919))) (-15 -3392 ((-902 (-564)) (-642 (-564)))) (-15 -4209 ((-902 (-564)) (-642 (-564)))) (-15 -4209 ((-902 (-564)))) (-15 -1329 ((-902 (-564)) (-642 (-564)))) (-15 -1329 ((-902 (-564)))) (-15 -1890 ((-902 (-564)) (-642 (-564)))) (-15 -1890 ((-902 (-564)))) (-15 -2726 ((-902 (-564)) (-642 (-564)))) (-15 -2726 ((-902 (-564)))) (-15 -2420 ((-902 (-564)) (-642 (-564)))) (-15 -2420 ((-902 (-564)))) (-15 -3850 ((-902 (-564)) (-642 (-564)))) (-15 -3850 ((-902 (-564)))) (-15 -3896 ((-902 (-564)))) (-15 -3477 ((-902 (-564)) (-642 (-564)))) (-15 -3477 ((-902 (-564)) (-969))))
+((-3091 (((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173))) 14)) (-2654 (((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173))) 13)))
+(((-916 |#1|) (-10 -7 (-15 -2654 ((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -3091 ((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173))))) (-452)) (T -916))
+((-3091 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-950 *4))) (-5 *3 (-642 (-1173))) (-4 *4 (-452)) (-5 *1 (-916 *4)))) (-2654 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-950 *4))) (-5 *3 (-642 (-1173))) (-4 *4 (-452)) (-5 *1 (-916 *4)))))
+(-10 -7 (-15 -2654 ((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -3091 ((-642 (-950 |#1|)) (-642 (-950 |#1|)) (-642 (-1173)))))
+((-2327 (((-316 |#1|) (-477)) 16)))
+(((-917 |#1|) (-10 -7 (-15 -2327 ((-316 |#1|) (-477)))) (-556)) (T -917))
+((-2327 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-917 *4)) (-4 *4 (-556)))))
+(-10 -7 (-15 -2327 ((-316 |#1|) (-477))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-3953 (((-112) $) 35)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-918) (-140)) (T -918))
+((-1315 (*1 *2 *3) (-12 (-4 *1 (-918)) (-5 *2 (-2 (|:| -4378 (-642 *1)) (|:| -2185 *1))) (-5 *3 (-642 *1)))) (-1542 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-642 *1)) (-4 *1 (-918)))))
+(-13 (-452) (-10 -8 (-15 -1315 ((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $))) (-15 -1542 ((-3 (-642 $) "failed") (-642 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2080 (($ $ $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2322 (($) NIL T CONST)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ $ $) NIL)))
+(((-919) (-13 (-792) (-724) (-10 -8 (-15 -2080 ($ $ $)) (-6 (-4412 "*"))))) (T -919))
+((-2080 (*1 *1 *1 *1) (-5 *1 (-919))))
+(-13 (-792) (-724) (-10 -8 (-15 -2080 ($ $ $)) (-6 (-4412 "*"))))
((|NonNegativeInteger|) (< 0 |#1|))
-((-2760 ((|#2| (-641 |#1|) (-641 |#1|)) 29)))
-(((-918 |#1| |#2|) (-10 -7 (-15 -2760 (|#2| (-641 |#1|) (-641 |#1|)))) (-363) (-1235 |#1|)) (T -918))
-((-2760 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4)) (-5 *1 (-918 *4 *2)))))
-(-10 -7 (-15 -2760 (|#2| (-641 |#1|) (-641 |#1|))))
-((-2183 (((-1166 |#2|) (-641 |#2|) (-641 |#2|)) 17) (((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|)) 13)))
-(((-919 |#1| |#2|) (-10 -7 (-15 -2183 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -2183 ((-1166 |#2|) (-641 |#2|) (-641 |#2|)))) (-1170) (-363)) (T -919))
-((-2183 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5)) (-5 *1 (-919 *4 *5)) (-14 *4 (-1170)))) (-2183 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170)) (-4 *5 (-363)) (-5 *1 (-919 *4 *5)))))
-(-10 -7 (-15 -2183 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -2183 ((-1166 |#2|) (-641 |#2|) (-641 |#2|))))
-((-2159 (((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152)) 177)) (-3062 ((|#4| |#4|) 196)) (-4154 (((-641 (-407 (-948 |#1|))) (-641 (-1170))) 149)) (-2332 (((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-641 (-641 |#4|)) (-767) (-767) (-564)) 88)) (-1904 (((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))) (-641 |#4|)) 69)) (-2929 (((-685 |#4|) (-685 |#4|) (-641 |#4|)) 65)) (-3181 (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152)) 189)) (-2890 (((-564) (-685 |#4|) (-917) (-1152)) 169) (((-564) (-685 |#4|) (-641 (-1170)) (-917) (-1152)) 168) (((-564) (-685 |#4|) (-641 |#4|) (-917) (-1152)) 167) (((-564) (-685 |#4|) (-1152)) 157) (((-564) (-685 |#4|) (-641 (-1170)) (-1152)) 156) (((-564) (-685 |#4|) (-641 |#4|) (-1152)) 155) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-917)) 154) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-917)) 153) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-917)) 152) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|)) 151) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170))) 150) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|)) 146)) (-3997 ((|#4| (-948 |#1|)) 80)) (-4205 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 193)) (-3400 (((-641 (-641 (-564))) (-564) (-564)) 162)) (-4311 (((-641 (-641 |#4|)) (-641 (-641 |#4|))) 107)) (-1627 (((-767) (-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 102)) (-2541 (((-767) (-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 101)) (-3343 (((-112) (-641 (-948 |#1|))) 19) (((-112) (-641 |#4|)) 15)) (-2163 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|)) 84)) (-3443 (((-641 |#4|) |#4|) 57)) (-1665 (((-641 (-407 (-948 |#1|))) (-641 |#4|)) 145) (((-685 (-407 (-948 |#1|))) (-685 |#4|)) 66) (((-407 (-948 |#1|)) |#4|) 142)) (-1778 (((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-767) (-1152) (-564)) 113)) (-3539 (((-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-767)) 100)) (-3499 (((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-767)) 124)) (-2525 (((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| -2511 (-685 (-407 (-948 |#1|)))) (|:| |vec| (-641 (-407 (-948 |#1|)))) (|:| -2514 (-767)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) 56)))
-(((-920 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|))) (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-917))) (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-917))) (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-917))) (-15 -2890 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -2890 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -2890 ((-564) (-685 |#4|) (-1152))) (-15 -2890 ((-564) (-685 |#4|) (-641 |#4|) (-917) (-1152))) (-15 -2890 ((-564) (-685 |#4|) (-641 (-1170)) (-917) (-1152))) (-15 -2890 ((-564) (-685 |#4|) (-917) (-1152))) (-15 -2159 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152))) (-15 -3181 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152))) (-15 -1778 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-767) (-1152) (-564))) (-15 -1665 ((-407 (-948 |#1|)) |#4|)) (-15 -1665 ((-685 (-407 (-948 |#1|))) (-685 |#4|))) (-15 -1665 ((-641 (-407 (-948 |#1|))) (-641 |#4|))) (-15 -4154 ((-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -3997 (|#4| (-948 |#1|))) (-15 -2163 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -3539 ((-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-767))) (-15 -1904 ((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))) (-641 |#4|))) (-15 -2525 ((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| -2511 (-685 (-407 (-948 |#1|)))) (|:| |vec| (-641 (-407 (-948 |#1|)))) (|:| -2514 (-767)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -3443 ((-641 |#4|) |#4|)) (-15 -2541 ((-767) (-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -1627 ((-767) (-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -4311 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -3400 ((-641 (-641 (-564))) (-564) (-564))) (-15 -4205 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3499 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-767))) (-15 -2929 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -2332 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-641 (-641 |#4|)) (-767) (-767) (-564))) (-15 -3062 (|#4| |#4|)) (-15 -3343 ((-112) (-641 |#4|))) (-15 -3343 ((-112) (-641 (-948 |#1|))))) (-13 (-307) (-147)) (-13 (-846) (-612 (-1170))) (-789) (-945 |#1| |#3| |#2|)) (T -920))
-((-3343 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3062 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-612 (-1170)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-945 *3 *5 *4)))) (-2332 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-948 *9)))) (-5 *6 (-641 (-641 *12))) (-5 *7 (-767)) (-5 *8 (-564)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-945 *9 *11 *10)) (-4 *10 (-13 (-846) (-612 (-1170)))) (-4 *11 (-789)) (-5 *2 (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12)) (|:| |wcond| (-641 (-948 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *9)))) (|:| -2047 (-641 (-1259 (-407 (-948 *9))))))))) (-5 *1 (-920 *9 *10 *11 *12)))) (-2929 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-767)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *5 *6 *7 *8)))) (-3400 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-945 *4 *6 *5)))) (-4311 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-945 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-612 (-1170)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3443 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 *3)) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-945 *4 *6 *5)))) (-2525 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2511 (-685 (-407 (-948 *4)))) (|:| |vec| (-641 (-407 (-948 *4)))) (|:| -2514 (-767)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) (|:| -2047 (-641 (-1259 (-407 (-948 *4))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-1904 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) (|:| -2047 (-641 (-1259 (-407 (-948 *4))))))) (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-945 *4 *6 *5)) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *8))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767)))) (-2163 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-4 *7 (-945 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3997 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-945 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2)) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-685 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-1665 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-407 (-948 *4))) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-945 *4 *6 *5)))) (-1778 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-948 *8)))) (-5 *5 (-767)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-945 *8 *10 *9)) (-4 *9 (-13 (-846) (-612 (-1170)))) (-4 *10 (-789)) (-5 *2 (-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11)) (|:| |wcond| (-641 (-948 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *8)))) (|:| -2047 (-641 (-1259 (-407 (-948 *8)))))))))) (|:| |rgsz| (-564)))) (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-564)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-948 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) (|:| -2047 (-641 (-1259 (-407 (-948 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) (|:| -2047 (-641 (-1259 (-407 (-948 *5)))))))))) (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-945 *5 *7 *6)) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *5 *6 *7 *8)))) (-2890 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-917)) (-5 *5 (-1152)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *6 *7 *8 *9)))) (-2890 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 (-1170))) (-5 *5 (-917)) (-5 *6 (-1152)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-612 (-1170)))) (-4 *9 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *7 *8 *9 *10)))) (-2890 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 *10)) (-5 *5 (-917)) (-5 *6 (-1152)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-612 (-1170)))) (-4 *9 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *7 *8 *9 *10)))) (-2890 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-1152)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *5 *6 *7 *8)))) (-2890 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-1152)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *6 *7 *8 *9)))) (-2890 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *6 *7 *8 *9)))) (-2890 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-917)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) (|:| -2047 (-641 (-1259 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-2890 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-948 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *6)))) (|:| -2047 (-641 (-1259 (-407 (-948 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)))) (-2890 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-948 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *6)))) (|:| -2047 (-641 (-1259 (-407 (-948 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-641 *9)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-948 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *4)))) (|:| -2047 (-641 (-1259 (-407 (-948 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)))) (-2890 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) (|:| -2047 (-641 (-1259 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-2890 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 *5)))) (|:| -2047 (-641 (-1259 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
-(-10 -7 (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|))) (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-917))) (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-917))) (-15 -2890 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-685 |#4|) (-917))) (-15 -2890 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -2890 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -2890 ((-564) (-685 |#4|) (-1152))) (-15 -2890 ((-564) (-685 |#4|) (-641 |#4|) (-917) (-1152))) (-15 -2890 ((-564) (-685 |#4|) (-641 (-1170)) (-917) (-1152))) (-15 -2890 ((-564) (-685 |#4|) (-917) (-1152))) (-15 -2159 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152))) (-15 -3181 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|))))))))) (-1152))) (-15 -1778 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-767) (-1152) (-564))) (-15 -1665 ((-407 (-948 |#1|)) |#4|)) (-15 -1665 ((-685 (-407 (-948 |#1|))) (-685 |#4|))) (-15 -1665 ((-641 (-407 (-948 |#1|))) (-641 |#4|))) (-15 -4154 ((-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -3997 (|#4| (-948 |#1|))) (-15 -2163 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -3539 ((-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-767))) (-15 -1904 ((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))) (-641 |#4|))) (-15 -2525 ((-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))) (-2 (|:| -2511 (-685 (-407 (-948 |#1|)))) (|:| |vec| (-641 (-407 (-948 |#1|)))) (|:| -2514 (-767)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -3443 ((-641 |#4|) |#4|)) (-15 -2541 ((-767) (-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -1627 ((-767) (-641 (-2 (|:| -2514 (-767)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -4311 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -3400 ((-641 (-641 (-564))) (-564) (-564))) (-15 -4205 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3499 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-767))) (-15 -2929 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -2332 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-948 |#1|)))) (|:| -2047 (-641 (-1259 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-948 |#1|))) (-641 (-641 |#4|)) (-767) (-767) (-564))) (-15 -3062 (|#4| |#4|)) (-15 -3343 ((-112) (-641 |#4|))) (-15 -3343 ((-112) (-641 (-948 |#1|)))))
-((-3132 (((-923) |#1| (-1170)) 17) (((-923) |#1| (-1170) (-1088 (-225))) 21)) (-2982 (((-923) |#1| |#1| (-1170) (-1088 (-225))) 19) (((-923) |#1| (-1170) (-1088 (-225))) 15)))
-(((-921 |#1|) (-10 -7 (-15 -2982 ((-923) |#1| (-1170) (-1088 (-225)))) (-15 -2982 ((-923) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -3132 ((-923) |#1| (-1170) (-1088 (-225)))) (-15 -3132 ((-923) |#1| (-1170)))) (-612 (-536))) (T -921))
-((-3132 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-612 (-536))))) (-3132 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-612 (-536))))) (-2982 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-612 (-536))))) (-2982 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-612 (-536))))))
-(-10 -7 (-15 -2982 ((-923) |#1| (-1170) (-1088 (-225)))) (-15 -2982 ((-923) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -3132 ((-923) |#1| (-1170) (-1088 (-225)))) (-15 -3132 ((-923) |#1| (-1170))))
-((-3178 (($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 123)) (-2702 (((-1088 (-225)) $) 63)) (-2690 (((-1088 (-225)) $) 62)) (-2677 (((-1088 (-225)) $) 61)) (-2660 (((-641 (-641 (-225))) $) 68)) (-4287 (((-1088 (-225)) $) 64)) (-2418 (((-564) (-564)) 56)) (-3524 (((-564) (-564)) 52)) (-2459 (((-564) (-564)) 54)) (-3717 (((-112) (-112)) 58)) (-3731 (((-564)) 55)) (-4128 (($ $ (-1088 (-225))) 126) (($ $) 127)) (-1474 (($ (-1 (-939 (-225)) (-225)) (-1088 (-225))) 133) (($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 134)) (-2982 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 137) (($ $ (-1088 (-225))) 129)) (-2250 (((-564)) 59)) (-2446 (((-564)) 50)) (-3569 (((-564)) 53)) (-2294 (((-641 (-641 (-939 (-225)))) $) 153)) (-2145 (((-112) (-112)) 60)) (-2423 (((-858) $) 151)) (-2427 (((-112)) 57)))
-(((-922) (-13 (-970) (-10 -8 (-15 -1474 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)))) (-15 -1474 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2982 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2982 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2982 ($ $ (-1088 (-225)))) (-15 -3178 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -4128 ($ $ (-1088 (-225)))) (-15 -4128 ($ $)) (-15 -4287 ((-1088 (-225)) $)) (-15 -2660 ((-641 (-641 (-225))) $)) (-15 -2446 ((-564))) (-15 -3524 ((-564) (-564))) (-15 -3569 ((-564))) (-15 -2459 ((-564) (-564))) (-15 -3731 ((-564))) (-15 -2418 ((-564) (-564))) (-15 -2427 ((-112))) (-15 -3717 ((-112) (-112))) (-15 -2250 ((-564))) (-15 -2145 ((-112) (-112)))))) (T -922))
-((-1474 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-922)))) (-1474 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-922)))) (-2982 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-922)))) (-2982 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-922)))) (-2982 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) (-3178 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) (-4128 (*1 *1 *1) (-5 *1 (-922))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-922)))) (-2446 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-3524 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-3569 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-3731 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-2418 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-2427 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-3717 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-2250 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))))
-(-13 (-970) (-10 -8 (-15 -1474 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)))) (-15 -1474 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2982 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2982 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2982 ($ $ (-1088 (-225)))) (-15 -3178 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -4128 ($ $ (-1088 (-225)))) (-15 -4128 ($ $)) (-15 -4287 ((-1088 (-225)) $)) (-15 -2660 ((-641 (-641 (-225))) $)) (-15 -2446 ((-564))) (-15 -3524 ((-564) (-564))) (-15 -3569 ((-564))) (-15 -2459 ((-564) (-564))) (-15 -3731 ((-564))) (-15 -2418 ((-564) (-564))) (-15 -2427 ((-112))) (-15 -3717 ((-112) (-112))) (-15 -2250 ((-564))) (-15 -2145 ((-112) (-112)))))
-((-3178 (($ $ (-1088 (-225))) 124) (($ $ (-1088 (-225)) (-1088 (-225))) 125)) (-2690 (((-1088 (-225)) $) 72)) (-2677 (((-1088 (-225)) $) 71)) (-4287 (((-1088 (-225)) $) 73)) (-3019 (((-564) (-564)) 65)) (-1552 (((-564) (-564)) 61)) (-3701 (((-564) (-564)) 63)) (-3151 (((-112) (-112)) 67)) (-1321 (((-564)) 64)) (-4128 (($ $ (-1088 (-225))) 128) (($ $) 129)) (-1474 (($ (-1 (-939 (-225)) (-225)) (-1088 (-225))) 143) (($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 144)) (-3132 (($ (-1 (-225) (-225)) (-1088 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-2982 (($ (-1 (-225) (-225)) (-1088 (-225))) 139) (($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225))) 140) (($ (-641 (-1 (-225) (-225))) (-1088 (-225))) 148) (($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 142) (($ $ (-1088 (-225))) 130)) (-2816 (((-112) $) 68)) (-2005 (((-564)) 69)) (-3913 (((-564)) 59)) (-1711 (((-564)) 62)) (-2294 (((-641 (-641 (-939 (-225)))) $) 35)) (-4051 (((-112) (-112)) 70)) (-2423 (((-858) $) 169)) (-3625 (((-112)) 66)))
-(((-923) (-13 (-951) (-10 -8 (-15 -2982 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2982 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2982 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -2982 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2982 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2982 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -1474 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)))) (-15 -1474 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3132 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3132 ($ (-1 (-225) (-225)))) (-15 -2982 ($ $ (-1088 (-225)))) (-15 -2816 ((-112) $)) (-15 -3178 ($ $ (-1088 (-225)))) (-15 -3178 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -4128 ($ $ (-1088 (-225)))) (-15 -4128 ($ $)) (-15 -4287 ((-1088 (-225)) $)) (-15 -3913 ((-564))) (-15 -1552 ((-564) (-564))) (-15 -1711 ((-564))) (-15 -3701 ((-564) (-564))) (-15 -1321 ((-564))) (-15 -3019 ((-564) (-564))) (-15 -3625 ((-112))) (-15 -3151 ((-112) (-112))) (-15 -2005 ((-564))) (-15 -4051 ((-112) (-112)))))) (T -923))
-((-2982 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2982 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2982 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2982 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2982 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2982 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-1474 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-1474 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3132 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3132 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-923)))) (-2982 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-3178 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-3178 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-4128 (*1 *1 *1) (-5 *1 (-923))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-3913 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1711 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3701 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1321 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3019 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3625 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-3151 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-2005 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(-13 (-951) (-10 -8 (-15 -2982 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2982 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2982 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -2982 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2982 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2982 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -1474 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)))) (-15 -1474 ($ (-1 (-939 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3132 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3132 ($ (-1 (-225) (-225)))) (-15 -2982 ($ $ (-1088 (-225)))) (-15 -2816 ((-112) $)) (-15 -3178 ($ $ (-1088 (-225)))) (-15 -3178 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -4128 ($ $ (-1088 (-225)))) (-15 -4128 ($ $)) (-15 -4287 ((-1088 (-225)) $)) (-15 -3913 ((-564))) (-15 -1552 ((-564) (-564))) (-15 -1711 ((-564))) (-15 -3701 ((-564) (-564))) (-15 -1321 ((-564))) (-15 -3019 ((-564) (-564))) (-15 -3625 ((-112))) (-15 -3151 ((-112) (-112))) (-15 -2005 ((-564))) (-15 -4051 ((-112) (-112)))))
-((-3621 (((-641 (-1088 (-225))) (-641 (-641 (-939 (-225))))) 34)))
-(((-924) (-10 -7 (-15 -3621 ((-641 (-1088 (-225))) (-641 (-641 (-939 (-225)))))))) (T -924))
-((-3621 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-924)))))
-(-10 -7 (-15 -3621 ((-641 (-1088 (-225))) (-641 (-641 (-939 (-225)))))))
-((-3538 ((|#2| |#2|) 28)) (-3992 ((|#2| |#2|) 29)) (-2959 ((|#2| |#2|) 27)) (-1444 ((|#2| |#2| (-506)) 26)))
-(((-925 |#1| |#2|) (-10 -7 (-15 -1444 (|#2| |#2| (-506))) (-15 -2959 (|#2| |#2|)) (-15 -3538 (|#2| |#2|)) (-15 -3992 (|#2| |#2|))) (-1094) (-430 |#1|)) (T -925))
-((-3992 (*1 *2 *2) (-12 (-4 *3 (-1094)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-3538 (*1 *2 *2) (-12 (-4 *3 (-1094)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-2959 (*1 *2 *2) (-12 (-4 *3 (-1094)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-1444 (*1 *2 *2 *3) (-12 (-5 *3 (-506)) (-4 *4 (-1094)) (-5 *1 (-925 *4 *2)) (-4 *2 (-430 *4)))))
-(-10 -7 (-15 -1444 (|#2| |#2| (-506))) (-15 -2959 (|#2| |#2|)) (-15 -3538 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)))
-((-3538 (((-316 (-564)) (-1170)) 16)) (-3992 (((-316 (-564)) (-1170)) 14)) (-2959 (((-316 (-564)) (-1170)) 12)) (-1444 (((-316 (-564)) (-1170) (-506)) 19)))
-(((-926) (-10 -7 (-15 -1444 ((-316 (-564)) (-1170) (-506))) (-15 -2959 ((-316 (-564)) (-1170))) (-15 -3538 ((-316 (-564)) (-1170))) (-15 -3992 ((-316 (-564)) (-1170))))) (T -926))
-((-3992 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-506)) (-5 *2 (-316 (-564))) (-5 *1 (-926)))))
-(-10 -7 (-15 -1444 ((-316 (-564)) (-1170) (-506))) (-15 -2959 ((-316 (-564)) (-1170))) (-15 -3538 ((-316 (-564)) (-1170))) (-15 -3992 ((-316 (-564)) (-1170))))
-((-1513 (((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)) 25)) (-3872 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -3872 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1513 ((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)))) (-1094) (-882 |#1|) (-13 (-1094) (-1034 |#2|))) (T -927))
-((-1513 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-4 *6 (-13 (-1094) (-1034 *3))) (-4 *3 (-882 *5)) (-5 *1 (-927 *5 *3 *6)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1034 *5))) (-4 *5 (-882 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-927 *4 *5 *6)))))
-(-10 -7 (-15 -3872 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1513 ((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|))))
-((-1513 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 30)))
-(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -1513 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-1094) (-13 (-556) (-882 |#1|)) (-13 (-430 |#2|) (-612 (-888 |#1|)) (-882 |#1|) (-1034 (-610 $)))) (T -928))
-((-1513 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-430 *6) (-612 *4) (-882 *5) (-1034 (-610 $)))) (-5 *4 (-888 *5)) (-4 *6 (-13 (-556) (-882 *5))) (-5 *1 (-928 *5 *6 *3)))))
-(-10 -7 (-15 -1513 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))
-((-1513 (((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|)) 13)))
-(((-929 |#1|) (-10 -7 (-15 -1513 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|)))) (-545)) (T -929))
-((-1513 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 (-564) *3)) (-5 *4 (-888 (-564))) (-4 *3 (-545)) (-5 *1 (-929 *3)))))
-(-10 -7 (-15 -1513 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))))
-((-1513 (((-885 |#1| |#2|) (-610 |#2|) (-888 |#1|) (-885 |#1| |#2|)) 57)))
-(((-930 |#1| |#2|) (-10 -7 (-15 -1513 ((-885 |#1| |#2|) (-610 |#2|) (-888 |#1|) (-885 |#1| |#2|)))) (-1094) (-13 (-1094) (-1034 (-610 $)) (-612 (-888 |#1|)) (-882 |#1|))) (T -930))
-((-1513 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094)) (-4 *6 (-13 (-1094) (-1034 (-610 $)) (-612 *4) (-882 *5))) (-5 *4 (-888 *5)) (-5 *1 (-930 *5 *6)))))
-(-10 -7 (-15 -1513 ((-885 |#1| |#2|) (-610 |#2|) (-888 |#1|) (-885 |#1| |#2|))))
-((-1513 (((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)) 17)))
-(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -1513 ((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)))) (-1094) (-882 |#1|) (-662 |#2|)) (T -931))
-((-1513 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-4 *6 (-882 *5)) (-4 *3 (-662 *6)) (-5 *1 (-931 *5 *6 *3)))))
-(-10 -7 (-15 -1513 ((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|))))
-((-1513 (((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|)) 17 (|has| |#3| (-882 |#1|))) (((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|))) 16)))
-(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1513 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -1513 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|))) |%noBranch|)) (-1094) (-789) (-846) (-13 (-1045) (-882 |#1|)) (-13 (-945 |#4| |#2| |#3|) (-612 (-888 |#1|)))) (T -932))
-((-1513 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-945 *8 *6 *7) (-612 *4))) (-5 *4 (-888 *5)) (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-13 (-1045) (-882 *5))) (-5 *1 (-932 *5 *6 *7 *8 *3)))) (-1513 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-885 *6 *3) *8 (-888 *6) (-885 *6 *3))) (-4 *8 (-846)) (-5 *2 (-885 *6 *3)) (-5 *4 (-888 *6)) (-4 *6 (-1094)) (-4 *3 (-13 (-945 *9 *7 *8) (-612 *4))) (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-882 *6))) (-5 *1 (-932 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -1513 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -1513 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|))) |%noBranch|))
-((-2823 ((|#2| |#2| (-641 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -2823 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2823 (|#2| |#2| (-641 (-1 (-112) |#3|))))) (-1094) (-430 |#1|) (-1209)) (T -933))
-((-2823 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-1094)) (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) (-2823 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-1094)) (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))))
-(-10 -7 (-15 -2823 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2823 (|#2| |#2| (-641 (-1 (-112) |#3|)))))
-((-2823 (((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))) 18) (((-316 (-564)) (-1170) (-1 (-112) |#1|)) 15)))
-(((-934 |#1|) (-10 -7 (-15 -2823 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -2823 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))))) (-1209)) (T -934))
-((-2823 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-934 *5)))) (-2823 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-934 *5)))))
-(-10 -7 (-15 -2823 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -2823 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|)))))
-((-1513 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 25)))
-(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -1513 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-1094) (-13 (-556) (-882 |#1|) (-612 (-888 |#1|))) (-988 |#2|)) (T -935))
-((-1513 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-988 *6)) (-4 *6 (-13 (-556) (-882 *5) (-612 *4))) (-5 *4 (-888 *5)) (-5 *1 (-935 *5 *6 *3)))))
-(-10 -7 (-15 -1513 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))
-((-1513 (((-885 |#1| (-1170)) (-1170) (-888 |#1|) (-885 |#1| (-1170))) 18)))
-(((-936 |#1|) (-10 -7 (-15 -1513 ((-885 |#1| (-1170)) (-1170) (-888 |#1|) (-885 |#1| (-1170))))) (-1094)) (T -936))
-((-1513 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-5 *1 (-936 *5)))))
-(-10 -7 (-15 -1513 ((-885 |#1| (-1170)) (-1170) (-888 |#1|) (-885 |#1| (-1170)))))
-((-2041 (((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) 34)) (-1513 (((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-1 |#3| (-641 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) 33)))
-(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -1513 ((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-1 |#3| (-641 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-15 -2041 ((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))) (-1094) (-1045) (-13 (-1045) (-612 (-888 |#1|)) (-1034 |#2|))) (T -937))
-((-2041 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-888 *6))) (-5 *5 (-1 (-885 *6 *8) *8 (-888 *6) (-885 *6 *8))) (-4 *6 (-1094)) (-4 *8 (-13 (-1045) (-612 (-888 *6)) (-1034 *7))) (-5 *2 (-885 *6 *8)) (-4 *7 (-1045)) (-5 *1 (-937 *6 *7 *8)))) (-1513 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-641 (-888 *7))) (-5 *5 (-1 *9 (-641 *9))) (-5 *6 (-1 (-885 *7 *9) *9 (-888 *7) (-885 *7 *9))) (-4 *7 (-1094)) (-4 *9 (-13 (-1045) (-612 (-888 *7)) (-1034 *8))) (-5 *2 (-885 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-1045)) (-5 *1 (-937 *7 *8 *9)))))
-(-10 -7 (-15 -1513 ((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-1 |#3| (-641 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-15 -2041 ((-885 |#1| |#3|) (-641 |#3|) (-641 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))))
-((-2557 (((-1166 (-407 (-564))) (-564)) 81)) (-1607 (((-1166 (-564)) (-564)) 84)) (-1702 (((-1166 (-564)) (-564)) 78)) (-2532 (((-564) (-1166 (-564))) 74)) (-1854 (((-1166 (-407 (-564))) (-564)) 65)) (-2900 (((-1166 (-564)) (-564)) 49)) (-3762 (((-1166 (-564)) (-564)) 86)) (-3665 (((-1166 (-564)) (-564)) 85)) (-1581 (((-1166 (-407 (-564))) (-564)) 67)))
-(((-938) (-10 -7 (-15 -1581 ((-1166 (-407 (-564))) (-564))) (-15 -3665 ((-1166 (-564)) (-564))) (-15 -3762 ((-1166 (-564)) (-564))) (-15 -2900 ((-1166 (-564)) (-564))) (-15 -1854 ((-1166 (-407 (-564))) (-564))) (-15 -2532 ((-564) (-1166 (-564)))) (-15 -1702 ((-1166 (-564)) (-564))) (-15 -1607 ((-1166 (-564)) (-564))) (-15 -2557 ((-1166 (-407 (-564))) (-564))))) (T -938))
-((-2557 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564)))) (-1607 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) (-1702 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-938)))) (-1854 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564)))) (-2900 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) (-3762 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) (-3665 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))) (-1581 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564)))))
-(-10 -7 (-15 -1581 ((-1166 (-407 (-564))) (-564))) (-15 -3665 ((-1166 (-564)) (-564))) (-15 -3762 ((-1166 (-564)) (-564))) (-15 -2900 ((-1166 (-564)) (-564))) (-15 -1854 ((-1166 (-407 (-564))) (-564))) (-15 -2532 ((-564) (-1166 (-564)))) (-15 -1702 ((-1166 (-564)) (-564))) (-15 -1607 ((-1166 (-564)) (-564))) (-15 -2557 ((-1166 (-407 (-564))) (-564))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4122 (($ (-767)) NIL (|has| |#1| (-23)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) NIL)) (-3998 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-2770 (($ (-641 |#1|)) 9)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1712 (((-685 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-4238 (($ (-767) |#1|) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3224 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3619 (((-112) $ (-767)) NIL)) (-2581 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2658 ((|#1| $) NIL (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-4016 (($ $ (-641 |#1|)) 25)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 18) (($ $ (-1226 (-564))) NIL)) (-3270 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-4327 (((-917) $) 13)) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3015 (($ $ $) 23)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 14)) (-2435 (($ (-641 |#1|)) NIL)) (-3696 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-641 $)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3082 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3070 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-2181 (((-767) $) 11 (|has| $ (-6 -4407)))))
-(((-939 |#1|) (-976 |#1|) (-1045)) (T -939))
-NIL
-(-976 |#1|)
-((-4343 (((-481 |#1| |#2|) (-948 |#2|)) 22)) (-3749 (((-247 |#1| |#2|) (-948 |#2|)) 35)) (-3275 (((-948 |#2|) (-481 |#1| |#2|)) 27)) (-1564 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 57)) (-2927 (((-948 |#2|) (-247 |#1| |#2|)) 32)) (-4195 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 48)))
-(((-940 |#1| |#2|) (-10 -7 (-15 -4195 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1564 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -4343 ((-481 |#1| |#2|) (-948 |#2|))) (-15 -3275 ((-948 |#2|) (-481 |#1| |#2|))) (-15 -2927 ((-948 |#2|) (-247 |#1| |#2|))) (-15 -3749 ((-247 |#1| |#2|) (-948 |#2|)))) (-641 (-1170)) (-1045)) (T -940))
-((-3749 (*1 *2 *3) (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-641 (-1170))))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-641 (-1170))))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)))))
-(-10 -7 (-15 -4195 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1564 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -4343 ((-481 |#1| |#2|) (-948 |#2|))) (-15 -3275 ((-948 |#2|) (-481 |#1| |#2|))) (-15 -2927 ((-948 |#2|) (-247 |#1| |#2|))) (-15 -3749 ((-247 |#1| |#2|) (-948 |#2|))))
-((-2275 (((-641 |#2|) |#2| |#2|) 10)) (-2972 (((-767) (-641 |#1|)) 49 (|has| |#1| (-844)))) (-2264 (((-641 |#2|) |#2|) 11)) (-3751 (((-767) (-641 |#1|) (-564) (-564)) 53 (|has| |#1| (-844)))) (-1805 ((|#1| |#2|) 40 (|has| |#1| (-844)))))
-(((-941 |#1| |#2|) (-10 -7 (-15 -2275 ((-641 |#2|) |#2| |#2|)) (-15 -2264 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -1805 (|#1| |#2|)) (-15 -2972 ((-767) (-641 |#1|))) (-15 -3751 ((-767) (-641 |#1|) (-564) (-564)))) |%noBranch|)) (-363) (-1235 |#1|)) (T -941))
-((-3751 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-844)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1235 *5)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1235 *4)))) (-1805 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3)) (-4 *3 (-1235 *2)))) (-2264 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1235 *4)))) (-2275 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -2275 ((-641 |#2|) |#2| |#2|)) (-15 -2264 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -1805 (|#1| |#2|)) (-15 -2972 ((-767) (-641 |#1|))) (-15 -3751 ((-767) (-641 |#1|) (-564) (-564)))) |%noBranch|))
-((-4357 (((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)) 19)))
-(((-942 |#1| |#2|) (-10 -7 (-15 -4357 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)))) (-1045) (-1045)) (T -942))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-948 *6)) (-5 *1 (-942 *5 *6)))))
-(-10 -7 (-15 -4357 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|))))
-((-3660 (((-1232 |#1| (-948 |#2|)) (-948 |#2|) (-1255 |#1|)) 18)))
-(((-943 |#1| |#2|) (-10 -7 (-15 -3660 ((-1232 |#1| (-948 |#2|)) (-948 |#2|) (-1255 |#1|)))) (-1170) (-1045)) (T -943))
-((-3660 (*1 *2 *3 *4) (-12 (-5 *4 (-1255 *5)) (-14 *5 (-1170)) (-4 *6 (-1045)) (-5 *2 (-1232 *5 (-948 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-948 *6)))))
-(-10 -7 (-15 -3660 ((-1232 |#1| (-948 |#2|)) (-948 |#2|) (-1255 |#1|))))
-((-1737 (((-767) $) 88) (((-767) $ (-641 |#4|)) 93)) (-2683 (($ $) 205)) (-2753 (((-418 $) $) 197)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 141)) (-4284 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-3120 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) 73)) (-2746 (($ $ $ |#4|) 95)) (-4277 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 131) (((-685 |#2|) (-685 $)) 121)) (-2571 (($ $) 212) (($ $ |#4|) 215)) (-3993 (((-641 $) $) 77)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 231) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 224)) (-2210 (((-641 $) $) 34)) (-3810 (($ |#2| |#3|) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-641 |#4|) (-641 (-767))) 71)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ |#4|) 194)) (-1958 (((-3 (-641 $) "failed") $) 52)) (-1301 (((-3 (-641 $) "failed") $) 39)) (-3401 (((-3 (-2 (|:| |var| |#4|) (|:| -1838 (-767))) "failed") $) 57)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 134)) (-2037 (((-418 (-1166 $)) (-1166 $)) 147)) (-1348 (((-418 (-1166 $)) (-1166 $)) 145)) (-3688 (((-418 $) $) 165)) (-3291 (($ $ (-641 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL)) (-1330 (($ $ |#4|) 97)) (-1311 (((-888 (-379)) $) 245) (((-888 (-564)) $) 238) (((-536) $) 253)) (-4090 ((|#2| $) NIL) (($ $ |#4|) 207)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 184)) (-2007 ((|#2| $ |#3|) NIL) (($ $ |#4| (-767)) 62) (($ $ (-641 |#4|) (-641 (-767))) 69)) (-2420 (((-3 $ "failed") $) 186)) (-1860 (((-112) $ $) 218)))
-(((-944 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2805 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2753 ((-418 |#1|) |#1|)) (-15 -2683 (|#1| |#1|)) (-15 -2420 ((-3 |#1| "failed") |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -1513 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -1513 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -1348 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2037 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4192 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -3895 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2571 (|#1| |#1| |#4|)) (-15 -4090 (|#1| |#1| |#4|)) (-15 -1330 (|#1| |#1| |#4|)) (-15 -2746 (|#1| |#1| |#1| |#4|)) (-15 -3993 ((-641 |#1|) |#1|)) (-15 -1737 ((-767) |#1| (-641 |#4|))) (-15 -1737 ((-767) |#1|)) (-15 -3401 ((-3 (-2 (|:| |var| |#4|) (|:| -1838 (-767))) "failed") |#1|)) (-15 -1958 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -1301 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3810 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -3810 (|#1| |#1| |#4| (-767))) (-15 -1384 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1| |#4|)) (-15 -2210 ((-641 |#1|) |#1|)) (-15 -2007 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -2007 (|#1| |#1| |#4| (-767))) (-15 -4277 ((-685 |#2|) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -4284 ((-3 |#4| "failed") |#1|)) (-15 -3120 (|#4| |#1|)) (-15 -3291 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#4| |#1|)) (-15 -3291 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -3291 (|#1| |#1| |#4| |#2|)) (-15 -3291 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| (-294 |#1|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3810 (|#1| |#2| |#3|)) (-15 -2007 (|#2| |#1| |#3|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -4090 (|#2| |#1|)) (-15 -2571 (|#1| |#1|)) (-15 -1860 ((-112) |#1| |#1|))) (-945 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -944))
-NIL
-(-10 -8 (-15 -2805 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2753 ((-418 |#1|) |#1|)) (-15 -2683 (|#1| |#1|)) (-15 -2420 ((-3 |#1| "failed") |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -1513 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -1513 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -1348 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2037 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4192 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -3895 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2571 (|#1| |#1| |#4|)) (-15 -4090 (|#1| |#1| |#4|)) (-15 -1330 (|#1| |#1| |#4|)) (-15 -2746 (|#1| |#1| |#1| |#4|)) (-15 -3993 ((-641 |#1|) |#1|)) (-15 -1737 ((-767) |#1| (-641 |#4|))) (-15 -1737 ((-767) |#1|)) (-15 -3401 ((-3 (-2 (|:| |var| |#4|) (|:| -1838 (-767))) "failed") |#1|)) (-15 -1958 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -1301 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3810 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -3810 (|#1| |#1| |#4| (-767))) (-15 -1384 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1| |#4|)) (-15 -2210 ((-641 |#1|) |#1|)) (-15 -2007 (|#1| |#1| (-641 |#4|) (-641 (-767)))) (-15 -2007 (|#1| |#1| |#4| (-767))) (-15 -4277 ((-685 |#2|) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -4284 ((-3 |#4| "failed") |#1|)) (-15 -3120 (|#4| |#1|)) (-15 -3291 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#4| |#1|)) (-15 -3291 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -3291 (|#1| |#1| |#4| |#2|)) (-15 -3291 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| (-294 |#1|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3810 (|#1| |#2| |#3|)) (-15 -2007 (|#2| |#1| |#3|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -4090 (|#2| |#1|)) (-15 -2571 (|#1| |#1|)) (-15 -1860 ((-112) |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3836 (((-641 |#3|) $) 104)) (-3660 (((-1166 $) $ |#3|) 119) (((-1166 |#1|) $) 118)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 81 (|has| |#1| (-556)))) (-3063 (($ $) 82 (|has| |#1| (-556)))) (-3330 (((-112) $) 84 (|has| |#1| (-556)))) (-1737 (((-767) $) 106) (((-767) $ (-641 |#3|)) 105)) (-4012 (((-3 $ "failed") $ $) 20)) (-4199 (((-418 (-1166 $)) (-1166 $)) 94 (|has| |#1| (-905)))) (-2683 (($ $) 92 (|has| |#1| (-452)))) (-2753 (((-418 $) $) 91 (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 97 (|has| |#1| (-905)))) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#1| "failed") $) 158) (((-3 (-407 (-564)) "failed") $) 155 (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) 153 (|has| |#1| (-1034 (-564)))) (((-3 |#3| "failed") $) 130)) (-3120 ((|#1| $) 157) (((-407 (-564)) $) 156 (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) 154 (|has| |#1| (-1034 (-564)))) ((|#3| $) 131)) (-2746 (($ $ $ |#3|) 102 (|has| |#1| (-172)))) (-1684 (($ $) 148)) (-4277 (((-685 (-564)) (-685 $)) 128 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 127 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 126) (((-685 |#1|) (-685 $)) 125)) (-3293 (((-3 $ "failed") $) 34)) (-2571 (($ $) 170 (|has| |#1| (-452))) (($ $ |#3|) 99 (|has| |#1| (-452)))) (-3993 (((-641 $) $) 103)) (-1339 (((-112) $) 90 (|has| |#1| (-905)))) (-3850 (($ $ |#1| |#2| $) 166)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 78 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 77 (-12 (|has| |#3| (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-4112 (((-112) $) 32)) (-2497 (((-767) $) 163)) (-3824 (($ (-1166 |#1|) |#3|) 111) (($ (-1166 $) |#3|) 110)) (-2210 (((-641 $) $) 120)) (-4003 (((-112) $) 146)) (-3810 (($ |#1| |#2|) 147) (($ $ |#3| (-767)) 113) (($ $ (-641 |#3|) (-641 (-767))) 112)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ |#3|) 114)) (-2043 ((|#2| $) 164) (((-767) $ |#3|) 116) (((-641 (-767)) $ (-641 |#3|)) 115)) (-1948 (($ (-1 |#2| |#2|) $) 165)) (-4357 (($ (-1 |#1| |#1|) $) 145)) (-3025 (((-3 |#3| "failed") $) 117)) (-3971 (($ $) 143)) (-3982 ((|#1| $) 142)) (-2084 (($ (-641 $)) 88 (|has| |#1| (-452))) (($ $ $) 87 (|has| |#1| (-452)))) (-2766 (((-1152) $) 10)) (-1958 (((-3 (-641 $) "failed") $) 108)) (-1301 (((-3 (-641 $) "failed") $) 109)) (-3401 (((-3 (-2 (|:| |var| |#3|) (|:| -1838 (-767))) "failed") $) 107)) (-4052 (((-1114) $) 11)) (-3944 (((-112) $) 160)) (-3954 ((|#1| $) 161)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 89 (|has| |#1| (-452)))) (-2123 (($ (-641 $)) 86 (|has| |#1| (-452))) (($ $ $) 85 (|has| |#1| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) 96 (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) 95 (|has| |#1| (-905)))) (-3688 (((-418 $) $) 93 (|has| |#1| (-905)))) (-2998 (((-3 $ "failed") $ |#1|) 168 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 80 (|has| |#1| (-556)))) (-3291 (($ $ (-641 (-294 $))) 139) (($ $ (-294 $)) 138) (($ $ $ $) 137) (($ $ (-641 $) (-641 $)) 136) (($ $ |#3| |#1|) 135) (($ $ (-641 |#3|) (-641 |#1|)) 134) (($ $ |#3| $) 133) (($ $ (-641 |#3|) (-641 $)) 132)) (-1330 (($ $ |#3|) 101 (|has| |#1| (-172)))) (-3254 (($ $ |#3|) 43) (($ $ (-641 |#3|)) 42) (($ $ |#3| (-767)) 41) (($ $ (-641 |#3|) (-641 (-767))) 40)) (-1568 ((|#2| $) 144) (((-767) $ |#3|) 124) (((-641 (-767)) $ (-641 |#3|)) 123)) (-1311 (((-888 (-379)) $) 76 (-12 (|has| |#3| (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) 75 (-12 (|has| |#3| (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) 74 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4090 ((|#1| $) 169 (|has| |#1| (-452))) (($ $ |#3|) 100 (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 98 (-2358 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 159) (($ |#3|) 129) (($ $) 79 (|has| |#1| (-556))) (($ (-407 (-564))) 72 (-2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-3191 (((-641 |#1|) $) 162)) (-2007 ((|#1| $ |#2|) 149) (($ $ |#3| (-767)) 122) (($ $ (-641 |#3|) (-641 (-767))) 121)) (-2420 (((-3 $ "failed") $) 73 (-2807 (-2358 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) 29 T CONST)) (-3242 (($ $ $ (-767)) 167 (|has| |#1| (-172)))) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 83 (|has| |#1| (-556)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ |#3|) 39) (($ $ (-641 |#3|)) 38) (($ $ |#3| (-767)) 37) (($ $ (-641 |#3|) (-641 (-767))) 36)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 150 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 152 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 151 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 141) (($ $ |#1|) 140)))
-(((-945 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -945))
-((-2571 (*1 *1 *1) (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-1568 (*1 *2 *1 *3) (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-1568 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-767))))) (-2007 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-2007 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-767))) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-2210 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5)))) (-3660 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1166 *1)) (-4 *1 (-945 *4 *5 *3)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1166 *3)))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2043 (*1 *2 *1 *3) (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-2043 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-767))))) (-1384 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-945 *4 *5 *3)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-767))) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-3824 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1045)) (-4 *1 (-945 *4 *5 *3)) (-4 *5 (-789)) (-4 *3 (-846)))) (-3824 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)))) (-1301 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5)))) (-1958 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -1838 (-767)))))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-1737 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *5)))) (-3993 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5)))) (-2746 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1330 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-4090 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-2571 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-2683 (*1 *1 *1) (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2753 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-418 *1)) (-4 *1 (-945 *3 *4 *5)))))
-(-13 (-896 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1034 |t#3|) (-377 |t#1|) (-10 -8 (-15 -1568 ((-767) $ |t#3|)) (-15 -1568 ((-641 (-767)) $ (-641 |t#3|))) (-15 -2007 ($ $ |t#3| (-767))) (-15 -2007 ($ $ (-641 |t#3|) (-641 (-767)))) (-15 -2210 ((-641 $) $)) (-15 -3660 ((-1166 $) $ |t#3|)) (-15 -3660 ((-1166 |t#1|) $)) (-15 -3025 ((-3 |t#3| "failed") $)) (-15 -2043 ((-767) $ |t#3|)) (-15 -2043 ((-641 (-767)) $ (-641 |t#3|))) (-15 -1384 ((-2 (|:| -3979 $) (|:| -4071 $)) $ $ |t#3|)) (-15 -3810 ($ $ |t#3| (-767))) (-15 -3810 ($ $ (-641 |t#3|) (-641 (-767)))) (-15 -3824 ($ (-1166 |t#1|) |t#3|)) (-15 -3824 ($ (-1166 $) |t#3|)) (-15 -1301 ((-3 (-641 $) "failed") $)) (-15 -1958 ((-3 (-641 $) "failed") $)) (-15 -3401 ((-3 (-2 (|:| |var| |t#3|) (|:| -1838 (-767))) "failed") $)) (-15 -1737 ((-767) $)) (-15 -1737 ((-767) $ (-641 |t#3|))) (-15 -3836 ((-641 |t#3|) $)) (-15 -3993 ((-641 $) $)) (IF (|has| |t#1| (-612 (-536))) (IF (|has| |t#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-888 (-564)))) (IF (|has| |t#3| (-612 (-888 (-564)))) (-6 (-612 (-888 (-564)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-888 (-379)))) (IF (|has| |t#3| (-612 (-888 (-379)))) (-6 (-612 (-888 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-564))) (IF (|has| |t#3| (-882 (-564))) (-6 (-882 (-564))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-379))) (IF (|has| |t#3| (-882 (-379))) (-6 (-882 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2746 ($ $ $ |t#3|)) (-15 -1330 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -4090 ($ $ |t#3|)) (-15 -2571 ($ $)) (-15 -2571 ($ $ |t#3|)) (-15 -2753 ((-418 $) $)) (-15 -2683 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |t#1| (-905)) (-6 (-905)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#3| (-612 (-888 (-379))))) ((-612 (-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#3| (-612 (-888 (-564))))) ((-290) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2807 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-722) . T) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#3| (-882 (-564)))) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-905)))
-((-3836 (((-641 |#2|) |#5|) 40)) (-3660 (((-1166 |#5|) |#5| |#2| (-1166 |#5|)) 23) (((-407 (-1166 |#5|)) |#5| |#2|) 16)) (-3824 ((|#5| (-407 (-1166 |#5|)) |#2|) 30)) (-3025 (((-3 |#2| "failed") |#5|) 71)) (-1958 (((-3 (-641 |#5|) "failed") |#5|) 65)) (-4193 (((-3 (-2 (|:| |val| |#5|) (|:| -1838 (-564))) "failed") |#5|) 53)) (-1301 (((-3 (-641 |#5|) "failed") |#5|) 67)) (-3401 (((-3 (-2 (|:| |var| |#2|) (|:| -1838 (-564))) "failed") |#5|) 57)))
-(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3836 ((-641 |#2|) |#5|)) (-15 -3025 ((-3 |#2| "failed") |#5|)) (-15 -3660 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -3824 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -3660 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -1301 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -1958 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -3401 ((-3 (-2 (|:| |var| |#2|) (|:| -1838 (-564))) "failed") |#5|)) (-15 -4193 ((-3 (-2 (|:| |val| |#5|) (|:| -1838 (-564))) "failed") |#5|))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2423 ($ |#4|)) (-15 -2323 (|#4| $)) (-15 -2336 (|#4| $))))) (T -946))
-((-4193 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1838 (-564)))) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))))) (-3401 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1838 (-564)))) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))))) (-1958 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))))) (-1301 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))))) (-3660 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))) (-4 *7 (-945 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-5 *1 (-946 *5 *4 *6 *7 *3)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 *2))) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *2 (-13 (-363) (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))) (-5 *1 (-946 *5 *4 *6 *7 *2)) (-4 *7 (-945 *6 *5 *4)))) (-3660 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-407 (-1166 *3))) (-5 *1 (-946 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))))) (-3025 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-945 *5 *4 *2)) (-4 *2 (-846)) (-5 *1 (-946 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2423 ($ *6)) (-15 -2323 (*6 $)) (-15 -2336 (*6 $))))))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *5)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))))))
-(-10 -7 (-15 -3836 ((-641 |#2|) |#5|)) (-15 -3025 ((-3 |#2| "failed") |#5|)) (-15 -3660 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -3824 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -3660 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -1301 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -1958 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -3401 ((-3 (-2 (|:| |var| |#2|) (|:| -1838 (-564))) "failed") |#5|)) (-15 -4193 ((-3 (-2 (|:| |val| |#5|) (|:| -1838 (-564))) "failed") |#5|)))
-((-4357 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4357 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3070 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (T -947))
-((-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *6 (-789)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -3070 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (-5 *1 (-947 *6 *7 *8 *5 *2)) (-4 *5 (-945 *8 *6 *7)))))
-(-10 -7 (-15 -4357 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-1170)) $) 16)) (-3660 (((-1166 $) $ (-1170)) 21) (((-1166 |#1|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-1170))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2683 (($ $) NIL (|has| |#1| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-1170) "failed") $) NIL)) (-3120 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-1170) $) NIL)) (-2746 (($ $ $ (-1170)) NIL (|has| |#1| (-172)))) (-1684 (($ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#1| (-905)))) (-3850 (($ $ |#1| (-531 (-1170)) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1170) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1170) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-3824 (($ (-1166 |#1|) (-1170)) NIL) (($ (-1166 $) (-1170)) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-1170)) NIL)) (-2043 (((-531 (-1170)) $) NIL) (((-767) $ (-1170)) NIL) (((-641 (-767)) $ (-641 (-1170))) NIL)) (-1948 (($ (-1 (-531 (-1170)) (-531 (-1170))) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3025 (((-3 (-1170) "failed") $) 19)) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2766 (((-1152) $) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-1170)) (|:| -1838 (-767))) "failed") $) NIL)) (-2070 (($ $ (-1170)) 29 (|has| |#1| (-38 (-407 (-564)))))) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 ((|#1| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1170) |#1|) NIL) (($ $ (-641 (-1170)) (-641 |#1|)) NIL) (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL)) (-1330 (($ $ (-1170)) NIL (|has| |#1| (-172)))) (-3254 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-1568 (((-531 (-1170)) $) NIL) (((-767) $ (-1170)) NIL) (((-641 (-767)) $ (-641 (-1170))) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-1170) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1170) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1170) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4090 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) 25) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1170)) 27) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-948 |#1|) (-13 (-945 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1170))) |%noBranch|))) (-1045)) (T -948))
-((-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-948 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)))))
-(-13 (-945 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1170))) |%noBranch|)))
-((-3295 (((-2 (|:| -1838 (-767)) (|:| -4376 |#5|) (|:| |radicand| |#5|)) |#3| (-767)) 49)) (-3363 (((-2 (|:| -1838 (-767)) (|:| -4376 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-767)) 44)) (-3410 (((-2 (|:| -1838 (-767)) (|:| -4376 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-767)) 65)) (-3764 (((-2 (|:| -1838 (-767)) (|:| -4376 |#5|) (|:| |radicand| |#5|)) |#5| (-767)) 74 (|has| |#3| (-452)))))
-(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3295 ((-2 (|:| -1838 (-767)) (|:| -4376 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -3363 ((-2 (|:| -1838 (-767)) (|:| -4376 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-767))) (IF (|has| |#3| (-452)) (-15 -3764 ((-2 (|:| -1838 (-767)) (|:| -4376 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -3410 ((-2 (|:| -1838 (-767)) (|:| -4376 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-767)))) (-789) (-846) (-556) (-945 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2423 ($ |#4|)) (-15 -2323 (|#4| $)) (-15 -2336 (|#4| $))))) (T -949))
-((-3410 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) (-4 *3 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -1838 (-767)) (|:| -4376 *3) (|:| |radicand| (-641 *3)))) (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -2423 ($ *3)) (-15 -2323 (*3 $)) (-15 -2336 (*3 $))))))) (-3764 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) (-4 *8 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -1838 (-767)) (|:| -4376 *3) (|:| |radicand| *3))) (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2423 ($ *8)) (-15 -2323 (*8 $)) (-15 -2336 (*8 $))))))) (-3363 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556)) (-4 *8 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -1838 (-767)) (|:| -4376 *9) (|:| |radicand| *9))) (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767)) (-4 *9 (-13 (-363) (-10 -8 (-15 -2423 ($ *8)) (-15 -2323 (*8 $)) (-15 -2336 (*8 $))))))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-556)) (-4 *7 (-945 *3 *5 *6)) (-5 *2 (-2 (|:| -1838 (-767)) (|:| -4376 *8) (|:| |radicand| *8))) (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))))))
-(-10 -7 (-15 -3295 ((-2 (|:| -1838 (-767)) (|:| -4376 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -3363 ((-2 (|:| -1838 (-767)) (|:| -4376 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-767))) (IF (|has| |#3| (-452)) (-15 -3764 ((-2 (|:| -1838 (-767)) (|:| -4376 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -3410 ((-2 (|:| -1838 (-767)) (|:| -4376 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-767))))
-((-3009 (((-112) $ $) NIL)) (-1405 (($ (-1114)) 8)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 15) (((-1114) $) 12)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 11)))
-(((-950) (-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -1405 ($ (-1114)))))) (T -950))
-((-1405 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-950)))))
-(-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -1405 ($ (-1114)))))
-((-2690 (((-1088 (-225)) $) 8)) (-2677 (((-1088 (-225)) $) 9)) (-2294 (((-641 (-641 (-939 (-225)))) $) 10)) (-2423 (((-858) $) 6)))
-(((-951) (-140)) (T -951))
-((-2294 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-641 (-641 (-939 (-225))))))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1088 (-225))))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1088 (-225))))))
-(-13 (-611 (-858)) (-10 -8 (-15 -2294 ((-641 (-641 (-939 (-225)))) $)) (-15 -2677 ((-1088 (-225)) $)) (-15 -2690 ((-1088 (-225)) $))))
-(((-611 (-858)) . T))
-((-3996 (((-3 (-685 |#1|) "failed") |#2| (-917)) 18)))
-(((-952 |#1| |#2|) (-10 -7 (-15 -3996 ((-3 (-685 |#1|) "failed") |#2| (-917)))) (-556) (-652 |#1|)) (T -952))
-((-3996 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-917)) (-4 *5 (-556)) (-5 *2 (-685 *5)) (-5 *1 (-952 *5 *3)) (-4 *3 (-652 *5)))))
-(-10 -7 (-15 -3996 ((-3 (-685 |#1|) "failed") |#2| (-917))))
-((-2903 (((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 16)) (-1316 ((|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 18)) (-4357 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 13)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -2903 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -1316 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -4357 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1209) (-1209)) (T -953))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-954 *6)) (-5 *1 (-953 *5 *6)))) (-1316 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-953 *5 *2)))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-954 *5)) (-5 *1 (-953 *6 *5)))))
-(-10 -7 (-15 -2903 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -1316 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -4357 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-564) |#1|) 19 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) 18 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 16)) (-3998 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-4238 (($ (-767) |#1|) 15)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) 11 (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2658 ((|#1| $) NIL (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) 20 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) 12)) (-4366 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 17) (($ $ (-1226 (-564))) NIL)) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) 21)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 14)) (-3696 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2181 (((-767) $) 8 (|has| $ (-6 -4407)))))
-(((-954 |#1|) (-19 |#1|) (-1209)) (T -954))
+((-1600 ((|#2| (-642 |#1|) (-642 |#1|)) 29)))
+(((-920 |#1| |#2|) (-10 -7 (-15 -1600 (|#2| (-642 |#1|) (-642 |#1|)))) (-363) (-1238 |#1|)) (T -920))
+((-1600 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-363)) (-4 *2 (-1238 *4)) (-5 *1 (-920 *4 *2)))))
+(-10 -7 (-15 -1600 (|#2| (-642 |#1|) (-642 |#1|))))
+((-3898 (((-1169 |#2|) (-642 |#2|) (-642 |#2|)) 17) (((-1235 |#1| |#2|) (-1235 |#1| |#2|) (-642 |#2|) (-642 |#2|)) 13)))
+(((-921 |#1| |#2|) (-10 -7 (-15 -3898 ((-1235 |#1| |#2|) (-1235 |#1| |#2|) (-642 |#2|) (-642 |#2|))) (-15 -3898 ((-1169 |#2|) (-642 |#2|) (-642 |#2|)))) (-1173) (-363)) (T -921))
+((-3898 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *5)) (-4 *5 (-363)) (-5 *2 (-1169 *5)) (-5 *1 (-921 *4 *5)) (-14 *4 (-1173)))) (-3898 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1235 *4 *5)) (-5 *3 (-642 *5)) (-14 *4 (-1173)) (-4 *5 (-363)) (-5 *1 (-921 *4 *5)))))
+(-10 -7 (-15 -3898 ((-1235 |#1| |#2|) (-1235 |#1| |#2|) (-642 |#2|) (-642 |#2|))) (-15 -3898 ((-1169 |#2|) (-642 |#2|) (-642 |#2|))))
+((-2638 (((-564) (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155)) 177)) (-3413 ((|#4| |#4|) 196)) (-3187 (((-642 (-407 (-950 |#1|))) (-642 (-1173))) 149)) (-3872 (((-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-642 (-642 |#4|)) (-769) (-769) (-564)) 88)) (-4128 (((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))) (-642 |#4|)) 69)) (-4215 (((-687 |#4|) (-687 |#4|) (-642 |#4|)) 65)) (-3730 (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155)) 189)) (-4011 (((-564) (-687 |#4|) (-919) (-1155)) 169) (((-564) (-687 |#4|) (-642 (-1173)) (-919) (-1155)) 168) (((-564) (-687 |#4|) (-642 |#4|) (-919) (-1155)) 167) (((-564) (-687 |#4|) (-1155)) 157) (((-564) (-687 |#4|) (-642 (-1173)) (-1155)) 156) (((-564) (-687 |#4|) (-642 |#4|) (-1155)) 155) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-919)) 154) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173)) (-919)) 153) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|) (-919)) 152) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|)) 151) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173))) 150) (((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|)) 146)) (-3492 ((|#4| (-950 |#1|)) 80)) (-2566 (((-112) (-642 |#4|) (-642 (-642 |#4|))) 193)) (-2868 (((-642 (-642 (-564))) (-564) (-564)) 162)) (-3852 (((-642 (-642 |#4|)) (-642 (-642 |#4|))) 107)) (-3665 (((-769) (-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|))))) 102)) (-1826 (((-769) (-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|))))) 101)) (-3762 (((-112) (-642 (-950 |#1|))) 19) (((-112) (-642 |#4|)) 15)) (-4067 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-642 |#4|)) (|:| |n0| (-642 |#4|))) (-642 |#4|) (-642 |#4|)) 84)) (-2689 (((-642 |#4|) |#4|) 57)) (-3656 (((-642 (-407 (-950 |#1|))) (-642 |#4|)) 145) (((-687 (-407 (-950 |#1|))) (-687 |#4|)) 66) (((-407 (-950 |#1|)) |#4|) 142)) (-1786 (((-2 (|:| |rgl| (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))))))) (|:| |rgsz| (-564))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-769) (-1155) (-564)) 113)) (-1556 (((-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))) (-687 |#4|) (-769)) 100)) (-1970 (((-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) (-687 |#4|) (-769)) 124)) (-1382 (((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| -1780 (-687 (-407 (-950 |#1|)))) (|:| |vec| (-642 (-407 (-950 |#1|)))) (|:| -2414 (-769)) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) 56)))
+(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|))) (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173)))) (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|))) (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|) (-919))) (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173)) (-919))) (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-919))) (-15 -4011 ((-564) (-687 |#4|) (-642 |#4|) (-1155))) (-15 -4011 ((-564) (-687 |#4|) (-642 (-1173)) (-1155))) (-15 -4011 ((-564) (-687 |#4|) (-1155))) (-15 -4011 ((-564) (-687 |#4|) (-642 |#4|) (-919) (-1155))) (-15 -4011 ((-564) (-687 |#4|) (-642 (-1173)) (-919) (-1155))) (-15 -4011 ((-564) (-687 |#4|) (-919) (-1155))) (-15 -2638 ((-564) (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155))) (-15 -3730 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155))) (-15 -1786 ((-2 (|:| |rgl| (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))))))) (|:| |rgsz| (-564))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-769) (-1155) (-564))) (-15 -3656 ((-407 (-950 |#1|)) |#4|)) (-15 -3656 ((-687 (-407 (-950 |#1|))) (-687 |#4|))) (-15 -3656 ((-642 (-407 (-950 |#1|))) (-642 |#4|))) (-15 -3187 ((-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -3492 (|#4| (-950 |#1|))) (-15 -4067 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-642 |#4|)) (|:| |n0| (-642 |#4|))) (-642 |#4|) (-642 |#4|))) (-15 -1556 ((-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))) (-687 |#4|) (-769))) (-15 -4128 ((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))) (-642 |#4|))) (-15 -1382 ((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| -1780 (-687 (-407 (-950 |#1|)))) (|:| |vec| (-642 (-407 (-950 |#1|)))) (|:| -2414 (-769)) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (-15 -2689 ((-642 |#4|) |#4|)) (-15 -1826 ((-769) (-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))))) (-15 -3665 ((-769) (-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))))) (-15 -3852 ((-642 (-642 |#4|)) (-642 (-642 |#4|)))) (-15 -2868 ((-642 (-642 (-564))) (-564) (-564))) (-15 -2566 ((-112) (-642 |#4|) (-642 (-642 |#4|)))) (-15 -1970 ((-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) (-687 |#4|) (-769))) (-15 -4215 ((-687 |#4|) (-687 |#4|) (-642 |#4|))) (-15 -3872 ((-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-642 (-642 |#4|)) (-769) (-769) (-564))) (-15 -3413 (|#4| |#4|)) (-15 -3762 ((-112) (-642 |#4|))) (-15 -3762 ((-112) (-642 (-950 |#1|))))) (-13 (-307) (-147)) (-13 (-848) (-612 (-1173))) (-791) (-947 |#1| |#3| |#2|)) (T -922))
+((-3762 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-112)) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-112)) (-5 *1 (-922 *4 *5 *6 *7)))) (-3413 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-848) (-612 (-1173)))) (-4 *5 (-791)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-947 *3 *5 *4)))) (-3872 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) (-5 *4 (-687 *12)) (-5 *5 (-642 (-407 (-950 *9)))) (-5 *6 (-642 (-642 *12))) (-5 *7 (-769)) (-5 *8 (-564)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-947 *9 *11 *10)) (-4 *10 (-13 (-848) (-612 (-1173)))) (-4 *11 (-791)) (-5 *2 (-2 (|:| |eqzro| (-642 *12)) (|:| |neqzro| (-642 *12)) (|:| |wcond| (-642 (-950 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *9)))) (|:| -4263 (-642 (-1262 (-407 (-950 *9))))))))) (-5 *1 (-922 *9 *10 *11 *12)))) (-4215 (*1 *2 *2 *3) (-12 (-5 *2 (-687 *7)) (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *1 (-922 *4 *5 *6 *7)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-5 *4 (-769)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-642 (-2 (|:| |det| *8) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (-5 *1 (-922 *5 *6 *7 *8)))) (-2566 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-642 *8))) (-5 *3 (-642 *8)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-112)) (-5 *1 (-922 *5 *6 *7 *8)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 (-642 (-564)))) (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-947 *4 *6 *5)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-642 (-642 *6))) (-4 *6 (-947 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-848) (-612 (-1173)))) (-4 *5 (-791)) (-5 *1 (-922 *3 *4 *5 *6)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| *7) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 *7))))) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-769)) (-5 *1 (-922 *4 *5 *6 *7)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| *7) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 *7))))) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-769)) (-5 *1 (-922 *4 *5 *6 *7)))) (-2689 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 *3)) (-5 *1 (-922 *4 *5 *6 *3)) (-4 *3 (-947 *4 *6 *5)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1780 (-687 (-407 (-950 *4)))) (|:| |vec| (-642 (-407 (-950 *4)))) (|:| -2414 (-769)) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) (|:| -4263 (-642 (-1262 (-407 (-950 *4))))))) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))) (-4128 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) (|:| -4263 (-642 (-1262 (-407 (-950 *4))))))) (-5 *3 (-642 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-947 *4 *6 *5)) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *1 (-922 *4 *5 *6 *7)))) (-1556 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| *8) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 *8))))) (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-769)))) (-4067 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-4 *7 (-947 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-642 *7)) (|:| |n0| (-642 *7)))) (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-947 *4 *6 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 (-407 (-950 *4)))) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 (-407 (-950 *4)))) (-5 *1 (-922 *4 *5 *6 *7)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-687 *7)) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-687 (-407 (-950 *4)))) (-5 *1 (-922 *4 *5 *6 *7)))) (-3656 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-407 (-950 *4))) (-5 *1 (-922 *4 *5 *6 *3)) (-4 *3 (-947 *4 *6 *5)))) (-1786 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-687 *11)) (-5 *4 (-642 (-407 (-950 *8)))) (-5 *5 (-769)) (-5 *6 (-1155)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-947 *8 *10 *9)) (-4 *9 (-13 (-848) (-612 (-1173)))) (-4 *10 (-791)) (-5 *2 (-2 (|:| |rgl| (-642 (-2 (|:| |eqzro| (-642 *11)) (|:| |neqzro| (-642 *11)) (|:| |wcond| (-642 (-950 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *8)))) (|:| -4263 (-642 (-1262 (-407 (-950 *8)))))))))) (|:| |rgsz| (-564)))) (-5 *1 (-922 *8 *9 *10 *11)) (-5 *7 (-564)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *7)) (|:| |neqzro| (-642 *7)) (|:| |wcond| (-642 (-950 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) (|:| -4263 (-642 (-1262 (-407 (-950 *4)))))))))) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))) (-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) (|:| |wcond| (-642 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) (|:| -4263 (-642 (-1262 (-407 (-950 *5)))))))))) (-5 *4 (-1155)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-947 *5 *7 *6)) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *5 *6 *7 *8)))) (-4011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *9)) (-5 *4 (-919)) (-5 *5 (-1155)) (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *6 *7 *8 *9)))) (-4011 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-687 *10)) (-5 *4 (-642 (-1173))) (-5 *5 (-919)) (-5 *6 (-1155)) (-4 *10 (-947 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-848) (-612 (-1173)))) (-4 *9 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *7 *8 *9 *10)))) (-4011 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-687 *10)) (-5 *4 (-642 *10)) (-5 *5 (-919)) (-5 *6 (-1155)) (-4 *10 (-947 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-848) (-612 (-1173)))) (-4 *9 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *7 *8 *9 *10)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-5 *4 (-1155)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *5 *6 *7 *8)))) (-4011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 (-1173))) (-5 *5 (-1155)) (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *6 *7 *8 *9)))) (-4011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 *9)) (-5 *5 (-1155)) (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *6 *7 *8 *9)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-5 *4 (-919)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) (|:| |wcond| (-642 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) (|:| -4263 (-642 (-1262 (-407 (-950 *5)))))))))) (-5 *1 (-922 *5 *6 *7 *8)))) (-4011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 (-1173))) (-5 *5 (-919)) (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *9)) (|:| |neqzro| (-642 *9)) (|:| |wcond| (-642 (-950 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *6)))) (|:| -4263 (-642 (-1262 (-407 (-950 *6)))))))))) (-5 *1 (-922 *6 *7 *8 *9)))) (-4011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687 *9)) (-5 *5 (-919)) (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *9)) (|:| |neqzro| (-642 *9)) (|:| |wcond| (-642 (-950 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *6)))) (|:| -4263 (-642 (-1262 (-407 (-950 *6)))))))))) (-5 *1 (-922 *6 *7 *8 *9)) (-5 *4 (-642 *9)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-687 *7)) (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *7)) (|:| |neqzro| (-642 *7)) (|:| |wcond| (-642 (-950 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *4)))) (|:| -4263 (-642 (-1262 (-407 (-950 *4)))))))))) (-5 *1 (-922 *4 *5 *6 *7)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-5 *4 (-642 (-1173))) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) (|:| |wcond| (-642 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) (|:| -4263 (-642 (-1262 (-407 (-950 *5)))))))))) (-5 *1 (-922 *5 *6 *7 *8)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-687 *8)) (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-642 (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8)) (|:| |wcond| (-642 (-950 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 *5)))) (|:| -4263 (-642 (-1262 (-407 (-950 *5)))))))))) (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-642 *8)))))
+(-10 -7 (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|))) (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173)))) (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|))) (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 |#4|) (-919))) (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-642 (-1173)) (-919))) (-15 -4011 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-687 |#4|) (-919))) (-15 -4011 ((-564) (-687 |#4|) (-642 |#4|) (-1155))) (-15 -4011 ((-564) (-687 |#4|) (-642 (-1173)) (-1155))) (-15 -4011 ((-564) (-687 |#4|) (-1155))) (-15 -4011 ((-564) (-687 |#4|) (-642 |#4|) (-919) (-1155))) (-15 -4011 ((-564) (-687 |#4|) (-642 (-1173)) (-919) (-1155))) (-15 -4011 ((-564) (-687 |#4|) (-919) (-1155))) (-15 -2638 ((-564) (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155))) (-15 -3730 ((-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|))))))))) (-1155))) (-15 -1786 ((-2 (|:| |rgl| (-642 (-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))))))) (|:| |rgsz| (-564))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-769) (-1155) (-564))) (-15 -3656 ((-407 (-950 |#1|)) |#4|)) (-15 -3656 ((-687 (-407 (-950 |#1|))) (-687 |#4|))) (-15 -3656 ((-642 (-407 (-950 |#1|))) (-642 |#4|))) (-15 -3187 ((-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -3492 (|#4| (-950 |#1|))) (-15 -4067 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-642 |#4|)) (|:| |n0| (-642 |#4|))) (-642 |#4|) (-642 |#4|))) (-15 -1556 ((-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))) (-687 |#4|) (-769))) (-15 -4128 ((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))) (-642 |#4|))) (-15 -1382 ((-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))) (-2 (|:| -1780 (-687 (-407 (-950 |#1|)))) (|:| |vec| (-642 (-407 (-950 |#1|)))) (|:| -2414 (-769)) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (-15 -2689 ((-642 |#4|) |#4|)) (-15 -1826 ((-769) (-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))))) (-15 -3665 ((-769) (-642 (-2 (|:| -2414 (-769)) (|:| |eqns| (-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))) (|:| |fgb| (-642 |#4|)))))) (-15 -3852 ((-642 (-642 |#4|)) (-642 (-642 |#4|)))) (-15 -2868 ((-642 (-642 (-564))) (-564) (-564))) (-15 -2566 ((-112) (-642 |#4|) (-642 (-642 |#4|)))) (-15 -1970 ((-642 (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564))))) (-687 |#4|) (-769))) (-15 -4215 ((-687 |#4|) (-687 |#4|) (-642 |#4|))) (-15 -3872 ((-2 (|:| |eqzro| (-642 |#4|)) (|:| |neqzro| (-642 |#4|)) (|:| |wcond| (-642 (-950 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1262 (-407 (-950 |#1|)))) (|:| -4263 (-642 (-1262 (-407 (-950 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))) (-687 |#4|) (-642 (-407 (-950 |#1|))) (-642 (-642 |#4|)) (-769) (-769) (-564))) (-15 -3413 (|#4| |#4|)) (-15 -3762 ((-112) (-642 |#4|))) (-15 -3762 ((-112) (-642 (-950 |#1|)))))
+((-2493 (((-925) |#1| (-1173)) 17) (((-925) |#1| (-1173) (-1091 (-225))) 21)) (-3030 (((-925) |#1| |#1| (-1173) (-1091 (-225))) 19) (((-925) |#1| (-1173) (-1091 (-225))) 15)))
+(((-923 |#1|) (-10 -7 (-15 -3030 ((-925) |#1| (-1173) (-1091 (-225)))) (-15 -3030 ((-925) |#1| |#1| (-1173) (-1091 (-225)))) (-15 -2493 ((-925) |#1| (-1173) (-1091 (-225)))) (-15 -2493 ((-925) |#1| (-1173)))) (-612 (-536))) (T -923))
+((-2493 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-5 *2 (-925)) (-5 *1 (-923 *3)) (-4 *3 (-612 (-536))))) (-2493 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925)) (-5 *1 (-923 *3)) (-4 *3 (-612 (-536))))) (-3030 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925)) (-5 *1 (-923 *3)) (-4 *3 (-612 (-536))))) (-3030 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925)) (-5 *1 (-923 *3)) (-4 *3 (-612 (-536))))))
+(-10 -7 (-15 -3030 ((-925) |#1| (-1173) (-1091 (-225)))) (-15 -3030 ((-925) |#1| |#1| (-1173) (-1091 (-225)))) (-15 -2493 ((-925) |#1| (-1173) (-1091 (-225)))) (-15 -2493 ((-925) |#1| (-1173))))
+((-3132 (($ $ (-1091 (-225)) (-1091 (-225)) (-1091 (-225))) 123)) (-2601 (((-1091 (-225)) $) 63)) (-2589 (((-1091 (-225)) $) 62)) (-2576 (((-1091 (-225)) $) 61)) (-1562 (((-642 (-642 (-225))) $) 68)) (-1358 (((-1091 (-225)) $) 64)) (-3245 (((-564) (-564)) 56)) (-3145 (((-564) (-564)) 52)) (-4154 (((-564) (-564)) 54)) (-3581 (((-112) (-112)) 58)) (-2834 (((-564)) 55)) (-1296 (($ $ (-1091 (-225))) 126) (($ $) 127)) (-3202 (($ (-1 (-941 (-225)) (-225)) (-1091 (-225))) 133) (($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225))) 134)) (-3030 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225))) 137) (($ $ (-1091 (-225))) 129)) (-2369 (((-564)) 59)) (-3621 (((-564)) 50)) (-1870 (((-564)) 53)) (-2550 (((-642 (-642 (-941 (-225)))) $) 153)) (-2591 (((-112) (-112)) 60)) (-2327 (((-860) $) 151)) (-3725 (((-112)) 57)))
+(((-924) (-13 (-972) (-10 -8 (-15 -3202 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)))) (-15 -3202 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3030 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3030 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3030 ($ $ (-1091 (-225)))) (-15 -3132 ($ $ (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -1296 ($ $ (-1091 (-225)))) (-15 -1296 ($ $)) (-15 -1358 ((-1091 (-225)) $)) (-15 -1562 ((-642 (-642 (-225))) $)) (-15 -3621 ((-564))) (-15 -3145 ((-564) (-564))) (-15 -1870 ((-564))) (-15 -4154 ((-564) (-564))) (-15 -2834 ((-564))) (-15 -3245 ((-564) (-564))) (-15 -3725 ((-112))) (-15 -3581 ((-112) (-112))) (-15 -2369 ((-564))) (-15 -2591 ((-112) (-112)))))) (T -924))
+((-3202 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-924)))) (-3202 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-924)))) (-3030 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-924)))) (-3030 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-924)))) (-3030 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) (-3132 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) (-1296 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) (-1296 (*1 *1 *1) (-5 *1 (-924))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-225)))) (-5 *1 (-924)))) (-3621 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3145 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-1870 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-4154 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2834 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3245 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3725 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-3581 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-2369 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
+(-13 (-972) (-10 -8 (-15 -3202 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)))) (-15 -3202 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3030 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3030 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3030 ($ $ (-1091 (-225)))) (-15 -3132 ($ $ (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -1296 ($ $ (-1091 (-225)))) (-15 -1296 ($ $)) (-15 -1358 ((-1091 (-225)) $)) (-15 -1562 ((-642 (-642 (-225))) $)) (-15 -3621 ((-564))) (-15 -3145 ((-564) (-564))) (-15 -1870 ((-564))) (-15 -4154 ((-564) (-564))) (-15 -2834 ((-564))) (-15 -3245 ((-564) (-564))) (-15 -3725 ((-112))) (-15 -3581 ((-112) (-112))) (-15 -2369 ((-564))) (-15 -2591 ((-112) (-112)))))
+((-3132 (($ $ (-1091 (-225))) 124) (($ $ (-1091 (-225)) (-1091 (-225))) 125)) (-2589 (((-1091 (-225)) $) 72)) (-2576 (((-1091 (-225)) $) 71)) (-1358 (((-1091 (-225)) $) 73)) (-2332 (((-564) (-564)) 65)) (-3837 (((-564) (-564)) 61)) (-2518 (((-564) (-564)) 63)) (-2249 (((-112) (-112)) 67)) (-3562 (((-564)) 64)) (-1296 (($ $ (-1091 (-225))) 128) (($ $) 129)) (-3202 (($ (-1 (-941 (-225)) (-225)) (-1091 (-225))) 143) (($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225))) 144)) (-2493 (($ (-1 (-225) (-225)) (-1091 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-3030 (($ (-1 (-225) (-225)) (-1091 (-225))) 139) (($ (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225))) 140) (($ (-642 (-1 (-225) (-225))) (-1091 (-225))) 148) (($ (-642 (-1 (-225) (-225))) (-1091 (-225)) (-1091 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225))) 142) (($ $ (-1091 (-225))) 130)) (-3593 (((-112) $) 68)) (-4241 (((-564)) 69)) (-3741 (((-564)) 59)) (-1446 (((-564)) 62)) (-2550 (((-642 (-642 (-941 (-225)))) $) 35)) (-4032 (((-112) (-112)) 70)) (-2327 (((-860) $) 169)) (-1485 (((-112)) 66)))
+(((-925) (-13 (-953) (-10 -8 (-15 -3030 ($ (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3030 ($ (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3030 ($ (-642 (-1 (-225) (-225))) (-1091 (-225)))) (-15 -3030 ($ (-642 (-1 (-225) (-225))) (-1091 (-225)) (-1091 (-225)))) (-15 -3030 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3030 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3202 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)))) (-15 -3202 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -2493 ($ (-1 (-225) (-225)) (-1091 (-225)))) (-15 -2493 ($ (-1 (-225) (-225)))) (-15 -3030 ($ $ (-1091 (-225)))) (-15 -3593 ((-112) $)) (-15 -3132 ($ $ (-1091 (-225)))) (-15 -3132 ($ $ (-1091 (-225)) (-1091 (-225)))) (-15 -1296 ($ $ (-1091 (-225)))) (-15 -1296 ($ $)) (-15 -1358 ((-1091 (-225)) $)) (-15 -3741 ((-564))) (-15 -3837 ((-564) (-564))) (-15 -1446 ((-564))) (-15 -2518 ((-564) (-564))) (-15 -3562 ((-564))) (-15 -2332 ((-564) (-564))) (-15 -1485 ((-112))) (-15 -2249 ((-112) (-112))) (-15 -4241 ((-564))) (-15 -4032 ((-112) (-112)))))) (T -925))
+((-3030 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3030 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3030 (*1 *1 *2 *3) (-12 (-5 *2 (-642 (-1 (-225) (-225)))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3030 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-642 (-1 (-225) (-225)))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3030 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3030 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3202 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-3202 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-2493 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225))) (-5 *1 (-925)))) (-2493 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-925)))) (-3030 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) (-3132 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) (-1296 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) (-1296 (*1 *1 *1) (-5 *1 (-925))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))) (-3741 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-1446 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-2518 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-3562 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-2332 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-1485 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925)))) (-4241 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))) (-4032 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925)))))
+(-13 (-953) (-10 -8 (-15 -3030 ($ (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3030 ($ (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3030 ($ (-642 (-1 (-225) (-225))) (-1091 (-225)))) (-15 -3030 ($ (-642 (-1 (-225) (-225))) (-1091 (-225)) (-1091 (-225)))) (-15 -3030 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)))) (-15 -3030 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -3202 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)))) (-15 -3202 ($ (-1 (-941 (-225)) (-225)) (-1091 (-225)) (-1091 (-225)) (-1091 (-225)))) (-15 -2493 ($ (-1 (-225) (-225)) (-1091 (-225)))) (-15 -2493 ($ (-1 (-225) (-225)))) (-15 -3030 ($ $ (-1091 (-225)))) (-15 -3593 ((-112) $)) (-15 -3132 ($ $ (-1091 (-225)))) (-15 -3132 ($ $ (-1091 (-225)) (-1091 (-225)))) (-15 -1296 ($ $ (-1091 (-225)))) (-15 -1296 ($ $)) (-15 -1358 ((-1091 (-225)) $)) (-15 -3741 ((-564))) (-15 -3837 ((-564) (-564))) (-15 -1446 ((-564))) (-15 -2518 ((-564) (-564))) (-15 -3562 ((-564))) (-15 -2332 ((-564) (-564))) (-15 -1485 ((-112))) (-15 -2249 ((-112) (-112))) (-15 -4241 ((-564))) (-15 -4032 ((-112) (-112)))))
+((-2840 (((-642 (-1091 (-225))) (-642 (-642 (-941 (-225))))) 34)))
+(((-926) (-10 -7 (-15 -2840 ((-642 (-1091 (-225))) (-642 (-642 (-941 (-225)))))))) (T -926))
+((-2840 (*1 *2 *3) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *2 (-642 (-1091 (-225)))) (-5 *1 (-926)))))
+(-10 -7 (-15 -2840 ((-642 (-1091 (-225))) (-642 (-642 (-941 (-225)))))))
+((-3486 ((|#2| |#2|) 28)) (-3973 ((|#2| |#2|) 29)) (-2858 ((|#2| |#2|) 27)) (-1461 ((|#2| |#2| (-506)) 26)))
+(((-927 |#1| |#2|) (-10 -7 (-15 -1461 (|#2| |#2| (-506))) (-15 -2858 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3973 (|#2| |#2|))) (-1097) (-430 |#1|)) (T -927))
+((-3973 (*1 *2 *2) (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3)))) (-2858 (*1 *2 *2) (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3)))) (-1461 (*1 *2 *2 *3) (-12 (-5 *3 (-506)) (-4 *4 (-1097)) (-5 *1 (-927 *4 *2)) (-4 *2 (-430 *4)))))
+(-10 -7 (-15 -1461 (|#2| |#2| (-506))) (-15 -2858 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)))
+((-3486 (((-316 (-564)) (-1173)) 16)) (-3973 (((-316 (-564)) (-1173)) 14)) (-2858 (((-316 (-564)) (-1173)) 12)) (-1461 (((-316 (-564)) (-1173) (-506)) 19)))
+(((-928) (-10 -7 (-15 -1461 ((-316 (-564)) (-1173) (-506))) (-15 -2858 ((-316 (-564)) (-1173))) (-15 -3486 ((-316 (-564)) (-1173))) (-15 -3973 ((-316 (-564)) (-1173))))) (T -928))
+((-3973 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-506)) (-5 *2 (-316 (-564))) (-5 *1 (-928)))))
+(-10 -7 (-15 -1461 ((-316 (-564)) (-1173) (-506))) (-15 -2858 ((-316 (-564)) (-1173))) (-15 -3486 ((-316 (-564)) (-1173))) (-15 -3973 ((-316 (-564)) (-1173))))
+((-2453 (((-887 |#1| |#3|) |#2| (-890 |#1|) (-887 |#1| |#3|)) 25)) (-2498 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -2498 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2453 ((-887 |#1| |#3|) |#2| (-890 |#1|) (-887 |#1| |#3|)))) (-1097) (-884 |#1|) (-13 (-1097) (-1036 |#2|))) (T -929))
+((-2453 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *6)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-4 *6 (-13 (-1097) (-1036 *3))) (-4 *3 (-884 *5)) (-5 *1 (-929 *5 *3 *6)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1097) (-1036 *5))) (-4 *5 (-884 *4)) (-4 *4 (-1097)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-929 *4 *5 *6)))))
+(-10 -7 (-15 -2498 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2453 ((-887 |#1| |#3|) |#2| (-890 |#1|) (-887 |#1| |#3|))))
+((-2453 (((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)) 30)))
+(((-930 |#1| |#2| |#3|) (-10 -7 (-15 -2453 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))) (-1097) (-13 (-556) (-884 |#1|)) (-13 (-430 |#2|) (-612 (-890 |#1|)) (-884 |#1|) (-1036 (-610 $)))) (T -930))
+((-2453 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097)) (-4 *3 (-13 (-430 *6) (-612 *4) (-884 *5) (-1036 (-610 $)))) (-5 *4 (-890 *5)) (-4 *6 (-13 (-556) (-884 *5))) (-5 *1 (-930 *5 *6 *3)))))
+(-10 -7 (-15 -2453 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))))
+((-2453 (((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|)) 13)))
+(((-931 |#1|) (-10 -7 (-15 -2453 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|)))) (-545)) (T -931))
+((-2453 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 (-564) *3)) (-5 *4 (-890 (-564))) (-4 *3 (-545)) (-5 *1 (-931 *3)))))
+(-10 -7 (-15 -2453 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))))
+((-2453 (((-887 |#1| |#2|) (-610 |#2|) (-890 |#1|) (-887 |#1| |#2|)) 57)))
+(((-932 |#1| |#2|) (-10 -7 (-15 -2453 ((-887 |#1| |#2|) (-610 |#2|) (-890 |#1|) (-887 |#1| |#2|)))) (-1097) (-13 (-1097) (-1036 (-610 $)) (-612 (-890 |#1|)) (-884 |#1|))) (T -932))
+((-2453 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1097)) (-4 *6 (-13 (-1097) (-1036 (-610 $)) (-612 *4) (-884 *5))) (-5 *4 (-890 *5)) (-5 *1 (-932 *5 *6)))))
+(-10 -7 (-15 -2453 ((-887 |#1| |#2|) (-610 |#2|) (-890 |#1|) (-887 |#1| |#2|))))
+((-2453 (((-883 |#1| |#2| |#3|) |#3| (-890 |#1|) (-883 |#1| |#2| |#3|)) 17)))
+(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -2453 ((-883 |#1| |#2| |#3|) |#3| (-890 |#1|) (-883 |#1| |#2| |#3|)))) (-1097) (-884 |#1|) (-664 |#2|)) (T -933))
+((-2453 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-883 *5 *6 *3)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-4 *6 (-884 *5)) (-4 *3 (-664 *6)) (-5 *1 (-933 *5 *6 *3)))))
+(-10 -7 (-15 -2453 ((-883 |#1| |#2| |#3|) |#3| (-890 |#1|) (-883 |#1| |#2| |#3|))))
+((-2453 (((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|)) 17 (|has| |#3| (-884 |#1|))) (((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|) (-1 (-887 |#1| |#5|) |#3| (-890 |#1|) (-887 |#1| |#5|))) 16)))
+(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2453 ((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|) (-1 (-887 |#1| |#5|) |#3| (-890 |#1|) (-887 |#1| |#5|)))) (IF (|has| |#3| (-884 |#1|)) (-15 -2453 ((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|))) |%noBranch|)) (-1097) (-791) (-848) (-13 (-1047) (-884 |#1|)) (-13 (-947 |#4| |#2| |#3|) (-612 (-890 |#1|)))) (T -934))
+((-2453 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097)) (-4 *3 (-13 (-947 *8 *6 *7) (-612 *4))) (-5 *4 (-890 *5)) (-4 *7 (-884 *5)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-13 (-1047) (-884 *5))) (-5 *1 (-934 *5 *6 *7 *8 *3)))) (-2453 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-887 *6 *3) *8 (-890 *6) (-887 *6 *3))) (-4 *8 (-848)) (-5 *2 (-887 *6 *3)) (-5 *4 (-890 *6)) (-4 *6 (-1097)) (-4 *3 (-13 (-947 *9 *7 *8) (-612 *4))) (-4 *7 (-791)) (-4 *9 (-13 (-1047) (-884 *6))) (-5 *1 (-934 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -2453 ((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|) (-1 (-887 |#1| |#5|) |#3| (-890 |#1|) (-887 |#1| |#5|)))) (IF (|has| |#3| (-884 |#1|)) (-15 -2453 ((-887 |#1| |#5|) |#5| (-890 |#1|) (-887 |#1| |#5|))) |%noBranch|))
+((-2722 ((|#2| |#2| (-642 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -2722 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2722 (|#2| |#2| (-642 (-1 (-112) |#3|))))) (-1097) (-430 |#1|) (-1212)) (T -935))
+((-2722 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-1 (-112) *5))) (-4 *5 (-1212)) (-4 *4 (-1097)) (-5 *1 (-935 *4 *2 *5)) (-4 *2 (-430 *4)))) (-2722 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1212)) (-4 *4 (-1097)) (-5 *1 (-935 *4 *2 *5)) (-4 *2 (-430 *4)))))
+(-10 -7 (-15 -2722 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2722 (|#2| |#2| (-642 (-1 (-112) |#3|)))))
+((-2722 (((-316 (-564)) (-1173) (-642 (-1 (-112) |#1|))) 18) (((-316 (-564)) (-1173) (-1 (-112) |#1|)) 15)))
+(((-936 |#1|) (-10 -7 (-15 -2722 ((-316 (-564)) (-1173) (-1 (-112) |#1|))) (-15 -2722 ((-316 (-564)) (-1173) (-642 (-1 (-112) |#1|))))) (-1212)) (T -936))
+((-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-642 (-1 (-112) *5))) (-4 *5 (-1212)) (-5 *2 (-316 (-564))) (-5 *1 (-936 *5)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1212)) (-5 *2 (-316 (-564))) (-5 *1 (-936 *5)))))
+(-10 -7 (-15 -2722 ((-316 (-564)) (-1173) (-1 (-112) |#1|))) (-15 -2722 ((-316 (-564)) (-1173) (-642 (-1 (-112) |#1|)))))
+((-2453 (((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)) 25)))
+(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -2453 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))) (-1097) (-13 (-556) (-884 |#1|) (-612 (-890 |#1|))) (-990 |#2|)) (T -937))
+((-2453 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097)) (-4 *3 (-990 *6)) (-4 *6 (-13 (-556) (-884 *5) (-612 *4))) (-5 *4 (-890 *5)) (-5 *1 (-937 *5 *6 *3)))))
+(-10 -7 (-15 -2453 ((-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))))
+((-2453 (((-887 |#1| (-1173)) (-1173) (-890 |#1|) (-887 |#1| (-1173))) 18)))
+(((-938 |#1|) (-10 -7 (-15 -2453 ((-887 |#1| (-1173)) (-1173) (-890 |#1|) (-887 |#1| (-1173))))) (-1097)) (T -938))
+((-2453 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 (-1173))) (-5 *3 (-1173)) (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-5 *1 (-938 *5)))))
+(-10 -7 (-15 -2453 ((-887 |#1| (-1173)) (-1173) (-890 |#1|) (-887 |#1| (-1173)))))
+((-1368 (((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))) 34)) (-2453 (((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-1 |#3| (-642 |#3|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))) 33)))
+(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -2453 ((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-1 |#3| (-642 |#3|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))) (-15 -1368 ((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|))))) (-1097) (-1047) (-13 (-1047) (-612 (-890 |#1|)) (-1036 |#2|))) (T -939))
+((-1368 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 (-890 *6))) (-5 *5 (-1 (-887 *6 *8) *8 (-890 *6) (-887 *6 *8))) (-4 *6 (-1097)) (-4 *8 (-13 (-1047) (-612 (-890 *6)) (-1036 *7))) (-5 *2 (-887 *6 *8)) (-4 *7 (-1047)) (-5 *1 (-939 *6 *7 *8)))) (-2453 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-642 (-890 *7))) (-5 *5 (-1 *9 (-642 *9))) (-5 *6 (-1 (-887 *7 *9) *9 (-890 *7) (-887 *7 *9))) (-4 *7 (-1097)) (-4 *9 (-13 (-1047) (-612 (-890 *7)) (-1036 *8))) (-5 *2 (-887 *7 *9)) (-5 *3 (-642 *9)) (-4 *8 (-1047)) (-5 *1 (-939 *7 *8 *9)))))
+(-10 -7 (-15 -2453 ((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-1 |#3| (-642 |#3|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))) (-15 -1368 ((-887 |#1| |#3|) (-642 |#3|) (-642 (-890 |#1|)) (-887 |#1| |#3|) (-1 (-887 |#1| |#3|) |#3| (-890 |#1|) (-887 |#1| |#3|)))))
+((-1958 (((-1169 (-407 (-564))) (-564)) 81)) (-2400 (((-1169 (-564)) (-564)) 84)) (-2935 (((-1169 (-564)) (-564)) 78)) (-2468 (((-564) (-1169 (-564))) 74)) (-1323 (((-1169 (-407 (-564))) (-564)) 65)) (-1690 (((-1169 (-564)) (-564)) 49)) (-2450 (((-1169 (-564)) (-564)) 86)) (-1676 (((-1169 (-564)) (-564)) 85)) (-4009 (((-1169 (-407 (-564))) (-564)) 67)))
+(((-940) (-10 -7 (-15 -4009 ((-1169 (-407 (-564))) (-564))) (-15 -1676 ((-1169 (-564)) (-564))) (-15 -2450 ((-1169 (-564)) (-564))) (-15 -1690 ((-1169 (-564)) (-564))) (-15 -1323 ((-1169 (-407 (-564))) (-564))) (-15 -2468 ((-564) (-1169 (-564)))) (-15 -2935 ((-1169 (-564)) (-564))) (-15 -2400 ((-1169 (-564)) (-564))) (-15 -1958 ((-1169 (-407 (-564))) (-564))))) (T -940))
+((-1958 (*1 *2 *3) (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564)))) (-2400 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) (-2935 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1169 (-564))) (-5 *2 (-564)) (-5 *1 (-940)))) (-1323 (*1 *2 *3) (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564)))) (-1690 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) (-2450 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) (-1676 (*1 *2 *3) (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))) (-4009 (*1 *2 *3) (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564)))))
+(-10 -7 (-15 -4009 ((-1169 (-407 (-564))) (-564))) (-15 -1676 ((-1169 (-564)) (-564))) (-15 -2450 ((-1169 (-564)) (-564))) (-15 -1690 ((-1169 (-564)) (-564))) (-15 -1323 ((-1169 (-407 (-564))) (-564))) (-15 -2468 ((-564) (-1169 (-564)))) (-15 -2935 ((-1169 (-564)) (-564))) (-15 -2400 ((-1169 (-564)) (-564))) (-15 -1958 ((-1169 (-407 (-564))) (-564))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4103 (($ (-769)) NIL (|has| |#1| (-23)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) NIL)) (-3979 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2669 (($ (-642 |#1|)) 9)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-1745 (((-687 |#1|) $ $) NIL (|has| |#1| (-1047)))) (-4227 (($ (-769) |#1|) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4372 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-3576 (((-112) $ (-769)) NIL)) (-2480 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2557 ((|#1| $) NIL (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-3804 (($ $ (-642 |#1|)) 25)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 18) (($ $ (-1229 (-564))) NIL)) (-2619 ((|#1| $ $) NIL (|has| |#1| (-1047)))) (-3474 (((-919) $) 13)) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-2909 (($ $ $) 23)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536)))) (($ (-642 |#1|)) 14)) (-2337 (($ (-642 |#1|)) NIL)) (-3651 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-642 $)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2987 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2974 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-724))) (($ $ |#1|) NIL (|has| |#1| (-724)))) (-2127 (((-769) $) 11 (|has| $ (-6 -4410)))))
+(((-941 |#1|) (-978 |#1|) (-1047)) (T -941))
+NIL
+(-978 |#1|)
+((-3040 (((-481 |#1| |#2|) (-950 |#2|)) 22)) (-4292 (((-247 |#1| |#2|) (-950 |#2|)) 35)) (-4252 (((-950 |#2|) (-481 |#1| |#2|)) 27)) (-3860 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 57)) (-1674 (((-950 |#2|) (-247 |#1| |#2|)) 32)) (-1487 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 48)))
+(((-942 |#1| |#2|) (-10 -7 (-15 -1487 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3860 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3040 ((-481 |#1| |#2|) (-950 |#2|))) (-15 -4252 ((-950 |#2|) (-481 |#1| |#2|))) (-15 -1674 ((-950 |#2|) (-247 |#1| |#2|))) (-15 -4292 ((-247 |#1| |#2|) (-950 |#2|)))) (-642 (-1173)) (-1047)) (T -942))
+((-4292 (*1 *2 *3) (-12 (-5 *3 (-950 *5)) (-4 *5 (-1047)) (-5 *2 (-247 *4 *5)) (-5 *1 (-942 *4 *5)) (-14 *4 (-642 (-1173))))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) (-5 *2 (-950 *5)) (-5 *1 (-942 *4 *5)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) (-5 *2 (-950 *5)) (-5 *1 (-942 *4 *5)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-950 *5)) (-4 *5 (-1047)) (-5 *2 (-481 *4 *5)) (-5 *1 (-942 *4 *5)) (-14 *4 (-642 (-1173))))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) (-5 *2 (-247 *4 *5)) (-5 *1 (-942 *4 *5)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047)) (-5 *2 (-481 *4 *5)) (-5 *1 (-942 *4 *5)))))
+(-10 -7 (-15 -1487 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3860 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3040 ((-481 |#1| |#2|) (-950 |#2|))) (-15 -4252 ((-950 |#2|) (-481 |#1| |#2|))) (-15 -1674 ((-950 |#2|) (-247 |#1| |#2|))) (-15 -4292 ((-247 |#1| |#2|) (-950 |#2|))))
+((-2282 (((-642 |#2|) |#2| |#2|) 10)) (-3414 (((-769) (-642 |#1|)) 49 (|has| |#1| (-846)))) (-1351 (((-642 |#2|) |#2|) 11)) (-3239 (((-769) (-642 |#1|) (-564) (-564)) 53 (|has| |#1| (-846)))) (-2750 ((|#1| |#2|) 40 (|has| |#1| (-846)))))
+(((-943 |#1| |#2|) (-10 -7 (-15 -2282 ((-642 |#2|) |#2| |#2|)) (-15 -1351 ((-642 |#2|) |#2|)) (IF (|has| |#1| (-846)) (PROGN (-15 -2750 (|#1| |#2|)) (-15 -3414 ((-769) (-642 |#1|))) (-15 -3239 ((-769) (-642 |#1|) (-564) (-564)))) |%noBranch|)) (-363) (-1238 |#1|)) (T -943))
+((-3239 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-564)) (-4 *5 (-846)) (-4 *5 (-363)) (-5 *2 (-769)) (-5 *1 (-943 *5 *6)) (-4 *6 (-1238 *5)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-846)) (-4 *4 (-363)) (-5 *2 (-769)) (-5 *1 (-943 *4 *5)) (-4 *5 (-1238 *4)))) (-2750 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-846)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1238 *2)))) (-1351 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-943 *4 *3)) (-4 *3 (-1238 *4)))) (-2282 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-943 *4 *3)) (-4 *3 (-1238 *4)))))
+(-10 -7 (-15 -2282 ((-642 |#2|) |#2| |#2|)) (-15 -1351 ((-642 |#2|) |#2|)) (IF (|has| |#1| (-846)) (PROGN (-15 -2750 (|#1| |#2|)) (-15 -3414 ((-769) (-642 |#1|))) (-15 -3239 ((-769) (-642 |#1|) (-564) (-564)))) |%noBranch|))
+((-4358 (((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)) 19)))
+(((-944 |#1| |#2|) (-10 -7 (-15 -4358 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)))) (-1047) (-1047)) (T -944))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-950 *6)) (-5 *1 (-944 *5 *6)))))
+(-10 -7 (-15 -4358 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|))))
+((-3615 (((-1235 |#1| (-950 |#2|)) (-950 |#2|) (-1258 |#1|)) 18)))
+(((-945 |#1| |#2|) (-10 -7 (-15 -3615 ((-1235 |#1| (-950 |#2|)) (-950 |#2|) (-1258 |#1|)))) (-1173) (-1047)) (T -945))
+((-3615 (*1 *2 *3 *4) (-12 (-5 *4 (-1258 *5)) (-14 *5 (-1173)) (-4 *6 (-1047)) (-5 *2 (-1235 *5 (-950 *6))) (-5 *1 (-945 *5 *6)) (-5 *3 (-950 *6)))))
+(-10 -7 (-15 -3615 ((-1235 |#1| (-950 |#2|)) (-950 |#2|) (-1258 |#1|))))
+((-4055 (((-769) $) 88) (((-769) $ (-642 |#4|)) 93)) (-4316 (($ $) 205)) (-1978 (((-418 $) $) 197)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 141)) (-4278 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-3027 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) 73)) (-2022 (($ $ $ |#4|) 95)) (-4315 (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 131) (((-687 |#2|) (-687 $)) 121)) (-3246 (($ $) 212) (($ $ |#4|) 215)) (-3974 (((-642 $) $) 77)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 231) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 224)) (-1763 (((-642 $) $) 34)) (-3774 (($ |#2| |#3|) NIL) (($ $ |#4| (-769)) NIL) (($ $ (-642 |#4|) (-642 (-769))) 71)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ |#4|) 194)) (-1572 (((-3 (-642 $) "failed") $) 52)) (-1802 (((-3 (-642 $) "failed") $) 39)) (-3611 (((-3 (-2 (|:| |var| |#4|) (|:| -2700 (-769))) "failed") $) 57)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 134)) (-1643 (((-418 (-1169 $)) (-1169 $)) 147)) (-2923 (((-418 (-1169 $)) (-1169 $)) 145)) (-3643 (((-418 $) $) 165)) (-3215 (($ $ (-642 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-642 |#4|) (-642 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-642 |#4|) (-642 $)) NIL)) (-1846 (($ $ |#4|) 97)) (-1314 (((-890 (-379)) $) 245) (((-890 (-564)) $) 238) (((-536) $) 253)) (-4028 ((|#2| $) NIL) (($ $ |#4|) 207)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 184)) (-2102 ((|#2| $ |#3|) NIL) (($ $ |#4| (-769)) 62) (($ $ (-642 |#4|) (-642 (-769))) 69)) (-2439 (((-3 $ "failed") $) 186)) (-1648 (((-112) $ $) 218)))
+(((-946 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2351 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -1978 ((-418 |#1|) |#1|)) (-15 -4316 (|#1| |#1|)) (-15 -2439 ((-3 |#1| "failed") |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -2453 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -2453 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -2923 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -1643 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -4094 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -3637 ((-3 (-1262 |#1|) "failed") (-687 |#1|))) (-15 -3246 (|#1| |#1| |#4|)) (-15 -4028 (|#1| |#1| |#4|)) (-15 -1846 (|#1| |#1| |#4|)) (-15 -2022 (|#1| |#1| |#1| |#4|)) (-15 -3974 ((-642 |#1|) |#1|)) (-15 -4055 ((-769) |#1| (-642 |#4|))) (-15 -4055 ((-769) |#1|)) (-15 -3611 ((-3 (-2 (|:| |var| |#4|) (|:| -2700 (-769))) "failed") |#1|)) (-15 -1572 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -1802 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -3774 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -3774 (|#1| |#1| |#4| (-769))) (-15 -3504 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1| |#4|)) (-15 -1763 ((-642 |#1|) |#1|)) (-15 -2102 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -2102 (|#1| |#1| |#4| (-769))) (-15 -4315 ((-687 |#2|) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -4278 ((-3 |#4| "failed") |#1|)) (-15 -3027 (|#4| |#1|)) (-15 -3215 (|#1| |#1| (-642 |#4|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#4| |#1|)) (-15 -3215 (|#1| |#1| (-642 |#4|) (-642 |#2|))) (-15 -3215 (|#1| |#1| |#4| |#2|)) (-15 -3215 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| (-294 |#1|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3774 (|#1| |#2| |#3|)) (-15 -2102 (|#2| |#1| |#3|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -1648 ((-112) |#1| |#1|))) (-947 |#2| |#3| |#4|) (-1047) (-791) (-848)) (T -946))
+NIL
+(-10 -8 (-15 -2351 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -1978 ((-418 |#1|) |#1|)) (-15 -4316 (|#1| |#1|)) (-15 -2439 ((-3 |#1| "failed") |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -2453 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -2453 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -2923 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -1643 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -4094 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -3637 ((-3 (-1262 |#1|) "failed") (-687 |#1|))) (-15 -3246 (|#1| |#1| |#4|)) (-15 -4028 (|#1| |#1| |#4|)) (-15 -1846 (|#1| |#1| |#4|)) (-15 -2022 (|#1| |#1| |#1| |#4|)) (-15 -3974 ((-642 |#1|) |#1|)) (-15 -4055 ((-769) |#1| (-642 |#4|))) (-15 -4055 ((-769) |#1|)) (-15 -3611 ((-3 (-2 (|:| |var| |#4|) (|:| -2700 (-769))) "failed") |#1|)) (-15 -1572 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -1802 ((-3 (-642 |#1|) "failed") |#1|)) (-15 -3774 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -3774 (|#1| |#1| |#4| (-769))) (-15 -3504 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1| |#4|)) (-15 -1763 ((-642 |#1|) |#1|)) (-15 -2102 (|#1| |#1| (-642 |#4|) (-642 (-769)))) (-15 -2102 (|#1| |#1| |#4| (-769))) (-15 -4315 ((-687 |#2|) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -4278 ((-3 |#4| "failed") |#1|)) (-15 -3027 (|#4| |#1|)) (-15 -3215 (|#1| |#1| (-642 |#4|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#4| |#1|)) (-15 -3215 (|#1| |#1| (-642 |#4|) (-642 |#2|))) (-15 -3215 (|#1| |#1| |#4| |#2|)) (-15 -3215 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| (-294 |#1|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -3774 (|#1| |#2| |#3|)) (-15 -2102 (|#2| |#1| |#3|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -1648 ((-112) |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3802 (((-642 |#3|) $) 112)) (-3615 (((-1169 $) $ |#3|) 127) (((-1169 |#1|) $) 126)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 89 (|has| |#1| (-556)))) (-1387 (($ $) 90 (|has| |#1| (-556)))) (-2037 (((-112) $) 92 (|has| |#1| (-556)))) (-4055 (((-769) $) 114) (((-769) $ (-642 |#3|)) 113)) (-1532 (((-3 $ "failed") $ $) 20)) (-2951 (((-418 (-1169 $)) (-1169 $)) 102 (|has| |#1| (-907)))) (-4316 (($ $) 100 (|has| |#1| (-452)))) (-1978 (((-418 $) $) 99 (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 105 (|has| |#1| (-907)))) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#1| "failed") $) 166) (((-3 (-407 (-564)) "failed") $) 163 (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) 161 (|has| |#1| (-1036 (-564)))) (((-3 |#3| "failed") $) 138)) (-3027 ((|#1| $) 165) (((-407 (-564)) $) 164 (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) 162 (|has| |#1| (-1036 (-564)))) ((|#3| $) 139)) (-2022 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-1718 (($ $) 156)) (-4315 (((-687 (-564)) (-687 $)) 136 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 135 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 134) (((-687 |#1|) (-687 $)) 133)) (-3104 (((-3 $ "failed") $) 37)) (-3246 (($ $) 178 (|has| |#1| (-452))) (($ $ |#3|) 107 (|has| |#1| (-452)))) (-3974 (((-642 $) $) 111)) (-1469 (((-112) $) 98 (|has| |#1| (-907)))) (-2575 (($ $ |#1| |#2| $) 174)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 86 (-12 (|has| |#3| (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 85 (-12 (|has| |#3| (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-3953 (((-112) $) 35)) (-3934 (((-769) $) 171)) (-3790 (($ (-1169 |#1|) |#3|) 119) (($ (-1169 $) |#3|) 118)) (-1763 (((-642 $) $) 128)) (-2316 (((-112) $) 154)) (-3774 (($ |#1| |#2|) 155) (($ $ |#3| (-769)) 121) (($ $ (-642 |#3|) (-642 (-769))) 120)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ |#3|) 122)) (-1398 ((|#2| $) 172) (((-769) $ |#3|) 124) (((-642 (-769)) $ (-642 |#3|)) 123)) (-2026 (($ (-1 |#2| |#2|) $) 173)) (-4358 (($ (-1 |#1| |#1|) $) 153)) (-4184 (((-3 |#3| "failed") $) 125)) (-3950 (($ $) 151)) (-3962 ((|#1| $) 150)) (-2049 (($ (-642 $)) 96 (|has| |#1| (-452))) (($ $ $) 95 (|has| |#1| (-452)))) (-3315 (((-1155) $) 10)) (-1572 (((-3 (-642 $) "failed") $) 116)) (-1802 (((-3 (-642 $) "failed") $) 117)) (-3611 (((-3 (-2 (|:| |var| |#3|) (|:| -2700 (-769))) "failed") $) 115)) (-4033 (((-1117) $) 11)) (-3921 (((-112) $) 168)) (-3932 ((|#1| $) 169)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 97 (|has| |#1| (-452)))) (-2080 (($ (-642 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) 104 (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) 103 (|has| |#1| (-907)))) (-3643 (((-418 $) $) 101 (|has| |#1| (-907)))) (-2896 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-556)))) (-3215 (($ $ (-642 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-642 $) (-642 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-642 |#3|) (-642 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-642 |#3|) (-642 $)) 140)) (-1846 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3175 (($ $ |#3|) 46) (($ $ (-642 |#3|)) 45) (($ $ |#3| (-769)) 44) (($ $ (-642 |#3|) (-642 (-769))) 43)) (-2775 ((|#2| $) 152) (((-769) $ |#3|) 132) (((-642 (-769)) $ (-642 |#3|)) 131)) (-1314 (((-890 (-379)) $) 84 (-12 (|has| |#3| (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) 83 (-12 (|has| |#3| (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) 82 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4028 ((|#1| $) 177 (|has| |#1| (-452))) (($ $ |#3|) 108 (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 106 (-2275 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-556))) (($ (-407 (-564))) 80 (-2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-3849 (((-642 |#1|) $) 170)) (-2102 ((|#1| $ |#2|) 157) (($ $ |#3| (-769)) 130) (($ $ (-642 |#3|) (-642 (-769))) 129)) (-2439 (((-3 $ "failed") $) 81 (-2706 (-2275 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) 32 T CONST)) (-1967 (($ $ $ (-769)) 175 (|has| |#1| (-172)))) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 91 (|has| |#1| (-556)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ |#3|) 42) (($ $ (-642 |#3|)) 41) (($ $ |#3| (-769)) 40) (($ $ (-642 |#3|) (-642 (-769))) 39)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 158 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 160 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 159 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-947 |#1| |#2| |#3|) (-140) (-1047) (-791) (-848)) (T -947))
+((-3246 (*1 *1 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-2775 (*1 *2 *1 *3) (-12 (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-769)))) (-2775 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-769))))) (-2102 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-947 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *2 (-848)))) (-2102 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 (-769))) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)))) (-1763 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5)))) (-3615 (*1 *2 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-1169 *1)) (-4 *1 (-947 *4 *5 *3)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-1169 *3)))) (-4184 (*1 *2 *1) (|partial| -12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-1398 (*1 *2 *1 *3) (-12 (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-769)))) (-1398 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-769))))) (-3504 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-947 *4 *5 *3)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-947 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *2 (-848)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 (-769))) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)))) (-3790 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1047)) (-4 *1 (-947 *4 *5 *3)) (-4 *5 (-791)) (-4 *3 (-848)))) (-3790 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)))) (-1802 (*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5)))) (-1572 (*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5)))) (-3611 (*1 *2 *1) (|partial| -12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| |var| *5) (|:| -2700 (-769)))))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-769)))) (-4055 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-769)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *5)))) (-3974 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5)))) (-2022 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *3 (-172)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *3 (-172)))) (-4028 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *3 (-452)))) (-3246 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *3 (-452)))) (-4316 (*1 *1 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-1978 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-418 *1)) (-4 *1 (-947 *3 *4 *5)))))
+(-13 (-898 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1036 |t#3|) (-377 |t#1|) (-10 -8 (-15 -2775 ((-769) $ |t#3|)) (-15 -2775 ((-642 (-769)) $ (-642 |t#3|))) (-15 -2102 ($ $ |t#3| (-769))) (-15 -2102 ($ $ (-642 |t#3|) (-642 (-769)))) (-15 -1763 ((-642 $) $)) (-15 -3615 ((-1169 $) $ |t#3|)) (-15 -3615 ((-1169 |t#1|) $)) (-15 -4184 ((-3 |t#3| "failed") $)) (-15 -1398 ((-769) $ |t#3|)) (-15 -1398 ((-642 (-769)) $ (-642 |t#3|))) (-15 -3504 ((-2 (|:| -1420 $) (|:| -3045 $)) $ $ |t#3|)) (-15 -3774 ($ $ |t#3| (-769))) (-15 -3774 ($ $ (-642 |t#3|) (-642 (-769)))) (-15 -3790 ($ (-1169 |t#1|) |t#3|)) (-15 -3790 ($ (-1169 $) |t#3|)) (-15 -1802 ((-3 (-642 $) "failed") $)) (-15 -1572 ((-3 (-642 $) "failed") $)) (-15 -3611 ((-3 (-2 (|:| |var| |t#3|) (|:| -2700 (-769))) "failed") $)) (-15 -4055 ((-769) $)) (-15 -4055 ((-769) $ (-642 |t#3|))) (-15 -3802 ((-642 |t#3|) $)) (-15 -3974 ((-642 $) $)) (IF (|has| |t#1| (-612 (-536))) (IF (|has| |t#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-890 (-564)))) (IF (|has| |t#3| (-612 (-890 (-564)))) (-6 (-612 (-890 (-564)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-890 (-379)))) (IF (|has| |t#3| (-612 (-890 (-379)))) (-6 (-612 (-890 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-884 (-564))) (IF (|has| |t#3| (-884 (-564))) (-6 (-884 (-564))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-884 (-379))) (IF (|has| |t#3| (-884 (-379))) (-6 (-884 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2022 ($ $ $ |t#3|)) (-15 -1846 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -4028 ($ $ |t#3|)) (-15 -3246 ($ $)) (-15 -3246 ($ $ |t#3|)) (-15 -1978 ((-418 $) $)) (-15 -4316 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |t#1| (-907)) (-6 (-907)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#3| (-612 (-890 (-379))))) ((-612 (-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#3| (-612 (-890 (-564))))) ((-290) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2706 (|has| |#1| (-907)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-724) . T) ((-898 |#3|) . T) ((-884 (-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#3| (-884 (-379)))) ((-884 (-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#3| (-884 (-564)))) ((-907) |has| |#1| (-907)) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1036 |#3|) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) |has| |#1| (-907)))
+((-3802 (((-642 |#2|) |#5|) 40)) (-3615 (((-1169 |#5|) |#5| |#2| (-1169 |#5|)) 23) (((-407 (-1169 |#5|)) |#5| |#2|) 16)) (-3790 ((|#5| (-407 (-1169 |#5|)) |#2|) 30)) (-4184 (((-3 |#2| "failed") |#5|) 71)) (-1572 (((-3 (-642 |#5|) "failed") |#5|) 65)) (-4310 (((-3 (-2 (|:| |val| |#5|) (|:| -2700 (-564))) "failed") |#5|) 53)) (-1802 (((-3 (-642 |#5|) "failed") |#5|) 67)) (-3611 (((-3 (-2 (|:| |var| |#2|) (|:| -2700 (-564))) "failed") |#5|) 57)))
+(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3802 ((-642 |#2|) |#5|)) (-15 -4184 ((-3 |#2| "failed") |#5|)) (-15 -3615 ((-407 (-1169 |#5|)) |#5| |#2|)) (-15 -3790 (|#5| (-407 (-1169 |#5|)) |#2|)) (-15 -3615 ((-1169 |#5|) |#5| |#2| (-1169 |#5|))) (-15 -1802 ((-3 (-642 |#5|) "failed") |#5|)) (-15 -1572 ((-3 (-642 |#5|) "failed") |#5|)) (-15 -3611 ((-3 (-2 (|:| |var| |#2|) (|:| -2700 (-564))) "failed") |#5|)) (-15 -4310 ((-3 (-2 (|:| |val| |#5|) (|:| -2700 (-564))) "failed") |#5|))) (-791) (-848) (-1047) (-947 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2327 ($ |#4|)) (-15 -2245 (|#4| $)) (-15 -2255 (|#4| $))))) (T -948))
+((-4310 (*1 *2 *3) (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2700 (-564)))) (-5 *1 (-948 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))))) (-3611 (*1 *2 *3) (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2700 (-564)))) (-5 *1 (-948 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))))) (-1572 (*1 *2 *3) (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *3)) (-5 *1 (-948 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))))) (-1802 (*1 *2 *3) (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *3)) (-5 *1 (-948 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))))) (-3615 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))) (-4 *7 (-947 *6 *5 *4)) (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-1047)) (-5 *1 (-948 *5 *4 *6 *7 *3)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1169 *2))) (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-1047)) (-4 *2 (-13 (-363) (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))) (-5 *1 (-948 *5 *4 *6 *7 *2)) (-4 *7 (-947 *6 *5 *4)))) (-3615 (*1 *2 *3 *4) (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-407 (-1169 *3))) (-5 *1 (-948 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))))) (-4184 (*1 *2 *3) (|partial| -12 (-4 *4 (-791)) (-4 *5 (-1047)) (-4 *6 (-947 *5 *4 *2)) (-4 *2 (-848)) (-5 *1 (-948 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2327 ($ *6)) (-15 -2245 (*6 $)) (-15 -2255 (*6 $))))))) (-3802 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *5)) (-5 *1 (-948 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))))))
+(-10 -7 (-15 -3802 ((-642 |#2|) |#5|)) (-15 -4184 ((-3 |#2| "failed") |#5|)) (-15 -3615 ((-407 (-1169 |#5|)) |#5| |#2|)) (-15 -3790 (|#5| (-407 (-1169 |#5|)) |#2|)) (-15 -3615 ((-1169 |#5|) |#5| |#2| (-1169 |#5|))) (-15 -1802 ((-3 (-642 |#5|) "failed") |#5|)) (-15 -1572 ((-3 (-642 |#5|) "failed") |#5|)) (-15 -3611 ((-3 (-2 (|:| |var| |#2|) (|:| -2700 (-564))) "failed") |#5|)) (-15 -4310 ((-3 (-2 (|:| |val| |#5|) (|:| -2700 (-564))) "failed") |#5|)))
+((-4358 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4358 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-791) (-848) (-1047) (-947 |#3| |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -2974 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-769)))))) (T -949))
+((-4358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-848)) (-4 *8 (-1047)) (-4 *6 (-791)) (-4 *2 (-13 (-1097) (-10 -8 (-15 -2974 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-769)))))) (-5 *1 (-949 *6 *7 *8 *5 *2)) (-4 *5 (-947 *8 *6 *7)))))
+(-10 -7 (-15 -4358 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-1173)) $) 16)) (-3615 (((-1169 $) $ (-1173)) 21) (((-1169 |#1|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-1173))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4316 (($ $) NIL (|has| |#1| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-1173) "failed") $) NIL)) (-3027 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-1173) $) NIL)) (-2022 (($ $ $ (-1173)) NIL (|has| |#1| (-172)))) (-1718 (($ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1173)) NIL (|has| |#1| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#1| (-907)))) (-2575 (($ $ |#1| (-531 (-1173)) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1173) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1173) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-3790 (($ (-1169 |#1|) (-1173)) NIL) (($ (-1169 $) (-1173)) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-531 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-1173)) NIL)) (-1398 (((-531 (-1173)) $) NIL) (((-769) $ (-1173)) NIL) (((-642 (-769)) $ (-642 (-1173))) NIL)) (-2026 (($ (-1 (-531 (-1173)) (-531 (-1173))) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-4184 (((-3 (-1173) "failed") $) 19)) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3315 (((-1155) $) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-1173)) (|:| -2700 (-769))) "failed") $) NIL)) (-4107 (($ $ (-1173)) 29 (|has| |#1| (-38 (-407 (-564)))))) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 ((|#1| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1173) |#1|) NIL) (($ $ (-642 (-1173)) (-642 |#1|)) NIL) (($ $ (-1173) $) NIL) (($ $ (-642 (-1173)) (-642 $)) NIL)) (-1846 (($ $ (-1173)) NIL (|has| |#1| (-172)))) (-3175 (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-2775 (((-531 (-1173)) $) NIL) (((-769) $ (-1173)) NIL) (((-642 (-769)) $ (-642 (-1173))) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-1173) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1173) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1173) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4028 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1173)) NIL (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) 25) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1173)) 27) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-531 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-950 |#1|) (-13 (-947 |#1| (-531 (-1173)) (-1173)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1173))) |%noBranch|))) (-1047)) (T -950))
+((-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-950 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)))))
+(-13 (-947 |#1| (-531 (-1173)) (-1173)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1173))) |%noBranch|)))
+((-1430 (((-2 (|:| -2700 (-769)) (|:| -4378 |#5|) (|:| |radicand| |#5|)) |#3| (-769)) 49)) (-2742 (((-2 (|:| -2700 (-769)) (|:| -4378 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-769)) 44)) (-2460 (((-2 (|:| -2700 (-769)) (|:| -4378 |#4|) (|:| |radicand| (-642 |#4|))) |#4| (-769)) 65)) (-4020 (((-2 (|:| -2700 (-769)) (|:| -4378 |#5|) (|:| |radicand| |#5|)) |#5| (-769)) 74 (|has| |#3| (-452)))))
+(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1430 ((-2 (|:| -2700 (-769)) (|:| -4378 |#5|) (|:| |radicand| |#5|)) |#3| (-769))) (-15 -2742 ((-2 (|:| -2700 (-769)) (|:| -4378 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-769))) (IF (|has| |#3| (-452)) (-15 -4020 ((-2 (|:| -2700 (-769)) (|:| -4378 |#5|) (|:| |radicand| |#5|)) |#5| (-769))) |%noBranch|) (-15 -2460 ((-2 (|:| -2700 (-769)) (|:| -4378 |#4|) (|:| |radicand| (-642 |#4|))) |#4| (-769)))) (-791) (-848) (-556) (-947 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2327 ($ |#4|)) (-15 -2245 (|#4| $)) (-15 -2255 (|#4| $))))) (T -951))
+((-2460 (*1 *2 *3 *4) (-12 (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-556)) (-4 *3 (-947 *7 *5 *6)) (-5 *2 (-2 (|:| -2700 (-769)) (|:| -4378 *3) (|:| |radicand| (-642 *3)))) (-5 *1 (-951 *5 *6 *7 *3 *8)) (-5 *4 (-769)) (-4 *8 (-13 (-363) (-10 -8 (-15 -2327 ($ *3)) (-15 -2245 (*3 $)) (-15 -2255 (*3 $))))))) (-4020 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-556)) (-4 *8 (-947 *7 *5 *6)) (-5 *2 (-2 (|:| -2700 (-769)) (|:| -4378 *3) (|:| |radicand| *3))) (-5 *1 (-951 *5 *6 *7 *8 *3)) (-5 *4 (-769)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2327 ($ *8)) (-15 -2245 (*8 $)) (-15 -2255 (*8 $))))))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-556)) (-4 *8 (-947 *7 *5 *6)) (-5 *2 (-2 (|:| -2700 (-769)) (|:| -4378 *9) (|:| |radicand| *9))) (-5 *1 (-951 *5 *6 *7 *8 *9)) (-5 *4 (-769)) (-4 *9 (-13 (-363) (-10 -8 (-15 -2327 ($ *8)) (-15 -2245 (*8 $)) (-15 -2255 (*8 $))))))) (-1430 (*1 *2 *3 *4) (-12 (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-556)) (-4 *7 (-947 *3 *5 *6)) (-5 *2 (-2 (|:| -2700 (-769)) (|:| -4378 *8) (|:| |radicand| *8))) (-5 *1 (-951 *5 *6 *3 *7 *8)) (-5 *4 (-769)) (-4 *8 (-13 (-363) (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))))))
+(-10 -7 (-15 -1430 ((-2 (|:| -2700 (-769)) (|:| -4378 |#5|) (|:| |radicand| |#5|)) |#3| (-769))) (-15 -2742 ((-2 (|:| -2700 (-769)) (|:| -4378 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-769))) (IF (|has| |#3| (-452)) (-15 -4020 ((-2 (|:| -2700 (-769)) (|:| -4378 |#5|) (|:| |radicand| |#5|)) |#5| (-769))) |%noBranch|) (-15 -2460 ((-2 (|:| -2700 (-769)) (|:| -4378 |#4|) (|:| |radicand| (-642 |#4|))) |#4| (-769))))
+((-2907 (((-112) $ $) NIL)) (-1418 (($ (-1117)) 8)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 15) (((-1117) $) 12)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 11)))
+(((-952) (-13 (-1097) (-611 (-1117)) (-10 -8 (-15 -1418 ($ (-1117)))))) (T -952))
+((-1418 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-952)))))
+(-13 (-1097) (-611 (-1117)) (-10 -8 (-15 -1418 ($ (-1117)))))
+((-2589 (((-1091 (-225)) $) 8)) (-2576 (((-1091 (-225)) $) 9)) (-2550 (((-642 (-642 (-941 (-225)))) $) 10)) (-2327 (((-860) $) 6)))
+(((-953) (-140)) (T -953))
+((-2550 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-642 (-642 (-941 (-225))))))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1091 (-225))))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1091 (-225))))))
+(-13 (-611 (-860)) (-10 -8 (-15 -2550 ((-642 (-642 (-941 (-225)))) $)) (-15 -2576 ((-1091 (-225)) $)) (-15 -2589 ((-1091 (-225)) $))))
+(((-611 (-860)) . T))
+((-2088 (((-3 (-687 |#1|) "failed") |#2| (-919)) 18)))
+(((-954 |#1| |#2|) (-10 -7 (-15 -2088 ((-3 (-687 |#1|) "failed") |#2| (-919)))) (-556) (-654 |#1|)) (T -954))
+((-2088 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-919)) (-4 *5 (-556)) (-5 *2 (-687 *5)) (-5 *1 (-954 *5 *3)) (-4 *3 (-654 *5)))))
+(-10 -7 (-15 -2088 ((-3 (-687 |#1|) "failed") |#2| (-919))))
+((-1910 (((-956 |#2|) (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|) 16)) (-1320 ((|#2| (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|) 18)) (-4358 (((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)) 13)))
+(((-955 |#1| |#2|) (-10 -7 (-15 -1910 ((-956 |#2|) (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|)) (-15 -1320 (|#2| (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|)) (-15 -4358 ((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)))) (-1212) (-1212)) (T -955))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-956 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-956 *6)) (-5 *1 (-955 *5 *6)))) (-1320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-956 *5)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-955 *5 *2)))) (-1910 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-956 *6)) (-4 *6 (-1212)) (-4 *5 (-1212)) (-5 *2 (-956 *5)) (-5 *1 (-955 *6 *5)))))
+(-10 -7 (-15 -1910 ((-956 |#2|) (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|)) (-15 -1320 (|#2| (-1 |#2| |#1| |#2|) (-956 |#1|) |#2|)) (-15 -4358 ((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-564) |#1|) 19 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) 18 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 16)) (-3979 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-4227 (($ (-769) |#1|) 15)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) 11 (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2557 ((|#1| $) NIL (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) 20 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) 12)) (-4368 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 17) (($ $ (-1229 (-564))) NIL)) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) 21)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 14)) (-3651 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2127 (((-769) $) 8 (|has| $ (-6 -4410)))))
+(((-956 |#1|) (-19 |#1|) (-1212)) (T -956))
NIL
(-19 |#1|)
-((-1548 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6)))
-(((-955) (-140)) (T -955))
-((-1548 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-955)))) (-1548 (*1 *1 *1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-1170)))))
-(-13 (-10 -8 (-15 -1548 ($ $ (-1170))) (-15 -1548 ($ $ (-1086 $)))))
-((-1471 (((-2 (|:| -4376 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170)) (-1170)) 30) (((-2 (|:| -4376 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170))) 31) (((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-948 |#1|) (-1170) (-948 |#1|) (-1170)) 49)))
-(((-956 |#1|) (-10 -7 (-15 -1471 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-948 |#1|) (-1170) (-948 |#1|) (-1170))) (-15 -1471 ((-2 (|:| -4376 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -1471 ((-2 (|:| -4376 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170)) (-1170)))) (-13 (-363) (-147))) (T -956))
-((-1471 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -4376 (-641 (-564))) (|:| |poly| (-641 (-1166 *6))) (|:| |prim| (-1166 *6)))) (-5 *1 (-956 *6)))) (-1471 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -4376 (-641 (-564))) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-956 *5)))) (-1471 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 *5)))) (-5 *1 (-956 *5)))))
-(-10 -7 (-15 -1471 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-948 |#1|) (-1170) (-948 |#1|) (-1170))) (-15 -1471 ((-2 (|:| -4376 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170)))) (-15 -1471 ((-2 (|:| -4376 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-948 |#1|)) (-641 (-1170)) (-1170))))
-((-2276 (((-641 |#1|) |#1| |#1|) 46)) (-1339 (((-112) |#1|) 43)) (-1991 ((|#1| |#1|) 81)) (-3552 ((|#1| |#1|) 80)))
-(((-957 |#1|) (-10 -7 (-15 -1339 ((-112) |#1|)) (-15 -3552 (|#1| |#1|)) (-15 -1991 (|#1| |#1|)) (-15 -2276 ((-641 |#1|) |#1| |#1|))) (-545)) (T -957))
-((-2276 (*1 *2 *3 *3) (-12 (-5 *2 (-641 *3)) (-5 *1 (-957 *3)) (-4 *3 (-545)))) (-1991 (*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))) (-3552 (*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))) (-1339 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-957 *3)) (-4 *3 (-545)))))
-(-10 -7 (-15 -1339 ((-112) |#1|)) (-15 -3552 (|#1| |#1|)) (-15 -1991 (|#1| |#1|)) (-15 -2276 ((-641 |#1|) |#1| |#1|)))
-((-2938 (((-1264) (-858)) 9)))
-(((-958) (-10 -7 (-15 -2938 ((-1264) (-858))))) (T -958))
-((-2938 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-958)))))
-(-10 -7 (-15 -2938 ((-1264) (-858))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 77 (|has| |#1| (-556)))) (-3063 (($ $) 78 (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 34)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-1684 (($ $) 31)) (-3293 (((-3 $ "failed") $) 41)) (-2571 (($ $) NIL (|has| |#1| (-452)))) (-3850 (($ $ |#1| |#2| $) 61)) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) 17)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| |#2|) NIL)) (-2043 ((|#2| $) 24)) (-1948 (($ (-1 |#2| |#2|) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (($ $) 28)) (-3982 ((|#1| $) 26)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) 50)) (-3954 ((|#1| $) NIL)) (-2736 (($ $ |#2| |#1| $) 89 (-12 (|has| |#2| (-131)) (|has| |#1| (-556))))) (-2998 (((-3 $ "failed") $ $) 90 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 84 (|has| |#1| (-556)))) (-1568 ((|#2| $) 22)) (-4090 ((|#1| $) NIL (|has| |#1| (-452)))) (-2423 (((-858) $) NIL) (($ (-564)) 45) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 40) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ |#2|) 37)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) 15 T CONST)) (-3242 (($ $ $ (-767)) 73 (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) 83 (|has| |#1| (-556)))) (-2403 (($) 27 T CONST)) (-2417 (($) 12 T CONST)) (-2974 (((-112) $ $) 82)) (-3092 (($ $ |#1|) 91 (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) 68) (($ $ (-767)) 66)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 65) (($ $ |#1|) 63) (($ |#1| $) 62) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-959 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -2736 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|))) (-1045) (-788)) (T -959))
-((-2736 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *2 (-788)))))
-(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -2736 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL (-2807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3878 (($ $ $) 65 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (-4012 (((-3 $ "failed") $ $) 52 (-2807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2622 (((-767)) 36 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2398 ((|#2| $) 22)) (-1639 ((|#1| $) 21)) (-4080 (($) NIL (-2807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-3293 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-2534 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-4112 (((-112) $) NIL (-2807 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-2855 (($ $ $) NIL (-2807 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1497 (($ $ $) NIL (-2807 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2835 (($ |#1| |#2|) 20)) (-3256 (((-917) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 39 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2083 (($ (-917)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-4052 (((-1114) $) NIL)) (-3185 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1542 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2423 (((-858) $) 14)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 42 (-2807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-2417 (($) 25 (-2807 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) CONST)) (-3034 (((-112) $ $) NIL (-2807 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-3011 (((-112) $ $) NIL (-2807 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2974 (((-112) $ $) 19)) (-3023 (((-112) $ $) NIL (-2807 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2999 (((-112) $ $) 69 (-2807 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-3092 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-3082 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3070 (($ $ $) 45 (-2807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (** (($ $ (-564)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-767)) 32 (-2807 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))) (($ $ (-917)) NIL (-2807 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (* (($ (-564) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-767) $) 48 (-2807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ (-917) $) NIL (-2807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ $ $) 28 (-2807 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))))
-(((-960 |#1| |#2|) (-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -2835 ($ |#1| |#2|)) (-15 -1639 (|#1| $)) (-15 -2398 (|#2| $)))) (-1094) (-1094)) (T -960))
-((-2835 (*1 *1 *2 *3) (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1639 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1094)))) (-2398 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1094)))))
-(-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -2835 ($ |#1| |#2|)) (-15 -1639 (|#1| $)) (-15 -2398 (|#2| $))))
-((-2128 (((-1098) $) 12)) (-3140 (($ (-506) (-1098)) 14)) (-2562 (((-506) $) 9)) (-2423 (((-858) $) 26)))
-(((-961) (-13 (-611 (-858)) (-10 -8 (-15 -2562 ((-506) $)) (-15 -2128 ((-1098) $)) (-15 -3140 ($ (-506) (-1098)))))) (T -961))
-((-2562 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-961)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-961)))) (-3140 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1098)) (-5 *1 (-961)))))
-(-13 (-611 (-858)) (-10 -8 (-15 -2562 ((-506) $)) (-15 -2128 ((-1098) $)) (-15 -3140 ($ (-506) (-1098)))))
-((-3009 (((-112) $ $) NIL)) (-3396 (($) NIL T CONST)) (-2372 (($ $ $) 11)) (-2351 (($ $) 9)) (-2766 (((-1152) $) NIL)) (-1354 (((-687 |#1|) $) 24)) (-1790 (((-687 (-869 $ $)) $) 36)) (-2589 (((-687 $) $) 29)) (-3583 (((-687 (-869 $ $)) $) 37)) (-2619 (((-687 (-869 $ $)) $) 38)) (-2565 (((-687 (-869 $ $)) $) 35)) (-1561 (($ $ $) 12)) (-4052 (((-1114) $) NIL)) (-2136 (($) 17 T CONST)) (-2472 (($ $ $) 13)) (-2423 (((-858) $) 40) (($ |#1|) 8)) (-1860 (((-112) $ $) NIL)) (-2358 (($ $ $) 10)) (-2974 (((-112) $ $) NIL)))
-(((-962 |#1|) (-13 (-963) (-614 |#1|) (-10 -8 (-15 -1354 ((-687 |#1|) $)) (-15 -2589 ((-687 $) $)) (-15 -2565 ((-687 (-869 $ $)) $)) (-15 -1790 ((-687 (-869 $ $)) $)) (-15 -3583 ((-687 (-869 $ $)) $)) (-15 -2619 ((-687 (-869 $ $)) $)))) (-1094)) (T -962))
-((-1354 (*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-962 *3)) (-4 *3 (-1094)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-687 (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-1094)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-1094)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-1094)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-1094)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-1094)))))
-(-13 (-963) (-614 |#1|) (-10 -8 (-15 -1354 ((-687 |#1|) $)) (-15 -2589 ((-687 $) $)) (-15 -2565 ((-687 (-869 $ $)) $)) (-15 -1790 ((-687 (-869 $ $)) $)) (-15 -3583 ((-687 (-869 $ $)) $)) (-15 -2619 ((-687 (-869 $ $)) $))))
-((-3009 (((-112) $ $) 7)) (-3396 (($) 20 T CONST)) (-2372 (($ $ $) 16)) (-2351 (($ $) 18)) (-2766 (((-1152) $) 10)) (-1561 (($ $ $) 15)) (-4052 (((-1114) $) 11)) (-2136 (($) 19 T CONST)) (-2472 (($ $ $) 14)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2358 (($ $ $) 17)) (-2974 (((-112) $ $) 6)))
-(((-963) (-140)) (T -963))
-((-3396 (*1 *1) (-4 *1 (-963))) (-2136 (*1 *1) (-4 *1 (-963))) (-2351 (*1 *1 *1) (-4 *1 (-963))) (-2358 (*1 *1 *1 *1) (-4 *1 (-963))) (-2372 (*1 *1 *1 *1) (-4 *1 (-963))) (-1561 (*1 *1 *1 *1) (-4 *1 (-963))) (-2472 (*1 *1 *1 *1) (-4 *1 (-963))))
-(-13 (-1094) (-10 -8 (-15 -3396 ($) -2959) (-15 -2136 ($) -2959) (-15 -2351 ($ $)) (-15 -2358 ($ $ $)) (-15 -2372 ($ $ $)) (-15 -1561 ($ $ $)) (-15 -2472 ($ $ $))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) 8)) (-4080 (($) 7 T CONST)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-2087 (($ $ $) 44)) (-3669 (($ $ $) 45)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1497 ((|#1| $) 46)) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3149 ((|#1| $) 40)) (-2566 (($ |#1| $) 41)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) 43)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-964 |#1|) (-140) (-846)) (T -964))
-((-1497 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-3669 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-2087 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4407) (-15 -1497 (|t#1| $)) (-15 -3669 ($ $ $)) (-15 -2087 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3935 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2123 |#2|)) |#2| |#2|) 105)) (-2931 ((|#2| |#2| |#2|) 103)) (-1994 (((-2 (|:| |coef2| |#2|) (|:| -2123 |#2|)) |#2| |#2|) 107)) (-3714 (((-2 (|:| |coef1| |#2|) (|:| -2123 |#2|)) |#2| |#2|) 109)) (-3422 (((-2 (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|) 131 (|has| |#1| (-452)))) (-4204 (((-2 (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|) 57)) (-1456 (((-2 (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|) 81)) (-2135 (((-2 (|:| |coef1| |#2|) (|:| -2746 |#1|)) |#2| |#2|) 83)) (-4081 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3674 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 89)) (-3726 (((-2 (|:| |coef2| |#2|) (|:| -1330 |#1|)) |#2|) 121)) (-1696 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 92)) (-4381 (((-641 (-767)) |#2| |#2|) 102)) (-3629 ((|#1| |#2| |#2|) 51)) (-1569 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|) 129 (|has| |#1| (-452)))) (-3372 ((|#1| |#2| |#2|) 127 (|has| |#1| (-452)))) (-2241 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|) 55)) (-3213 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|) 80)) (-2746 ((|#1| |#2| |#2|) 77)) (-4300 (((-2 (|:| -4376 |#1|) (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2|) 42)) (-3945 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-2313 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-2146 ((|#2| |#2| |#2|) 93)) (-1784 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 87)) (-2555 ((|#2| |#2| |#2| (-767)) 85)) (-2123 ((|#2| |#2| |#2|) 135 (|has| |#1| (-452)))) (-2998 (((-1259 |#2|) (-1259 |#2|) |#1|) 22)) (-1389 (((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2|) 47)) (-3845 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1330 |#1|)) |#2|) 119)) (-1330 ((|#1| |#2|) 116)) (-3001 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 91)) (-1523 ((|#2| |#2| |#2| (-767)) 90)) (-2202 (((-641 |#2|) |#2| |#2|) 99)) (-2359 ((|#2| |#2| |#1| |#1| (-767)) 62)) (-2303 ((|#1| |#1| |#1| (-767)) 61)) (* (((-1259 |#2|) |#1| (-1259 |#2|)) 17)))
-(((-965 |#1| |#2|) (-10 -7 (-15 -2746 (|#1| |#2| |#2|)) (-15 -3213 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|)) (-15 -1456 ((-2 (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|)) (-15 -2135 ((-2 (|:| |coef1| |#2|) (|:| -2746 |#1|)) |#2| |#2|)) (-15 -2555 (|#2| |#2| |#2| (-767))) (-15 -1784 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3674 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -1523 (|#2| |#2| |#2| (-767))) (-15 -3001 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -1696 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2146 (|#2| |#2| |#2|)) (-15 -2313 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4081 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2931 (|#2| |#2| |#2|)) (-15 -3935 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2123 |#2|)) |#2| |#2|)) (-15 -1994 ((-2 (|:| |coef2| |#2|) (|:| -2123 |#2|)) |#2| |#2|)) (-15 -3714 ((-2 (|:| |coef1| |#2|) (|:| -2123 |#2|)) |#2| |#2|)) (-15 -1330 (|#1| |#2|)) (-15 -3845 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1330 |#1|)) |#2|)) (-15 -3726 ((-2 (|:| |coef2| |#2|) (|:| -1330 |#1|)) |#2|)) (-15 -2202 ((-641 |#2|) |#2| |#2|)) (-15 -4381 ((-641 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -3372 (|#1| |#2| |#2|)) (-15 -1569 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -3422 ((-2 (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -2123 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -2998 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -4300 ((-2 (|:| -4376 |#1|) (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2|)) (-15 -1389 ((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2|)) (-15 -2303 (|#1| |#1| |#1| (-767))) (-15 -2359 (|#2| |#2| |#1| |#1| (-767))) (-15 -3945 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3629 (|#1| |#2| |#2|)) (-15 -2241 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|)) (-15 -4204 ((-2 (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|))) (-556) (-1235 |#1|)) (T -965))
-((-4204 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2746 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2241 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2746 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3629 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2)))) (-3945 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) (-2359 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) (-2303 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *2 (-556)) (-5 *1 (-965 *2 *4)) (-4 *4 (-1235 *2)))) (-1389 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-4300 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -4376 *4) (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2998 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-965 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-965 *3 *4)))) (-2123 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) (-3422 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3372 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-1569 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3372 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3372 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2)))) (-4381 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-767))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2202 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1330 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3845 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1330 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-1330 (*1 *2 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2)))) (-3714 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2123 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-1994 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2123 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3935 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2123 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2931 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) (-4081 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2313 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2146 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))) (-1696 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))) (-3001 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))) (-1523 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1235 *4)))) (-3674 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))) (-1784 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))) (-2555 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1235 *4)))) (-2135 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2746 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-1456 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2746 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-3213 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2746 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))) (-2746 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2)))))
-(-10 -7 (-15 -2746 (|#1| |#2| |#2|)) (-15 -3213 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|)) (-15 -1456 ((-2 (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|)) (-15 -2135 ((-2 (|:| |coef1| |#2|) (|:| -2746 |#1|)) |#2| |#2|)) (-15 -2555 (|#2| |#2| |#2| (-767))) (-15 -1784 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -3674 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -1523 (|#2| |#2| |#2| (-767))) (-15 -3001 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -1696 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2146 (|#2| |#2| |#2|)) (-15 -2313 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4081 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2931 (|#2| |#2| |#2|)) (-15 -3935 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2123 |#2|)) |#2| |#2|)) (-15 -1994 ((-2 (|:| |coef2| |#2|) (|:| -2123 |#2|)) |#2| |#2|)) (-15 -3714 ((-2 (|:| |coef1| |#2|) (|:| -2123 |#2|)) |#2| |#2|)) (-15 -1330 (|#1| |#2|)) (-15 -3845 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1330 |#1|)) |#2|)) (-15 -3726 ((-2 (|:| |coef2| |#2|) (|:| -1330 |#1|)) |#2|)) (-15 -2202 ((-641 |#2|) |#2| |#2|)) (-15 -4381 ((-641 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -3372 (|#1| |#2| |#2|)) (-15 -1569 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -3422 ((-2 (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -2123 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -2998 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -4300 ((-2 (|:| -4376 |#1|) (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2|)) (-15 -1389 ((-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) |#2| |#2|)) (-15 -2303 (|#1| |#1| |#1| (-767))) (-15 -2359 (|#2| |#2| |#1| |#1| (-767))) (-15 -3945 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3629 (|#1| |#2| |#2|)) (-15 -2241 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|)) (-15 -4204 ((-2 (|:| |coef2| |#2|) (|:| -2746 |#1|)) |#2| |#2|)))
-((-3009 (((-112) $ $) NIL)) (-3830 (((-1208) $) 13)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1350 (((-1129) $) 10)) (-2423 (((-858) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-966) (-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $)) (-15 -3830 ((-1208) $))))) (T -966))
-((-1350 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-966)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-966)))))
-(-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $)) (-15 -3830 ((-1208) $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) 38)) (-4080 (($) NIL T CONST)) (-2953 (((-641 (-641 (-564))) (-641 (-564))) 47)) (-1439 (((-564) $) 71)) (-2915 (($ (-641 (-564))) 18)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1311 (((-641 (-564)) $) 13)) (-3185 (($ $) 51)) (-2423 (((-858) $) 67) (((-641 (-564)) $) 11)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 8 T CONST)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 26)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 25)) (-3070 (($ $ $) 27)) (* (($ (-917) $) NIL) (($ (-767) $) 36)))
-(((-967) (-13 (-791) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -2915 ($ (-641 (-564)))) (-15 -2953 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -1439 ((-564) $)) (-15 -3185 ($ $))))) (T -967))
-((-2915 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-967)))) (-2953 (*1 *2 *3) (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-967)) (-5 *3 (-641 (-564))))) (-1439 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-967)))) (-3185 (*1 *1 *1) (-5 *1 (-967))))
-(-13 (-791) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -2915 ($ (-641 (-564)))) (-15 -2953 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -1439 ((-564) $)) (-15 -3185 ($ $))))
-((-3092 (($ $ |#2|) 31)) (-3082 (($ $) 23) (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) 29)))
-(((-968 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3092 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-969 |#2| |#3| |#4|) (-1045) (-788) (-846)) (T -968))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3092 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3836 (((-641 |#3|) $) 78)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 55 (|has| |#1| (-556)))) (-3063 (($ $) 56 (|has| |#1| (-556)))) (-3330 (((-112) $) 58 (|has| |#1| (-556)))) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-1684 (($ $) 64)) (-3293 (((-3 $ "failed") $) 34)) (-4243 (((-112) $) 77)) (-4112 (((-112) $) 32)) (-4003 (((-112) $) 66)) (-3810 (($ |#1| |#2|) 65) (($ $ |#3| |#2|) 80) (($ $ (-641 |#3|) (-641 |#2|)) 79)) (-4357 (($ (-1 |#1| |#1|) $) 67)) (-3971 (($ $) 69)) (-3982 ((|#1| $) 70)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2998 (((-3 $ "failed") $ $) 54 (|has| |#1| (-556)))) (-1568 ((|#2| $) 68)) (-2732 (($ $) 76)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ (-407 (-564))) 61 (|has| |#1| (-38 (-407 (-564))))) (($ $) 53 (|has| |#1| (-556))) (($ |#1|) 51 (|has| |#1| (-172)))) (-2007 ((|#1| $ |#2|) 63)) (-2420 (((-3 $ "failed") $) 52 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 57 (|has| |#1| (-556)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 62 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 72) (($ |#1| $) 71) (($ (-407 (-564)) $) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 59 (|has| |#1| (-38 (-407 (-564)))))))
-(((-969 |#1| |#2| |#3|) (-140) (-1045) (-788) (-846)) (T -969))
-((-3982 (*1 *2 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-3971 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *2 (-788)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788)) (-4 *2 (-846)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 *5)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-641 *5)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2732 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3810 ($ $ |t#3| |t#2|)) (-15 -3810 ($ $ (-641 |t#3|) (-641 |t#2|))) (-15 -3971 ($ $)) (-15 -3982 (|t#1| $)) (-15 -1568 (|t#2| $)) (-15 -3836 ((-641 |t#3|) $)) (-15 -4243 ((-112) $)) (-15 -2732 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-2702 (((-1088 (-225)) $) 8)) (-2690 (((-1088 (-225)) $) 9)) (-2677 (((-1088 (-225)) $) 10)) (-2294 (((-641 (-641 (-939 (-225)))) $) 11)) (-2423 (((-858) $) 6)))
-(((-970) (-140)) (T -970))
-((-2294 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-641 (-641 (-939 (-225))))))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225))))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225))))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225))))))
-(-13 (-611 (-858)) (-10 -8 (-15 -2294 ((-641 (-641 (-939 (-225)))) $)) (-15 -2677 ((-1088 (-225)) $)) (-15 -2690 ((-1088 (-225)) $)) (-15 -2702 ((-1088 (-225)) $))))
-(((-611 (-858)) . T))
-((-3836 (((-641 |#4|) $) 23)) (-3342 (((-112) $) 54)) (-1594 (((-112) $) 53)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#4|) 41)) (-1968 (((-112) $) 55)) (-2238 (((-112) $ $) 61)) (-3956 (((-112) $ $) 64)) (-1489 (((-112) $) 59)) (-3703 (((-641 |#5|) (-641 |#5|) $) 97)) (-2601 (((-641 |#5|) (-641 |#5|) $) 94)) (-4071 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 87)) (-2814 (((-641 |#4|) $) 27)) (-3169 (((-112) |#4| $) 34)) (-3157 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-1834 (($ $ |#4|) 38)) (-1648 (($ $ |#4|) 37)) (-2577 (($ $ |#4|) 39)) (-2974 (((-112) $ $) 45)))
-(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1594 ((-112) |#1|)) (-15 -3703 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2601 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -4071 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3157 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1968 ((-112) |#1|)) (-15 -3956 ((-112) |#1| |#1|)) (-15 -2238 ((-112) |#1| |#1|)) (-15 -1489 ((-112) |#1|)) (-15 -3342 ((-112) |#1|)) (-15 -2484 ((-2 (|:| |under| |#1|) (|:| -2882 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1834 (|#1| |#1| |#4|)) (-15 -2577 (|#1| |#1| |#4|)) (-15 -1648 (|#1| |#1| |#4|)) (-15 -3169 ((-112) |#4| |#1|)) (-15 -2814 ((-641 |#4|) |#1|)) (-15 -3836 ((-641 |#4|) |#1|)) (-15 -2974 ((-112) |#1| |#1|))) (-972 |#2| |#3| |#4| |#5|) (-1045) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -971))
-NIL
-(-10 -8 (-15 -1594 ((-112) |#1|)) (-15 -3703 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2601 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -4071 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3157 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1968 ((-112) |#1|)) (-15 -3956 ((-112) |#1| |#1|)) (-15 -2238 ((-112) |#1| |#1|)) (-15 -1489 ((-112) |#1|)) (-15 -3342 ((-112) |#1|)) (-15 -2484 ((-2 (|:| |under| |#1|) (|:| -2882 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1834 (|#1| |#1| |#4|)) (-15 -2577 (|#1| |#1| |#4|)) (-15 -1648 (|#1| |#1| |#4|)) (-15 -3169 ((-112) |#4| |#1|)) (-15 -2814 ((-641 |#4|) |#1|)) (-15 -3836 ((-641 |#4|) |#1|)) (-15 -2974 ((-112) |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-3836 (((-641 |#3|) $) 34)) (-3342 (((-112) $) 27)) (-1594 (((-112) $) 18 (|has| |#1| (-556)))) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) 28)) (-1876 (((-112) $ (-767)) 45)) (-1667 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4407)))) (-4080 (($) 46 T CONST)) (-1968 (((-112) $) 23 (|has| |#1| (-556)))) (-2238 (((-112) $ $) 25 (|has| |#1| (-556)))) (-3956 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1489 (((-112) $) 26 (|has| |#1| (-556)))) (-3703 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) 20 (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) 37)) (-3120 (($ (-641 |#4|)) 36)) (-2696 (($ $) 69 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#4| $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4407)))) (-3035 (((-641 |#4|) $) 53 (|has| $ (-6 -4407)))) (-3378 ((|#3| $) 35)) (-3097 (((-112) $ (-767)) 44)) (-1554 (((-641 |#4|) $) 54 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) 48)) (-2814 (((-641 |#3|) $) 33)) (-3169 (((-112) |#3| $) 32)) (-3619 (((-112) $ (-767)) 43)) (-2766 (((-1152) $) 10)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-4052 (((-1114) $) 11)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4377 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) 39)) (-1976 (((-112) $) 42)) (-2994 (($) 41)) (-4062 (((-767) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4407)))) (-3926 (($ $) 40)) (-1311 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2435 (($ (-641 |#4|)) 61)) (-1834 (($ $ |#3|) 29)) (-1648 (($ $ |#3|) 31)) (-2577 (($ $ |#3|) 30)) (-2423 (((-858) $) 12) (((-641 |#4|) $) 38)) (-1860 (((-112) $ $) 9)) (-1368 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 6)) (-2181 (((-767) $) 47 (|has| $ (-6 -4407)))))
-(((-972 |#1| |#2| |#3| |#4|) (-140) (-1045) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -972))
-((-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5)))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5)))) (-3169 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-2577 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-1834 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-2484 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2882 *1) (|:| |upper| *1))) (-4 *1 (-972 *4 *5 *3 *6)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2238 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3956 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3157 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4071 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2601 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)))) (-3703 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))))
-(-13 (-1094) (-151 |t#4|) (-611 (-641 |t#4|)) (-10 -8 (-6 -4407) (-15 -4284 ((-3 $ "failed") (-641 |t#4|))) (-15 -3120 ($ (-641 |t#4|))) (-15 -3378 (|t#3| $)) (-15 -3836 ((-641 |t#3|) $)) (-15 -2814 ((-641 |t#3|) $)) (-15 -3169 ((-112) |t#3| $)) (-15 -1648 ($ $ |t#3|)) (-15 -2577 ($ $ |t#3|)) (-15 -1834 ($ $ |t#3|)) (-15 -2484 ((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |t#3|)) (-15 -3342 ((-112) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -1489 ((-112) $)) (-15 -2238 ((-112) $ $)) (-15 -3956 ((-112) $ $)) (-15 -1968 ((-112) $)) (-15 -3157 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4071 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2601 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -3703 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -1594 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-1094) . T) ((-1209) . T))
-((-3876 (((-641 |#4|) |#4| |#4|) 135)) (-4169 (((-641 |#4|) (-641 |#4|) (-112)) 124 (|has| |#1| (-452))) (((-641 |#4|) (-641 |#4|)) 125 (|has| |#1| (-452)))) (-4188 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 44)) (-3635 (((-112) |#4|) 43)) (-1723 (((-641 |#4|) |#4|) 120 (|has| |#1| (-452)))) (-2783 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|)) 24)) (-2089 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 30)) (-1874 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 31)) (-1979 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|)) 89)) (-2094 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 102)) (-4040 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 128)) (-4355 (((-641 |#4|) (-641 |#4|)) 127)) (-2489 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112)) 58) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 60)) (-3039 ((|#4| |#4| (-641 |#4|)) 59)) (-2271 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 131 (|has| |#1| (-452)))) (-2951 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 134 (|has| |#1| (-452)))) (-2644 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 133 (|has| |#1| (-452)))) (-3732 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|))) 104) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 106) (((-641 |#4|) (-641 |#4|) |#4|) 140) (((-641 |#4|) |#4| |#4|) 136) (((-641 |#4|) (-641 |#4|)) 105)) (-3709 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2682 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 51)) (-3533 (((-112) (-641 |#4|)) 78)) (-2015 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 66)) (-2110 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 37)) (-2768 (((-112) |#4|) 36)) (-3947 (((-641 |#4|) (-641 |#4|)) 115 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2473 (((-641 |#4|) (-641 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2222 (((-641 |#4|) (-641 |#4|)) 82)) (-1741 (((-641 |#4|) (-641 |#4|)) 96)) (-3137 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-3666 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 49)) (-2154 (((-112) |#4|) 45)))
-(((-973 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-641 |#4|) (-641 |#4|))) (-15 -3732 ((-641 |#4|) |#4| |#4|)) (-15 -4355 ((-641 |#4|) (-641 |#4|))) (-15 -3876 ((-641 |#4|) |#4| |#4|)) (-15 -3732 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -3732 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3732 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -3137 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2015 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3533 ((-112) (-641 |#4|))) (-15 -2783 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -2089 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -1874 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2682 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3635 ((-112) |#4|)) (-15 -4188 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2768 ((-112) |#4|)) (-15 -2110 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2154 ((-112) |#4|)) (-15 -3666 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2489 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2489 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -3039 (|#4| |#4| (-641 |#4|))) (-15 -2222 ((-641 |#4|) (-641 |#4|))) (-15 -1979 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -1741 ((-641 |#4|) (-641 |#4|))) (-15 -2094 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4040 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1723 ((-641 |#4|) |#4|)) (-15 -4169 ((-641 |#4|) (-641 |#4|))) (-15 -4169 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -2271 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2644 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2951 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -2473 ((-641 |#4|) (-641 |#4|))) (-15 -3947 ((-641 |#4|) (-641 |#4|))) (-15 -3709 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|)) (-556) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -973))
-((-3709 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2473 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2951 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2644 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2271 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-4169 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-4169 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1723 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-4040 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8)))) (-2094 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9)))) (-1741 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1979 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2462 (-641 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2222 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3039 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2)))) (-2489 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-2489 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3666 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2154 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-2110 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2768 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-4188 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3635 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-2682 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-2089 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8)))) (-3137 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3732 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3732 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3732 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3)))) (-3876 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-4355 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3732 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3732 ((-641 |#4|) (-641 |#4|))) (-15 -3732 ((-641 |#4|) |#4| |#4|)) (-15 -4355 ((-641 |#4|) (-641 |#4|))) (-15 -3876 ((-641 |#4|) |#4| |#4|)) (-15 -3732 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -3732 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3732 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -3137 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2015 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3533 ((-112) (-641 |#4|))) (-15 -2783 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -2089 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -1874 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2682 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3635 ((-112) |#4|)) (-15 -4188 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2768 ((-112) |#4|)) (-15 -2110 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2154 ((-112) |#4|)) (-15 -3666 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2489 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2489 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -3039 (|#4| |#4| (-641 |#4|))) (-15 -2222 ((-641 |#4|) (-641 |#4|))) (-15 -1979 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -1741 ((-641 |#4|) (-641 |#4|))) (-15 -2094 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4040 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1723 ((-641 |#4|) |#4|)) (-15 -4169 ((-641 |#4|) (-641 |#4|))) (-15 -4169 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -2271 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2644 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2951 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -2473 ((-641 |#4|) (-641 |#4|))) (-15 -3947 ((-641 |#4|) (-641 |#4|))) (-15 -3709 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|))
-((-4104 (((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-4038 (((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 44)) (-4116 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-974 |#1|) (-10 -7 (-15 -4104 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4116 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4038 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -974))
-((-4038 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5))))) (-5 *1 (-974 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)))) (-4116 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-974 *5)))) (-4104 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6)))) (-5 *1 (-974 *6)) (-5 *3 (-685 *6)))))
-(-10 -7 (-15 -4104 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4116 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4038 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))))
-((-2753 (((-418 |#4|) |#4|) 56)))
-(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2753 ((-418 |#4|) |#4|))) (-846) (-789) (-452) (-945 |#3| |#2| |#1|)) (T -975))
-((-2753 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))))
-(-10 -7 (-15 -2753 ((-418 |#4|) |#4|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4122 (($ (-767)) 113 (|has| |#1| (-23)))) (-3236 (((-1264) $ (-564) (-564)) 41 (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4408))) (($ $) 89 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4408))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) 8)) (-3904 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) 59 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2563 (($ $) 91 (|has| $ (-6 -4408)))) (-3200 (($ $) 101)) (-2696 (($ $) 79 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#1| $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 52)) (-3998 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1094)))) (-2770 (($ (-641 |#1|)) 119)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-1712 (((-685 |#1|) $ $) 106 (|has| |#1| (-1045)))) (-4238 (($ (-767) |#1|) 70)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 44 (|has| (-564) (-846)))) (-2855 (($ $ $) 88 (|has| |#1| (-846)))) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 45 (|has| (-564) (-846)))) (-1497 (($ $ $) 87 (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3224 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-3619 (((-112) $ (-767)) 10)) (-2581 ((|#1| $) 104 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3050 (((-641 (-564)) $) 47)) (-1563 (((-112) (-564) $) 48)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2658 ((|#1| $) 43 (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1592 (($ $ |#1|) 42 (|has| $ (-6 -4408)))) (-4016 (($ $ (-641 |#1|)) 117)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1226 (-564))) 64)) (-3270 ((|#1| $ $) 107 (|has| |#1| (-1045)))) (-4327 (((-917) $) 118)) (-2114 (($ $ (-564)) 63) (($ $ (-1226 (-564))) 62)) (-3015 (($ $ $) 105)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3806 (($ $ $ (-564)) 92 (|has| $ (-6 -4408)))) (-3926 (($ $) 13)) (-1311 (((-536) $) 80 (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 120)) (-2435 (($ (-641 |#1|)) 71)) (-3696 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-641 $)) 66)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) 85 (|has| |#1| (-846)))) (-3011 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3023 (((-112) $ $) 86 (|has| |#1| (-846)))) (-2999 (((-112) $ $) 83 (|has| |#1| (-846)))) (-3082 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3070 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-564) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-722))) (($ $ |#1|) 108 (|has| |#1| (-722)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-976 |#1|) (-140) (-1045)) (T -976))
-((-2770 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3)))) (-4327 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-917)))) (-3015 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045)))))
-(-13 (-1257 |t#1|) (-616 (-641 |t#1|)) (-10 -8 (-15 -2770 ($ (-641 |t#1|))) (-15 -4327 ((-917) $)) (-15 -3015 ($ $ $)) (-15 -4016 ($ $ (-641 |t#1|)))))
-(((-34) . T) ((-102) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-616 (-641 |#1|)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1209) . T) ((-1257 |#1|) . T))
-((-4357 (((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)) 17)))
-(((-977 |#1| |#2|) (-10 -7 (-15 -4357 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) (-1045) (-1045)) (T -977))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6)))))
-(-10 -7 (-15 -4357 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|))))
-((-2214 ((|#1| (-939 |#1|)) 14)) (-2871 ((|#1| (-939 |#1|)) 13)) (-3682 ((|#1| (-939 |#1|)) 12)) (-1475 ((|#1| (-939 |#1|)) 16)) (-3223 ((|#1| (-939 |#1|)) 24)) (-1636 ((|#1| (-939 |#1|)) 15)) (-3571 ((|#1| (-939 |#1|)) 17)) (-2878 ((|#1| (-939 |#1|)) 23)) (-1785 ((|#1| (-939 |#1|)) 22)))
-(((-978 |#1|) (-10 -7 (-15 -3682 (|#1| (-939 |#1|))) (-15 -2871 (|#1| (-939 |#1|))) (-15 -2214 (|#1| (-939 |#1|))) (-15 -1636 (|#1| (-939 |#1|))) (-15 -1475 (|#1| (-939 |#1|))) (-15 -3571 (|#1| (-939 |#1|))) (-15 -1785 (|#1| (-939 |#1|))) (-15 -2878 (|#1| (-939 |#1|))) (-15 -3223 (|#1| (-939 |#1|)))) (-1045)) (T -978))
-((-3223 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(-10 -7 (-15 -3682 (|#1| (-939 |#1|))) (-15 -2871 (|#1| (-939 |#1|))) (-15 -2214 (|#1| (-939 |#1|))) (-15 -1636 (|#1| (-939 |#1|))) (-15 -1475 (|#1| (-939 |#1|))) (-15 -3571 (|#1| (-939 |#1|))) (-15 -1785 (|#1| (-939 |#1|))) (-15 -2878 (|#1| (-939 |#1|))) (-15 -3223 (|#1| (-939 |#1|))))
-((-1849 (((-3 |#1| "failed") |#1|) 18)) (-1320 (((-3 |#1| "failed") |#1|) 6)) (-3921 (((-3 |#1| "failed") |#1|) 16)) (-3325 (((-3 |#1| "failed") |#1|) 4)) (-3055 (((-3 |#1| "failed") |#1|) 20)) (-1446 (((-3 |#1| "failed") |#1|) 8)) (-2625 (((-3 |#1| "failed") |#1| (-767)) 1)) (-3857 (((-3 |#1| "failed") |#1|) 3)) (-3597 (((-3 |#1| "failed") |#1|) 2)) (-2777 (((-3 |#1| "failed") |#1|) 21)) (-1510 (((-3 |#1| "failed") |#1|) 9)) (-3307 (((-3 |#1| "failed") |#1|) 19)) (-1628 (((-3 |#1| "failed") |#1|) 7)) (-4302 (((-3 |#1| "failed") |#1|) 17)) (-1318 (((-3 |#1| "failed") |#1|) 5)) (-3570 (((-3 |#1| "failed") |#1|) 24)) (-1535 (((-3 |#1| "failed") |#1|) 12)) (-1499 (((-3 |#1| "failed") |#1|) 22)) (-2543 (((-3 |#1| "failed") |#1|) 10)) (-3073 (((-3 |#1| "failed") |#1|) 26)) (-3173 (((-3 |#1| "failed") |#1|) 14)) (-4292 (((-3 |#1| "failed") |#1|) 27)) (-3110 (((-3 |#1| "failed") |#1|) 15)) (-3958 (((-3 |#1| "failed") |#1|) 25)) (-3472 (((-3 |#1| "failed") |#1|) 13)) (-3102 (((-3 |#1| "failed") |#1|) 23)) (-1396 (((-3 |#1| "failed") |#1|) 11)))
-(((-979 |#1|) (-140) (-1194)) (T -979))
-((-4292 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3073 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3958 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3570 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3102 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1499 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2777 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3055 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3307 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1849 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-4302 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3921 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3110 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3173 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3472 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1535 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1396 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2543 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1510 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1446 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1628 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1320 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-1318 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3325 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3857 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-3597 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))) (-2625 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(-13 (-10 -7 (-15 -2625 ((-3 |t#1| "failed") |t#1| (-767))) (-15 -3597 ((-3 |t#1| "failed") |t#1|)) (-15 -3857 ((-3 |t#1| "failed") |t#1|)) (-15 -3325 ((-3 |t#1| "failed") |t#1|)) (-15 -1318 ((-3 |t#1| "failed") |t#1|)) (-15 -1320 ((-3 |t#1| "failed") |t#1|)) (-15 -1628 ((-3 |t#1| "failed") |t#1|)) (-15 -1446 ((-3 |t#1| "failed") |t#1|)) (-15 -1510 ((-3 |t#1| "failed") |t#1|)) (-15 -2543 ((-3 |t#1| "failed") |t#1|)) (-15 -1396 ((-3 |t#1| "failed") |t#1|)) (-15 -1535 ((-3 |t#1| "failed") |t#1|)) (-15 -3472 ((-3 |t#1| "failed") |t#1|)) (-15 -3173 ((-3 |t#1| "failed") |t#1|)) (-15 -3110 ((-3 |t#1| "failed") |t#1|)) (-15 -3921 ((-3 |t#1| "failed") |t#1|)) (-15 -4302 ((-3 |t#1| "failed") |t#1|)) (-15 -1849 ((-3 |t#1| "failed") |t#1|)) (-15 -3307 ((-3 |t#1| "failed") |t#1|)) (-15 -3055 ((-3 |t#1| "failed") |t#1|)) (-15 -2777 ((-3 |t#1| "failed") |t#1|)) (-15 -1499 ((-3 |t#1| "failed") |t#1|)) (-15 -3102 ((-3 |t#1| "failed") |t#1|)) (-15 -3570 ((-3 |t#1| "failed") |t#1|)) (-15 -3958 ((-3 |t#1| "failed") |t#1|)) (-15 -3073 ((-3 |t#1| "failed") |t#1|)) (-15 -4292 ((-3 |t#1| "failed") |t#1|))))
-((-3957 ((|#4| |#4| (-641 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1505 ((|#4| |#4| (-641 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4357 ((|#4| (-1 |#4| (-948 |#1|)) |#4|) 31)))
-(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1505 (|#4| |#4| |#3|)) (-15 -1505 (|#4| |#4| (-641 |#3|))) (-15 -3957 (|#4| |#4| |#3|)) (-15 -3957 (|#4| |#4| (-641 |#3|))) (-15 -4357 (|#4| (-1 |#4| (-948 |#1|)) |#4|))) (-1045) (-789) (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)) (-15 -3395 ((-3 $ "failed") (-1170))))) (-945 (-948 |#1|) |#2| |#3|)) (T -980))
-((-4357 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-948 *4))) (-4 *4 (-1045)) (-4 *2 (-945 (-948 *4) *5 *6)) (-4 *5 (-789)) (-4 *6 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)) (-15 -3395 ((-3 $ "failed") (-1170)))))) (-5 *1 (-980 *4 *5 *6 *2)))) (-3957 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)) (-15 -3395 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-945 (-948 *4) *5 *6)))) (-3957 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)) (-15 -3395 ((-3 $ "failed") (-1170)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) (-1505 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)) (-15 -3395 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-945 (-948 *4) *5 *6)))) (-1505 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)) (-15 -3395 ((-3 $ "failed") (-1170)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))))
-(-10 -7 (-15 -1505 (|#4| |#4| |#3|)) (-15 -1505 (|#4| |#4| (-641 |#3|))) (-15 -3957 (|#4| |#4| |#3|)) (-15 -3957 (|#4| |#4| (-641 |#3|))) (-15 -4357 (|#4| (-1 |#4| (-948 |#1|)) |#4|)))
-((-1826 ((|#2| |#3|) 35)) (-3838 (((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 86)) (-2457 (((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 106)))
-(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2457 ((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3838 ((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -1826 (|#2| |#3|))) (-349) (-1235 |#1|) (-1235 |#2|) (-720 |#2| |#3|)) (T -981))
-((-1826 (*1 *2 *3) (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-981 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-720 *2 *3)))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5)))) (-2457 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -2047 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5)))))
-(-10 -7 (-15 -2457 ((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3838 ((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -1826 (|#2| |#3|)))
-((-2733 (((-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564)))) (-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564))))) 84)))
-(((-982 |#1| |#2|) (-10 -7 (-15 -2733 ((-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564)))) (-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564))))))) (-641 (-1170)) (-767)) (T -982))
-((-2733 (*1 *2 *2) (-12 (-5 *2 (-983 (-407 (-564)) (-860 *3) (-240 *4 (-767)) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-767)) (-5 *1 (-982 *3 *4)))))
-(-10 -7 (-15 -2733 ((-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564)))) (-983 (-407 (-564)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-564)))))))
-((-3009 (((-112) $ $) NIL)) (-3053 (((-3 (-112) "failed") $) 71)) (-1380 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2199 (($ $ (-3 (-112) "failed")) 72)) (-3453 (($ (-641 |#4|) |#4|) 25)) (-2766 (((-1152) $) NIL)) (-2673 (($ $) 69)) (-4052 (((-1114) $) NIL)) (-1976 (((-112) $) 70)) (-2994 (($) 30)) (-1332 ((|#4| $) 74)) (-4053 (((-641 |#4|) $) 73)) (-2423 (((-858) $) 68)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-983 |#1| |#2| |#3| |#4|) (-13 (-1094) (-611 (-858)) (-10 -8 (-15 -2994 ($)) (-15 -3453 ($ (-641 |#4|) |#4|)) (-15 -3053 ((-3 (-112) "failed") $)) (-15 -2199 ($ $ (-3 (-112) "failed"))) (-15 -1976 ((-112) $)) (-15 -4053 ((-641 |#4|) $)) (-15 -1332 (|#4| $)) (-15 -2673 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -1380 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-846) (-789) (-945 |#1| |#3| |#2|)) (T -983))
-((-2994 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) (-3453 (*1 *1 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-945 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-983 *4 *5 *6 *3)))) (-3053 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-1976 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-4053 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-641 *6)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-1332 (*1 *2 *1) (-12 (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)))) (-2673 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) (-1380 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))))
-(-13 (-1094) (-611 (-858)) (-10 -8 (-15 -2994 ($)) (-15 -3453 ($ (-641 |#4|) |#4|)) (-15 -3053 ((-3 (-112) "failed") $)) (-15 -2199 ($ $ (-3 (-112) "failed"))) (-15 -1976 ((-112) $)) (-15 -4053 ((-641 |#4|) $)) (-15 -1332 (|#4| $)) (-15 -2673 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -1380 ($ $)) |%noBranch|) |%noBranch|)))
-((-3074 (((-112) |#5| |#5|) 44)) (-1919 (((-112) |#5| |#5|) 58)) (-4272 (((-112) |#5| (-641 |#5|)) 80) (((-112) |#5| |#5|) 67)) (-2099 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-2833 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) 69)) (-4213 (((-1264)) 33)) (-3655 (((-1264) (-1152) (-1152) (-1152)) 29)) (-2893 (((-641 |#5|) (-641 |#5|)) 99)) (-4200 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)))) 91)) (-3704 (((-641 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 121)) (-3525 (((-112) |#5| |#5|) 53)) (-4004 (((-3 (-112) "failed") |#5| |#5|) 77)) (-4183 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-3238 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-2582 (((-112) (-641 |#4|) (-641 |#4|)) 66)) (-3490 (((-3 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 116)) (-4253 (((-641 |#5|) (-641 |#5|)) 49)))
-(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3655 ((-1264) (-1152) (-1152) (-1152))) (-15 -4213 ((-1264))) (-15 -3074 ((-112) |#5| |#5|)) (-15 -4253 ((-641 |#5|) (-641 |#5|))) (-15 -3525 ((-112) |#5| |#5|)) (-15 -1919 ((-112) |#5| |#5|)) (-15 -2099 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4183 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3238 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2582 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4004 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4272 ((-112) |#5| |#5|)) (-15 -4272 ((-112) |#5| (-641 |#5|))) (-15 -2893 ((-641 |#5|) (-641 |#5|))) (-15 -2833 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)))) (-15 -4200 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) (-15 -3704 ((-641 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3490 ((-3 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -984))
-((-3490 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -1606 (-641 *9)) (|:| -3577 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-3704 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -1606 (-641 *9)) (|:| -3577 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -3577 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-2833 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3577 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3)))) (-4272 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-4004 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2582 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3238 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4183 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2099 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-1919 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3525 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-4253 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-3074 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-4213 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3655 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3655 ((-1264) (-1152) (-1152) (-1152))) (-15 -4213 ((-1264))) (-15 -3074 ((-112) |#5| |#5|)) (-15 -4253 ((-641 |#5|) (-641 |#5|))) (-15 -3525 ((-112) |#5| |#5|)) (-15 -1919 ((-112) |#5| |#5|)) (-15 -2099 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4183 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3238 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2582 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4004 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4272 ((-112) |#5| |#5|)) (-15 -4272 ((-112) |#5| (-641 |#5|))) (-15 -2893 ((-641 |#5|) (-641 |#5|))) (-15 -2833 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)))) (-15 -4200 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) (-15 -3704 ((-641 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3490 ((-3 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3395 (((-1170) $) 15)) (-2128 (((-1152) $) 16)) (-3796 (($ (-1170) (-1152)) 14)) (-2423 (((-858) $) 13)))
-(((-985) (-13 (-611 (-858)) (-10 -8 (-15 -3796 ($ (-1170) (-1152))) (-15 -3395 ((-1170) $)) (-15 -2128 ((-1152) $))))) (T -985))
-((-3796 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-985)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-985)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-985)))))
-(-13 (-611 (-858)) (-10 -8 (-15 -3796 ($ (-1170) (-1152))) (-15 -3395 ((-1170) $)) (-15 -2128 ((-1152) $))))
-((-4357 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4357 (|#4| (-1 |#2| |#1|) |#3|))) (-556) (-556) (-988 |#1|) (-988 |#2|)) (T -986))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-4 *2 (-988 *6)) (-5 *1 (-986 *5 *6 *4 *2)) (-4 *4 (-988 *5)))))
-(-10 -7 (-15 -4357 (|#4| (-1 |#2| |#1|) |#3|)))
-((-4284 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) 66) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) 96)) (-3120 ((|#2| $) NIL) (((-1170) $) 61) (((-407 (-564)) $) NIL) (((-564) $) 93)) (-4277 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 115) (((-685 |#2|) (-685 $)) 28)) (-2534 (($) 99)) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 76) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 85)) (-1717 (($ $) 10)) (-1846 (((-3 $ "failed") $) 20)) (-4357 (($ (-1 |#2| |#2|) $) 22)) (-3431 (($) 16)) (-1687 (($ $) 55)) (-3254 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2827 (($ $) 12)) (-1311 (((-888 (-564)) $) 71) (((-888 (-379)) $) 80) (((-536) $) 40) (((-379) $) 44) (((-225) $) 48)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 91) (($ |#2|) NIL) (($ (-1170)) 58)) (-3719 (((-767)) 31)) (-2999 (((-112) $ $) 51)))
-(((-987 |#1| |#2|) (-10 -8 (-15 -2999 ((-112) |#1| |#1|)) (-15 -3431 (|#1|)) (-15 -1846 ((-3 |#1| "failed") |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -1311 ((-225) |#1|)) (-15 -1311 ((-379) |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -2423 (|#1| (-1170))) (-15 -4284 ((-3 (-1170) "failed") |#1|)) (-15 -3120 ((-1170) |#1|)) (-15 -2534 (|#1|)) (-15 -1687 (|#1| |#1|)) (-15 -2827 (|#1| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -1513 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -1513 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -4277 ((-685 |#2|) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 (|#1| |#1|)) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|))) (-988 |#2|) (-556)) (T -987))
-((-3719 (*1 *2) (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-987 *3 *4)) (-4 *3 (-988 *4)))))
-(-10 -8 (-15 -2999 ((-112) |#1| |#1|)) (-15 -3431 (|#1|)) (-15 -1846 ((-3 |#1| "failed") |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -1311 ((-225) |#1|)) (-15 -1311 ((-379) |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -2423 (|#1| (-1170))) (-15 -4284 ((-3 (-1170) "failed") |#1|)) (-15 -3120 ((-1170) |#1|)) (-15 -2534 (|#1|)) (-15 -1687 (|#1| |#1|)) (-15 -2827 (|#1| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -1513 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -1513 ((-885 (-564) |#1|) |#1| (-888 (-564)) (-885 (-564) |#1|))) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -4277 ((-685 |#2|) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 (|#1| |#1|)) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4198 ((|#1| $) 139 (|has| |#1| (-307)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-4199 (((-418 (-1166 $)) (-1166 $)) 130 (|has| |#1| (-905)))) (-2683 (($ $) 75)) (-2753 (((-418 $) $) 74)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 133 (|has| |#1| (-905)))) (-3162 (((-112) $ $) 61)) (-3249 (((-564) $) 120 (|has| |#1| (-816)))) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#1| "failed") $) 177) (((-3 (-1170) "failed") $) 128 (|has| |#1| (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) 111 (|has| |#1| (-1034 (-564)))) (((-3 (-564) "failed") $) 109 (|has| |#1| (-1034 (-564))))) (-3120 ((|#1| $) 178) (((-1170) $) 129 (|has| |#1| (-1034 (-1170)))) (((-407 (-564)) $) 112 (|has| |#1| (-1034 (-564)))) (((-564) $) 110 (|has| |#1| (-1034 (-564))))) (-2946 (($ $ $) 57)) (-4277 (((-685 (-564)) (-685 $)) 152 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 151 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 150) (((-685 |#1|) (-685 $)) 149)) (-3293 (((-3 $ "failed") $) 34)) (-2534 (($) 137 (|has| |#1| (-545)))) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-1339 (((-112) $) 73)) (-2384 (((-112) $) 122 (|has| |#1| (-816)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 146 (|has| |#1| (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 145 (|has| |#1| (-882 (-379))))) (-4112 (((-112) $) 32)) (-1717 (($ $) 141)) (-2323 ((|#1| $) 143)) (-1846 (((-3 $ "failed") $) 108 (|has| |#1| (-1145)))) (-3326 (((-112) $) 121 (|has| |#1| (-816)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-2855 (($ $ $) 118 (|has| |#1| (-846)))) (-1497 (($ $ $) 117 (|has| |#1| (-846)))) (-4357 (($ (-1 |#1| |#1|) $) 169)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 72)) (-3431 (($) 107 (|has| |#1| (-1145)) CONST)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-1687 (($ $) 138 (|has| |#1| (-307)))) (-2882 ((|#1| $) 135 (|has| |#1| (-545)))) (-2037 (((-418 (-1166 $)) (-1166 $)) 132 (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) 131 (|has| |#1| (-905)))) (-3688 (((-418 $) $) 76)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-3291 (($ $ (-641 |#1|) (-641 |#1|)) 175 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 173 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 172 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 171 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 170 (|has| |#1| (-514 (-1170) |#1|)))) (-1700 (((-767) $) 60)) (-4366 (($ $ |#1|) 176 (|has| |#1| (-286 |#1| |#1|)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-3254 (($ $) 168 (|has| |#1| (-233))) (($ $ (-767)) 166 (|has| |#1| (-233))) (($ $ (-1170)) 164 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 163 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 162 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 161 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2827 (($ $) 140)) (-2336 ((|#1| $) 142)) (-1311 (((-888 (-564)) $) 148 (|has| |#1| (-612 (-888 (-564))))) (((-888 (-379)) $) 147 (|has| |#1| (-612 (-888 (-379))))) (((-536) $) 125 (|has| |#1| (-612 (-536)))) (((-379) $) 124 (|has| |#1| (-1018))) (((-225) $) 123 (|has| |#1| (-1018)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 134 (-2358 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-407 (-564))) 68) (($ |#1|) 181) (($ (-1170)) 127 (|has| |#1| (-1034 (-1170))))) (-2420 (((-3 $ "failed") $) 126 (-2807 (|has| |#1| (-145)) (-2358 (|has| $ (-145)) (|has| |#1| (-905)))))) (-3719 (((-767)) 29 T CONST)) (-3448 ((|#1| $) 136 (|has| |#1| (-545)))) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-3673 (($ $) 119 (|has| |#1| (-816)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $) 167 (|has| |#1| (-233))) (($ $ (-767)) 165 (|has| |#1| (-233))) (($ $ (-1170)) 160 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 159 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 158 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 157 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-3034 (((-112) $ $) 115 (|has| |#1| (-846)))) (-3011 (((-112) $ $) 114 (|has| |#1| (-846)))) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 116 (|has| |#1| (-846)))) (-2999 (((-112) $ $) 113 (|has| |#1| (-846)))) (-3092 (($ $ $) 67) (($ |#1| |#1|) 144)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 70) (($ (-407 (-564)) $) 69) (($ |#1| $) 180) (($ $ |#1|) 179)))
-(((-988 |#1|) (-140) (-556)) (T -988))
-((-3092 (*1 *1 *2 *2) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) (-1717 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) (-2827 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-1687 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-2534 (*1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-545)) (-4 *2 (-556)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-545)))))
-(-13 (-363) (-38 |t#1|) (-1034 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-880 |t#1|) (-400 |t#1|) (-10 -8 (-15 -3092 ($ |t#1| |t#1|)) (-15 -2323 (|t#1| $)) (-15 -2336 (|t#1| $)) (-15 -1717 ($ $)) (-15 -2827 ($ $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-1034 (-564))) (PROGN (-6 (-1034 (-564))) (-6 (-1034 (-407 (-564))))) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-816)) (-6 (-816)) |%noBranch|) (IF (|has| |t#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1034 (-1170))) (-6 (-1034 (-1170))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -4198 (|t#1| $)) (-15 -1687 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2534 ($)) (-15 -3448 (|t#1| $)) (-15 -2882 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-905)) (-6 (-905)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 #1=(-1170)) |has| |#1| (-1034 (-1170))) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-612 (-225)) |has| |#1| (-1018)) ((-612 (-379)) |has| |#1| (-1018)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-888 (-379))) |has| |#1| (-612 (-888 (-379)))) ((-612 (-888 (-564))) |has| |#1| (-612 (-888 (-564)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-787) |has| |#1| (-816)) ((-788) |has| |#1| (-816)) ((-790) |has| |#1| (-816)) ((-791) |has| |#1| (-816)) ((-816) |has| |#1| (-816)) ((-844) |has| |#1| (-816)) ((-846) -2807 (|has| |#1| (-846)) (|has| |#1| (-816))) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-564)) |has| |#1| (-882 (-564))) ((-880 |#1|) . T) ((-905) |has| |#1| (-905)) ((-916) . T) ((-1018) |has| |#1| (-1018)) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-564))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 #1#) |has| |#1| (-1034 (-1170))) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1209) . T) ((-1213) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1299 (($ (-1136 |#1| |#2|)) 11)) (-2322 (((-1136 |#1| |#2|) $) 12)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-4366 ((|#2| $ (-240 |#1| |#2|)) 16)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2403 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL)))
-(((-989 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1299 ($ (-1136 |#1| |#2|))) (-15 -2322 ((-1136 |#1| |#2|) $)) (-15 -4366 (|#2| $ (-240 |#1| |#2|))))) (-917) (-363)) (T -989))
-((-1299 (*1 *1 *2) (-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)) (-5 *1 (-989 *3 *4)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-917)) (-4 *2 (-363)) (-5 *1 (-989 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -1299 ($ (-1136 |#1| |#2|))) (-15 -2322 ((-1136 |#1| |#2|) $)) (-15 -4366 (|#2| $ (-240 |#1| |#2|)))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1350 (((-1129) $) 9)) (-2423 (((-858) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-990) (-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $))))) (T -990))
-((-1350 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-990)))))
-(-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $))))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) 8)) (-4080 (($) 7 T CONST)) (-4332 (($ $) 47)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2581 (((-767) $) 46)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3149 ((|#1| $) 40)) (-2566 (($ |#1| $) 41)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1304 ((|#1| $) 45)) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-2570 ((|#1| |#1| $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-1821 ((|#1| $) 48)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) 43)) (-2773 ((|#1| $) 44)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-991 |#1|) (-140) (-1209)) (T -991))
-((-2570 (*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))) (-4332 (*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))) (-1304 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))) (-2773 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4407) (-15 -2570 (|t#1| |t#1| $)) (-15 -1821 (|t#1| $)) (-15 -4332 ($ $)) (-15 -2581 ((-767) $)) (-15 -1304 (|t#1| $)) (-15 -2773 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-1494 (((-112) $) 43)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-3120 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 44)) (-2450 (((-3 (-407 (-564)) "failed") $) 78)) (-1364 (((-112) $) 72)) (-2553 (((-407 (-564)) $) 76)) (-4112 (((-112) $) 42)) (-2499 ((|#2| $) 22)) (-4357 (($ (-1 |#2| |#2|) $) 19)) (-3936 (($ $) 58)) (-3254 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1311 (((-536) $) 67)) (-3185 (($ $) 17)) (-2423 (((-858) $) 53) (($ (-564)) 39) (($ |#2|) 37) (($ (-407 (-564))) NIL)) (-3719 (((-767)) 10)) (-3673 ((|#2| $) 71)) (-2974 (((-112) $ $) 26)) (-2999 (((-112) $ $) 69)) (-3082 (($ $) 30) (($ $ $) 29)) (-3070 (($ $ $) 27)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-992 |#1| |#2|) (-10 -8 (-15 -2423 (|#1| (-407 (-564)))) (-15 -2999 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -3936 (|#1| |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -2450 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2553 ((-407 (-564)) |#1|)) (-15 -1364 ((-112) |#1|)) (-15 -3673 (|#2| |#1|)) (-15 -2499 (|#2| |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -2423 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-564))) (-15 -4112 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -1494 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|))) (-993 |#2|) (-172)) (T -992))
-((-3719 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-992 *3 *4)) (-4 *3 (-993 *4)))))
-(-10 -8 (-15 -2423 (|#1| (-407 (-564)))) (-15 -2999 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -3936 (|#1| |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -2450 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2553 ((-407 (-564)) |#1|)) (-15 -1364 ((-112) |#1|)) (-15 -3673 (|#2| |#1|)) (-15 -2499 (|#2| |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -4357 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -2423 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-564))) (-15 -4112 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -1494 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-4284 (((-3 (-564) "failed") $) 119 (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 117 (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) 114)) (-3120 (((-564) $) 118 (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) 116 (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) 115)) (-4277 (((-685 (-564)) (-685 $)) 89 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 88 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 87) (((-685 |#1|) (-685 $)) 86)) (-3293 (((-3 $ "failed") $) 34)) (-3712 ((|#1| $) 79)) (-2450 (((-3 (-407 (-564)) "failed") $) 75 (|has| |#1| (-545)))) (-1364 (((-112) $) 77 (|has| |#1| (-545)))) (-2553 (((-407 (-564)) $) 76 (|has| |#1| (-545)))) (-3133 (($ |#1| |#1| |#1| |#1|) 80)) (-4112 (((-112) $) 32)) (-2499 ((|#1| $) 81)) (-2855 (($ $ $) 68 (|has| |#1| (-846)))) (-1497 (($ $ $) 67 (|has| |#1| (-846)))) (-4357 (($ (-1 |#1| |#1|) $) 90)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 72 (|has| |#1| (-363)))) (-1407 ((|#1| $) 82)) (-1620 ((|#1| $) 83)) (-1473 ((|#1| $) 84)) (-4052 (((-1114) $) 11)) (-3291 (($ $ (-641 |#1|) (-641 |#1|)) 96 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 95 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 94 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 93 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 92 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 91 (|has| |#1| (-514 (-1170) |#1|)))) (-4366 (($ $ |#1|) 97 (|has| |#1| (-286 |#1| |#1|)))) (-3254 (($ $) 113 (|has| |#1| (-233))) (($ $ (-767)) 111 (|has| |#1| (-233))) (($ $ (-1170)) 109 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 108 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 107 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 106 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-1311 (((-536) $) 73 (|has| |#1| (-612 (-536))))) (-3185 (($ $) 85)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 39) (($ (-407 (-564))) 62 (-2807 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564))))))) (-2420 (((-3 $ "failed") $) 74 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-3673 ((|#1| $) 78 (|has| |#1| (-1054)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $) 112 (|has| |#1| (-233))) (($ $ (-767)) 110 (|has| |#1| (-233))) (($ $ (-1170)) 105 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 104 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 103 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 102 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 101) (($ $ (-1 |#1| |#1|)) 100)) (-3034 (((-112) $ $) 65 (|has| |#1| (-846)))) (-3011 (((-112) $ $) 64 (|has| |#1| (-846)))) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 66 (|has| |#1| (-846)))) (-2999 (((-112) $ $) 63 (|has| |#1| (-846)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71 (|has| |#1| (-363)))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 41) (($ |#1| $) 40) (($ $ (-407 (-564))) 70 (|has| |#1| (-363))) (($ (-407 (-564)) $) 69 (|has| |#1| (-363)))))
-(((-993 |#1|) (-140) (-172)) (T -993))
-((-3185 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3133 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2450 (*1 *2 *1) (|partial| -12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))))
-(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -3185 ($ $)) (-15 -1473 (|t#1| $)) (-15 -1620 (|t#1| $)) (-15 -1407 (|t#1| $)) (-15 -2499 (|t#1| $)) (-15 -3133 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3712 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3673 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -1364 ((-112) $)) (-15 -2553 ((-407 (-564)) $)) (-15 -2450 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -2807 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 #0#) |has| |#1| (-363)) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) |has| |#1| (-363)) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-363)) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-4357 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4357 (|#3| (-1 |#4| |#2|) |#1|))) (-993 |#2|) (-172) (-993 |#4|) (-172)) (T -994))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-993 *6)) (-5 *1 (-994 *4 *5 *2 *6)) (-4 *4 (-993 *5)))))
-(-10 -7 (-15 -4357 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-3712 ((|#1| $) 12)) (-2450 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-1364 (((-112) $) NIL (|has| |#1| (-545)))) (-2553 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-3133 (($ |#1| |#1| |#1| |#1|) 16)) (-4112 (((-112) $) NIL)) (-2499 ((|#1| $) NIL)) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-363)))) (-1407 ((|#1| $) 15)) (-1620 ((|#1| $) 14)) (-1473 ((|#1| $) 13)) (-4052 (((-1114) $) NIL)) (-3291 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4366 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3254 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3185 (($ $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564))))))) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-3673 ((|#1| $) NIL (|has| |#1| (-1054)))) (-2403 (($) 8 T CONST)) (-2417 (($) 10 T CONST)) (-4063 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-363)))))
-(((-995 |#1|) (-993 |#1|) (-172)) (T -995))
-NIL
-(-993 |#1|)
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1876 (((-112) $ (-767)) NIL)) (-4080 (($) NIL T CONST)) (-4332 (($ $) 23)) (-1477 (($ (-641 |#1|)) 33)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2581 (((-767) $) 26)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3149 ((|#1| $) 28)) (-2566 (($ |#1| $) 17)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1304 ((|#1| $) 27)) (-2554 ((|#1| $) 22)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-2570 ((|#1| |#1| $) 16)) (-1976 (((-112) $) 18)) (-2994 (($) NIL)) (-1821 ((|#1| $) 21)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) NIL)) (-2773 ((|#1| $) 30)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-996 |#1|) (-13 (-991 |#1|) (-10 -8 (-15 -1477 ($ (-641 |#1|))))) (-1094)) (T -996))
-((-1477 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-996 *3)))))
-(-13 (-991 |#1|) (-10 -8 (-15 -1477 ($ (-641 |#1|)))))
-((-3700 (($ $) 12)) (-3614 (($ $ (-564)) 13)))
-(((-997 |#1|) (-10 -8 (-15 -3700 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-564)))) (-998)) (T -997))
-NIL
-(-10 -8 (-15 -3700 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-564))))
-((-3700 (($ $) 6)) (-3614 (($ $ (-564)) 7)) (** (($ $ (-407 (-564))) 8)))
-(((-998) (-140)) (T -998))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-564))))) (-3614 (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-564)))) (-3700 (*1 *1 *1) (-4 *1 (-998))))
-(-13 (-10 -8 (-15 -3700 ($ $)) (-15 -3614 ($ $ (-564))) (-15 ** ($ $ (-407 (-564))))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2729 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-3063 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3330 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2270 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-3847 (((-407 |#2|) $) NIL)) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2753 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3162 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2622 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-2703 (((-112)) NIL)) (-2408 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| (-407 |#2|) (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-3474 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 81) (($ (-1259 |#2|) |#2|) NIL)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-2946 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4057 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-3424 (((-1259 $) (-1259 $)) NIL)) (-1316 (($ |#3|) 75) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3293 (((-3 $ "failed") $) NIL)) (-1932 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-2549 (((-112) |#1| |#1|) NIL)) (-2514 (((-917)) NIL)) (-2534 (($) NIL (|has| (-407 |#2|) (-368)))) (-2872 (((-112)) NIL)) (-3988 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2960 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-2571 (($ $) NIL)) (-1471 (($) NIL (|has| (-407 |#2|) (-349)))) (-1436 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-3456 (($ $ (-767)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-1339 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3744 (((-917) $) NIL (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) NIL (|has| (-407 |#2|) (-349)))) (-4112 (((-112) $) NIL)) (-1975 (((-767)) NIL)) (-2101 (((-1259 $) (-1259 $)) NIL)) (-2499 (((-407 |#2|) $) NIL)) (-1508 (((-641 (-948 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-1846 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3514 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-3256 (((-917) $) NIL (|has| (-407 |#2|) (-368)))) (-1305 ((|#3| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2766 (((-1152) $) NIL)) (-1878 (((-685 (-407 |#2|))) 57)) (-4148 (((-685 (-407 |#2|))) 56)) (-3936 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3131 (($ (-1259 |#2|) |#2|) 82)) (-3029 (((-685 (-407 |#2|))) 55)) (-2334 (((-685 (-407 |#2|))) 54)) (-2798 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-3851 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 88)) (-2002 (((-1259 $)) 51)) (-2457 (((-1259 $)) 50)) (-1646 (((-112) $) NIL)) (-2179 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3431 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-2083 (($ (-917)) NIL (|has| (-407 |#2|) (-368)))) (-1410 (((-3 |#2| "failed")) 70)) (-4052 (((-1114) $) NIL)) (-3827 (((-767)) NIL)) (-2249 (($) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-2123 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-3688 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2998 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1700 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-4366 ((|#1| $ |#1| |#1|) NIL)) (-2542 (((-3 |#2| "failed")) 68)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1330 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 47)) (-4255 (((-767) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-3254 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-767)) NIL (-2807 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2807 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1942 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3721 ((|#3|) 58)) (-3826 (($) NIL (|has| (-407 |#2|) (-349)))) (-4225 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 83) (((-685 (-407 |#2|)) (-1259 $)) NIL)) (-1311 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-2073 (((-1259 $) (-1259 $)) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-2807 (|has| (-407 |#2|) (-1034 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2420 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-2134 ((|#3| $) NIL)) (-3719 (((-767)) NIL T CONST)) (-3724 (((-112)) 65)) (-2399 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) 143)) (-2119 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1399 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3790 (((-112)) NIL)) (-2403 (($) 109 T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1170))))) (($ $ (-767)) NIL (-2807 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2807 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363)))))
-(((-999 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-407 |#2|) (-767)) (T -999))
+((-4223 (($ $ (-1089 $)) 7) (($ $ (-1173)) 6)))
+(((-957) (-140)) (T -957))
+((-4223 (*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-957)))) (-4223 (*1 *1 *1 *2) (-12 (-4 *1 (-957)) (-5 *2 (-1173)))))
+(-13 (-10 -8 (-15 -4223 ($ $ (-1173))) (-15 -4223 ($ $ (-1089 $)))))
+((-1363 (((-2 (|:| -4378 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173)) (-1173)) 30) (((-2 (|:| -4378 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173))) 31) (((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1169 |#1|))) (-950 |#1|) (-1173) (-950 |#1|) (-1173)) 49)))
+(((-958 |#1|) (-10 -7 (-15 -1363 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1169 |#1|))) (-950 |#1|) (-1173) (-950 |#1|) (-1173))) (-15 -1363 ((-2 (|:| -4378 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1363 ((-2 (|:| -4378 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173)) (-1173)))) (-13 (-363) (-147))) (T -958))
+((-1363 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) (-5 *5 (-1173)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -4378 (-642 (-564))) (|:| |poly| (-642 (-1169 *6))) (|:| |prim| (-1169 *6)))) (-5 *1 (-958 *6)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -4378 (-642 (-564))) (|:| |poly| (-642 (-1169 *5))) (|:| |prim| (-1169 *5)))) (-5 *1 (-958 *5)))) (-1363 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-950 *5)) (-5 *4 (-1173)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1169 *5)))) (-5 *1 (-958 *5)))))
+(-10 -7 (-15 -1363 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1169 |#1|))) (-950 |#1|) (-1173) (-950 |#1|) (-1173))) (-15 -1363 ((-2 (|:| -4378 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173)))) (-15 -1363 ((-2 (|:| -4378 (-642 (-564))) (|:| |poly| (-642 (-1169 |#1|))) (|:| |prim| (-1169 |#1|))) (-642 (-950 |#1|)) (-642 (-1173)) (-1173))))
+((-1644 (((-642 |#1|) |#1| |#1|) 46)) (-1469 (((-112) |#1|) 43)) (-1982 ((|#1| |#1|) 81)) (-2930 ((|#1| |#1|) 80)))
+(((-959 |#1|) (-10 -7 (-15 -1469 ((-112) |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -1644 ((-642 |#1|) |#1| |#1|))) (-545)) (T -959))
+((-1644 (*1 *2 *3 *3) (-12 (-5 *2 (-642 *3)) (-5 *1 (-959 *3)) (-4 *3 (-545)))) (-1982 (*1 *2 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-545)))) (-2930 (*1 *2 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-545)))) (-1469 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-545)))))
+(-10 -7 (-15 -1469 ((-112) |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -1644 ((-642 |#1|) |#1| |#1|)))
+((-2837 (((-1267) (-860)) 9)))
+(((-960) (-10 -7 (-15 -2837 ((-1267) (-860))))) (T -960))
+((-2837 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-960)))))
+(-10 -7 (-15 -2837 ((-1267) (-860))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 77 (|has| |#1| (-556)))) (-1387 (($ $) 78 (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 34)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-1718 (($ $) 31)) (-3104 (((-3 $ "failed") $) 41)) (-3246 (($ $) NIL (|has| |#1| (-452)))) (-2575 (($ $ |#1| |#2| $) 61)) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) 17)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| |#2|) NIL)) (-1398 ((|#2| $) 24)) (-2026 (($ (-1 |#2| |#2|) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3950 (($ $) 28)) (-3962 ((|#1| $) 26)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) 50)) (-3932 ((|#1| $) NIL)) (-2914 (($ $ |#2| |#1| $) 89 (-12 (|has| |#2| (-131)) (|has| |#1| (-556))))) (-2896 (((-3 $ "failed") $ $) 90 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 84 (|has| |#1| (-556)))) (-2775 ((|#2| $) 22)) (-4028 ((|#1| $) NIL (|has| |#1| (-452)))) (-2327 (((-860) $) NIL) (($ (-564)) 45) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 40) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ |#2|) 37)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) 15 T CONST)) (-1967 (($ $ $ (-769)) 73 (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) 83 (|has| |#1| (-556)))) (-2312 (($) 27 T CONST)) (-2322 (($) 12 T CONST)) (-2872 (((-112) $ $) 82)) (-2998 (($ $ |#1|) 91 (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) 68) (($ $ (-769)) 66)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 65) (($ $ |#1|) 63) (($ |#1| $) 62) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-961 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -2914 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|))) (-1047) (-790)) (T -961))
+((-2914 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-961 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *2 (-790)))))
+(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -2914 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL (-2706 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))))) (-3532 (($ $ $) 65 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))))) (-1532 (((-3 $ "failed") $ $) 52 (-2706 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))))) (-2521 (((-769)) 36 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2592 ((|#2| $) 22)) (-4022 ((|#1| $) 21)) (-1976 (($) NIL (-2706 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))) CONST)) (-3104 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))))) (-2433 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3953 (((-112) $) NIL (-2706 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))))) (-2755 (($ $ $) NIL (-2706 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-1520 (($ $ $) NIL (-2706 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-3929 (($ |#1| |#2|) 20)) (-1945 (((-919) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 39 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2047 (($ (-919)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-4033 (((-1117) $) NIL)) (-1389 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-3759 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2327 (((-860) $) 14)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 42 (-2706 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))) CONST)) (-2322 (($) 25 (-2706 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))) CONST)) (-2934 (((-112) $ $) NIL (-2706 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-2908 (((-112) $ $) NIL (-2706 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-2872 (((-112) $ $) 19)) (-2922 (((-112) $ $) NIL (-2706 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-2897 (((-112) $ $) 69 (-2706 (-12 (|has| |#1| (-791)) (|has| |#2| (-791))) (-12 (|has| |#1| (-848)) (|has| |#2| (-848)))))) (-2998 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2987 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2974 (($ $ $) 45 (-2706 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791)))))) (** (($ $ (-564)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-769)) 32 (-2706 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724))))) (($ $ (-919)) NIL (-2706 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))))) (* (($ (-564) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-769) $) 48 (-2706 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791))))) (($ (-919) $) NIL (-2706 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-791)) (|has| |#2| (-791))))) (($ $ $) 28 (-2706 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-724)) (|has| |#2| (-724)))))))
+(((-962 |#1| |#2|) (-13 (-1097) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-724)) (IF (|has| |#2| (-724)) (-6 (-724)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-791)) (IF (|has| |#2| (-791)) (-6 (-791)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-848)) (IF (|has| |#2| (-848)) (-6 (-848)) |%noBranch|) |%noBranch|) (-15 -3929 ($ |#1| |#2|)) (-15 -4022 (|#1| $)) (-15 -2592 (|#2| $)))) (-1097) (-1097)) (T -962))
+((-3929 (*1 *1 *2 *3) (-12 (-5 *1 (-962 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-4022 (*1 *2 *1) (-12 (-4 *2 (-1097)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1097)))) (-2592 (*1 *2 *1) (-12 (-4 *2 (-1097)) (-5 *1 (-962 *3 *2)) (-4 *3 (-1097)))))
+(-13 (-1097) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-724)) (IF (|has| |#2| (-724)) (-6 (-724)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-791)) (IF (|has| |#2| (-791)) (-6 (-791)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-848)) (IF (|has| |#2| (-848)) (-6 (-848)) |%noBranch|) |%noBranch|) (-15 -3929 ($ |#1| |#2|)) (-15 -4022 (|#1| $)) (-15 -2592 (|#2| $))))
+((-2085 (((-1101) $) 12)) (-3050 (($ (-506) (-1101)) 14)) (-2461 (((-506) $) 9)) (-2327 (((-860) $) 26)))
+(((-963) (-13 (-611 (-860)) (-10 -8 (-15 -2461 ((-506) $)) (-15 -2085 ((-1101) $)) (-15 -3050 ($ (-506) (-1101)))))) (T -963))
+((-2461 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-963)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-963)))) (-3050 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1101)) (-5 *1 (-963)))))
+(-13 (-611 (-860)) (-10 -8 (-15 -2461 ((-506) $)) (-15 -2085 ((-1101) $)) (-15 -3050 ($ (-506) (-1101)))))
+((-2907 (((-112) $ $) NIL)) (-3331 (($) NIL T CONST)) (-2285 (($ $ $) 11)) (-2268 (($ $) 9)) (-3315 (((-1155) $) NIL)) (-3092 (((-689 |#1|) $) 24)) (-2534 (((-689 (-871 $ $)) $) 36)) (-1740 (((-689 $) $) 29)) (-3694 (((-689 (-871 $ $)) $) 37)) (-1815 (((-689 (-871 $ $)) $) 38)) (-2559 (((-689 (-871 $ $)) $) 35)) (-1403 (($ $ $) 12)) (-4033 (((-1117) $) NIL)) (-2092 (($) 17 T CONST)) (-4297 (($ $ $) 13)) (-2327 (((-860) $) 40) (($ |#1|) 8)) (-1648 (((-112) $ $) NIL)) (-2275 (($ $ $) 10)) (-2872 (((-112) $ $) NIL)))
+(((-964 |#1|) (-13 (-965) (-614 |#1|) (-10 -8 (-15 -3092 ((-689 |#1|) $)) (-15 -1740 ((-689 $) $)) (-15 -2559 ((-689 (-871 $ $)) $)) (-15 -2534 ((-689 (-871 $ $)) $)) (-15 -3694 ((-689 (-871 $ $)) $)) (-15 -1815 ((-689 (-871 $ $)) $)))) (-1097)) (T -964))
+((-3092 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-964 *3)) (-4 *3 (-1097)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-689 (-964 *3))) (-5 *1 (-964 *3)) (-4 *3 (-1097)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-1097)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-1097)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-1097)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-1097)))))
+(-13 (-965) (-614 |#1|) (-10 -8 (-15 -3092 ((-689 |#1|) $)) (-15 -1740 ((-689 $) $)) (-15 -2559 ((-689 (-871 $ $)) $)) (-15 -2534 ((-689 (-871 $ $)) $)) (-15 -3694 ((-689 (-871 $ $)) $)) (-15 -1815 ((-689 (-871 $ $)) $))))
+((-2907 (((-112) $ $) 7)) (-3331 (($) 20 T CONST)) (-2285 (($ $ $) 16)) (-2268 (($ $) 18)) (-3315 (((-1155) $) 10)) (-1403 (($ $ $) 15)) (-4033 (((-1117) $) 11)) (-2092 (($) 19 T CONST)) (-4297 (($ $ $) 14)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2275 (($ $ $) 17)) (-2872 (((-112) $ $) 6)))
+(((-965) (-140)) (T -965))
+((-3331 (*1 *1) (-4 *1 (-965))) (-2092 (*1 *1) (-4 *1 (-965))) (-2268 (*1 *1 *1) (-4 *1 (-965))) (-2275 (*1 *1 *1 *1) (-4 *1 (-965))) (-2285 (*1 *1 *1 *1) (-4 *1 (-965))) (-1403 (*1 *1 *1 *1) (-4 *1 (-965))) (-4297 (*1 *1 *1 *1) (-4 *1 (-965))))
+(-13 (-1097) (-10 -8 (-15 -3331 ($) -2858) (-15 -2092 ($) -2858) (-15 -2268 ($ $)) (-15 -2275 ($ $ $)) (-15 -2285 ($ $ $)) (-15 -1403 ($ $ $)) (-15 -4297 ($ $ $))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) 8)) (-1976 (($) 7 T CONST)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3427 (($ $ $) 44)) (-2740 (($ $ $) 45)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1520 ((|#1| $) 46)) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2730 ((|#1| $) 40)) (-3183 (($ |#1| $) 41)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) 43)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-966 |#1|) (-140) (-848)) (T -966))
+((-1520 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848)))) (-2740 (*1 *1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848)))) (-3427 (*1 *1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4410) (-15 -1520 (|t#1| $)) (-15 -2740 ($ $ $)) (-15 -3427 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-4126 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2080 |#2|)) |#2| |#2|) 105)) (-1804 ((|#2| |#2| |#2|) 103)) (-2655 (((-2 (|:| |coef2| |#2|) (|:| -2080 |#2|)) |#2| |#2|) 107)) (-2797 (((-2 (|:| |coef1| |#2|) (|:| -2080 |#2|)) |#2| |#2|) 109)) (-3980 (((-2 (|:| |coef2| |#2|) (|:| -1725 |#1|)) |#2| |#2|) 131 (|has| |#1| (-452)))) (-2076 (((-2 (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|) 57)) (-2250 (((-2 (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|) 81)) (-2787 (((-2 (|:| |coef1| |#2|) (|:| -2022 |#1|)) |#2| |#2|) 83)) (-1535 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-1339 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769)) 89)) (-1609 (((-2 (|:| |coef2| |#2|) (|:| -1846 |#1|)) |#2|) 121)) (-3268 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769)) 92)) (-3052 (((-642 (-769)) |#2| |#2|) 102)) (-2438 ((|#1| |#2| |#2|) 51)) (-2479 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1725 |#1|)) |#2| |#2|) 129 (|has| |#1| (-452)))) (-1725 ((|#1| |#2| |#2|) 127 (|has| |#1| (-452)))) (-3678 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|) 55)) (-3795 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|) 80)) (-2022 ((|#1| |#2| |#2|) 77)) (-3437 (((-2 (|:| -4378 |#1|) (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2|) 42)) (-2425 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-2097 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-2899 ((|#2| |#2| |#2|) 93)) (-2018 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769)) 87)) (-2822 ((|#2| |#2| |#2| (-769)) 85)) (-2080 ((|#2| |#2| |#2|) 135 (|has| |#1| (-452)))) (-2896 (((-1262 |#2|) (-1262 |#2|) |#1|) 22)) (-4376 (((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2|) 47)) (-4283 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1846 |#1|)) |#2|) 119)) (-1846 ((|#1| |#2|) 116)) (-2343 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769)) 91)) (-2205 ((|#2| |#2| |#2| (-769)) 90)) (-2319 (((-642 |#2|) |#2| |#2|) 99)) (-1667 ((|#2| |#2| |#1| |#1| (-769)) 62)) (-4048 ((|#1| |#1| |#1| (-769)) 61)) (* (((-1262 |#2|) |#1| (-1262 |#2|)) 17)))
+(((-967 |#1| |#2|) (-10 -7 (-15 -2022 (|#1| |#2| |#2|)) (-15 -3795 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|)) (-15 -2250 ((-2 (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|)) (-15 -2787 ((-2 (|:| |coef1| |#2|) (|:| -2022 |#1|)) |#2| |#2|)) (-15 -2822 (|#2| |#2| |#2| (-769))) (-15 -2018 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -1339 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -2205 (|#2| |#2| |#2| (-769))) (-15 -2343 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -3268 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -2899 (|#2| |#2| |#2|)) (-15 -2097 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1535 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1804 (|#2| |#2| |#2|)) (-15 -4126 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2080 |#2|)) |#2| |#2|)) (-15 -2655 ((-2 (|:| |coef2| |#2|) (|:| -2080 |#2|)) |#2| |#2|)) (-15 -2797 ((-2 (|:| |coef1| |#2|) (|:| -2080 |#2|)) |#2| |#2|)) (-15 -1846 (|#1| |#2|)) (-15 -4283 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1846 |#1|)) |#2|)) (-15 -1609 ((-2 (|:| |coef2| |#2|) (|:| -1846 |#1|)) |#2|)) (-15 -2319 ((-642 |#2|) |#2| |#2|)) (-15 -3052 ((-642 (-769)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -1725 (|#1| |#2| |#2|)) (-15 -2479 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1725 |#1|)) |#2| |#2|)) (-15 -3980 ((-2 (|:| |coef2| |#2|) (|:| -1725 |#1|)) |#2| |#2|)) (-15 -2080 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1262 |#2|) |#1| (-1262 |#2|))) (-15 -2896 ((-1262 |#2|) (-1262 |#2|) |#1|)) (-15 -3437 ((-2 (|:| -4378 |#1|) (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2|)) (-15 -4376 ((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2|)) (-15 -4048 (|#1| |#1| |#1| (-769))) (-15 -1667 (|#2| |#2| |#1| |#1| (-769))) (-15 -2425 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2438 (|#1| |#2| |#2|)) (-15 -3678 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|)) (-15 -2076 ((-2 (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|))) (-556) (-1238 |#1|)) (T -967))
+((-2076 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2022 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-3678 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2022 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2438 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2)))) (-2425 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) (-1667 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-769)) (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) (-4048 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *2 (-556)) (-5 *1 (-967 *2 *4)) (-4 *4 (-1238 *2)))) (-4376 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-3437 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -4378 *4) (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2896 (*1 *2 *2 *3) (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-556)) (-5 *1 (-967 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-556)) (-5 *1 (-967 *3 *4)))) (-2080 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) (-3980 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1725 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2479 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1725 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1725 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2)))) (-3052 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 (-769))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2319 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1609 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1846 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-4283 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1846 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1846 (*1 *2 *3) (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2)))) (-2797 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2080 *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2655 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2080 *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-4126 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2080 *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-1804 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) (-1535 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2097 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2899 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))) (-3268 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))) (-2343 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))) (-2205 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-556)) (-5 *1 (-967 *4 *2)) (-4 *2 (-1238 *4)))) (-1339 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))) (-2018 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))) (-2822 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-556)) (-5 *1 (-967 *4 *2)) (-4 *2 (-1238 *4)))) (-2787 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2022 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2250 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2022 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-3795 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2022 *4))) (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))) (-2022 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2)))))
+(-10 -7 (-15 -2022 (|#1| |#2| |#2|)) (-15 -3795 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|)) (-15 -2250 ((-2 (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|)) (-15 -2787 ((-2 (|:| |coef1| |#2|) (|:| -2022 |#1|)) |#2| |#2|)) (-15 -2822 (|#2| |#2| |#2| (-769))) (-15 -2018 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -1339 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -2205 (|#2| |#2| |#2| (-769))) (-15 -2343 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -3268 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-769))) (-15 -2899 (|#2| |#2| |#2|)) (-15 -2097 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1535 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1804 (|#2| |#2| |#2|)) (-15 -4126 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2080 |#2|)) |#2| |#2|)) (-15 -2655 ((-2 (|:| |coef2| |#2|) (|:| -2080 |#2|)) |#2| |#2|)) (-15 -2797 ((-2 (|:| |coef1| |#2|) (|:| -2080 |#2|)) |#2| |#2|)) (-15 -1846 (|#1| |#2|)) (-15 -4283 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1846 |#1|)) |#2|)) (-15 -1609 ((-2 (|:| |coef2| |#2|) (|:| -1846 |#1|)) |#2|)) (-15 -2319 ((-642 |#2|) |#2| |#2|)) (-15 -3052 ((-642 (-769)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -1725 (|#1| |#2| |#2|)) (-15 -2479 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1725 |#1|)) |#2| |#2|)) (-15 -3980 ((-2 (|:| |coef2| |#2|) (|:| -1725 |#1|)) |#2| |#2|)) (-15 -2080 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1262 |#2|) |#1| (-1262 |#2|))) (-15 -2896 ((-1262 |#2|) (-1262 |#2|) |#1|)) (-15 -3437 ((-2 (|:| -4378 |#1|) (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2|)) (-15 -4376 ((-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) |#2| |#2|)) (-15 -4048 (|#1| |#1| |#1| (-769))) (-15 -1667 (|#2| |#2| |#1| |#1| (-769))) (-15 -2425 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2438 (|#1| |#2| |#2|)) (-15 -3678 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|)) (-15 -2076 ((-2 (|:| |coef2| |#2|) (|:| -2022 |#1|)) |#2| |#2|)))
+((-2907 (((-112) $ $) NIL)) (-3796 (((-1211) $) 13)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1357 (((-1132) $) 10)) (-2327 (((-860) $) 20) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-968) (-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $)) (-15 -3796 ((-1211) $))))) (T -968))
+((-1357 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-968)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-968)))))
+(-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $)) (-15 -3796 ((-1211) $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) 38)) (-1976 (($) NIL T CONST)) (-2841 (((-642 (-642 (-564))) (-642 (-564))) 47)) (-2656 (((-564) $) 71)) (-3925 (($ (-642 (-564))) 18)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1314 (((-642 (-564)) $) 13)) (-1389 (($ $) 51)) (-2327 (((-860) $) 67) (((-642 (-564)) $) 11)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 8 T CONST)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 26)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 25)) (-2974 (($ $ $) 27)) (* (($ (-919) $) NIL) (($ (-769) $) 36)))
+(((-969) (-13 (-793) (-612 (-642 (-564))) (-611 (-642 (-564))) (-10 -8 (-15 -3925 ($ (-642 (-564)))) (-15 -2841 ((-642 (-642 (-564))) (-642 (-564)))) (-15 -2656 ((-564) $)) (-15 -1389 ($ $))))) (T -969))
+((-3925 (*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-969)))) (-2841 (*1 *2 *3) (-12 (-5 *2 (-642 (-642 (-564)))) (-5 *1 (-969)) (-5 *3 (-642 (-564))))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-969)))) (-1389 (*1 *1 *1) (-5 *1 (-969))))
+(-13 (-793) (-612 (-642 (-564))) (-611 (-642 (-564))) (-10 -8 (-15 -3925 ($ (-642 (-564)))) (-15 -2841 ((-642 (-642 (-564))) (-642 (-564)))) (-15 -2656 ((-564) $)) (-15 -1389 ($ $))))
+((-2998 (($ $ |#2|) 31)) (-2987 (($ $) 23) (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) 29)))
+(((-970 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2998 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|))) (-971 |#2| |#3| |#4|) (-1047) (-790) (-848)) (T -970))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2998 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 * (|#1| (-919) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3802 (((-642 |#3|) $) 86)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-1387 (($ $) 64 (|has| |#1| (-556)))) (-2037 (((-112) $) 66 (|has| |#1| (-556)))) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-1718 (($ $) 72)) (-3104 (((-3 $ "failed") $) 37)) (-1941 (((-112) $) 85)) (-3953 (((-112) $) 35)) (-2316 (((-112) $) 74)) (-3774 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-642 |#3|) (-642 |#2|)) 87)) (-4358 (($ (-1 |#1| |#1|) $) 75)) (-3950 (($ $) 77)) (-3962 ((|#1| $) 78)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2896 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-2775 ((|#2| $) 76)) (-4318 (($ $) 84)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2102 ((|#1| $ |#2|) 71)) (-2439 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 65 (|has| |#1| (-556)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 70 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564)))))))
+(((-971 |#1| |#2| |#3|) (-140) (-1047) (-790) (-848)) (T -971))
+((-3962 (*1 *2 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *3 (-790)) (-4 *4 (-848)) (-4 *2 (-1047)))) (-3950 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-790)) (-4 *4 (-848)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *2 *4)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *2 (-790)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-971 *4 *3 *2)) (-4 *4 (-1047)) (-4 *3 (-790)) (-4 *2 (-848)))) (-3774 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 *5)) (-4 *1 (-971 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-790)) (-4 *6 (-848)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-790)) (-4 *5 (-848)) (-5 *2 (-642 *5)))) (-1941 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-790)) (-4 *5 (-848)) (-5 *2 (-112)))) (-4318 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-790)) (-4 *4 (-848)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3774 ($ $ |t#3| |t#2|)) (-15 -3774 ($ $ (-642 |t#3|) (-642 |t#2|))) (-15 -3950 ($ $)) (-15 -3962 (|t#1| $)) (-15 -2775 (|t#2| $)) (-15 -3802 ((-642 |t#3|) $)) (-15 -1941 ((-112) $)) (-15 -4318 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2601 (((-1091 (-225)) $) 8)) (-2589 (((-1091 (-225)) $) 9)) (-2576 (((-1091 (-225)) $) 10)) (-2550 (((-642 (-642 (-941 (-225)))) $) 11)) (-2327 (((-860) $) 6)))
+(((-972) (-140)) (T -972))
+((-2550 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-642 (-642 (-941 (-225))))))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225))))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225))))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225))))))
+(-13 (-611 (-860)) (-10 -8 (-15 -2550 ((-642 (-642 (-941 (-225)))) $)) (-15 -2576 ((-1091 (-225)) $)) (-15 -2589 ((-1091 (-225)) $)) (-15 -2601 ((-1091 (-225)) $))))
+(((-611 (-860)) . T))
+((-3802 (((-642 |#4|) $) 23)) (-3317 (((-112) $) 54)) (-4293 (((-112) $) 53)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#4|) 41)) (-1496 (((-112) $) 55)) (-4375 (((-112) $ $) 61)) (-2888 (((-112) $ $) 64)) (-2850 (((-112) $) 59)) (-2627 (((-642 |#5|) (-642 |#5|) $) 97)) (-3446 (((-642 |#5|) (-642 |#5|) $) 94)) (-3045 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 87)) (-3370 (((-642 |#4|) $) 27)) (-4120 (((-112) |#4| $) 34)) (-2520 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-3153 (($ $ |#4|) 38)) (-3696 (($ $ |#4|) 37)) (-1749 (($ $ |#4|) 39)) (-2872 (((-112) $ $) 45)))
+(((-973 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4293 ((-112) |#1|)) (-15 -2627 ((-642 |#5|) (-642 |#5|) |#1|)) (-15 -3446 ((-642 |#5|) (-642 |#5|) |#1|)) (-15 -3045 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2520 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1496 ((-112) |#1|)) (-15 -2888 ((-112) |#1| |#1|)) (-15 -4375 ((-112) |#1| |#1|)) (-15 -2850 ((-112) |#1|)) (-15 -3317 ((-112) |#1|)) (-15 -2383 ((-2 (|:| |under| |#1|) (|:| -2759 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3153 (|#1| |#1| |#4|)) (-15 -1749 (|#1| |#1| |#4|)) (-15 -3696 (|#1| |#1| |#4|)) (-15 -4120 ((-112) |#4| |#1|)) (-15 -3370 ((-642 |#4|) |#1|)) (-15 -3802 ((-642 |#4|) |#1|)) (-15 -2872 ((-112) |#1| |#1|))) (-974 |#2| |#3| |#4| |#5|) (-1047) (-791) (-848) (-1062 |#2| |#3| |#4|)) (T -973))
+NIL
+(-10 -8 (-15 -4293 ((-112) |#1|)) (-15 -2627 ((-642 |#5|) (-642 |#5|) |#1|)) (-15 -3446 ((-642 |#5|) (-642 |#5|) |#1|)) (-15 -3045 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2520 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1496 ((-112) |#1|)) (-15 -2888 ((-112) |#1| |#1|)) (-15 -4375 ((-112) |#1| |#1|)) (-15 -2850 ((-112) |#1|)) (-15 -3317 ((-112) |#1|)) (-15 -2383 ((-2 (|:| |under| |#1|) (|:| -2759 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3153 (|#1| |#1| |#4|)) (-15 -1749 (|#1| |#1| |#4|)) (-15 -3696 (|#1| |#1| |#4|)) (-15 -4120 ((-112) |#4| |#1|)) (-15 -3370 ((-642 |#4|) |#1|)) (-15 -3802 ((-642 |#4|) |#1|)) (-15 -2872 ((-112) |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-3802 (((-642 |#3|) $) 34)) (-3317 (((-112) $) 27)) (-4293 (((-112) $) 18 (|has| |#1| (-556)))) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) 28)) (-3697 (((-112) $ (-769)) 45)) (-1700 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410)))) (-1976 (($) 46 T CONST)) (-1496 (((-112) $) 23 (|has| |#1| (-556)))) (-4375 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2888 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2850 (((-112) $) 26 (|has| |#1| (-556)))) (-2627 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) 37)) (-3027 (($ (-642 |#4|)) 36)) (-2595 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410)))) (-2936 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-3290 ((|#3| $) 35)) (-3462 (((-112) $ (-769)) 44)) (-3234 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) 48)) (-3370 (((-642 |#3|) $) 33)) (-4120 (((-112) |#3| $) 32)) (-3576 (((-112) $ (-769)) 43)) (-3315 (((-1155) $) 10)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-4033 (((-1117) $) 11)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2121 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) 39)) (-3719 (((-112) $) 42)) (-2972 (($) 41)) (-4043 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3901 (($ $) 40)) (-1314 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2337 (($ (-642 |#4|)) 61)) (-3153 (($ $ |#3|) 29)) (-3696 (($ $ |#3|) 31)) (-1749 (($ $ |#3|) 30)) (-2327 (((-860) $) 12) (((-642 |#4|) $) 38)) (-1648 (((-112) $ $) 9)) (-2710 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 6)) (-2127 (((-769) $) 47 (|has| $ (-6 -4410)))))
+(((-974 |#1| |#2| |#3| |#4|) (-140) (-1047) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -974))
+((-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *1 (-974 *3 *4 *5 *6)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *1 (-974 *3 *4 *5 *6)))) (-3290 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-1062 *3 *4 *2)) (-4 *2 (-848)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5)))) (-4120 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *5 *3 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-4 *6 (-1062 *4 *5 *3)) (-5 *2 (-112)))) (-3696 (*1 *1 *1 *2) (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2)))) (-1749 (*1 *1 *1 *2) (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2)))) (-2383 (*1 *2 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-4 *6 (-1062 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2759 *1) (|:| |upper| *1))) (-4 *1 (-974 *4 *5 *3 *6)))) (-3317 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-2850 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-4375 (*1 *2 *1 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2888 (*1 *2 *1 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2520 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3045 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3446 (*1 *2 *2 *1) (-12 (-5 *2 (-642 *6)) (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)))) (-2627 (*1 *2 *2 *1) (-12 (-5 *2 (-642 *6)) (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))))
+(-13 (-1097) (-151 |t#4|) (-611 (-642 |t#4|)) (-10 -8 (-6 -4410) (-15 -4278 ((-3 $ "failed") (-642 |t#4|))) (-15 -3027 ($ (-642 |t#4|))) (-15 -3290 (|t#3| $)) (-15 -3802 ((-642 |t#3|) $)) (-15 -3370 ((-642 |t#3|) $)) (-15 -4120 ((-112) |t#3| $)) (-15 -3696 ($ $ |t#3|)) (-15 -1749 ($ $ |t#3|)) (-15 -3153 ($ $ |t#3|)) (-15 -2383 ((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |t#3|)) (-15 -3317 ((-112) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -2850 ((-112) $)) (-15 -4375 ((-112) $ $)) (-15 -2888 ((-112) $ $)) (-15 -1496 ((-112) $)) (-15 -2520 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3045 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3446 ((-642 |t#4|) (-642 |t#4|) $)) (-15 -2627 ((-642 |t#4|) (-642 |t#4|) $)) (-15 -4293 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-1097) . T) ((-1212) . T))
+((-4165 (((-642 |#4|) |#4| |#4|) 135)) (-3624 (((-642 |#4|) (-642 |#4|) (-112)) 124 (|has| |#1| (-452))) (((-642 |#4|) (-642 |#4|)) 125 (|has| |#1| (-452)))) (-1776 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|)) 44)) (-1983 (((-112) |#4|) 43)) (-3008 (((-642 |#4|) |#4|) 120 (|has| |#1| (-452)))) (-3106 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-1 (-112) |#4|) (-642 |#4|)) 24)) (-4356 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|)) 30)) (-2405 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|)) 31)) (-3472 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|)) 89)) (-4371 (((-642 |#4|) (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 102)) (-4267 (((-642 |#4|) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 128)) (-1829 (((-642 |#4|) (-642 |#4|)) 127)) (-2679 (((-642 |#4|) (-642 |#4|) (-642 |#4|) (-112)) 58) (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 60)) (-3550 ((|#4| |#4| (-642 |#4|)) 59)) (-3513 (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 131 (|has| |#1| (-452)))) (-1419 (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 134 (|has| |#1| (-452)))) (-3095 (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 133 (|has| |#1| (-452)))) (-2111 (((-642 |#4|) (-642 |#4|) (-642 |#4|) (-1 (-642 |#4|) (-642 |#4|))) 104) (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 106) (((-642 |#4|) (-642 |#4|) |#4|) 140) (((-642 |#4|) |#4| |#4|) 136) (((-642 |#4|) (-642 |#4|)) 105)) (-1819 (((-642 |#4|) (-642 |#4|) (-642 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2594 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|)) 51)) (-1816 (((-112) (-642 |#4|)) 78)) (-3667 (((-112) (-642 |#4|) (-642 (-642 |#4|))) 66)) (-3158 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|)) 37)) (-4346 (((-112) |#4|) 36)) (-4253 (((-642 |#4|) (-642 |#4|)) 115 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-4151 (((-642 |#4|) (-642 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3972 (((-642 |#4|) (-642 |#4|)) 82)) (-2572 (((-642 |#4|) (-642 |#4|)) 96)) (-4114 (((-112) (-642 |#4|) (-642 |#4|)) 64)) (-2650 (((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|)) 49)) (-1590 (((-112) |#4|) 45)))
+(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2111 ((-642 |#4|) (-642 |#4|))) (-15 -2111 ((-642 |#4|) |#4| |#4|)) (-15 -1829 ((-642 |#4|) (-642 |#4|))) (-15 -4165 ((-642 |#4|) |#4| |#4|)) (-15 -2111 ((-642 |#4|) (-642 |#4|) |#4|)) (-15 -2111 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -2111 ((-642 |#4|) (-642 |#4|) (-642 |#4|) (-1 (-642 |#4|) (-642 |#4|)))) (-15 -4114 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3667 ((-112) (-642 |#4|) (-642 (-642 |#4|)))) (-15 -1816 ((-112) (-642 |#4|))) (-15 -3106 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-1 (-112) |#4|) (-642 |#4|))) (-15 -4356 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|))) (-15 -2405 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|))) (-15 -2594 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -1983 ((-112) |#4|)) (-15 -1776 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -4346 ((-112) |#4|)) (-15 -3158 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -1590 ((-112) |#4|)) (-15 -2650 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -2679 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -2679 ((-642 |#4|) (-642 |#4|) (-642 |#4|) (-112))) (-15 -3550 (|#4| |#4| (-642 |#4|))) (-15 -3972 ((-642 |#4|) (-642 |#4|))) (-15 -3472 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|))) (-15 -2572 ((-642 |#4|) (-642 |#4|))) (-15 -4371 ((-642 |#4|) (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4267 ((-642 |#4|) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3008 ((-642 |#4|) |#4|)) (-15 -3624 ((-642 |#4|) (-642 |#4|))) (-15 -3624 ((-642 |#4|) (-642 |#4|) (-112))) (-15 -3513 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -3095 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -1419 ((-642 |#4|) (-642 |#4|) (-642 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -4151 ((-642 |#4|) (-642 |#4|))) (-15 -4253 ((-642 |#4|) (-642 |#4|))) (-15 -1819 ((-642 |#4|) (-642 |#4|) (-642 |#4|)))) |%noBranch|) |%noBranch|)) (-556) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -975))
+((-1819 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-4253 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-1419 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-3095 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-3513 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-3624 (*1 *2 *2 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-112)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *7)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-3008 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-4267 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-975 *5 *6 *7 *8)))) (-4371 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-642 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-791)) (-4 *8 (-848)) (-5 *1 (-975 *6 *7 *8 *9)))) (-2572 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-3472 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2362 (-642 *7)))) (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-3972 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-3550 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *2)))) (-2679 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-642 *7)) (-5 *3 (-112)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *7)))) (-2679 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-2650 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-3158 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-4346 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-1776 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-1983 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-2594 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7)))) (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))) (-2405 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-1 (-112) *8))) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8)))) (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8)))) (-4356 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-1 (-112) *8))) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8)))) (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8)))) (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *4 *5 *6 *7)))) (-3667 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-642 *8))) (-5 *3 (-642 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *5 *6 *7 *8)))) (-4114 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *4 *5 *6 *7)))) (-2111 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-642 *7) (-642 *7))) (-5 *2 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *7)))) (-2111 (*1 *2 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-2111 (*1 *2 *2 *3) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *3)))) (-4165 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))) (-2111 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))) (-2111 (*1 *2 *2) (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2111 ((-642 |#4|) (-642 |#4|))) (-15 -2111 ((-642 |#4|) |#4| |#4|)) (-15 -1829 ((-642 |#4|) (-642 |#4|))) (-15 -4165 ((-642 |#4|) |#4| |#4|)) (-15 -2111 ((-642 |#4|) (-642 |#4|) |#4|)) (-15 -2111 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -2111 ((-642 |#4|) (-642 |#4|) (-642 |#4|) (-1 (-642 |#4|) (-642 |#4|)))) (-15 -4114 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3667 ((-112) (-642 |#4|) (-642 (-642 |#4|)))) (-15 -1816 ((-112) (-642 |#4|))) (-15 -3106 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-1 (-112) |#4|) (-642 |#4|))) (-15 -4356 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|))) (-15 -2405 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 (-1 (-112) |#4|)) (-642 |#4|))) (-15 -2594 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -1983 ((-112) |#4|)) (-15 -1776 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -4346 ((-112) |#4|)) (-15 -3158 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -1590 ((-112) |#4|)) (-15 -2650 ((-2 (|:| |goodPols| (-642 |#4|)) (|:| |badPols| (-642 |#4|))) (-642 |#4|))) (-15 -2679 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -2679 ((-642 |#4|) (-642 |#4|) (-642 |#4|) (-112))) (-15 -3550 (|#4| |#4| (-642 |#4|))) (-15 -3972 ((-642 |#4|) (-642 |#4|))) (-15 -3472 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|))) (-15 -2572 ((-642 |#4|) (-642 |#4|))) (-15 -4371 ((-642 |#4|) (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4267 ((-642 |#4|) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3008 ((-642 |#4|) |#4|)) (-15 -3624 ((-642 |#4|) (-642 |#4|))) (-15 -3624 ((-642 |#4|) (-642 |#4|) (-112))) (-15 -3513 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -3095 ((-642 |#4|) (-642 |#4|) (-642 |#4|))) (-15 -1419 ((-642 |#4|) (-642 |#4|) (-642 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -4151 ((-642 |#4|) (-642 |#4|))) (-15 -4253 ((-642 |#4|) (-642 |#4|))) (-15 -1819 ((-642 |#4|) (-642 |#4|) (-642 |#4|)))) |%noBranch|) |%noBranch|))
+((-3982 (((-2 (|:| R (-687 |#1|)) (|:| A (-687 |#1|)) (|:| |Ainv| (-687 |#1|))) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2761 (((-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|)) 44)) (-1741 (((-687 |#1|) (-687 |#1|) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-976 |#1|) (-10 -7 (-15 -3982 ((-2 (|:| R (-687 |#1|)) (|:| A (-687 |#1|)) (|:| |Ainv| (-687 |#1|))) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1741 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2761 ((-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|)))) (-363)) (T -976))
+((-2761 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-642 (-2 (|:| C (-687 *5)) (|:| |g| (-1262 *5))))) (-5 *1 (-976 *5)) (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)))) (-1741 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-687 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-976 *5)))) (-3982 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-687 *6)) (|:| A (-687 *6)) (|:| |Ainv| (-687 *6)))) (-5 *1 (-976 *6)) (-5 *3 (-687 *6)))))
+(-10 -7 (-15 -3982 ((-2 (|:| R (-687 |#1|)) (|:| A (-687 |#1|)) (|:| |Ainv| (-687 |#1|))) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1741 ((-687 |#1|) (-687 |#1|) (-687 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2761 ((-642 (-2 (|:| C (-687 |#1|)) (|:| |g| (-1262 |#1|)))) (-687 |#1|) (-1262 |#1|))))
+((-1978 (((-418 |#4|) |#4|) 56)))
+(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1978 ((-418 |#4|) |#4|))) (-848) (-791) (-452) (-947 |#3| |#2| |#1|)) (T -977))
+((-1978 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-947 *6 *5 *4)))))
+(-10 -7 (-15 -1978 ((-418 |#4|) |#4|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-4103 (($ (-769)) 113 (|has| |#1| (-23)))) (-1765 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| |#1| (-848)) (|has| $ (-6 -4411))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) 8)) (-3877 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-2087 (($ $) 91 (|has| $ (-6 -4411)))) (-3115 (($ $) 101)) (-2595 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 52)) (-3979 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1097)))) (-2669 (($ (-642 |#1|)) 119)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1745 (((-687 |#1|) $ $) 106 (|has| |#1| (-1047)))) (-4227 (($ (-769) |#1|) 70)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 44 (|has| (-564) (-848)))) (-2755 (($ $ $) 88 (|has| |#1| (-848)))) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 45 (|has| (-564) (-848)))) (-1520 (($ $ $) 87 (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4372 ((|#1| $) 103 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1000))))) (-3576 (((-112) $ (-769)) 10)) (-2480 ((|#1| $) 104 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1000))))) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3997 (((-642 (-564)) $) 47)) (-4145 (((-112) (-564) $) 48)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2557 ((|#1| $) 43 (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2696 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-3804 (($ $ (-642 |#1|)) 117)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-2619 ((|#1| $ $) 107 (|has| |#1| (-1047)))) (-3474 (((-919) $) 118)) (-2073 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-2909 (($ $ $) 105)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2568 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3901 (($ $) 13)) (-1314 (((-536) $) 80 (|has| |#1| (-612 (-536)))) (($ (-642 |#1|)) 120)) (-2337 (($ (-642 |#1|)) 71)) (-3651 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) 85 (|has| |#1| (-848)))) (-2908 (((-112) $ $) 84 (|has| |#1| (-848)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2922 (((-112) $ $) 86 (|has| |#1| (-848)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-848)))) (-2987 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-2974 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-564) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-724))) (($ $ |#1|) 108 (|has| |#1| (-724)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-978 |#1|) (-140) (-1047)) (T -978))
+((-2669 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1047)) (-4 *1 (-978 *3)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-978 *3)) (-4 *3 (-1047)) (-5 *2 (-919)))) (-2909 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-1047)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *1 (-978 *3)) (-4 *3 (-1047)))))
+(-13 (-1260 |t#1|) (-616 (-642 |t#1|)) (-10 -8 (-15 -2669 ($ (-642 |t#1|))) (-15 -3474 ((-919) $)) (-15 -2909 ($ $ $)) (-15 -3804 ($ $ (-642 |t#1|)))))
+(((-34) . T) ((-102) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-616 (-642 |#1|)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-19 |#1|) . T) ((-848) |has| |#1| (-848)) ((-1097) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-1212) . T) ((-1260 |#1|) . T))
+((-4358 (((-941 |#2|) (-1 |#2| |#1|) (-941 |#1|)) 17)))
+(((-979 |#1| |#2|) (-10 -7 (-15 -4358 ((-941 |#2|) (-1 |#2| |#1|) (-941 |#1|)))) (-1047) (-1047)) (T -979))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-941 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-941 *6)) (-5 *1 (-979 *5 *6)))))
+(-10 -7 (-15 -4358 ((-941 |#2|) (-1 |#2| |#1|) (-941 |#1|))))
+((-1568 ((|#1| (-941 |#1|)) 14)) (-1583 ((|#1| (-941 |#1|)) 13)) (-3579 ((|#1| (-941 |#1|)) 12)) (-1695 ((|#1| (-941 |#1|)) 16)) (-3871 ((|#1| (-941 |#1|)) 24)) (-1767 ((|#1| (-941 |#1|)) 15)) (-4084 ((|#1| (-941 |#1|)) 17)) (-3265 ((|#1| (-941 |#1|)) 23)) (-4183 ((|#1| (-941 |#1|)) 22)))
+(((-980 |#1|) (-10 -7 (-15 -3579 (|#1| (-941 |#1|))) (-15 -1583 (|#1| (-941 |#1|))) (-15 -1568 (|#1| (-941 |#1|))) (-15 -1767 (|#1| (-941 |#1|))) (-15 -1695 (|#1| (-941 |#1|))) (-15 -4084 (|#1| (-941 |#1|))) (-15 -4183 (|#1| (-941 |#1|))) (-15 -3265 (|#1| (-941 |#1|))) (-15 -3871 (|#1| (-941 |#1|)))) (-1047)) (T -980))
+((-3871 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))))
+(-10 -7 (-15 -3579 (|#1| (-941 |#1|))) (-15 -1583 (|#1| (-941 |#1|))) (-15 -1568 (|#1| (-941 |#1|))) (-15 -1767 (|#1| (-941 |#1|))) (-15 -1695 (|#1| (-941 |#1|))) (-15 -4084 (|#1| (-941 |#1|))) (-15 -4183 (|#1| (-941 |#1|))) (-15 -3265 (|#1| (-941 |#1|))) (-15 -3871 (|#1| (-941 |#1|))))
+((-2788 (((-3 |#1| "failed") |#1|) 18)) (-1851 (((-3 |#1| "failed") |#1|) 6)) (-3975 (((-3 |#1| "failed") |#1|) 16)) (-3244 (((-3 |#1| "failed") |#1|) 4)) (-4064 (((-3 |#1| "failed") |#1|) 20)) (-3225 (((-3 |#1| "failed") |#1|) 8)) (-2334 (((-3 |#1| "failed") |#1| (-769)) 1)) (-3425 (((-3 |#1| "failed") |#1|) 3)) (-1633 (((-3 |#1| "failed") |#1|) 2)) (-2624 (((-3 |#1| "failed") |#1|) 21)) (-4228 (((-3 |#1| "failed") |#1|) 9)) (-1963 (((-3 |#1| "failed") |#1|) 19)) (-1603 (((-3 |#1| "failed") |#1|) 7)) (-1331 (((-3 |#1| "failed") |#1|) 17)) (-2500 (((-3 |#1| "failed") |#1|) 5)) (-4259 (((-3 |#1| "failed") |#1|) 24)) (-3113 (((-3 |#1| "failed") |#1|) 12)) (-3785 (((-3 |#1| "failed") |#1|) 22)) (-3630 (((-3 |#1| "failed") |#1|) 10)) (-4026 (((-3 |#1| "failed") |#1|) 26)) (-3922 (((-3 |#1| "failed") |#1|) 14)) (-2288 (((-3 |#1| "failed") |#1|) 27)) (-1458 (((-3 |#1| "failed") |#1|) 15)) (-2717 (((-3 |#1| "failed") |#1|) 25)) (-1325 (((-3 |#1| "failed") |#1|) 13)) (-2940 (((-3 |#1| "failed") |#1|) 23)) (-2705 (((-3 |#1| "failed") |#1|) 11)))
+(((-981 |#1|) (-140) (-1197)) (T -981))
+((-2288 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-4026 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2717 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-4259 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2940 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3785 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2624 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-4064 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1963 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2788 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1331 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3975 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1458 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3922 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1325 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3113 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2705 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3630 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-4228 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3225 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1603 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1851 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2500 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3244 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-3425 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-1633 (*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))) (-2334 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-769)) (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(-13 (-10 -7 (-15 -2334 ((-3 |t#1| "failed") |t#1| (-769))) (-15 -1633 ((-3 |t#1| "failed") |t#1|)) (-15 -3425 ((-3 |t#1| "failed") |t#1|)) (-15 -3244 ((-3 |t#1| "failed") |t#1|)) (-15 -2500 ((-3 |t#1| "failed") |t#1|)) (-15 -1851 ((-3 |t#1| "failed") |t#1|)) (-15 -1603 ((-3 |t#1| "failed") |t#1|)) (-15 -3225 ((-3 |t#1| "failed") |t#1|)) (-15 -4228 ((-3 |t#1| "failed") |t#1|)) (-15 -3630 ((-3 |t#1| "failed") |t#1|)) (-15 -2705 ((-3 |t#1| "failed") |t#1|)) (-15 -3113 ((-3 |t#1| "failed") |t#1|)) (-15 -1325 ((-3 |t#1| "failed") |t#1|)) (-15 -3922 ((-3 |t#1| "failed") |t#1|)) (-15 -1458 ((-3 |t#1| "failed") |t#1|)) (-15 -3975 ((-3 |t#1| "failed") |t#1|)) (-15 -1331 ((-3 |t#1| "failed") |t#1|)) (-15 -2788 ((-3 |t#1| "failed") |t#1|)) (-15 -1963 ((-3 |t#1| "failed") |t#1|)) (-15 -4064 ((-3 |t#1| "failed") |t#1|)) (-15 -2624 ((-3 |t#1| "failed") |t#1|)) (-15 -3785 ((-3 |t#1| "failed") |t#1|)) (-15 -2940 ((-3 |t#1| "failed") |t#1|)) (-15 -4259 ((-3 |t#1| "failed") |t#1|)) (-15 -2717 ((-3 |t#1| "failed") |t#1|)) (-15 -4026 ((-3 |t#1| "failed") |t#1|)) (-15 -2288 ((-3 |t#1| "failed") |t#1|))))
+((-3028 ((|#4| |#4| (-642 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3830 ((|#4| |#4| (-642 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4358 ((|#4| (-1 |#4| (-950 |#1|)) |#4|) 31)))
+(((-982 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3830 (|#4| |#4| |#3|)) (-15 -3830 (|#4| |#4| (-642 |#3|))) (-15 -3028 (|#4| |#4| |#3|)) (-15 -3028 (|#4| |#4| (-642 |#3|))) (-15 -4358 (|#4| (-1 |#4| (-950 |#1|)) |#4|))) (-1047) (-791) (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)) (-15 -3329 ((-3 $ "failed") (-1173))))) (-947 (-950 |#1|) |#2| |#3|)) (T -982))
+((-4358 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-950 *4))) (-4 *4 (-1047)) (-4 *2 (-947 (-950 *4) *5 *6)) (-4 *5 (-791)) (-4 *6 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)) (-15 -3329 ((-3 $ "failed") (-1173)))))) (-5 *1 (-982 *4 *5 *6 *2)))) (-3028 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)) (-15 -3329 ((-3 $ "failed") (-1173)))))) (-4 *4 (-1047)) (-4 *5 (-791)) (-5 *1 (-982 *4 *5 *6 *2)) (-4 *2 (-947 (-950 *4) *5 *6)))) (-3028 (*1 *2 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)) (-15 -3329 ((-3 $ "failed") (-1173)))))) (-5 *1 (-982 *4 *5 *3 *2)) (-4 *2 (-947 (-950 *4) *5 *3)))) (-3830 (*1 *2 *2 *3) (-12 (-5 *3 (-642 *6)) (-4 *6 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)) (-15 -3329 ((-3 $ "failed") (-1173)))))) (-4 *4 (-1047)) (-4 *5 (-791)) (-5 *1 (-982 *4 *5 *6 *2)) (-4 *2 (-947 (-950 *4) *5 *6)))) (-3830 (*1 *2 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)) (-15 -3329 ((-3 $ "failed") (-1173)))))) (-5 *1 (-982 *4 *5 *3 *2)) (-4 *2 (-947 (-950 *4) *5 *3)))))
+(-10 -7 (-15 -3830 (|#4| |#4| |#3|)) (-15 -3830 (|#4| |#4| (-642 |#3|))) (-15 -3028 (|#4| |#4| |#3|)) (-15 -3028 (|#4| |#4| (-642 |#3|))) (-15 -4358 (|#4| (-1 |#4| (-950 |#1|)) |#4|)))
+((-2385 ((|#2| |#3|) 35)) (-3814 (((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|) 86)) (-3620 (((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) 106)))
+(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3620 ((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))))) (-15 -3814 ((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|)) (-15 -2385 (|#2| |#3|))) (-349) (-1238 |#1|) (-1238 |#2|) (-722 |#2| |#3|)) (T -983))
+((-2385 (*1 *2 *3) (-12 (-4 *3 (-1238 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-983 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-722 *2 *3)))) (-3814 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 *3)) (-5 *2 (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-5 *1 (-983 *4 *3 *5 *6)) (-4 *6 (-722 *3 *5)))) (-3620 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| -4263 (-687 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-687 *4)))) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-722 *4 *5)))))
+(-10 -7 (-15 -3620 ((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))))) (-15 -3814 ((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|)) (-15 -2385 (|#2| |#3|)))
+((-2602 (((-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564)))) (-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564))))) 84)))
+(((-984 |#1| |#2|) (-10 -7 (-15 -2602 ((-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564)))) (-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564))))))) (-642 (-1173)) (-769)) (T -984))
+((-2602 (*1 *2 *2) (-12 (-5 *2 (-985 (-407 (-564)) (-862 *3) (-240 *4 (-769)) (-247 *3 (-407 (-564))))) (-14 *3 (-642 (-1173))) (-14 *4 (-769)) (-5 *1 (-984 *3 *4)))))
+(-10 -7 (-15 -2602 ((-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564)))) (-985 (-407 (-564)) (-862 |#1|) (-240 |#2| (-769)) (-247 |#1| (-407 (-564)))))))
+((-2907 (((-112) $ $) NIL)) (-2956 (((-3 (-112) "failed") $) 71)) (-3640 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3089 (($ $ (-3 (-112) "failed")) 72)) (-4025 (($ (-642 |#4|) |#4|) 25)) (-3315 (((-1155) $) NIL)) (-3544 (($ $) 69)) (-4033 (((-1117) $) NIL)) (-3719 (((-112) $) 70)) (-2972 (($) 30)) (-2378 ((|#4| $) 74)) (-1709 (((-642 |#4|) $) 73)) (-2327 (((-860) $) 68)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-985 |#1| |#2| |#3| |#4|) (-13 (-1097) (-611 (-860)) (-10 -8 (-15 -2972 ($)) (-15 -4025 ($ (-642 |#4|) |#4|)) (-15 -2956 ((-3 (-112) "failed") $)) (-15 -3089 ($ $ (-3 (-112) "failed"))) (-15 -3719 ((-112) $)) (-15 -1709 ((-642 |#4|) $)) (-15 -2378 (|#4| $)) (-15 -3544 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -3640 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-848) (-791) (-947 |#1| |#3| |#2|)) (T -985))
+((-2972 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-848)) (-4 *4 (-791)) (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3)))) (-4025 (*1 *1 *2 *3) (-12 (-5 *2 (-642 *3)) (-4 *3 (-947 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-848)) (-4 *6 (-791)) (-5 *1 (-985 *4 *5 *6 *3)))) (-2956 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *2 (-112)) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))) (-3719 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *2 (-112)) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))) (-1709 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *2 (-642 *6)) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))) (-2378 (*1 *2 *1) (-12 (-4 *2 (-947 *3 *5 *4)) (-5 *1 (-985 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)))) (-3544 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-848)) (-4 *4 (-791)) (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3)))) (-3640 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-848)) (-4 *4 (-791)) (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3)))))
+(-13 (-1097) (-611 (-860)) (-10 -8 (-15 -2972 ($)) (-15 -4025 ($ (-642 |#4|) |#4|)) (-15 -2956 ((-3 (-112) "failed") $)) (-15 -3089 ($ $ (-3 (-112) "failed"))) (-15 -3719 ((-112) $)) (-15 -1709 ((-642 |#4|) $)) (-15 -2378 (|#4| $)) (-15 -3544 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -3640 ($ $)) |%noBranch|) |%noBranch|)))
+((-2221 (((-112) |#5| |#5|) 44)) (-2473 (((-112) |#5| |#5|) 58)) (-4116 (((-112) |#5| (-642 |#5|)) 80) (((-112) |#5| |#5|) 67)) (-1811 (((-112) (-642 |#4|) (-642 |#4|)) 64)) (-2597 (((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) 69)) (-2913 (((-1267)) 33)) (-3163 (((-1267) (-1155) (-1155) (-1155)) 29)) (-4060 (((-642 |#5|) (-642 |#5|)) 99)) (-2991 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)))) 91)) (-3775 (((-642 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112)) 121)) (-1999 (((-112) |#5| |#5|) 53)) (-2159 (((-3 (-112) "failed") |#5| |#5|) 77)) (-2667 (((-112) (-642 |#4|) (-642 |#4|)) 63)) (-3118 (((-112) (-642 |#4|) (-642 |#4|)) 65)) (-3819 (((-112) (-642 |#4|) (-642 |#4|)) 66)) (-4364 (((-3 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112)) 116)) (-1818 (((-642 |#5|) (-642 |#5|)) 49)))
+(((-986 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3163 ((-1267) (-1155) (-1155) (-1155))) (-15 -2913 ((-1267))) (-15 -2221 ((-112) |#5| |#5|)) (-15 -1818 ((-642 |#5|) (-642 |#5|))) (-15 -1999 ((-112) |#5| |#5|)) (-15 -2473 ((-112) |#5| |#5|)) (-15 -1811 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -2667 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3118 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3819 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -2159 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4116 ((-112) |#5| |#5|)) (-15 -4116 ((-112) |#5| (-642 |#5|))) (-15 -4060 ((-642 |#5|) (-642 |#5|))) (-15 -2597 ((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)))) (-15 -2991 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) (-15 -3775 ((-642 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -4364 ((-3 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -986))
+((-4364 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| -1640 (-642 *9)) (|:| -3530 *4) (|:| |ineq| (-642 *9)))) (-5 *1 (-986 *6 *7 *8 *9 *4)) (-5 *3 (-642 *9)) (-4 *4 (-1068 *6 *7 *8 *9)))) (-3775 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-642 *10)) (-5 *5 (-112)) (-4 *10 (-1068 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8)) (-5 *2 (-642 (-2 (|:| -1640 (-642 *9)) (|:| -3530 *10) (|:| |ineq| (-642 *9))))) (-5 *1 (-986 *6 *7 *8 *9 *10)) (-5 *3 (-642 *9)))) (-2991 (*1 *2 *2) (-12 (-5 *2 (-642 (-2 (|:| |val| (-642 *6)) (|:| -3530 *7)))) (-4 *6 (-1062 *3 *4 *5)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-986 *3 *4 *5 *6 *7)))) (-2597 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -3530 *8))) (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *8)))) (-4060 (*1 *2 *2) (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-986 *3 *4 *5 *6 *7)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-986 *5 *6 *7 *8 *3)))) (-4116 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-2159 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-3819 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-3118 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-2667 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-1811 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-2473 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-1999 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-986 *3 *4 *5 *6 *7)))) (-2221 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-2913 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-3163 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3163 ((-1267) (-1155) (-1155) (-1155))) (-15 -2913 ((-1267))) (-15 -2221 ((-112) |#5| |#5|)) (-15 -1818 ((-642 |#5|) (-642 |#5|))) (-15 -1999 ((-112) |#5| |#5|)) (-15 -2473 ((-112) |#5| |#5|)) (-15 -1811 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -2667 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3118 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3819 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -2159 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4116 ((-112) |#5| |#5|)) (-15 -4116 ((-112) |#5| (-642 |#5|))) (-15 -4060 ((-642 |#5|) (-642 |#5|))) (-15 -2597 ((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)))) (-15 -2991 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) (-15 -3775 ((-642 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -4364 ((-3 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3329 (((-1173) $) 15)) (-2085 (((-1155) $) 16)) (-3761 (($ (-1173) (-1155)) 14)) (-2327 (((-860) $) 13)))
+(((-987) (-13 (-611 (-860)) (-10 -8 (-15 -3761 ($ (-1173) (-1155))) (-15 -3329 ((-1173) $)) (-15 -2085 ((-1155) $))))) (T -987))
+((-3761 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1155)) (-5 *1 (-987)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-987)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-987)))))
+(-13 (-611 (-860)) (-10 -8 (-15 -3761 ($ (-1173) (-1155))) (-15 -3329 ((-1173) $)) (-15 -2085 ((-1155) $))))
+((-4358 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 (|#4| (-1 |#2| |#1|) |#3|))) (-556) (-556) (-990 |#1|) (-990 |#2|)) (T -988))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-4 *2 (-990 *6)) (-5 *1 (-988 *5 *6 *4 *2)) (-4 *4 (-990 *5)))))
+(-10 -7 (-15 -4358 (|#4| (-1 |#2| |#1|) |#3|)))
+((-4278 (((-3 |#2| "failed") $) NIL) (((-3 (-1173) "failed") $) 66) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) 96)) (-3027 ((|#2| $) NIL) (((-1173) $) 61) (((-407 (-564)) $) NIL) (((-564) $) 93)) (-4315 (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 115) (((-687 |#2|) (-687 $)) 28)) (-2433 (($) 99)) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 76) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 85)) (-3071 (($ $) 10)) (-3157 (((-3 $ "failed") $) 20)) (-4358 (($ (-1 |#2| |#2|) $) 22)) (-3366 (($) 16)) (-2903 (($ $) 55)) (-3175 (($ $) NIL) (($ $ (-769)) NIL) (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2618 (($ $) 12)) (-1314 (((-890 (-564)) $) 71) (((-890 (-379)) $) 80) (((-536) $) 40) (((-379) $) 44) (((-225) $) 48)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 91) (($ |#2|) NIL) (($ (-1173)) 58)) (-2756 (((-769)) 31)) (-2897 (((-112) $ $) 51)))
+(((-989 |#1| |#2|) (-10 -8 (-15 -2897 ((-112) |#1| |#1|)) (-15 -3366 (|#1|)) (-15 -3157 ((-3 |#1| "failed") |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -1314 ((-225) |#1|)) (-15 -1314 ((-379) |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -2327 (|#1| (-1173))) (-15 -4278 ((-3 (-1173) "failed") |#1|)) (-15 -3027 ((-1173) |#1|)) (-15 -2433 (|#1|)) (-15 -2903 (|#1| |#1|)) (-15 -2618 (|#1| |#1|)) (-15 -3071 (|#1| |#1|)) (-15 -2453 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -2453 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -4315 ((-687 |#2|) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 (|#1| |#1|)) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|))) (-990 |#2|) (-556)) (T -989))
+((-2756 (*1 *2) (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-989 *3 *4)) (-4 *3 (-990 *4)))))
+(-10 -8 (-15 -2897 ((-112) |#1| |#1|)) (-15 -3366 (|#1|)) (-15 -3157 ((-3 |#1| "failed") |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -1314 ((-225) |#1|)) (-15 -1314 ((-379) |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -2327 (|#1| (-1173))) (-15 -4278 ((-3 (-1173) "failed") |#1|)) (-15 -3027 ((-1173) |#1|)) (-15 -2433 (|#1|)) (-15 -2903 (|#1| |#1|)) (-15 -2618 (|#1| |#1|)) (-15 -3071 (|#1| |#1|)) (-15 -2453 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -2453 ((-887 (-564) |#1|) |#1| (-890 (-564)) (-887 (-564) |#1|))) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -4315 ((-687 |#2|) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 (|#1| |#1|)) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3703 ((|#1| $) 147 (|has| |#1| (-307)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-2951 (((-418 (-1169 $)) (-1169 $)) 138 (|has| |#1| (-907)))) (-4316 (($ $) 81)) (-1978 (((-418 $) $) 80)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 141 (|has| |#1| (-907)))) (-4010 (((-112) $ $) 65)) (-2959 (((-564) $) 128 (|has| |#1| (-818)))) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#1| "failed") $) 185) (((-3 (-1173) "failed") $) 136 (|has| |#1| (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) 119 (|has| |#1| (-1036 (-564)))) (((-3 (-564) "failed") $) 117 (|has| |#1| (-1036 (-564))))) (-3027 ((|#1| $) 186) (((-1173) $) 137 (|has| |#1| (-1036 (-1173)))) (((-407 (-564)) $) 120 (|has| |#1| (-1036 (-564)))) (((-564) $) 118 (|has| |#1| (-1036 (-564))))) (-2845 (($ $ $) 61)) (-4315 (((-687 (-564)) (-687 $)) 160 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 159 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 158) (((-687 |#1|) (-687 $)) 157)) (-3104 (((-3 $ "failed") $) 37)) (-2433 (($) 145 (|has| |#1| (-545)))) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-1469 (((-112) $) 79)) (-2538 (((-112) $) 130 (|has| |#1| (-818)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 154 (|has| |#1| (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 153 (|has| |#1| (-884 (-379))))) (-3953 (((-112) $) 35)) (-3071 (($ $) 149)) (-2245 ((|#1| $) 151)) (-3157 (((-3 $ "failed") $) 116 (|has| |#1| (-1148)))) (-3333 (((-112) $) 129 (|has| |#1| (-818)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2755 (($ $ $) 126 (|has| |#1| (-848)))) (-1520 (($ $ $) 125 (|has| |#1| (-848)))) (-4358 (($ (-1 |#1| |#1|) $) 177)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 78)) (-3366 (($) 115 (|has| |#1| (-1148)) CONST)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-2903 (($ $) 146 (|has| |#1| (-307)))) (-2759 ((|#1| $) 143 (|has| |#1| (-545)))) (-1643 (((-418 (-1169 $)) (-1169 $)) 140 (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) 139 (|has| |#1| (-907)))) (-3643 (((-418 $) $) 82)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-3215 (($ $ (-642 |#1|) (-642 |#1|)) 183 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 181 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) 180 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 179 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) 178 (|has| |#1| (-514 (-1173) |#1|)))) (-2048 (((-769) $) 64)) (-4368 (($ $ |#1|) 184 (|has| |#1| (-286 |#1| |#1|)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-3175 (($ $) 176 (|has| |#1| (-233))) (($ $ (-769)) 174 (|has| |#1| (-233))) (($ $ (-1173)) 172 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 171 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 170 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 169 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-2618 (($ $) 148)) (-2255 ((|#1| $) 150)) (-1314 (((-890 (-564)) $) 156 (|has| |#1| (-612 (-890 (-564))))) (((-890 (-379)) $) 155 (|has| |#1| (-612 (-890 (-379))))) (((-536) $) 133 (|has| |#1| (-612 (-536)))) (((-379) $) 132 (|has| |#1| (-1020))) (((-225) $) 131 (|has| |#1| (-1020)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 142 (-2275 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ |#1|) 189) (($ (-1173)) 135 (|has| |#1| (-1036 (-1173))))) (-2439 (((-3 $ "failed") $) 134 (-2706 (|has| |#1| (-145)) (-2275 (|has| $ (-145)) (|has| |#1| (-907)))))) (-2756 (((-769)) 32 T CONST)) (-3264 ((|#1| $) 144 (|has| |#1| (-545)))) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-1381 (($ $) 127 (|has| |#1| (-818)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $) 175 (|has| |#1| (-233))) (($ $ (-769)) 173 (|has| |#1| (-233))) (($ $ (-1173)) 168 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 167 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 166 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 165 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2934 (((-112) $ $) 123 (|has| |#1| (-848)))) (-2908 (((-112) $ $) 122 (|has| |#1| (-848)))) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 124 (|has| |#1| (-848)))) (-2897 (((-112) $ $) 121 (|has| |#1| (-848)))) (-2998 (($ $ $) 73) (($ |#1| |#1|) 152)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
+(((-990 |#1|) (-140) (-556)) (T -990))
+((-2998 (*1 *1 *2 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) (-2245 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) (-3071 (*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) (-2618 (*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-2903 (*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-2433 (*1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-545)) (-4 *2 (-556)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) (-2759 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-545)))))
+(-13 (-363) (-38 |t#1|) (-1036 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-882 |t#1|) (-400 |t#1|) (-10 -8 (-15 -2998 ($ |t#1| |t#1|)) (-15 -2245 (|t#1| $)) (-15 -2255 (|t#1| $)) (-15 -3071 ($ $)) (-15 -2618 ($ $)) (IF (|has| |t#1| (-1148)) (-6 (-1148)) |%noBranch|) (IF (|has| |t#1| (-1036 (-564))) (PROGN (-6 (-1036 (-564))) (-6 (-1036 (-407 (-564))))) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#1| (-818)) (-6 (-818)) |%noBranch|) (IF (|has| |t#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1036 (-1173))) (-6 (-1036 (-1173))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -3703 (|t#1| $)) (-15 -2903 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2433 ($)) (-15 -3264 (|t#1| $)) (-15 -2759 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-907)) (-6 (-907)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 #1=(-1173)) |has| |#1| (-1036 (-1173))) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-612 (-225)) |has| |#1| (-1020)) ((-612 (-379)) |has| |#1| (-1020)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-890 (-379))) |has| |#1| (-612 (-890 (-379)))) ((-612 (-890 (-564))) |has| |#1| (-612 (-890 (-564)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) . T) ((-715 |#1|) . T) ((-715 $) . T) ((-724) . T) ((-789) |has| |#1| (-818)) ((-790) |has| |#1| (-818)) ((-792) |has| |#1| (-818)) ((-793) |has| |#1| (-818)) ((-818) |has| |#1| (-818)) ((-846) |has| |#1| (-818)) ((-848) -2706 (|has| |#1| (-848)) (|has| |#1| (-818))) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-884 (-379)) |has| |#1| (-884 (-379))) ((-884 (-564)) |has| |#1| (-884 (-564))) ((-882 |#1|) . T) ((-907) |has| |#1| (-907)) ((-918) . T) ((-1020) |has| |#1| (-1020)) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-564))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 #1#) |has| |#1| (-1036 (-1173))) ((-1036 |#1|) . T) ((-1049 #0#) . T) ((-1049 |#1|) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| |#1| (-1148)) ((-1212) . T) ((-1216) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-4219 (($ (-1139 |#1| |#2|)) 11)) (-2244 (((-1139 |#1| |#2|) $) 12)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-4368 ((|#2| $ (-240 |#1| |#2|)) 16)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2312 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL)))
+(((-991 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -4219 ($ (-1139 |#1| |#2|))) (-15 -2244 ((-1139 |#1| |#2|) $)) (-15 -4368 (|#2| $ (-240 |#1| |#2|))))) (-919) (-363)) (T -991))
+((-4219 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4)) (-14 *3 (-919)) (-4 *4 (-363)) (-5 *1 (-991 *3 *4)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-1139 *3 *4)) (-5 *1 (-991 *3 *4)) (-14 *3 (-919)) (-4 *4 (-363)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-919)) (-4 *2 (-363)) (-5 *1 (-991 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -4219 ($ (-1139 |#1| |#2|))) (-15 -2244 ((-1139 |#1| |#2|) $)) (-15 -4368 (|#2| $ (-240 |#1| |#2|)))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1357 (((-1132) $) 9)) (-2327 (((-860) $) 15) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-992) (-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $))))) (T -992))
+((-1357 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-992)))))
+(-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $))))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) 8)) (-1976 (($) 7 T CONST)) (-4166 (($ $) 47)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-2480 (((-769) $) 46)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2730 ((|#1| $) 40)) (-3183 (($ |#1| $) 41)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-1353 ((|#1| $) 45)) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-2311 ((|#1| |#1| $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-1456 ((|#1| $) 48)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) 43)) (-1733 ((|#1| $) 44)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-993 |#1|) (-140) (-1212)) (T -993))
+((-2311 (*1 *2 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))) (-1456 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))) (-4166 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))) (-1353 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4410) (-15 -2311 (|t#1| |t#1| $)) (-15 -1456 (|t#1| $)) (-15 -4166 ($ $)) (-15 -2480 ((-769) $)) (-15 -1353 (|t#1| $)) (-15 -1733 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-2952 (((-112) $) 43)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-3027 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 44)) (-3838 (((-3 (-407 (-564)) "failed") $) 78)) (-2881 (((-112) $) 72)) (-4034 (((-407 (-564)) $) 76)) (-3953 (((-112) $) 42)) (-2218 ((|#2| $) 22)) (-4358 (($ (-1 |#2| |#2|) $) 19)) (-3911 (($ $) 58)) (-3175 (($ $) NIL) (($ $ (-769)) NIL) (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1314 (((-536) $) 67)) (-1389 (($ $) 17)) (-2327 (((-860) $) 53) (($ (-564)) 39) (($ |#2|) 37) (($ (-407 (-564))) NIL)) (-2756 (((-769)) 10)) (-1381 ((|#2| $) 71)) (-2872 (((-112) $ $) 26)) (-2897 (((-112) $ $) 69)) (-2987 (($ $) 30) (($ $ $) 29)) (-2974 (($ $ $) 27)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-994 |#1| |#2|) (-10 -8 (-15 -2327 (|#1| (-407 (-564)))) (-15 -2897 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -3911 (|#1| |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -3838 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4034 ((-407 (-564)) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -2327 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-564))) (-15 -3953 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 -2952 ((-112) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|))) (-995 |#2|) (-172)) (T -994))
+((-2756 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-994 *3 *4)) (-4 *3 (-995 *4)))))
+(-10 -8 (-15 -2327 (|#1| (-407 (-564)))) (-15 -2897 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -3911 (|#1| |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -3838 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -4034 ((-407 (-564)) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -1381 (|#2| |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -4358 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -2327 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-564))) (-15 -3953 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-769) |#1|)) (-15 -2952 ((-112) |#1|)) (-15 * (|#1| (-919) |#1|)) (-15 -2974 (|#1| |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-4278 (((-3 (-564) "failed") $) 127 (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 125 (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) 122)) (-3027 (((-564) $) 126 (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) 124 (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) 123)) (-4315 (((-687 (-564)) (-687 $)) 97 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 96 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 95) (((-687 |#1|) (-687 $)) 94)) (-3104 (((-3 $ "failed") $) 37)) (-3668 ((|#1| $) 87)) (-3838 (((-3 (-407 (-564)) "failed") $) 83 (|has| |#1| (-545)))) (-2881 (((-112) $) 85 (|has| |#1| (-545)))) (-4034 (((-407 (-564)) $) 84 (|has| |#1| (-545)))) (-3299 (($ |#1| |#1| |#1| |#1|) 88)) (-3953 (((-112) $) 35)) (-2218 ((|#1| $) 89)) (-2755 (($ $ $) 76 (|has| |#1| (-848)))) (-1520 (($ $ $) 75 (|has| |#1| (-848)))) (-4358 (($ (-1 |#1| |#1|) $) 98)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 80 (|has| |#1| (-363)))) (-2197 ((|#1| $) 90)) (-2703 ((|#1| $) 91)) (-3390 ((|#1| $) 92)) (-4033 (((-1117) $) 11)) (-3215 (($ $ (-642 |#1|) (-642 |#1|)) 104 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 102 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) 101 (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) 100 (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) 99 (|has| |#1| (-514 (-1173) |#1|)))) (-4368 (($ $ |#1|) 105 (|has| |#1| (-286 |#1| |#1|)))) (-3175 (($ $) 121 (|has| |#1| (-233))) (($ $ (-769)) 119 (|has| |#1| (-233))) (($ $ (-1173)) 117 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 116 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 115 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 114 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-1314 (((-536) $) 81 (|has| |#1| (-612 (-536))))) (-1389 (($ $) 93)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 44) (($ (-407 (-564))) 70 (-2706 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564))))))) (-2439 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-1381 ((|#1| $) 86 (|has| |#1| (-1057)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $) 120 (|has| |#1| (-233))) (($ $ (-769)) 118 (|has| |#1| (-233))) (($ $ (-1173)) 113 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 112 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 111 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 110 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2934 (((-112) $ $) 73 (|has| |#1| (-848)))) (-2908 (((-112) $ $) 72 (|has| |#1| (-848)))) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 74 (|has| |#1| (-848)))) (-2897 (((-112) $ $) 71 (|has| |#1| (-848)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 79 (|has| |#1| (-363)))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-407 (-564))) 78 (|has| |#1| (-363))) (($ (-407 (-564)) $) 77 (|has| |#1| (-363)))))
+(((-995 |#1|) (-140) (-172)) (T -995))
+((-1389 (*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-3299 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)) (-4 *2 (-1057)))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3838 (*1 *2 *1) (|partial| -12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))))
+(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -1389 ($ $)) (-15 -3390 (|t#1| $)) (-15 -2703 (|t#1| $)) (-15 -2197 (|t#1| $)) (-15 -2218 (|t#1| $)) (-15 -3299 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3668 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1057)) (-15 -1381 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2881 ((-112) $)) (-15 -4034 ((-407 (-564)) $)) (-15 -3838 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -2706 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1173) |#1|) |has| |#1| (-514 (-1173) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 #0#) |has| |#1| (-363)) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-363)) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-363)) ((-638 |#1|) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) |has| |#1| (-363)) ((-715 |#1|) . T) ((-724) . T) ((-848) |has| |#1| (-848)) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1049 #0#) |has| |#1| (-363)) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1054 #0#) |has| |#1| (-363)) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-4358 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 (|#3| (-1 |#4| |#2|) |#1|))) (-995 |#2|) (-172) (-995 |#4|) (-172)) (T -996))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-995 *6)) (-5 *1 (-996 *4 *5 *2 *6)) (-4 *4 (-995 *5)))))
+(-10 -7 (-15 -4358 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3668 ((|#1| $) 12)) (-3838 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2881 (((-112) $) NIL (|has| |#1| (-545)))) (-4034 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-3299 (($ |#1| |#1| |#1| |#1|) 16)) (-3953 (((-112) $) NIL)) (-2218 ((|#1| $) NIL)) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| |#1| (-363)))) (-2197 ((|#1| $) 15)) (-2703 ((|#1| $) 14)) (-3390 ((|#1| $) 13)) (-4033 (((-1117) $) NIL)) (-3215 (($ $ (-642 |#1|) (-642 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-514 (-1173) |#1|))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-514 (-1173) |#1|)))) (-4368 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3175 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1389 (($ $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564))))))) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-1381 ((|#1| $) NIL (|has| |#1| (-1057)))) (-2312 (($) 8 T CONST)) (-2322 (($) 10 T CONST)) (-4044 (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-363)))))
+(((-997 |#1|) (-995 |#1|) (-172)) (T -997))
+NIL
+(-995 |#1|)
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3697 (((-112) $ (-769)) NIL)) (-1976 (($) NIL T CONST)) (-4166 (($ $) 23)) (-1823 (($ (-642 |#1|)) 33)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-2480 (((-769) $) 26)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2730 ((|#1| $) 28)) (-3183 (($ |#1| $) 17)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-1353 ((|#1| $) 27)) (-3388 ((|#1| $) 22)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-2311 ((|#1| |#1| $) 16)) (-3719 (((-112) $) 18)) (-2972 (($) NIL)) (-1456 ((|#1| $) 21)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) NIL)) (-1733 ((|#1| $) 30)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-998 |#1|) (-13 (-993 |#1|) (-10 -8 (-15 -1823 ($ (-642 |#1|))))) (-1097)) (T -998))
+((-1823 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-998 *3)))))
+(-13 (-993 |#1|) (-10 -8 (-15 -1823 ($ (-642 |#1|)))))
+((-3655 (($ $) 12)) (-1772 (($ $ (-564)) 13)))
+(((-999 |#1|) (-10 -8 (-15 -3655 (|#1| |#1|)) (-15 -1772 (|#1| |#1| (-564)))) (-1000)) (T -999))
+NIL
+(-10 -8 (-15 -3655 (|#1| |#1|)) (-15 -1772 (|#1| |#1| (-564))))
+((-3655 (($ $) 6)) (-1772 (($ $ (-564)) 7)) (** (($ $ (-407 (-564))) 8)))
+(((-1000) (-140)) (T -1000))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-1000)) (-5 *2 (-407 (-564))))) (-1772 (*1 *1 *1 *2) (-12 (-4 *1 (-1000)) (-5 *2 (-564)))) (-3655 (*1 *1 *1) (-4 *1 (-1000))))
+(-13 (-10 -8 (-15 -3655 ($ $)) (-15 -1772 ($ $ (-564))) (-15 ** ($ $ (-407 (-564))))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2230 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-1387 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2037 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3166 (((-687 (-407 |#2|)) (-1262 $)) NIL) (((-687 (-407 |#2|))) NIL)) (-3815 (((-407 |#2|) $) NIL)) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1978 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4010 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2521 (((-769)) NIL (|has| (-407 |#2|) (-368)))) (-4351 (((-112)) NIL)) (-3700 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| (-407 |#2|) (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1036 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-4221 (($ (-1262 (-407 |#2|)) (-1262 $)) NIL) (($ (-1262 (-407 |#2|))) 81) (($ (-1262 |#2|) |#2|) NIL)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-2845 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1984 (((-687 (-407 |#2|)) $ (-1262 $)) NIL) (((-687 (-407 |#2|)) $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-407 |#2|))) (|:| |vec| (-1262 (-407 |#2|)))) (-687 $) (-1262 $)) NIL) (((-687 (-407 |#2|)) (-687 $)) NIL)) (-4335 (((-1262 $) (-1262 $)) NIL)) (-1320 (($ |#3|) 75) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3104 (((-3 $ "failed") $) NIL)) (-4170 (((-642 (-642 |#1|))) NIL (|has| |#1| (-368)))) (-2504 (((-112) |#1| |#1|) NIL)) (-2414 (((-919)) NIL)) (-2433 (($) NIL (|has| (-407 |#2|) (-368)))) (-3616 (((-112)) NIL)) (-4237 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2859 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| (-407 |#2|) (-363)))) (-3246 (($ $) NIL)) (-1363 (($) NIL (|has| (-407 |#2|) (-349)))) (-3424 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-3607 (($ $ (-769)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-1469 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1427 (((-919) $) NIL (|has| (-407 |#2|) (-349))) (((-831 (-919)) $) NIL (|has| (-407 |#2|) (-349)))) (-3953 (((-112) $) NIL)) (-4153 (((-769)) NIL)) (-3453 (((-1262 $) (-1262 $)) NIL)) (-2218 (((-407 |#2|) $) NIL)) (-1834 (((-642 (-950 |#1|)) (-1173)) NIL (|has| |#1| (-363)))) (-3157 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3947 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-1945 (((-919) $) NIL (|has| (-407 |#2|) (-368)))) (-1308 ((|#3| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3315 (((-1155) $) NIL)) (-3658 (((-687 (-407 |#2|))) 57)) (-3353 (((-687 (-407 |#2|))) 56)) (-3911 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1922 (($ (-1262 |#2|) |#2|) 82)) (-4147 (((-687 (-407 |#2|))) 55)) (-2917 (((-687 (-407 |#2|))) 54)) (-1577 (((-2 (|:| |num| (-687 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-2071 (((-2 (|:| |num| (-1262 |#2|)) (|:| |den| |#2|)) $) 88)) (-2253 (((-1262 $)) 51)) (-3620 (((-1262 $)) 50)) (-3454 (((-112) $) NIL)) (-4074 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3366 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-2047 (($ (-919)) NIL (|has| (-407 |#2|) (-368)))) (-3708 (((-3 |#2| "failed")) 70)) (-4033 (((-1117) $) NIL)) (-3129 (((-769)) NIL)) (-2185 (($) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| (-407 |#2|) (-363)))) (-2080 (($ (-642 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-3643 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2896 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2048 (((-769) $) NIL (|has| (-407 |#2|) (-363)))) (-4368 ((|#1| $ |#1| |#1|) NIL)) (-1957 (((-3 |#2| "failed")) 68)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1846 (((-407 |#2|) (-1262 $)) NIL) (((-407 |#2|)) 47)) (-2136 (((-769) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-769) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-3175 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-769)) NIL (-2706 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2706 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2382 (((-687 (-407 |#2|)) (-1262 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3280 ((|#3|) 58)) (-2668 (($) NIL (|has| (-407 |#2|) (-349)))) (-2067 (((-1262 (-407 |#2|)) $ (-1262 $)) NIL) (((-687 (-407 |#2|)) (-1262 $) (-1262 $)) NIL) (((-1262 (-407 |#2|)) $) 83) (((-687 (-407 |#2|)) (-1262 $)) NIL)) (-1314 (((-1262 (-407 |#2|)) $) NIL) (($ (-1262 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| (-407 |#2|) (-349)))) (-4133 (((-1262 $) (-1262 $)) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-2706 (|has| (-407 |#2|) (-1036 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2439 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-3011 ((|#3| $) NIL)) (-2756 (((-769)) NIL T CONST)) (-3676 (((-112)) 65)) (-1326 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) 143)) (-2103 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2328 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3127 (((-112)) NIL)) (-2312 (($) 109 T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-769)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-898 (-1173))))) (($ $ (-769)) NIL (-2706 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2706 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363)))))
+(((-1001 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1216) (-1238 |#1|) (-1238 (-407 |#2|)) (-407 |#2|) (-769)) (T -1001))
NIL
(-342 |#1| |#2| |#3|)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2519 (((-641 (-564)) $) 73)) (-3658 (($ (-641 (-564))) 81)) (-4198 (((-564) $) 48 (|has| (-564) (-307)))) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL (|has| (-564) (-816)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) 60) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1034 (-1170)))) (((-3 (-407 (-564)) "failed") $) 57 (|has| (-564) (-1034 (-564)))) (((-3 (-564) "failed") $) 60 (|has| (-564) (-1034 (-564))))) (-3120 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1034 (-564)))) (((-564) $) NIL (|has| (-564) (-1034 (-564))))) (-2946 (($ $ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2534 (($) NIL (|has| (-564) (-545)))) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-1922 (((-641 (-564)) $) 79)) (-2384 (((-112) $) NIL (|has| (-564) (-816)))) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (|has| (-564) (-882 (-564)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-564) (-882 (-379))))) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL)) (-2323 (((-564) $) 45)) (-1846 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-3326 (((-112) $) NIL (|has| (-564) (-816)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| (-564) (-846)))) (-4357 (($ (-1 (-564) (-564)) $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL)) (-3431 (($) NIL (|has| (-564) (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1687 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) 50)) (-2184 (((-1150 (-564)) $) 78)) (-1957 (($ (-641 (-564)) (-641 (-564))) 82)) (-2882 (((-564) $) 64 (|has| (-564) (-545)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-905)))) (-3688 (((-418 $) $) NIL)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3291 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-1700 (((-767) $) NIL)) (-4366 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $) 15 (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2827 (($ $) NIL)) (-2336 (((-564) $) 47)) (-1361 (((-641 (-564)) $) 80)) (-1311 (((-888 (-564)) $) NIL (|has| (-564) (-612 (-888 (-564))))) (((-888 (-379)) $) NIL (|has| (-564) (-612 (-888 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1018))) (((-225) $) NIL (|has| (-564) (-1018)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-905))))) (-2423 (((-858) $) 106) (($ (-564)) 51) (($ $) NIL) (($ (-407 (-564))) 27) (($ (-564)) 51) (($ (-1170)) NIL (|has| (-564) (-1034 (-1170)))) (((-407 (-564)) $) 25)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| (-564) (-905))) (|has| (-564) (-145))))) (-3719 (((-767)) 13 T CONST)) (-3448 (((-564) $) 62 (|has| (-564) (-545)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3673 (($ $) NIL (|has| (-564) (-816)))) (-2403 (($) 14 T CONST)) (-2417 (($) 17 T CONST)) (-4063 (($ $) NIL (|has| (-564) (-233))) (($ $ (-767)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| (-564) (-896 (-1170)))) (($ $ (-1 (-564) (-564)) (-767)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3034 (((-112) $ $) NIL (|has| (-564) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2974 (((-112) $ $) 21)) (-3023 (((-112) $ $) NIL (|has| (-564) (-846)))) (-2999 (((-112) $ $) 40 (|has| (-564) (-846)))) (-3092 (($ $ $) 36) (($ (-564) (-564)) 38)) (-3082 (($ $) 23) (($ $ $) 30)) (-3070 (($ $ $) 28)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 32) (($ $ $) 34) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) 32) (($ $ (-564)) NIL)))
-(((-1000 |#1|) (-13 (-988 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -1687 ((-407 (-564)) $)) (-15 -2519 ((-641 (-564)) $)) (-15 -2184 ((-1150 (-564)) $)) (-15 -1922 ((-641 (-564)) $)) (-15 -1361 ((-641 (-564)) $)) (-15 -3658 ($ (-641 (-564)))) (-15 -1957 ($ (-641 (-564)) (-641 (-564)))))) (-564)) (T -1000))
-((-1687 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))) (-1957 (*1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))))
-(-13 (-988 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -1687 ((-407 (-564)) $)) (-15 -2519 ((-641 (-564)) $)) (-15 -2184 ((-1150 (-564)) $)) (-15 -1922 ((-641 (-564)) $)) (-15 -1361 ((-641 (-564)) $)) (-15 -3658 ($ (-641 (-564)))) (-15 -1957 ($ (-641 (-564)) (-641 (-564))))))
-((-2735 (((-52) (-407 (-564)) (-564)) 9)))
-(((-1001) (-10 -7 (-15 -2735 ((-52) (-407 (-564)) (-564))))) (T -1001))
-((-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) (-5 *1 (-1001)))))
-(-10 -7 (-15 -2735 ((-52) (-407 (-564)) (-564))))
-((-2622 (((-564)) 23)) (-3104 (((-564)) 28)) (-2279 (((-1264) (-564)) 26)) (-2689 (((-564) (-564)) 29) (((-564)) 22)))
-(((-1002) (-10 -7 (-15 -2689 ((-564))) (-15 -2622 ((-564))) (-15 -2689 ((-564) (-564))) (-15 -2279 ((-1264) (-564))) (-15 -3104 ((-564))))) (T -1002))
-((-3104 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1002)))) (-2689 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))) (-2622 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))) (-2689 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))))
-(-10 -7 (-15 -2689 ((-564))) (-15 -2622 ((-564))) (-15 -2689 ((-564) (-564))) (-15 -2279 ((-1264) (-564))) (-15 -3104 ((-564))))
-((-3600 (((-418 |#1|) |#1|) 43)) (-3688 (((-418 |#1|) |#1|) 41)))
-(((-1003 |#1|) (-10 -7 (-15 -3688 ((-418 |#1|) |#1|)) (-15 -3600 ((-418 |#1|) |#1|))) (-1235 (-407 (-564)))) (T -1003))
-((-3600 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1235 (-407 (-564)))))))
-(-10 -7 (-15 -3688 ((-418 |#1|) |#1|)) (-15 -3600 ((-418 |#1|) |#1|)))
-((-2450 (((-3 (-407 (-564)) "failed") |#1|) 15)) (-1364 (((-112) |#1|) 14)) (-2553 (((-407 (-564)) |#1|) 10)))
-(((-1004 |#1|) (-10 -7 (-15 -2553 ((-407 (-564)) |#1|)) (-15 -1364 ((-112) |#1|)) (-15 -2450 ((-3 (-407 (-564)) "failed") |#1|))) (-1034 (-407 (-564)))) (T -1004))
-((-2450 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))) (-1364 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-564)))))) (-2553 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))))
-(-10 -7 (-15 -2553 ((-407 (-564)) |#1|)) (-15 -1364 ((-112) |#1|)) (-15 -2450 ((-3 (-407 (-564)) "failed") |#1|)))
-((-3904 ((|#2| $ "value" |#2|) 12)) (-4366 ((|#2| $ "value") 10)) (-4059 (((-112) $ $) 18)))
-(((-1005 |#1| |#2|) (-10 -8 (-15 -3904 (|#2| |#1| "value" |#2|)) (-15 -4059 ((-112) |#1| |#1|)) (-15 -4366 (|#2| |#1| "value"))) (-1006 |#2|) (-1209)) (T -1005))
-NIL
-(-10 -8 (-15 -3904 (|#2| |#1| "value" |#2|)) (-15 -4059 ((-112) |#1| |#1|)) (-15 -4366 (|#2| |#1| "value")))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2128 ((|#1| $) 49)) (-1876 (((-112) $ (-767)) 8)) (-2925 ((|#1| $ |#1|) 40 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 42 (|has| $ (-6 -4408)))) (-4080 (($) 7 T CONST)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) 51)) (-1675 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2730 (((-641 |#1|) $) 46)) (-1841 (((-112) $) 50)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ "value") 48)) (-3277 (((-564) $ $) 45)) (-3206 (((-112) $) 47)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) 52)) (-4059 (((-112) $ $) 44 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-1006 |#1|) (-140) (-1209)) (T -1006))
-((-3154 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1006 *3)))) (-3573 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1006 *3)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1209)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1209)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-3277 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-4059 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-1675 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-4082 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4408)) (-4 *1 (-1006 *3)) (-4 *3 (-1209)))) (-3904 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4408)) (-4 *1 (-1006 *2)) (-4 *2 (-1209)))) (-2925 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1006 *2)) (-4 *2 (-1209)))))
-(-13 (-489 |t#1|) (-10 -8 (-15 -3154 ((-641 $) $)) (-15 -3573 ((-641 $) $)) (-15 -1841 ((-112) $)) (-15 -2128 (|t#1| $)) (-15 -4366 (|t#1| $ "value")) (-15 -3206 ((-112) $)) (-15 -2730 ((-641 |t#1|) $)) (-15 -3277 ((-564) $ $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -4059 ((-112) $ $)) (-15 -1675 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4408)) (PROGN (-15 -4082 ($ $ (-641 $))) (-15 -3904 (|t#1| $ "value" |t#1|)) (-15 -2925 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3700 (($ $) 9) (($ $ (-917)) 49) (($ (-407 (-564))) 13) (($ (-564)) 15)) (-2930 (((-3 $ "failed") (-1166 $) (-917) (-858)) 24) (((-3 $ "failed") (-1166 $) (-917)) 32)) (-3614 (($ $ (-564)) 58)) (-3719 (((-767)) 18)) (-2308 (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 (-407 (-564)))) 63) (((-641 $) (-1166 (-564))) 68) (((-641 $) (-948 $)) 72) (((-641 $) (-948 (-407 (-564)))) 76) (((-641 $) (-948 (-564))) 80)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 53)))
-(((-1007 |#1|) (-10 -8 (-15 -3700 (|#1| (-564))) (-15 -3700 (|#1| (-407 (-564)))) (-15 -3700 (|#1| |#1| (-917))) (-15 -2308 ((-641 |#1|) (-948 (-564)))) (-15 -2308 ((-641 |#1|) (-948 (-407 (-564))))) (-15 -2308 ((-641 |#1|) (-948 |#1|))) (-15 -2308 ((-641 |#1|) (-1166 (-564)))) (-15 -2308 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -2308 ((-641 |#1|) (-1166 |#1|))) (-15 -2930 ((-3 |#1| "failed") (-1166 |#1|) (-917))) (-15 -2930 ((-3 |#1| "failed") (-1166 |#1|) (-917) (-858))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3614 (|#1| |#1| (-564))) (-15 -3700 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3719 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) (-1008)) (T -1007))
-((-3719 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008)))))
-(-10 -8 (-15 -3700 (|#1| (-564))) (-15 -3700 (|#1| (-407 (-564)))) (-15 -3700 (|#1| |#1| (-917))) (-15 -2308 ((-641 |#1|) (-948 (-564)))) (-15 -2308 ((-641 |#1|) (-948 (-407 (-564))))) (-15 -2308 ((-641 |#1|) (-948 |#1|))) (-15 -2308 ((-641 |#1|) (-1166 (-564)))) (-15 -2308 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -2308 ((-641 |#1|) (-1166 |#1|))) (-15 -2930 ((-3 |#1| "failed") (-1166 |#1|) (-917))) (-15 -2930 ((-3 |#1| "failed") (-1166 |#1|) (-917) (-858))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3614 (|#1| |#1| (-564))) (-15 -3700 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3719 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 92)) (-3063 (($ $) 93)) (-3330 (((-112) $) 95)) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 112)) (-2753 (((-418 $) $) 113)) (-3700 (($ $) 76) (($ $ (-917)) 62) (($ (-407 (-564))) 61) (($ (-564)) 60)) (-3162 (((-112) $ $) 103)) (-3249 (((-564) $) 129)) (-4080 (($) 18 T CONST)) (-2930 (((-3 $ "failed") (-1166 $) (-917) (-858)) 70) (((-3 $ "failed") (-1166 $) (-917)) 69)) (-4284 (((-3 (-564) "failed") $) 89 (|has| (-407 (-564)) (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 87 (|has| (-407 (-564)) (-1034 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) 84)) (-3120 (((-564) $) 88 (|has| (-407 (-564)) (-1034 (-564)))) (((-407 (-564)) $) 86 (|has| (-407 (-564)) (-1034 (-407 (-564))))) (((-407 (-564)) $) 85)) (-4385 (($ $ (-858)) 59)) (-2309 (($ $ (-858)) 58)) (-2946 (($ $ $) 107)) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 106)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 101)) (-1339 (((-112) $) 114)) (-2384 (((-112) $) 127)) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 75)) (-3326 (((-112) $) 128)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 110)) (-2855 (($ $ $) 126)) (-1497 (($ $ $) 125)) (-2724 (((-3 (-1166 $) "failed") $) 71)) (-1818 (((-3 (-858) "failed") $) 73)) (-3893 (((-3 (-1166 $) "failed") $) 72)) (-2084 (($ (-641 $)) 99) (($ $ $) 98)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 115)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 100)) (-2123 (($ (-641 $)) 97) (($ $ $) 96)) (-3688 (((-418 $) $) 111)) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 109) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 108)) (-2998 (((-3 $ "failed") $ $) 91)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 102)) (-1700 (((-767) $) 104)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 105)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ (-407 (-564))) 119) (($ $) 90) (($ (-407 (-564))) 83) (($ (-564)) 82) (($ (-407 (-564))) 79)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 94)) (-3646 (((-407 (-564)) $ $) 57)) (-2308 (((-641 $) (-1166 $)) 68) (((-641 $) (-1166 (-407 (-564)))) 67) (((-641 $) (-1166 (-564))) 66) (((-641 $) (-948 $)) 65) (((-641 $) (-948 (-407 (-564)))) 64) (((-641 $) (-948 (-564))) 63)) (-3673 (($ $) 130)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-3034 (((-112) $ $) 123)) (-3011 (((-112) $ $) 122)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 124)) (-2999 (((-112) $ $) 121)) (-3092 (($ $ $) 120)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 116) (($ $ (-407 (-564))) 74)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ (-407 (-564)) $) 118) (($ $ (-407 (-564))) 117) (($ (-564) $) 81) (($ $ (-564)) 80) (($ (-407 (-564)) $) 78) (($ $ (-407 (-564))) 77)))
-(((-1008) (-140)) (T -1008))
-((-3700 (*1 *1 *1) (-4 *1 (-1008))) (-1818 (*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-3893 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1008)))) (-2724 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1008)))) (-2930 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-917)) (-5 *4 (-858)) (-4 *1 (-1008)))) (-2930 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-917)) (-4 *1 (-1008)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1008)) (-5 *2 (-641 *1)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-1008)) (-5 *2 (-641 *1)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-948 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1008)))) (-3700 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-917)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1008)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1008)))) (-4385 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-3646 (*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-564))))))
-(-13 (-147) (-844) (-172) (-363) (-411 (-407 (-564))) (-38 (-564)) (-38 (-407 (-564))) (-998) (-10 -8 (-15 -1818 ((-3 (-858) "failed") $)) (-15 -3893 ((-3 (-1166 $) "failed") $)) (-15 -2724 ((-3 (-1166 $) "failed") $)) (-15 -2930 ((-3 $ "failed") (-1166 $) (-917) (-858))) (-15 -2930 ((-3 $ "failed") (-1166 $) (-917))) (-15 -2308 ((-641 $) (-1166 $))) (-15 -2308 ((-641 $) (-1166 (-407 (-564))))) (-15 -2308 ((-641 $) (-1166 (-564)))) (-15 -2308 ((-641 $) (-948 $))) (-15 -2308 ((-641 $) (-948 (-407 (-564))))) (-15 -2308 ((-641 $) (-948 (-564)))) (-15 -3700 ($ $ (-917))) (-15 -3700 ($ $)) (-15 -3700 ($ (-407 (-564)))) (-15 -3700 ($ (-564))) (-15 -4385 ($ $ (-858))) (-15 -2309 ($ $ (-858))) (-15 -3646 ((-407 (-564)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 #1=(-564)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-411 (-407 (-564))) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 #1#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-916) . T) ((-998) . T) ((-1034 (-407 (-564))) . T) ((-1034 (-564)) |has| (-407 (-564)) (-1034 (-564))) ((-1051 #0#) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-3370 (((-2 (|:| |ans| |#2|) (|:| -4337 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
-(((-1009 |#1| |#2|) (-10 -7 (-15 -3370 ((-2 (|:| |ans| |#2|) (|:| -4337 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1009))
-((-3370 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2177 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-147) (-1034 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4337 *4) (|:| |sol?| (-112)))) (-5 *1 (-1009 *8 *4)))))
-(-10 -7 (-15 -3370 ((-2 (|:| |ans| |#2|) (|:| -4337 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-1912 (((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
-(((-1010 |#1| |#2|) (-10 -7 (-15 -1912 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-147) (-1034 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1010))
-((-1912 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2177 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-147) (-1034 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1010 *8 *4)))))
-(-10 -7 (-15 -1912 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3143 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1606 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)) 39)) (-2014 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1427 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 69)) (-2928 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 74)))
-(((-1011 |#1| |#2|) (-10 -7 (-15 -2014 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1427 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2928 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3143 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1606 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1034 (-564))) (-1235 |#1|)) (T -1011))
-((-3143 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-564)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -1606 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1011 *6 *3)))) (-2928 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5)))) (-2014 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -1427 *6))) (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6)))))
-(-10 -7 (-15 -2014 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1427 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2928 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3143 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1606 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|))))
-((-3317 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1427 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-3226 (((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 34)))
-(((-1012 |#1| |#2|) (-10 -7 (-15 -3317 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1427 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3226 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-564))) (-1235 |#1|)) (T -1012))
-((-3226 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))) (-3317 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1427 *6))) (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6)))))
-(-10 -7 (-15 -3317 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1427 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3226 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))))
-((-3616 (((-1 |#1|) (-641 (-2 (|:| -2128 |#1|) (|:| -3476 (-564))))) 37)) (-3485 (((-1 |#1|) (-1096 |#1|)) 45)) (-1419 (((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)) 34)))
-(((-1013 |#1|) (-10 -7 (-15 -3485 ((-1 |#1|) (-1096 |#1|))) (-15 -3616 ((-1 |#1|) (-641 (-2 (|:| -2128 |#1|) (|:| -3476 (-564)))))) (-15 -1419 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)))) (-1094)) (T -1013))
-((-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564)) (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2128 *4) (|:| -3476 (-564))))) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))))
-(-10 -7 (-15 -3485 ((-1 |#1|) (-1096 |#1|))) (-15 -3616 ((-1 |#1|) (-641 (-2 (|:| -2128 |#1|) (|:| -3476 (-564)))))) (-15 -1419 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564))))
-((-3744 (((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1014 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3744 ((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1014))
-((-3744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767)) (-5 *1 (-1014 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3744 ((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-3009 (((-112) $ $) NIL)) (-4232 (((-1129) $) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2575 (((-1129) $) 11)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1015) (-13 (-1077) (-10 -8 (-15 -4232 ((-1129) $)) (-15 -2575 ((-1129) $))))) (T -1015))
-((-4232 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1015)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1015)))))
-(-13 (-1077) (-10 -8 (-15 -4232 ((-1129) $)) (-15 -2575 ((-1129) $))))
-((-4128 (((-3 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) "failed") |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) 32) (((-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564))) 29)) (-3981 (((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564))) 34) (((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-407 (-564))) 30) (((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) 33) (((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1|) 28)) (-1736 (((-641 (-407 (-564))) (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) 20)) (-2291 (((-407 (-564)) (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) 17)))
-(((-1016 |#1|) (-10 -7 (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1|)) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564)))) (-15 -4128 ((-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564)))) (-15 -4128 ((-3 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) "failed") |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-15 -2291 ((-407 (-564)) (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-15 -1736 ((-641 (-407 (-564))) (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))))) (-1235 (-564))) (T -1016))
-((-1736 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1016 *4)) (-4 *4 (-1235 (-564))))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) (-5 *2 (-407 (-564))) (-5 *1 (-1016 *4)) (-4 *4 (-1235 (-564))))) (-4128 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))))) (-4128 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))))) (-3981 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -4328 *5) (|:| -4337 *5)))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -4328 *5) (|:| -4337 *5))))) (-3981 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564))))) (-3981 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))) (-3981 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))))))
-(-10 -7 (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1|)) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564)))) (-15 -4128 ((-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564)))) (-15 -4128 ((-3 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) "failed") |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-15 -2291 ((-407 (-564)) (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-15 -1736 ((-641 (-407 (-564))) (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))))
-((-4128 (((-3 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) "failed") |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) 35) (((-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564))) 32)) (-3981 (((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564))) 30) (((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-407 (-564))) 26) (((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) 28) (((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1|) 24)))
-(((-1017 |#1|) (-10 -7 (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1|)) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564)))) (-15 -4128 ((-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564)))) (-15 -4128 ((-3 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) "failed") |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))) (-1235 (-407 (-564)))) (T -1017))
-((-4128 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-4128 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 *4)))) (-3981 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -4328 *5) (|:| -4337 *5)))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -4328 *5) (|:| -4337 *5))))) (-3981 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -4328 *4) (|:| -4337 *4)))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 *4)))) (-3981 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564)))) (-5 *4 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))) (-3981 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564)))))))
-(-10 -7 (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1|)) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3981 ((-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564)))) (-15 -4128 ((-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-407 (-564)))) (-15 -4128 ((-3 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) "failed") |#1| (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))) (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))))
-((-1311 (((-225) $) 6) (((-379) $) 9)))
-(((-1018) (-140)) (T -1018))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3049 (((-642 (-564)) $) 73)) (-2161 (($ (-642 (-564))) 81)) (-3703 (((-564) $) 48 (|has| (-564) (-307)))) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL (|has| (-564) (-818)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) 60) (((-3 (-1173) "failed") $) NIL (|has| (-564) (-1036 (-1173)))) (((-3 (-407 (-564)) "failed") $) 57 (|has| (-564) (-1036 (-564)))) (((-3 (-564) "failed") $) 60 (|has| (-564) (-1036 (-564))))) (-3027 (((-564) $) NIL) (((-1173) $) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) NIL (|has| (-564) (-1036 (-564)))) (((-564) $) NIL (|has| (-564) (-1036 (-564))))) (-2845 (($ $ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2433 (($) NIL (|has| (-564) (-545)))) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-3358 (((-642 (-564)) $) 79)) (-2538 (((-112) $) NIL (|has| (-564) (-818)))) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (|has| (-564) (-884 (-564)))) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (|has| (-564) (-884 (-379))))) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2245 (((-564) $) 45)) (-3157 (((-3 $ "failed") $) NIL (|has| (-564) (-1148)))) (-3333 (((-112) $) NIL (|has| (-564) (-818)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| (-564) (-848)))) (-4358 (($ (-1 (-564) (-564)) $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL)) (-3366 (($) NIL (|has| (-564) (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-2903 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) 50)) (-2469 (((-1153 (-564)) $) 78)) (-3958 (($ (-642 (-564)) (-642 (-564))) 82)) (-2759 (((-564) $) 64 (|has| (-564) (-545)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| (-564) (-907)))) (-3643 (((-418 $) $) NIL)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-3215 (($ $ (-642 (-564)) (-642 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-642 (-1173)) (-642 (-564))) NIL (|has| (-564) (-514 (-1173) (-564)))) (($ $ (-1173) (-564)) NIL (|has| (-564) (-514 (-1173) (-564))))) (-2048 (((-769) $) NIL)) (-4368 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $) 15 (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2618 (($ $) NIL)) (-2255 (((-564) $) 47)) (-1543 (((-642 (-564)) $) 80)) (-1314 (((-890 (-564)) $) NIL (|has| (-564) (-612 (-890 (-564))))) (((-890 (-379)) $) NIL (|has| (-564) (-612 (-890 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1020))) (((-225) $) NIL (|has| (-564) (-1020)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-907))))) (-2327 (((-860) $) 106) (($ (-564)) 51) (($ $) NIL) (($ (-407 (-564))) 27) (($ (-564)) 51) (($ (-1173)) NIL (|has| (-564) (-1036 (-1173)))) (((-407 (-564)) $) 25)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| (-564) (-907))) (|has| (-564) (-145))))) (-2756 (((-769)) 13 T CONST)) (-3264 (((-564) $) 62 (|has| (-564) (-545)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-1381 (($ $) NIL (|has| (-564) (-818)))) (-2312 (($) 14 T CONST)) (-2322 (($) 17 T CONST)) (-4044 (($ $) NIL (|has| (-564) (-233))) (($ $ (-769)) NIL (|has| (-564) (-233))) (($ $ (-1173)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| (-564) (-898 (-1173)))) (($ $ (-1 (-564) (-564)) (-769)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2934 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2872 (((-112) $ $) 21)) (-2922 (((-112) $ $) NIL (|has| (-564) (-848)))) (-2897 (((-112) $ $) 40 (|has| (-564) (-848)))) (-2998 (($ $ $) 36) (($ (-564) (-564)) 38)) (-2987 (($ $) 23) (($ $ $) 30)) (-2974 (($ $ $) 28)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 32) (($ $ $) 34) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) 32) (($ $ (-564)) NIL)))
+(((-1002 |#1|) (-13 (-990 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -2903 ((-407 (-564)) $)) (-15 -3049 ((-642 (-564)) $)) (-15 -2469 ((-1153 (-564)) $)) (-15 -3358 ((-642 (-564)) $)) (-15 -1543 ((-642 (-564)) $)) (-15 -2161 ($ (-642 (-564)))) (-15 -3958 ($ (-642 (-564)) (-642 (-564)))))) (-564)) (T -1002))
+((-2903 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-1543 (*1 *2 *1) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-2161 (*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))) (-3958 (*1 *1 *2 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))))
+(-13 (-990 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -2903 ((-407 (-564)) $)) (-15 -3049 ((-642 (-564)) $)) (-15 -2469 ((-1153 (-564)) $)) (-15 -3358 ((-642 (-564)) $)) (-15 -1543 ((-642 (-564)) $)) (-15 -2161 ($ (-642 (-564)))) (-15 -3958 ($ (-642 (-564)) (-642 (-564))))))
+((-3236 (((-52) (-407 (-564)) (-564)) 9)))
+(((-1003) (-10 -7 (-15 -3236 ((-52) (-407 (-564)) (-564))))) (T -1003))
+((-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) (-5 *1 (-1003)))))
+(-10 -7 (-15 -3236 ((-52) (-407 (-564)) (-564))))
+((-2521 (((-564)) 23)) (-4203 (((-564)) 28)) (-2298 (((-1267) (-564)) 26)) (-4008 (((-564) (-564)) 29) (((-564)) 22)))
+(((-1004) (-10 -7 (-15 -4008 ((-564))) (-15 -2521 ((-564))) (-15 -4008 ((-564) (-564))) (-15 -2298 ((-1267) (-564))) (-15 -4203 ((-564))))) (T -1004))
+((-4203 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))) (-2298 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1004)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))) (-2521 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))) (-4008 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))))
+(-10 -7 (-15 -4008 ((-564))) (-15 -2521 ((-564))) (-15 -4008 ((-564) (-564))) (-15 -2298 ((-1267) (-564))) (-15 -4203 ((-564))))
+((-2542 (((-418 |#1|) |#1|) 43)) (-3643 (((-418 |#1|) |#1|) 41)))
+(((-1005 |#1|) (-10 -7 (-15 -3643 ((-418 |#1|) |#1|)) (-15 -2542 ((-418 |#1|) |#1|))) (-1238 (-407 (-564)))) (T -1005))
+((-2542 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1238 (-407 (-564)))))) (-3643 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1238 (-407 (-564)))))))
+(-10 -7 (-15 -3643 ((-418 |#1|) |#1|)) (-15 -2542 ((-418 |#1|) |#1|)))
+((-3838 (((-3 (-407 (-564)) "failed") |#1|) 15)) (-2881 (((-112) |#1|) 14)) (-4034 (((-407 (-564)) |#1|) 10)))
+(((-1006 |#1|) (-10 -7 (-15 -4034 ((-407 (-564)) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -3838 ((-3 (-407 (-564)) "failed") |#1|))) (-1036 (-407 (-564)))) (T -1006))
+((-3838 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1006 *3)) (-4 *3 (-1036 *2)))) (-2881 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1006 *3)) (-4 *3 (-1036 (-407 (-564)))))) (-4034 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1006 *3)) (-4 *3 (-1036 *2)))))
+(-10 -7 (-15 -4034 ((-407 (-564)) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -3838 ((-3 (-407 (-564)) "failed") |#1|)))
+((-3877 ((|#2| $ "value" |#2|) 12)) (-4368 ((|#2| $ "value") 10)) (-3820 (((-112) $ $) 18)))
+(((-1007 |#1| |#2|) (-10 -8 (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -3820 ((-112) |#1| |#1|)) (-15 -4368 (|#2| |#1| "value"))) (-1008 |#2|) (-1212)) (T -1007))
+NIL
+(-10 -8 (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -3820 ((-112) |#1| |#1|)) (-15 -4368 (|#2| |#1| "value")))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2085 ((|#1| $) 49)) (-3697 (((-112) $ (-769)) 8)) (-3070 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-1976 (($) 7 T CONST)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) 51)) (-1847 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-2628 (((-642 |#1|) $) 46)) (-2376 (((-112) $) 50)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ "value") 48)) (-2137 (((-564) $ $) 45)) (-1392 (((-112) $) 47)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) 52)) (-3820 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-1008 |#1|) (-140) (-1212)) (T -1008))
+((-1512 (*1 *2 *1) (-12 (-4 *3 (-1212)) (-5 *2 (-642 *1)) (-4 *1 (-1008 *3)))) (-2622 (*1 *2 *1) (-12 (-4 *3 (-1212)) (-5 *2 (-642 *1)) (-4 *1 (-1008 *3)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1212)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1008 *2)) (-4 *2 (-1212)))) (-1392 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-642 *3)))) (-2137 (*1 *2 *1 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-564)))) (-3820 (*1 *2 *1 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-1847 (*1 *2 *1 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-3489 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *1)) (|has| *1 (-6 -4411)) (-4 *1 (-1008 *3)) (-4 *3 (-1212)))) (-3877 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4411)) (-4 *1 (-1008 *2)) (-4 *2 (-1212)))) (-3070 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1008 *2)) (-4 *2 (-1212)))))
+(-13 (-489 |t#1|) (-10 -8 (-15 -1512 ((-642 $) $)) (-15 -2622 ((-642 $) $)) (-15 -2376 ((-112) $)) (-15 -2085 (|t#1| $)) (-15 -4368 (|t#1| $ "value")) (-15 -1392 ((-112) $)) (-15 -2628 ((-642 |t#1|) $)) (-15 -2137 ((-564) $ $)) (IF (|has| |t#1| (-1097)) (PROGN (-15 -3820 ((-112) $ $)) (-15 -1847 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4411)) (PROGN (-15 -3489 ($ $ (-642 $))) (-15 -3877 (|t#1| $ "value" |t#1|)) (-15 -3070 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-3655 (($ $) 9) (($ $ (-919)) 49) (($ (-407 (-564))) 13) (($ (-564)) 15)) (-2525 (((-3 $ "failed") (-1169 $) (-919) (-860)) 24) (((-3 $ "failed") (-1169 $) (-919)) 32)) (-1772 (($ $ (-564)) 58)) (-2756 (((-769)) 18)) (-4160 (((-642 $) (-1169 $)) NIL) (((-642 $) (-1169 (-407 (-564)))) 63) (((-642 $) (-1169 (-564))) 68) (((-642 $) (-950 $)) 72) (((-642 $) (-950 (-407 (-564)))) 76) (((-642 $) (-950 (-564))) 80)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 53)))
+(((-1009 |#1|) (-10 -8 (-15 -3655 (|#1| (-564))) (-15 -3655 (|#1| (-407 (-564)))) (-15 -3655 (|#1| |#1| (-919))) (-15 -4160 ((-642 |#1|) (-950 (-564)))) (-15 -4160 ((-642 |#1|) (-950 (-407 (-564))))) (-15 -4160 ((-642 |#1|) (-950 |#1|))) (-15 -4160 ((-642 |#1|) (-1169 (-564)))) (-15 -4160 ((-642 |#1|) (-1169 (-407 (-564))))) (-15 -4160 ((-642 |#1|) (-1169 |#1|))) (-15 -2525 ((-3 |#1| "failed") (-1169 |#1|) (-919))) (-15 -2525 ((-3 |#1| "failed") (-1169 |#1|) (-919) (-860))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -1772 (|#1| |#1| (-564))) (-15 -3655 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2756 ((-769))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919)))) (-1010)) (T -1009))
+((-2756 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1009 *3)) (-4 *3 (-1010)))))
+(-10 -8 (-15 -3655 (|#1| (-564))) (-15 -3655 (|#1| (-407 (-564)))) (-15 -3655 (|#1| |#1| (-919))) (-15 -4160 ((-642 |#1|) (-950 (-564)))) (-15 -4160 ((-642 |#1|) (-950 (-407 (-564))))) (-15 -4160 ((-642 |#1|) (-950 |#1|))) (-15 -4160 ((-642 |#1|) (-1169 (-564)))) (-15 -4160 ((-642 |#1|) (-1169 (-407 (-564))))) (-15 -4160 ((-642 |#1|) (-1169 |#1|))) (-15 -2525 ((-3 |#1| "failed") (-1169 |#1|) (-919))) (-15 -2525 ((-3 |#1| "failed") (-1169 |#1|) (-919) (-860))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -1772 (|#1| |#1| (-564))) (-15 -3655 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -2756 ((-769))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 102)) (-1387 (($ $) 103)) (-2037 (((-112) $) 105)) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 122)) (-1978 (((-418 $) $) 123)) (-3655 (($ $) 86) (($ $ (-919)) 72) (($ (-407 (-564))) 71) (($ (-564)) 70)) (-4010 (((-112) $ $) 113)) (-2959 (((-564) $) 139)) (-1976 (($) 18 T CONST)) (-2525 (((-3 $ "failed") (-1169 $) (-919) (-860)) 80) (((-3 $ "failed") (-1169 $) (-919)) 79)) (-4278 (((-3 (-564) "failed") $) 99 (|has| (-407 (-564)) (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 97 (|has| (-407 (-564)) (-1036 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) 94)) (-3027 (((-564) $) 98 (|has| (-407 (-564)) (-1036 (-564)))) (((-407 (-564)) $) 96 (|has| (-407 (-564)) (-1036 (-407 (-564))))) (((-407 (-564)) $) 95)) (-3428 (($ $ (-860)) 69)) (-3841 (($ $ (-860)) 68)) (-2845 (($ $ $) 117)) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 116)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 111)) (-1469 (((-112) $) 124)) (-2538 (((-112) $) 137)) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 85)) (-3333 (((-112) $) 138)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 120)) (-2755 (($ $ $) 136)) (-1520 (($ $ $) 135)) (-3779 (((-3 (-1169 $) "failed") $) 81)) (-2454 (((-3 (-860) "failed") $) 83)) (-2778 (((-3 (-1169 $) "failed") $) 82)) (-2049 (($ (-642 $)) 109) (($ $ $) 108)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 125)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 110)) (-2080 (($ (-642 $)) 107) (($ $ $) 106)) (-3643 (((-418 $) $) 121)) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 118)) (-2896 (((-3 $ "failed") $ $) 101)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 112)) (-2048 (((-769) $) 114)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 115)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 129) (($ $) 100) (($ (-407 (-564))) 93) (($ (-564)) 92) (($ (-407 (-564))) 89)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 104)) (-3601 (((-407 (-564)) $ $) 67)) (-4160 (((-642 $) (-1169 $)) 78) (((-642 $) (-1169 (-407 (-564)))) 77) (((-642 $) (-1169 (-564))) 76) (((-642 $) (-950 $)) 75) (((-642 $) (-950 (-407 (-564)))) 74) (((-642 $) (-950 (-564))) 73)) (-1381 (($ $) 140)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2934 (((-112) $ $) 133)) (-2908 (((-112) $ $) 132)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 134)) (-2897 (((-112) $ $) 131)) (-2998 (($ $ $) 130)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 126) (($ $ (-407 (-564))) 84)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ (-407 (-564)) $) 128) (($ $ (-407 (-564))) 127) (($ (-564) $) 91) (($ $ (-564)) 90) (($ (-407 (-564)) $) 88) (($ $ (-407 (-564))) 87)))
+(((-1010) (-140)) (T -1010))
+((-3655 (*1 *1 *1) (-4 *1 (-1010))) (-2454 (*1 *2 *1) (|partial| -12 (-4 *1 (-1010)) (-5 *2 (-860)))) (-2778 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169 *1)) (-4 *1 (-1010)))) (-3779 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169 *1)) (-4 *1 (-1010)))) (-2525 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1169 *1)) (-5 *3 (-919)) (-5 *4 (-860)) (-4 *1 (-1010)))) (-2525 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1169 *1)) (-5 *3 (-919)) (-4 *1 (-1010)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-1010)) (-5 *2 (-642 *1)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-1169 (-407 (-564)))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-1169 (-564))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-1010)) (-5 *2 (-642 *1)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-950 (-564))) (-5 *2 (-642 *1)) (-4 *1 (-1010)))) (-3655 (*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-919)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1010)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1010)))) (-3428 (*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-860)))) (-3841 (*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-860)))) (-3601 (*1 *2 *1 *1) (-12 (-4 *1 (-1010)) (-5 *2 (-407 (-564))))))
+(-13 (-147) (-846) (-172) (-363) (-411 (-407 (-564))) (-38 (-564)) (-38 (-407 (-564))) (-1000) (-10 -8 (-15 -2454 ((-3 (-860) "failed") $)) (-15 -2778 ((-3 (-1169 $) "failed") $)) (-15 -3779 ((-3 (-1169 $) "failed") $)) (-15 -2525 ((-3 $ "failed") (-1169 $) (-919) (-860))) (-15 -2525 ((-3 $ "failed") (-1169 $) (-919))) (-15 -4160 ((-642 $) (-1169 $))) (-15 -4160 ((-642 $) (-1169 (-407 (-564))))) (-15 -4160 ((-642 $) (-1169 (-564)))) (-15 -4160 ((-642 $) (-950 $))) (-15 -4160 ((-642 $) (-950 (-407 (-564))))) (-15 -4160 ((-642 $) (-950 (-564)))) (-15 -3655 ($ $ (-919))) (-15 -3655 ($ $)) (-15 -3655 ($ (-407 (-564)))) (-15 -3655 ($ (-564))) (-15 -3428 ($ $ (-860))) (-15 -3841 ($ $ (-860))) (-15 -3601 ((-407 (-564)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 #1=(-564)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-411 (-407 (-564))) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 #1#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 #1#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 #1#) . T) ((-715 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-846) . T) ((-848) . T) ((-918) . T) ((-1000) . T) ((-1036 (-407 (-564))) . T) ((-1036 (-564)) |has| (-407 (-564)) (-1036 (-564))) ((-1049 #0#) . T) ((-1049 #1#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T))
+((-1714 (((-2 (|:| |ans| |#2|) (|:| -4336 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
+(((-1011 |#1| |#2|) (-10 -7 (-15 -1714 ((-2 (|:| |ans| |#2|) (|:| -4336 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-27) (-430 |#1|))) (T -1011))
+((-1714 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1173)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-642 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2116 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1197) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-147) (-1036 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4336 *4) (|:| |sol?| (-112)))) (-5 *1 (-1011 *8 *4)))))
+(-10 -7 (-15 -1714 ((-2 (|:| |ans| |#2|) (|:| -4336 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1352 (((-3 (-642 |#2|) "failed") (-564) |#2| |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
+(((-1012 |#1| |#2|) (-10 -7 (-15 -1352 ((-3 (-642 |#2|) "failed") (-564) |#2| |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))) (-13 (-1197) (-27) (-430 |#1|))) (T -1012))
+((-1352 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1173)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-642 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2116 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1197) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-147) (-1036 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-642 *4)) (-5 *1 (-1012 *8 *4)))))
+(-10 -7 (-15 -1352 ((-3 (-642 |#2|) "failed") (-564) |#2| |#2| |#2| (-1173) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-642 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-642 |#2|)) (-1 (-3 (-2 (|:| -2116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3671 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1640 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)) 39)) (-3690 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1442 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 69)) (-1914 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 74)))
+(((-1013 |#1| |#2|) (-10 -7 (-15 -3690 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1442 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -1914 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3671 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1640 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1036 (-564))) (-1238 |#1|)) (T -1013))
+((-3671 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1238 *6)) (-4 *6 (-13 (-363) (-147) (-1036 *4))) (-5 *4 (-564)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -1640 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1013 *6 *3)))) (-1914 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1013 *4 *5)) (-5 *3 (-407 *5)))) (-3690 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -1442 *6))) (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6)))))
+(-10 -7 (-15 -3690 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1442 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -1914 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3671 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1640 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|))))
+((-2544 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1442 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-3799 (((-3 (-642 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 34)))
+(((-1014 |#1| |#2|) (-10 -7 (-15 -2544 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1442 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3799 ((-3 (-642 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1036 (-564))) (-1238 |#1|)) (T -1014))
+((-3799 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4)) (-5 *2 (-642 (-407 *5))) (-5 *1 (-1014 *4 *5)) (-5 *3 (-407 *5)))) (-2544 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1442 *6))) (-5 *1 (-1014 *5 *6)) (-5 *3 (-407 *6)))))
+(-10 -7 (-15 -2544 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1442 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3799 ((-3 (-642 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))))
+((-3634 (((-1 |#1|) (-642 (-2 (|:| -2085 |#1|) (|:| -1915 (-564))))) 37)) (-2503 (((-1 |#1|) (-1099 |#1|)) 45)) (-1413 (((-1 |#1|) (-1262 |#1|) (-1262 (-564)) (-564)) 34)))
+(((-1015 |#1|) (-10 -7 (-15 -2503 ((-1 |#1|) (-1099 |#1|))) (-15 -3634 ((-1 |#1|) (-642 (-2 (|:| -2085 |#1|) (|:| -1915 (-564)))))) (-15 -1413 ((-1 |#1|) (-1262 |#1|) (-1262 (-564)) (-564)))) (-1097)) (T -1015))
+((-1413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1262 *6)) (-5 *4 (-1262 (-564))) (-5 *5 (-564)) (-4 *6 (-1097)) (-5 *2 (-1 *6)) (-5 *1 (-1015 *6)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -2085 *4) (|:| -1915 (-564))))) (-4 *4 (-1097)) (-5 *2 (-1 *4)) (-5 *1 (-1015 *4)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1099 *4)) (-4 *4 (-1097)) (-5 *2 (-1 *4)) (-5 *1 (-1015 *4)))))
+(-10 -7 (-15 -2503 ((-1 |#1|) (-1099 |#1|))) (-15 -3634 ((-1 |#1|) (-642 (-2 (|:| -2085 |#1|) (|:| -1915 (-564)))))) (-15 -1413 ((-1 |#1|) (-1262 |#1|) (-1262 (-564)) (-564))))
+((-1427 (((-769) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1016 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1427 ((-769) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1238 |#1|) (-1238 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1016))
+((-1427 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1238 *6)) (-4 *4 (-1238 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-769)) (-5 *1 (-1016 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -1427 ((-769) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2907 (((-112) $ $) NIL)) (-3307 (((-1132) $) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2474 (((-1132) $) 11)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1017) (-13 (-1080) (-10 -8 (-15 -3307 ((-1132) $)) (-15 -2474 ((-1132) $))))) (T -1017))
+((-3307 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1017)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1017)))))
+(-13 (-1080) (-10 -8 (-15 -3307 ((-1132) $)) (-15 -2474 ((-1132) $))))
+((-1296 (((-3 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) "failed") |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) 32) (((-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564))) 29)) (-4167 (((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564))) 34) (((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-407 (-564))) 30) (((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) 33) (((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1|) 28)) (-3893 (((-642 (-407 (-564))) (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) 20)) (-4042 (((-407 (-564)) (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) 17)))
+(((-1018 |#1|) (-10 -7 (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1|)) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564)))) (-15 -1296 ((-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564)))) (-15 -1296 ((-3 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) "failed") |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-15 -4042 ((-407 (-564)) (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-15 -3893 ((-642 (-407 (-564))) (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))))) (-1238 (-564))) (T -1018))
+((-3893 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-5 *2 (-642 (-407 (-564)))) (-5 *1 (-1018 *4)) (-4 *4 (-1238 (-564))))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) (-5 *2 (-407 (-564))) (-5 *1 (-1018 *4)) (-4 *4 (-1238 (-564))))) (-1296 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))))) (-1296 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-642 (-2 (|:| -4326 *5) (|:| -4336 *5)))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))) (-5 *4 (-2 (|:| -4326 *5) (|:| -4336 *5))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *2 (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))) (-5 *4 (-407 (-564))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *2 (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))) (-5 *4 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))) (-4167 (*1 *2 *3) (-12 (-5 *2 (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))))))
+(-10 -7 (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1|)) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564)))) (-15 -1296 ((-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564)))) (-15 -1296 ((-3 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) "failed") |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-15 -4042 ((-407 (-564)) (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-15 -3893 ((-642 (-407 (-564))) (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))))
+((-1296 (((-3 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) "failed") |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) 35) (((-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564))) 32)) (-4167 (((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564))) 30) (((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-407 (-564))) 26) (((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) 28) (((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1|) 24)))
+(((-1019 |#1|) (-10 -7 (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1|)) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564)))) (-15 -1296 ((-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564)))) (-15 -1296 ((-3 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) "failed") |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))) (-1238 (-407 (-564)))) (T -1019))
+((-1296 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564)))))) (-1296 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 *4)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-642 (-2 (|:| -4326 *5) (|:| -4336 *5)))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 *5)) (-5 *4 (-2 (|:| -4326 *5) (|:| -4336 *5))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-5 *2 (-642 (-2 (|:| -4326 *4) (|:| -4336 *4)))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 *4)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *2 (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564)))) (-5 *4 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))) (-4167 (*1 *2 *3) (-12 (-5 *2 (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564)))))))
+(-10 -7 (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1|)) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -4167 ((-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564)))) (-15 -1296 ((-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-407 (-564)))) (-15 -1296 ((-3 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) "failed") |#1| (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))) (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))))
+((-1314 (((-225) $) 6) (((-379) $) 9)))
+(((-1020) (-140)) (T -1020))
NIL
(-13 (-612 (-225)) (-612 (-379)))
(((-612 (-225)) . T) ((-612 (-379)) . T))
-((-4256 (((-641 (-379)) (-948 (-564)) (-379)) 28) (((-641 (-379)) (-948 (-407 (-564))) (-379)) 27)) (-2367 (((-641 (-641 (-379))) (-641 (-948 (-564))) (-641 (-1170)) (-379)) 37)))
-(((-1019) (-10 -7 (-15 -4256 ((-641 (-379)) (-948 (-407 (-564))) (-379))) (-15 -4256 ((-641 (-379)) (-948 (-564)) (-379))) (-15 -2367 ((-641 (-641 (-379))) (-641 (-948 (-564))) (-641 (-1170)) (-379))))) (T -1019))
-((-2367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1019)) (-5 *5 (-379)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1019)) (-5 *4 (-379)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *2 (-641 (-379))) (-5 *1 (-1019)) (-5 *4 (-379)))))
-(-10 -7 (-15 -4256 ((-641 (-379)) (-948 (-407 (-564))) (-379))) (-15 -4256 ((-641 (-379)) (-948 (-564)) (-379))) (-15 -2367 ((-641 (-641 (-379))) (-641 (-948 (-564))) (-641 (-1170)) (-379))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 75)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3700 (($ $) NIL) (($ $ (-917)) NIL) (($ (-407 (-564))) NIL) (($ (-564)) NIL)) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) 70)) (-4080 (($) NIL T CONST)) (-2930 (((-3 $ "failed") (-1166 $) (-917) (-858)) NIL) (((-3 $ "failed") (-1166 $) (-917)) 55)) (-4284 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 (-564)) (-1034 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-564) "failed") $) NIL (-2807 (|has| (-407 (-564)) (-1034 (-564))) (|has| |#1| (-1034 (-564)))))) (-3120 (((-407 (-564)) $) 17 (|has| (-407 (-564)) (-1034 (-407 (-564))))) (((-407 (-564)) $) 17) ((|#1| $) 117) (((-564) $) NIL (-2807 (|has| (-407 (-564)) (-1034 (-564))) (|has| |#1| (-1034 (-564)))))) (-4385 (($ $ (-858)) 47)) (-2309 (($ $ (-858)) 48)) (-2946 (($ $ $) NIL)) (-1562 (((-407 (-564)) $ $) 21)) (-3293 (((-3 $ "failed") $) 88)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2384 (((-112) $) 66)) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL)) (-3326 (((-112) $) 69)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2724 (((-3 (-1166 $) "failed") $) 83)) (-1818 (((-3 (-858) "failed") $) 82)) (-3893 (((-3 (-1166 $) "failed") $) 80)) (-2430 (((-3 (-1055 $ (-1166 $)) "failed") $) 78)) (-2084 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 89)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ (-641 $)) NIL) (($ $ $) NIL)) (-3688 (((-418 $) $) NIL)) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-2423 (((-858) $) 87) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) 63) (($ (-407 (-564))) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 119)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-3646 (((-407 (-564)) $ $) 27)) (-2308 (((-641 $) (-1166 $)) 61) (((-641 $) (-1166 (-407 (-564)))) NIL) (((-641 $) (-1166 (-564))) NIL) (((-641 $) (-948 $)) NIL) (((-641 $) (-948 (-407 (-564)))) NIL) (((-641 $) (-948 (-564))) NIL)) (-3141 (($ (-1055 $ (-1166 $)) (-858)) 46)) (-3673 (($ $) 22)) (-2403 (($) 32 T CONST)) (-2417 (($) 39 T CONST)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 76)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 24)) (-3092 (($ $ $) 37)) (-3082 (($ $) 38) (($ $ $) 74)) (-3070 (($ $ $) 112)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 98) (($ $ $) 104) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ (-564) $) 98) (($ $ (-564)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1020 |#1|) (-13 (-1008) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3141 ($ (-1055 $ (-1166 $)) (-858))) (-15 -2430 ((-3 (-1055 $ (-1166 $)) "failed") $)) (-15 -1562 ((-407 (-564)) $ $)))) (-13 (-844) (-363) (-1018))) (T -1020))
-((-3141 (*1 *1 *2 *3) (-12 (-5 *2 (-1055 (-1020 *4) (-1166 (-1020 *4)))) (-5 *3 (-858)) (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1018))))) (-2430 (*1 *2 *1) (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1166 (-1020 *3)))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018))))) (-1562 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018))))))
-(-13 (-1008) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3141 ($ (-1055 $ (-1166 $)) (-858))) (-15 -2430 ((-3 (-1055 $ (-1166 $)) "failed") $)) (-15 -1562 ((-407 (-564)) $ $))))
-((-2215 (((-2 (|:| -1606 |#2|) (|:| -1626 (-641 |#1|))) |#2| (-641 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
-(((-1021 |#1| |#2|) (-10 -7 (-15 -2215 (|#2| |#2| |#1|)) (-15 -2215 ((-2 (|:| -1606 |#2|) (|:| -1626 (-641 |#1|))) |#2| (-641 |#1|)))) (-363) (-652 |#1|)) (T -1021))
-((-2215 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -1606 *3) (|:| -1626 (-641 *5)))) (-5 *1 (-1021 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5)))) (-2215 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-652 *3)))))
-(-10 -7 (-15 -2215 (|#2| |#2| |#1|)) (-15 -2215 ((-2 (|:| -1606 |#2|) (|:| -1626 (-641 |#1|))) |#2| (-641 |#1|))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3604 ((|#1| $ |#1|) 14)) (-3904 ((|#1| $ |#1|) 12)) (-2045 (($ |#1|) 10)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4366 ((|#1| $) 11)) (-2569 ((|#1| $) 13)) (-2423 (((-858) $) 21 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2974 (((-112) $ $) 9)))
-(((-1022 |#1|) (-13 (-1209) (-10 -8 (-15 -2045 ($ |#1|)) (-15 -4366 (|#1| $)) (-15 -3904 (|#1| $ |#1|)) (-15 -2569 (|#1| $)) (-15 -3604 (|#1| $ |#1|)) (-15 -2974 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1022))
-((-2045 (*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) (-4366 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) (-3904 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) (-2569 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) (-3604 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))) (-2974 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1209)))))
-(-13 (-1209) (-10 -8 (-15 -2045 ($ |#1|)) (-15 -4366 (|#1| $)) (-15 -3904 (|#1| $ |#1|)) (-15 -2569 (|#1| $)) (-15 -3604 (|#1| $ |#1|)) (-15 -2974 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-3605 (((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 |#4|)))) (-641 |#4|)) NIL)) (-2578 (((-641 $) (-641 |#4|)) 116) (((-641 $) (-641 |#4|) (-112)) 117) (((-641 $) (-641 |#4|) (-112) (-112)) 115) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 118)) (-3836 (((-641 |#3|) $) NIL)) (-3342 (((-112) $) NIL)) (-1594 (((-112) $) NIL (|has| |#1| (-556)))) (-3631 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3494 ((|#4| |#4| $) NIL)) (-2683 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| $) 110)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-1667 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 64)) (-4080 (($) NIL T CONST)) (-1968 (((-112) $) 29 (|has| |#1| (-556)))) (-2238 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1489 (((-112) $) NIL (|has| |#1| (-556)))) (-2961 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3703 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) NIL)) (-3120 (($ (-641 |#4|)) NIL)) (-2671 (((-3 $ "failed") $) 45)) (-2405 ((|#4| |#4| $) 67)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2591 (($ |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 83 (|has| |#1| (-556)))) (-3870 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2248 ((|#4| |#4| $) NIL)) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4020 (((-2 (|:| -1604 (-641 |#4|)) (|:| -2319 (-641 |#4|))) $) NIL)) (-4014 (((-112) |#4| $) NIL)) (-3071 (((-112) |#4| $) NIL)) (-1865 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1715 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 131)) (-3035 (((-641 |#4|) $) 18 (|has| $ (-6 -4407)))) (-2675 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3378 ((|#3| $) 38)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#4|) $) 19 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2714 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) 23)) (-2814 (((-641 |#3|) $) NIL)) (-3169 (((-112) |#3| $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-2227 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-2146 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| |#4| $) 108)) (-2615 (((-3 |#4| "failed") $) 42)) (-4022 (((-641 $) |#4| $) 91)) (-1995 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-4259 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 $))) |#4| $) 101) (((-112) |#4| $) 62)) (-3888 (((-641 $) |#4| $) 113) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 114) (((-641 $) |#4| (-641 $)) NIL)) (-3389 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 126)) (-3531 (($ |#4| $) 80) (($ (-641 |#4|) $) 81) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 77)) (-3167 (((-641 |#4|) $) NIL)) (-3441 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4241 ((|#4| |#4| $) NIL)) (-2582 (((-112) $ $) NIL)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1929 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3347 ((|#4| |#4| $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 (((-3 |#4| "failed") $) 40)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2533 (((-3 $ "failed") $ |#4|) 58)) (-4016 (($ $ |#4|) NIL) (((-641 $) |#4| $) 93) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 87)) (-4377 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 17)) (-2994 (($) 14)) (-1568 (((-767) $) NIL)) (-4062 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) 13)) (-1311 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2435 (($ (-641 |#4|)) 22)) (-1834 (($ $ |#3|) 52)) (-1648 (($ $ |#3|) 54)) (-1492 (($ $) NIL)) (-2577 (($ $ |#3|) NIL)) (-2423 (((-858) $) 35) (((-641 |#4|) $) 46)) (-3840 (((-767) $) NIL (|has| |#3| (-368)))) (-1860 (((-112) $ $) NIL)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3212 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-3418 (((-641 $) |#4| $) 90) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-1368 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3579 (((-641 |#3|) $) NIL)) (-1947 (((-112) |#4| $) NIL)) (-1816 (((-112) |#3| $) 63)) (-2974 (((-112) $ $) NIL)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1023 |#1| |#2| |#3| |#4|) (-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3531 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2578 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -2578 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -3389 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -1715 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1023))
-((-3531 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-2578 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-2578 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-3389 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-1715 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1023 *5 *6 *7 *8))))) (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
-(-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3531 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2578 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -2578 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -3389 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -1715 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)))))
-((-3150 (((-641 (-685 |#1|)) (-641 (-685 |#1|))) 73) (((-685 |#1|) (-685 |#1|)) 72) (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 71) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 68)) (-2901 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917)) 66) (((-685 |#1|) (-685 |#1|) (-917)) 65)) (-2859 (((-641 (-685 (-564))) (-641 (-641 (-564)))) 84) (((-641 (-685 (-564))) (-641 (-901 (-564))) (-564)) 83) (((-685 (-564)) (-641 (-564))) 80) (((-685 (-564)) (-901 (-564)) (-564)) 78)) (-1536 (((-685 (-948 |#1|)) (-767)) 98)) (-3636 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917)) 52 (|has| |#1| (-6 (-4409 "*")))) (((-685 |#1|) (-685 |#1|) (-917)) 50 (|has| |#1| (-6 (-4409 "*"))))))
-(((-1024 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4409 "*"))) (-15 -3636 ((-685 |#1|) (-685 |#1|) (-917))) |%noBranch|) (IF (|has| |#1| (-6 (-4409 "*"))) (-15 -3636 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917))) |%noBranch|) (-15 -1536 ((-685 (-948 |#1|)) (-767))) (-15 -2901 ((-685 |#1|) (-685 |#1|) (-917))) (-15 -2901 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917))) (-15 -3150 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3150 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3150 ((-685 |#1|) (-685 |#1|))) (-15 -3150 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2859 ((-685 (-564)) (-901 (-564)) (-564))) (-15 -2859 ((-685 (-564)) (-641 (-564)))) (-15 -2859 ((-641 (-685 (-564))) (-641 (-901 (-564))) (-564))) (-15 -2859 ((-641 (-685 (-564))) (-641 (-641 (-564)))))) (-1045)) (T -1024))
-((-2859 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-2859 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-901 (-564)))) (-5 *4 (-564)) (-5 *2 (-641 (-685 *4))) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-2859 (*1 *2 *3 *4) (-12 (-5 *3 (-901 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4)) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) (-3150 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-3150 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-3150 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-3150 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-2901 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-917)) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-2901 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-917)) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-685 (-948 *4))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-3636 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-917)) (|has| *4 (-6 (-4409 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-3636 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4409 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4409 "*"))) (-15 -3636 ((-685 |#1|) (-685 |#1|) (-917))) |%noBranch|) (IF (|has| |#1| (-6 (-4409 "*"))) (-15 -3636 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917))) |%noBranch|) (-15 -1536 ((-685 (-948 |#1|)) (-767))) (-15 -2901 ((-685 |#1|) (-685 |#1|) (-917))) (-15 -2901 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-917))) (-15 -3150 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3150 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3150 ((-685 |#1|) (-685 |#1|))) (-15 -3150 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2859 ((-685 (-564)) (-901 (-564)) (-564))) (-15 -2859 ((-685 (-564)) (-641 (-564)))) (-15 -2859 ((-641 (-685 (-564))) (-641 (-901 (-564))) (-564))) (-15 -2859 ((-641 (-685 (-564))) (-641 (-641 (-564))))))
-((-2118 (((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)) 70 (|has| |#1| (-307)))) (-1335 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))) 111 (|has| |#1| (-363))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|)) 118 (|has| |#1| (-363)))) (-4105 (((-1259 |#1|) (-641 (-1259 |#1|)) (-564)) 135 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-2221 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-917)) 124 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112)) 123 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|))) 122 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564)) 121 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3305 (((-112) (-641 (-685 |#1|))) 104 (|has| |#1| (-363))) (((-112) (-641 (-685 |#1|)) (-564)) 107 (|has| |#1| (-363)))) (-3381 (((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|)) 67 (|has| |#1| (-307)))) (-2674 (((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|)) 48)) (-3567 (((-685 |#1|) (-1259 (-1259 |#1|))) 41)) (-3572 (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564)) 95 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 94 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564)) 102 (|has| |#1| (-363)))))
-(((-1025 |#1|) (-10 -7 (-15 -3567 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -2674 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -3381 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -2118 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3572 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -3572 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3572 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -3305 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -3305 ((-112) (-641 (-685 |#1|)))) (-15 -1335 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -1335 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -2221 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -2221 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -2221 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -2221 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-917))) (-15 -4105 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) (-1045)) (T -1025))
-((-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5)) (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)))) (-2221 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-641 (-685 *5))))) (-2221 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-641 (-685 *5))))) (-2221 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045)) (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1025 *4)) (-5 *3 (-641 (-685 *4))))) (-2221 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1045)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1025 *6)) (-5 *3 (-641 (-685 *6))))) (-1335 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-641 (-685 *5))))) (-1335 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-641 (-685 *5))))) (-3305 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *4)))) (-3305 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *5)))) (-3572 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5)) (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-1045)))) (-3572 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1025 *4)) (-4 *4 (-363)) (-4 *4 (-1045)))) (-3572 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564)) (-5 *2 (-685 *6)) (-5 *1 (-1025 *6)) (-4 *6 (-363)) (-4 *6 (-1045)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-685 *5)) (-5 *1 (-1025 *5)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1025 *5)) (-5 *4 (-1259 *5)))) (-2674 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1045)) (-5 *1 (-1025 *4)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1045)) (-5 *2 (-685 *4)) (-5 *1 (-1025 *4)))))
-(-10 -7 (-15 -3567 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -2674 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -3381 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -2118 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3572 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -3572 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3572 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -3305 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -3305 ((-112) (-641 (-685 |#1|)))) (-15 -1335 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -1335 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -2221 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -2221 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -2221 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -2221 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-917))) (-15 -4105 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|))
-((-4064 ((|#1| (-917) |#1|) 18)))
-(((-1026 |#1|) (-10 -7 (-15 -4064 (|#1| (-917) |#1|))) (-13 (-1094) (-10 -8 (-15 -3070 ($ $ $))))) (T -1026))
-((-4064 (*1 *2 *3 *2) (-12 (-5 *3 (-917)) (-5 *1 (-1026 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -3070 ($ $ $))))))))
-(-10 -7 (-15 -4064 (|#1| (-917) |#1|)))
-((-4358 (((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-948 (-564))))) 67)) (-4177 (((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-948 (-564))))) 52)) (-2138 (((-641 (-316 (-564))) (-685 (-407 (-948 (-564))))) 45)) (-2698 (((-641 (-685 (-316 (-564)))) (-685 (-407 (-948 (-564))))) 87)) (-3970 (((-685 (-316 (-564))) (-685 (-316 (-564)))) 38)) (-3439 (((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564))))) 76)) (-2065 (((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-948 (-564))))) 85)))
-(((-1027) (-10 -7 (-15 -4358 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-948 (-564)))))) (-15 -4177 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-948 (-564)))))) (-15 -2138 ((-641 (-316 (-564))) (-685 (-407 (-948 (-564)))))) (-15 -2065 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-948 (-564)))))) (-15 -3970 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -3439 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -2698 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-948 (-564)))))))) (T -1027))
-((-2698 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-948 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027)))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1027)))) (-2065 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 (-407 (-948 (-564))))) (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1027)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-948 (-564))))) (-5 *2 (-641 (-316 (-564)))) (-5 *1 (-1027)))) (-4177 (*1 *2 *3 *4) (-12 (-5 *4 (-685 (-407 (-948 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027)) (-5 *3 (-316 (-564))))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-948 (-564))))) (-5 *2 (-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564)))))))) (-5 *1 (-1027)))))
-(-10 -7 (-15 -4358 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-948 (-564)))))) (-15 -4177 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-948 (-564)))))) (-15 -2138 ((-641 (-316 (-564))) (-685 (-407 (-948 (-564)))))) (-15 -2065 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-948 (-564)))))) (-15 -3970 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -3439 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -2698 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-948 (-564)))))))
-((-4369 ((|#1| |#1| (-917)) 18)))
-(((-1028 |#1|) (-10 -7 (-15 -4369 (|#1| |#1| (-917)))) (-13 (-1094) (-10 -8 (-15 * ($ $ $))))) (T -1028))
-((-4369 (*1 *2 *2 *3) (-12 (-5 *3 (-917)) (-5 *1 (-1028 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -4369 (|#1| |#1| (-917))))
-((-2423 ((|#1| (-312)) 11) (((-1264) |#1|) 9)))
-(((-1029 |#1|) (-10 -7 (-15 -2423 ((-1264) |#1|)) (-15 -2423 (|#1| (-312)))) (-1209)) (T -1029))
-((-2423 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1029 *2)) (-4 *2 (-1209)))) (-2423 (*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1029 *3)) (-4 *3 (-1209)))))
-(-10 -7 (-15 -2423 ((-1264) |#1|)) (-15 -2423 (|#1| (-312))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-1316 (($ |#4|) 25)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-1305 ((|#4| $) 27)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 46) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3719 (((-767)) 43 T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 21 T CONST)) (-2417 (($) 23 T CONST)) (-2974 (((-112) $ $) 40)) (-3082 (($ $) 31) (($ $ $) NIL)) (-3070 (($ $ $) 29)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1030 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -1316 ($ |#4|)) (-15 -2423 ($ |#4|)) (-15 -1305 (|#4| $)))) (-363) (-789) (-846) (-945 |#1| |#2| |#3|) (-641 |#4|)) (T -1030))
-((-1316 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-641 *2)))) (-2423 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-641 *2)))) (-1305 (*1 *2 *1) (-12 (-4 *2 (-945 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-641 *2)))))
-(-13 (-172) (-38 |#1|) (-10 -8 (-15 -1316 ($ |#4|)) (-15 -2423 ($ |#4|)) (-15 -1305 (|#4| $))))
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL)) (-3236 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3080 (((-112) (-112)) 43)) (-4378 (((-112) (-112)) 42)) (-3904 (((-52) $ (-1170) (-52)) NIL)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2327 (((-3 (-52) "failed") (-1170) $) NIL)) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-1945 (($ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-3 (-52) "failed") (-1170) $) NIL)) (-2591 (($ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (((-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2726 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4408)))) (-2652 (((-52) $ (-1170)) NIL)) (-3035 (((-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-641 (-52)) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-1170) $) NIL (|has| (-1170) (-846)))) (-1554 (((-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-641 (-52)) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1094))))) (-2898 (((-1170) $) NIL (|has| (-1170) (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-3454 (((-641 (-1170)) $) 37)) (-3565 (((-112) (-1170) $) NIL)) (-3149 (((-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL)) (-2566 (($ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL)) (-3050 (((-641 (-1170)) $) NIL)) (-1563 (((-112) (-1170) $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-2658 (((-52) $) NIL (|has| (-1170) (-846)))) (-2139 (((-3 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) "failed") (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL)) (-1592 (($ $ (-52)) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))))) NIL (-12 (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL (-12 (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (($ $ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) NIL (-12 (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL (-12 (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1094))))) (-2075 (((-641 (-52)) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 (((-52) $ (-1170)) 39) (((-52) $ (-1170) (-52)) NIL)) (-3853 (($) NIL) (($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1094)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL)) (-2423 (((-858) $) 41 (-2807 (|has| (-52) (-611 (-858))) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-611 (-858)))))) (-1860 (((-112) $ $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1031) (-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -3080 ((-112) (-112))) (-15 -4378 ((-112) (-112))) (-6 -4407)))) (T -1031))
-((-3080 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))) (-4378 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))))
-(-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -3080 ((-112) (-112))) (-15 -4378 ((-112) (-112))) (-6 -4407)))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1350 (((-1129) $) 9)) (-2423 (((-858) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1032) (-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $))))) (T -1032))
-((-1350 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1032)))))
-(-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $))))
-((-3120 ((|#2| $) 10)))
-(((-1033 |#1| |#2|) (-10 -8 (-15 -3120 (|#2| |#1|))) (-1034 |#2|) (-1209)) (T -1033))
-NIL
-(-10 -8 (-15 -3120 (|#2| |#1|)))
-((-4284 (((-3 |#1| "failed") $) 9)) (-3120 ((|#1| $) 8)) (-2423 (($ |#1|) 6)))
-(((-1034 |#1|) (-140) (-1209)) (T -1034))
-((-4284 (*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1209)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1209)))))
-(-13 (-614 |t#1|) (-10 -8 (-15 -4284 ((-3 |t#1| "failed") $)) (-15 -3120 (|t#1| $))))
+((-1616 (((-642 (-379)) (-950 (-564)) (-379)) 28) (((-642 (-379)) (-950 (-407 (-564))) (-379)) 27)) (-1573 (((-642 (-642 (-379))) (-642 (-950 (-564))) (-642 (-1173)) (-379)) 37)))
+(((-1021) (-10 -7 (-15 -1616 ((-642 (-379)) (-950 (-407 (-564))) (-379))) (-15 -1616 ((-642 (-379)) (-950 (-564)) (-379))) (-15 -1573 ((-642 (-642 (-379))) (-642 (-950 (-564))) (-642 (-1173)) (-379))))) (T -1021))
+((-1573 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-642 (-1173))) (-5 *2 (-642 (-642 (-379)))) (-5 *1 (-1021)) (-5 *5 (-379)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-950 (-564))) (-5 *2 (-642 (-379))) (-5 *1 (-1021)) (-5 *4 (-379)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *2 (-642 (-379))) (-5 *1 (-1021)) (-5 *4 (-379)))))
+(-10 -7 (-15 -1616 ((-642 (-379)) (-950 (-407 (-564))) (-379))) (-15 -1616 ((-642 (-379)) (-950 (-564)) (-379))) (-15 -1573 ((-642 (-642 (-379))) (-642 (-950 (-564))) (-642 (-1173)) (-379))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 75)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-3655 (($ $) NIL) (($ $ (-919)) NIL) (($ (-407 (-564))) NIL) (($ (-564)) NIL)) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) 70)) (-1976 (($) NIL T CONST)) (-2525 (((-3 $ "failed") (-1169 $) (-919) (-860)) NIL) (((-3 $ "failed") (-1169 $) (-919)) 55)) (-4278 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 (-564)) (-1036 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-564) "failed") $) NIL (-2706 (|has| (-407 (-564)) (-1036 (-564))) (|has| |#1| (-1036 (-564)))))) (-3027 (((-407 (-564)) $) 17 (|has| (-407 (-564)) (-1036 (-407 (-564))))) (((-407 (-564)) $) 17) ((|#1| $) 117) (((-564) $) NIL (-2706 (|has| (-407 (-564)) (-1036 (-564))) (|has| |#1| (-1036 (-564)))))) (-3428 (($ $ (-860)) 47)) (-3841 (($ $ (-860)) 48)) (-2845 (($ $ $) NIL)) (-3910 (((-407 (-564)) $ $) 21)) (-3104 (((-3 $ "failed") $) 88)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-2538 (((-112) $) 66)) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL)) (-3333 (((-112) $) 69)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-3779 (((-3 (-1169 $) "failed") $) 83)) (-2454 (((-3 (-860) "failed") $) 82)) (-2778 (((-3 (-1169 $) "failed") $) 80)) (-4329 (((-3 (-1058 $ (-1169 $)) "failed") $) 78)) (-2049 (($ (-642 $)) NIL) (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 89)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ (-642 $)) NIL) (($ $ $) NIL)) (-3643 (((-418 $) $) NIL)) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-2327 (((-860) $) 87) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) 63) (($ (-407 (-564))) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 119)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-3601 (((-407 (-564)) $ $) 27)) (-4160 (((-642 $) (-1169 $)) 61) (((-642 $) (-1169 (-407 (-564)))) NIL) (((-642 $) (-1169 (-564))) NIL) (((-642 $) (-950 $)) NIL) (((-642 $) (-950 (-407 (-564)))) NIL) (((-642 $) (-950 (-564))) NIL)) (-2060 (($ (-1058 $ (-1169 $)) (-860)) 46)) (-1381 (($ $) 22)) (-2312 (($) 32 T CONST)) (-2322 (($) 39 T CONST)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 76)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 24)) (-2998 (($ $ $) 37)) (-2987 (($ $) 38) (($ $ $) 74)) (-2974 (($ $ $) 112)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 98) (($ $ $) 104) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ (-564) $) 98) (($ $ (-564)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1022 |#1|) (-13 (-1010) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -2060 ($ (-1058 $ (-1169 $)) (-860))) (-15 -4329 ((-3 (-1058 $ (-1169 $)) "failed") $)) (-15 -3910 ((-407 (-564)) $ $)))) (-13 (-846) (-363) (-1020))) (T -1022))
+((-2060 (*1 *1 *2 *3) (-12 (-5 *2 (-1058 (-1022 *4) (-1169 (-1022 *4)))) (-5 *3 (-860)) (-5 *1 (-1022 *4)) (-4 *4 (-13 (-846) (-363) (-1020))))) (-4329 (*1 *2 *1) (|partial| -12 (-5 *2 (-1058 (-1022 *3) (-1169 (-1022 *3)))) (-5 *1 (-1022 *3)) (-4 *3 (-13 (-846) (-363) (-1020))))) (-3910 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1022 *3)) (-4 *3 (-13 (-846) (-363) (-1020))))))
+(-13 (-1010) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -2060 ($ (-1058 $ (-1169 $)) (-860))) (-15 -4329 ((-3 (-1058 $ (-1169 $)) "failed") $)) (-15 -3910 ((-407 (-564)) $ $))))
+((-3482 (((-2 (|:| -1640 |#2|) (|:| -1660 (-642 |#1|))) |#2| (-642 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
+(((-1023 |#1| |#2|) (-10 -7 (-15 -3482 (|#2| |#2| |#1|)) (-15 -3482 ((-2 (|:| -1640 |#2|) (|:| -1660 (-642 |#1|))) |#2| (-642 |#1|)))) (-363) (-654 |#1|)) (T -1023))
+((-3482 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -1640 *3) (|:| -1660 (-642 *5)))) (-5 *1 (-1023 *5 *3)) (-5 *4 (-642 *5)) (-4 *3 (-654 *5)))) (-3482 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1023 *3 *2)) (-4 *2 (-654 *3)))))
+(-10 -7 (-15 -3482 (|#2| |#2| |#1|)) (-15 -3482 ((-2 (|:| -1640 |#2|) (|:| -1660 (-642 |#1|))) |#2| (-642 |#1|))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2535 ((|#1| $ |#1|) 14)) (-3877 ((|#1| $ |#1|) 12)) (-1827 (($ |#1|) 10)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-4368 ((|#1| $) 11)) (-2693 ((|#1| $) 13)) (-2327 (((-860) $) 21 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2872 (((-112) $ $) 9)))
+(((-1024 |#1|) (-13 (-1212) (-10 -8 (-15 -1827 ($ |#1|)) (-15 -4368 (|#1| $)) (-15 -3877 (|#1| $ |#1|)) (-15 -2693 (|#1| $)) (-15 -2535 (|#1| $ |#1|)) (-15 -2872 ((-112) $ $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|))) (-1212)) (T -1024))
+((-1827 (*1 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) (-4368 (*1 *2 *1) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) (-3877 (*1 *2 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) (-2693 (*1 *2 *1) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) (-2535 (*1 *2 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))) (-2872 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1024 *3)) (-4 *3 (-1212)))))
+(-13 (-1212) (-10 -8 (-15 -1827 ($ |#1|)) (-15 -4368 (|#1| $)) (-15 -3877 (|#1| $ |#1|)) (-15 -2693 (|#1| $)) (-15 -2535 (|#1| $ |#1|)) (-15 -2872 ((-112) $ $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|)))
+((-2907 (((-112) $ $) NIL)) (-3126 (((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 |#4|)))) (-642 |#4|)) NIL)) (-4208 (((-642 $) (-642 |#4|)) 116) (((-642 $) (-642 |#4|) (-112)) 117) (((-642 $) (-642 |#4|) (-112) (-112)) 115) (((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112)) 118)) (-3802 (((-642 |#3|) $) NIL)) (-3317 (((-112) $) NIL)) (-4293 (((-112) $) NIL (|has| |#1| (-556)))) (-3831 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3923 ((|#4| |#4| $) NIL)) (-4316 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| $) 110)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-1700 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 64)) (-1976 (($) NIL T CONST)) (-1496 (((-112) $) 29 (|has| |#1| (-556)))) (-4375 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2888 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2850 (((-112) $) NIL (|has| |#1| (-556)))) (-1975 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2627 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) NIL)) (-3027 (($ (-642 |#4|)) NIL)) (-2570 (((-3 $ "failed") $) 45)) (-1493 ((|#4| |#4| $) 67)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2490 (($ |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 83 (|has| |#1| (-556)))) (-1597 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1821 ((|#4| |#4| $) NIL)) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1738 (((-2 (|:| -1639 (-642 |#4|)) (|:| -2241 (-642 |#4|))) $) NIL)) (-2561 (((-112) |#4| $) NIL)) (-3204 (((-112) |#4| $) NIL)) (-3936 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2246 (((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112)) 131)) (-2936 (((-642 |#4|) $) 18 (|has| $ (-6 -4410)))) (-2846 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3290 ((|#3| $) 38)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#4|) $) 19 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2613 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) 23)) (-3370 (((-642 |#3|) $) NIL)) (-4120 (((-112) |#3| $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-4162 (((-3 |#4| (-642 $)) |#4| |#4| $) NIL)) (-2899 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| |#4| $) 108)) (-2514 (((-3 |#4| "failed") $) 42)) (-2340 (((-642 $) |#4| $) 91)) (-3902 (((-3 (-112) (-642 $)) |#4| $) NIL)) (-2685 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 $))) |#4| $) 101) (((-112) |#4| $) 62)) (-2452 (((-642 $) |#4| $) 113) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) 114) (((-642 $) |#4| (-642 $)) NIL)) (-1299 (((-642 $) (-642 |#4|) (-112) (-112) (-112)) 126)) (-4193 (($ |#4| $) 80) (($ (-642 |#4|) $) 81) (((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 77)) (-2743 (((-642 |#4|) $) NIL)) (-3350 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1415 ((|#4| |#4| $) NIL)) (-3819 (((-112) $ $) NIL)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-2262 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1372 ((|#4| |#4| $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 (((-3 |#4| "failed") $) 40)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3724 (((-3 $ "failed") $ |#4|) 58)) (-3804 (($ $ |#4|) NIL) (((-642 $) |#4| $) 93) (((-642 $) |#4| (-642 $)) NIL) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) 87)) (-2121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 17)) (-2972 (($) 14)) (-2775 (((-769) $) NIL)) (-4043 (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) 13)) (-1314 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2337 (($ (-642 |#4|)) 22)) (-3153 (($ $ |#3|) 52)) (-3696 (($ $ |#3|) 54)) (-3114 (($ $) NIL)) (-1749 (($ $ |#3|) NIL)) (-2327 (((-860) $) 35) (((-642 |#4|) $) 46)) (-4195 (((-769) $) NIL (|has| |#3| (-368)))) (-1648 (((-112) $ $) NIL)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3497 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) NIL)) (-4325 (((-642 $) |#4| $) 90) (((-642 $) |#4| (-642 $)) NIL) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) NIL)) (-2710 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-2240 (((-642 |#3|) $) NIL)) (-3503 (((-112) |#4| $) NIL)) (-1362 (((-112) |#3| $) 63)) (-2872 (((-112) $ $) NIL)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1025 |#1| |#2| |#3| |#4|) (-13 (-1068 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4193 ((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4208 ((-642 $) (-642 |#4|) (-112) (-112))) (-15 -4208 ((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112))) (-15 -1299 ((-642 $) (-642 |#4|) (-112) (-112) (-112))) (-15 -2246 ((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112))))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -1025))
+((-4193 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1025 *5 *6 *7 *3))) (-5 *1 (-1025 *5 *6 *7 *3)) (-4 *3 (-1062 *5 *6 *7)))) (-4208 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8)))) (-4208 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8)))) (-1299 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8)))) (-2246 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-642 *8)) (|:| |towers| (-642 (-1025 *5 *6 *7 *8))))) (-5 *1 (-1025 *5 *6 *7 *8)) (-5 *3 (-642 *8)))))
+(-13 (-1068 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4193 ((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4208 ((-642 $) (-642 |#4|) (-112) (-112))) (-15 -4208 ((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112))) (-15 -1299 ((-642 $) (-642 |#4|) (-112) (-112) (-112))) (-15 -2246 ((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112)))))
+((-3072 (((-642 (-687 |#1|)) (-642 (-687 |#1|))) 73) (((-687 |#1|) (-687 |#1|)) 72) (((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-642 (-687 |#1|))) 71) (((-687 |#1|) (-687 |#1|) (-687 |#1|)) 68)) (-4343 (((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919)) 66) (((-687 |#1|) (-687 |#1|) (-919)) 65)) (-1491 (((-642 (-687 (-564))) (-642 (-642 (-564)))) 84) (((-642 (-687 (-564))) (-642 (-903 (-564))) (-564)) 83) (((-687 (-564)) (-642 (-564))) 80) (((-687 (-564)) (-903 (-564)) (-564)) 78)) (-2301 (((-687 (-950 |#1|)) (-769)) 98)) (-1759 (((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919)) 52 (|has| |#1| (-6 (-4412 "*")))) (((-687 |#1|) (-687 |#1|) (-919)) 50 (|has| |#1| (-6 (-4412 "*"))))))
+(((-1026 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4412 "*"))) (-15 -1759 ((-687 |#1|) (-687 |#1|) (-919))) |%noBranch|) (IF (|has| |#1| (-6 (-4412 "*"))) (-15 -1759 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919))) |%noBranch|) (-15 -2301 ((-687 (-950 |#1|)) (-769))) (-15 -4343 ((-687 |#1|) (-687 |#1|) (-919))) (-15 -4343 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919))) (-15 -3072 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3072 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -3072 ((-687 |#1|) (-687 |#1|))) (-15 -3072 ((-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -1491 ((-687 (-564)) (-903 (-564)) (-564))) (-15 -1491 ((-687 (-564)) (-642 (-564)))) (-15 -1491 ((-642 (-687 (-564))) (-642 (-903 (-564))) (-564))) (-15 -1491 ((-642 (-687 (-564))) (-642 (-642 (-564)))))) (-1047)) (T -1026))
+((-1491 (*1 *2 *3) (-12 (-5 *3 (-642 (-642 (-564)))) (-5 *2 (-642 (-687 (-564)))) (-5 *1 (-1026 *4)) (-4 *4 (-1047)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-903 (-564)))) (-5 *4 (-564)) (-5 *2 (-642 (-687 *4))) (-5 *1 (-1026 *5)) (-4 *5 (-1047)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1026 *4)) (-4 *4 (-1047)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-903 (-564))) (-5 *4 (-564)) (-5 *2 (-687 *4)) (-5 *1 (-1026 *5)) (-4 *5 (-1047)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-642 (-687 *3))) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) (-3072 (*1 *2 *2 *2) (-12 (-5 *2 (-642 (-687 *3))) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) (-3072 (*1 *2 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))) (-4343 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-687 *4))) (-5 *3 (-919)) (-4 *4 (-1047)) (-5 *1 (-1026 *4)))) (-4343 (*1 *2 *2 *3) (-12 (-5 *2 (-687 *4)) (-5 *3 (-919)) (-4 *4 (-1047)) (-5 *1 (-1026 *4)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-687 (-950 *4))) (-5 *1 (-1026 *4)) (-4 *4 (-1047)))) (-1759 (*1 *2 *2 *3) (-12 (-5 *2 (-642 (-687 *4))) (-5 *3 (-919)) (|has| *4 (-6 (-4412 "*"))) (-4 *4 (-1047)) (-5 *1 (-1026 *4)))) (-1759 (*1 *2 *2 *3) (-12 (-5 *2 (-687 *4)) (-5 *3 (-919)) (|has| *4 (-6 (-4412 "*"))) (-4 *4 (-1047)) (-5 *1 (-1026 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4412 "*"))) (-15 -1759 ((-687 |#1|) (-687 |#1|) (-919))) |%noBranch|) (IF (|has| |#1| (-6 (-4412 "*"))) (-15 -1759 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919))) |%noBranch|) (-15 -2301 ((-687 (-950 |#1|)) (-769))) (-15 -4343 ((-687 |#1|) (-687 |#1|) (-919))) (-15 -4343 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-919))) (-15 -3072 ((-687 |#1|) (-687 |#1|) (-687 |#1|))) (-15 -3072 ((-642 (-687 |#1|)) (-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -3072 ((-687 |#1|) (-687 |#1|))) (-15 -3072 ((-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -1491 ((-687 (-564)) (-903 (-564)) (-564))) (-15 -1491 ((-687 (-564)) (-642 (-564)))) (-15 -1491 ((-642 (-687 (-564))) (-642 (-903 (-564))) (-564))) (-15 -1491 ((-642 (-687 (-564))) (-642 (-642 (-564))))))
+((-2829 (((-687 |#1|) (-642 (-687 |#1|)) (-1262 |#1|)) 70 (|has| |#1| (-307)))) (-1414 (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 (-1262 |#1|))) 111 (|has| |#1| (-363))) (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 |#1|)) 118 (|has| |#1| (-363)))) (-3406 (((-1262 |#1|) (-642 (-1262 |#1|)) (-564)) 135 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3495 (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-919)) 124 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112)) 123 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|))) 122 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112) (-564) (-564)) 121 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3429 (((-112) (-642 (-687 |#1|))) 104 (|has| |#1| (-363))) (((-112) (-642 (-687 |#1|)) (-564)) 107 (|has| |#1| (-363)))) (-2637 (((-1262 (-1262 |#1|)) (-642 (-687 |#1|)) (-1262 |#1|)) 67 (|has| |#1| (-307)))) (-3322 (((-687 |#1|) (-642 (-687 |#1|)) (-687 |#1|)) 48)) (-2436 (((-687 |#1|) (-1262 (-1262 |#1|))) 41)) (-2281 (((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-564)) 95 (|has| |#1| (-363))) (((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|))) 94 (|has| |#1| (-363))) (((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-112) (-564)) 102 (|has| |#1| (-363)))))
+(((-1027 |#1|) (-10 -7 (-15 -2436 ((-687 |#1|) (-1262 (-1262 |#1|)))) (-15 -3322 ((-687 |#1|) (-642 (-687 |#1|)) (-687 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -2637 ((-1262 (-1262 |#1|)) (-642 (-687 |#1|)) (-1262 |#1|))) (-15 -2829 ((-687 |#1|) (-642 (-687 |#1|)) (-1262 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2281 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-112) (-564))) (-15 -2281 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -2281 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-564))) (-15 -3429 ((-112) (-642 (-687 |#1|)) (-564))) (-15 -3429 ((-112) (-642 (-687 |#1|)))) (-15 -1414 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 |#1|))) (-15 -1414 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 (-1262 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -3495 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112) (-564) (-564))) (-15 -3495 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)))) (-15 -3495 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112))) (-15 -3495 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-919))) (-15 -3406 ((-1262 |#1|) (-642 (-1262 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) (-1047)) (T -1027))
+((-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-1262 *5))) (-5 *4 (-564)) (-5 *2 (-1262 *5)) (-5 *1 (-1027 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047)))) (-3495 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047)) (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) (-5 *3 (-642 (-687 *5))))) (-3495 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047)) (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) (-5 *3 (-642 (-687 *5))))) (-3495 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1047)) (-5 *2 (-642 (-642 (-687 *4)))) (-5 *1 (-1027 *4)) (-5 *3 (-642 (-687 *4))))) (-3495 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1047)) (-5 *2 (-642 (-642 (-687 *6)))) (-5 *1 (-1027 *6)) (-5 *3 (-642 (-687 *6))))) (-1414 (*1 *2 *3 *4) (-12 (-5 *4 (-1262 (-1262 *5))) (-4 *5 (-363)) (-4 *5 (-1047)) (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) (-5 *3 (-642 (-687 *5))))) (-1414 (*1 *2 *3 *4) (-12 (-5 *4 (-1262 *5)) (-4 *5 (-363)) (-4 *5 (-1047)) (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5)) (-5 *3 (-642 (-687 *5))))) (-3429 (*1 *2 *3) (-12 (-5 *3 (-642 (-687 *4))) (-4 *4 (-363)) (-4 *4 (-1047)) (-5 *2 (-112)) (-5 *1 (-1027 *4)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-564)) (-4 *5 (-363)) (-4 *5 (-1047)) (-5 *2 (-112)) (-5 *1 (-1027 *5)))) (-2281 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-564)) (-5 *2 (-687 *5)) (-5 *1 (-1027 *5)) (-4 *5 (-363)) (-4 *5 (-1047)))) (-2281 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-687 *4))) (-5 *2 (-687 *4)) (-5 *1 (-1027 *4)) (-4 *4 (-363)) (-4 *4 (-1047)))) (-2281 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-642 (-687 *6))) (-5 *4 (-112)) (-5 *5 (-564)) (-5 *2 (-687 *6)) (-5 *1 (-1027 *6)) (-4 *6 (-363)) (-4 *6 (-1047)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-1262 *5)) (-4 *5 (-307)) (-4 *5 (-1047)) (-5 *2 (-687 *5)) (-5 *1 (-1027 *5)))) (-2637 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-687 *5))) (-4 *5 (-307)) (-4 *5 (-1047)) (-5 *2 (-1262 (-1262 *5))) (-5 *1 (-1027 *5)) (-5 *4 (-1262 *5)))) (-3322 (*1 *2 *3 *2) (-12 (-5 *3 (-642 (-687 *4))) (-5 *2 (-687 *4)) (-4 *4 (-1047)) (-5 *1 (-1027 *4)))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-1262 (-1262 *4))) (-4 *4 (-1047)) (-5 *2 (-687 *4)) (-5 *1 (-1027 *4)))))
+(-10 -7 (-15 -2436 ((-687 |#1|) (-1262 (-1262 |#1|)))) (-15 -3322 ((-687 |#1|) (-642 (-687 |#1|)) (-687 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -2637 ((-1262 (-1262 |#1|)) (-642 (-687 |#1|)) (-1262 |#1|))) (-15 -2829 ((-687 |#1|) (-642 (-687 |#1|)) (-1262 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2281 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-112) (-564))) (-15 -2281 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -2281 ((-687 |#1|) (-642 (-687 |#1|)) (-642 (-687 |#1|)) (-564))) (-15 -3429 ((-112) (-642 (-687 |#1|)) (-564))) (-15 -3429 ((-112) (-642 (-687 |#1|)))) (-15 -1414 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 |#1|))) (-15 -1414 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-1262 (-1262 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -3495 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112) (-564) (-564))) (-15 -3495 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)))) (-15 -3495 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-112))) (-15 -3495 ((-642 (-642 (-687 |#1|))) (-642 (-687 |#1|)) (-919))) (-15 -3406 ((-1262 |#1|) (-642 (-1262 |#1|)) (-564)))) |%noBranch|) |%noBranch|))
+((-4045 ((|#1| (-919) |#1|) 18)))
+(((-1028 |#1|) (-10 -7 (-15 -4045 (|#1| (-919) |#1|))) (-13 (-1097) (-10 -8 (-15 -2974 ($ $ $))))) (T -1028))
+((-4045 (*1 *2 *3 *2) (-12 (-5 *3 (-919)) (-5 *1 (-1028 *2)) (-4 *2 (-13 (-1097) (-10 -8 (-15 -2974 ($ $ $))))))))
+(-10 -7 (-15 -4045 (|#1| (-919) |#1|)))
+((-4073 (((-642 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-642 (-687 (-316 (-564))))))) (-687 (-407 (-950 (-564))))) 67)) (-2324 (((-642 (-687 (-316 (-564)))) (-316 (-564)) (-687 (-407 (-950 (-564))))) 52)) (-2894 (((-642 (-316 (-564))) (-687 (-407 (-950 (-564))))) 45)) (-3438 (((-642 (-687 (-316 (-564)))) (-687 (-407 (-950 (-564))))) 87)) (-3691 (((-687 (-316 (-564))) (-687 (-316 (-564)))) 38)) (-1795 (((-642 (-687 (-316 (-564)))) (-642 (-687 (-316 (-564))))) 76)) (-4257 (((-3 (-687 (-316 (-564))) "failed") (-687 (-407 (-950 (-564))))) 85)))
+(((-1029) (-10 -7 (-15 -4073 ((-642 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-642 (-687 (-316 (-564))))))) (-687 (-407 (-950 (-564)))))) (-15 -2324 ((-642 (-687 (-316 (-564)))) (-316 (-564)) (-687 (-407 (-950 (-564)))))) (-15 -2894 ((-642 (-316 (-564))) (-687 (-407 (-950 (-564)))))) (-15 -4257 ((-3 (-687 (-316 (-564))) "failed") (-687 (-407 (-950 (-564)))))) (-15 -3691 ((-687 (-316 (-564))) (-687 (-316 (-564))))) (-15 -1795 ((-642 (-687 (-316 (-564)))) (-642 (-687 (-316 (-564)))))) (-15 -3438 ((-642 (-687 (-316 (-564)))) (-687 (-407 (-950 (-564)))))))) (T -1029))
+((-3438 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-950 (-564))))) (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-687 (-316 (-564)))) (-5 *1 (-1029)))) (-4257 (*1 *2 *3) (|partial| -12 (-5 *3 (-687 (-407 (-950 (-564))))) (-5 *2 (-687 (-316 (-564)))) (-5 *1 (-1029)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-950 (-564))))) (-5 *2 (-642 (-316 (-564)))) (-5 *1 (-1029)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *4 (-687 (-407 (-950 (-564))))) (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029)) (-5 *3 (-316 (-564))))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-687 (-407 (-950 (-564))))) (-5 *2 (-642 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-642 (-687 (-316 (-564)))))))) (-5 *1 (-1029)))))
+(-10 -7 (-15 -4073 ((-642 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-642 (-687 (-316 (-564))))))) (-687 (-407 (-950 (-564)))))) (-15 -2324 ((-642 (-687 (-316 (-564)))) (-316 (-564)) (-687 (-407 (-950 (-564)))))) (-15 -2894 ((-642 (-316 (-564))) (-687 (-407 (-950 (-564)))))) (-15 -4257 ((-3 (-687 (-316 (-564))) "failed") (-687 (-407 (-950 (-564)))))) (-15 -3691 ((-687 (-316 (-564))) (-687 (-316 (-564))))) (-15 -1795 ((-642 (-687 (-316 (-564)))) (-642 (-687 (-316 (-564)))))) (-15 -3438 ((-642 (-687 (-316 (-564)))) (-687 (-407 (-950 (-564)))))))
+((-1831 ((|#1| |#1| (-919)) 18)))
+(((-1030 |#1|) (-10 -7 (-15 -1831 (|#1| |#1| (-919)))) (-13 (-1097) (-10 -8 (-15 * ($ $ $))))) (T -1030))
+((-1831 (*1 *2 *2 *3) (-12 (-5 *3 (-919)) (-5 *1 (-1030 *2)) (-4 *2 (-13 (-1097) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -1831 (|#1| |#1| (-919))))
+((-2327 ((|#1| (-312)) 11) (((-1267) |#1|) 9)))
+(((-1031 |#1|) (-10 -7 (-15 -2327 ((-1267) |#1|)) (-15 -2327 (|#1| (-312)))) (-1212)) (T -1031))
+((-2327 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1031 *2)) (-4 *2 (-1212)))) (-2327 (*1 *2 *3) (-12 (-5 *2 (-1267)) (-5 *1 (-1031 *3)) (-4 *3 (-1212)))))
+(-10 -7 (-15 -2327 ((-1267) |#1|)) (-15 -2327 (|#1| (-312))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-1320 (($ |#4|) 25)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-1308 ((|#4| $) 27)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 46) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2756 (((-769)) 43 T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 21 T CONST)) (-2322 (($) 23 T CONST)) (-2872 (((-112) $ $) 40)) (-2987 (($ $) 31) (($ $ $) NIL)) (-2974 (($ $ $) 29)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1032 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -1320 ($ |#4|)) (-15 -2327 ($ |#4|)) (-15 -1308 (|#4| $)))) (-363) (-791) (-848) (-947 |#1| |#2| |#3|) (-642 |#4|)) (T -1032))
+((-1320 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1032 *3 *4 *5 *2 *6)) (-4 *2 (-947 *3 *4 *5)) (-14 *6 (-642 *2)))) (-2327 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1032 *3 *4 *5 *2 *6)) (-4 *2 (-947 *3 *4 *5)) (-14 *6 (-642 *2)))) (-1308 (*1 *2 *1) (-12 (-4 *2 (-947 *3 *4 *5)) (-5 *1 (-1032 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-14 *6 (-642 *2)))))
+(-13 (-172) (-38 |#1|) (-10 -8 (-15 -1320 ($ |#4|)) (-15 -2327 ($ |#4|)) (-15 -1308 (|#4| $))))
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL)) (-1765 (((-1267) $ (-1173) (-1173)) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-2361 (((-112) (-112)) 43)) (-2921 (((-112) (-112)) 42)) (-3877 (((-52) $ (-1173) (-52)) NIL)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-2248 (((-3 (-52) "failed") (-1173) $) NIL)) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-2265 (($ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-3 (-52) "failed") (-1173) $) NIL)) (-2490 (($ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (((-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-2625 (((-52) $ (-1173) (-52)) NIL (|has| $ (-6 -4411)))) (-2551 (((-52) $ (-1173)) NIL)) (-2936 (((-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-1173) $) NIL (|has| (-1173) (-848)))) (-3234 (((-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-3421 (((-1173) $) NIL (|has| (-1173) (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-3393 (((-642 (-1173)) $) 37)) (-2835 (((-112) (-1173) $) NIL)) (-2730 (((-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL)) (-3183 (($ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL)) (-3997 (((-642 (-1173)) $) NIL)) (-4145 (((-112) (-1173) $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-2557 (((-52) $) NIL (|has| (-1173) (-848)))) (-3254 (((-3 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) "failed") (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL)) (-2696 (($ $ (-52)) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))))) NIL (-12 (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (($ $ (-294 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL (-12 (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (($ $ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) NIL (-12 (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (($ $ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL (-12 (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (($ $ (-642 (-52)) (-642 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-642 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-2724 (((-642 (-52)) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 (((-52) $ (-1173)) 39) (((-52) $ (-1173) (-52)) NIL)) (-2593 (($) NIL) (($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (((-769) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097)))) (((-769) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL)) (-2327 (((-860) $) 41 (-2706 (|has| (-52) (-611 (-860))) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-611 (-860)))))) (-1648 (((-112) $ $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1033) (-13 (-1188 (-1173) (-52)) (-10 -7 (-15 -2361 ((-112) (-112))) (-15 -2921 ((-112) (-112))) (-6 -4410)))) (T -1033))
+((-2361 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1033)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1033)))))
+(-13 (-1188 (-1173) (-52)) (-10 -7 (-15 -2361 ((-112) (-112))) (-15 -2921 ((-112) (-112))) (-6 -4410)))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1357 (((-1132) $) 9)) (-2327 (((-860) $) 15) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1034) (-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $))))) (T -1034))
+((-1357 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1034)))))
+(-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $))))
+((-3027 ((|#2| $) 10)))
+(((-1035 |#1| |#2|) (-10 -8 (-15 -3027 (|#2| |#1|))) (-1036 |#2|) (-1212)) (T -1035))
+NIL
+(-10 -8 (-15 -3027 (|#2| |#1|)))
+((-4278 (((-3 |#1| "failed") $) 9)) (-3027 ((|#1| $) 8)) (-2327 (($ |#1|) 6)))
+(((-1036 |#1|) (-140) (-1212)) (T -1036))
+((-4278 (*1 *2 *1) (|partial| -12 (-4 *1 (-1036 *2)) (-4 *2 (-1212)))) (-3027 (*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1212)))))
+(-13 (-614 |t#1|) (-10 -8 (-15 -4278 ((-3 |t#1| "failed") $)) (-15 -3027 (|t#1| $))))
(((-614 |#1|) . T))
-((-3662 (((-641 (-641 (-294 (-407 (-948 |#2|))))) (-641 (-948 |#2|)) (-641 (-1170))) 38)))
-(((-1035 |#1| |#2|) (-10 -7 (-15 -3662 ((-641 (-641 (-294 (-407 (-948 |#2|))))) (-641 (-948 |#2|)) (-641 (-1170))))) (-556) (-13 (-556) (-1034 |#1|))) (T -1035))
-((-3662 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-13 (-556) (-1034 *5))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *6)))))) (-5 *1 (-1035 *5 *6)))))
-(-10 -7 (-15 -3662 ((-641 (-641 (-294 (-407 (-948 |#2|))))) (-641 (-948 |#2|)) (-641 (-1170)))))
-((-2161 (((-379)) 17)) (-3485 (((-1 (-379)) (-379) (-379)) 22)) (-1427 (((-1 (-379)) (-767)) 51)) (-3686 (((-379)) 38)) (-1887 (((-1 (-379)) (-379) (-379)) 39)) (-2193 (((-379)) 29)) (-3457 (((-1 (-379)) (-379)) 30)) (-2300 (((-379) (-767)) 46)) (-2132 (((-1 (-379)) (-767)) 47)) (-2306 (((-1 (-379)) (-767) (-767)) 50)) (-1731 (((-1 (-379)) (-767) (-767)) 48)))
-(((-1036) (-10 -7 (-15 -2161 ((-379))) (-15 -3686 ((-379))) (-15 -2193 ((-379))) (-15 -2300 ((-379) (-767))) (-15 -3485 ((-1 (-379)) (-379) (-379))) (-15 -1887 ((-1 (-379)) (-379) (-379))) (-15 -3457 ((-1 (-379)) (-379))) (-15 -2132 ((-1 (-379)) (-767))) (-15 -1731 ((-1 (-379)) (-767) (-767))) (-15 -2306 ((-1 (-379)) (-767) (-767))) (-15 -1427 ((-1 (-379)) (-767))))) (T -1036))
-((-1427 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-2306 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-1731 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-3457 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-1887 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-3485 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-379)) (-5 *1 (-1036)))) (-2193 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))) (-3686 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))) (-2161 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))))
-(-10 -7 (-15 -2161 ((-379))) (-15 -3686 ((-379))) (-15 -2193 ((-379))) (-15 -2300 ((-379) (-767))) (-15 -3485 ((-1 (-379)) (-379) (-379))) (-15 -1887 ((-1 (-379)) (-379) (-379))) (-15 -3457 ((-1 (-379)) (-379))) (-15 -2132 ((-1 (-379)) (-767))) (-15 -1731 ((-1 (-379)) (-767) (-767))) (-15 -2306 ((-1 (-379)) (-767) (-767))) (-15 -1427 ((-1 (-379)) (-767))))
-((-3688 (((-418 |#1|) |#1|) 33)))
-(((-1037 |#1|) (-10 -7 (-15 -3688 ((-418 |#1|) |#1|))) (-1235 (-407 (-948 (-564))))) (T -1037))
-((-3688 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1235 (-407 (-948 (-564))))))))
-(-10 -7 (-15 -3688 ((-418 |#1|) |#1|)))
-((-1807 (((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))) 14)))
-(((-1038 |#1|) (-10 -7 (-15 -1807 ((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))))) (-307)) (T -1038))
-((-1807 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-948 *4)))) (-5 *1 (-1038 *4)))))
-(-10 -7 (-15 -1807 ((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|)))))
-((-3836 (((-641 (-1170)) (-407 (-948 |#1|))) 17)) (-3660 (((-407 (-1166 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170)) 24)) (-3824 (((-407 (-948 |#1|)) (-407 (-1166 (-407 (-948 |#1|)))) (-1170)) 26)) (-3025 (((-3 (-1170) "failed") (-407 (-948 |#1|))) 20)) (-3291 (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-294 (-407 (-948 |#1|))))) 32) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 33) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-1170)) (-641 (-407 (-948 |#1|)))) 28) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|))) 29)) (-2423 (((-407 (-948 |#1|)) |#1|) 11)))
-(((-1039 |#1|) (-10 -7 (-15 -3836 ((-641 (-1170)) (-407 (-948 |#1|)))) (-15 -3025 ((-3 (-1170) "failed") (-407 (-948 |#1|)))) (-15 -3660 ((-407 (-1166 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170))) (-15 -3824 ((-407 (-948 |#1|)) (-407 (-1166 (-407 (-948 |#1|)))) (-1170))) (-15 -3291 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)))) (-15 -3291 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-1170)) (-641 (-407 (-948 |#1|))))) (-15 -3291 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3291 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -2423 ((-407 (-948 |#1|)) |#1|))) (-556)) (T -1039))
-((-2423 (*1 *2 *3) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-1039 *3)) (-4 *3 (-556)))) (-3291 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-948 *4))))) (-5 *2 (-407 (-948 *4))) (-4 *4 (-556)) (-5 *1 (-1039 *4)))) (-3291 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-5 *2 (-407 (-948 *4))) (-4 *4 (-556)) (-5 *1 (-1039 *4)))) (-3291 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-5 *4 (-641 (-407 (-948 *5)))) (-5 *2 (-407 (-948 *5))) (-4 *5 (-556)) (-5 *1 (-1039 *5)))) (-3291 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-1039 *4)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 (-407 (-948 *5))))) (-5 *4 (-1170)) (-5 *2 (-407 (-948 *5))) (-5 *1 (-1039 *5)) (-4 *5 (-556)))) (-3660 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-407 (-1166 (-407 (-948 *5))))) (-5 *1 (-1039 *5)) (-5 *3 (-407 (-948 *5))))) (-3025 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-5 *2 (-1170)) (-5 *1 (-1039 *4)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170))) (-5 *1 (-1039 *4)))))
-(-10 -7 (-15 -3836 ((-641 (-1170)) (-407 (-948 |#1|)))) (-15 -3025 ((-3 (-1170) "failed") (-407 (-948 |#1|)))) (-15 -3660 ((-407 (-1166 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170))) (-15 -3824 ((-407 (-948 |#1|)) (-407 (-1166 (-407 (-948 |#1|)))) (-1170))) (-15 -3291 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)))) (-15 -3291 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-1170)) (-641 (-407 (-948 |#1|))))) (-15 -3291 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3291 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -2423 ((-407 (-948 |#1|)) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4080 (($) 18 T CONST)) (-1771 ((|#1| $) 23)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1797 ((|#1| $) 22)) (-3638 ((|#1|) 20 T CONST)) (-2423 (((-858) $) 12)) (-4091 ((|#1| $) 21)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16)))
-(((-1040 |#1|) (-140) (-23)) (T -1040))
-((-1771 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-3638 (*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -1771 (|t#1| $)) (-15 -1797 (|t#1| $)) (-15 -4091 (|t#1| $)) (-15 -3638 (|t#1|) -2959)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1937 (($) 25 T CONST)) (-4080 (($) 18 T CONST)) (-1771 ((|#1| $) 23)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1797 ((|#1| $) 22)) (-3638 ((|#1|) 20 T CONST)) (-2423 (((-858) $) 12)) (-4091 ((|#1| $) 21)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16)))
-(((-1041 |#1|) (-140) (-23)) (T -1041))
-((-1937 (*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
-(-13 (-1040 |t#1|) (-10 -8 (-15 -1937 ($) -2959)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-858)) . T) ((-1040 |#1|) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-3605 (((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 (-776 |#1| (-860 |#2|)))))) (-641 (-776 |#1| (-860 |#2|)))) NIL)) (-2578 (((-641 $) (-641 (-776 |#1| (-860 |#2|)))) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-112)) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-112) (-112)) NIL)) (-3836 (((-641 (-860 |#2|)) $) NIL)) (-3342 (((-112) $) NIL)) (-1594 (((-112) $) NIL (|has| |#1| (-556)))) (-3631 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-3494 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2683 (((-641 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -3577 $))) (-776 |#1| (-860 |#2|)) $) NIL)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ (-860 |#2|)) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-1667 (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 (-776 |#1| (-860 |#2|)) "failed") $ (-860 |#2|)) NIL)) (-4080 (($) NIL T CONST)) (-1968 (((-112) $) NIL (|has| |#1| (-556)))) (-2238 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1489 (((-112) $) NIL (|has| |#1| (-556)))) (-2961 (((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|))) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-3703 (((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-556)))) (-2601 (((-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 (-776 |#1| (-860 |#2|)))) NIL)) (-3120 (($ (-641 (-776 |#1| (-860 |#2|)))) NIL)) (-2671 (((-3 $ "failed") $) NIL)) (-2405 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-776 |#1| (-860 |#2|)) (-1094))))) (-2591 (($ (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-556)))) (-3870 (((-112) (-776 |#1| (-860 |#2|)) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-2248 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1316 (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|))) NIL (|has| $ (-6 -4407))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-4020 (((-2 (|:| -1604 (-641 (-776 |#1| (-860 |#2|)))) (|:| -2319 (-641 (-776 |#1| (-860 |#2|))))) $) NIL)) (-4014 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3071 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-1865 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-3035 (((-641 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2675 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-3378 (((-860 |#2|) $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-776 |#1| (-860 |#2|)) (-1094))))) (-2714 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL)) (-2814 (((-641 (-860 |#2|)) $) NIL)) (-3169 (((-112) (-860 |#2|) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-2227 (((-3 (-776 |#1| (-860 |#2|)) (-641 $)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2146 (((-641 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -3577 $))) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2615 (((-3 (-776 |#1| (-860 |#2|)) "failed") $) NIL)) (-4022 (((-641 $) (-776 |#1| (-860 |#2|)) $) NIL)) (-1995 (((-3 (-112) (-641 $)) (-776 |#1| (-860 |#2|)) $) NIL)) (-4259 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 $))) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3888 (((-641 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) $) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-641 $)) NIL) (((-641 $) (-776 |#1| (-860 |#2|)) (-641 $)) NIL)) (-3531 (($ (-776 |#1| (-860 |#2|)) $) NIL) (($ (-641 (-776 |#1| (-860 |#2|))) $) NIL)) (-3167 (((-641 (-776 |#1| (-860 |#2|))) $) NIL)) (-3441 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-4241 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2582 (((-112) $ $) NIL)) (-3157 (((-2 (|:| |num| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-556)))) (-1929 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-3347 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 (((-3 (-776 |#1| (-860 |#2|)) "failed") $) NIL)) (-2139 (((-3 (-776 |#1| (-860 |#2|)) "failed") (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL)) (-2533 (((-3 $ "failed") $ (-776 |#1| (-860 |#2|))) NIL)) (-4016 (($ $ (-776 |#1| (-860 |#2|))) NIL) (((-641 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-641 $) (-776 |#1| (-860 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) $) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-641 $)) NIL)) (-4377 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-776 |#1| (-860 |#2|))) (-641 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ $ (-294 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (($ $ (-641 (-294 (-776 |#1| (-860 |#2|))))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-1568 (((-767) $) NIL)) (-4062 (((-767) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-776 |#1| (-860 |#2|)) (-1094)))) (((-767) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-776 |#1| (-860 |#2|)) (-612 (-536))))) (-2435 (($ (-641 (-776 |#1| (-860 |#2|)))) NIL)) (-1834 (($ $ (-860 |#2|)) NIL)) (-1648 (($ $ (-860 |#2|)) NIL)) (-1492 (($ $) NIL)) (-2577 (($ $ (-860 |#2|)) NIL)) (-2423 (((-858) $) NIL) (((-641 (-776 |#1| (-860 |#2|))) $) NIL)) (-3840 (((-767) $) NIL (|has| (-860 |#2|) (-368)))) (-1860 (((-112) $ $) NIL)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 (-776 |#1| (-860 |#2|))))) "failed") (-641 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 (-776 |#1| (-860 |#2|))))) "failed") (-641 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-3212 (((-112) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-641 (-776 |#1| (-860 |#2|))))) NIL)) (-3418 (((-641 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-641 $) (-776 |#1| (-860 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) $) NIL) (((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-641 $)) NIL)) (-1368 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3579 (((-641 (-860 |#2|)) $) NIL)) (-1947 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-1816 (((-112) (-860 |#2|) $) NIL)) (-2974 (((-112) $ $) NIL)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1042 |#1| |#2|) (-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -2578 ((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-112) (-112))))) (-452) (-641 (-1170))) (T -1042))
-((-2578 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-1042 *5 *6)))))
-(-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -2578 ((-641 $) (-641 (-776 |#1| (-860 |#2|))) (-112) (-112)))))
-((-3485 (((-1 (-564)) (-1088 (-564))) 33)) (-2869 (((-564) (-564) (-564) (-564) (-564)) 30)) (-3821 (((-1 (-564)) |RationalNumber|) NIL)) (-2498 (((-1 (-564)) |RationalNumber|) NIL)) (-2020 (((-1 (-564)) (-564) |RationalNumber|) NIL)))
-(((-1043) (-10 -7 (-15 -3485 ((-1 (-564)) (-1088 (-564)))) (-15 -2020 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -3821 ((-1 (-564)) |RationalNumber|)) (-15 -2498 ((-1 (-564)) |RationalNumber|)) (-15 -2869 ((-564) (-564) (-564) (-564) (-564))))) (T -1043))
-((-2869 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1043)))) (-2498 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043)))) (-3821 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043)))) (-2020 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043)) (-5 *3 (-564)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1043)))))
-(-10 -7 (-15 -3485 ((-1 (-564)) (-1088 (-564)))) (-15 -2020 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -3821 ((-1 (-564)) |RationalNumber|)) (-15 -2498 ((-1 (-564)) |RationalNumber|)) (-15 -2869 ((-564) (-564) (-564) (-564) (-564))))
-((-2423 (((-858) $) NIL) (($ (-564)) 10)))
-(((-1044 |#1|) (-10 -8 (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|))) (-1045)) (T -1044))
-NIL
-(-10 -8 (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-1045) (-140)) (T -1045))
-((-3719 (*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767)))))
-(-13 (-1052) (-722) (-644 $) (-614 (-564)) (-10 -7 (-15 -3719 ((-767)) -2959) (-6 -4404)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-858)) . T) ((-644 $) . T) ((-722) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-2183 (((-407 (-948 |#2|)) (-641 |#2|) (-641 |#2|) (-767) (-767)) 60)))
-(((-1046 |#1| |#2|) (-10 -7 (-15 -2183 ((-407 (-948 |#2|)) (-641 |#2|) (-641 |#2|) (-767) (-767)))) (-1170) (-363)) (T -1046))
-((-2183 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-767)) (-4 *6 (-363)) (-5 *2 (-407 (-948 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1170)))))
-(-10 -7 (-15 -2183 ((-407 (-948 |#2|)) (-641 |#2|) (-641 |#2|) (-767) (-767))))
-((-4239 (((-112) $) 40)) (-3999 (((-112) $) 17)) (-2667 (((-767) $) 13)) (-2681 (((-767) $) 14)) (-2701 (((-112) $) 30)) (-3113 (((-112) $) 42)))
-(((-1047 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2681 ((-767) |#1|)) (-15 -2667 ((-767) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -4239 ((-112) |#1|)) (-15 -2701 ((-112) |#1|)) (-15 -3999 ((-112) |#1|))) (-1048 |#2| |#3| |#4| |#5| |#6|) (-767) (-767) (-1045) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1047))
-NIL
-(-10 -8 (-15 -2681 ((-767) |#1|)) (-15 -2667 ((-767) |#1|)) (-15 -3113 ((-112) |#1|)) (-15 -4239 ((-112) |#1|)) (-15 -2701 ((-112) |#1|)) (-15 -3999 ((-112) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4239 (((-112) $) 52)) (-4012 (((-3 $ "failed") $ $) 20)) (-3999 (((-112) $) 54)) (-1876 (((-112) $ (-767)) 62)) (-4080 (($) 18 T CONST)) (-1679 (($ $) 35 (|has| |#3| (-307)))) (-4086 ((|#4| $ (-564)) 40)) (-2514 (((-767) $) 34 (|has| |#3| (-556)))) (-2652 ((|#3| $ (-564) (-564)) 42)) (-3035 (((-641 |#3|) $) 69 (|has| $ (-6 -4407)))) (-2907 (((-767) $) 33 (|has| |#3| (-556)))) (-2383 (((-641 |#5|) $) 32 (|has| |#3| (-556)))) (-2667 (((-767) $) 46)) (-2681 (((-767) $) 45)) (-3097 (((-112) $ (-767)) 61)) (-1795 (((-564) $) 50)) (-2980 (((-564) $) 48)) (-1554 (((-641 |#3|) $) 70 (|has| $ (-6 -4407)))) (-3369 (((-112) |#3| $) 72 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4407))))) (-2283 (((-564) $) 49)) (-2287 (((-564) $) 47)) (-2322 (($ (-641 (-641 |#3|))) 55)) (-2714 (($ (-1 |#3| |#3|) $) 65 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#3| |#3|) $) 64) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3587 (((-641 (-641 |#3|)) $) 44)) (-3619 (((-112) $ (-767)) 60)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2998 (((-3 $ "failed") $ |#3|) 37 (|has| |#3| (-556)))) (-4377 (((-112) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#3|) (-641 |#3|)) 76 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) 75 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) 74 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) 73 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3076 (((-112) $ $) 56)) (-1976 (((-112) $) 59)) (-2994 (($) 58)) (-4366 ((|#3| $ (-564) (-564)) 43) ((|#3| $ (-564) (-564) |#3|) 41)) (-2701 (((-112) $) 53)) (-4062 (((-767) |#3| $) 71 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#3|) $) 68 (|has| $ (-6 -4407)))) (-3926 (($ $) 57)) (-1575 ((|#5| $ (-564)) 39)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-1368 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4407)))) (-3113 (((-112) $) 51)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#3|) 36 (|has| |#3| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ |#3| $) 24) (($ $ |#3|) 27)) (-2181 (((-767) $) 63 (|has| $ (-6 -4407)))))
-(((-1048 |#1| |#2| |#3| |#4| |#5|) (-140) (-767) (-767) (-1045) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1048))
-((-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1045)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2283 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2980 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-3587 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5))))) (-4366 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-2652 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-4366 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-4086 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-4357 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2998 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) (-3092 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-1679 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-767)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-767)))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-641 *7)))))
-(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4407) (IF (|has| |t#3| (-172)) (-6 (-713 |t#3|)) |%noBranch|) (-15 -2322 ($ (-641 (-641 |t#3|)))) (-15 -3999 ((-112) $)) (-15 -2701 ((-112) $)) (-15 -4239 ((-112) $)) (-15 -3113 ((-112) $)) (-15 -1795 ((-564) $)) (-15 -2283 ((-564) $)) (-15 -2980 ((-564) $)) (-15 -2287 ((-564) $)) (-15 -2667 ((-767) $)) (-15 -2681 ((-767) $)) (-15 -3587 ((-641 (-641 |t#3|)) $)) (-15 -4366 (|t#3| $ (-564) (-564))) (-15 -2652 (|t#3| $ (-564) (-564))) (-15 -4366 (|t#3| $ (-564) (-564) |t#3|)) (-15 -4086 (|t#4| $ (-564))) (-15 -1575 (|t#5| $ (-564))) (-15 -4357 ($ (-1 |t#3| |t#3|) $)) (-15 -4357 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-556)) (-15 -2998 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -3092 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -1679 ($ $)) |%noBranch|) (IF (|has| |t#3| (-556)) (PROGN (-15 -2514 ((-767) $)) (-15 -2907 ((-767) $)) (-15 -2383 ((-641 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-611 (-858)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-644 |#3|) . T) ((-713 |#3|) |has| |#3| (-172)) ((-1051 |#3|) . T) ((-1094) . T) ((-1209) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4239 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-3999 (((-112) $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-4080 (($) NIL T CONST)) (-1679 (($ $) 47 (|has| |#3| (-307)))) (-4086 (((-240 |#2| |#3|) $ (-564)) 36)) (-1480 (($ (-685 |#3|)) 45)) (-2514 (((-767) $) 49 (|has| |#3| (-556)))) (-2652 ((|#3| $ (-564) (-564)) NIL)) (-3035 (((-641 |#3|) $) NIL (|has| $ (-6 -4407)))) (-2907 (((-767) $) 51 (|has| |#3| (-556)))) (-2383 (((-641 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-556)))) (-2667 (((-767) $) NIL)) (-2681 (((-767) $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1795 (((-564) $) NIL)) (-2980 (((-564) $) NIL)) (-1554 (((-641 |#3|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1094))))) (-2283 (((-564) $) NIL)) (-2287 (((-564) $) NIL)) (-2322 (($ (-641 (-641 |#3|))) 31)) (-2714 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3587 (((-641 (-641 |#3|)) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2998 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-556)))) (-4377 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#3| $ (-564) (-564)) NIL) ((|#3| $ (-564) (-564) |#3|) NIL)) (-4327 (((-134)) 59 (|has| |#3| (-363)))) (-2701 (((-112) $) NIL)) (-4062 (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1094)))) (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) 65 (|has| |#3| (-612 (-536))))) (-1575 (((-240 |#1| |#3|) $ (-564)) 40)) (-2423 (((-858) $) 19) (((-685 |#3|) $) 42)) (-1860 (((-112) $ $) NIL)) (-1368 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-3113 (((-112) $) NIL)) (-2403 (($) 16 T CONST)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1049 |#1| |#2| |#3|) (-13 (-1048 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -1480 ($ (-685 |#3|))))) (-767) (-767) (-1045)) (T -1049))
-((-1480 (*1 *1 *2) (-12 (-5 *2 (-685 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)))))
-(-13 (-1048 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -1480 ($ (-685 |#3|)))))
-((-1316 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4357 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
-(((-1050 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4357 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1316 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-767) (-767) (-1045) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1048 |#1| |#2| |#3| |#4| |#5|) (-1045) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1048 |#1| |#2| |#7| |#8| |#9|)) (T -1050))
-((-1316 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))))
-(-10 -7 (-15 -4357 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1316 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ |#1|) 24)))
-(((-1051 |#1|) (-140) (-1052)) (T -1051))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1052)))))
-(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-1052) (-140)) (T -1052))
-NIL
-(-13 (-21) (-1106))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-858)) . T) ((-1106) . T) ((-1094) . T))
-((-1709 (($ $) 17)) (-2192 (($ $) 25)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 54)) (-2499 (($ $) 27)) (-1687 (($ $) 12)) (-2882 (($ $) 43)) (-1311 (((-379) $) NIL) (((-225) $) NIL) (((-888 (-379)) $) 36)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 31) (($ (-564)) NIL) (($ (-407 (-564))) 31)) (-3719 (((-767)) 9)) (-3448 (($ $) 44)))
-(((-1053 |#1|) (-10 -8 (-15 -2192 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1687 (|#1| |#1|)) (-15 -2882 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -1513 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 (|#1| (-564))) (-15 -1311 ((-225) |#1|)) (-15 -1311 ((-379) |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 (|#1| |#1|)) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|))) (-1054)) (T -1053))
-((-3719 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054)))))
-(-10 -8 (-15 -2192 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1687 (|#1| |#1|)) (-15 -2882 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -1513 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 (|#1| (-564))) (-15 -1311 ((-225) |#1|)) (-15 -1311 ((-379) |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 (|#1| |#1|)) (-15 -3719 ((-767))) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4198 (((-564) $) 91)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-1709 (($ $) 89)) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 75)) (-2753 (((-418 $) $) 74)) (-3700 (($ $) 99)) (-3162 (((-112) $ $) 61)) (-3249 (((-564) $) 116)) (-4080 (($) 18 T CONST)) (-2192 (($ $) 88)) (-4284 (((-3 (-564) "failed") $) 104) (((-3 (-407 (-564)) "failed") $) 101)) (-3120 (((-564) $) 105) (((-407 (-564)) $) 102)) (-2946 (($ $ $) 57)) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-1339 (((-112) $) 73)) (-2384 (((-112) $) 114)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 95)) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 98)) (-2499 (($ $) 94)) (-3326 (((-112) $) 115)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-2855 (($ $ $) 113)) (-1497 (($ $ $) 112)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 72)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-1687 (($ $) 90)) (-2882 (($ $) 92)) (-3688 (((-418 $) $) 76)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-1700 (((-767) $) 60)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-1311 (((-379) $) 107) (((-225) $) 106) (((-888 (-379)) $) 96)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-407 (-564))) 68) (($ (-564)) 103) (($ (-407 (-564))) 100)) (-3719 (((-767)) 29 T CONST)) (-3448 (($ $) 93)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-3673 (($ $) 117)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-3034 (((-112) $ $) 110)) (-3011 (((-112) $ $) 109)) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 111)) (-2999 (((-112) $ $) 108)) (-3092 (($ $ $) 67)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71) (($ $ (-407 (-564))) 97)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 70) (($ (-407 (-564)) $) 69)))
-(((-1054) (-140)) (T -1054))
-((-3673 (*1 *1 *1) (-4 *1 (-1054))) (-2499 (*1 *1 *1) (-4 *1 (-1054))) (-3448 (*1 *1 *1) (-4 *1 (-1054))) (-2882 (*1 *1 *1) (-4 *1 (-1054))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-564)))) (-1687 (*1 *1 *1) (-4 *1 (-1054))) (-1709 (*1 *1 *1) (-4 *1 (-1054))) (-2192 (*1 *1 *1) (-4 *1 (-1054))))
-(-13 (-363) (-844) (-1018) (-1034 (-564)) (-1034 (-407 (-564))) (-998) (-612 (-888 (-379))) (-882 (-379)) (-147) (-10 -8 (-15 -2499 ($ $)) (-15 -3448 ($ $)) (-15 -2882 ($ $)) (-15 -4198 ((-564) $)) (-15 -1687 ($ $)) (-15 -1709 ($ $)) (-15 -2192 ($ $)) (-15 -3673 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-888 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-882 (-379)) . T) ((-916) . T) ((-998) . T) ((-1018) . T) ((-1034 (-407 (-564))) . T) ((-1034 (-564)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) |#2| $) 26)) (-2622 ((|#1| $) 10)) (-3249 (((-564) |#2| $) 115)) (-2930 (((-3 $ "failed") |#2| (-917)) 75)) (-4337 ((|#1| $) 31)) (-1562 ((|#1| |#2| $ |#1|) 40)) (-4128 (($ $) 28)) (-3293 (((-3 |#2| "failed") |#2| $) 111)) (-2384 (((-112) |#2| $) NIL)) (-3326 (((-112) |#2| $) NIL)) (-2817 (((-112) |#2| $) 27)) (-3774 ((|#1| $) 116)) (-4328 ((|#1| $) 30)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3721 ((|#2| $) 103)) (-2423 (((-858) $) 94)) (-1860 (((-112) $ $) NIL)) (-3646 ((|#1| |#2| $ |#1|) 41)) (-2308 (((-641 $) |#2|) 77)) (-2974 (((-112) $ $) 98)))
-(((-1055 |#1| |#2|) (-13 (-1062 |#1| |#2|) (-10 -8 (-15 -4328 (|#1| $)) (-15 -4337 (|#1| $)) (-15 -2622 (|#1| $)) (-15 -3774 (|#1| $)) (-15 -4128 ($ $)) (-15 -2817 ((-112) |#2| $)) (-15 -1562 (|#1| |#2| $ |#1|)))) (-13 (-844) (-363)) (-1235 |#1|)) (T -1055))
-((-1562 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-4328 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-4337 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-2622 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-3774 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-4128 (*1 *1 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1235 *2)))) (-2817 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3)) (-4 *3 (-1235 *4)))))
-(-13 (-1062 |#1| |#2|) (-10 -8 (-15 -4328 (|#1| $)) (-15 -4337 (|#1| $)) (-15 -2622 (|#1| $)) (-15 -3774 (|#1| $)) (-15 -4128 ($ $)) (-15 -2817 ((-112) |#2| $)) (-15 -1562 (|#1| |#2| $ |#1|))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-2149 (($ $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2997 (($ $ $ $) NIL)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-3249 (((-564) $) NIL)) (-2410 (($ $ $) NIL)) (-4080 (($) NIL T CONST)) (-2286 (($ (-1170)) 10) (($ (-564)) 7)) (-4284 (((-3 (-564) "failed") $) NIL)) (-3120 (((-564) $) NIL)) (-2946 (($ $ $) NIL)) (-4277 (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2450 (((-3 (-407 (-564)) "failed") $) NIL)) (-1364 (((-112) $) NIL)) (-2553 (((-407 (-564)) $) NIL)) (-2534 (($) NIL) (($ $) NIL)) (-2960 (($ $ $) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2142 (($ $ $ $) NIL)) (-3409 (($ $ $) NIL)) (-2384 (((-112) $) NIL)) (-3737 (($ $ $) NIL)) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL)) (-4112 (((-112) $) NIL)) (-3177 (((-112) $) NIL)) (-1846 (((-3 $ "failed") $) NIL)) (-3326 (((-112) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3842 (($ $ $ $) NIL)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2924 (($ $) NIL)) (-2581 (($ $) NIL)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-4037 (($ $ $) NIL)) (-3431 (($) NIL T CONST)) (-2468 (($ $) NIL)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1986 (($ $) NIL)) (-3688 (((-418 $) $) NIL)) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2663 (((-112) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-3254 (($ $ (-767)) NIL) (($ $) NIL)) (-2198 (($ $) NIL)) (-3926 (($ $) NIL)) (-1311 (((-564) $) 16) (((-536) $) NIL) (((-888 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1170)) 9)) (-2423 (((-858) $) 23) (($ (-564)) 6) (($ $) NIL) (($ (-564)) 6)) (-3719 (((-767)) NIL T CONST)) (-2631 (((-112) $ $) NIL)) (-2020 (($ $ $) NIL)) (-1860 (((-112) $ $) NIL)) (-2648 (($) NIL)) (-2119 (((-112) $ $) NIL)) (-2111 (($ $ $ $) NIL)) (-3673 (($ $) NIL)) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-767)) NIL) (($ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)) (-3082 (($ $) 22) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
-(((-1056) (-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4394) (-6 -4399) (-6 -4395) (-15 -2286 ($ (-1170))) (-15 -2286 ($ (-564)))))) (T -1056))
-((-2286 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1056)))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1056)))))
-(-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4394) (-6 -4399) (-6 -4395) (-15 -2286 ($ (-1170))) (-15 -2286 ($ (-564)))))
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL)) (-3236 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-1746 (($) 9)) (-3904 (((-52) $ (-1170) (-52)) NIL)) (-3965 (($ $) 32)) (-3127 (($ $) 30)) (-1490 (($ $) 29)) (-4011 (($ $) 31)) (-4249 (($ $) 35)) (-4261 (($ $) 36)) (-3077 (($ $) 28)) (-3754 (($ $) 33)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) 27 (|has| $ (-6 -4407)))) (-2327 (((-3 (-52) "failed") (-1170) $) 43)) (-4080 (($) NIL T CONST)) (-3339 (($) 7)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-1945 (($ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) 53 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-3 (-52) "failed") (-1170) $) NIL)) (-2591 (($ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (((-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2734 (((-3 (-1152) "failed") $ (-1152) (-564)) 74)) (-2726 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4408)))) (-2652 (((-52) $ (-1170)) NIL)) (-3035 (((-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-641 (-52)) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-1170) $) NIL (|has| (-1170) (-846)))) (-1554 (((-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) 38 (|has| $ (-6 -4407))) (((-641 (-52)) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1094))))) (-2898 (((-1170) $) NIL (|has| (-1170) (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-3454 (((-641 (-1170)) $) NIL)) (-3565 (((-112) (-1170) $) NIL)) (-3149 (((-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL)) (-2566 (($ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) 46)) (-3050 (((-641 (-1170)) $) NIL)) (-1563 (((-112) (-1170) $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-1381 (((-379) $ (-1170)) 52)) (-2292 (((-641 (-1152)) $ (-1152)) 76)) (-2658 (((-52) $) NIL (|has| (-1170) (-846)))) (-2139 (((-3 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) "failed") (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL)) (-1592 (($ $ (-52)) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))))) NIL (-12 (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL (-12 (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (($ $ (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) NIL (-12 (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL (-12 (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-309 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1094))))) (-2075 (((-641 (-52)) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 (((-52) $ (-1170)) NIL) (((-52) $ (-1170) (-52)) NIL)) (-3853 (($) NIL) (($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL)) (-3445 (($ $ (-1170)) 54)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1094)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) 40)) (-3696 (($ $ $) 41)) (-2423 (((-858) $) NIL (-2807 (|has| (-52) (-611 (-858))) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-611 (-858)))))) (-3575 (($ $ (-1170) (-379)) 50)) (-4000 (($ $ (-1170) (-379)) 51)) (-1860 (((-112) $ $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))))) NIL)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 (-1170)) (|:| -3813 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (-2807 (|has| (-52) (-1094)) (|has| (-2 (|:| -1901 (-1170)) (|:| -3813 (-52))) (-1094))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1057) (-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -3696 ($ $ $)) (-15 -3339 ($)) (-15 -3077 ($ $)) (-15 -1490 ($ $)) (-15 -3127 ($ $)) (-15 -4011 ($ $)) (-15 -3754 ($ $)) (-15 -3965 ($ $)) (-15 -4249 ($ $)) (-15 -4261 ($ $)) (-15 -3575 ($ $ (-1170) (-379))) (-15 -4000 ($ $ (-1170) (-379))) (-15 -1381 ((-379) $ (-1170))) (-15 -2292 ((-641 (-1152)) $ (-1152))) (-15 -3445 ($ $ (-1170))) (-15 -1746 ($)) (-15 -2734 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4407)))) (T -1057))
-((-3696 (*1 *1 *1 *1) (-5 *1 (-1057))) (-3339 (*1 *1) (-5 *1 (-1057))) (-3077 (*1 *1 *1) (-5 *1 (-1057))) (-1490 (*1 *1 *1) (-5 *1 (-1057))) (-3127 (*1 *1 *1) (-5 *1 (-1057))) (-4011 (*1 *1 *1) (-5 *1 (-1057))) (-3754 (*1 *1 *1) (-5 *1 (-1057))) (-3965 (*1 *1 *1) (-5 *1 (-1057))) (-4249 (*1 *1 *1) (-5 *1 (-1057))) (-4261 (*1 *1 *1) (-5 *1 (-1057))) (-3575 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1057)))) (-4000 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1057)))) (-1381 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1057)))) (-2292 (*1 *2 *1 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1057)) (-5 *3 (-1152)))) (-3445 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057)))) (-1746 (*1 *1) (-5 *1 (-1057))) (-2734 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1057)))))
-(-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -3696 ($ $ $)) (-15 -3339 ($)) (-15 -3077 ($ $)) (-15 -1490 ($ $)) (-15 -3127 ($ $)) (-15 -4011 ($ $)) (-15 -3754 ($ $)) (-15 -3965 ($ $)) (-15 -4249 ($ $)) (-15 -4261 ($ $)) (-15 -3575 ($ $ (-1170) (-379))) (-15 -4000 ($ $ (-1170) (-379))) (-15 -1381 ((-379) $ (-1170))) (-15 -2292 ((-641 (-1152)) $ (-1152))) (-15 -3445 ($ $ (-1170))) (-15 -1746 ($)) (-15 -2734 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4407)))
-((-1403 (($ $) 46)) (-2040 (((-112) $ $) 80)) (-4284 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-948 (-407 (-564)))) 249) (((-3 $ "failed") (-948 (-564))) 248) (((-3 $ "failed") (-948 |#2|)) 251)) (-3120 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) NIL) (($ (-948 (-407 (-564)))) 237) (($ (-948 (-564))) 233) (($ (-948 |#2|)) 253)) (-1684 (($ $) NIL) (($ $ |#4|) 44)) (-3870 (((-112) $ $) 127) (((-112) $ (-641 $)) 131)) (-4252 (((-112) $) 60)) (-4300 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 121)) (-3444 (($ $) 156)) (-4152 (($ $) 152)) (-1885 (($ $) 151)) (-1966 (($ $ $) 85) (($ $ $ |#4|) 90)) (-3594 (($ $ $) 88) (($ $ $ |#4|) 92)) (-2675 (((-112) $ $) 139) (((-112) $ (-641 $)) 140)) (-3378 ((|#4| $) 32)) (-3652 (($ $ $) 124)) (-2856 (((-112) $) 59)) (-2904 (((-767) $) 35)) (-2813 (($ $) 170)) (-4269 (($ $) 167)) (-2970 (((-641 $) $) 72)) (-3426 (($ $) 62)) (-3416 (($ $) 163)) (-1866 (((-641 $) $) 69)) (-3361 (($ $) 64)) (-3982 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3180 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3196 (-767))) $ $) 126)) (-1643 (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $) 122) (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $ |#4|) 123)) (-1923 (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -4071 $)) $ $) 117) (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -4071 $)) $ $ |#4|) 119)) (-3938 (($ $ $) 95) (($ $ $ |#4|) 104)) (-3466 (($ $ $) 96) (($ $ $ |#4|) 105)) (-2447 (((-641 $) $) 54)) (-3441 (((-112) $ $) 136) (((-112) $ (-641 $)) 137)) (-4241 (($ $ $) 112)) (-3431 (($ $) 37)) (-2582 (((-112) $ $) 78)) (-1929 (((-112) $ $) 132) (((-112) $ (-641 $)) 134)) (-3347 (($ $ $) 110)) (-2944 (($ $) 41)) (-2123 ((|#2| |#2| $) 160) (($ (-641 $)) NIL) (($ $ $) NIL)) (-2402 (($ $ |#2|) NIL) (($ $ $) 149)) (-3496 (($ $ |#2|) 144) (($ $ $) 147)) (-3899 (($ $) 49)) (-2884 (($ $) 55)) (-1311 (((-888 (-379)) $) NIL) (((-888 (-564)) $) NIL) (((-536) $) NIL) (($ (-948 (-407 (-564)))) 239) (($ (-948 (-564))) 235) (($ (-948 |#2|)) 250) (((-1152) $) 278) (((-948 |#2|) $) 180)) (-2423 (((-858) $) 29) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-948 |#2|) $) 181) (($ (-407 (-564))) NIL) (($ $) NIL)) (-2815 (((-3 (-112) "failed") $ $) 77)))
-(((-1058 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2423 (|#1| |#1|)) (-15 -2123 (|#1| |#1| |#1|)) (-15 -2123 (|#1| (-641 |#1|))) (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 ((-948 |#2|) |#1|)) (-15 -1311 ((-948 |#2|) |#1|)) (-15 -1311 ((-1152) |#1|)) (-15 -2813 (|#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -2123 (|#2| |#2| |#1|)) (-15 -2402 (|#1| |#1| |#1|)) (-15 -3496 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1| |#2|)) (-15 -3496 (|#1| |#1| |#2|)) (-15 -4152 (|#1| |#1|)) (-15 -1885 (|#1| |#1|)) (-15 -1311 (|#1| (-948 |#2|))) (-15 -3120 (|#1| (-948 |#2|))) (-15 -4284 ((-3 |#1| "failed") (-948 |#2|))) (-15 -1311 (|#1| (-948 (-564)))) (-15 -3120 (|#1| (-948 (-564)))) (-15 -4284 ((-3 |#1| "failed") (-948 (-564)))) (-15 -1311 (|#1| (-948 (-407 (-564))))) (-15 -3120 (|#1| (-948 (-407 (-564))))) (-15 -4284 ((-3 |#1| "failed") (-948 (-407 (-564))))) (-15 -4241 (|#1| |#1| |#1|)) (-15 -3347 (|#1| |#1| |#1|)) (-15 -3180 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3196 (-767))) |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -4300 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -1643 ((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1| |#4|)) (-15 -1643 ((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -1923 ((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -4071 |#1|)) |#1| |#1| |#4|)) (-15 -1923 ((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -3466 (|#1| |#1| |#1| |#4|)) (-15 -3938 (|#1| |#1| |#1| |#4|)) (-15 -3466 (|#1| |#1| |#1|)) (-15 -3938 (|#1| |#1| |#1|)) (-15 -3594 (|#1| |#1| |#1| |#4|)) (-15 -1966 (|#1| |#1| |#1| |#4|)) (-15 -3594 (|#1| |#1| |#1|)) (-15 -1966 (|#1| |#1| |#1|)) (-15 -2675 ((-112) |#1| (-641 |#1|))) (-15 -2675 ((-112) |#1| |#1|)) (-15 -3441 ((-112) |#1| (-641 |#1|))) (-15 -3441 ((-112) |#1| |#1|)) (-15 -1929 ((-112) |#1| (-641 |#1|))) (-15 -1929 ((-112) |#1| |#1|)) (-15 -3870 ((-112) |#1| (-641 |#1|))) (-15 -3870 ((-112) |#1| |#1|)) (-15 -2040 ((-112) |#1| |#1|)) (-15 -2582 ((-112) |#1| |#1|)) (-15 -2815 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2970 ((-641 |#1|) |#1|)) (-15 -1866 ((-641 |#1|) |#1|)) (-15 -3361 (|#1| |#1|)) (-15 -3426 (|#1| |#1|)) (-15 -4252 ((-112) |#1|)) (-15 -2856 ((-112) |#1|)) (-15 -1684 (|#1| |#1| |#4|)) (-15 -3982 (|#1| |#1| |#4|)) (-15 -2884 (|#1| |#1|)) (-15 -2447 ((-641 |#1|) |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -2944 (|#1| |#1|)) (-15 -3431 (|#1| |#1|)) (-15 -2904 ((-767) |#1|)) (-15 -3378 (|#4| |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -2423 (|#1| |#4|)) (-15 -4284 ((-3 |#4| "failed") |#1|)) (-15 -3120 (|#4| |#1|)) (-15 -3982 (|#2| |#1|)) (-15 -1684 (|#1| |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|))) (-1059 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -1058))
-NIL
-(-10 -8 (-15 -2423 (|#1| |#1|)) (-15 -2123 (|#1| |#1| |#1|)) (-15 -2123 (|#1| (-641 |#1|))) (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 ((-948 |#2|) |#1|)) (-15 -1311 ((-948 |#2|) |#1|)) (-15 -1311 ((-1152) |#1|)) (-15 -2813 (|#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -2123 (|#2| |#2| |#1|)) (-15 -2402 (|#1| |#1| |#1|)) (-15 -3496 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1| |#2|)) (-15 -3496 (|#1| |#1| |#2|)) (-15 -4152 (|#1| |#1|)) (-15 -1885 (|#1| |#1|)) (-15 -1311 (|#1| (-948 |#2|))) (-15 -3120 (|#1| (-948 |#2|))) (-15 -4284 ((-3 |#1| "failed") (-948 |#2|))) (-15 -1311 (|#1| (-948 (-564)))) (-15 -3120 (|#1| (-948 (-564)))) (-15 -4284 ((-3 |#1| "failed") (-948 (-564)))) (-15 -1311 (|#1| (-948 (-407 (-564))))) (-15 -3120 (|#1| (-948 (-407 (-564))))) (-15 -4284 ((-3 |#1| "failed") (-948 (-407 (-564))))) (-15 -4241 (|#1| |#1| |#1|)) (-15 -3347 (|#1| |#1| |#1|)) (-15 -3180 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3196 (-767))) |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -4300 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -1643 ((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1| |#4|)) (-15 -1643 ((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -1923 ((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -4071 |#1|)) |#1| |#1| |#4|)) (-15 -1923 ((-2 (|:| -4376 |#1|) (|:| |gap| (-767)) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -3466 (|#1| |#1| |#1| |#4|)) (-15 -3938 (|#1| |#1| |#1| |#4|)) (-15 -3466 (|#1| |#1| |#1|)) (-15 -3938 (|#1| |#1| |#1|)) (-15 -3594 (|#1| |#1| |#1| |#4|)) (-15 -1966 (|#1| |#1| |#1| |#4|)) (-15 -3594 (|#1| |#1| |#1|)) (-15 -1966 (|#1| |#1| |#1|)) (-15 -2675 ((-112) |#1| (-641 |#1|))) (-15 -2675 ((-112) |#1| |#1|)) (-15 -3441 ((-112) |#1| (-641 |#1|))) (-15 -3441 ((-112) |#1| |#1|)) (-15 -1929 ((-112) |#1| (-641 |#1|))) (-15 -1929 ((-112) |#1| |#1|)) (-15 -3870 ((-112) |#1| (-641 |#1|))) (-15 -3870 ((-112) |#1| |#1|)) (-15 -2040 ((-112) |#1| |#1|)) (-15 -2582 ((-112) |#1| |#1|)) (-15 -2815 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2970 ((-641 |#1|) |#1|)) (-15 -1866 ((-641 |#1|) |#1|)) (-15 -3361 (|#1| |#1|)) (-15 -3426 (|#1| |#1|)) (-15 -4252 ((-112) |#1|)) (-15 -2856 ((-112) |#1|)) (-15 -1684 (|#1| |#1| |#4|)) (-15 -3982 (|#1| |#1| |#4|)) (-15 -2884 (|#1| |#1|)) (-15 -2447 ((-641 |#1|) |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -2944 (|#1| |#1|)) (-15 -3431 (|#1| |#1|)) (-15 -2904 ((-767) |#1|)) (-15 -3378 (|#4| |#1|)) (-15 -1311 ((-536) |#1|)) (-15 -1311 ((-888 (-564)) |#1|)) (-15 -1311 ((-888 (-379)) |#1|)) (-15 -2423 (|#1| |#4|)) (-15 -4284 ((-3 |#4| "failed") |#1|)) (-15 -3120 (|#4| |#1|)) (-15 -3982 (|#2| |#1|)) (-15 -1684 (|#1| |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3836 (((-641 |#3|) $) 104)) (-3660 (((-1166 $) $ |#3|) 119) (((-1166 |#1|) $) 118)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 81 (|has| |#1| (-556)))) (-3063 (($ $) 82 (|has| |#1| (-556)))) (-3330 (((-112) $) 84 (|has| |#1| (-556)))) (-1737 (((-767) $) 106) (((-767) $ (-641 |#3|)) 105)) (-1403 (($ $) 265)) (-2040 (((-112) $ $) 251)) (-4012 (((-3 $ "failed") $ $) 20)) (-2931 (($ $ $) 210 (|has| |#1| (-556)))) (-1317 (((-641 $) $ $) 205 (|has| |#1| (-556)))) (-4199 (((-418 (-1166 $)) (-1166 $)) 94 (|has| |#1| (-905)))) (-2683 (($ $) 92 (|has| |#1| (-452)))) (-2753 (((-418 $) $) 91 (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 97 (|has| |#1| (-905)))) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#1| "failed") $) 158) (((-3 (-407 (-564)) "failed") $) 155 (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) 153 (|has| |#1| (-1034 (-564)))) (((-3 |#3| "failed") $) 130) (((-3 $ "failed") (-948 (-407 (-564)))) 225 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (((-3 $ "failed") (-948 (-564))) 222 (-2807 (-12 (-2351 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (((-3 $ "failed") (-948 |#1|)) 219 (-2807 (-12 (-2351 (|has| |#1| (-38 (-407 (-564))))) (-2351 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-2351 (|has| |#1| (-545))) (-2351 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-2351 (|has| |#1| (-988 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-3120 ((|#1| $) 157) (((-407 (-564)) $) 156 (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) 154 (|has| |#1| (-1034 (-564)))) ((|#3| $) 131) (($ (-948 (-407 (-564)))) 224 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-948 (-564))) 221 (-2807 (-12 (-2351 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-948 |#1|)) 218 (-2807 (-12 (-2351 (|has| |#1| (-38 (-407 (-564))))) (-2351 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-2351 (|has| |#1| (-545))) (-2351 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-2351 (|has| |#1| (-988 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-2746 (($ $ $ |#3|) 102 (|has| |#1| (-172))) (($ $ $) 206 (|has| |#1| (-556)))) (-1684 (($ $) 148) (($ $ |#3|) 260)) (-4277 (((-685 (-564)) (-685 $)) 128 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 127 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 126) (((-685 |#1|) (-685 $)) 125)) (-3870 (((-112) $ $) 250) (((-112) $ (-641 $)) 249)) (-3293 (((-3 $ "failed") $) 34)) (-4252 (((-112) $) 258)) (-4300 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 230)) (-3444 (($ $) 199 (|has| |#1| (-452)))) (-2571 (($ $) 170 (|has| |#1| (-452))) (($ $ |#3|) 99 (|has| |#1| (-452)))) (-3993 (((-641 $) $) 103)) (-1339 (((-112) $) 90 (|has| |#1| (-905)))) (-4152 (($ $) 215 (|has| |#1| (-556)))) (-1885 (($ $) 216 (|has| |#1| (-556)))) (-1966 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3594 (($ $ $) 241) (($ $ $ |#3|) 239)) (-3850 (($ $ |#1| |#2| $) 166)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 78 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 77 (-12 (|has| |#3| (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-4112 (((-112) $) 32)) (-2497 (((-767) $) 163)) (-2675 (((-112) $ $) 244) (((-112) $ (-641 $)) 243)) (-2741 (($ $ $ $ $) 201 (|has| |#1| (-556)))) (-3378 ((|#3| $) 269)) (-3824 (($ (-1166 |#1|) |#3|) 111) (($ (-1166 $) |#3|) 110)) (-2210 (((-641 $) $) 120)) (-4003 (((-112) $) 146)) (-3810 (($ |#1| |#2|) 147) (($ $ |#3| (-767)) 113) (($ $ (-641 |#3|) (-641 (-767))) 112)) (-3652 (($ $ $) 229)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ |#3|) 114)) (-2856 (((-112) $) 259)) (-2043 ((|#2| $) 164) (((-767) $ |#3|) 116) (((-641 (-767)) $ (-641 |#3|)) 115)) (-2904 (((-767) $) 268)) (-1948 (($ (-1 |#2| |#2|) $) 165)) (-4357 (($ (-1 |#1| |#1|) $) 145)) (-3025 (((-3 |#3| "failed") $) 117)) (-2813 (($ $) 196 (|has| |#1| (-452)))) (-4269 (($ $) 197 (|has| |#1| (-452)))) (-2970 (((-641 $) $) 254)) (-3426 (($ $) 257)) (-3416 (($ $) 198 (|has| |#1| (-452)))) (-1866 (((-641 $) $) 255)) (-3361 (($ $) 256)) (-3971 (($ $) 143)) (-3982 ((|#1| $) 142) (($ $ |#3|) 261)) (-2084 (($ (-641 $)) 88 (|has| |#1| (-452))) (($ $ $) 87 (|has| |#1| (-452)))) (-3180 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3196 (-767))) $ $) 228)) (-1643 (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $) 232) (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $ |#3|) 231)) (-1923 (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -4071 $)) $ $) 234) (((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -4071 $)) $ $ |#3|) 233)) (-3938 (($ $ $) 238) (($ $ $ |#3|) 236)) (-3466 (($ $ $) 237) (($ $ $ |#3|) 235)) (-2766 (((-1152) $) 10)) (-2146 (($ $ $) 204 (|has| |#1| (-556)))) (-2447 (((-641 $) $) 263)) (-1958 (((-3 (-641 $) "failed") $) 108)) (-1301 (((-3 (-641 $) "failed") $) 109)) (-3401 (((-3 (-2 (|:| |var| |#3|) (|:| -1838 (-767))) "failed") $) 107)) (-3441 (((-112) $ $) 246) (((-112) $ (-641 $)) 245)) (-4241 (($ $ $) 226)) (-3431 (($ $) 267)) (-2582 (((-112) $ $) 252)) (-1929 (((-112) $ $) 248) (((-112) $ (-641 $)) 247)) (-3347 (($ $ $) 227)) (-2944 (($ $) 266)) (-4052 (((-1114) $) 11)) (-3959 (((-2 (|:| -2123 $) (|:| |coef2| $)) $ $) 207 (|has| |#1| (-556)))) (-3877 (((-2 (|:| -2123 $) (|:| |coef1| $)) $ $) 208 (|has| |#1| (-556)))) (-3944 (((-112) $) 160)) (-3954 ((|#1| $) 161)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 89 (|has| |#1| (-452)))) (-2123 ((|#1| |#1| $) 200 (|has| |#1| (-452))) (($ (-641 $)) 86 (|has| |#1| (-452))) (($ $ $) 85 (|has| |#1| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) 96 (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) 95 (|has| |#1| (-905)))) (-3688 (((-418 $) $) 93 (|has| |#1| (-905)))) (-1946 (((-2 (|:| -2123 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 209 (|has| |#1| (-556)))) (-2998 (((-3 $ "failed") $ |#1|) 168 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 80 (|has| |#1| (-556)))) (-2402 (($ $ |#1|) 213 (|has| |#1| (-556))) (($ $ $) 211 (|has| |#1| (-556)))) (-3496 (($ $ |#1|) 214 (|has| |#1| (-556))) (($ $ $) 212 (|has| |#1| (-556)))) (-3291 (($ $ (-641 (-294 $))) 139) (($ $ (-294 $)) 138) (($ $ $ $) 137) (($ $ (-641 $) (-641 $)) 136) (($ $ |#3| |#1|) 135) (($ $ (-641 |#3|) (-641 |#1|)) 134) (($ $ |#3| $) 133) (($ $ (-641 |#3|) (-641 $)) 132)) (-1330 (($ $ |#3|) 101 (|has| |#1| (-172)))) (-3254 (($ $ |#3|) 43) (($ $ (-641 |#3|)) 42) (($ $ |#3| (-767)) 41) (($ $ (-641 |#3|) (-641 (-767))) 40)) (-1568 ((|#2| $) 144) (((-767) $ |#3|) 124) (((-641 (-767)) $ (-641 |#3|)) 123)) (-3899 (($ $) 264)) (-2884 (($ $) 262)) (-1311 (((-888 (-379)) $) 76 (-12 (|has| |#3| (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) 75 (-12 (|has| |#3| (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) 74 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536))))) (($ (-948 (-407 (-564)))) 223 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-948 (-564))) 220 (-2807 (-12 (-2351 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-948 |#1|)) 217 (|has| |#3| (-612 (-1170)))) (((-1152) $) 195 (-12 (|has| |#1| (-1034 (-564))) (|has| |#3| (-612 (-1170))))) (((-948 |#1|) $) 194 (|has| |#3| (-612 (-1170))))) (-4090 ((|#1| $) 169 (|has| |#1| (-452))) (($ $ |#3|) 100 (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 98 (-2358 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 159) (($ |#3|) 129) (((-948 |#1|) $) 193 (|has| |#3| (-612 (-1170)))) (($ (-407 (-564))) 72 (-2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 79 (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) 162)) (-2007 ((|#1| $ |#2|) 149) (($ $ |#3| (-767)) 122) (($ $ (-641 |#3|) (-641 (-767))) 121)) (-2420 (((-3 $ "failed") $) 73 (-2807 (-2358 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) 29 T CONST)) (-3242 (($ $ $ (-767)) 167 (|has| |#1| (-172)))) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 83 (|has| |#1| (-556)))) (-2403 (($) 19 T CONST)) (-2815 (((-3 (-112) "failed") $ $) 253)) (-2417 (($) 31 T CONST)) (-2821 (($ $ $ $ (-767)) 202 (|has| |#1| (-556)))) (-2254 (($ $ $ (-767)) 203 (|has| |#1| (-556)))) (-4063 (($ $ |#3|) 39) (($ $ (-641 |#3|)) 38) (($ $ |#3| (-767)) 37) (($ $ (-641 |#3|) (-641 (-767))) 36)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 150 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 152 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 151 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 141) (($ $ |#1|) 140)))
-(((-1059 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -1059))
-((-3378 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-3431 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1403 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3899 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2447 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2884 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3982 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-1684 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3426 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3361 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1866 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2815 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2582 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2040 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3870 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-1929 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-1929 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-3441 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-2675 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2675 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-1966 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3594 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1966 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3594 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3466 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3938 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3466 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-1923 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -4376 *1) (|:| |gap| (-767)) (|:| -4071 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-1923 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -4376 *1) (|:| |gap| (-767)) (|:| -4071 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-1643 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -4376 *1) (|:| |gap| (-767)) (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-1643 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -4376 *1) (|:| |gap| (-767)) (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-4300 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3652 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3180 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3196 (-767)))) (-4 *1 (-1059 *3 *4 *5)))) (-3347 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4241 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-4284 (*1 *1 *2) (|partial| -2807 (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2351 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-3120 (*1 *1 *2) (-2807 (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2351 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-1311 (*1 *1 *2) (-2807 (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2351 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-4284 (*1 *1 *2) (|partial| -2807 (-12 (-5 *2 (-948 *3)) (-12 (-2351 (-4 *3 (-38 (-407 (-564))))) (-2351 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2351 (-4 *3 (-545))) (-2351 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2351 (-4 *3 (-988 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-3120 (*1 *1 *2) (-2807 (-12 (-5 *2 (-948 *3)) (-12 (-2351 (-4 *3 (-38 (-407 (-564))))) (-2351 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2351 (-4 *3 (-545))) (-2351 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2351 (-4 *3 (-988 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *5 (-612 (-1170))) (-4 *4 (-789)) (-4 *5 (-846)))) (-1885 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-4152 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3496 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-2402 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-3496 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-2402 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-2931 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-1946 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2123 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3877 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2123 *1) (|:| |coef1| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3959 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2123 *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-2746 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-1317 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2146 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-2254 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-556)))) (-2821 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-556)))) (-2741 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-556)))) (-2123 (*1 *2 *2 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3444 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3416 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-4269 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2813 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))))
-(-13 (-945 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3378 (|t#3| $)) (-15 -2904 ((-767) $)) (-15 -3431 ($ $)) (-15 -2944 ($ $)) (-15 -1403 ($ $)) (-15 -3899 ($ $)) (-15 -2447 ((-641 $) $)) (-15 -2884 ($ $)) (-15 -3982 ($ $ |t#3|)) (-15 -1684 ($ $ |t#3|)) (-15 -2856 ((-112) $)) (-15 -4252 ((-112) $)) (-15 -3426 ($ $)) (-15 -3361 ($ $)) (-15 -1866 ((-641 $) $)) (-15 -2970 ((-641 $) $)) (-15 -2815 ((-3 (-112) "failed") $ $)) (-15 -2582 ((-112) $ $)) (-15 -2040 ((-112) $ $)) (-15 -3870 ((-112) $ $)) (-15 -3870 ((-112) $ (-641 $))) (-15 -1929 ((-112) $ $)) (-15 -1929 ((-112) $ (-641 $))) (-15 -3441 ((-112) $ $)) (-15 -3441 ((-112) $ (-641 $))) (-15 -2675 ((-112) $ $)) (-15 -2675 ((-112) $ (-641 $))) (-15 -1966 ($ $ $)) (-15 -3594 ($ $ $)) (-15 -1966 ($ $ $ |t#3|)) (-15 -3594 ($ $ $ |t#3|)) (-15 -3938 ($ $ $)) (-15 -3466 ($ $ $)) (-15 -3938 ($ $ $ |t#3|)) (-15 -3466 ($ $ $ |t#3|)) (-15 -1923 ((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -4071 $)) $ $)) (-15 -1923 ((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -4071 $)) $ $ |t#3|)) (-15 -1643 ((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -1643 ((-2 (|:| -4376 $) (|:| |gap| (-767)) (|:| -3979 $) (|:| -4071 $)) $ $ |t#3|)) (-15 -4300 ((-2 (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -3652 ($ $ $)) (-15 -3180 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3196 (-767))) $ $)) (-15 -3347 ($ $ $)) (-15 -4241 ($ $ $)) (IF (|has| |t#3| (-612 (-1170))) (PROGN (-6 (-611 (-948 |t#1|))) (-6 (-612 (-948 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -4284 ((-3 $ "failed") (-948 (-407 (-564))))) (-15 -3120 ($ (-948 (-407 (-564))))) (-15 -1311 ($ (-948 (-407 (-564))))) (-15 -4284 ((-3 $ "failed") (-948 (-564)))) (-15 -3120 ($ (-948 (-564)))) (-15 -1311 ($ (-948 (-564)))) (IF (|has| |t#1| (-988 (-564))) |%noBranch| (PROGN (-15 -4284 ((-3 $ "failed") (-948 |t#1|))) (-15 -3120 ($ (-948 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -4284 ((-3 $ "failed") (-948 (-564)))) (-15 -3120 ($ (-948 (-564)))) (-15 -1311 ($ (-948 (-564)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -4284 ((-3 $ "failed") (-948 |t#1|))) (-15 -3120 ($ (-948 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -4284 ((-3 $ "failed") (-948 |t#1|))) (-15 -3120 ($ (-948 |t#1|)))))) (-15 -1311 ($ (-948 |t#1|))) (IF (|has| |t#1| (-1034 (-564))) (-6 (-612 (-1152))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -1885 ($ $)) (-15 -4152 ($ $)) (-15 -3496 ($ $ |t#1|)) (-15 -2402 ($ $ |t#1|)) (-15 -3496 ($ $ $)) (-15 -2402 ($ $ $)) (-15 -2931 ($ $ $)) (-15 -1946 ((-2 (|:| -2123 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3877 ((-2 (|:| -2123 $) (|:| |coef1| $)) $ $)) (-15 -3959 ((-2 (|:| -2123 $) (|:| |coef2| $)) $ $)) (-15 -2746 ($ $ $)) (-15 -1317 ((-641 $) $ $)) (-15 -2146 ($ $ $)) (-15 -2254 ($ $ $ (-767))) (-15 -2821 ($ $ $ $ (-767))) (-15 -2741 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2123 (|t#1| |t#1| $)) (-15 -3444 ($ $)) (-15 -3416 ($ $)) (-15 -4269 ($ $)) (-15 -2813 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-858)) . T) ((-611 (-948 |#1|)) |has| |#3| (-612 (-1170))) ((-172) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-888 (-379))) -12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#3| (-612 (-888 (-379))))) ((-612 (-888 (-564))) -12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#3| (-612 (-888 (-564))))) ((-612 (-948 |#1|)) |has| |#3| (-612 (-1170))) ((-612 (-1152)) -12 (|has| |#1| (-1034 (-564))) (|has| |#3| (-612 (-1170)))) ((-290) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2807 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-722) . T) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-564)) -12 (|has| |#1| (-882 (-564))) (|has| |#3| (-882 (-564)))) ((-945 |#1| |#2| |#3|) . T) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-905)))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-3407 (((-641 (-1129)) $) 18)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 27) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2575 (((-1129) $) 20)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1060) (-13 (-1077) (-10 -8 (-15 -3407 ((-641 (-1129)) $)) (-15 -2575 ((-1129) $))))) (T -1060))
-((-3407 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1060)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1060)))))
-(-13 (-1077) (-10 -8 (-15 -3407 ((-641 (-1129)) $)) (-15 -2575 ((-1129) $))))
-((-1494 (((-112) |#3| $) 15)) (-2930 (((-3 $ "failed") |#3| (-917)) 29)) (-3293 (((-3 |#3| "failed") |#3| $) 45)) (-2384 (((-112) |#3| $) 19)) (-3326 (((-112) |#3| $) 17)))
-(((-1061 |#1| |#2| |#3|) (-10 -8 (-15 -2930 ((-3 |#1| "failed") |#3| (-917))) (-15 -3293 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2384 ((-112) |#3| |#1|)) (-15 -3326 ((-112) |#3| |#1|)) (-15 -1494 ((-112) |#3| |#1|))) (-1062 |#2| |#3|) (-13 (-844) (-363)) (-1235 |#2|)) (T -1061))
-NIL
-(-10 -8 (-15 -2930 ((-3 |#1| "failed") |#3| (-917))) (-15 -3293 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2384 ((-112) |#3| |#1|)) (-15 -3326 ((-112) |#3| |#1|)) (-15 -1494 ((-112) |#3| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) |#2| $) 22)) (-3249 (((-564) |#2| $) 23)) (-2930 (((-3 $ "failed") |#2| (-917)) 16)) (-1562 ((|#1| |#2| $ |#1|) 14)) (-3293 (((-3 |#2| "failed") |#2| $) 19)) (-2384 (((-112) |#2| $) 20)) (-3326 (((-112) |#2| $) 21)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-3721 ((|#2| $) 18)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-3646 ((|#1| |#2| $ |#1|) 15)) (-2308 (((-641 $) |#2|) 17)) (-2974 (((-112) $ $) 6)))
-(((-1062 |#1| |#2|) (-140) (-13 (-844) (-363)) (-1235 |t#1|)) (T -1062))
-((-3249 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-564)))) (-1494 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-3326 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-2384 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-3293 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1235 *3)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1235 *3)))) (-2308 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1)) (-4 *1 (-1062 *4 *3)))) (-2930 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-844) (-363))) (-4 *1 (-1062 *4 *2)) (-4 *2 (-1235 *4)))) (-3646 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1235 *2)))) (-1562 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1235 *2)))))
-(-13 (-1094) (-10 -8 (-15 -3249 ((-564) |t#2| $)) (-15 -1494 ((-112) |t#2| $)) (-15 -3326 ((-112) |t#2| $)) (-15 -2384 ((-112) |t#2| $)) (-15 -3293 ((-3 |t#2| "failed") |t#2| $)) (-15 -3721 (|t#2| $)) (-15 -2308 ((-641 $) |t#2|)) (-15 -2930 ((-3 $ "failed") |t#2| (-917))) (-15 -3646 (|t#1| |t#2| $ |t#1|)) (-15 -1562 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-2642 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) (-767)) 115)) (-2176 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767)) 63)) (-1565 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-767)) 100)) (-3273 (((-767) (-641 |#4|) (-641 |#5|)) 30)) (-2024 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767)) 65) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767) (-112)) 67)) (-3384 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 87)) (-1311 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) 92)) (-4065 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-112)) 62)) (-2108 (((-767) (-641 |#4|) (-641 |#5|)) 21)))
-(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2108 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -3273 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -4065 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-112))) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767))) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|)) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767))) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|)) (-15 -3384 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3384 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2642 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) (-767))) (-15 -1311 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)))) (-15 -1565 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1063))
-((-1565 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3577 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1264)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3577 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1152)) (-5 *1 (-1063 *4 *5 *6 *7 *8)))) (-2642 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -3577 *11)))))) (-5 *6 (-767)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -3577 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11)))) (-3384 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3384 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-2024 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2024 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-2024 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3)))) (-2176 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-4065 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3273 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2108 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -3273 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -4065 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-112))) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767))) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|)) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767))) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|)) (-15 -3384 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3384 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2642 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) (-767))) (-15 -1311 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)))) (-15 -1565 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-767))))
-((-4014 (((-112) |#5| $) 26)) (-3071 (((-112) |#5| $) 29)) (-1865 (((-112) |#5| $) 18) (((-112) $) 52)) (-3888 (((-641 $) |#5| $) NIL) (((-641 $) (-641 |#5|) $) 94) (((-641 $) (-641 |#5|) (-641 $)) 92) (((-641 $) |#5| (-641 $)) 95)) (-4016 (($ $ |#5|) NIL) (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 73) (((-641 $) (-641 |#5|) $) 75) (((-641 $) (-641 |#5|) (-641 $)) 77)) (-3418 (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 64) (((-641 $) (-641 |#5|) $) 69) (((-641 $) (-641 |#5|) (-641 $)) 71)) (-1947 (((-112) |#5| $) 32)))
-(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4016 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -4016 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -4016 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -4016 ((-641 |#1|) |#5| |#1|)) (-15 -3418 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3418 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3418 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3418 ((-641 |#1|) |#5| |#1|)) (-15 -3888 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3888 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3888 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3888 ((-641 |#1|) |#5| |#1|)) (-15 -3071 ((-112) |#5| |#1|)) (-15 -1865 ((-112) |#1|)) (-15 -1947 ((-112) |#5| |#1|)) (-15 -4014 ((-112) |#5| |#1|)) (-15 -1865 ((-112) |#5| |#1|)) (-15 -4016 (|#1| |#1| |#5|))) (-1065 |#2| |#3| |#4| |#5|) (-452) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1064))
-NIL
-(-10 -8 (-15 -4016 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -4016 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -4016 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -4016 ((-641 |#1|) |#5| |#1|)) (-15 -3418 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3418 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3418 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3418 ((-641 |#1|) |#5| |#1|)) (-15 -3888 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3888 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3888 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3888 ((-641 |#1|) |#5| |#1|)) (-15 -3071 ((-112) |#5| |#1|)) (-15 -1865 ((-112) |#1|)) (-15 -1947 ((-112) |#5| |#1|)) (-15 -4014 ((-112) |#5| |#1|)) (-15 -1865 ((-112) |#5| |#1|)) (-15 -4016 (|#1| |#1| |#5|)))
-((-3009 (((-112) $ $) 7)) (-3605 (((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 |#4|)))) (-641 |#4|)) 86)) (-2578 (((-641 $) (-641 |#4|)) 87) (((-641 $) (-641 |#4|) (-112)) 112)) (-3836 (((-641 |#3|) $) 34)) (-3342 (((-112) $) 27)) (-1594 (((-112) $) 18 (|has| |#1| (-556)))) (-3631 (((-112) |#4| $) 102) (((-112) $) 98)) (-3494 ((|#4| |#4| $) 93)) (-2683 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| $) 127)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) 28)) (-1876 (((-112) $ (-767)) 45)) (-1667 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 80)) (-4080 (($) 46 T CONST)) (-1968 (((-112) $) 23 (|has| |#1| (-556)))) (-2238 (((-112) $ $) 25 (|has| |#1| (-556)))) (-3956 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1489 (((-112) $) 26 (|has| |#1| (-556)))) (-2961 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3703 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) 20 (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) 37)) (-3120 (($ (-641 |#4|)) 36)) (-2671 (((-3 $ "failed") $) 83)) (-2405 ((|#4| |#4| $) 90)) (-2696 (($ $) 69 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#4| $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3870 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2248 ((|#4| |#4| $) 88)) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4020 (((-2 (|:| -1604 (-641 |#4|)) (|:| -2319 (-641 |#4|))) $) 106)) (-4014 (((-112) |#4| $) 137)) (-3071 (((-112) |#4| $) 134)) (-1865 (((-112) |#4| $) 138) (((-112) $) 135)) (-3035 (((-641 |#4|) $) 53 (|has| $ (-6 -4407)))) (-2675 (((-112) |#4| $) 105) (((-112) $) 104)) (-3378 ((|#3| $) 35)) (-3097 (((-112) $ (-767)) 44)) (-1554 (((-641 |#4|) $) 54 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) 48)) (-2814 (((-641 |#3|) $) 33)) (-3169 (((-112) |#3| $) 32)) (-3619 (((-112) $ (-767)) 43)) (-2766 (((-1152) $) 10)) (-2227 (((-3 |#4| (-641 $)) |#4| |#4| $) 129)) (-2146 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| |#4| $) 128)) (-2615 (((-3 |#4| "failed") $) 84)) (-4022 (((-641 $) |#4| $) 130)) (-1995 (((-3 (-112) (-641 $)) |#4| $) 133)) (-4259 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3888 (((-641 $) |#4| $) 126) (((-641 $) (-641 |#4|) $) 125) (((-641 $) (-641 |#4|) (-641 $)) 124) (((-641 $) |#4| (-641 $)) 123)) (-3531 (($ |#4| $) 118) (($ (-641 |#4|) $) 117)) (-3167 (((-641 |#4|) $) 108)) (-3441 (((-112) |#4| $) 100) (((-112) $) 96)) (-4241 ((|#4| |#4| $) 91)) (-2582 (((-112) $ $) 111)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-1929 (((-112) |#4| $) 101) (((-112) $) 97)) (-3347 ((|#4| |#4| $) 92)) (-4052 (((-1114) $) 11)) (-2658 (((-3 |#4| "failed") $) 85)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2533 (((-3 $ "failed") $ |#4|) 79)) (-4016 (($ $ |#4|) 78) (((-641 $) |#4| $) 116) (((-641 $) |#4| (-641 $)) 115) (((-641 $) (-641 |#4|) $) 114) (((-641 $) (-641 |#4|) (-641 $)) 113)) (-4377 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) 39)) (-1976 (((-112) $) 42)) (-2994 (($) 41)) (-1568 (((-767) $) 107)) (-4062 (((-767) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4407)))) (-3926 (($ $) 40)) (-1311 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2435 (($ (-641 |#4|)) 61)) (-1834 (($ $ |#3|) 29)) (-1648 (($ $ |#3|) 31)) (-1492 (($ $) 89)) (-2577 (($ $ |#3|) 30)) (-2423 (((-858) $) 12) (((-641 |#4|) $) 38)) (-3840 (((-767) $) 77 (|has| |#3| (-368)))) (-1860 (((-112) $ $) 9)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3212 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 99)) (-3418 (((-641 $) |#4| $) 122) (((-641 $) |#4| (-641 $)) 121) (((-641 $) (-641 |#4|) $) 120) (((-641 $) (-641 |#4|) (-641 $)) 119)) (-1368 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-3579 (((-641 |#3|) $) 82)) (-1947 (((-112) |#4| $) 136)) (-1816 (((-112) |#3| $) 81)) (-2974 (((-112) $ $) 6)) (-2181 (((-767) $) 47 (|has| $ (-6 -4407)))))
-(((-1065 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1065))
-((-1865 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-4014 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1947 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3071 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1995 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-4259 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-4259 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-4022 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2227 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2146 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2683 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3888 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3888 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-3888 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-3888 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-3418 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3418 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-3418 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-3418 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-3531 (*1 *1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3531 (*1 *1 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)))) (-4016 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-4016 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-4016 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-4016 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1065 *5 *6 *7 *8)))))
-(-13 (-1202 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1865 ((-112) |t#4| $)) (-15 -4014 ((-112) |t#4| $)) (-15 -1947 ((-112) |t#4| $)) (-15 -1865 ((-112) $)) (-15 -3071 ((-112) |t#4| $)) (-15 -1995 ((-3 (-112) (-641 $)) |t#4| $)) (-15 -4259 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 $))) |t#4| $)) (-15 -4259 ((-112) |t#4| $)) (-15 -4022 ((-641 $) |t#4| $)) (-15 -2227 ((-3 |t#4| (-641 $)) |t#4| |t#4| $)) (-15 -2146 ((-641 (-2 (|:| |val| |t#4|) (|:| -3577 $))) |t#4| |t#4| $)) (-15 -2683 ((-641 (-2 (|:| |val| |t#4|) (|:| -3577 $))) |t#4| $)) (-15 -3888 ((-641 $) |t#4| $)) (-15 -3888 ((-641 $) (-641 |t#4|) $)) (-15 -3888 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -3888 ((-641 $) |t#4| (-641 $))) (-15 -3418 ((-641 $) |t#4| $)) (-15 -3418 ((-641 $) |t#4| (-641 $))) (-15 -3418 ((-641 $) (-641 |t#4|) $)) (-15 -3418 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -3531 ($ |t#4| $)) (-15 -3531 ($ (-641 |t#4|) $)) (-15 -4016 ((-641 $) |t#4| $)) (-15 -4016 ((-641 $) |t#4| (-641 $))) (-15 -4016 ((-641 $) (-641 |t#4|) $)) (-15 -4016 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -2578 ((-641 $) (-641 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T))
-((-1580 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#5|) 87)) (-2126 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|) 130)) (-3043 (((-641 |#5|) |#4| |#5|) 75)) (-3214 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-2552 (((-1264)) 37)) (-3730 (((-1264)) 26)) (-4180 (((-1264) (-1152) (-1152) (-1152)) 33)) (-3742 (((-1264) (-1152) (-1152) (-1152)) 22)) (-1782 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#4| |#4| |#5|) 110)) (-2694 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#3| (-112)) 121) (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-4042 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|) 116)))
-(((-1066 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3742 ((-1264) (-1152) (-1152) (-1152))) (-15 -3730 ((-1264))) (-15 -4180 ((-1264) (-1152) (-1152) (-1152))) (-15 -2552 ((-1264))) (-15 -1782 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -2694 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2694 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#3| (-112))) (-15 -4042 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -2126 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -3214 ((-112) |#4| |#5|)) (-15 -3214 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|)) (-15 -3043 ((-641 |#5|) |#4| |#5|)) (-15 -1580 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1066))
-((-1580 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3043 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3214 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3214 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2126 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4042 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3577 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -3577 *9)))) (-5 *1 (-1066 *6 *7 *4 *8 *9)))) (-2694 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4)))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-1782 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2552 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-4180 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3730 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3742 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3742 ((-1264) (-1152) (-1152) (-1152))) (-15 -3730 ((-1264))) (-15 -4180 ((-1264) (-1152) (-1152) (-1152))) (-15 -2552 ((-1264))) (-15 -1782 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -2694 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2694 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#3| (-112))) (-15 -4042 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -2126 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -3214 ((-112) |#4| |#5|)) (-15 -3214 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|)) (-15 -3043 ((-641 |#5|) |#4| |#5|)) (-15 -1580 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#5|)))
-((-3009 (((-112) $ $) NIL)) (-3830 (((-1208) $) 13)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1350 (((-1129) $) 10)) (-2423 (((-858) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1067) (-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $)) (-15 -3830 ((-1208) $))))) (T -1067))
-((-1350 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1067)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1067)))))
-(-13 (-1077) (-10 -8 (-15 -1350 ((-1129) $)) (-15 -3830 ((-1208) $))))
-((-1606 (((-112) $ $) 7)))
-(((-1068) (-13 (-1209) (-10 -8 (-15 -1606 ((-112) $ $))))) (T -1068))
-((-1606 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1068)))))
-(-13 (-1209) (-10 -8 (-15 -1606 ((-112) $ $))))
-((-3009 (((-112) $ $) NIL)) (-2562 (((-1170) $) 8)) (-2766 (((-1152) $) 17)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 11)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 14)))
-(((-1069 |#1|) (-13 (-1094) (-10 -8 (-15 -2562 ((-1170) $)))) (-1170)) (T -1069))
-((-2562 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2))))
-(-13 (-1094) (-10 -8 (-15 -2562 ((-1170) $))))
-((-3009 (((-112) $ $) NIL)) (-2823 (($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|))) 34)) (-3303 (($ |#3| |#3|) 23) (($ |#3| |#3| (-641 (-1170))) 21)) (-1827 ((|#3| $) 13)) (-4284 (((-3 (-294 |#3|) "failed") $) 60)) (-3120 (((-294 |#3|) $) NIL)) (-2171 (((-641 (-1170)) $) 16)) (-1629 (((-888 |#1|) $) 11)) (-1813 ((|#3| $) 12)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-4366 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-917)) 41)) (-2423 (((-858) $) 89) (($ (-294 |#3|)) 22)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 38)))
-(((-1070 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-1034 (-294 |#3|)) (-10 -8 (-15 -3303 ($ |#3| |#3|)) (-15 -3303 ($ |#3| |#3| (-641 (-1170)))) (-15 -2823 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -1629 ((-888 |#1|) $)) (-15 -1813 (|#3| $)) (-15 -1827 (|#3| $)) (-15 -4366 (|#3| $ |#3| (-917))) (-15 -2171 ((-641 (-1170)) $)))) (-1094) (-13 (-1045) (-882 |#1|) (-612 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-612 (-888 |#1|)))) (T -1070))
-((-3303 (*1 *1 *2 *2) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))))) (-3303 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))) (-2823 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6))) (-4 *6 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4)))) (-5 *1 (-1070 *4 *5 *6)))) (-1629 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-612 *2))) (-5 *2 (-888 *3)) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-612 *2))))) (-1813 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3)))))) (-1827 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3)))))) (-4366 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))) (-2171 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3)))) (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))))))
-(-13 (-1094) (-286 |#3| |#3|) (-1034 (-294 |#3|)) (-10 -8 (-15 -3303 ($ |#3| |#3|)) (-15 -3303 ($ |#3| |#3| (-641 (-1170)))) (-15 -2823 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -1629 ((-888 |#1|) $)) (-15 -1813 (|#3| $)) (-15 -1827 (|#3| $)) (-15 -4366 (|#3| $ |#3| (-917))) (-15 -2171 ((-641 (-1170)) $))))
-((-3009 (((-112) $ $) NIL)) (-2788 (($ (-641 (-1070 |#1| |#2| |#3|))) 14)) (-1432 (((-641 (-1070 |#1| |#2| |#3|)) $) 21)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-4366 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-917)) 27)) (-2423 (((-858) $) 17)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 20)))
-(((-1071 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -2788 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -1432 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -4366 (|#3| $ |#3| (-917))))) (-1094) (-13 (-1045) (-882 |#1|) (-612 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-612 (-888 |#1|)))) (T -1071))
-((-2788 (*1 *1 *2) (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3)))) (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))) (-5 *1 (-1071 *3 *4 *5)))) (-1432 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3)))) (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))))) (-4366 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1094)) (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4)))) (-5 *1 (-1071 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))))
-(-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -2788 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -1432 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -4366 (|#3| $ |#3| (-917)))))
-((-1990 (((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112)) 88) (((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|))) 92) (((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112)) 90)))
-(((-1072 |#1| |#2|) (-10 -7 (-15 -1990 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112))) (-15 -1990 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -1990 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-641 (-1170))) (T -1072))
-((-1990 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3560 (-1166 *5)) (|:| -4225 (-641 (-948 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-948 *5))) (-14 *6 (-641 (-1170))))) (-1990 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3560 (-1166 *4)) (|:| -4225 (-641 (-948 *4)))))) (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-948 *4))) (-14 *5 (-641 (-1170))))) (-1990 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3560 (-1166 *5)) (|:| -4225 (-641 (-948 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-948 *5))) (-14 *6 (-641 (-1170))))))
-(-10 -7 (-15 -1990 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112))) (-15 -1990 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -1990 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112))))
-((-3688 (((-418 |#3|) |#3|) 18)))
-(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -3688 ((-418 |#3|) |#3|))) (-1235 (-407 (-564))) (-13 (-363) (-147) (-720 (-407 (-564)) |#1|)) (-1235 |#2|)) (T -1073))
-((-3688 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-564)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(-10 -7 (-15 -3688 ((-418 |#3|) |#3|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 142)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-3063 (($ $) NIL (|has| |#1| (-363)))) (-3330 (((-112) $) NIL (|has| |#1| (-363)))) (-2270 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) 125)) (-3847 ((|#1| $) 130)) (-4373 (((-1182 (-917) (-767)) (-564)) NIL (|has| |#1| (-349)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-363)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2622 (((-767)) 46 (|has| |#1| (-368)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-3474 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) 49)) (-4334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-4057 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 115) (((-685 |#1|) (-685 $)) 110)) (-1316 (($ |#2|) 67) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-3293 (((-3 $ "failed") $) NIL)) (-2514 (((-917)) 84)) (-2534 (($) 50 (|has| |#1| (-368)))) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1471 (($) NIL (|has| |#1| (-349)))) (-1436 (((-112) $) NIL (|has| |#1| (-349)))) (-3456 (($ $ (-767)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-1339 (((-112) $) NIL (|has| |#1| (-363)))) (-3744 (((-917) $) NIL (|has| |#1| (-349))) (((-829 (-917)) $) NIL (|has| |#1| (-349)))) (-4112 (((-112) $) NIL)) (-2499 ((|#1| $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3514 ((|#2| $) 91 (|has| |#1| (-363)))) (-3256 (((-917) $) 151 (|has| |#1| (-368)))) (-1305 ((|#2| $) 64)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-363)))) (-3431 (($) NIL (|has| |#1| (-349)) CONST)) (-2083 (($ (-917)) 141 (|has| |#1| (-368)))) (-4052 (((-1114) $) NIL)) (-2249 (($) 132)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2981 (((-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))) NIL (|has| |#1| (-349)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-1330 ((|#1| (-1259 $)) NIL) ((|#1|) 119)) (-4255 (((-767) $) NIL (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-349)))) (-3254 (($ $) NIL (-2807 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) NIL (-2807 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1942 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3721 ((|#2|) 80)) (-3826 (($) NIL (|has| |#1| (-349)))) (-4225 (((-1259 |#1|) $ (-1259 $)) 96) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 77) (((-685 |#1|) (-1259 $)) 92)) (-1311 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-349)))) (-2423 (((-858) $) 63) (($ (-564)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-564))))))) (-2420 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2134 ((|#2| $) 89)) (-3719 (((-767)) 82 T CONST)) (-1860 (((-112) $ $) NIL)) (-2047 (((-1259 $)) 88)) (-2119 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2403 (($) 32 T CONST)) (-2417 (($) 19 T CONST)) (-4063 (($ $) NIL (-2807 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) NIL (-2807 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1170))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2974 (((-112) $ $) 69)) (-3092 (($ $ $) NIL (|has| |#1| (-363)))) (-3082 (($ $) 73) (($ $ $) NIL)) (-3070 (($ $ $) 71)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363)))))
-(((-1074 |#1| |#2| |#3|) (-720 |#1| |#2|) (-172) (-1235 |#1|) |#2|) (T -1074))
-NIL
-(-720 |#1| |#2|)
-((-3688 (((-418 |#3|) |#3|) 19)))
-(((-1075 |#1| |#2| |#3|) (-10 -7 (-15 -3688 ((-418 |#3|) |#3|))) (-1235 (-407 (-948 (-564)))) (-13 (-363) (-147) (-720 (-407 (-948 (-564))) |#1|)) (-1235 |#2|)) (T -1075))
-((-3688 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-948 (-564))))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-948 (-564))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1075 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(-10 -7 (-15 -3688 ((-418 |#3|) |#3|)))
-((-3009 (((-112) $ $) NIL)) (-2855 (($ $ $) 16)) (-1497 (($ $ $) 17)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2337 (($) 6)) (-1311 (((-1170) $) 20)) (-2423 (((-858) $) 13)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 15)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 9)))
-(((-1076) (-13 (-846) (-612 (-1170)) (-10 -8 (-15 -2337 ($))))) (T -1076))
-((-2337 (*1 *1) (-5 *1 (-1076))))
-(-13 (-846) (-612 (-1170)) (-10 -8 (-15 -2337 ($))))
-((-3009 (((-112) $ $) 7)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-1175)) 17) (((-1175) $) 16)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
-(((-1077) (-140)) (T -1077))
+((-4264 (((-642 (-642 (-294 (-407 (-950 |#2|))))) (-642 (-950 |#2|)) (-642 (-1173))) 38)))
+(((-1037 |#1| |#2|) (-10 -7 (-15 -4264 ((-642 (-642 (-294 (-407 (-950 |#2|))))) (-642 (-950 |#2|)) (-642 (-1173))))) (-556) (-13 (-556) (-1036 |#1|))) (T -1037))
+((-4264 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) (-4 *6 (-13 (-556) (-1036 *5))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *6)))))) (-5 *1 (-1037 *5 *6)))))
+(-10 -7 (-15 -4264 ((-642 (-642 (-294 (-407 (-950 |#2|))))) (-642 (-950 |#2|)) (-642 (-1173)))))
+((-4365 (((-379)) 17)) (-2503 (((-1 (-379)) (-379) (-379)) 22)) (-1442 (((-1 (-379)) (-769)) 51)) (-1394 (((-379)) 38)) (-1895 (((-1 (-379)) (-379) (-379)) 39)) (-3458 (((-379)) 29)) (-2795 (((-1 (-379)) (-379)) 30)) (-2028 (((-379) (-769)) 46)) (-4270 (((-1 (-379)) (-769)) 47)) (-2234 (((-1 (-379)) (-769) (-769)) 50)) (-2003 (((-1 (-379)) (-769) (-769)) 48)))
+(((-1038) (-10 -7 (-15 -4365 ((-379))) (-15 -1394 ((-379))) (-15 -3458 ((-379))) (-15 -2028 ((-379) (-769))) (-15 -2503 ((-1 (-379)) (-379) (-379))) (-15 -1895 ((-1 (-379)) (-379) (-379))) (-15 -2795 ((-1 (-379)) (-379))) (-15 -4270 ((-1 (-379)) (-769))) (-15 -2003 ((-1 (-379)) (-769) (-769))) (-15 -2234 ((-1 (-379)) (-769) (-769))) (-15 -1442 ((-1 (-379)) (-769))))) (T -1038))
+((-1442 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))) (-2234 (*1 *2 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))) (-2003 (*1 *2 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))) (-4270 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))) (-2795 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379)))) (-1895 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379)))) (-2503 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-379)) (-5 *1 (-1038)))) (-3458 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038)))) (-1394 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038)))) (-4365 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038)))))
+(-10 -7 (-15 -4365 ((-379))) (-15 -1394 ((-379))) (-15 -3458 ((-379))) (-15 -2028 ((-379) (-769))) (-15 -2503 ((-1 (-379)) (-379) (-379))) (-15 -1895 ((-1 (-379)) (-379) (-379))) (-15 -2795 ((-1 (-379)) (-379))) (-15 -4270 ((-1 (-379)) (-769))) (-15 -2003 ((-1 (-379)) (-769) (-769))) (-15 -2234 ((-1 (-379)) (-769) (-769))) (-15 -1442 ((-1 (-379)) (-769))))
+((-3643 (((-418 |#1|) |#1|) 33)))
+(((-1039 |#1|) (-10 -7 (-15 -3643 ((-418 |#1|) |#1|))) (-1238 (-407 (-950 (-564))))) (T -1039))
+((-3643 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1039 *3)) (-4 *3 (-1238 (-407 (-950 (-564))))))))
+(-10 -7 (-15 -3643 ((-418 |#1|) |#1|)))
+((-1966 (((-407 (-418 (-950 |#1|))) (-407 (-950 |#1|))) 14)))
+(((-1040 |#1|) (-10 -7 (-15 -1966 ((-407 (-418 (-950 |#1|))) (-407 (-950 |#1|))))) (-307)) (T -1040))
+((-1966 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-950 *4)))) (-5 *1 (-1040 *4)))))
+(-10 -7 (-15 -1966 ((-407 (-418 (-950 |#1|))) (-407 (-950 |#1|)))))
+((-3802 (((-642 (-1173)) (-407 (-950 |#1|))) 17)) (-3615 (((-407 (-1169 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173)) 24)) (-3790 (((-407 (-950 |#1|)) (-407 (-1169 (-407 (-950 |#1|)))) (-1173)) 26)) (-4184 (((-3 (-1173) "failed") (-407 (-950 |#1|))) 20)) (-3215 (((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-294 (-407 (-950 |#1|))))) 32) (((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|)))) 33) (((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-1173)) (-642 (-407 (-950 |#1|)))) 28) (((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|))) 29)) (-2327 (((-407 (-950 |#1|)) |#1|) 11)))
+(((-1041 |#1|) (-10 -7 (-15 -3802 ((-642 (-1173)) (-407 (-950 |#1|)))) (-15 -4184 ((-3 (-1173) "failed") (-407 (-950 |#1|)))) (-15 -3615 ((-407 (-1169 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173))) (-15 -3790 ((-407 (-950 |#1|)) (-407 (-1169 (-407 (-950 |#1|)))) (-1173))) (-15 -3215 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)))) (-15 -3215 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-1173)) (-642 (-407 (-950 |#1|))))) (-15 -3215 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -3215 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -2327 ((-407 (-950 |#1|)) |#1|))) (-556)) (T -1041))
+((-2327 (*1 *2 *3) (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-1041 *3)) (-4 *3 (-556)))) (-3215 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-294 (-407 (-950 *4))))) (-5 *2 (-407 (-950 *4))) (-4 *4 (-556)) (-5 *1 (-1041 *4)))) (-3215 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-950 *4)))) (-5 *2 (-407 (-950 *4))) (-4 *4 (-556)) (-5 *1 (-1041 *4)))) (-3215 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-642 (-1173))) (-5 *4 (-642 (-407 (-950 *5)))) (-5 *2 (-407 (-950 *5))) (-4 *5 (-556)) (-5 *1 (-1041 *5)))) (-3215 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-950 *4))) (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-1041 *4)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1169 (-407 (-950 *5))))) (-5 *4 (-1173)) (-5 *2 (-407 (-950 *5))) (-5 *1 (-1041 *5)) (-4 *5 (-556)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-556)) (-5 *2 (-407 (-1169 (-407 (-950 *5))))) (-5 *1 (-1041 *5)) (-5 *3 (-407 (-950 *5))))) (-4184 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-5 *2 (-1173)) (-5 *1 (-1041 *4)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-5 *2 (-642 (-1173))) (-5 *1 (-1041 *4)))))
+(-10 -7 (-15 -3802 ((-642 (-1173)) (-407 (-950 |#1|)))) (-15 -4184 ((-3 (-1173) "failed") (-407 (-950 |#1|)))) (-15 -3615 ((-407 (-1169 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173))) (-15 -3790 ((-407 (-950 |#1|)) (-407 (-1169 (-407 (-950 |#1|)))) (-1173))) (-15 -3215 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)))) (-15 -3215 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-1173)) (-642 (-407 (-950 |#1|))))) (-15 -3215 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-294 (-407 (-950 |#1|))))) (-15 -3215 ((-407 (-950 |#1|)) (-407 (-950 |#1|)) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -2327 ((-407 (-950 |#1|)) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1976 (($) 18 T CONST)) (-3892 ((|#1| $) 23)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-1889 ((|#1| $) 22)) (-4007 ((|#1|) 20 T CONST)) (-2327 (((-860) $) 12)) (-1531 ((|#1| $) 21)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16)))
+(((-1042 |#1|) (-140) (-23)) (T -1042))
+((-3892 (*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))) (-1889 (*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))) (-4007 (*1 *2) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -3892 (|t#1| $)) (-15 -1889 (|t#1| $)) (-15 -1531 (|t#1| $)) (-15 -4007 (|t#1|) -2858)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4076 (($) 25 T CONST)) (-1976 (($) 18 T CONST)) (-3892 ((|#1| $) 23)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-1889 ((|#1| $) 22)) (-4007 ((|#1|) 20 T CONST)) (-2327 (((-860) $) 12)) (-1531 ((|#1| $) 21)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16)))
+(((-1043 |#1|) (-140) (-23)) (T -1043))
+((-4076 (*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-23)))))
+(-13 (-1042 |t#1|) (-10 -8 (-15 -4076 ($) -2858)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-860)) . T) ((-1042 |#1|) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-3126 (((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 (-778 |#1| (-862 |#2|)))))) (-642 (-778 |#1| (-862 |#2|)))) NIL)) (-4208 (((-642 $) (-642 (-778 |#1| (-862 |#2|)))) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-112)) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-112) (-112)) NIL)) (-3802 (((-642 (-862 |#2|)) $) NIL)) (-3317 (((-112) $) NIL)) (-4293 (((-112) $) NIL (|has| |#1| (-556)))) (-3831 (((-112) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) $) NIL)) (-3923 (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-4316 (((-642 (-2 (|:| |val| (-778 |#1| (-862 |#2|))) (|:| -3530 $))) (-778 |#1| (-862 |#2|)) $) NIL)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ (-862 |#2|)) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-1700 (($ (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 (-778 |#1| (-862 |#2|)) "failed") $ (-862 |#2|)) NIL)) (-1976 (($) NIL T CONST)) (-1496 (((-112) $) NIL (|has| |#1| (-556)))) (-4375 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2888 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2850 (((-112) $) NIL (|has| |#1| (-556)))) (-1975 (((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|))) $ (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) (-1 (-112) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)))) NIL)) (-2627 (((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|))) $) NIL (|has| |#1| (-556)))) (-3446 (((-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|))) $) NIL (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 (-778 |#1| (-862 |#2|)))) NIL)) (-3027 (($ (-642 (-778 |#1| (-862 |#2|)))) NIL)) (-2570 (((-3 $ "failed") $) NIL)) (-1493 (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-778 |#1| (-862 |#2|)) (-1097))))) (-2490 (($ (-778 |#1| (-862 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (($ (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-778 |#1| (-862 |#2|))) (|:| |den| |#1|)) (-778 |#1| (-862 |#2|)) $) NIL (|has| |#1| (-556)))) (-1597 (((-112) (-778 |#1| (-862 |#2|)) $ (-1 (-112) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)))) NIL)) (-1821 (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-1320 (((-778 |#1| (-862 |#2|)) (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) $ (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (((-778 |#1| (-862 |#2|)) (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) $ (-778 |#1| (-862 |#2|))) NIL (|has| $ (-6 -4410))) (((-778 |#1| (-862 |#2|)) (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $ (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) (-1 (-112) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)))) NIL)) (-1738 (((-2 (|:| -1639 (-642 (-778 |#1| (-862 |#2|)))) (|:| -2241 (-642 (-778 |#1| (-862 |#2|))))) $) NIL)) (-2561 (((-112) (-778 |#1| (-862 |#2|)) $) NIL)) (-3204 (((-112) (-778 |#1| (-862 |#2|)) $) NIL)) (-3936 (((-112) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) $) NIL)) (-2936 (((-642 (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2846 (((-112) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) $) NIL)) (-3290 (((-862 |#2|) $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-778 |#1| (-862 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-778 |#1| (-862 |#2|)) (-1097))))) (-2613 (($ (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) $) NIL)) (-3370 (((-642 (-862 |#2|)) $) NIL)) (-4120 (((-112) (-862 |#2|) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-4162 (((-3 (-778 |#1| (-862 |#2|)) (-642 $)) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-2899 (((-642 (-2 (|:| |val| (-778 |#1| (-862 |#2|))) (|:| -3530 $))) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-2514 (((-3 (-778 |#1| (-862 |#2|)) "failed") $) NIL)) (-2340 (((-642 $) (-778 |#1| (-862 |#2|)) $) NIL)) (-3902 (((-3 (-112) (-642 $)) (-778 |#1| (-862 |#2|)) $) NIL)) (-2685 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 $))) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) (-778 |#1| (-862 |#2|)) $) NIL)) (-2452 (((-642 $) (-778 |#1| (-862 |#2|)) $) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) $) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-642 $)) NIL) (((-642 $) (-778 |#1| (-862 |#2|)) (-642 $)) NIL)) (-4193 (($ (-778 |#1| (-862 |#2|)) $) NIL) (($ (-642 (-778 |#1| (-862 |#2|))) $) NIL)) (-2743 (((-642 (-778 |#1| (-862 |#2|))) $) NIL)) (-3350 (((-112) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) $) NIL)) (-1415 (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-3819 (((-112) $ $) NIL)) (-2520 (((-2 (|:| |num| (-778 |#1| (-862 |#2|))) (|:| |den| |#1|)) (-778 |#1| (-862 |#2|)) $) NIL (|has| |#1| (-556)))) (-2262 (((-112) (-778 |#1| (-862 |#2|)) $) NIL) (((-112) $) NIL)) (-1372 (((-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)) $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 (((-3 (-778 |#1| (-862 |#2|)) "failed") $) NIL)) (-3254 (((-3 (-778 |#1| (-862 |#2|)) "failed") (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL)) (-3724 (((-3 $ "failed") $ (-778 |#1| (-862 |#2|))) NIL)) (-3804 (($ $ (-778 |#1| (-862 |#2|))) NIL) (((-642 $) (-778 |#1| (-862 |#2|)) $) NIL) (((-642 $) (-778 |#1| (-862 |#2|)) (-642 $)) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) $) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-642 $)) NIL)) (-2121 (((-112) (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-778 |#1| (-862 |#2|))) (-642 (-778 |#1| (-862 |#2|)))) NIL (-12 (|has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|)))) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (($ $ (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|))) NIL (-12 (|has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|)))) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (($ $ (-294 (-778 |#1| (-862 |#2|)))) NIL (-12 (|has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|)))) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (($ $ (-642 (-294 (-778 |#1| (-862 |#2|))))) NIL (-12 (|has| (-778 |#1| (-862 |#2|)) (-309 (-778 |#1| (-862 |#2|)))) (|has| (-778 |#1| (-862 |#2|)) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-2775 (((-769) $) NIL)) (-4043 (((-769) (-778 |#1| (-862 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-778 |#1| (-862 |#2|)) (-1097)))) (((-769) (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-778 |#1| (-862 |#2|)) (-612 (-536))))) (-2337 (($ (-642 (-778 |#1| (-862 |#2|)))) NIL)) (-3153 (($ $ (-862 |#2|)) NIL)) (-3696 (($ $ (-862 |#2|)) NIL)) (-3114 (($ $) NIL)) (-1749 (($ $ (-862 |#2|)) NIL)) (-2327 (((-860) $) NIL) (((-642 (-778 |#1| (-862 |#2|))) $) NIL)) (-4195 (((-769) $) NIL (|has| (-862 |#2|) (-368)))) (-1648 (((-112) $ $) NIL)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 (-778 |#1| (-862 |#2|))))) "failed") (-642 (-778 |#1| (-862 |#2|))) (-1 (-112) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 (-778 |#1| (-862 |#2|))))) "failed") (-642 (-778 |#1| (-862 |#2|))) (-1 (-112) (-778 |#1| (-862 |#2|))) (-1 (-112) (-778 |#1| (-862 |#2|)) (-778 |#1| (-862 |#2|)))) NIL)) (-3497 (((-112) $ (-1 (-112) (-778 |#1| (-862 |#2|)) (-642 (-778 |#1| (-862 |#2|))))) NIL)) (-4325 (((-642 $) (-778 |#1| (-862 |#2|)) $) NIL) (((-642 $) (-778 |#1| (-862 |#2|)) (-642 $)) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) $) NIL) (((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-642 $)) NIL)) (-2710 (((-112) (-1 (-112) (-778 |#1| (-862 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2240 (((-642 (-862 |#2|)) $) NIL)) (-3503 (((-112) (-778 |#1| (-862 |#2|)) $) NIL)) (-1362 (((-112) (-862 |#2|) $) NIL)) (-2872 (((-112) $ $) NIL)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1044 |#1| |#2|) (-13 (-1068 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|))) (-10 -8 (-15 -4208 ((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-112) (-112))))) (-452) (-642 (-1173))) (T -1044))
+((-4208 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-1044 *5 *6)))))
+(-13 (-1068 |#1| (-531 (-862 |#2|)) (-862 |#2|) (-778 |#1| (-862 |#2|))) (-10 -8 (-15 -4208 ((-642 $) (-642 (-778 |#1| (-862 |#2|))) (-112) (-112)))))
+((-2503 (((-1 (-564)) (-1091 (-564))) 33)) (-3031 (((-564) (-564) (-564) (-564) (-564)) 30)) (-1942 (((-1 (-564)) |RationalNumber|) NIL)) (-1632 (((-1 (-564)) |RationalNumber|) NIL)) (-3310 (((-1 (-564)) (-564) |RationalNumber|) NIL)))
+(((-1045) (-10 -7 (-15 -2503 ((-1 (-564)) (-1091 (-564)))) (-15 -3310 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -1942 ((-1 (-564)) |RationalNumber|)) (-15 -1632 ((-1 (-564)) |RationalNumber|)) (-15 -3031 ((-564) (-564) (-564) (-564) (-564))))) (T -1045))
+((-3031 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1045)))) (-1632 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045)))) (-1942 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045)) (-5 *3 (-564)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1091 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1045)))))
+(-10 -7 (-15 -2503 ((-1 (-564)) (-1091 (-564)))) (-15 -3310 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -1942 ((-1 (-564)) |RationalNumber|)) (-15 -1632 ((-1 (-564)) |RationalNumber|)) (-15 -3031 ((-564) (-564) (-564) (-564) (-564))))
+((-2327 (((-860) $) NIL) (($ (-564)) 10)))
+(((-1046 |#1|) (-10 -8 (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|))) (-1047)) (T -1046))
+NIL
+(-10 -8 (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-1047) (-140)) (T -1047))
+((-2756 (*1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-769)))))
+(-13 (-1055) (-724) (-646 $) (-614 (-564)) (-10 -7 (-15 -2756 ((-769)) -2858) (-6 -4407)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-724) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-3898 (((-407 (-950 |#2|)) (-642 |#2|) (-642 |#2|) (-769) (-769)) 60)))
+(((-1048 |#1| |#2|) (-10 -7 (-15 -3898 ((-407 (-950 |#2|)) (-642 |#2|) (-642 |#2|) (-769) (-769)))) (-1173) (-363)) (T -1048))
+((-3898 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-769)) (-4 *6 (-363)) (-5 *2 (-407 (-950 *6))) (-5 *1 (-1048 *5 *6)) (-14 *5 (-1173)))))
+(-10 -7 (-15 -3898 ((-407 (-950 |#2|)) (-642 |#2|) (-642 |#2|) (-769) (-769))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 15)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 16 T CONST)) (-2872 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
+(((-1049 |#1|) (-140) (-1055)) (T -1049))
+((-2312 (*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1055)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1055)))))
+(-13 (-1097) (-10 -8 (-15 (-2312) ($) -2858) (-15 -2952 ((-112) $)) (-15 * ($ $ |t#1|))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-4129 (((-112) $) 40)) (-3873 (((-112) $) 17)) (-2567 (((-769) $) 13)) (-2579 (((-769) $) 14)) (-2877 (((-112) $) 30)) (-1332 (((-112) $) 42)))
+(((-1050 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2579 ((-769) |#1|)) (-15 -2567 ((-769) |#1|)) (-15 -1332 ((-112) |#1|)) (-15 -4129 ((-112) |#1|)) (-15 -2877 ((-112) |#1|)) (-15 -3873 ((-112) |#1|))) (-1051 |#2| |#3| |#4| |#5| |#6|) (-769) (-769) (-1047) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1050))
+NIL
+(-10 -8 (-15 -2579 ((-769) |#1|)) (-15 -2567 ((-769) |#1|)) (-15 -1332 ((-112) |#1|)) (-15 -4129 ((-112) |#1|)) (-15 -2877 ((-112) |#1|)) (-15 -3873 ((-112) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4129 (((-112) $) 56)) (-1532 (((-3 $ "failed") $ $) 20)) (-3873 (((-112) $) 58)) (-3697 (((-112) $ (-769)) 66)) (-1976 (($) 18 T CONST)) (-4239 (($ $) 39 (|has| |#3| (-307)))) (-2600 ((|#4| $ (-564)) 44)) (-2414 (((-769) $) 38 (|has| |#3| (-556)))) (-2551 ((|#3| $ (-564) (-564)) 46)) (-2936 (((-642 |#3|) $) 73 (|has| $ (-6 -4410)))) (-2054 (((-769) $) 37 (|has| |#3| (-556)))) (-4286 (((-642 |#5|) $) 36 (|has| |#3| (-556)))) (-2567 (((-769) $) 50)) (-2579 (((-769) $) 49)) (-3462 (((-112) $ (-769)) 65)) (-3491 (((-564) $) 54)) (-3865 (((-564) $) 52)) (-3234 (((-642 |#3|) $) 74 (|has| $ (-6 -4410)))) (-2776 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1097)) (|has| $ (-6 -4410))))) (-3054 (((-564) $) 53)) (-2977 (((-564) $) 51)) (-2244 (($ (-642 (-642 |#3|))) 59)) (-2613 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1624 (((-642 (-642 |#3|)) $) 48)) (-3576 (((-112) $ (-769)) 64)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2896 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-556)))) (-2121 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#3|) (-642 |#3|)) 80 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-294 |#3|)) 78 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-642 (-294 |#3|))) 77 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))) (-4245 (((-112) $ $) 60)) (-3719 (((-112) $) 63)) (-2972 (($) 62)) (-4368 ((|#3| $ (-564) (-564)) 47) ((|#3| $ (-564) (-564) |#3|) 45)) (-2877 (((-112) $) 57)) (-4043 (((-769) |#3| $) 75 (-12 (|has| |#3| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4410)))) (-3901 (($ $) 61)) (-3022 ((|#5| $ (-564)) 43)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2710 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4410)))) (-1332 (((-112) $) 55)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#3|) 40 (|has| |#3| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2127 (((-769) $) 67 (|has| $ (-6 -4410)))))
+(((-1051 |#1| |#2| |#3| |#4| |#5|) (-140) (-769) (-769) (-1047) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1051))
+((-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2244 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *5))) (-4 *5 (-1047)) (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1332 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-769)))) (-2579 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-769)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-642 (-642 *5))))) (-4368 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1047)))) (-2551 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1047)))) (-4368 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7)) (-4 *2 (-1047)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-2600 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *6 *2 *7)) (-4 *6 (-1047)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *6 *7 *2)) (-4 *6 (-1047)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-4358 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2896 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1051 *3 *4 *2 *5 *6)) (-4 *2 (-1047)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) (-2998 (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *3 *4 *2 *5 *6)) (-4 *2 (-1047)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-4239 (*1 *1 *1) (-12 (-4 *1 (-1051 *2 *3 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-769)))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-769)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-642 *7)))))
+(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4410) (IF (|has| |t#3| (-172)) (-6 (-715 |t#3|)) |%noBranch|) (-15 -2244 ($ (-642 (-642 |t#3|)))) (-15 -3873 ((-112) $)) (-15 -2877 ((-112) $)) (-15 -4129 ((-112) $)) (-15 -1332 ((-112) $)) (-15 -3491 ((-564) $)) (-15 -3054 ((-564) $)) (-15 -3865 ((-564) $)) (-15 -2977 ((-564) $)) (-15 -2567 ((-769) $)) (-15 -2579 ((-769) $)) (-15 -1624 ((-642 (-642 |t#3|)) $)) (-15 -4368 (|t#3| $ (-564) (-564))) (-15 -2551 (|t#3| $ (-564) (-564))) (-15 -4368 (|t#3| $ (-564) (-564) |t#3|)) (-15 -2600 (|t#4| $ (-564))) (-15 -3022 (|t#5| $ (-564))) (-15 -4358 ($ (-1 |t#3| |t#3|) $)) (-15 -4358 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-556)) (-15 -2896 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -2998 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -4239 ($ $)) |%noBranch|) (IF (|has| |t#3| (-556)) (PROGN (-15 -2414 ((-769) $)) (-15 -2054 ((-769) $)) (-15 -4286 ((-642 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-611 (-860)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))) ((-644 (-564)) . T) ((-644 |#3|) . T) ((-646 |#3|) . T) ((-638 |#3|) |has| |#3| (-172)) ((-715 |#3|) |has| |#3| (-172)) ((-1049 |#3|) . T) ((-1054 |#3|) . T) ((-1097) . T) ((-1212) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4129 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-3873 (((-112) $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-1976 (($) NIL T CONST)) (-4239 (($ $) 47 (|has| |#3| (-307)))) (-2600 (((-240 |#2| |#3|) $ (-564)) 36)) (-3807 (($ (-687 |#3|)) 45)) (-2414 (((-769) $) 49 (|has| |#3| (-556)))) (-2551 ((|#3| $ (-564) (-564)) NIL)) (-2936 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-2054 (((-769) $) 51 (|has| |#3| (-556)))) (-4286 (((-642 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-556)))) (-2567 (((-769) $) NIL)) (-2579 (((-769) $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-3491 (((-564) $) NIL)) (-3865 (((-564) $) NIL)) (-3234 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3054 (((-564) $) NIL)) (-2977 (((-564) $) NIL)) (-2244 (($ (-642 (-642 |#3|))) 31)) (-2613 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1624 (((-642 (-642 |#3|)) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2896 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-556)))) (-2121 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#3|) (-642 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-642 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#3| $ (-564) (-564)) NIL) ((|#3| $ (-564) (-564) |#3|) NIL)) (-3474 (((-134)) 59 (|has| |#3| (-363)))) (-2877 (((-112) $) NIL)) (-4043 (((-769) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097)))) (((-769) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) 65 (|has| |#3| (-612 (-536))))) (-3022 (((-240 |#1| |#3|) $ (-564)) 40)) (-2327 (((-860) $) 19) (((-687 |#3|) $) 42)) (-1648 (((-112) $ $) NIL)) (-2710 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-1332 (((-112) $) NIL)) (-2312 (($) 16 T CONST)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1052 |#1| |#2| |#3|) (-13 (-1051 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-687 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1269 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -3807 ($ (-687 |#3|))))) (-769) (-769) (-1047)) (T -1052))
+((-3807 (*1 *1 *2) (-12 (-5 *2 (-687 *5)) (-4 *5 (-1047)) (-5 *1 (-1052 *3 *4 *5)) (-14 *3 (-769)) (-14 *4 (-769)))))
+(-13 (-1051 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-687 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1269 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -3807 ($ (-687 |#3|)))))
+((-1320 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4358 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
+(((-1053 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4358 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1320 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-769) (-769) (-1047) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1051 |#1| |#2| |#3| |#4| |#5|) (-1047) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1051 |#1| |#2| |#7| |#8| |#9|)) (T -1053))
+((-1320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1047)) (-4 *2 (-1047)) (-14 *5 (-769)) (-14 *6 (-769)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1053 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1051 *5 *6 *7 *8 *9)) (-4 *12 (-1051 *5 *6 *2 *10 *11)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1047)) (-4 *10 (-1047)) (-14 *5 (-769)) (-14 *6 (-769)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1051 *5 *6 *10 *11 *12)) (-5 *1 (-1053 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1051 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))))
+(-10 -7 (-15 -4358 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1320 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ |#1|) 27)))
+(((-1054 |#1|) (-140) (-1055)) (T -1054))
+NIL
+(-13 (-21) (-1049 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-1049 |#1|) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-1055) (-140)) (T -1055))
+NIL
+(-13 (-21) (-1109))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-1109) . T) ((-1097) . T))
+((-1726 (($ $) 17)) (-1971 (($ $) 25)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 54)) (-2218 (($ $) 27)) (-2903 (($ $) 12)) (-2759 (($ $) 43)) (-1314 (((-379) $) NIL) (((-225) $) NIL) (((-890 (-379)) $) 36)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 31) (($ (-564)) NIL) (($ (-407 (-564))) 31)) (-2756 (((-769)) 9)) (-3264 (($ $) 44)))
+(((-1056 |#1|) (-10 -8 (-15 -1971 (|#1| |#1|)) (-15 -1726 (|#1| |#1|)) (-15 -2903 (|#1| |#1|)) (-15 -2759 (|#1| |#1|)) (-15 -3264 (|#1| |#1|)) (-15 -2218 (|#1| |#1|)) (-15 -2453 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 (|#1| (-564))) (-15 -1314 ((-225) |#1|)) (-15 -1314 ((-379) |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 (|#1| |#1|)) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|))) (-1057)) (T -1056))
+((-2756 (*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1056 *3)) (-4 *3 (-1057)))))
+(-10 -8 (-15 -1971 (|#1| |#1|)) (-15 -1726 (|#1| |#1|)) (-15 -2903 (|#1| |#1|)) (-15 -2759 (|#1| |#1|)) (-15 -3264 (|#1| |#1|)) (-15 -2218 (|#1| |#1|)) (-15 -2453 ((-887 (-379) |#1|) |#1| (-890 (-379)) (-887 (-379) |#1|))) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 (|#1| (-564))) (-15 -1314 ((-225) |#1|)) (-15 -1314 ((-379) |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 (|#1| |#1|)) (-15 -2756 ((-769))) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3703 (((-564) $) 97)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1726 (($ $) 95)) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 81)) (-1978 (((-418 $) $) 80)) (-3655 (($ $) 105)) (-4010 (((-112) $ $) 65)) (-2959 (((-564) $) 122)) (-1976 (($) 18 T CONST)) (-1971 (($ $) 94)) (-4278 (((-3 (-564) "failed") $) 110) (((-3 (-407 (-564)) "failed") $) 107)) (-3027 (((-564) $) 111) (((-407 (-564)) $) 108)) (-2845 (($ $ $) 61)) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-1469 (((-112) $) 79)) (-2538 (((-112) $) 120)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 101)) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 104)) (-2218 (($ $) 100)) (-3333 (((-112) $) 121)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2755 (($ $ $) 119)) (-1520 (($ $ $) 118)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 78)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-2903 (($ $) 96)) (-2759 (($ $) 98)) (-3643 (((-418 $) $) 82)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2048 (((-769) $) 64)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-1314 (((-379) $) 113) (((-225) $) 112) (((-890 (-379)) $) 102)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ (-564)) 109) (($ (-407 (-564))) 106)) (-2756 (((-769)) 32 T CONST)) (-3264 (($ $) 99)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-1381 (($ $) 123)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2934 (((-112) $ $) 116)) (-2908 (((-112) $ $) 115)) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 117)) (-2897 (((-112) $ $) 114)) (-2998 (($ $ $) 73)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77) (($ $ (-407 (-564))) 103)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75)))
+(((-1057) (-140)) (T -1057))
+((-1381 (*1 *1 *1) (-4 *1 (-1057))) (-2218 (*1 *1 *1) (-4 *1 (-1057))) (-3264 (*1 *1 *1) (-4 *1 (-1057))) (-2759 (*1 *1 *1) (-4 *1 (-1057))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-564)))) (-2903 (*1 *1 *1) (-4 *1 (-1057))) (-1726 (*1 *1 *1) (-4 *1 (-1057))) (-1971 (*1 *1 *1) (-4 *1 (-1057))))
+(-13 (-363) (-846) (-1020) (-1036 (-564)) (-1036 (-407 (-564))) (-1000) (-612 (-890 (-379))) (-884 (-379)) (-147) (-10 -8 (-15 -2218 ($ $)) (-15 -3264 ($ $)) (-15 -2759 ($ $)) (-15 -3703 ((-564) $)) (-15 -2903 ($ $)) (-15 -1726 ($ $)) (-15 -1971 ($ $)) (-15 -1381 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-890 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 $) . T) ((-724) . T) ((-789) . T) ((-790) . T) ((-792) . T) ((-793) . T) ((-846) . T) ((-848) . T) ((-884 (-379)) . T) ((-918) . T) ((-1000) . T) ((-1020) . T) ((-1036 (-407 (-564))) . T) ((-1036 (-564)) . T) ((-1049 #0#) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) |#2| $) 26)) (-2521 ((|#1| $) 10)) (-2959 (((-564) |#2| $) 115)) (-2525 (((-3 $ "failed") |#2| (-919)) 75)) (-4336 ((|#1| $) 31)) (-3910 ((|#1| |#2| $ |#1|) 40)) (-1296 (($ $) 28)) (-3104 (((-3 |#2| "failed") |#2| $) 111)) (-2538 (((-112) |#2| $) NIL)) (-3333 (((-112) |#2| $) NIL)) (-1434 (((-112) |#2| $) 27)) (-1395 ((|#1| $) 116)) (-4326 ((|#1| $) 30)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3280 ((|#2| $) 103)) (-2327 (((-860) $) 94)) (-1648 (((-112) $ $) NIL)) (-3601 ((|#1| |#2| $ |#1|) 41)) (-4160 (((-642 $) |#2|) 77)) (-2872 (((-112) $ $) 98)))
+(((-1058 |#1| |#2|) (-13 (-1065 |#1| |#2|) (-10 -8 (-15 -4326 (|#1| $)) (-15 -4336 (|#1| $)) (-15 -2521 (|#1| $)) (-15 -1395 (|#1| $)) (-15 -1296 ($ $)) (-15 -1434 ((-112) |#2| $)) (-15 -3910 (|#1| |#2| $ |#1|)))) (-13 (-846) (-363)) (-1238 |#1|)) (T -1058))
+((-3910 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-4326 (*1 *2 *1) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-4336 (*1 *2 *1) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-2521 (*1 *2 *1) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-1395 (*1 *2 *1) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-1296 (*1 *1 *1) (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3)) (-4 *3 (-1238 *2)))) (-1434 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-846) (-363))) (-5 *2 (-112)) (-5 *1 (-1058 *4 *3)) (-4 *3 (-1238 *4)))))
+(-13 (-1065 |#1| |#2|) (-10 -8 (-15 -4326 (|#1| $)) (-15 -4336 (|#1| $)) (-15 -2521 (|#1| $)) (-15 -1395 (|#1| $)) (-15 -1296 ($ $)) (-15 -1434 ((-112) |#2| $)) (-15 -3910 (|#1| |#2| $ |#1|))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2968 (($ $ $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1337 (($ $ $ $) NIL)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2959 (((-564) $) NIL)) (-2317 (($ $ $) NIL)) (-1976 (($) NIL T CONST)) (-3063 (($ (-1173)) 10) (($ (-564)) 7)) (-4278 (((-3 (-564) "failed") $) NIL)) (-3027 (((-564) $) NIL)) (-2845 (($ $ $) NIL)) (-4315 (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-687 (-564)) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3838 (((-3 (-407 (-564)) "failed") $) NIL)) (-2881 (((-112) $) NIL)) (-4034 (((-407 (-564)) $) NIL)) (-2433 (($) NIL) (($ $) NIL)) (-2859 (($ $ $) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-3398 (($ $ $ $) NIL)) (-3903 (($ $ $) NIL)) (-2538 (((-112) $) NIL)) (-1588 (($ $ $) NIL)) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL)) (-3953 (((-112) $) NIL)) (-3076 (((-112) $) NIL)) (-3157 (((-3 $ "failed") $) NIL)) (-3333 (((-112) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2172 (($ $ $ $) NIL)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-2819 (($ $) NIL)) (-2480 (($ $) NIL)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-2182 (($ $ $) NIL)) (-3366 (($) NIL T CONST)) (-2367 (($ $) NIL)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) NIL) (($ (-642 $)) NIL)) (-4303 (($ $) NIL)) (-3643 (((-418 $) $) NIL)) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2519 (((-112) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-3175 (($ $ (-769)) NIL) (($ $) NIL)) (-2142 (($ $) NIL)) (-3901 (($ $) NIL)) (-1314 (((-564) $) 16) (((-536) $) NIL) (((-890 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1173)) 9)) (-2327 (((-860) $) 23) (($ (-564)) 6) (($ $) NIL) (($ (-564)) 6)) (-2756 (((-769)) NIL T CONST)) (-1866 (((-112) $ $) NIL)) (-3310 (($ $ $) NIL)) (-1648 (((-112) $ $) NIL)) (-2547 (($) NIL)) (-2103 (((-112) $ $) NIL)) (-3618 (($ $ $ $) NIL)) (-1381 (($ $) NIL)) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-769)) NIL) (($ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-2987 (($ $) 22) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
+(((-1059) (-13 (-545) (-616 (-1173)) (-10 -8 (-6 -4397) (-6 -4402) (-6 -4398) (-15 -3063 ($ (-1173))) (-15 -3063 ($ (-564)))))) (T -1059))
+((-3063 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1059)))) (-3063 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1059)))))
+(-13 (-545) (-616 (-1173)) (-10 -8 (-6 -4397) (-6 -4402) (-6 -4398) (-15 -3063 ($ (-1173))) (-15 -3063 ($ (-564)))))
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL)) (-1765 (((-1267) $ (-1173) (-1173)) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-1374 (($) 9)) (-3877 (((-52) $ (-1173) (-52)) NIL)) (-3930 (($ $) 32)) (-4205 (($ $) 30)) (-4366 (($ $) 29)) (-2487 (($ $) 31)) (-1923 (($ $) 35)) (-4359 (($ $) 36)) (-1364 (($ $) 28)) (-3788 (($ $) 33)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) 27 (|has| $ (-6 -4410)))) (-2248 (((-3 (-52) "failed") (-1173) $) 43)) (-1976 (($) NIL T CONST)) (-4284 (($) 7)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-2265 (($ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) 53 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-3 (-52) "failed") (-1173) $) NIL)) (-2490 (($ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (((-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410)))) (-3986 (((-3 (-1155) "failed") $ (-1155) (-564)) 74)) (-2625 (((-52) $ (-1173) (-52)) NIL (|has| $ (-6 -4411)))) (-2551 (((-52) $ (-1173)) NIL)) (-2936 (((-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-1173) $) NIL (|has| (-1173) (-848)))) (-3234 (((-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) 38 (|has| $ (-6 -4410))) (((-642 (-52)) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-3421 (((-1173) $) NIL (|has| (-1173) (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-3393 (((-642 (-1173)) $) NIL)) (-2835 (((-112) (-1173) $) NIL)) (-2730 (((-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL)) (-3183 (($ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) 46)) (-3997 (((-642 (-1173)) $) NIL)) (-4145 (((-112) (-1173) $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-1379 (((-379) $ (-1173)) 52)) (-1730 (((-642 (-1155)) $ (-1155)) 76)) (-2557 (((-52) $) NIL (|has| (-1173) (-848)))) (-3254 (((-3 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) "failed") (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL)) (-2696 (($ $ (-52)) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))))) NIL (-12 (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (($ $ (-294 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL (-12 (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (($ $ (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) NIL (-12 (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (($ $ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL (-12 (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-309 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (($ $ (-642 (-52)) (-642 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097)))) (($ $ (-642 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097))))) (-2724 (((-642 (-52)) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 (((-52) $ (-1173)) NIL) (((-52) $ (-1173) (-52)) NIL)) (-2593 (($) NIL) (($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL)) (-2024 (($ $ (-1173)) 54)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097)))) (((-769) (-52) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-52) (-1097)))) (((-769) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) 40)) (-3651 (($ $ $) 41)) (-2327 (((-860) $) NIL (-2706 (|has| (-52) (-611 (-860))) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-611 (-860)))))) (-3098 (($ $ (-1173) (-379)) 50)) (-3090 (($ $ (-1173) (-379)) 51)) (-1648 (((-112) $ $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))))) NIL)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 (-1173)) (|:| -3778 (-52)))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (-2706 (|has| (-52) (-1097)) (|has| (-2 (|:| -1907 (-1173)) (|:| -3778 (-52))) (-1097))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1060) (-13 (-1188 (-1173) (-52)) (-10 -8 (-15 -3651 ($ $ $)) (-15 -4284 ($)) (-15 -1364 ($ $)) (-15 -4366 ($ $)) (-15 -4205 ($ $)) (-15 -2487 ($ $)) (-15 -3788 ($ $)) (-15 -3930 ($ $)) (-15 -1923 ($ $)) (-15 -4359 ($ $)) (-15 -3098 ($ $ (-1173) (-379))) (-15 -3090 ($ $ (-1173) (-379))) (-15 -1379 ((-379) $ (-1173))) (-15 -1730 ((-642 (-1155)) $ (-1155))) (-15 -2024 ($ $ (-1173))) (-15 -1374 ($)) (-15 -3986 ((-3 (-1155) "failed") $ (-1155) (-564))) (-6 -4410)))) (T -1060))
+((-3651 (*1 *1 *1 *1) (-5 *1 (-1060))) (-4284 (*1 *1) (-5 *1 (-1060))) (-1364 (*1 *1 *1) (-5 *1 (-1060))) (-4366 (*1 *1 *1) (-5 *1 (-1060))) (-4205 (*1 *1 *1) (-5 *1 (-1060))) (-2487 (*1 *1 *1) (-5 *1 (-1060))) (-3788 (*1 *1 *1) (-5 *1 (-1060))) (-3930 (*1 *1 *1) (-5 *1 (-1060))) (-1923 (*1 *1 *1) (-5 *1 (-1060))) (-4359 (*1 *1 *1) (-5 *1 (-1060))) (-3098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-379)) (-5 *1 (-1060)))) (-3090 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-379)) (-5 *1 (-1060)))) (-1379 (*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-379)) (-5 *1 (-1060)))) (-1730 (*1 *2 *1 *3) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1060)) (-5 *3 (-1155)))) (-2024 (*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1060)))) (-1374 (*1 *1) (-5 *1 (-1060))) (-3986 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-1060)))))
+(-13 (-1188 (-1173) (-52)) (-10 -8 (-15 -3651 ($ $ $)) (-15 -4284 ($)) (-15 -1364 ($ $)) (-15 -4366 ($ $)) (-15 -4205 ($ $)) (-15 -2487 ($ $)) (-15 -3788 ($ $)) (-15 -3930 ($ $)) (-15 -1923 ($ $)) (-15 -4359 ($ $)) (-15 -3098 ($ $ (-1173) (-379))) (-15 -3090 ($ $ (-1173) (-379))) (-15 -1379 ((-379) $ (-1173))) (-15 -1730 ((-642 (-1155)) $ (-1155))) (-15 -2024 ($ $ (-1173))) (-15 -1374 ($)) (-15 -3986 ((-3 (-1155) "failed") $ (-1155) (-564))) (-6 -4410)))
+((-1416 (($ $) 46)) (-4306 (((-112) $ $) 80)) (-4278 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-950 (-407 (-564)))) 249) (((-3 $ "failed") (-950 (-564))) 248) (((-3 $ "failed") (-950 |#2|)) 251)) (-3027 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) NIL) (($ (-950 (-407 (-564)))) 237) (($ (-950 (-564))) 233) (($ (-950 |#2|)) 253)) (-1718 (($ $) NIL) (($ $ |#4|) 44)) (-1597 (((-112) $ $) 127) (((-112) $ (-642 $)) 131)) (-3060 (((-112) $) 60)) (-3437 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 121)) (-3103 (($ $) 156)) (-2359 (($ $) 152)) (-4099 (($ $) 151)) (-3260 (($ $ $) 85) (($ $ $ |#4|) 90)) (-2664 (($ $ $) 88) (($ $ $ |#4|) 92)) (-2846 (((-112) $ $) 139) (((-112) $ (-642 $)) 140)) (-3290 ((|#4| $) 32)) (-2044 (($ $ $) 124)) (-2606 (((-112) $) 59)) (-3251 (((-769) $) 35)) (-1928 (($ $) 170)) (-3419 (($ $) 167)) (-2492 (((-642 $) $) 72)) (-4095 (($ $) 62)) (-2488 (($ $) 163)) (-2124 (((-642 $) $) 69)) (-1501 (($ $) 64)) (-3962 ((|#2| $) NIL) (($ $ |#4|) 39)) (-4130 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3752 (-769))) $ $) 126)) (-3431 (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $) 122) (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $ |#4|) 123)) (-3403 (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -3045 $)) $ $) 117) (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -3045 $)) $ $ |#4|) 119)) (-1376 (($ $ $) 95) (($ $ $ |#4|) 104)) (-3219 (($ $ $) 96) (($ $ $ |#4|) 105)) (-2889 (((-642 $) $) 54)) (-3350 (((-112) $ $) 136) (((-112) $ (-642 $)) 137)) (-1415 (($ $ $) 112)) (-3366 (($ $) 37)) (-3819 (((-112) $ $) 78)) (-2262 (((-112) $ $) 132) (((-112) $ (-642 $)) 134)) (-1372 (($ $ $) 110)) (-3345 (($ $) 41)) (-2080 ((|#2| |#2| $) 160) (($ (-642 $)) NIL) (($ $ $) NIL)) (-3099 (($ $ |#2|) NIL) (($ $ $) 149)) (-1557 (($ $ |#2|) 144) (($ $ $) 147)) (-3354 (($ $) 49)) (-3136 (($ $) 55)) (-1314 (((-890 (-379)) $) NIL) (((-890 (-564)) $) NIL) (((-536) $) NIL) (($ (-950 (-407 (-564)))) 239) (($ (-950 (-564))) 235) (($ (-950 |#2|)) 250) (((-1155) $) 278) (((-950 |#2|) $) 180)) (-2327 (((-860) $) 29) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-950 |#2|) $) 181) (($ (-407 (-564))) NIL) (($ $) NIL)) (-2635 (((-3 (-112) "failed") $ $) 77)))
+(((-1061 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2327 (|#1| |#1|)) (-15 -2080 (|#1| |#1| |#1|)) (-15 -2080 (|#1| (-642 |#1|))) (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 ((-950 |#2|) |#1|)) (-15 -1314 ((-950 |#2|) |#1|)) (-15 -1314 ((-1155) |#1|)) (-15 -1928 (|#1| |#1|)) (-15 -3419 (|#1| |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -2080 (|#2| |#2| |#1|)) (-15 -3099 (|#1| |#1| |#1|)) (-15 -1557 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#2|)) (-15 -1557 (|#1| |#1| |#2|)) (-15 -2359 (|#1| |#1|)) (-15 -4099 (|#1| |#1|)) (-15 -1314 (|#1| (-950 |#2|))) (-15 -3027 (|#1| (-950 |#2|))) (-15 -4278 ((-3 |#1| "failed") (-950 |#2|))) (-15 -1314 (|#1| (-950 (-564)))) (-15 -3027 (|#1| (-950 (-564)))) (-15 -4278 ((-3 |#1| "failed") (-950 (-564)))) (-15 -1314 (|#1| (-950 (-407 (-564))))) (-15 -3027 (|#1| (-950 (-407 (-564))))) (-15 -4278 ((-3 |#1| "failed") (-950 (-407 (-564))))) (-15 -1415 (|#1| |#1| |#1|)) (-15 -1372 (|#1| |#1| |#1|)) (-15 -4130 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3752 (-769))) |#1| |#1|)) (-15 -2044 (|#1| |#1| |#1|)) (-15 -3437 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -3431 ((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1| |#4|)) (-15 -3431 ((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -3403 ((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -3045 |#1|)) |#1| |#1| |#4|)) (-15 -3403 ((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -3219 (|#1| |#1| |#1| |#4|)) (-15 -1376 (|#1| |#1| |#1| |#4|)) (-15 -3219 (|#1| |#1| |#1|)) (-15 -1376 (|#1| |#1| |#1|)) (-15 -2664 (|#1| |#1| |#1| |#4|)) (-15 -3260 (|#1| |#1| |#1| |#4|)) (-15 -2664 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -2846 ((-112) |#1| (-642 |#1|))) (-15 -2846 ((-112) |#1| |#1|)) (-15 -3350 ((-112) |#1| (-642 |#1|))) (-15 -3350 ((-112) |#1| |#1|)) (-15 -2262 ((-112) |#1| (-642 |#1|))) (-15 -2262 ((-112) |#1| |#1|)) (-15 -1597 ((-112) |#1| (-642 |#1|))) (-15 -1597 ((-112) |#1| |#1|)) (-15 -4306 ((-112) |#1| |#1|)) (-15 -3819 ((-112) |#1| |#1|)) (-15 -2635 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2492 ((-642 |#1|) |#1|)) (-15 -2124 ((-642 |#1|) |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -4095 (|#1| |#1|)) (-15 -3060 ((-112) |#1|)) (-15 -2606 ((-112) |#1|)) (-15 -1718 (|#1| |#1| |#4|)) (-15 -3962 (|#1| |#1| |#4|)) (-15 -3136 (|#1| |#1|)) (-15 -2889 ((-642 |#1|) |#1|)) (-15 -3354 (|#1| |#1|)) (-15 -1416 (|#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -3366 (|#1| |#1|)) (-15 -3251 ((-769) |#1|)) (-15 -3290 (|#4| |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -2327 (|#1| |#4|)) (-15 -4278 ((-3 |#4| "failed") |#1|)) (-15 -3027 (|#4| |#1|)) (-15 -3962 (|#2| |#1|)) (-15 -1718 (|#1| |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|))) (-1062 |#2| |#3| |#4|) (-1047) (-791) (-848)) (T -1061))
+NIL
+(-10 -8 (-15 -2327 (|#1| |#1|)) (-15 -2080 (|#1| |#1| |#1|)) (-15 -2080 (|#1| (-642 |#1|))) (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 ((-950 |#2|) |#1|)) (-15 -1314 ((-950 |#2|) |#1|)) (-15 -1314 ((-1155) |#1|)) (-15 -1928 (|#1| |#1|)) (-15 -3419 (|#1| |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -2080 (|#2| |#2| |#1|)) (-15 -3099 (|#1| |#1| |#1|)) (-15 -1557 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#2|)) (-15 -1557 (|#1| |#1| |#2|)) (-15 -2359 (|#1| |#1|)) (-15 -4099 (|#1| |#1|)) (-15 -1314 (|#1| (-950 |#2|))) (-15 -3027 (|#1| (-950 |#2|))) (-15 -4278 ((-3 |#1| "failed") (-950 |#2|))) (-15 -1314 (|#1| (-950 (-564)))) (-15 -3027 (|#1| (-950 (-564)))) (-15 -4278 ((-3 |#1| "failed") (-950 (-564)))) (-15 -1314 (|#1| (-950 (-407 (-564))))) (-15 -3027 (|#1| (-950 (-407 (-564))))) (-15 -4278 ((-3 |#1| "failed") (-950 (-407 (-564))))) (-15 -1415 (|#1| |#1| |#1|)) (-15 -1372 (|#1| |#1| |#1|)) (-15 -4130 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3752 (-769))) |#1| |#1|)) (-15 -2044 (|#1| |#1| |#1|)) (-15 -3437 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -3431 ((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1| |#4|)) (-15 -3431 ((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -3403 ((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -3045 |#1|)) |#1| |#1| |#4|)) (-15 -3403 ((-2 (|:| -4378 |#1|) (|:| |gap| (-769)) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -3219 (|#1| |#1| |#1| |#4|)) (-15 -1376 (|#1| |#1| |#1| |#4|)) (-15 -3219 (|#1| |#1| |#1|)) (-15 -1376 (|#1| |#1| |#1|)) (-15 -2664 (|#1| |#1| |#1| |#4|)) (-15 -3260 (|#1| |#1| |#1| |#4|)) (-15 -2664 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -2846 ((-112) |#1| (-642 |#1|))) (-15 -2846 ((-112) |#1| |#1|)) (-15 -3350 ((-112) |#1| (-642 |#1|))) (-15 -3350 ((-112) |#1| |#1|)) (-15 -2262 ((-112) |#1| (-642 |#1|))) (-15 -2262 ((-112) |#1| |#1|)) (-15 -1597 ((-112) |#1| (-642 |#1|))) (-15 -1597 ((-112) |#1| |#1|)) (-15 -4306 ((-112) |#1| |#1|)) (-15 -3819 ((-112) |#1| |#1|)) (-15 -2635 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2492 ((-642 |#1|) |#1|)) (-15 -2124 ((-642 |#1|) |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -4095 (|#1| |#1|)) (-15 -3060 ((-112) |#1|)) (-15 -2606 ((-112) |#1|)) (-15 -1718 (|#1| |#1| |#4|)) (-15 -3962 (|#1| |#1| |#4|)) (-15 -3136 (|#1| |#1|)) (-15 -2889 ((-642 |#1|) |#1|)) (-15 -3354 (|#1| |#1|)) (-15 -1416 (|#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -3366 (|#1| |#1|)) (-15 -3251 ((-769) |#1|)) (-15 -3290 (|#4| |#1|)) (-15 -1314 ((-536) |#1|)) (-15 -1314 ((-890 (-564)) |#1|)) (-15 -1314 ((-890 (-379)) |#1|)) (-15 -2327 (|#1| |#4|)) (-15 -4278 ((-3 |#4| "failed") |#1|)) (-15 -3027 (|#4| |#1|)) (-15 -3962 (|#2| |#1|)) (-15 -1718 (|#1| |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3802 (((-642 |#3|) $) 112)) (-3615 (((-1169 $) $ |#3|) 127) (((-1169 |#1|) $) 126)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 89 (|has| |#1| (-556)))) (-1387 (($ $) 90 (|has| |#1| (-556)))) (-2037 (((-112) $) 92 (|has| |#1| (-556)))) (-4055 (((-769) $) 114) (((-769) $ (-642 |#3|)) 113)) (-1416 (($ $) 273)) (-4306 (((-112) $ $) 259)) (-1532 (((-3 $ "failed") $ $) 20)) (-1804 (($ $ $) 218 (|has| |#1| (-556)))) (-3097 (((-642 $) $ $) 213 (|has| |#1| (-556)))) (-2951 (((-418 (-1169 $)) (-1169 $)) 102 (|has| |#1| (-907)))) (-4316 (($ $) 100 (|has| |#1| (-452)))) (-1978 (((-418 $) $) 99 (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 105 (|has| |#1| (-907)))) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#1| "failed") $) 166) (((-3 (-407 (-564)) "failed") $) 163 (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) 161 (|has| |#1| (-1036 (-564)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-950 (-407 (-564)))) 233 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173))))) (((-3 $ "failed") (-950 (-564))) 230 (-2706 (-12 (-2268 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1173)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173)))))) (((-3 $ "failed") (-950 |#1|)) 227 (-2706 (-12 (-2268 (|has| |#1| (-38 (-407 (-564))))) (-2268 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1173)))) (-12 (-2268 (|has| |#1| (-545))) (-2268 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1173)))) (-12 (-2268 (|has| |#1| (-990 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173))))))) (-3027 ((|#1| $) 165) (((-407 (-564)) $) 164 (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) 162 (|has| |#1| (-1036 (-564)))) ((|#3| $) 139) (($ (-950 (-407 (-564)))) 232 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173))))) (($ (-950 (-564))) 229 (-2706 (-12 (-2268 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1173)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173)))))) (($ (-950 |#1|)) 226 (-2706 (-12 (-2268 (|has| |#1| (-38 (-407 (-564))))) (-2268 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1173)))) (-12 (-2268 (|has| |#1| (-545))) (-2268 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1173)))) (-12 (-2268 (|has| |#1| (-990 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173))))))) (-2022 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-556)))) (-1718 (($ $) 156) (($ $ |#3|) 268)) (-4315 (((-687 (-564)) (-687 $)) 136 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 135 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 134) (((-687 |#1|) (-687 $)) 133)) (-1597 (((-112) $ $) 258) (((-112) $ (-642 $)) 257)) (-3104 (((-3 $ "failed") $) 37)) (-3060 (((-112) $) 266)) (-3437 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 238)) (-3103 (($ $) 207 (|has| |#1| (-452)))) (-3246 (($ $) 178 (|has| |#1| (-452))) (($ $ |#3|) 107 (|has| |#1| (-452)))) (-3974 (((-642 $) $) 111)) (-1469 (((-112) $) 98 (|has| |#1| (-907)))) (-2359 (($ $) 223 (|has| |#1| (-556)))) (-4099 (($ $) 224 (|has| |#1| (-556)))) (-3260 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2664 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2575 (($ $ |#1| |#2| $) 174)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 86 (-12 (|has| |#3| (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 85 (-12 (|has| |#3| (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-3953 (((-112) $) 35)) (-3934 (((-769) $) 171)) (-2846 (((-112) $ $) 252) (((-112) $ (-642 $)) 251)) (-2694 (($ $ $ $ $) 209 (|has| |#1| (-556)))) (-3290 ((|#3| $) 277)) (-3790 (($ (-1169 |#1|) |#3|) 119) (($ (-1169 $) |#3|) 118)) (-1763 (((-642 $) $) 128)) (-2316 (((-112) $) 154)) (-3774 (($ |#1| |#2|) 155) (($ $ |#3| (-769)) 121) (($ $ (-642 |#3|) (-642 (-769))) 120)) (-2044 (($ $ $) 237)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ |#3|) 122)) (-2606 (((-112) $) 267)) (-1398 ((|#2| $) 172) (((-769) $ |#3|) 124) (((-642 (-769)) $ (-642 |#3|)) 123)) (-3251 (((-769) $) 276)) (-2026 (($ (-1 |#2| |#2|) $) 173)) (-4358 (($ (-1 |#1| |#1|) $) 153)) (-4184 (((-3 |#3| "failed") $) 125)) (-1928 (($ $) 204 (|has| |#1| (-452)))) (-3419 (($ $) 205 (|has| |#1| (-452)))) (-2492 (((-642 $) $) 262)) (-4095 (($ $) 265)) (-2488 (($ $) 206 (|has| |#1| (-452)))) (-2124 (((-642 $) $) 263)) (-1501 (($ $) 264)) (-3950 (($ $) 151)) (-3962 ((|#1| $) 150) (($ $ |#3|) 269)) (-2049 (($ (-642 $)) 96 (|has| |#1| (-452))) (($ $ $) 95 (|has| |#1| (-452)))) (-4130 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3752 (-769))) $ $) 236)) (-3431 (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $) 240) (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $ |#3|) 239)) (-3403 (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -3045 $)) $ $) 242) (((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -3045 $)) $ $ |#3|) 241)) (-1376 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3219 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3315 (((-1155) $) 10)) (-2899 (($ $ $) 212 (|has| |#1| (-556)))) (-2889 (((-642 $) $) 271)) (-1572 (((-3 (-642 $) "failed") $) 116)) (-1802 (((-3 (-642 $) "failed") $) 117)) (-3611 (((-3 (-2 (|:| |var| |#3|) (|:| -2700 (-769))) "failed") $) 115)) (-3350 (((-112) $ $) 254) (((-112) $ (-642 $)) 253)) (-1415 (($ $ $) 234)) (-3366 (($ $) 275)) (-3819 (((-112) $ $) 260)) (-2262 (((-112) $ $) 256) (((-112) $ (-642 $)) 255)) (-1372 (($ $ $) 235)) (-3345 (($ $) 274)) (-4033 (((-1117) $) 11)) (-3024 (((-2 (|:| -2080 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-556)))) (-2973 (((-2 (|:| -2080 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-556)))) (-3921 (((-112) $) 168)) (-3932 ((|#1| $) 169)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 97 (|has| |#1| (-452)))) (-2080 ((|#1| |#1| $) 208 (|has| |#1| (-452))) (($ (-642 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) 104 (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) 103 (|has| |#1| (-907)))) (-3643 (((-418 $) $) 101 (|has| |#1| (-907)))) (-4385 (((-2 (|:| -2080 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-556)))) (-2896 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-556)))) (-3099 (($ $ |#1|) 221 (|has| |#1| (-556))) (($ $ $) 219 (|has| |#1| (-556)))) (-1557 (($ $ |#1|) 222 (|has| |#1| (-556))) (($ $ $) 220 (|has| |#1| (-556)))) (-3215 (($ $ (-642 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-642 $) (-642 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-642 |#3|) (-642 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-642 |#3|) (-642 $)) 140)) (-1846 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3175 (($ $ |#3|) 46) (($ $ (-642 |#3|)) 45) (($ $ |#3| (-769)) 44) (($ $ (-642 |#3|) (-642 (-769))) 43)) (-2775 ((|#2| $) 152) (((-769) $ |#3|) 132) (((-642 (-769)) $ (-642 |#3|)) 131)) (-3354 (($ $) 272)) (-3136 (($ $) 270)) (-1314 (((-890 (-379)) $) 84 (-12 (|has| |#3| (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) 83 (-12 (|has| |#3| (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) 82 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536))))) (($ (-950 (-407 (-564)))) 231 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173))))) (($ (-950 (-564))) 228 (-2706 (-12 (-2268 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1173)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1173)))))) (($ (-950 |#1|)) 225 (|has| |#3| (-612 (-1173)))) (((-1155) $) 203 (-12 (|has| |#1| (-1036 (-564))) (|has| |#3| (-612 (-1173))))) (((-950 |#1|) $) 202 (|has| |#3| (-612 (-1173))))) (-4028 ((|#1| $) 177 (|has| |#1| (-452))) (($ $ |#3|) 108 (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 106 (-2275 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-950 |#1|) $) 201 (|has| |#3| (-612 (-1173)))) (($ (-407 (-564))) 80 (-2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 87 (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) 170)) (-2102 ((|#1| $ |#2|) 157) (($ $ |#3| (-769)) 130) (($ $ (-642 |#3|) (-642 (-769))) 129)) (-2439 (((-3 $ "failed") $) 81 (-2706 (-2275 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) 32 T CONST)) (-1967 (($ $ $ (-769)) 175 (|has| |#1| (-172)))) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 91 (|has| |#1| (-556)))) (-2312 (($) 19 T CONST)) (-2635 (((-3 (-112) "failed") $ $) 261)) (-2322 (($) 34 T CONST)) (-3867 (($ $ $ $ (-769)) 210 (|has| |#1| (-556)))) (-1341 (($ $ $ (-769)) 211 (|has| |#1| (-556)))) (-4044 (($ $ |#3|) 42) (($ $ (-642 |#3|)) 41) (($ $ |#3| (-769)) 40) (($ $ (-642 |#3|) (-642 (-769))) 39)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 158 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 160 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 159 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-1062 |#1| |#2| |#3|) (-140) (-1047) (-791) (-848)) (T -1062))
+((-3290 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-769)))) (-3366 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3345 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-1416 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3354 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-2889 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1062 *3 *4 *5)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-1718 (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-4095 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-1501 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-2124 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1062 *3 *4 *5)))) (-2492 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1062 *3 *4 *5)))) (-2635 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-3819 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-4306 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-1597 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-1597 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) (-2262 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-2262 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) (-3350 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) (-2846 (*1 *2 *1 *1) (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))) (-2846 (*1 *2 *1 *3) (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)))) (-3260 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-2664 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3260 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-2664 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-1376 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-3219 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-1376 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-3219 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *2 (-848)))) (-3403 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -4378 *1) (|:| |gap| (-769)) (|:| -3045 *1))) (-4 *1 (-1062 *3 *4 *5)))) (-3403 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-2 (|:| -4378 *1) (|:| |gap| (-769)) (|:| -3045 *1))) (-4 *1 (-1062 *4 *5 *3)))) (-3431 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -4378 *1) (|:| |gap| (-769)) (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-1062 *3 *4 *5)))) (-3431 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-2 (|:| -4378 *1) (|:| |gap| (-769)) (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-1062 *4 *5 *3)))) (-3437 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-1062 *3 *4 *5)))) (-2044 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-4130 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3752 (-769)))) (-4 *1 (-1062 *3 *4 *5)))) (-1372 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-1415 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)))) (-4278 (*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))) (-4278 (*1 *1 *2) (|partial| -2706 (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-2268 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))))) (-3027 (*1 *1 *2) (-2706 (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-2268 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))))) (-1314 (*1 *1 *2) (-2706 (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-2268 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))))) (-4278 (*1 *1 *2) (|partial| -2706 (-12 (-5 *2 (-950 *3)) (-12 (-2268 (-4 *3 (-38 (-407 (-564))))) (-2268 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 *3)) (-12 (-2268 (-4 *3 (-545))) (-2268 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 *3)) (-12 (-2268 (-4 *3 (-990 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))))) (-3027 (*1 *1 *2) (-2706 (-12 (-5 *2 (-950 *3)) (-12 (-2268 (-4 *3 (-38 (-407 (-564))))) (-2268 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 *3)) (-12 (-2268 (-4 *3 (-545))) (-2268 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))) (-12 (-5 *2 (-950 *3)) (-12 (-2268 (-4 *3 (-990 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791)) (-4 *5 (-848))))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *5 (-612 (-1173))) (-4 *4 (-791)) (-4 *5 (-848)))) (-4099 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-2359 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-1557 (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-3099 (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-1557 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-3099 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-1804 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-4385 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -2080 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1062 *3 *4 *5)))) (-2973 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -2080 *1) (|:| |coef1| *1))) (-4 *1 (-1062 *3 *4 *5)))) (-3024 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-2 (|:| -2080 *1) (|:| |coef2| *1))) (-4 *1 (-1062 *3 *4 *5)))) (-2022 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-3097 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1062 *3 *4 *5)))) (-2899 (*1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-1341 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *3 (-556)))) (-3867 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *3 (-556)))) (-2694 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-556)))) (-2080 (*1 *2 *2 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-3103 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-3419 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))) (-1928 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-452)))))
+(-13 (-947 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3290 (|t#3| $)) (-15 -3251 ((-769) $)) (-15 -3366 ($ $)) (-15 -3345 ($ $)) (-15 -1416 ($ $)) (-15 -3354 ($ $)) (-15 -2889 ((-642 $) $)) (-15 -3136 ($ $)) (-15 -3962 ($ $ |t#3|)) (-15 -1718 ($ $ |t#3|)) (-15 -2606 ((-112) $)) (-15 -3060 ((-112) $)) (-15 -4095 ($ $)) (-15 -1501 ($ $)) (-15 -2124 ((-642 $) $)) (-15 -2492 ((-642 $) $)) (-15 -2635 ((-3 (-112) "failed") $ $)) (-15 -3819 ((-112) $ $)) (-15 -4306 ((-112) $ $)) (-15 -1597 ((-112) $ $)) (-15 -1597 ((-112) $ (-642 $))) (-15 -2262 ((-112) $ $)) (-15 -2262 ((-112) $ (-642 $))) (-15 -3350 ((-112) $ $)) (-15 -3350 ((-112) $ (-642 $))) (-15 -2846 ((-112) $ $)) (-15 -2846 ((-112) $ (-642 $))) (-15 -3260 ($ $ $)) (-15 -2664 ($ $ $)) (-15 -3260 ($ $ $ |t#3|)) (-15 -2664 ($ $ $ |t#3|)) (-15 -1376 ($ $ $)) (-15 -3219 ($ $ $)) (-15 -1376 ($ $ $ |t#3|)) (-15 -3219 ($ $ $ |t#3|)) (-15 -3403 ((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -3045 $)) $ $)) (-15 -3403 ((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -3045 $)) $ $ |t#3|)) (-15 -3431 ((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -3431 ((-2 (|:| -4378 $) (|:| |gap| (-769)) (|:| -1420 $) (|:| -3045 $)) $ $ |t#3|)) (-15 -3437 ((-2 (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -2044 ($ $ $)) (-15 -4130 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3752 (-769))) $ $)) (-15 -1372 ($ $ $)) (-15 -1415 ($ $ $)) (IF (|has| |t#3| (-612 (-1173))) (PROGN (-6 (-611 (-950 |t#1|))) (-6 (-612 (-950 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -4278 ((-3 $ "failed") (-950 (-407 (-564))))) (-15 -3027 ($ (-950 (-407 (-564))))) (-15 -1314 ($ (-950 (-407 (-564))))) (-15 -4278 ((-3 $ "failed") (-950 (-564)))) (-15 -3027 ($ (-950 (-564)))) (-15 -1314 ($ (-950 (-564)))) (IF (|has| |t#1| (-990 (-564))) |%noBranch| (PROGN (-15 -4278 ((-3 $ "failed") (-950 |t#1|))) (-15 -3027 ($ (-950 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -4278 ((-3 $ "failed") (-950 (-564)))) (-15 -3027 ($ (-950 (-564)))) (-15 -1314 ($ (-950 (-564)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -4278 ((-3 $ "failed") (-950 |t#1|))) (-15 -3027 ($ (-950 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -4278 ((-3 $ "failed") (-950 |t#1|))) (-15 -3027 ($ (-950 |t#1|)))))) (-15 -1314 ($ (-950 |t#1|))) (IF (|has| |t#1| (-1036 (-564))) (-6 (-612 (-1155))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -4099 ($ $)) (-15 -2359 ($ $)) (-15 -1557 ($ $ |t#1|)) (-15 -3099 ($ $ |t#1|)) (-15 -1557 ($ $ $)) (-15 -3099 ($ $ $)) (-15 -1804 ($ $ $)) (-15 -4385 ((-2 (|:| -2080 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2973 ((-2 (|:| -2080 $) (|:| |coef1| $)) $ $)) (-15 -3024 ((-2 (|:| -2080 $) (|:| |coef2| $)) $ $)) (-15 -2022 ($ $ $)) (-15 -3097 ((-642 $) $ $)) (-15 -2899 ($ $ $)) (-15 -1341 ($ $ $ (-769))) (-15 -3867 ($ $ $ $ (-769))) (-15 -2694 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2080 (|t#1| |t#1| $)) (-15 -3103 ($ $)) (-15 -2488 ($ $)) (-15 -3419 ($ $)) (-15 -1928 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-860)) . T) ((-611 (-950 |#1|)) |has| |#3| (-612 (-1173))) ((-172) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-890 (-379))) -12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#3| (-612 (-890 (-379))))) ((-612 (-890 (-564))) -12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#3| (-612 (-890 (-564))))) ((-612 (-950 |#1|)) |has| |#3| (-612 (-1173))) ((-612 (-1155)) -12 (|has| |#1| (-1036 (-564))) (|has| |#3| (-612 (-1173)))) ((-290) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2706 (|has| |#1| (-907)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-724) . T) ((-898 |#3|) . T) ((-884 (-379)) -12 (|has| |#1| (-884 (-379))) (|has| |#3| (-884 (-379)))) ((-884 (-564)) -12 (|has| |#1| (-884 (-564))) (|has| |#3| (-884 (-564)))) ((-947 |#1| |#2| |#3|) . T) ((-907) |has| |#1| (-907)) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 |#1|) . T) ((-1036 |#3|) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) |has| |#1| (-907)))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-3342 (((-642 (-1132)) $) 18)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 27) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2474 (((-1132) $) 20)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1063) (-13 (-1080) (-10 -8 (-15 -3342 ((-642 (-1132)) $)) (-15 -2474 ((-1132) $))))) (T -1063))
+((-3342 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1063)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1063)))))
+(-13 (-1080) (-10 -8 (-15 -3342 ((-642 (-1132)) $)) (-15 -2474 ((-1132) $))))
+((-2952 (((-112) |#3| $) 15)) (-2525 (((-3 $ "failed") |#3| (-919)) 29)) (-3104 (((-3 |#3| "failed") |#3| $) 45)) (-2538 (((-112) |#3| $) 19)) (-3333 (((-112) |#3| $) 17)))
+(((-1064 |#1| |#2| |#3|) (-10 -8 (-15 -2525 ((-3 |#1| "failed") |#3| (-919))) (-15 -3104 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2538 ((-112) |#3| |#1|)) (-15 -3333 ((-112) |#3| |#1|)) (-15 -2952 ((-112) |#3| |#1|))) (-1065 |#2| |#3|) (-13 (-846) (-363)) (-1238 |#2|)) (T -1064))
+NIL
+(-10 -8 (-15 -2525 ((-3 |#1| "failed") |#3| (-919))) (-15 -3104 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2538 ((-112) |#3| |#1|)) (-15 -3333 ((-112) |#3| |#1|)) (-15 -2952 ((-112) |#3| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) |#2| $) 22)) (-2959 (((-564) |#2| $) 23)) (-2525 (((-3 $ "failed") |#2| (-919)) 16)) (-3910 ((|#1| |#2| $ |#1|) 14)) (-3104 (((-3 |#2| "failed") |#2| $) 19)) (-2538 (((-112) |#2| $) 20)) (-3333 (((-112) |#2| $) 21)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3280 ((|#2| $) 18)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-3601 ((|#1| |#2| $ |#1|) 15)) (-4160 (((-642 $) |#2|) 17)) (-2872 (((-112) $ $) 6)))
+(((-1065 |#1| |#2|) (-140) (-13 (-846) (-363)) (-1238 |t#1|)) (T -1065))
+((-2959 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-564)))) (-2952 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-112)))) (-3333 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-112)))) (-2538 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-112)))) (-3104 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1065 *3 *2)) (-4 *3 (-13 (-846) (-363))) (-4 *2 (-1238 *3)))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *2)) (-4 *3 (-13 (-846) (-363))) (-4 *2 (-1238 *3)))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-642 *1)) (-4 *1 (-1065 *4 *3)))) (-2525 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-919)) (-4 *4 (-13 (-846) (-363))) (-4 *1 (-1065 *4 *2)) (-4 *2 (-1238 *4)))) (-3601 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1065 *2 *3)) (-4 *2 (-13 (-846) (-363))) (-4 *3 (-1238 *2)))) (-3910 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1065 *2 *3)) (-4 *2 (-13 (-846) (-363))) (-4 *3 (-1238 *2)))))
+(-13 (-1097) (-10 -8 (-15 -2959 ((-564) |t#2| $)) (-15 -2952 ((-112) |t#2| $)) (-15 -3333 ((-112) |t#2| $)) (-15 -2538 ((-112) |t#2| $)) (-15 -3104 ((-3 |t#2| "failed") |t#2| $)) (-15 -3280 (|t#2| $)) (-15 -4160 ((-642 $) |t#2|)) (-15 -2525 ((-3 $ "failed") |t#2| (-919))) (-15 -3601 (|t#1| |t#2| $ |t#1|)) (-15 -3910 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-3666 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) (-769)) 115)) (-3122 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769)) 63)) (-1596 (((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-769)) 100)) (-3597 (((-769) (-642 |#4|) (-642 |#5|)) 30)) (-2134 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769)) 65) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769) (-112)) 67)) (-3412 (((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112)) 87)) (-1314 (((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) 92)) (-2789 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-112)) 62)) (-3549 (((-769) (-642 |#4|) (-642 |#5|)) 21)))
+(((-1066 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3549 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -3597 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -2789 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-112))) (-15 -3122 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769))) (-15 -3122 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|)) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769) (-112))) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769))) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|)) (-15 -3412 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3412 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3666 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) (-769))) (-15 -1314 ((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)))) (-15 -1596 ((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-769)))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -1066))
+((-1596 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -3530 *9)))) (-5 *4 (-769)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-1267)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -3530 *8))) (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1155)) (-5 *1 (-1066 *4 *5 *6 *7 *8)))) (-3666 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-642 *11)) (|:| |todo| (-642 (-2 (|:| |val| *3) (|:| -3530 *11)))))) (-5 *6 (-769)) (-5 *2 (-642 (-2 (|:| |val| (-642 *10)) (|:| -3530 *11)))) (-5 *3 (-642 *10)) (-5 *4 (-642 *11)) (-4 *10 (-1062 *7 *8 *9)) (-4 *11 (-1068 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-791)) (-4 *9 (-848)) (-5 *1 (-1066 *7 *8 *9 *10 *11)))) (-3412 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) (-3412 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) (-2134 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2134 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) (-2134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-769)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-791)) (-4 *9 (-848)) (-4 *3 (-1062 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1066 *7 *8 *9 *3 *4)) (-4 *4 (-1068 *7 *8 *9 *3)))) (-3122 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3122 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) (-2789 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1066 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3549 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -3597 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -2789 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-112))) (-15 -3122 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769))) (-15 -3122 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|)) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769) (-112))) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769))) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|)) (-15 -3412 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3412 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3666 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) (-769))) (-15 -1314 ((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)))) (-15 -1596 ((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-769))))
+((-2561 (((-112) |#5| $) 26)) (-3204 (((-112) |#5| $) 29)) (-3936 (((-112) |#5| $) 18) (((-112) $) 52)) (-2452 (((-642 $) |#5| $) NIL) (((-642 $) (-642 |#5|) $) 94) (((-642 $) (-642 |#5|) (-642 $)) 92) (((-642 $) |#5| (-642 $)) 95)) (-3804 (($ $ |#5|) NIL) (((-642 $) |#5| $) NIL) (((-642 $) |#5| (-642 $)) 73) (((-642 $) (-642 |#5|) $) 75) (((-642 $) (-642 |#5|) (-642 $)) 77)) (-4325 (((-642 $) |#5| $) NIL) (((-642 $) |#5| (-642 $)) 64) (((-642 $) (-642 |#5|) $) 69) (((-642 $) (-642 |#5|) (-642 $)) 71)) (-3503 (((-112) |#5| $) 32)))
+(((-1067 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3804 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -3804 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -3804 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -3804 ((-642 |#1|) |#5| |#1|)) (-15 -4325 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -4325 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -4325 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -4325 ((-642 |#1|) |#5| |#1|)) (-15 -2452 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -2452 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -2452 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -2452 ((-642 |#1|) |#5| |#1|)) (-15 -3204 ((-112) |#5| |#1|)) (-15 -3936 ((-112) |#1|)) (-15 -3503 ((-112) |#5| |#1|)) (-15 -2561 ((-112) |#5| |#1|)) (-15 -3936 ((-112) |#5| |#1|)) (-15 -3804 (|#1| |#1| |#5|))) (-1068 |#2| |#3| |#4| |#5|) (-452) (-791) (-848) (-1062 |#2| |#3| |#4|)) (T -1067))
+NIL
+(-10 -8 (-15 -3804 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -3804 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -3804 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -3804 ((-642 |#1|) |#5| |#1|)) (-15 -4325 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -4325 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -4325 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -4325 ((-642 |#1|) |#5| |#1|)) (-15 -2452 ((-642 |#1|) |#5| (-642 |#1|))) (-15 -2452 ((-642 |#1|) (-642 |#5|) (-642 |#1|))) (-15 -2452 ((-642 |#1|) (-642 |#5|) |#1|)) (-15 -2452 ((-642 |#1|) |#5| |#1|)) (-15 -3204 ((-112) |#5| |#1|)) (-15 -3936 ((-112) |#1|)) (-15 -3503 ((-112) |#5| |#1|)) (-15 -2561 ((-112) |#5| |#1|)) (-15 -3936 ((-112) |#5| |#1|)) (-15 -3804 (|#1| |#1| |#5|)))
+((-2907 (((-112) $ $) 7)) (-3126 (((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 |#4|)))) (-642 |#4|)) 86)) (-4208 (((-642 $) (-642 |#4|)) 87) (((-642 $) (-642 |#4|) (-112)) 112)) (-3802 (((-642 |#3|) $) 34)) (-3317 (((-112) $) 27)) (-4293 (((-112) $) 18 (|has| |#1| (-556)))) (-3831 (((-112) |#4| $) 102) (((-112) $) 98)) (-3923 ((|#4| |#4| $) 93)) (-4316 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| $) 127)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) 28)) (-3697 (((-112) $ (-769)) 45)) (-1700 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 80)) (-1976 (($) 46 T CONST)) (-1496 (((-112) $) 23 (|has| |#1| (-556)))) (-4375 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2888 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2850 (((-112) $) 26 (|has| |#1| (-556)))) (-1975 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2627 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) 37)) (-3027 (($ (-642 |#4|)) 36)) (-2570 (((-3 $ "failed") $) 83)) (-1493 ((|#4| |#4| $) 90)) (-2595 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1597 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1821 ((|#4| |#4| $) 88)) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1738 (((-2 (|:| -1639 (-642 |#4|)) (|:| -2241 (-642 |#4|))) $) 106)) (-2561 (((-112) |#4| $) 137)) (-3204 (((-112) |#4| $) 134)) (-3936 (((-112) |#4| $) 138) (((-112) $) 135)) (-2936 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-2846 (((-112) |#4| $) 105) (((-112) $) 104)) (-3290 ((|#3| $) 35)) (-3462 (((-112) $ (-769)) 44)) (-3234 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) 48)) (-3370 (((-642 |#3|) $) 33)) (-4120 (((-112) |#3| $) 32)) (-3576 (((-112) $ (-769)) 43)) (-3315 (((-1155) $) 10)) (-4162 (((-3 |#4| (-642 $)) |#4| |#4| $) 129)) (-2899 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| |#4| $) 128)) (-2514 (((-3 |#4| "failed") $) 84)) (-2340 (((-642 $) |#4| $) 130)) (-3902 (((-3 (-112) (-642 $)) |#4| $) 133)) (-2685 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2452 (((-642 $) |#4| $) 126) (((-642 $) (-642 |#4|) $) 125) (((-642 $) (-642 |#4|) (-642 $)) 124) (((-642 $) |#4| (-642 $)) 123)) (-4193 (($ |#4| $) 118) (($ (-642 |#4|) $) 117)) (-2743 (((-642 |#4|) $) 108)) (-3350 (((-112) |#4| $) 100) (((-112) $) 96)) (-1415 ((|#4| |#4| $) 91)) (-3819 (((-112) $ $) 111)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-2262 (((-112) |#4| $) 101) (((-112) $) 97)) (-1372 ((|#4| |#4| $) 92)) (-4033 (((-1117) $) 11)) (-2557 (((-3 |#4| "failed") $) 85)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3724 (((-3 $ "failed") $ |#4|) 79)) (-3804 (($ $ |#4|) 78) (((-642 $) |#4| $) 116) (((-642 $) |#4| (-642 $)) 115) (((-642 $) (-642 |#4|) $) 114) (((-642 $) (-642 |#4|) (-642 $)) 113)) (-2121 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) 39)) (-3719 (((-112) $) 42)) (-2972 (($) 41)) (-2775 (((-769) $) 107)) (-4043 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3901 (($ $) 40)) (-1314 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2337 (($ (-642 |#4|)) 61)) (-3153 (($ $ |#3|) 29)) (-3696 (($ $ |#3|) 31)) (-3114 (($ $) 89)) (-1749 (($ $ |#3|) 30)) (-2327 (((-860) $) 12) (((-642 |#4|) $) 38)) (-4195 (((-769) $) 77 (|has| |#3| (-368)))) (-1648 (((-112) $ $) 9)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3497 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) 99)) (-4325 (((-642 $) |#4| $) 122) (((-642 $) |#4| (-642 $)) 121) (((-642 $) (-642 |#4|) $) 120) (((-642 $) (-642 |#4|) (-642 $)) 119)) (-2710 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-2240 (((-642 |#3|) $) 82)) (-3503 (((-112) |#4| $) 136)) (-1362 (((-112) |#3| $) 81)) (-2872 (((-112) $ $) 6)) (-2127 (((-769) $) 47 (|has| $ (-6 -4410)))))
+(((-1068 |#1| |#2| |#3| |#4|) (-140) (-452) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -1068))
+((-3936 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-2561 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-3503 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-3204 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-3902 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-3 (-112) (-642 *1))) (-4 *1 (-1068 *4 *5 *6 *3)))) (-2685 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *1)))) (-4 *1 (-1068 *4 *5 *6 *3)))) (-2685 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-2340 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)))) (-4162 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-3 *3 (-642 *1))) (-4 *1 (-1068 *4 *5 *6 *3)))) (-2899 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *1)))) (-4 *1 (-1068 *4 *5 *6 *3)))) (-4316 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *1)))) (-4 *1 (-1068 *4 *5 *6 *3)))) (-2452 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)))) (-2452 (*1 *2 *3 *1) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *7)))) (-2452 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)))) (-2452 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)))) (-4325 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)))) (-4325 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)))) (-4325 (*1 *2 *3 *1) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *7)))) (-4325 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)))) (-4193 (*1 *1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-4193 (*1 *1 *2 *1) (-12 (-5 *2 (-642 *6)) (-4 *1 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)))) (-3804 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)))) (-3804 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)))) (-3804 (*1 *2 *3 *1) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *7)))) (-3804 (*1 *2 *3 *2) (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1068 *5 *6 *7 *8)))))
+(-13 (-1205 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3936 ((-112) |t#4| $)) (-15 -2561 ((-112) |t#4| $)) (-15 -3503 ((-112) |t#4| $)) (-15 -3936 ((-112) $)) (-15 -3204 ((-112) |t#4| $)) (-15 -3902 ((-3 (-112) (-642 $)) |t#4| $)) (-15 -2685 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 $))) |t#4| $)) (-15 -2685 ((-112) |t#4| $)) (-15 -2340 ((-642 $) |t#4| $)) (-15 -4162 ((-3 |t#4| (-642 $)) |t#4| |t#4| $)) (-15 -2899 ((-642 (-2 (|:| |val| |t#4|) (|:| -3530 $))) |t#4| |t#4| $)) (-15 -4316 ((-642 (-2 (|:| |val| |t#4|) (|:| -3530 $))) |t#4| $)) (-15 -2452 ((-642 $) |t#4| $)) (-15 -2452 ((-642 $) (-642 |t#4|) $)) (-15 -2452 ((-642 $) (-642 |t#4|) (-642 $))) (-15 -2452 ((-642 $) |t#4| (-642 $))) (-15 -4325 ((-642 $) |t#4| $)) (-15 -4325 ((-642 $) |t#4| (-642 $))) (-15 -4325 ((-642 $) (-642 |t#4|) $)) (-15 -4325 ((-642 $) (-642 |t#4|) (-642 $))) (-15 -4193 ($ |t#4| $)) (-15 -4193 ($ (-642 |t#4|) $)) (-15 -3804 ((-642 $) |t#4| $)) (-15 -3804 ((-642 $) |t#4| (-642 $))) (-15 -3804 ((-642 $) (-642 |t#4|) $)) (-15 -3804 ((-642 $) (-642 |t#4|) (-642 $))) (-15 -4208 ((-642 $) (-642 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-974 |#1| |#2| |#3| |#4|) . T) ((-1097) . T) ((-1205 |#1| |#2| |#3| |#4|) . T) ((-1212) . T))
+((-1839 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#5|) 87)) (-2339 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|) 130)) (-2712 (((-642 |#5|) |#4| |#5|) 75)) (-1861 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-2326 (((-1267)) 37)) (-4374 (((-1267)) 26)) (-1988 (((-1267) (-1155) (-1155) (-1155)) 33)) (-3223 (((-1267) (-1155) (-1155) (-1155)) 22)) (-3647 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#4| |#4| |#5|) 110)) (-3460 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#3| (-112)) 121) (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2513 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|) 116)))
+(((-1069 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3223 ((-1267) (-1155) (-1155) (-1155))) (-15 -4374 ((-1267))) (-15 -1988 ((-1267) (-1155) (-1155) (-1155))) (-15 -2326 ((-1267))) (-15 -3647 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -3460 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3460 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#3| (-112))) (-15 -2513 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -2339 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -1861 ((-112) |#4| |#5|)) (-15 -1861 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|)) (-15 -2712 ((-642 |#5|) |#4| |#5|)) (-15 -1839 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#5|))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -1069))
+((-1839 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4)))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2712 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1861 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *4)))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1861 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2339 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4)))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2513 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4)))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3460 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -3530 *9)))) (-5 *5 (-112)) (-4 *8 (-1062 *6 *7 *4)) (-4 *9 (-1068 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *4 (-848)) (-5 *2 (-642 (-2 (|:| |val| *8) (|:| -3530 *9)))) (-5 *1 (-1069 *6 *7 *4 *8 *9)))) (-3460 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4)))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) (-3647 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2326 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-1988 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-1069 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-4374 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-3223 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-1069 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3223 ((-1267) (-1155) (-1155) (-1155))) (-15 -4374 ((-1267))) (-15 -1988 ((-1267) (-1155) (-1155) (-1155))) (-15 -2326 ((-1267))) (-15 -3647 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -3460 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3460 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#3| (-112))) (-15 -2513 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -2339 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -1861 ((-112) |#4| |#5|)) (-15 -1861 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|)) (-15 -2712 ((-642 |#5|) |#4| |#5|)) (-15 -1839 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#5|)))
+((-2907 (((-112) $ $) NIL)) (-3796 (((-1211) $) 13)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1357 (((-1132) $) 10)) (-2327 (((-860) $) 20) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1070) (-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $)) (-15 -3796 ((-1211) $))))) (T -1070))
+((-1357 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1070)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1070)))))
+(-13 (-1080) (-10 -8 (-15 -1357 ((-1132) $)) (-15 -3796 ((-1211) $))))
+((-1640 (((-112) $ $) 7)))
+(((-1071) (-13 (-1212) (-10 -8 (-15 -1640 ((-112) $ $))))) (T -1071))
+((-1640 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1071)))))
+(-13 (-1212) (-10 -8 (-15 -1640 ((-112) $ $))))
+((-2907 (((-112) $ $) NIL)) (-2461 (((-1173) $) 8)) (-3315 (((-1155) $) 17)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 11)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 14)))
+(((-1072 |#1|) (-13 (-1097) (-10 -8 (-15 -2461 ((-1173) $)))) (-1173)) (T -1072))
+((-2461 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1072 *3)) (-14 *3 *2))))
+(-13 (-1097) (-10 -8 (-15 -2461 ((-1173) $))))
+((-2907 (((-112) $ $) NIL)) (-2722 (($ $ (-642 (-1173)) (-1 (-112) (-642 |#3|))) 34)) (-3228 (($ |#3| |#3|) 23) (($ |#3| |#3| (-642 (-1173))) 21)) (-1843 ((|#3| $) 13)) (-4278 (((-3 (-294 |#3|) "failed") $) 60)) (-3027 (((-294 |#3|) $) NIL)) (-3523 (((-642 (-1173)) $) 16)) (-1663 (((-890 |#1|) $) 11)) (-1833 ((|#3| $) 12)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-4368 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-919)) 41)) (-2327 (((-860) $) 89) (($ (-294 |#3|)) 22)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 38)))
+(((-1073 |#1| |#2| |#3|) (-13 (-1097) (-286 |#3| |#3|) (-1036 (-294 |#3|)) (-10 -8 (-15 -3228 ($ |#3| |#3|)) (-15 -3228 ($ |#3| |#3| (-642 (-1173)))) (-15 -2722 ($ $ (-642 (-1173)) (-1 (-112) (-642 |#3|)))) (-15 -1663 ((-890 |#1|) $)) (-15 -1833 (|#3| $)) (-15 -1843 (|#3| $)) (-15 -4368 (|#3| $ |#3| (-919))) (-15 -3523 ((-642 (-1173)) $)))) (-1097) (-13 (-1047) (-884 |#1|) (-612 (-890 |#1|))) (-13 (-430 |#2|) (-884 |#1|) (-612 (-890 |#1|)))) (T -1073))
+((-3228 (*1 *1 *2 *2) (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) (-5 *1 (-1073 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))))) (-3228 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-1073 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))) (-2722 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-1 (-112) (-642 *6))) (-4 *6 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-1073 *4 *5 *6)))) (-1663 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 *2))) (-5 *2 (-890 *3)) (-5 *1 (-1073 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-884 *3) (-612 *2))))) (-1833 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))) (-5 *1 (-1073 *3 *4 *2)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))))) (-1843 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))) (-5 *1 (-1073 *3 *4 *2)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))))) (-4368 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-919)) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-1073 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))) (-3523 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) (-5 *2 (-642 (-1173))) (-5 *1 (-1073 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))))))
+(-13 (-1097) (-286 |#3| |#3|) (-1036 (-294 |#3|)) (-10 -8 (-15 -3228 ($ |#3| |#3|)) (-15 -3228 ($ |#3| |#3| (-642 (-1173)))) (-15 -2722 ($ $ (-642 (-1173)) (-1 (-112) (-642 |#3|)))) (-15 -1663 ((-890 |#1|) $)) (-15 -1833 (|#3| $)) (-15 -1843 (|#3| $)) (-15 -4368 (|#3| $ |#3| (-919))) (-15 -3523 ((-642 (-1173)) $))))
+((-2907 (((-112) $ $) NIL)) (-2687 (($ (-642 (-1073 |#1| |#2| |#3|))) 14)) (-1447 (((-642 (-1073 |#1| |#2| |#3|)) $) 21)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-4368 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-919)) 27)) (-2327 (((-860) $) 17)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 20)))
+(((-1074 |#1| |#2| |#3|) (-13 (-1097) (-286 |#3| |#3|) (-10 -8 (-15 -2687 ($ (-642 (-1073 |#1| |#2| |#3|)))) (-15 -1447 ((-642 (-1073 |#1| |#2| |#3|)) $)) (-15 -4368 (|#3| $ |#3| (-919))))) (-1097) (-13 (-1047) (-884 |#1|) (-612 (-890 |#1|))) (-13 (-430 |#2|) (-884 |#1|) (-612 (-890 |#1|)))) (T -1074))
+((-2687 (*1 *1 *2) (-12 (-5 *2 (-642 (-1073 *3 *4 *5))) (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))) (-5 *1 (-1074 *3 *4 *5)))) (-1447 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3)))) (-5 *2 (-642 (-1073 *3 *4 *5))) (-5 *1 (-1074 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))))) (-4368 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-919)) (-4 *4 (-1097)) (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4)))) (-5 *1 (-1074 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))))
+(-13 (-1097) (-286 |#3| |#3|) (-10 -8 (-15 -2687 ($ (-642 (-1073 |#1| |#2| |#3|)))) (-15 -1447 ((-642 (-1073 |#1| |#2| |#3|)) $)) (-15 -4368 (|#3| $ |#3| (-919)))))
+((-2999 (((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112)) 88) (((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|))) 92) (((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112)) 90)))
+(((-1075 |#1| |#2|) (-10 -7 (-15 -2999 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112))) (-15 -2999 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -2999 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-642 (-1173))) (T -1075))
+((-2999 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-2 (|:| -1386 (-1169 *5)) (|:| -2067 (-642 (-950 *5)))))) (-5 *1 (-1075 *5 *6)) (-5 *3 (-642 (-950 *5))) (-14 *6 (-642 (-1173))))) (-2999 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-2 (|:| -1386 (-1169 *4)) (|:| -2067 (-642 (-950 *4)))))) (-5 *1 (-1075 *4 *5)) (-5 *3 (-642 (-950 *4))) (-14 *5 (-642 (-1173))))) (-2999 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-2 (|:| -1386 (-1169 *5)) (|:| -2067 (-642 (-950 *5)))))) (-5 *1 (-1075 *5 *6)) (-5 *3 (-642 (-950 *5))) (-14 *6 (-642 (-1173))))))
+(-10 -7 (-15 -2999 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112))) (-15 -2999 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -2999 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112))))
+((-3643 (((-418 |#3|) |#3|) 18)))
+(((-1076 |#1| |#2| |#3|) (-10 -7 (-15 -3643 ((-418 |#3|) |#3|))) (-1238 (-407 (-564))) (-13 (-363) (-147) (-722 (-407 (-564)) |#1|)) (-1238 |#2|)) (T -1076))
+((-3643 (*1 *2 *3) (-12 (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-13 (-363) (-147) (-722 (-407 (-564)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1076 *4 *5 *3)) (-4 *3 (-1238 *5)))))
+(-10 -7 (-15 -3643 ((-418 |#3|) |#3|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 142)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-1387 (($ $) NIL (|has| |#1| (-363)))) (-2037 (((-112) $) NIL (|has| |#1| (-363)))) (-3166 (((-687 |#1|) (-1262 $)) NIL) (((-687 |#1|)) 125)) (-3815 ((|#1| $) 130)) (-1964 (((-1185 (-919) (-769)) (-564)) NIL (|has| |#1| (-349)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL (|has| |#1| (-363)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2521 (((-769)) 46 (|has| |#1| (-368)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-4221 (($ (-1262 |#1|) (-1262 $)) NIL) (($ (-1262 |#1|)) 49)) (-3496 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1984 (((-687 |#1|) $ (-1262 $)) NIL) (((-687 |#1|) $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 115) (((-687 |#1|) (-687 $)) 110)) (-1320 (($ |#2|) 67) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-3104 (((-3 $ "failed") $) NIL)) (-2414 (((-919)) 84)) (-2433 (($) 50 (|has| |#1| (-368)))) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1363 (($) NIL (|has| |#1| (-349)))) (-3424 (((-112) $) NIL (|has| |#1| (-349)))) (-3607 (($ $ (-769)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-1469 (((-112) $) NIL (|has| |#1| (-363)))) (-1427 (((-919) $) NIL (|has| |#1| (-349))) (((-831 (-919)) $) NIL (|has| |#1| (-349)))) (-3953 (((-112) $) NIL)) (-2218 ((|#1| $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3947 ((|#2| $) 91 (|has| |#1| (-363)))) (-1945 (((-919) $) 151 (|has| |#1| (-368)))) (-1308 ((|#2| $) 64)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| |#1| (-363)))) (-3366 (($) NIL (|has| |#1| (-349)) CONST)) (-2047 (($ (-919)) 141 (|has| |#1| (-368)))) (-4033 (((-1117) $) NIL)) (-2185 (($) 132)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1952 (((-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))) NIL (|has| |#1| (-349)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-1846 ((|#1| (-1262 $)) NIL) ((|#1|) 119)) (-2136 (((-769) $) NIL (|has| |#1| (-349))) (((-3 (-769) "failed") $ $) NIL (|has| |#1| (-349)))) (-3175 (($ $) NIL (-2706 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-769)) NIL (-2706 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-1 |#1| |#1|) (-769)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2382 (((-687 |#1|) (-1262 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3280 ((|#2|) 80)) (-2668 (($) NIL (|has| |#1| (-349)))) (-2067 (((-1262 |#1|) $ (-1262 $)) 96) (((-687 |#1|) (-1262 $) (-1262 $)) NIL) (((-1262 |#1|) $) 77) (((-687 |#1|) (-1262 $)) 92)) (-1314 (((-1262 |#1|) $) NIL) (($ (-1262 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (|has| |#1| (-349)))) (-2327 (((-860) $) 63) (($ (-564)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-363)) (|has| |#1| (-1036 (-407 (-564))))))) (-2439 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3011 ((|#2| $) 89)) (-2756 (((-769)) 82 T CONST)) (-1648 (((-112) $ $) NIL)) (-4263 (((-1262 $)) 88)) (-2103 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2312 (($) 32 T CONST)) (-2322 (($) 19 T CONST)) (-4044 (($ $) NIL (-2706 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-769)) NIL (-2706 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-898 (-1173))))) (($ $ (-1 |#1| |#1|) (-769)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2872 (((-112) $ $) 69)) (-2998 (($ $ $) NIL (|has| |#1| (-363)))) (-2987 (($ $) 73) (($ $ $) NIL)) (-2974 (($ $ $) 71)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363)))))
+(((-1077 |#1| |#2| |#3|) (-722 |#1| |#2|) (-172) (-1238 |#1|) |#2|) (T -1077))
+NIL
+(-722 |#1| |#2|)
+((-3643 (((-418 |#3|) |#3|) 19)))
+(((-1078 |#1| |#2| |#3|) (-10 -7 (-15 -3643 ((-418 |#3|) |#3|))) (-1238 (-407 (-950 (-564)))) (-13 (-363) (-147) (-722 (-407 (-950 (-564))) |#1|)) (-1238 |#2|)) (T -1078))
+((-3643 (*1 *2 *3) (-12 (-4 *4 (-1238 (-407 (-950 (-564))))) (-4 *5 (-13 (-363) (-147) (-722 (-407 (-950 (-564))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1238 *5)))))
+(-10 -7 (-15 -3643 ((-418 |#3|) |#3|)))
+((-2907 (((-112) $ $) NIL)) (-2755 (($ $ $) 16)) (-1520 (($ $ $) 17)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3650 (($) 6)) (-1314 (((-1173) $) 20)) (-2327 (((-860) $) 13)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 15)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 9)))
+(((-1079) (-13 (-848) (-612 (-1173)) (-10 -8 (-15 -3650 ($))))) (T -1079))
+((-3650 (*1 *1) (-5 *1 (-1079))))
+(-13 (-848) (-612 (-1173)) (-10 -8 (-15 -3650 ($))))
+((-2907 (((-112) $ $) 7)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-1178)) 17) (((-1178) $) 16)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
+(((-1080) (-140)) (T -1080))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-858)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T))
-((-2933 ((|#1| |#1| (-1 (-564) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-3204 (((-1264)) 22)) (-2507 (((-641 |#1|)) 13)))
-(((-1078 |#1|) (-10 -7 (-15 -3204 ((-1264))) (-15 -2507 ((-641 |#1|))) (-15 -2933 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2933 (|#1| |#1| (-1 (-564) |#1| |#1|)))) (-132)) (T -1078))
-((-2933 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-2933 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-2507 (*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))) (-3204 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))))
-(-10 -7 (-15 -3204 ((-1264))) (-15 -2507 ((-641 |#1|))) (-15 -2933 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2933 (|#1| |#1| (-1 (-564) |#1| |#1|))))
-((-4341 (($ (-109) $) 20)) (-2636 (((-687 (-109)) (-506) $) 19)) (-2994 (($) 7)) (-3512 (($) 21)) (-4223 (($) 22)) (-3227 (((-641 (-175)) $) 10)) (-2423 (((-858) $) 25)))
-(((-1079) (-13 (-611 (-858)) (-10 -8 (-15 -2994 ($)) (-15 -3227 ((-641 (-175)) $)) (-15 -2636 ((-687 (-109)) (-506) $)) (-15 -4341 ($ (-109) $)) (-15 -3512 ($)) (-15 -4223 ($))))) (T -1079))
-((-2994 (*1 *1) (-5 *1 (-1079))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079)))) (-2636 (*1 *2 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-109))) (-5 *1 (-1079)))) (-4341 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079)))) (-3512 (*1 *1) (-5 *1 (-1079))) (-4223 (*1 *1) (-5 *1 (-1079))))
-(-13 (-611 (-858)) (-10 -8 (-15 -2994 ($)) (-15 -3227 ((-641 (-175)) $)) (-15 -2636 ((-687 (-109)) (-506) $)) (-15 -4341 ($ (-109) $)) (-15 -3512 ($)) (-15 -4223 ($))))
-((-1472 (((-1259 (-685 |#1|)) (-641 (-685 |#1|))) 47) (((-1259 (-685 (-948 |#1|))) (-641 (-1170)) (-685 (-948 |#1|))) 77) (((-1259 (-685 (-407 (-948 |#1|)))) (-641 (-1170)) (-685 (-407 (-948 |#1|)))) 95)) (-4225 (((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))) 41)))
-(((-1080 |#1|) (-10 -7 (-15 -1472 ((-1259 (-685 (-407 (-948 |#1|)))) (-641 (-1170)) (-685 (-407 (-948 |#1|))))) (-15 -1472 ((-1259 (-685 (-948 |#1|))) (-641 (-1170)) (-685 (-948 |#1|)))) (-15 -1472 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -4225 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))))) (-363)) (T -1080))
-((-4225 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4)))) (-1472 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-948 *5)))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-948 *5))))) (-1472 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-407 (-948 *5))))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-407 (-948 *5)))))))
-(-10 -7 (-15 -1472 ((-1259 (-685 (-407 (-948 |#1|)))) (-641 (-1170)) (-685 (-407 (-948 |#1|))))) (-15 -1472 ((-1259 (-685 (-948 |#1|))) (-641 (-1170)) (-685 (-948 |#1|)))) (-15 -1472 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -4225 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-2828 (((-641 (-767)) $) NIL) (((-641 (-767)) $ (-1170)) NIL)) (-3476 (((-767) $) NIL) (((-767) $ (-1170)) NIL)) (-3836 (((-641 (-1082 (-1170))) $) NIL)) (-3660 (((-1166 $) $ (-1082 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-1082 (-1170)))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2683 (($ $) NIL (|has| |#1| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3505 (($ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-1082 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-3120 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-1082 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-2746 (($ $ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-1684 (($ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#1| (-905)))) (-3850 (($ $ |#1| (-531 (-1082 (-1170))) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1082 (-1170)) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1082 (-1170)) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3744 (((-767) $ (-1170)) NIL) (((-767) $) NIL)) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-3824 (($ (-1166 |#1|) (-1082 (-1170))) NIL) (($ (-1166 $) (-1082 (-1170))) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-767)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-1082 (-1170))) NIL)) (-2043 (((-531 (-1082 (-1170))) $) NIL) (((-767) $ (-1082 (-1170))) NIL) (((-641 (-767)) $ (-641 (-1082 (-1170)))) NIL)) (-1948 (($ (-1 (-531 (-1082 (-1170))) (-531 (-1082 (-1170)))) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-4206 (((-1 $ (-767)) (-1170)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-3025 (((-3 (-1082 (-1170)) "failed") $) NIL)) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-1453 (((-1082 (-1170)) $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2766 (((-1152) $) NIL)) (-4384 (((-112) $) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-1082 (-1170))) (|:| -1838 (-767))) "failed") $) NIL)) (-3252 (($ $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 ((|#1| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1082 (-1170)) |#1|) NIL) (($ $ (-641 (-1082 (-1170))) (-641 |#1|)) NIL) (($ $ (-1082 (-1170)) $) NIL) (($ $ (-641 (-1082 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-1330 (($ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-3254 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-767)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2576 (((-641 (-1170)) $) NIL)) (-1568 (((-531 (-1082 (-1170))) $) NIL) (((-767) $ (-1082 (-1170))) NIL) (((-641 (-767)) $ (-641 (-1082 (-1170)))) NIL) (((-767) $ (-1170)) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4090 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1082 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-767)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-767)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1081 |#1|) (-13 (-253 |#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) (-1034 (-1119 |#1| (-1170)))) (-1045)) (T -1081))
-NIL
-(-13 (-253 |#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) (-1034 (-1119 |#1| (-1170))))
-((-3009 (((-112) $ $) NIL)) (-3476 (((-767) $) NIL)) (-3395 ((|#1| $) 10)) (-4284 (((-3 |#1| "failed") $) NIL)) (-3120 ((|#1| $) NIL)) (-3744 (((-767) $) 11)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-4206 (($ |#1| (-767)) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3254 (($ $) NIL) (($ $ (-767)) NIL)) (-2423 (((-858) $) NIL) (($ |#1|) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 16)))
-(((-1082 |#1|) (-266 |#1|) (-846)) (T -1082))
+(((-93) . T) ((-102) . T) ((-614 #0=(-1178)) . T) ((-611 (-860)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1097) . T))
+((-4338 ((|#1| |#1| (-1 (-564) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-3119 (((-1267)) 22)) (-2406 (((-642 |#1|)) 13)))
+(((-1081 |#1|) (-10 -7 (-15 -3119 ((-1267))) (-15 -2406 ((-642 |#1|))) (-15 -4338 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4338 (|#1| |#1| (-1 (-564) |#1| |#1|)))) (-132)) (T -1081))
+((-4338 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1081 *2)))) (-4338 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1081 *2)))) (-2406 (*1 *2) (-12 (-5 *2 (-642 *3)) (-5 *1 (-1081 *3)) (-4 *3 (-132)))) (-3119 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1081 *3)) (-4 *3 (-132)))))
+(-10 -7 (-15 -3119 ((-1267))) (-15 -2406 ((-642 |#1|))) (-15 -4338 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4338 (|#1| |#1| (-1 (-564) |#1| |#1|))))
+((-1656 (($ (-109) $) 20)) (-2140 (((-689 (-109)) (-506) $) 19)) (-2972 (($) 7)) (-4172 (($) 21)) (-2225 (($) 22)) (-2629 (((-642 (-175)) $) 10)) (-2327 (((-860) $) 25)))
+(((-1082) (-13 (-611 (-860)) (-10 -8 (-15 -2972 ($)) (-15 -2629 ((-642 (-175)) $)) (-15 -2140 ((-689 (-109)) (-506) $)) (-15 -1656 ($ (-109) $)) (-15 -4172 ($)) (-15 -2225 ($))))) (T -1082))
+((-2972 (*1 *1) (-5 *1 (-1082))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-642 (-175))) (-5 *1 (-1082)))) (-2140 (*1 *2 *3 *1) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-109))) (-5 *1 (-1082)))) (-1656 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1082)))) (-4172 (*1 *1) (-5 *1 (-1082))) (-2225 (*1 *1) (-5 *1 (-1082))))
+(-13 (-611 (-860)) (-10 -8 (-15 -2972 ($)) (-15 -2629 ((-642 (-175)) $)) (-15 -2140 ((-689 (-109)) (-506) $)) (-15 -1656 ($ (-109) $)) (-15 -4172 ($)) (-15 -2225 ($))))
+((-4361 (((-1262 (-687 |#1|)) (-642 (-687 |#1|))) 47) (((-1262 (-687 (-950 |#1|))) (-642 (-1173)) (-687 (-950 |#1|))) 77) (((-1262 (-687 (-407 (-950 |#1|)))) (-642 (-1173)) (-687 (-407 (-950 |#1|)))) 95)) (-2067 (((-1262 |#1|) (-687 |#1|) (-642 (-687 |#1|))) 41)))
+(((-1083 |#1|) (-10 -7 (-15 -4361 ((-1262 (-687 (-407 (-950 |#1|)))) (-642 (-1173)) (-687 (-407 (-950 |#1|))))) (-15 -4361 ((-1262 (-687 (-950 |#1|))) (-642 (-1173)) (-687 (-950 |#1|)))) (-15 -4361 ((-1262 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -2067 ((-1262 |#1|) (-687 |#1|) (-642 (-687 |#1|))))) (-363)) (T -1083))
+((-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-687 *5))) (-5 *3 (-687 *5)) (-4 *5 (-363)) (-5 *2 (-1262 *5)) (-5 *1 (-1083 *5)))) (-4361 (*1 *2 *3) (-12 (-5 *3 (-642 (-687 *4))) (-4 *4 (-363)) (-5 *2 (-1262 (-687 *4))) (-5 *1 (-1083 *4)))) (-4361 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-1173))) (-4 *5 (-363)) (-5 *2 (-1262 (-687 (-950 *5)))) (-5 *1 (-1083 *5)) (-5 *4 (-687 (-950 *5))))) (-4361 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-1173))) (-4 *5 (-363)) (-5 *2 (-1262 (-687 (-407 (-950 *5))))) (-5 *1 (-1083 *5)) (-5 *4 (-687 (-407 (-950 *5)))))))
+(-10 -7 (-15 -4361 ((-1262 (-687 (-407 (-950 |#1|)))) (-642 (-1173)) (-687 (-407 (-950 |#1|))))) (-15 -4361 ((-1262 (-687 (-950 |#1|))) (-642 (-1173)) (-687 (-950 |#1|)))) (-15 -4361 ((-1262 (-687 |#1|)) (-642 (-687 |#1|)))) (-15 -2067 ((-1262 |#1|) (-687 |#1|) (-642 (-687 |#1|)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2773 (((-642 (-769)) $) NIL) (((-642 (-769)) $ (-1173)) NIL)) (-1915 (((-769) $) NIL) (((-769) $ (-1173)) NIL)) (-3802 (((-642 (-1085 (-1173))) $) NIL)) (-3615 (((-1169 $) $ (-1085 (-1173))) NIL) (((-1169 |#1|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-1085 (-1173)))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4316 (($ $) NIL (|has| |#1| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2236 (($ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-1085 (-1173)) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL) (((-3 (-1122 |#1| (-1173)) "failed") $) NIL)) (-3027 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-1085 (-1173)) $) NIL) (((-1173) $) NIL) (((-1122 |#1| (-1173)) $) NIL)) (-2022 (($ $ $ (-1085 (-1173))) NIL (|has| |#1| (-172)))) (-1718 (($ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1085 (-1173))) NIL (|has| |#1| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#1| (-907)))) (-2575 (($ $ |#1| (-531 (-1085 (-1173))) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1085 (-1173)) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1085 (-1173)) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-1427 (((-769) $ (-1173)) NIL) (((-769) $) NIL)) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-3790 (($ (-1169 |#1|) (-1085 (-1173))) NIL) (($ (-1169 $) (-1085 (-1173))) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-531 (-1085 (-1173)))) NIL) (($ $ (-1085 (-1173)) (-769)) NIL) (($ $ (-642 (-1085 (-1173))) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-1085 (-1173))) NIL)) (-1398 (((-531 (-1085 (-1173))) $) NIL) (((-769) $ (-1085 (-1173))) NIL) (((-642 (-769)) $ (-642 (-1085 (-1173)))) NIL)) (-2026 (($ (-1 (-531 (-1085 (-1173))) (-531 (-1085 (-1173)))) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-2089 (((-1 $ (-769)) (-1173)) NIL) (((-1 $ (-769)) $) NIL (|has| |#1| (-233)))) (-4184 (((-3 (-1085 (-1173)) "failed") $) NIL)) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-1471 (((-1085 (-1173)) $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3315 (((-1155) $) NIL)) (-4240 (((-112) $) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-1085 (-1173))) (|:| -2700 (-769))) "failed") $) NIL)) (-3173 (($ $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 ((|#1| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1085 (-1173)) |#1|) NIL) (($ $ (-642 (-1085 (-1173))) (-642 |#1|)) NIL) (($ $ (-1085 (-1173)) $) NIL) (($ $ (-642 (-1085 (-1173))) (-642 $)) NIL) (($ $ (-1173) $) NIL (|has| |#1| (-233))) (($ $ (-642 (-1173)) (-642 $)) NIL (|has| |#1| (-233))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-233))) (($ $ (-642 (-1173)) (-642 |#1|)) NIL (|has| |#1| (-233)))) (-1846 (($ $ (-1085 (-1173))) NIL (|has| |#1| (-172)))) (-3175 (($ $ (-1085 (-1173))) NIL) (($ $ (-642 (-1085 (-1173)))) NIL) (($ $ (-1085 (-1173)) (-769)) NIL) (($ $ (-642 (-1085 (-1173))) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1410 (((-642 (-1173)) $) NIL)) (-2775 (((-531 (-1085 (-1173))) $) NIL) (((-769) $ (-1085 (-1173))) NIL) (((-642 (-769)) $ (-642 (-1085 (-1173)))) NIL) (((-769) $ (-1173)) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-1085 (-1173)) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1085 (-1173)) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1085 (-1173)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4028 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1085 (-1173))) NIL (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1085 (-1173))) NIL) (($ (-1173)) NIL) (($ (-1122 |#1| (-1173))) NIL) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-531 (-1085 (-1173)))) NIL) (($ $ (-1085 (-1173)) (-769)) NIL) (($ $ (-642 (-1085 (-1173))) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-1085 (-1173))) NIL) (($ $ (-642 (-1085 (-1173)))) NIL) (($ $ (-1085 (-1173)) (-769)) NIL) (($ $ (-642 (-1085 (-1173))) (-642 (-769))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-769)) NIL (|has| |#1| (-233))) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1084 |#1|) (-13 (-253 |#1| (-1173) (-1085 (-1173)) (-531 (-1085 (-1173)))) (-1036 (-1122 |#1| (-1173)))) (-1047)) (T -1084))
+NIL
+(-13 (-253 |#1| (-1173) (-1085 (-1173)) (-531 (-1085 (-1173)))) (-1036 (-1122 |#1| (-1173))))
+((-2907 (((-112) $ $) NIL)) (-1915 (((-769) $) NIL)) (-3329 ((|#1| $) 10)) (-4278 (((-3 |#1| "failed") $) NIL)) (-3027 ((|#1| $) NIL)) (-1427 (((-769) $) 11)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-2089 (($ |#1| (-769)) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3175 (($ $) NIL) (($ $ (-769)) NIL)) (-2327 (((-860) $) NIL) (($ |#1|) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 16)))
+(((-1085 |#1|) (-266 |#1|) (-848)) (T -1085))
NIL
(-266 |#1|)
-((-4357 (((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 28 (|has| |#1| (-844))) (((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 14)))
-(((-1083 |#1| |#2|) (-10 -7 (-15 -4357 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-844)) (-15 -4357 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1083))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-844)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-1083 *5 *6)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1088 *6)) (-5 *1 (-1083 *5 *6)))))
-(-10 -7 (-15 -4357 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-844)) (-15 -4357 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-3548 (((-641 (-1129)) $) 10)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1084) (-13 (-1077) (-10 -8 (-15 -3548 ((-641 (-1129)) $))))) (T -1084))
-((-3548 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084)))))
-(-13 (-1077) (-10 -8 (-15 -3548 ((-641 (-1129)) $))))
-((-4357 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 19)))
-(((-1085 |#1| |#2|) (-10 -7 (-15 -4357 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-1209) (-1209)) (T -1085))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1086 *6)) (-5 *1 (-1085 *5 *6)))))
-(-10 -7 (-15 -4357 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3395 (((-1170) $) 11)) (-4194 (((-1088 |#1|) $) 12)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3796 (($ (-1170) (-1088 |#1|)) 10)) (-2423 (((-858) $) 22 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2974 (((-112) $ $) 17 (|has| |#1| (-1094)))))
-(((-1086 |#1|) (-13 (-1209) (-10 -8 (-15 -3796 ($ (-1170) (-1088 |#1|))) (-15 -3395 ((-1170) $)) (-15 -4194 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1086))
-((-3796 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209)) (-5 *1 (-1086 *4)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))))
-(-13 (-1209) (-10 -8 (-15 -3796 ($ (-1170) (-1088 |#1|))) (-15 -3395 ((-1170) $)) (-15 -4194 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
-((-4194 (($ |#1| |#1|) 8)) (-2600 ((|#1| $) 11)) (-2030 ((|#1| $) 13)) (-2852 (((-564) $) 9)) (-3479 ((|#1| $) 10)) (-2876 ((|#1| $) 12)) (-1311 (($ |#1|) 6)) (-3612 (($ |#1| |#1|) 15)) (-2719 (($ $ (-564)) 14)))
-(((-1087 |#1|) (-140) (-1209)) (T -1087))
-((-3612 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-2719 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209)))) (-2030 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-2852 (*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-4194 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
-(-13 (-616 |t#1|) (-10 -8 (-15 -3612 ($ |t#1| |t#1|)) (-15 -2719 ($ $ (-564))) (-15 -2030 (|t#1| $)) (-15 -2876 (|t#1| $)) (-15 -2600 (|t#1| $)) (-15 -3479 (|t#1| $)) (-15 -2852 ((-564) $)) (-15 -4194 ($ |t#1| |t#1|))))
+((-4358 (((-642 |#2|) (-1 |#2| |#1|) (-1091 |#1|)) 28 (|has| |#1| (-846))) (((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)) 14)))
+(((-1086 |#1| |#2|) (-10 -7 (-15 -4358 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|))) (IF (|has| |#1| (-846)) (-15 -4358 ((-642 |#2|) (-1 |#2| |#1|) (-1091 |#1|))) |%noBranch|)) (-1212) (-1212)) (T -1086))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-846)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-642 *6)) (-5 *1 (-1086 *5 *6)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1091 *6)) (-5 *1 (-1086 *5 *6)))))
+(-10 -7 (-15 -4358 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|))) (IF (|has| |#1| (-846)) (-15 -4358 ((-642 |#2|) (-1 |#2| |#1|) (-1091 |#1|))) |%noBranch|))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 16) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2673 (((-642 (-1132)) $) 10)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1087) (-13 (-1080) (-10 -8 (-15 -2673 ((-642 (-1132)) $))))) (T -1087))
+((-2673 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1087)))))
+(-13 (-1080) (-10 -8 (-15 -2673 ((-642 (-1132)) $))))
+((-4358 (((-1089 |#2|) (-1 |#2| |#1|) (-1089 |#1|)) 19)))
+(((-1088 |#1| |#2|) (-10 -7 (-15 -4358 ((-1089 |#2|) (-1 |#2| |#1|) (-1089 |#1|)))) (-1212) (-1212)) (T -1088))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1089 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1089 *6)) (-5 *1 (-1088 *5 *6)))))
+(-10 -7 (-15 -4358 ((-1089 |#2|) (-1 |#2| |#1|) (-1089 |#1|))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3329 (((-1173) $) 11)) (-4177 (((-1091 |#1|) $) 12)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3761 (($ (-1173) (-1091 |#1|)) 10)) (-2327 (((-860) $) 22 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2872 (((-112) $ $) 17 (|has| |#1| (-1097)))))
+(((-1089 |#1|) (-13 (-1212) (-10 -8 (-15 -3761 ($ (-1173) (-1091 |#1|))) (-15 -3329 ((-1173) $)) (-15 -4177 ((-1091 |#1|) $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|))) (-1212)) (T -1089))
+((-3761 (*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1091 *4)) (-4 *4 (-1212)) (-5 *1 (-1089 *4)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1089 *3)) (-4 *3 (-1212)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-1091 *3)) (-5 *1 (-1089 *3)) (-4 *3 (-1212)))))
+(-13 (-1212) (-10 -8 (-15 -3761 ($ (-1173) (-1091 |#1|))) (-15 -3329 ((-1173) $)) (-15 -4177 ((-1091 |#1|) $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|)))
+((-4177 (($ |#1| |#1|) 8)) (-2827 ((|#1| $) 11)) (-2006 ((|#1| $) 13)) (-2751 (((-564) $) 9)) (-4233 ((|#1| $) 10)) (-2774 ((|#1| $) 12)) (-1314 (($ |#1|) 6)) (-3567 (($ |#1| |#1|) 15)) (-2617 (($ $ (-564)) 14)))
+(((-1090 |#1|) (-140) (-1212)) (T -1090))
+((-3567 (*1 *1 *2 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) (-2617 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1090 *3)) (-4 *3 (-1212)))) (-2006 (*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) (-2827 (*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1212)) (-5 *2 (-564)))) (-4177 (*1 *1 *2 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))))
+(-13 (-616 |t#1|) (-10 -8 (-15 -3567 ($ |t#1| |t#1|)) (-15 -2617 ($ $ (-564))) (-15 -2006 (|t#1| $)) (-15 -2774 (|t#1| $)) (-15 -2827 (|t#1| $)) (-15 -4233 (|t#1| $)) (-15 -2751 ((-564) $)) (-15 -4177 ($ |t#1| |t#1|))))
(((-616 |#1|) . T))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4194 (($ |#1| |#1|) 16)) (-4357 (((-641 |#1|) (-1 |#1| |#1|) $) 45 (|has| |#1| (-844)))) (-2600 ((|#1| $) 12)) (-2030 ((|#1| $) 11)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2852 (((-564) $) 15)) (-3479 ((|#1| $) 14)) (-2876 ((|#1| $) 13)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1641 (((-641 |#1|) $) 43 (|has| |#1| (-844))) (((-641 |#1|) (-641 $)) 42 (|has| |#1| (-844)))) (-1311 (($ |#1|) 29)) (-2423 (((-858) $) 28 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3612 (($ |#1| |#1|) 10)) (-2719 (($ $ (-564)) 17)) (-2974 (((-112) $ $) 22 (|has| |#1| (-1094)))))
-(((-1088 |#1|) (-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1089 |#1| (-641 |#1|))) |%noBranch|))) (-1209)) (T -1088))
-NIL
-(-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1089 |#1| (-641 |#1|))) |%noBranch|)))
-((-4194 (($ |#1| |#1|) 8)) (-4357 ((|#2| (-1 |#1| |#1|) $) 16)) (-2600 ((|#1| $) 11)) (-2030 ((|#1| $) 13)) (-2852 (((-564) $) 9)) (-3479 ((|#1| $) 10)) (-2876 ((|#1| $) 12)) (-1641 ((|#2| (-641 $)) 18) ((|#2| $) 17)) (-1311 (($ |#1|) 6)) (-3612 (($ |#1| |#1|) 15)) (-2719 (($ $ (-564)) 14)))
-(((-1089 |#1| |#2|) (-140) (-844) (-1143 |t#1|)) (T -1089))
-((-1641 (*1 *2 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1143 *4)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1143 *3)))) (-4357 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1143 *4)))))
-(-13 (-1087 |t#1|) (-10 -8 (-15 -1641 (|t#2| (-641 $))) (-15 -1641 (|t#2| $)) (-15 -4357 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-616 |#1|) . T) ((-1087 |#1|) . T))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-2615 (((-1129) $) 12)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 18) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2575 (((-641 (-1129)) $) 10)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1090) (-13 (-1077) (-10 -8 (-15 -2575 ((-641 (-1129)) $)) (-15 -2615 ((-1129) $))))) (T -1090))
-((-2575 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090)))))
-(-13 (-1077) (-10 -8 (-15 -2575 ((-641 (-1129)) $)) (-15 -2615 ((-1129) $))))
-((-1682 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2340 (($ $ $) 10)) (-2085 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1091 |#1| |#2|) (-10 -8 (-15 -1682 (|#1| |#2| |#1|)) (-15 -1682 (|#1| |#1| |#2|)) (-15 -1682 (|#1| |#1| |#1|)) (-15 -2340 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1| |#2|)) (-15 -2085 (|#1| |#1| |#1|))) (-1092 |#2|) (-1094)) (T -1091))
-NIL
-(-10 -8 (-15 -1682 (|#1| |#2| |#1|)) (-15 -1682 (|#1| |#1| |#2|)) (-15 -1682 (|#1| |#1| |#1|)) (-15 -2340 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1| |#2|)) (-15 -2085 (|#1| |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1682 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2340 (($ $ $) 21)) (-2521 (((-112) $ $) 20)) (-1876 (((-112) $ (-767)) 36)) (-1724 (($) 26) (($ (-641 |#1|)) 25)) (-1667 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4407)))) (-4080 (($) 37 T CONST)) (-2696 (($ $) 60 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#1| $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4407)))) (-3035 (((-641 |#1|) $) 44 (|has| $ (-6 -4407)))) (-2342 (((-112) $ $) 29)) (-3097 (((-112) $ (-767)) 35)) (-1554 (((-641 |#1|) $) 45 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 39)) (-3619 (((-112) $ (-767)) 34)) (-2766 (((-1152) $) 10)) (-3888 (($ $ $) 24)) (-4052 (((-1114) $) 11)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-4377 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#1|) (-641 |#1|)) 51 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 30)) (-1976 (((-112) $) 33)) (-2994 (($) 32)) (-2085 (($ $ $) 23) (($ $ |#1|) 22)) (-4062 (((-767) |#1| $) 46 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4407)))) (-3926 (($ $) 31)) (-1311 (((-536) $) 61 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 52)) (-2423 (((-858) $) 12)) (-3755 (($) 28) (($ (-641 |#1|)) 27)) (-1860 (((-112) $ $) 9)) (-1368 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 6)) (-2181 (((-767) $) 38 (|has| $ (-6 -4407)))))
-(((-1092 |#1|) (-140) (-1094)) (T -1092))
-((-2342 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3755 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-1724 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-1724 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-3888 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2085 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2085 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2340 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2521 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-1682 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-1682 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-1682 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(-13 (-1094) (-151 |t#1|) (-10 -8 (-6 -4397) (-15 -2342 ((-112) $ $)) (-15 -3755 ($)) (-15 -3755 ($ (-641 |t#1|))) (-15 -1724 ($)) (-15 -1724 ($ (-641 |t#1|))) (-15 -3888 ($ $ $)) (-15 -2085 ($ $ $)) (-15 -2085 ($ $ |t#1|)) (-15 -2340 ($ $ $)) (-15 -2521 ((-112) $ $)) (-15 -1682 ($ $ $)) (-15 -1682 ($ $ |t#1|)) (-15 -1682 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) . T) ((-1209) . T))
-((-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 8)) (-1860 (((-112) $ $) 12)))
-(((-1093 |#1|) (-10 -8 (-15 -1860 ((-112) |#1| |#1|)) (-15 -2766 ((-1152) |#1|)) (-15 -4052 ((-1114) |#1|))) (-1094)) (T -1093))
-NIL
-(-10 -8 (-15 -1860 ((-112) |#1| |#1|)) (-15 -2766 ((-1152) |#1|)) (-15 -4052 ((-1114) |#1|)))
-((-3009 (((-112) $ $) 7)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
-(((-1094) (-140)) (T -1094))
-((-4052 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152)))) (-1860 (*1 *2 *1 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-112)))))
-(-13 (-102) (-611 (-858)) (-10 -8 (-15 -4052 ((-1114) $)) (-15 -2766 ((-1152) $)) (-15 -1860 ((-112) $ $))))
-(((-102) . T) ((-611 (-858)) . T))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) 36)) (-2381 (($ (-641 (-917))) 72)) (-2758 (((-3 $ "failed") $ (-917) (-917)) 83)) (-2534 (($) 40)) (-3369 (((-112) (-917) $) 44)) (-3256 (((-917) $) 66)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) 39)) (-3948 (((-3 $ "failed") $ (-917)) 79)) (-4052 (((-1114) $) NIL)) (-3437 (((-1259 $)) 49)) (-4202 (((-641 (-917)) $) 27)) (-1924 (((-767) $ (-917) (-917)) 80)) (-2423 (((-858) $) 32)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 24)))
-(((-1095 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -3948 ((-3 $ "failed") $ (-917))) (-15 -2758 ((-3 $ "failed") $ (-917) (-917))) (-15 -4202 ((-641 (-917)) $)) (-15 -2381 ($ (-641 (-917)))) (-15 -3437 ((-1259 $))) (-15 -3369 ((-112) (-917) $)) (-15 -1924 ((-767) $ (-917) (-917))))) (-917) (-917)) (T -1095))
-((-3948 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2758 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-2381 (*1 *1 *2) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-3437 (*1 *2) (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-3369 (*1 *2 *3 *1) (-12 (-5 *3 (-917)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1924 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-767)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-368) (-10 -8 (-15 -3948 ((-3 $ "failed") $ (-917))) (-15 -2758 ((-3 $ "failed") $ (-917) (-917))) (-15 -4202 ((-641 (-917)) $)) (-15 -2381 ($ (-641 (-917)))) (-15 -3437 ((-1259 $))) (-15 -3369 ((-112) (-917) $)) (-15 -1924 ((-767) $ (-917) (-917)))))
-((-3009 (((-112) $ $) NIL)) (-3739 (($) NIL (|has| |#1| (-368)))) (-1682 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 81)) (-2340 (($ $ $) 79)) (-2521 (((-112) $ $) 80)) (-1876 (((-112) $ (-767)) NIL)) (-2622 (((-767)) NIL (|has| |#1| (-368)))) (-1724 (($ (-641 |#1|)) NIL) (($) 13)) (-1466 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1945 (($ |#1| $) 74 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4407)))) (-2534 (($) NIL (|has| |#1| (-368)))) (-3035 (((-641 |#1|) $) 19 (|has| $ (-6 -4407)))) (-2342 (((-112) $ $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-2855 ((|#1| $) 55 (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-1497 ((|#1| $) 53 (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 34)) (-3256 (((-917) $) NIL (|has| |#1| (-368)))) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-3888 (($ $ $) 77)) (-3149 ((|#1| $) 25)) (-2566 (($ |#1| $) 69)) (-2083 (($ (-917)) NIL (|has| |#1| (-368)))) (-4052 (((-1114) $) NIL)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2554 ((|#1| $) 27)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 21)) (-2994 (($) 11)) (-2085 (($ $ |#1|) NIL) (($ $ $) 78)) (-3853 (($) NIL) (($ (-641 |#1|)) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) 16)) (-1311 (((-536) $) 50 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 62)) (-3026 (($ $) NIL (|has| |#1| (-368)))) (-2423 (((-858) $) NIL)) (-1775 (((-767) $) NIL)) (-3755 (($ (-641 |#1|)) NIL) (($) 12)) (-1860 (((-112) $ $) NIL)) (-1863 (($ (-641 |#1|)) NIL)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 52)) (-2181 (((-767) $) 10 (|has| $ (-6 -4407)))))
-(((-1096 |#1|) (-425 |#1|) (-1094)) (T -1096))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4177 (($ |#1| |#1|) 16)) (-4358 (((-642 |#1|) (-1 |#1| |#1|) $) 45 (|has| |#1| (-846)))) (-2827 ((|#1| $) 12)) (-2006 ((|#1| $) 11)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2751 (((-564) $) 15)) (-4233 ((|#1| $) 14)) (-2774 ((|#1| $) 13)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-1675 (((-642 |#1|) $) 43 (|has| |#1| (-846))) (((-642 |#1|) (-642 $)) 42 (|has| |#1| (-846)))) (-1314 (($ |#1|) 29)) (-2327 (((-860) $) 28 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3567 (($ |#1| |#1|) 10)) (-2617 (($ $ (-564)) 17)) (-2872 (((-112) $ $) 22 (|has| |#1| (-1097)))))
+(((-1091 |#1|) (-13 (-1090 |#1|) (-10 -7 (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-1092 |#1| (-642 |#1|))) |%noBranch|))) (-1212)) (T -1091))
+NIL
+(-13 (-1090 |#1|) (-10 -7 (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-1092 |#1| (-642 |#1|))) |%noBranch|)))
+((-4177 (($ |#1| |#1|) 8)) (-4358 ((|#2| (-1 |#1| |#1|) $) 16)) (-2827 ((|#1| $) 11)) (-2006 ((|#1| $) 13)) (-2751 (((-564) $) 9)) (-4233 ((|#1| $) 10)) (-2774 ((|#1| $) 12)) (-1675 ((|#2| (-642 $)) 18) ((|#2| $) 17)) (-1314 (($ |#1|) 6)) (-3567 (($ |#1| |#1|) 15)) (-2617 (($ $ (-564)) 14)))
+(((-1092 |#1| |#2|) (-140) (-846) (-1146 |t#1|)) (T -1092))
+((-1675 (*1 *2 *3) (-12 (-5 *3 (-642 *1)) (-4 *1 (-1092 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1146 *4)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1146 *3)))) (-4358 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1092 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1146 *4)))))
+(-13 (-1090 |t#1|) (-10 -8 (-15 -1675 (|t#2| (-642 $))) (-15 -1675 (|t#2| $)) (-15 -4358 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-616 |#1|) . T) ((-1090 |#1|) . T))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-2514 (((-1132) $) 12)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 18) (($ (-1178)) NIL) (((-1178) $) NIL)) (-2474 (((-642 (-1132)) $) 10)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1093) (-13 (-1080) (-10 -8 (-15 -2474 ((-642 (-1132)) $)) (-15 -2514 ((-1132) $))))) (T -1093))
+((-2474 (*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1093)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1093)))))
+(-13 (-1080) (-10 -8 (-15 -2474 ((-642 (-1132)) $)) (-15 -2514 ((-1132) $))))
+((-1717 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2633 (($ $ $) 10)) (-1438 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1094 |#1| |#2|) (-10 -8 (-15 -1717 (|#1| |#2| |#1|)) (-15 -1717 (|#1| |#1| |#2|)) (-15 -1717 (|#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1| |#2|)) (-15 -1438 (|#1| |#1| |#1|))) (-1095 |#2|) (-1097)) (T -1094))
+NIL
+(-10 -8 (-15 -1717 (|#1| |#2| |#1|)) (-15 -1717 (|#1| |#1| |#2|)) (-15 -1717 (|#1| |#1| |#1|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1| |#2|)) (-15 -1438 (|#1| |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-1717 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2633 (($ $ $) 21)) (-2869 (((-112) $ $) 20)) (-3697 (((-112) $ (-769)) 36)) (-1754 (($) 26) (($ (-642 |#1|)) 25)) (-1700 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4410)))) (-1976 (($) 37 T CONST)) (-2595 (($ $) 60 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#1| $) 59 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4410)))) (-2936 (((-642 |#1|) $) 44 (|has| $ (-6 -4410)))) (-1899 (((-112) $ $) 29)) (-3462 (((-112) $ (-769)) 35)) (-3234 (((-642 |#1|) $) 45 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 39)) (-3576 (((-112) $ (-769)) 34)) (-3315 (((-1155) $) 10)) (-2452 (($ $ $) 24)) (-4033 (((-1117) $) 11)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2121 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#1|) (-642 |#1|)) 51 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 (-294 |#1|))) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 30)) (-3719 (((-112) $) 33)) (-2972 (($) 32)) (-1438 (($ $ $) 23) (($ $ |#1|) 22)) (-4043 (((-769) |#1| $) 46 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4410)))) (-3901 (($ $) 31)) (-1314 (((-536) $) 61 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 52)) (-2327 (((-860) $) 12)) (-3715 (($) 28) (($ (-642 |#1|)) 27)) (-1648 (((-112) $ $) 9)) (-2710 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 6)) (-2127 (((-769) $) 38 (|has| $ (-6 -4410)))))
+(((-1095 |#1|) (-140) (-1097)) (T -1095))
+((-1899 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-3715 (*1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-3715 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-1095 *3)))) (-1754 (*1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-1754 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-1095 *3)))) (-2452 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-1438 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-1438 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-2633 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-2869 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))) (-1717 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-1717 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))) (-1717 (*1 *1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))))
+(-13 (-1097) (-151 |t#1|) (-10 -8 (-6 -4400) (-15 -1899 ((-112) $ $)) (-15 -3715 ($)) (-15 -3715 ($ (-642 |t#1|))) (-15 -1754 ($)) (-15 -1754 ($ (-642 |t#1|))) (-15 -2452 ($ $ $)) (-15 -1438 ($ $ $)) (-15 -1438 ($ $ |t#1|)) (-15 -2633 ($ $ $)) (-15 -2869 ((-112) $ $)) (-15 -1717 ($ $ $)) (-15 -1717 ($ $ |t#1|)) (-15 -1717 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) . T) ((-1212) . T))
+((-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 8)) (-1648 (((-112) $ $) 12)))
+(((-1096 |#1|) (-10 -8 (-15 -1648 ((-112) |#1| |#1|)) (-15 -3315 ((-1155) |#1|)) (-15 -4033 ((-1117) |#1|))) (-1097)) (T -1096))
+NIL
+(-10 -8 (-15 -1648 ((-112) |#1| |#1|)) (-15 -3315 ((-1155) |#1|)) (-15 -4033 ((-1117) |#1|)))
+((-2907 (((-112) $ $) 7)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
+(((-1097) (-140)) (T -1097))
+((-4033 (*1 *2 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-1117)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-1155)))) (-1648 (*1 *2 *1 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-112)))))
+(-13 (-102) (-611 (-860)) (-10 -8 (-15 -4033 ((-1117) $)) (-15 -3315 ((-1155) $)) (-15 -1648 ((-112) $ $))))
+(((-102) . T) ((-611 (-860)) . T))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) 36)) (-3687 (($ (-642 (-919))) 72)) (-3598 (((-3 $ "failed") $ (-919) (-919)) 83)) (-2433 (($) 40)) (-2776 (((-112) (-919) $) 44)) (-1945 (((-919) $) 66)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) 39)) (-1950 (((-3 $ "failed") $ (-919)) 79)) (-4033 (((-1117) $) NIL)) (-2549 (((-1262 $)) 49)) (-1773 (((-642 (-919)) $) 27)) (-1926 (((-769) $ (-919) (-919)) 80)) (-2327 (((-860) $) 32)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 24)))
+(((-1098 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -1950 ((-3 $ "failed") $ (-919))) (-15 -3598 ((-3 $ "failed") $ (-919) (-919))) (-15 -1773 ((-642 (-919)) $)) (-15 -3687 ($ (-642 (-919)))) (-15 -2549 ((-1262 $))) (-15 -2776 ((-112) (-919) $)) (-15 -1926 ((-769) $ (-919) (-919))))) (-919) (-919)) (T -1098))
+((-1950 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-919)) (-5 *1 (-1098 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3598 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-919)) (-5 *1 (-1098 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1098 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1098 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) (-2549 (*1 *2) (-12 (-5 *2 (-1262 (-1098 *3 *4))) (-5 *1 (-1098 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919)))) (-2776 (*1 *2 *3 *1) (-12 (-5 *3 (-919)) (-5 *2 (-112)) (-5 *1 (-1098 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1926 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-769)) (-5 *1 (-1098 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-368) (-10 -8 (-15 -1950 ((-3 $ "failed") $ (-919))) (-15 -3598 ((-3 $ "failed") $ (-919) (-919))) (-15 -1773 ((-642 (-919)) $)) (-15 -3687 ($ (-642 (-919)))) (-15 -2549 ((-1262 $))) (-15 -2776 ((-112) (-919) $)) (-15 -1926 ((-769) $ (-919) (-919)))))
+((-2907 (((-112) $ $) NIL)) (-3969 (($) NIL (|has| |#1| (-368)))) (-1717 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 81)) (-2633 (($ $ $) 79)) (-2869 (((-112) $ $) 80)) (-3697 (((-112) $ (-769)) NIL)) (-2521 (((-769)) NIL (|has| |#1| (-368)))) (-1754 (($ (-642 |#1|)) NIL) (($) 13)) (-2462 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2265 (($ |#1| $) 74 (|has| $ (-6 -4410))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4410)))) (-2433 (($) NIL (|has| |#1| (-368)))) (-2936 (((-642 |#1|) $) 19 (|has| $ (-6 -4410)))) (-1899 (((-112) $ $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2755 ((|#1| $) 55 (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-1520 ((|#1| $) 53 (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 34)) (-1945 (((-919) $) NIL (|has| |#1| (-368)))) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-2452 (($ $ $) 77)) (-2730 ((|#1| $) 25)) (-3183 (($ |#1| $) 69)) (-2047 (($ (-919)) NIL (|has| |#1| (-368)))) (-4033 (((-1117) $) NIL)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3388 ((|#1| $) 27)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 21)) (-2972 (($) 11)) (-1438 (($ $ |#1|) NIL) (($ $ $) 78)) (-2593 (($) NIL) (($ (-642 |#1|)) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) 16)) (-1314 (((-536) $) 50 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 62)) (-3880 (($ $) NIL (|has| |#1| (-368)))) (-2327 (((-860) $) NIL)) (-2094 (((-769) $) NIL)) (-3715 (($ (-642 |#1|)) NIL) (($) 12)) (-1648 (((-112) $ $) NIL)) (-4386 (($ (-642 |#1|)) NIL)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 52)) (-2127 (((-769) $) 10 (|has| $ (-6 -4410)))))
+(((-1099 |#1|) (-425 |#1|) (-1097)) (T -1099))
NIL
(-425 |#1|)
-((-3009 (((-112) $ $) 7)) (-2230 (((-112) $) 33)) (-1341 ((|#2| $) 28)) (-1598 (((-112) $) 34)) (-4293 ((|#1| $) 29)) (-1526 (((-112) $) 36)) (-1666 (((-112) $) 38)) (-3801 (((-112) $) 35)) (-2766 (((-1152) $) 10)) (-2513 (((-112) $) 32)) (-1359 ((|#3| $) 27)) (-4052 (((-1114) $) 11)) (-3234 (((-112) $) 31)) (-2962 ((|#4| $) 26)) (-3354 ((|#5| $) 25)) (-1606 (((-112) $ $) 39)) (-4366 (($ $ (-564)) 21) (($ $ (-641 (-564))) 20)) (-3765 (((-641 $) $) 30)) (-1311 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-641 $)) 40)) (-2423 (((-858) $) 12)) (-2546 (($ $) 23)) (-2535 (($ $) 24)) (-1860 (((-112) $ $) 9)) (-3075 (((-112) $) 37)) (-2974 (((-112) $ $) 6)) (-2181 (((-564) $) 22)))
-(((-1097 |#1| |#2| |#3| |#4| |#5|) (-140) (-1094) (-1094) (-1094) (-1094) (-1094)) (T -1097))
-((-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-1666 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2230 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3765 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-1341 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2535 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-2546 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))))
-(-13 (-1094) (-616 |t#1|) (-616 |t#2|) (-616 |t#3|) (-616 |t#4|) (-616 |t#4|) (-616 |t#5|) (-616 (-641 $)) (-10 -8 (-15 -1606 ((-112) $ $)) (-15 -1666 ((-112) $)) (-15 -3075 ((-112) $)) (-15 -1526 ((-112) $)) (-15 -3801 ((-112) $)) (-15 -1598 ((-112) $)) (-15 -2230 ((-112) $)) (-15 -2513 ((-112) $)) (-15 -3234 ((-112) $)) (-15 -3765 ((-641 $) $)) (-15 -4293 (|t#1| $)) (-15 -1341 (|t#2| $)) (-15 -1359 (|t#3| $)) (-15 -2962 (|t#4| $)) (-15 -3354 (|t#5| $)) (-15 -2535 ($ $)) (-15 -2546 ($ $)) (-15 -2181 ((-564) $)) (-15 -4366 ($ $ (-564))) (-15 -4366 ($ $ (-641 (-564))))))
-(((-102) . T) ((-611 (-858)) . T) ((-616 (-641 $)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 |#4|) . T) ((-616 |#5|) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-2230 (((-112) $) NIL)) (-1341 (((-1170) $) NIL)) (-1598 (((-112) $) NIL)) (-4293 (((-1152) $) NIL)) (-1526 (((-112) $) NIL)) (-1666 (((-112) $) NIL)) (-3801 (((-112) $) NIL)) (-2766 (((-1152) $) NIL)) (-2513 (((-112) $) NIL)) (-1359 (((-564) $) NIL)) (-4052 (((-1114) $) NIL)) (-3234 (((-112) $) NIL)) (-2962 (((-225) $) NIL)) (-3354 (((-858) $) NIL)) (-1606 (((-112) $ $) NIL)) (-4366 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-3765 (((-641 $) $) NIL)) (-1311 (($ (-1152)) NIL) (($ (-1170)) NIL) (($ (-564)) NIL) (($ (-225)) NIL) (($ (-858)) NIL) (($ (-641 $)) NIL)) (-2423 (((-858) $) NIL)) (-2546 (($ $) NIL)) (-2535 (($ $) NIL)) (-1860 (((-112) $ $) NIL)) (-3075 (((-112) $) NIL)) (-2974 (((-112) $ $) NIL)) (-2181 (((-564) $) NIL)))
-(((-1098) (-1097 (-1152) (-1170) (-564) (-225) (-858))) (T -1098))
-NIL
-(-1097 (-1152) (-1170) (-564) (-225) (-858))
-((-3009 (((-112) $ $) NIL)) (-2230 (((-112) $) 45)) (-1341 ((|#2| $) 48)) (-1598 (((-112) $) 20)) (-4293 ((|#1| $) 21)) (-1526 (((-112) $) 42)) (-1666 (((-112) $) 14)) (-3801 (((-112) $) 44)) (-2766 (((-1152) $) NIL)) (-2513 (((-112) $) 46)) (-1359 ((|#3| $) 50)) (-4052 (((-1114) $) NIL)) (-3234 (((-112) $) 47)) (-2962 ((|#4| $) 49)) (-3354 ((|#5| $) 51)) (-1606 (((-112) $ $) 41)) (-4366 (($ $ (-564)) 62) (($ $ (-641 (-564))) 64)) (-3765 (((-641 $) $) 27)) (-1311 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-641 $)) 52)) (-2423 (((-858) $) 28)) (-2546 (($ $) 26)) (-2535 (($ $) 58)) (-1860 (((-112) $ $) NIL)) (-3075 (((-112) $) 23)) (-2974 (((-112) $ $) 40)) (-2181 (((-564) $) 60)))
-(((-1099 |#1| |#2| |#3| |#4| |#5|) (-1097 |#1| |#2| |#3| |#4| |#5|) (-1094) (-1094) (-1094) (-1094) (-1094)) (T -1099))
-NIL
-(-1097 |#1| |#2| |#3| |#4| |#5|)
-((-3111 (((-1264) $) 23)) (-2338 (($ (-1170) (-434) |#2|) 11)) (-2423 (((-858) $) 16)))
-(((-1100 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -2338 ($ (-1170) (-434) |#2|)))) (-1094) (-430 |#1|)) (T -1100))
-((-2338 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-1094)) (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5)))))
-(-13 (-395) (-10 -8 (-15 -2338 ($ (-1170) (-434) |#2|))))
-((-3074 (((-112) |#5| |#5|) 44)) (-1919 (((-112) |#5| |#5|) 58)) (-4272 (((-112) |#5| (-641 |#5|)) 81) (((-112) |#5| |#5|) 67)) (-2099 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-2833 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) 69)) (-4213 (((-1264)) 33)) (-3655 (((-1264) (-1152) (-1152) (-1152)) 29)) (-2893 (((-641 |#5|) (-641 |#5|)) 100)) (-4200 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)))) 92)) (-3704 (((-641 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 122)) (-3525 (((-112) |#5| |#5|) 53)) (-4004 (((-3 (-112) "failed") |#5| |#5|) 77)) (-4183 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-3238 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-2582 (((-112) (-641 |#4|) (-641 |#4|)) 66)) (-3490 (((-3 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-4253 (((-641 |#5|) (-641 |#5|)) 49)))
-(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3655 ((-1264) (-1152) (-1152) (-1152))) (-15 -4213 ((-1264))) (-15 -3074 ((-112) |#5| |#5|)) (-15 -4253 ((-641 |#5|) (-641 |#5|))) (-15 -3525 ((-112) |#5| |#5|)) (-15 -1919 ((-112) |#5| |#5|)) (-15 -2099 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4183 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3238 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2582 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4004 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4272 ((-112) |#5| |#5|)) (-15 -4272 ((-112) |#5| (-641 |#5|))) (-15 -2893 ((-641 |#5|) (-641 |#5|))) (-15 -2833 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)))) (-15 -4200 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) (-15 -3704 ((-641 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3490 ((-3 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1101))
-((-3490 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -1606 (-641 *9)) (|:| -3577 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-3704 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -1606 (-641 *9)) (|:| -3577 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -3577 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-2833 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3577 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3)))) (-4272 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-4004 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2582 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3238 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4183 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2099 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-1919 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3525 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-4253 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-3074 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-4213 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3655 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3655 ((-1264) (-1152) (-1152) (-1152))) (-15 -4213 ((-1264))) (-15 -3074 ((-112) |#5| |#5|)) (-15 -4253 ((-641 |#5|) (-641 |#5|))) (-15 -3525 ((-112) |#5| |#5|)) (-15 -1919 ((-112) |#5| |#5|)) (-15 -2099 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4183 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3238 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2582 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4004 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4272 ((-112) |#5| |#5|)) (-15 -4272 ((-112) |#5| (-641 |#5|))) (-15 -2893 ((-641 |#5|) (-641 |#5|))) (-15 -2833 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)))) (-15 -4200 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) (-15 -3704 ((-641 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3490 ((-3 (-2 (|:| -1606 (-641 |#4|)) (|:| -3577 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-4181 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#5|) 111)) (-1461 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#4| |#4| |#5|) 83)) (-3379 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|) 105)) (-4219 (((-641 |#5|) |#4| |#5|) 127)) (-4096 (((-641 |#5|) |#4| |#5|) 134)) (-2641 (((-641 |#5|) |#4| |#5|) 135)) (-4356 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|) 112)) (-3919 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|) 133)) (-3503 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-2156 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#3| (-112)) 95) (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2786 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|) 90)) (-2552 (((-1264)) 37)) (-3730 (((-1264)) 26)) (-4180 (((-1264) (-1152) (-1152) (-1152)) 33)) (-3742 (((-1264) (-1152) (-1152) (-1152)) 22)))
-(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3742 ((-1264) (-1152) (-1152) (-1152))) (-15 -3730 ((-1264))) (-15 -4180 ((-1264) (-1152) (-1152) (-1152))) (-15 -2552 ((-1264))) (-15 -1461 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -2156 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2156 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#3| (-112))) (-15 -2786 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -3379 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -3503 ((-112) |#4| |#5|)) (-15 -4356 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|)) (-15 -4219 ((-641 |#5|) |#4| |#5|)) (-15 -3919 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|)) (-15 -4096 ((-641 |#5|) |#4| |#5|)) (-15 -3503 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|)) (-15 -2641 ((-641 |#5|) |#4| |#5|)) (-15 -4181 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1102))
-((-4181 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2641 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3503 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4096 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3919 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4219 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4356 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3503 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3379 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2786 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2156 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3577 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -3577 *9)))) (-5 *1 (-1102 *6 *7 *4 *8 *9)))) (-2156 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4)))) (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-1461 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2552 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-4180 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3730 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3742 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3742 ((-1264) (-1152) (-1152) (-1152))) (-15 -3730 ((-1264))) (-15 -4180 ((-1264) (-1152) (-1152) (-1152))) (-15 -2552 ((-1264))) (-15 -1461 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -2156 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2156 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) |#3| (-112))) (-15 -2786 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -3379 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#4| |#5|)) (-15 -3503 ((-112) |#4| |#5|)) (-15 -4356 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|)) (-15 -4219 ((-641 |#5|) |#4| |#5|)) (-15 -3919 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|)) (-15 -4096 ((-641 |#5|) |#4| |#5|)) (-15 -3503 ((-641 (-2 (|:| |val| (-112)) (|:| -3577 |#5|))) |#4| |#5|)) (-15 -2641 ((-641 |#5|) |#4| |#5|)) (-15 -4181 ((-641 (-2 (|:| |val| |#4|) (|:| -3577 |#5|))) |#4| |#5|)))
-((-3009 (((-112) $ $) 7)) (-3605 (((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 |#4|)))) (-641 |#4|)) 86)) (-2578 (((-641 $) (-641 |#4|)) 87) (((-641 $) (-641 |#4|) (-112)) 112)) (-3836 (((-641 |#3|) $) 34)) (-3342 (((-112) $) 27)) (-1594 (((-112) $) 18 (|has| |#1| (-556)))) (-3631 (((-112) |#4| $) 102) (((-112) $) 98)) (-3494 ((|#4| |#4| $) 93)) (-2683 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| $) 127)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) 28)) (-1876 (((-112) $ (-767)) 45)) (-1667 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 80)) (-4080 (($) 46 T CONST)) (-1968 (((-112) $) 23 (|has| |#1| (-556)))) (-2238 (((-112) $ $) 25 (|has| |#1| (-556)))) (-3956 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1489 (((-112) $) 26 (|has| |#1| (-556)))) (-2961 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3703 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) 20 (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) 37)) (-3120 (($ (-641 |#4|)) 36)) (-2671 (((-3 $ "failed") $) 83)) (-2405 ((|#4| |#4| $) 90)) (-2696 (($ $) 69 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#4| $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3870 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2248 ((|#4| |#4| $) 88)) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4020 (((-2 (|:| -1604 (-641 |#4|)) (|:| -2319 (-641 |#4|))) $) 106)) (-4014 (((-112) |#4| $) 137)) (-3071 (((-112) |#4| $) 134)) (-1865 (((-112) |#4| $) 138) (((-112) $) 135)) (-3035 (((-641 |#4|) $) 53 (|has| $ (-6 -4407)))) (-2675 (((-112) |#4| $) 105) (((-112) $) 104)) (-3378 ((|#3| $) 35)) (-3097 (((-112) $ (-767)) 44)) (-1554 (((-641 |#4|) $) 54 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) 48)) (-2814 (((-641 |#3|) $) 33)) (-3169 (((-112) |#3| $) 32)) (-3619 (((-112) $ (-767)) 43)) (-2766 (((-1152) $) 10)) (-2227 (((-3 |#4| (-641 $)) |#4| |#4| $) 129)) (-2146 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| |#4| $) 128)) (-2615 (((-3 |#4| "failed") $) 84)) (-4022 (((-641 $) |#4| $) 130)) (-1995 (((-3 (-112) (-641 $)) |#4| $) 133)) (-4259 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3888 (((-641 $) |#4| $) 126) (((-641 $) (-641 |#4|) $) 125) (((-641 $) (-641 |#4|) (-641 $)) 124) (((-641 $) |#4| (-641 $)) 123)) (-3531 (($ |#4| $) 118) (($ (-641 |#4|) $) 117)) (-3167 (((-641 |#4|) $) 108)) (-3441 (((-112) |#4| $) 100) (((-112) $) 96)) (-4241 ((|#4| |#4| $) 91)) (-2582 (((-112) $ $) 111)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-1929 (((-112) |#4| $) 101) (((-112) $) 97)) (-3347 ((|#4| |#4| $) 92)) (-4052 (((-1114) $) 11)) (-2658 (((-3 |#4| "failed") $) 85)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2533 (((-3 $ "failed") $ |#4|) 79)) (-4016 (($ $ |#4|) 78) (((-641 $) |#4| $) 116) (((-641 $) |#4| (-641 $)) 115) (((-641 $) (-641 |#4|) $) 114) (((-641 $) (-641 |#4|) (-641 $)) 113)) (-4377 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) 39)) (-1976 (((-112) $) 42)) (-2994 (($) 41)) (-1568 (((-767) $) 107)) (-4062 (((-767) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4407)))) (-3926 (($ $) 40)) (-1311 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2435 (($ (-641 |#4|)) 61)) (-1834 (($ $ |#3|) 29)) (-1648 (($ $ |#3|) 31)) (-1492 (($ $) 89)) (-2577 (($ $ |#3|) 30)) (-2423 (((-858) $) 12) (((-641 |#4|) $) 38)) (-3840 (((-767) $) 77 (|has| |#3| (-368)))) (-1860 (((-112) $ $) 9)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3212 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 99)) (-3418 (((-641 $) |#4| $) 122) (((-641 $) |#4| (-641 $)) 121) (((-641 $) (-641 |#4|) $) 120) (((-641 $) (-641 |#4|) (-641 $)) 119)) (-1368 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-3579 (((-641 |#3|) $) 82)) (-1947 (((-112) |#4| $) 136)) (-1816 (((-112) |#3| $) 81)) (-2974 (((-112) $ $) 6)) (-2181 (((-767) $) 47 (|has| $ (-6 -4407)))))
-(((-1103 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1103))
-NIL
-(-13 (-1065 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T))
-((-2265 (((-641 (-564)) (-564) (-564) (-564)) 37)) (-2707 (((-641 (-564)) (-564) (-564) (-564)) 27)) (-3069 (((-641 (-564)) (-564) (-564) (-564)) 32)) (-1589 (((-564) (-564) (-564)) 22)) (-3962 (((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564)) 73) (((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564)) 68)) (-3518 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112)) 50)) (-2311 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 72)) (-2261 (((-685 (-564)) (-641 (-564)) (-641 (-564))) 56)) (-4211 (((-641 (-685 (-564))) (-641 (-564))) 61)) (-2718 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 76)) (-1983 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564))) 86)))
-(((-1104) (-10 -7 (-15 -1983 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -2718 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -4211 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2261 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -2311 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -3518 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -3962 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -3962 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -1589 ((-564) (-564) (-564))) (-15 -3069 ((-641 (-564)) (-564) (-564) (-564))) (-15 -2707 ((-641 (-564)) (-564) (-564) (-564))) (-15 -2265 ((-641 (-564)) (-564) (-564) (-564))))) (T -1104))
-((-2265 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-2707 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-3069 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-1589 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104)))) (-3962 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564)) (-5 *1 (-1104)))) (-3962 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104)))) (-3518 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104)))) (-2311 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104)))) (-2261 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))) (-4211 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1104)))) (-2718 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104)))) (-1983 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))))
-(-10 -7 (-15 -1983 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -2718 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -4211 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2261 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -2311 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -3518 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -3962 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -3962 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -1589 ((-564) (-564) (-564))) (-15 -3069 ((-641 (-564)) (-564) (-564) (-564))) (-15 -2707 ((-641 (-564)) (-564) (-564) (-564))) (-15 -2265 ((-641 (-564)) (-564) (-564) (-564))))
-((** (($ $ (-917)) 10)))
-(((-1105 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917)))) (-1106)) (T -1105))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-917))))
-((-3009 (((-112) $ $) 7)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)) (** (($ $ (-917)) 14)) (* (($ $ $) 15)))
-(((-1106) (-140)) (T -1106))
-((* (*1 *1 *1 *1) (-4 *1 (-1106))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1106)) (-5 *2 (-917)))))
-(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-917)))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-1494 (((-112) $) NIL (|has| |#3| (-131)))) (-3586 (($ (-917)) NIL (|has| |#3| (-1045)))) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3878 (($ $ $) NIL (|has| |#3| (-789)))) (-4012 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1876 (((-112) $ (-767)) NIL)) (-2622 (((-767)) NIL (|has| |#3| (-368)))) (-3249 (((-564) $) NIL (|has| |#3| (-844)))) (-3904 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094)))) (-3120 (((-564) $) NIL (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094)))) ((|#3| $) NIL (|has| |#3| (-1094)))) (-4277 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1045)))) (((-2 (|:| -2511 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1045))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1045)))) (-3293 (((-3 $ "failed") $) NIL (|has| |#3| (-722)))) (-2534 (($) NIL (|has| |#3| (-368)))) (-2726 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#3| $ (-564)) 12)) (-2384 (((-112) $) NIL (|has| |#3| (-844)))) (-3035 (((-641 |#3|) $) NIL (|has| $ (-6 -4407)))) (-4112 (((-112) $) NIL (|has| |#3| (-722)))) (-3326 (((-112) $) NIL (|has| |#3| (-844)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1554 (((-641 |#3|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2714 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#3| |#3|) $) NIL)) (-3256 (((-917) $) NIL (|has| |#3| (-368)))) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#3| (-1094)))) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-2083 (($ (-917)) NIL (|has| |#3| (-368)))) (-4052 (((-1114) $) NIL (|has| |#3| (-1094)))) (-2658 ((|#3| $) NIL (|has| (-564) (-846)))) (-1592 (($ $ |#3|) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1094))))) (-2075 (((-641 |#3|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) NIL)) (-3270 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-3729 (($ (-1259 |#3|)) NIL)) (-4327 (((-134)) NIL (|has| |#3| (-363)))) (-3254 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-4062 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1094))))) (-3926 (($ $) NIL)) (-2423 (((-1259 |#3|) $) NIL) (($ (-564)) NIL (-2807 (-12 (|has| |#3| (-1034 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1045)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1034 (-407 (-564)))) (|has| |#3| (-1094)))) (($ |#3|) NIL (|has| |#3| (-1094))) (((-858) $) NIL (|has| |#3| (-611 (-858))))) (-3719 (((-767)) NIL (|has| |#3| (-1045)) CONST)) (-1860 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-1368 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-3673 (($ $) NIL (|has| |#3| (-844)))) (-2403 (($) NIL (|has| |#3| (-131)) CONST)) (-2417 (($) NIL (|has| |#3| (-722)) CONST)) (-4063 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#3| (-896 (-1170))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-3034 (((-112) $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3011 (((-112) $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2974 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-3023 (((-112) $ $) NIL (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2999 (((-112) $ $) 24 (-2807 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3092 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-3082 (($ $ $) NIL (|has| |#3| (-1045))) (($ $) NIL (|has| |#3| (-1045)))) (-3070 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-767)) NIL (|has| |#3| (-722))) (($ $ (-917)) NIL (|has| |#3| (-722)))) (* (($ (-564) $) NIL (|has| |#3| (-1045))) (($ $ $) NIL (|has| |#3| (-722))) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ (-767) $) NIL (|has| |#3| (-131))) (($ (-917) $) NIL (|has| |#3| (-25)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1107 |#1| |#2| |#3|) (-238 |#1| |#3|) (-767) (-767) (-789)) (T -1107))
+((-2907 (((-112) $ $) 7)) (-3029 (((-112) $) 33)) (-1347 ((|#2| $) 28)) (-2848 (((-112) $) 34)) (-4287 ((|#1| $) 29)) (-4222 (((-112) $) 36)) (-3367 (((-112) $) 38)) (-1305 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-3174 (((-112) $) 32)) (-1367 ((|#3| $) 27)) (-4033 (((-1117) $) 11)) (-1558 (((-112) $) 31)) (-2861 ((|#4| $) 26)) (-3284 ((|#5| $) 25)) (-1640 (((-112) $ $) 39)) (-4368 (($ $ (-564)) 21) (($ $ (-642 (-564))) 20)) (-3726 (((-642 $) $) 30)) (-1314 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-642 $)) 40)) (-2327 (((-860) $) 12)) (-2445 (($ $) 23)) (-2434 (($ $) 24)) (-1648 (((-112) $ $) 9)) (-3292 (((-112) $) 37)) (-2872 (((-112) $ $) 6)) (-2127 (((-564) $) 22)))
+(((-1100 |#1| |#2| |#3| |#4| |#5|) (-140) (-1097) (-1097) (-1097) (-1097) (-1097)) (T -1100))
+((-1640 (*1 *2 *1 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-2848 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-1558 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-642 *1)) (-4 *1 (-1100 *3 *4 *5 *6 *7)))) (-4287 (*1 *2 *1) (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *2 *4 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *2 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) (-2861 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *2 *6)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) (-3284 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *2)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))) (-2434 (*1 *1 *1) (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *2 (-1097)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)))) (-2445 (*1 *1 *1) (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *2 (-1097)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-564)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)))))
+(-13 (-1097) (-616 |t#1|) (-616 |t#2|) (-616 |t#3|) (-616 |t#4|) (-616 |t#4|) (-616 |t#5|) (-616 (-642 $)) (-10 -8 (-15 -1640 ((-112) $ $)) (-15 -3367 ((-112) $)) (-15 -3292 ((-112) $)) (-15 -4222 ((-112) $)) (-15 -1305 ((-112) $)) (-15 -2848 ((-112) $)) (-15 -3029 ((-112) $)) (-15 -3174 ((-112) $)) (-15 -1558 ((-112) $)) (-15 -3726 ((-642 $) $)) (-15 -4287 (|t#1| $)) (-15 -1347 (|t#2| $)) (-15 -1367 (|t#3| $)) (-15 -2861 (|t#4| $)) (-15 -3284 (|t#5| $)) (-15 -2434 ($ $)) (-15 -2445 ($ $)) (-15 -2127 ((-564) $)) (-15 -4368 ($ $ (-564))) (-15 -4368 ($ $ (-642 (-564))))))
+(((-102) . T) ((-611 (-860)) . T) ((-616 (-642 $)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 |#4|) . T) ((-616 |#5|) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-3029 (((-112) $) NIL)) (-1347 (((-1173) $) NIL)) (-2848 (((-112) $) NIL)) (-4287 (((-1155) $) NIL)) (-4222 (((-112) $) NIL)) (-3367 (((-112) $) NIL)) (-1305 (((-112) $) NIL)) (-3315 (((-1155) $) NIL)) (-3174 (((-112) $) NIL)) (-1367 (((-564) $) NIL)) (-4033 (((-1117) $) NIL)) (-1558 (((-112) $) NIL)) (-2861 (((-225) $) NIL)) (-3284 (((-860) $) NIL)) (-1640 (((-112) $ $) NIL)) (-4368 (($ $ (-564)) NIL) (($ $ (-642 (-564))) NIL)) (-3726 (((-642 $) $) NIL)) (-1314 (($ (-1155)) NIL) (($ (-1173)) NIL) (($ (-564)) NIL) (($ (-225)) NIL) (($ (-860)) NIL) (($ (-642 $)) NIL)) (-2327 (((-860) $) NIL)) (-2445 (($ $) NIL)) (-2434 (($ $) NIL)) (-1648 (((-112) $ $) NIL)) (-3292 (((-112) $) NIL)) (-2872 (((-112) $ $) NIL)) (-2127 (((-564) $) NIL)))
+(((-1101) (-1100 (-1155) (-1173) (-564) (-225) (-860))) (T -1101))
+NIL
+(-1100 (-1155) (-1173) (-564) (-225) (-860))
+((-2907 (((-112) $ $) NIL)) (-3029 (((-112) $) 45)) (-1347 ((|#2| $) 48)) (-2848 (((-112) $) 20)) (-4287 ((|#1| $) 21)) (-4222 (((-112) $) 42)) (-3367 (((-112) $) 14)) (-1305 (((-112) $) 44)) (-3315 (((-1155) $) NIL)) (-3174 (((-112) $) 46)) (-1367 ((|#3| $) 50)) (-4033 (((-1117) $) NIL)) (-1558 (((-112) $) 47)) (-2861 ((|#4| $) 49)) (-3284 ((|#5| $) 51)) (-1640 (((-112) $ $) 41)) (-4368 (($ $ (-564)) 62) (($ $ (-642 (-564))) 64)) (-3726 (((-642 $) $) 27)) (-1314 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-642 $)) 52)) (-2327 (((-860) $) 28)) (-2445 (($ $) 26)) (-2434 (($ $) 58)) (-1648 (((-112) $ $) NIL)) (-3292 (((-112) $) 23)) (-2872 (((-112) $ $) 40)) (-2127 (((-564) $) 60)))
+(((-1102 |#1| |#2| |#3| |#4| |#5|) (-1100 |#1| |#2| |#3| |#4| |#5|) (-1097) (-1097) (-1097) (-1097) (-1097)) (T -1102))
+NIL
+(-1100 |#1| |#2| |#3| |#4| |#5|)
+((-3019 (((-1267) $) 23)) (-2256 (($ (-1173) (-434) |#2|) 11)) (-2327 (((-860) $) 16)))
+(((-1103 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -2256 ($ (-1173) (-434) |#2|)))) (-1097) (-430 |#1|)) (T -1103))
+((-2256 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *3 (-434)) (-4 *5 (-1097)) (-5 *1 (-1103 *5 *4)) (-4 *4 (-430 *5)))))
+(-13 (-395) (-10 -8 (-15 -2256 ($ (-1173) (-434) |#2|))))
+((-2221 (((-112) |#5| |#5|) 44)) (-2473 (((-112) |#5| |#5|) 58)) (-4116 (((-112) |#5| (-642 |#5|)) 81) (((-112) |#5| |#5|) 67)) (-1811 (((-112) (-642 |#4|) (-642 |#4|)) 64)) (-2597 (((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) 69)) (-2913 (((-1267)) 33)) (-3163 (((-1267) (-1155) (-1155) (-1155)) 29)) (-4060 (((-642 |#5|) (-642 |#5|)) 100)) (-2991 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)))) 92)) (-3775 (((-642 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112)) 122)) (-1999 (((-112) |#5| |#5|) 53)) (-2159 (((-3 (-112) "failed") |#5| |#5|) 77)) (-2667 (((-112) (-642 |#4|) (-642 |#4|)) 63)) (-3118 (((-112) (-642 |#4|) (-642 |#4|)) 65)) (-3819 (((-112) (-642 |#4|) (-642 |#4|)) 66)) (-4364 (((-3 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-1818 (((-642 |#5|) (-642 |#5|)) 49)))
+(((-1104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3163 ((-1267) (-1155) (-1155) (-1155))) (-15 -2913 ((-1267))) (-15 -2221 ((-112) |#5| |#5|)) (-15 -1818 ((-642 |#5|) (-642 |#5|))) (-15 -1999 ((-112) |#5| |#5|)) (-15 -2473 ((-112) |#5| |#5|)) (-15 -1811 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -2667 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3118 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3819 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -2159 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4116 ((-112) |#5| |#5|)) (-15 -4116 ((-112) |#5| (-642 |#5|))) (-15 -4060 ((-642 |#5|) (-642 |#5|))) (-15 -2597 ((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)))) (-15 -2991 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) (-15 -3775 ((-642 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -4364 ((-3 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -1104))
+((-4364 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| -1640 (-642 *9)) (|:| -3530 *4) (|:| |ineq| (-642 *9)))) (-5 *1 (-1104 *6 *7 *8 *9 *4)) (-5 *3 (-642 *9)) (-4 *4 (-1068 *6 *7 *8 *9)))) (-3775 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-642 *10)) (-5 *5 (-112)) (-4 *10 (-1068 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8)) (-5 *2 (-642 (-2 (|:| -1640 (-642 *9)) (|:| -3530 *10) (|:| |ineq| (-642 *9))))) (-5 *1 (-1104 *6 *7 *8 *9 *10)) (-5 *3 (-642 *9)))) (-2991 (*1 *2 *2) (-12 (-5 *2 (-642 (-2 (|:| |val| (-642 *6)) (|:| -3530 *7)))) (-4 *6 (-1062 *3 *4 *5)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1104 *3 *4 *5 *6 *7)))) (-2597 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -3530 *8))) (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *8)))) (-4060 (*1 *2 *2) (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-1104 *3 *4 *5 *6 *7)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1104 *5 *6 *7 *8 *3)))) (-4116 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-2159 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-3819 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-3118 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-2667 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-1811 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-2473 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-1999 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-1104 *3 *4 *5 *6 *7)))) (-2221 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))) (-2913 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-3163 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3163 ((-1267) (-1155) (-1155) (-1155))) (-15 -2913 ((-1267))) (-15 -2221 ((-112) |#5| |#5|)) (-15 -1818 ((-642 |#5|) (-642 |#5|))) (-15 -1999 ((-112) |#5| |#5|)) (-15 -2473 ((-112) |#5| |#5|)) (-15 -1811 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -2667 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3118 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -3819 ((-112) (-642 |#4|) (-642 |#4|))) (-15 -2159 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4116 ((-112) |#5| |#5|)) (-15 -4116 ((-112) |#5| (-642 |#5|))) (-15 -4060 ((-642 |#5|) (-642 |#5|))) (-15 -2597 ((-112) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)))) (-15 -2991 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) (-15 -3775 ((-642 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|)))) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -4364 ((-3 (-2 (|:| -1640 (-642 |#4|)) (|:| -3530 |#5|) (|:| |ineq| (-642 |#4|))) "failed") (-642 |#4|) |#5| (-642 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2444 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#5|) 111)) (-3386 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#4| |#4| |#5|) 83)) (-3493 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|) 105)) (-2143 (((-642 |#5|) |#4| |#5|) 127)) (-2211 (((-642 |#5|) |#4| |#5|) 134)) (-3874 (((-642 |#5|) |#4| |#5|) 135)) (-1924 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|) 112)) (-2177 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|) 133)) (-4068 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3916 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#3| (-112)) 95) (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-3768 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|) 90)) (-2326 (((-1267)) 37)) (-4374 (((-1267)) 26)) (-1988 (((-1267) (-1155) (-1155) (-1155)) 33)) (-3223 (((-1267) (-1155) (-1155) (-1155)) 22)))
+(((-1105 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3223 ((-1267) (-1155) (-1155) (-1155))) (-15 -4374 ((-1267))) (-15 -1988 ((-1267) (-1155) (-1155) (-1155))) (-15 -2326 ((-1267))) (-15 -3386 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -3916 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3916 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#3| (-112))) (-15 -3768 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -3493 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -4068 ((-112) |#4| |#5|)) (-15 -1924 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|)) (-15 -2143 ((-642 |#5|) |#4| |#5|)) (-15 -2177 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|)) (-15 -2211 ((-642 |#5|) |#4| |#5|)) (-15 -4068 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|)) (-15 -3874 ((-642 |#5|) |#4| |#5|)) (-15 -2444 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#5|))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3| |#4|)) (T -1105))
+((-2444 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3874 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-4068 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2211 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2177 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2143 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4)) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-1924 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-4068 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3493 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3768 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-3916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -3530 *9)))) (-5 *5 (-112)) (-4 *8 (-1062 *6 *7 *4)) (-4 *9 (-1068 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *4 (-848)) (-5 *2 (-642 (-2 (|:| |val| *8) (|:| -3530 *9)))) (-5 *1 (-1105 *6 *7 *4 *8 *9)))) (-3916 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4)))) (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3)))) (-3386 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))) (-2326 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-1988 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-1105 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))) (-4374 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267)) (-5 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))) (-3223 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267)) (-5 *1 (-1105 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3223 ((-1267) (-1155) (-1155) (-1155))) (-15 -4374 ((-1267))) (-15 -1988 ((-1267) (-1155) (-1155) (-1155))) (-15 -2326 ((-1267))) (-15 -3386 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -3916 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3916 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) |#3| (-112))) (-15 -3768 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -3493 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#4| |#5|)) (-15 -4068 ((-112) |#4| |#5|)) (-15 -1924 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|)) (-15 -2143 ((-642 |#5|) |#4| |#5|)) (-15 -2177 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|)) (-15 -2211 ((-642 |#5|) |#4| |#5|)) (-15 -4068 ((-642 (-2 (|:| |val| (-112)) (|:| -3530 |#5|))) |#4| |#5|)) (-15 -3874 ((-642 |#5|) |#4| |#5|)) (-15 -2444 ((-642 (-2 (|:| |val| |#4|) (|:| -3530 |#5|))) |#4| |#5|)))
+((-2907 (((-112) $ $) 7)) (-3126 (((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 |#4|)))) (-642 |#4|)) 86)) (-4208 (((-642 $) (-642 |#4|)) 87) (((-642 $) (-642 |#4|) (-112)) 112)) (-3802 (((-642 |#3|) $) 34)) (-3317 (((-112) $) 27)) (-4293 (((-112) $) 18 (|has| |#1| (-556)))) (-3831 (((-112) |#4| $) 102) (((-112) $) 98)) (-3923 ((|#4| |#4| $) 93)) (-4316 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| $) 127)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) 28)) (-3697 (((-112) $ (-769)) 45)) (-1700 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 80)) (-1976 (($) 46 T CONST)) (-1496 (((-112) $) 23 (|has| |#1| (-556)))) (-4375 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2888 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2850 (((-112) $) 26 (|has| |#1| (-556)))) (-1975 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2627 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) 37)) (-3027 (($ (-642 |#4|)) 36)) (-2570 (((-3 $ "failed") $) 83)) (-1493 ((|#4| |#4| $) 90)) (-2595 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1597 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1821 ((|#4| |#4| $) 88)) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1738 (((-2 (|:| -1639 (-642 |#4|)) (|:| -2241 (-642 |#4|))) $) 106)) (-2561 (((-112) |#4| $) 137)) (-3204 (((-112) |#4| $) 134)) (-3936 (((-112) |#4| $) 138) (((-112) $) 135)) (-2936 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-2846 (((-112) |#4| $) 105) (((-112) $) 104)) (-3290 ((|#3| $) 35)) (-3462 (((-112) $ (-769)) 44)) (-3234 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) 48)) (-3370 (((-642 |#3|) $) 33)) (-4120 (((-112) |#3| $) 32)) (-3576 (((-112) $ (-769)) 43)) (-3315 (((-1155) $) 10)) (-4162 (((-3 |#4| (-642 $)) |#4| |#4| $) 129)) (-2899 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| |#4| $) 128)) (-2514 (((-3 |#4| "failed") $) 84)) (-2340 (((-642 $) |#4| $) 130)) (-3902 (((-3 (-112) (-642 $)) |#4| $) 133)) (-2685 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2452 (((-642 $) |#4| $) 126) (((-642 $) (-642 |#4|) $) 125) (((-642 $) (-642 |#4|) (-642 $)) 124) (((-642 $) |#4| (-642 $)) 123)) (-4193 (($ |#4| $) 118) (($ (-642 |#4|) $) 117)) (-2743 (((-642 |#4|) $) 108)) (-3350 (((-112) |#4| $) 100) (((-112) $) 96)) (-1415 ((|#4| |#4| $) 91)) (-3819 (((-112) $ $) 111)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-2262 (((-112) |#4| $) 101) (((-112) $) 97)) (-1372 ((|#4| |#4| $) 92)) (-4033 (((-1117) $) 11)) (-2557 (((-3 |#4| "failed") $) 85)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3724 (((-3 $ "failed") $ |#4|) 79)) (-3804 (($ $ |#4|) 78) (((-642 $) |#4| $) 116) (((-642 $) |#4| (-642 $)) 115) (((-642 $) (-642 |#4|) $) 114) (((-642 $) (-642 |#4|) (-642 $)) 113)) (-2121 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) 39)) (-3719 (((-112) $) 42)) (-2972 (($) 41)) (-2775 (((-769) $) 107)) (-4043 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3901 (($ $) 40)) (-1314 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2337 (($ (-642 |#4|)) 61)) (-3153 (($ $ |#3|) 29)) (-3696 (($ $ |#3|) 31)) (-3114 (($ $) 89)) (-1749 (($ $ |#3|) 30)) (-2327 (((-860) $) 12) (((-642 |#4|) $) 38)) (-4195 (((-769) $) 77 (|has| |#3| (-368)))) (-1648 (((-112) $ $) 9)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3497 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) 99)) (-4325 (((-642 $) |#4| $) 122) (((-642 $) |#4| (-642 $)) 121) (((-642 $) (-642 |#4|) $) 120) (((-642 $) (-642 |#4|) (-642 $)) 119)) (-2710 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-2240 (((-642 |#3|) $) 82)) (-3503 (((-112) |#4| $) 136)) (-1362 (((-112) |#3| $) 81)) (-2872 (((-112) $ $) 6)) (-2127 (((-769) $) 47 (|has| $ (-6 -4410)))))
+(((-1106 |#1| |#2| |#3| |#4|) (-140) (-452) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -1106))
+NIL
+(-13 (-1068 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-974 |#1| |#2| |#3| |#4|) . T) ((-1068 |#1| |#2| |#3| |#4|) . T) ((-1097) . T) ((-1205 |#1| |#2| |#3| |#4|) . T) ((-1212) . T))
+((-3801 (((-642 (-564)) (-564) (-564) (-564)) 37)) (-4262 (((-642 (-564)) (-564) (-564) (-564)) 27)) (-2507 (((-642 (-564)) (-564) (-564) (-564)) 32)) (-3169 (((-564) (-564) (-564)) 22)) (-2090 (((-1262 (-564)) (-642 (-564)) (-1262 (-564)) (-564)) 73) (((-1262 (-564)) (-1262 (-564)) (-1262 (-564)) (-564)) 68)) (-3440 (((-642 (-564)) (-642 (-564)) (-642 (-564)) (-112)) 50)) (-2331 (((-687 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564))) 72)) (-4027 (((-687 (-564)) (-642 (-564)) (-642 (-564))) 56)) (-3723 (((-642 (-687 (-564))) (-642 (-564))) 61)) (-1474 (((-642 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564))) 76)) (-1569 (((-687 (-564)) (-642 (-564)) (-642 (-564)) (-642 (-564))) 86)))
+(((-1107) (-10 -7 (-15 -1569 ((-687 (-564)) (-642 (-564)) (-642 (-564)) (-642 (-564)))) (-15 -1474 ((-642 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564)))) (-15 -3723 ((-642 (-687 (-564))) (-642 (-564)))) (-15 -4027 ((-687 (-564)) (-642 (-564)) (-642 (-564)))) (-15 -2331 ((-687 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564)))) (-15 -3440 ((-642 (-564)) (-642 (-564)) (-642 (-564)) (-112))) (-15 -2090 ((-1262 (-564)) (-1262 (-564)) (-1262 (-564)) (-564))) (-15 -2090 ((-1262 (-564)) (-642 (-564)) (-1262 (-564)) (-564))) (-15 -3169 ((-564) (-564) (-564))) (-15 -2507 ((-642 (-564)) (-564) (-564) (-564))) (-15 -4262 ((-642 (-564)) (-564) (-564) (-564))) (-15 -3801 ((-642 (-564)) (-564) (-564) (-564))))) (T -1107))
+((-3801 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564)))) (-4262 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564)))) (-2507 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564)))) (-3169 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1107)))) (-2090 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1262 (-564))) (-5 *3 (-642 (-564))) (-5 *4 (-564)) (-5 *1 (-1107)))) (-2090 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1262 (-564))) (-5 *3 (-564)) (-5 *1 (-1107)))) (-3440 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *3 (-112)) (-5 *1 (-1107)))) (-2331 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-687 (-564))) (-5 *3 (-642 (-564))) (-5 *1 (-1107)))) (-4027 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1107)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-642 (-687 (-564)))) (-5 *1 (-1107)))) (-1474 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *3 (-687 (-564))) (-5 *1 (-1107)))) (-1569 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1107)))))
+(-10 -7 (-15 -1569 ((-687 (-564)) (-642 (-564)) (-642 (-564)) (-642 (-564)))) (-15 -1474 ((-642 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564)))) (-15 -3723 ((-642 (-687 (-564))) (-642 (-564)))) (-15 -4027 ((-687 (-564)) (-642 (-564)) (-642 (-564)))) (-15 -2331 ((-687 (-564)) (-642 (-564)) (-642 (-564)) (-687 (-564)))) (-15 -3440 ((-642 (-564)) (-642 (-564)) (-642 (-564)) (-112))) (-15 -2090 ((-1262 (-564)) (-1262 (-564)) (-1262 (-564)) (-564))) (-15 -2090 ((-1262 (-564)) (-642 (-564)) (-1262 (-564)) (-564))) (-15 -3169 ((-564) (-564) (-564))) (-15 -2507 ((-642 (-564)) (-564) (-564) (-564))) (-15 -4262 ((-642 (-564)) (-564) (-564) (-564))) (-15 -3801 ((-642 (-564)) (-564) (-564) (-564))))
+((** (($ $ (-919)) 10)))
+(((-1108 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-919)))) (-1109)) (T -1108))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-919))))
+((-2907 (((-112) $ $) 7)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)) (** (($ $ (-919)) 14)) (* (($ $ $) 15)))
+(((-1109) (-140)) (T -1109))
+((* (*1 *1 *1 *1) (-4 *1 (-1109))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1109)) (-5 *2 (-919)))))
+(-13 (-1097) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-919)))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL (|has| |#3| (-1097)))) (-2952 (((-112) $) NIL (|has| |#3| (-131)))) (-3638 (($ (-919)) NIL (|has| |#3| (-1047)))) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-3532 (($ $ $) NIL (|has| |#3| (-791)))) (-1532 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-3697 (((-112) $ (-769)) NIL)) (-2521 (((-769)) NIL (|has| |#3| (-368)))) (-2959 (((-564) $) NIL (|has| |#3| (-846)))) (-3877 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1097)))) (-3027 (((-564) $) NIL (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097)))) ((|#3| $) NIL (|has| |#3| (-1097)))) (-4315 (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1047)))) (((-2 (|:| -1780 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 $) (-1262 $)) NIL (|has| |#3| (-1047))) (((-687 |#3|) (-687 $)) NIL (|has| |#3| (-1047)))) (-3104 (((-3 $ "failed") $) NIL (|has| |#3| (-724)))) (-2433 (($) NIL (|has| |#3| (-368)))) (-2625 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#3| $ (-564)) 12)) (-2538 (((-112) $) NIL (|has| |#3| (-846)))) (-2936 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-3953 (((-112) $) NIL (|has| |#3| (-724)))) (-3333 (((-112) $) NIL (|has| |#3| (-846)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-3234 (((-642 |#3|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2613 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#3| |#3|) $) NIL)) (-1945 (((-919) $) NIL (|has| |#3| (-368)))) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#3| (-1097)))) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-2047 (($ (-919)) NIL (|has| |#3| (-368)))) (-4033 (((-1117) $) NIL (|has| |#3| (-1097)))) (-2557 ((|#3| $) NIL (|has| (-564) (-848)))) (-2696 (($ $ |#3|) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097)))) (($ $ (-642 |#3|) (-642 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-2724 (((-642 |#3|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) NIL)) (-2619 ((|#3| $ $) NIL (|has| |#3| (-1047)))) (-3685 (($ (-1262 |#3|)) NIL)) (-3474 (((-134)) NIL (|has| |#3| (-363)))) (-3175 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1 |#3| |#3|) (-769)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047)))) (-4043 (((-769) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410))) (((-769) |#3| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#3| (-1097))))) (-3901 (($ $) NIL)) (-2327 (((-1262 |#3|) $) NIL) (($ (-564)) NIL (-2706 (-12 (|has| |#3| (-1036 (-564))) (|has| |#3| (-1097))) (|has| |#3| (-1047)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1036 (-407 (-564)))) (|has| |#3| (-1097)))) (($ |#3|) NIL (|has| |#3| (-1097))) (((-860) $) NIL (|has| |#3| (-611 (-860))))) (-2756 (((-769)) NIL (|has| |#3| (-1047)) CONST)) (-1648 (((-112) $ $) NIL (|has| |#3| (-1097)))) (-2710 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4410)))) (-1381 (($ $) NIL (|has| |#3| (-846)))) (-2312 (($) NIL (|has| |#3| (-131)) CONST)) (-2322 (($) NIL (|has| |#3| (-724)) CONST)) (-4044 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $ (-769)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1047)))) (($ $ (-1173)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#3| (-898 (-1173))) (|has| |#3| (-1047)))) (($ $ (-1 |#3| |#3|) (-769)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047)))) (-2934 (((-112) $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2908 (((-112) $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2872 (((-112) $ $) NIL (|has| |#3| (-1097)))) (-2922 (((-112) $ $) NIL (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2897 (((-112) $ $) 24 (-2706 (|has| |#3| (-791)) (|has| |#3| (-846))))) (-2998 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-2987 (($ $ $) NIL (|has| |#3| (-1047))) (($ $) NIL (|has| |#3| (-1047)))) (-2974 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-769)) NIL (|has| |#3| (-724))) (($ $ (-919)) NIL (|has| |#3| (-724)))) (* (($ (-564) $) NIL (|has| |#3| (-1047))) (($ $ $) NIL (|has| |#3| (-724))) (($ $ |#3|) NIL (|has| |#3| (-724))) (($ |#3| $) NIL (|has| |#3| (-724))) (($ (-769) $) NIL (|has| |#3| (-131))) (($ (-919) $) NIL (|has| |#3| (-25)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1110 |#1| |#2| |#3|) (-238 |#1| |#3|) (-769) (-769) (-791)) (T -1110))
NIL
(-238 |#1| |#3|)
-((-2400 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 53)) (-1309 (((-564) (-1232 |#2| |#1|)) 100 (|has| |#1| (-452)))) (-4365 (((-564) (-1232 |#2| |#1|)) 82)) (-2127 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 63)) (-3257 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 99 (|has| |#1| (-452)))) (-4283 (((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 67)) (-4262 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 81)))
-(((-1108 |#1| |#2|) (-10 -7 (-15 -2400 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2127 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4283 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4262 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4365 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3257 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1309 ((-564) (-1232 |#2| |#1|)))) |%noBranch|)) (-816) (-1170)) (T -1108))
-((-1309 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-3257 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-4365 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-4262 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-4283 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5)))) (-2127 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))) (-2400 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))))
-(-10 -7 (-15 -2400 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2127 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4283 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4262 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4365 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3257 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1309 ((-564) (-1232 |#2| |#1|)))) |%noBranch|))
-((-3009 (((-112) $ $) NIL)) (-2412 (($ (-506) (-1112)) 13)) (-1789 (((-1112) $) 19)) (-2562 (((-506) $) 16)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 26) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1109) (-13 (-1077) (-10 -8 (-15 -2412 ($ (-506) (-1112))) (-15 -2562 ((-506) $)) (-15 -1789 ((-1112) $))))) (T -1109))
-((-2412 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109)))))
-(-13 (-1077) (-10 -8 (-15 -2412 ($ (-506) (-1112))) (-15 -2562 ((-506) $)) (-15 -1789 ((-1112) $))))
-((-3249 (((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)) 19) (((-3 (-564) "failed") |#2| (-1170) (-839 |#2|)) 17) (((-3 (-564) "failed") |#2|) 60)))
-(((-1110 |#1| |#2|) (-10 -7 (-15 -3249 ((-3 (-564) "failed") |#2|)) (-15 -3249 ((-3 (-564) "failed") |#2| (-1170) (-839 |#2|))) (-15 -3249 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)))) (-13 (-556) (-1034 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|))) (T -1110))
-((-3249 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-13 (-556) (-1034 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))))) (-3249 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-839 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-1034 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)))) (-3249 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-1034 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))))
-(-10 -7 (-15 -3249 ((-3 (-564) "failed") |#2|)) (-15 -3249 ((-3 (-564) "failed") |#2| (-1170) (-839 |#2|))) (-15 -3249 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152))))
-((-3249 (((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)) (-1152)) 38) (((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-839 (-407 (-948 |#1|)))) 33) (((-3 (-564) "failed") (-407 (-948 |#1|))) 14)))
-(((-1111 |#1|) (-10 -7 (-15 -3249 ((-3 (-564) "failed") (-407 (-948 |#1|)))) (-15 -3249 ((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-839 (-407 (-948 |#1|))))) (-15 -3249 ((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)) (-1152)))) (-452)) (T -1111))
-((-3249 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-3249 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-839 (-407 (-948 *6)))) (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-3249 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *4)))))
-(-10 -7 (-15 -3249 ((-3 (-564) "failed") (-407 (-948 |#1|)))) (-15 -3249 ((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-839 (-407 (-948 |#1|))))) (-15 -3249 ((-3 (-564) "failed") (-407 (-948 |#1|)) (-1170) (-407 (-948 |#1|)) (-1152))))
-((-3009 (((-112) $ $) NIL)) (-3830 (((-1175) $) 12)) (-3771 (((-641 (-1175)) $) 14)) (-1789 (($ (-641 (-1175)) (-1175)) 10)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 29)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 17)))
-(((-1112) (-13 (-1094) (-10 -8 (-15 -1789 ($ (-641 (-1175)) (-1175))) (-15 -3830 ((-1175) $)) (-15 -3771 ((-641 (-1175)) $))))) (T -1112))
-((-1789 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112)))))
-(-13 (-1094) (-10 -8 (-15 -1789 ($ (-641 (-1175)) (-1175))) (-15 -3830 ((-1175) $)) (-15 -3771 ((-641 (-1175)) $))))
-((-1380 (((-316 (-564)) (-48)) 12)))
-(((-1113) (-10 -7 (-15 -1380 ((-316 (-564)) (-48))))) (T -1113))
-((-1380 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1113)))))
-(-10 -7 (-15 -1380 ((-316 (-564)) (-48))))
-((-3009 (((-112) $ $) NIL)) (-3021 (($ $) 44)) (-1494 (((-112) $) 65)) (-2385 (($ $ $) 51)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 93)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-2149 (($ $ $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2997 (($ $ $ $) 76)) (-2683 (($ $) NIL)) (-2753 (((-418 $) $) NIL)) (-3162 (((-112) $ $) NIL)) (-2622 (((-767)) 78)) (-3249 (((-564) $) NIL)) (-2410 (($ $ $) 73)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL)) (-3120 (((-564) $) NIL)) (-2946 (($ $ $) 59)) (-4277 (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87) (((-685 (-564)) (-685 $)) 32)) (-3293 (((-3 $ "failed") $) NIL)) (-2450 (((-3 (-407 (-564)) "failed") $) NIL)) (-1364 (((-112) $) NIL)) (-2553 (((-407 (-564)) $) NIL)) (-2534 (($) 90) (($ $) 91)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL)) (-1339 (((-112) $) NIL)) (-2142 (($ $ $ $) NIL)) (-3409 (($ $ $) 88)) (-2384 (((-112) $) NIL)) (-3737 (($ $ $) NIL)) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL)) (-4112 (((-112) $) 67)) (-3177 (((-112) $) 64)) (-2351 (($ $) 45)) (-1846 (((-3 $ "failed") $) NIL)) (-3326 (((-112) $) 77)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3842 (($ $ $ $) 74)) (-2855 (($ $ $) 69) (($) 42 T CONST)) (-1497 (($ $ $) 68) (($) 41 T CONST)) (-2924 (($ $) NIL)) (-3256 (((-917) $) 83)) (-2581 (($ $) 72)) (-2084 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2766 (((-1152) $) NIL)) (-4037 (($ $ $) NIL)) (-3431 (($) NIL T CONST)) (-2083 (($ (-917)) 82)) (-2468 (($ $) 52)) (-4052 (((-1114) $) 71)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2123 (($ $ $) 62) (($ (-641 $)) NIL)) (-1986 (($ $) NIL)) (-3688 (((-418 $) $) NIL)) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2663 (((-112) $) NIL)) (-1700 (((-767) $) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 61)) (-3254 (($ $ (-767)) NIL) (($ $) NIL)) (-2198 (($ $) 53)) (-3926 (($ $) NIL)) (-1311 (((-564) $) 17) (((-536) $) NIL) (((-888 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-2423 (((-858) $) 35) (($ (-564)) 89) (($ $) NIL) (($ (-564)) 89)) (-3719 (((-767)) NIL T CONST)) (-2631 (((-112) $ $) NIL)) (-2020 (($ $ $) NIL)) (-1860 (((-112) $ $) NIL)) (-2648 (($) 40)) (-2119 (((-112) $ $) NIL)) (-2111 (($ $ $ $) 75)) (-3673 (($ $) 63)) (-3064 (($ $ $) 47)) (-2403 (($) 7 T CONST)) (-4153 (($ $ $) 50)) (-2417 (($) 39 T CONST)) (-1613 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-818) $) 28) (((-1264) (-818) $ (-112)) 29)) (-4163 (($ $) 48)) (-4063 (($ $ (-767)) NIL) (($ $) NIL)) (-4142 (($ $ $) 49)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 43)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 10)) (-3051 (($ $ $) 46)) (-3082 (($ $) 16) (($ $ $) 55)) (-3070 (($ $ $) 54)) (** (($ $ (-917)) NIL) (($ $ (-767)) 57)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 38) (($ $ $) 37)))
-(((-1114) (-13 (-545) (-840) (-657) (-824) (-10 -8 (-6 -4394) (-6 -4399) (-6 -4395) (-15 -2351 ($ $)) (-15 -2385 ($ $ $)) (-15 -4163 ($ $)) (-15 -4142 ($ $ $)) (-15 -4153 ($ $ $))))) (T -1114))
-((-2351 (*1 *1 *1) (-5 *1 (-1114))) (-2385 (*1 *1 *1 *1) (-5 *1 (-1114))) (-4163 (*1 *1 *1) (-5 *1 (-1114))) (-4142 (*1 *1 *1 *1) (-5 *1 (-1114))) (-4153 (*1 *1 *1 *1) (-5 *1 (-1114))))
-(-13 (-545) (-840) (-657) (-824) (-10 -8 (-6 -4394) (-6 -4399) (-6 -4395) (-15 -2351 ($ $)) (-15 -2385 ($ $ $)) (-15 -4163 ($ $)) (-15 -4142 ($ $ $)) (-15 -4153 ($ $ $))))
+((-2007 (((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|)) 53)) (-3735 (((-564) (-1235 |#2| |#1|)) 100 (|has| |#1| (-452)))) (-2580 (((-564) (-1235 |#2| |#1|)) 82)) (-3461 (((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|)) 63)) (-1902 (((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|)) 99 (|has| |#1| (-452)))) (-2125 (((-642 |#1|) (-1235 |#2| |#1|) (-1235 |#2| |#1|)) 67)) (-3080 (((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|)) 81)))
+(((-1111 |#1| |#2|) (-10 -7 (-15 -2007 ((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -3461 ((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -2125 ((-642 |#1|) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -3080 ((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -2580 ((-564) (-1235 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1902 ((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -3735 ((-564) (-1235 |#2| |#1|)))) |%noBranch|)) (-818) (-1173)) (T -1111))
+((-3735 (*1 *2 *3) (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-452)) (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))) (-1902 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-452)) (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))) (-3080 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))) (-2125 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-642 *4)) (-5 *1 (-1111 *4 *5)))) (-3461 (*1 *2 *3 *3) (-12 (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-642 (-1235 *5 *4))) (-5 *1 (-1111 *4 *5)) (-5 *3 (-1235 *5 *4)))) (-2007 (*1 *2 *3 *3) (-12 (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-642 (-1235 *5 *4))) (-5 *1 (-1111 *4 *5)) (-5 *3 (-1235 *5 *4)))))
+(-10 -7 (-15 -2007 ((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -3461 ((-642 (-1235 |#2| |#1|)) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -2125 ((-642 |#1|) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -3080 ((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -2580 ((-564) (-1235 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1902 ((-564) (-1235 |#2| |#1|) (-1235 |#2| |#1|))) (-15 -3735 ((-564) (-1235 |#2| |#1|)))) |%noBranch|))
+((-2907 (((-112) $ $) NIL)) (-3591 (($ (-506) (-1115)) 13)) (-1812 (((-1115) $) 19)) (-2461 (((-506) $) 16)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 26) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1112) (-13 (-1080) (-10 -8 (-15 -3591 ($ (-506) (-1115))) (-15 -2461 ((-506) $)) (-15 -1812 ((-1115) $))))) (T -1112))
+((-3591 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1115)) (-5 *1 (-1112)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1112)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1112)))))
+(-13 (-1080) (-10 -8 (-15 -3591 ($ (-506) (-1115))) (-15 -2461 ((-506) $)) (-15 -1812 ((-1115) $))))
+((-2959 (((-3 (-564) "failed") |#2| (-1173) |#2| (-1155)) 19) (((-3 (-564) "failed") |#2| (-1173) (-841 |#2|)) 17) (((-3 (-564) "failed") |#2|) 60)))
+(((-1113 |#1| |#2|) (-10 -7 (-15 -2959 ((-3 (-564) "failed") |#2|)) (-15 -2959 ((-3 (-564) "failed") |#2| (-1173) (-841 |#2|))) (-15 -2959 ((-3 (-564) "failed") |#2| (-1173) |#2| (-1155)))) (-13 (-556) (-1036 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1197) (-430 |#1|))) (T -1113))
+((-2959 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-1155)) (-4 *6 (-13 (-556) (-1036 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1113 *6 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))))) (-2959 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-841 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6))) (-4 *6 (-13 (-556) (-1036 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1113 *6 *3)))) (-2959 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-1036 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1113 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))))
+(-10 -7 (-15 -2959 ((-3 (-564) "failed") |#2|)) (-15 -2959 ((-3 (-564) "failed") |#2| (-1173) (-841 |#2|))) (-15 -2959 ((-3 (-564) "failed") |#2| (-1173) |#2| (-1155))))
+((-2959 (((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)) (-1155)) 38) (((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-841 (-407 (-950 |#1|)))) 33) (((-3 (-564) "failed") (-407 (-950 |#1|))) 14)))
+(((-1114 |#1|) (-10 -7 (-15 -2959 ((-3 (-564) "failed") (-407 (-950 |#1|)))) (-15 -2959 ((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-841 (-407 (-950 |#1|))))) (-15 -2959 ((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)) (-1155)))) (-452)) (T -1114))
+((-2959 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-950 *6))) (-5 *4 (-1173)) (-5 *5 (-1155)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1114 *6)))) (-2959 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-841 (-407 (-950 *6)))) (-5 *3 (-407 (-950 *6))) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1114 *6)))) (-2959 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-452)) (-5 *2 (-564)) (-5 *1 (-1114 *4)))))
+(-10 -7 (-15 -2959 ((-3 (-564) "failed") (-407 (-950 |#1|)))) (-15 -2959 ((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-841 (-407 (-950 |#1|))))) (-15 -2959 ((-3 (-564) "failed") (-407 (-950 |#1|)) (-1173) (-407 (-950 |#1|)) (-1155))))
+((-2907 (((-112) $ $) NIL)) (-3796 (((-1178) $) 12)) (-3732 (((-642 (-1178)) $) 14)) (-1812 (($ (-642 (-1178)) (-1178)) 10)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 29)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 17)))
+(((-1115) (-13 (-1097) (-10 -8 (-15 -1812 ($ (-642 (-1178)) (-1178))) (-15 -3796 ((-1178) $)) (-15 -3732 ((-642 (-1178)) $))))) (T -1115))
+((-1812 (*1 *1 *2 *3) (-12 (-5 *2 (-642 (-1178))) (-5 *3 (-1178)) (-5 *1 (-1115)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1115)))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1115)))))
+(-13 (-1097) (-10 -8 (-15 -1812 ($ (-642 (-1178)) (-1178))) (-15 -3796 ((-1178) $)) (-15 -3732 ((-642 (-1178)) $))))
+((-3640 (((-316 (-564)) (-48)) 12)))
+(((-1116) (-10 -7 (-15 -3640 ((-316 (-564)) (-48))))) (T -1116))
+((-3640 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1116)))))
+(-10 -7 (-15 -3640 ((-316 (-564)) (-48))))
+((-2907 (((-112) $ $) NIL)) (-2918 (($ $) 44)) (-2952 (((-112) $) 65)) (-2296 (($ $ $) 51)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 93)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-2968 (($ $ $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1337 (($ $ $ $) 76)) (-4316 (($ $) NIL)) (-1978 (((-418 $) $) NIL)) (-4010 (((-112) $ $) NIL)) (-2521 (((-769)) 78)) (-2959 (((-564) $) NIL)) (-2317 (($ $ $) 73)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL)) (-3027 (((-564) $) NIL)) (-2845 (($ $ $) 59)) (-4315 (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 87) (((-687 (-564)) (-687 $)) 32)) (-3104 (((-3 $ "failed") $) NIL)) (-3838 (((-3 (-407 (-564)) "failed") $) NIL)) (-2881 (((-112) $) NIL)) (-4034 (((-407 (-564)) $) NIL)) (-2433 (($) 90) (($ $) 91)) (-2859 (($ $ $) 58)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL)) (-1469 (((-112) $) NIL)) (-3398 (($ $ $ $) NIL)) (-3903 (($ $ $) 88)) (-2538 (((-112) $) NIL)) (-1588 (($ $ $) NIL)) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL)) (-3953 (((-112) $) 67)) (-3076 (((-112) $) 64)) (-2268 (($ $) 45)) (-3157 (((-3 $ "failed") $) NIL)) (-3333 (((-112) $) 77)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2172 (($ $ $ $) 74)) (-2755 (($ $ $) 69) (($) 42 T CONST)) (-1520 (($ $ $) 68) (($) 41 T CONST)) (-2819 (($ $) NIL)) (-1945 (((-919) $) 83)) (-2480 (($ $) 72)) (-2049 (($ $ $) NIL) (($ (-642 $)) NIL)) (-3315 (((-1155) $) NIL)) (-2182 (($ $ $) NIL)) (-3366 (($) NIL T CONST)) (-2047 (($ (-919)) 82)) (-2367 (($ $) 52)) (-4033 (((-1117) $) 71)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL)) (-2080 (($ $ $) 62) (($ (-642 $)) NIL)) (-4303 (($ $) NIL)) (-3643 (((-418 $) $) NIL)) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL)) (-2519 (((-112) $) NIL)) (-2048 (((-769) $) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 61)) (-3175 (($ $ (-769)) NIL) (($ $) NIL)) (-2142 (($ $) 53)) (-3901 (($ $) NIL)) (-1314 (((-564) $) 17) (((-536) $) NIL) (((-890 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-2327 (((-860) $) 35) (($ (-564)) 89) (($ $) NIL) (($ (-564)) 89)) (-2756 (((-769)) NIL T CONST)) (-1866 (((-112) $ $) NIL)) (-3310 (($ $ $) NIL)) (-1648 (((-112) $ $) NIL)) (-2547 (($) 40)) (-2103 (((-112) $ $) NIL)) (-3618 (($ $ $ $) 75)) (-1381 (($ $) 63)) (-2971 (($ $ $) 47)) (-2312 (($) 7 T CONST)) (-4134 (($ $ $) 50)) (-2322 (($) 39 T CONST)) (-1605 (((-1155) $) 26) (((-1155) $ (-112)) 27) (((-1267) (-820) $) 28) (((-1267) (-820) $ (-112)) 29)) (-4144 (($ $) 48)) (-4044 (($ $ (-769)) NIL) (($ $) NIL)) (-4124 (($ $ $) 49)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 43)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 10)) (-2958 (($ $ $) 46)) (-2987 (($ $) 16) (($ $ $) 55)) (-2974 (($ $ $) 54)) (** (($ $ (-919)) NIL) (($ $ (-769)) 57)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 38) (($ $ $) 37)))
+(((-1117) (-13 (-545) (-842) (-659) (-826) (-10 -8 (-6 -4397) (-6 -4402) (-6 -4398) (-15 -2268 ($ $)) (-15 -2296 ($ $ $)) (-15 -4144 ($ $)) (-15 -4124 ($ $ $)) (-15 -4134 ($ $ $))))) (T -1117))
+((-2268 (*1 *1 *1) (-5 *1 (-1117))) (-2296 (*1 *1 *1 *1) (-5 *1 (-1117))) (-4144 (*1 *1 *1) (-5 *1 (-1117))) (-4124 (*1 *1 *1 *1) (-5 *1 (-1117))) (-4134 (*1 *1 *1 *1) (-5 *1 (-1117))))
+(-13 (-545) (-842) (-659) (-826) (-10 -8 (-6 -4397) (-6 -4402) (-6 -4398) (-15 -2268 ($ $)) (-15 -2296 ($ $ $)) (-15 -4144 ($ $)) (-15 -4124 ($ $ $)) (-15 -4134 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2462 ((|#1| $) 45)) (-1876 (((-112) $ (-767)) 8)) (-4080 (($) 7 T CONST)) (-3780 ((|#1| |#1| $) 47)) (-2026 ((|#1| $) 46)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3149 ((|#1| $) 40)) (-2566 (($ |#1| $) 41)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2554 ((|#1| $) 42)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-1928 (((-767) $) 44)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) 43)) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-1115 |#1|) (-140) (-1209)) (T -1115))
-((-3780 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-2462 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4407) (-15 -3780 (|t#1| |t#1| $)) (-15 -2026 (|t#1| $)) (-15 -2462 (|t#1| $)) (-15 -1928 ((-767) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3847 ((|#3| $) 87)) (-4284 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-3120 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#3| $) 47)) (-4277 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2511 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 84) (((-685 |#3|) (-685 $)) 76)) (-3254 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2868 ((|#3| $) 89)) (-1773 ((|#4| $) 43)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#3|) 25)) (** (($ $ (-917)) NIL) (($ $ (-767)) 24) (($ $ (-564)) 95)))
-(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -2868 (|#3| |#1|)) (-15 -3847 (|#3| |#1|)) (-15 -1773 (|#4| |#1|)) (-15 -4277 ((-685 |#3|) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -2423 (|#1| |#3|)) (-15 -4284 ((-3 |#3| "failed") |#1|)) (-15 -3120 (|#3| |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -3254 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2423 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -2423 ((-858) |#1|))) (-1117 |#2| |#3| |#4| |#5|) (-767) (-1045) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1116))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -2868 (|#3| |#1|)) (-15 -3847 (|#3| |#1|)) (-15 -1773 (|#4| |#1|)) (-15 -4277 ((-685 |#3|) (-685 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -4277 ((-685 (-564)) (-685 |#1|))) (-15 -2423 (|#1| |#3|)) (-15 -4284 ((-3 |#3| "failed") |#1|)) (-15 -3120 (|#3| |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -3254 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2423 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3847 ((|#2| $) 72)) (-4239 (((-112) $) 112)) (-4012 (((-3 $ "failed") $ $) 20)) (-3999 (((-112) $) 110)) (-1876 (((-112) $ (-767)) 102)) (-3483 (($ |#2|) 75)) (-4080 (($) 18 T CONST)) (-1679 (($ $) 129 (|has| |#2| (-307)))) (-4086 ((|#3| $ (-564)) 124)) (-4284 (((-3 (-564) "failed") $) 87 (|has| |#2| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) 84 (|has| |#2| (-1034 (-407 (-564))))) (((-3 |#2| "failed") $) 81)) (-3120 (((-564) $) 86 (|has| |#2| (-1034 (-564)))) (((-407 (-564)) $) 83 (|has| |#2| (-1034 (-407 (-564))))) ((|#2| $) 82)) (-4277 (((-685 (-564)) (-685 $)) 79 (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 78 (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 77) (((-685 |#2|) (-685 $)) 76)) (-3293 (((-3 $ "failed") $) 34)) (-2514 (((-767) $) 130 (|has| |#2| (-556)))) (-2652 ((|#2| $ (-564) (-564)) 122)) (-3035 (((-641 |#2|) $) 95 (|has| $ (-6 -4407)))) (-4112 (((-112) $) 32)) (-2907 (((-767) $) 131 (|has| |#2| (-556)))) (-2383 (((-641 |#4|) $) 132 (|has| |#2| (-556)))) (-2667 (((-767) $) 118)) (-2681 (((-767) $) 119)) (-3097 (((-112) $ (-767)) 103)) (-2665 ((|#2| $) 67 (|has| |#2| (-6 (-4409 "*"))))) (-1795 (((-564) $) 114)) (-2980 (((-564) $) 116)) (-1554 (((-641 |#2|) $) 94 (|has| $ (-6 -4407)))) (-3369 (((-112) |#2| $) 92 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4407))))) (-2283 (((-564) $) 115)) (-2287 (((-564) $) 117)) (-2322 (($ (-641 (-641 |#2|))) 109)) (-2714 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3587 (((-641 (-641 |#2|)) $) 120)) (-3619 (((-112) $ (-767)) 104)) (-2766 (((-1152) $) 10)) (-2540 (((-3 $ "failed") $) 66 (|has| |#2| (-363)))) (-4052 (((-1114) $) 11)) (-2998 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-556)))) (-4377 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#2|))) 91 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 90 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 88 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) 108)) (-1976 (((-112) $) 105)) (-2994 (($) 106)) (-4366 ((|#2| $ (-564) (-564) |#2|) 123) ((|#2| $ (-564) (-564)) 121)) (-3254 (($ $ (-1 |#2| |#2|)) 53) (($ $ (-1 |#2| |#2|) (-767)) 52) (($ $ (-641 (-1170)) (-641 (-767))) 45 (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) 44 (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) 43 (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) 42 (|has| |#2| (-896 (-1170)))) (($ $ (-767)) 40 (|has| |#2| (-233))) (($ $) 38 (|has| |#2| (-233)))) (-2868 ((|#2| $) 71)) (-2006 (($ (-641 |#2|)) 74)) (-2701 (((-112) $) 111)) (-1773 ((|#3| $) 73)) (-1540 ((|#2| $) 68 (|has| |#2| (-6 (-4409 "*"))))) (-4062 (((-767) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4407))) (((-767) |#2| $) 93 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 107)) (-1575 ((|#4| $ (-564)) 125)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ (-407 (-564))) 85 (|has| |#2| (-1034 (-407 (-564))))) (($ |#2|) 80)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-1368 (((-112) (-1 (-112) |#2|) $) 98 (|has| $ (-6 -4407)))) (-3113 (((-112) $) 113)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-1 |#2| |#2|)) 51) (($ $ (-1 |#2| |#2|) (-767)) 50) (($ $ (-641 (-1170)) (-641 (-767))) 49 (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) 48 (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) 47 (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) 46 (|has| |#2| (-896 (-1170)))) (($ $ (-767)) 41 (|has| |#2| (-233))) (($ $) 39 (|has| |#2| (-233)))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#2|) 128 (|has| |#2| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 65 (|has| |#2| (-363)))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2181 (((-767) $) 101 (|has| $ (-6 -4407)))))
-(((-1117 |#1| |#2| |#3| |#4|) (-140) (-767) (-1045) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1117))
-((-3483 (*1 *1 *2) (-12 (-4 *2 (-1045)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-2006 (*1 *1 *2) (-12 (-5 *2 (-641 *4)) (-4 *4 (-1045)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (-2868 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))) (-2540 (*1 *1 *1) (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))))
-(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1048 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-713 |t#2|)) |%noBranch|) (-15 -3483 ($ |t#2|)) (-15 -2006 ($ (-641 |t#2|))) (-15 -1773 (|t#3| $)) (-15 -3847 (|t#2| $)) (-15 -2868 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4409 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1540 (|t#2| $)) (-15 -2665 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -2540 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4409 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#2| (-1034 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#2|) . T) ((-611 (-858)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#2| (-637 (-564))) ((-637 |#2|) . T) ((-713 |#2|) -2807 (|has| |#2| (-172)) (|has| |#2| (-6 (-4409 "*")))) ((-722) . T) ((-896 (-1170)) |has| |#2| (-896 (-1170))) ((-1048 |#1| |#1| |#2| |#3| |#4|) . T) ((-1034 #0#) |has| |#2| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#2| (-1034 (-564))) ((-1034 |#2|) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T))
-((-1738 ((|#4| |#4|) 82)) (-1702 ((|#4| |#4|) 77)) (-2390 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2047 (-641 |#3|))) |#4| |#3|) 92)) (-4175 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 81)) (-2500 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 79)))
-(((-1118 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1702 (|#4| |#4|)) (-15 -2500 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1738 (|#4| |#4|)) (-15 -4175 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2390 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2047 (-641 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1118))
-((-2390 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4)))) (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-4175 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2500 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1702 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(-10 -7 (-15 -1702 (|#4| |#4|)) (-15 -2500 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1738 (|#4| |#4|)) (-15 -4175 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2390 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2047 (-641 |#3|))) |#4| |#3|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 18)) (-3836 (((-641 |#2|) $) 177)) (-3660 (((-1166 $) $ |#2|) 63) (((-1166 |#1|) $) 52)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 117 (|has| |#1| (-556)))) (-3063 (($ $) 119 (|has| |#1| (-556)))) (-3330 (((-112) $) 121 (|has| |#1| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 |#2|)) 216)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-2683 (($ $) NIL (|has| |#1| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) 171) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 |#2| "failed") $) NIL)) (-3120 ((|#1| $) 169) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) ((|#2| $) NIL)) (-2746 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-1684 (($ $) 220)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) 91)) (-2571 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#1| (-905)))) (-3850 (($ $ |#1| (-531 |#2|) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| |#1| (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-4112 (((-112) $) 20)) (-2497 (((-767) $) 30)) (-3824 (($ (-1166 |#1|) |#2|) 57) (($ (-1166 $) |#2|) 74)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) 41)) (-3810 (($ |#1| (-531 |#2|)) 81) (($ $ |#2| (-767)) 61) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ |#2|) NIL)) (-2043 (((-531 |#2|) $) 208) (((-767) $ |#2|) 209) (((-641 (-767)) $ (-641 |#2|)) 210)) (-1948 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) 129)) (-3025 (((-3 |#2| "failed") $) 180)) (-3971 (($ $) 219)) (-3982 ((|#1| $) 46)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2766 (((-1152) $) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| |#2|) (|:| -1838 (-767))) "failed") $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) 42)) (-3954 ((|#1| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 149 (|has| |#1| (-452)))) (-2123 (($ (-641 $)) 154 (|has| |#1| (-452))) (($ $ $) 139 (|has| |#1| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2998 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 127 (|has| |#1| (-556)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) 183) (($ $ (-641 |#2|) (-641 |#1|)) 198) (($ $ |#2| $) 182) (($ $ (-641 |#2|) (-641 $)) 197)) (-1330 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3254 (($ $ |#2|) 218) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-1568 (((-531 |#2|) $) 204) (((-767) $ |#2|) 199) (((-641 (-767)) $ (-641 |#2|)) 202)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| |#1| (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4090 ((|#1| $) 135 (|has| |#1| (-452))) (($ $ |#2|) 138 (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2423 (((-858) $) 160) (($ (-564)) 85) (($ |#1|) 86) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-3191 (((-641 |#1|) $) 163)) (-2007 ((|#1| $ (-531 |#2|)) 83) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) 88 T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) 124 (|has| |#1| (-556)))) (-2403 (($) 12 T CONST)) (-2417 (($) 14 T CONST)) (-4063 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2974 (((-112) $ $) 107)) (-3092 (($ $ |#1|) 133 (|has| |#1| (-363)))) (-3082 (($ $) 94) (($ $ $) 105)) (-3070 (($ $ $) 58)) (** (($ $ (-917)) 111) (($ $ (-767)) 110)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 97) (($ $ $) 75) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 100) (($ $ |#1|) NIL)))
-(((-1119 |#1| |#2|) (-945 |#1| (-531 |#2|) |#2|) (-1045) (-846)) (T -1119))
-NIL
-(-945 |#1| (-531 |#2|) |#2|)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 |#2|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-3880 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3858 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3902 (($ $) 156 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-3423 (((-948 |#1|) $ (-767)) NIL) (((-948 |#1|) $ (-767) (-767)) NIL)) (-4243 (((-112) $) NIL)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-767) $ |#2|) NIL) (((-767) $ |#2| (-767)) NIL)) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4003 (((-112) $) NIL)) (-3810 (($ $ (-641 |#2|) (-641 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 63) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3657 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-2070 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-407 (-564)))))) (-4052 (((-1114) $) NIL)) (-4340 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-407 (-564)))))) (-4016 (($ $ (-767)) 16)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1689 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (($ $ |#2| $) 106) (($ $ (-641 |#2|) (-641 $)) 99) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-3254 (($ $ |#2|) 109) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-1568 (((-531 |#2|) $) NIL)) (-4364 (((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|))) 87)) (-3914 (($ $) 158 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) 18)) (-2423 (((-858) $) 199) (($ (-564)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#2|) 70) (($ |#3|) 68)) (-2007 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL) ((|#3| $ (-767)) 43)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2784 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 52 T CONST)) (-2417 (($) 62 T CONST)) (-4063 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-641 |#2|) (-641 (-767))) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) 201 (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 66)) (** (($ $ (-917)) NIL) (($ $ (-767)) 77) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 112 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 65) (($ $ (-407 (-564))) 117 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 115 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
-(((-1120 |#1| |#2| |#3|) (-13 (-736 |#1| |#2|) (-10 -8 (-15 -2007 (|#3| $ (-767))) (-15 -2423 ($ |#2|)) (-15 -2423 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4364 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ($ $ |#2| |#1|)) (-15 -4340 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1045) (-846) (-945 |#1| (-531 |#2|) |#2|)) (T -1120))
-((-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-945 *4 (-531 *5) *5)) (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-2423 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) (-2423 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-945 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-945 *3 (-531 *4) *4)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-846)) (-4 *7 (-945 *5 (-531 *6) *6)) (-4 *5 (-1045)) (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7)))) (-2070 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) (-4340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1120 *4 *3 *5)) (-4 *5 (-945 *4 (-531 *3) *3)))))
-(-13 (-736 |#1| |#2|) (-10 -8 (-15 -2007 (|#3| $ (-767))) (-15 -2423 ($ |#2|)) (-15 -2423 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4364 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ($ $ |#2| |#1|)) (-15 -4340 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-3009 (((-112) $ $) 7)) (-3605 (((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 |#4|)))) (-641 |#4|)) 86)) (-2578 (((-641 $) (-641 |#4|)) 87) (((-641 $) (-641 |#4|) (-112)) 112)) (-3836 (((-641 |#3|) $) 34)) (-3342 (((-112) $) 27)) (-1594 (((-112) $) 18 (|has| |#1| (-556)))) (-3631 (((-112) |#4| $) 102) (((-112) $) 98)) (-3494 ((|#4| |#4| $) 93)) (-2683 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| $) 127)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) 28)) (-1876 (((-112) $ (-767)) 45)) (-1667 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 80)) (-4080 (($) 46 T CONST)) (-1968 (((-112) $) 23 (|has| |#1| (-556)))) (-2238 (((-112) $ $) 25 (|has| |#1| (-556)))) (-3956 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1489 (((-112) $) 26 (|has| |#1| (-556)))) (-2961 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3703 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) 20 (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) 37)) (-3120 (($ (-641 |#4|)) 36)) (-2671 (((-3 $ "failed") $) 83)) (-2405 ((|#4| |#4| $) 90)) (-2696 (($ $) 69 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#4| $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3870 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2248 ((|#4| |#4| $) 88)) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4020 (((-2 (|:| -1604 (-641 |#4|)) (|:| -2319 (-641 |#4|))) $) 106)) (-4014 (((-112) |#4| $) 137)) (-3071 (((-112) |#4| $) 134)) (-1865 (((-112) |#4| $) 138) (((-112) $) 135)) (-3035 (((-641 |#4|) $) 53 (|has| $ (-6 -4407)))) (-2675 (((-112) |#4| $) 105) (((-112) $) 104)) (-3378 ((|#3| $) 35)) (-3097 (((-112) $ (-767)) 44)) (-1554 (((-641 |#4|) $) 54 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) 48)) (-2814 (((-641 |#3|) $) 33)) (-3169 (((-112) |#3| $) 32)) (-3619 (((-112) $ (-767)) 43)) (-2766 (((-1152) $) 10)) (-2227 (((-3 |#4| (-641 $)) |#4| |#4| $) 129)) (-2146 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| |#4| $) 128)) (-2615 (((-3 |#4| "failed") $) 84)) (-4022 (((-641 $) |#4| $) 130)) (-1995 (((-3 (-112) (-641 $)) |#4| $) 133)) (-4259 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3888 (((-641 $) |#4| $) 126) (((-641 $) (-641 |#4|) $) 125) (((-641 $) (-641 |#4|) (-641 $)) 124) (((-641 $) |#4| (-641 $)) 123)) (-3531 (($ |#4| $) 118) (($ (-641 |#4|) $) 117)) (-3167 (((-641 |#4|) $) 108)) (-3441 (((-112) |#4| $) 100) (((-112) $) 96)) (-4241 ((|#4| |#4| $) 91)) (-2582 (((-112) $ $) 111)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-1929 (((-112) |#4| $) 101) (((-112) $) 97)) (-3347 ((|#4| |#4| $) 92)) (-4052 (((-1114) $) 11)) (-2658 (((-3 |#4| "failed") $) 85)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2533 (((-3 $ "failed") $ |#4|) 79)) (-4016 (($ $ |#4|) 78) (((-641 $) |#4| $) 116) (((-641 $) |#4| (-641 $)) 115) (((-641 $) (-641 |#4|) $) 114) (((-641 $) (-641 |#4|) (-641 $)) 113)) (-4377 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) 39)) (-1976 (((-112) $) 42)) (-2994 (($) 41)) (-1568 (((-767) $) 107)) (-4062 (((-767) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4407)))) (-3926 (($ $) 40)) (-1311 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2435 (($ (-641 |#4|)) 61)) (-1834 (($ $ |#3|) 29)) (-1648 (($ $ |#3|) 31)) (-1492 (($ $) 89)) (-2577 (($ $ |#3|) 30)) (-2423 (((-858) $) 12) (((-641 |#4|) $) 38)) (-3840 (((-767) $) 77 (|has| |#3| (-368)))) (-1860 (((-112) $ $) 9)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3212 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 99)) (-3418 (((-641 $) |#4| $) 122) (((-641 $) |#4| (-641 $)) 121) (((-641 $) (-641 |#4|) $) 120) (((-641 $) (-641 |#4|) (-641 $)) 119)) (-1368 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-3579 (((-641 |#3|) $) 82)) (-1947 (((-112) |#4| $) 136)) (-1816 (((-112) |#3| $) 81)) (-2974 (((-112) $ $) 6)) (-2181 (((-767) $) 47 (|has| $ (-6 -4407)))))
-(((-1121 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1121))
-NIL
-(-13 (-1103 |t#1| |t#2| |t#3| |t#4|) (-780 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-780 |#1| |#2| |#3| |#4|) . T) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T))
-((-4256 (((-641 |#2|) |#1|) 15)) (-2064 (((-641 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-641 |#2|) |#1|) 63)) (-2434 (((-641 |#2|) |#2| |#2| |#2|) 45) (((-641 |#2|) |#1|) 61)) (-4319 ((|#2| |#1|) 56)) (-4267 (((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3402 (((-641 |#2|) |#2| |#2|) 42) (((-641 |#2|) |#1|) 60)) (-2150 (((-641 |#2|) |#2| |#2| |#2| |#2|) 46) (((-641 |#2|) |#1|) 62)) (-2051 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-1683 ((|#2| |#2| |#2| |#2|) 53)) (-4208 ((|#2| |#2| |#2|) 52)) (-2864 ((|#2| |#2| |#2| |#2| |#2|) 54)))
-(((-1122 |#1| |#2|) (-10 -7 (-15 -4256 ((-641 |#2|) |#1|)) (-15 -4319 (|#2| |#1|)) (-15 -4267 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3402 ((-641 |#2|) |#1|)) (-15 -2434 ((-641 |#2|) |#1|)) (-15 -2150 ((-641 |#2|) |#1|)) (-15 -2064 ((-641 |#2|) |#1|)) (-15 -3402 ((-641 |#2|) |#2| |#2|)) (-15 -2434 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -2150 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2064 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4208 (|#2| |#2| |#2|)) (-15 -1683 (|#2| |#2| |#2| |#2|)) (-15 -2864 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2051 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1235 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (T -1122))
-((-2051 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-2864 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-1683 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-4208 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-2064 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-2150 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-2434 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-3402 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-2064 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-2150 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-2434 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-4267 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-2 (|:| |solns| (-641 *5)) (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5)))) (-4319 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -4256 ((-641 |#2|) |#1|)) (-15 -4319 (|#2| |#1|)) (-15 -4267 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3402 ((-641 |#2|) |#1|)) (-15 -2434 ((-641 |#2|) |#1|)) (-15 -2150 ((-641 |#2|) |#1|)) (-15 -2064 ((-641 |#2|) |#1|)) (-15 -3402 ((-641 |#2|) |#2| |#2|)) (-15 -2434 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -2150 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2064 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4208 (|#2| |#2| |#2|)) (-15 -1683 (|#2| |#2| |#2| |#2|)) (-15 -2864 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2051 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2079 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|))))) 128) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170))) 127) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|)))) 125) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|))) (-641 (-1170))) 123) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|)))) 101) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1170)) 102) (((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|))) 96) (((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1170)) 82)) (-3584 (((-641 (-641 (-316 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170))) 121) (((-641 (-316 |#1|)) (-407 (-948 |#1|)) (-1170)) 54)) (-4339 (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1170)) 132) (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170)) 131)))
-(((-1123 |#1|) (-10 -7 (-15 -2079 ((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -2079 ((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|)))) (-15 -2079 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -2079 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))))) (-15 -2079 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -2079 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|))))) (-15 -2079 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170)))) (-15 -2079 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -3584 ((-641 (-316 |#1|)) (-407 (-948 |#1|)) (-1170))) (-15 -3584 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -4339 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -4339 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1170)))) (-13 (-307) (-147))) (T -1123))
-((-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-3584 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-641 (-316 *5)))) (-5 *1 (-1123 *5)))) (-3584 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-316 *5))) (-5 *1 (-1123 *5)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-948 *4))))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-948 *5))))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5)))))
-(-10 -7 (-15 -2079 ((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1170))) (-15 -2079 ((-641 (-294 (-316 |#1|))) (-407 (-948 |#1|)))) (-15 -2079 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -2079 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))))) (-15 -2079 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -2079 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-948 |#1|))))) (-15 -2079 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170)))) (-15 -2079 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -3584 ((-641 (-316 |#1|)) (-407 (-948 |#1|)) (-1170))) (-15 -3584 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -4339 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -4339 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1170))))
-((-2317 (((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)) 38)) (-3129 (((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|)))) 49)))
-(((-1124 |#1|) (-10 -7 (-15 -3129 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -2317 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)))) (-556)) (T -1124))
-((-2317 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5))) (-5 *4 (-564)) (-4 *5 (-556)) (-5 *1 (-1124 *5)))) (-3129 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-556)) (-5 *1 (-1124 *3)))))
-(-10 -7 (-15 -3129 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -2317 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564))))
-((-4256 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))) 255) (((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170)) 29) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170)) 35) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 34) (((-641 (-294 (-316 |#1|))) (-316 |#1|)) 30)))
-(((-1125 |#1|) (-10 -7 (-15 -4256 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -4256 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -4256 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -4256 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -4256 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))))) (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (T -1125))
-((-4256 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5)) (-5 *3 (-641 (-294 (-316 *5)))))) (-4256 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-316 *5)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-294 (-316 *5))))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-294 (-316 *4))))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-316 *4)))))
-(-10 -7 (-15 -4256 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -4256 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -4256 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -4256 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -4256 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170)))))
-((-3408 ((|#2| |#2|) 30 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3653 ((|#2| |#2|) 29 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
-(((-1126 |#1| |#2|) (-10 -7 (-15 -3653 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3408 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -3653 (|#2| |#2|)) (-15 -3408 (|#2| |#2|))) |%noBranch|)) (-1209) (-13 (-602 (-564) |#1|) (-10 -7 (-6 -4407) (-6 -4408)))) (T -1126))
-((-3408 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4407) (-6 -4408)))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4407) (-6 -4408)))))) (-3408 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4407) (-6 -4408)))))) (-3653 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4407) (-6 -4408)))))))
-(-10 -7 (-15 -3653 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3408 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -3653 (|#2| |#2|)) (-15 -3408 (|#2| |#2|))) |%noBranch|))
-((-3009 (((-112) $ $) NIL)) (-4320 (((-1158 3 |#1|) $) 142)) (-2324 (((-112) $) 100)) (-2526 (($ $ (-641 (-939 |#1|))) 44) (($ $ (-641 (-641 |#1|))) 103) (($ (-641 (-939 |#1|))) 102) (((-641 (-939 |#1|)) $) 101)) (-2743 (((-112) $) 71)) (-2770 (($ $ (-939 |#1|)) 75) (($ $ (-641 |#1|)) 80) (($ $ (-767)) 82) (($ (-939 |#1|)) 76) (((-939 |#1|) $) 74)) (-2637 (((-2 (|:| -2762 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 140)) (-2304 (((-767) $) 53)) (-1975 (((-767) $) 52)) (-3094 (($ $ (-767) (-939 |#1|)) 67)) (-2301 (((-112) $) 113)) (-3964 (($ $ (-641 (-641 (-939 |#1|))) (-641 (-171)) (-171)) 120) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 122) (($ $ (-641 (-641 (-939 |#1|))) (-112) (-112)) 117) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 129) (($ (-641 (-641 (-939 |#1|)))) 118) (($ (-641 (-641 (-939 |#1|))) (-112) (-112)) 119) (((-641 (-641 (-939 |#1|))) $) 116)) (-3669 (($ (-641 $)) 56) (($ $ $) 57)) (-2133 (((-641 (-171)) $) 135)) (-4347 (((-641 (-939 |#1|)) $) 132)) (-2561 (((-641 (-641 (-171))) $) 134)) (-3340 (((-641 (-641 (-641 (-939 |#1|)))) $) NIL)) (-2902 (((-641 (-641 (-641 (-767)))) $) 133)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2792 (((-767) $ (-641 (-939 |#1|))) 65)) (-2836 (((-112) $) 83)) (-2012 (($ $ (-641 (-939 |#1|))) 85) (($ $ (-641 (-641 |#1|))) 91) (($ (-641 (-939 |#1|))) 86) (((-641 (-939 |#1|)) $) 84)) (-2027 (($) 48) (($ (-1158 3 |#1|)) 49)) (-3926 (($ $) 63)) (-2155 (((-641 $) $) 62)) (-4244 (($ (-641 $)) 59)) (-4361 (((-641 $) $) 61)) (-2423 (((-858) $) 147)) (-2357 (((-112) $) 93)) (-2536 (($ $ (-641 (-939 |#1|))) 95) (($ $ (-641 (-641 |#1|))) 98) (($ (-641 (-939 |#1|))) 96) (((-641 (-939 |#1|)) $) 94)) (-1698 (($ $) 141)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1127 |#1|) (-1128 |#1|) (-1045)) (T -1127))
-NIL
-(-1128 |#1|)
-((-3009 (((-112) $ $) 7)) (-4320 (((-1158 3 |#1|) $) 14)) (-2324 (((-112) $) 30)) (-2526 (($ $ (-641 (-939 |#1|))) 34) (($ $ (-641 (-641 |#1|))) 33) (($ (-641 (-939 |#1|))) 32) (((-641 (-939 |#1|)) $) 31)) (-2743 (((-112) $) 45)) (-2770 (($ $ (-939 |#1|)) 50) (($ $ (-641 |#1|)) 49) (($ $ (-767)) 48) (($ (-939 |#1|)) 47) (((-939 |#1|) $) 46)) (-2637 (((-2 (|:| -2762 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 16)) (-2304 (((-767) $) 59)) (-1975 (((-767) $) 60)) (-3094 (($ $ (-767) (-939 |#1|)) 51)) (-2301 (((-112) $) 22)) (-3964 (($ $ (-641 (-641 (-939 |#1|))) (-641 (-171)) (-171)) 29) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 28) (($ $ (-641 (-641 (-939 |#1|))) (-112) (-112)) 27) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 26) (($ (-641 (-641 (-939 |#1|)))) 25) (($ (-641 (-641 (-939 |#1|))) (-112) (-112)) 24) (((-641 (-641 (-939 |#1|))) $) 23)) (-3669 (($ (-641 $)) 58) (($ $ $) 57)) (-2133 (((-641 (-171)) $) 17)) (-4347 (((-641 (-939 |#1|)) $) 21)) (-2561 (((-641 (-641 (-171))) $) 18)) (-3340 (((-641 (-641 (-641 (-939 |#1|)))) $) 19)) (-2902 (((-641 (-641 (-641 (-767)))) $) 20)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2792 (((-767) $ (-641 (-939 |#1|))) 52)) (-2836 (((-112) $) 40)) (-2012 (($ $ (-641 (-939 |#1|))) 44) (($ $ (-641 (-641 |#1|))) 43) (($ (-641 (-939 |#1|))) 42) (((-641 (-939 |#1|)) $) 41)) (-2027 (($) 62) (($ (-1158 3 |#1|)) 61)) (-3926 (($ $) 53)) (-2155 (((-641 $) $) 54)) (-4244 (($ (-641 $)) 56)) (-4361 (((-641 $) $) 55)) (-2423 (((-858) $) 12)) (-2357 (((-112) $) 35)) (-2536 (($ $ (-641 (-939 |#1|))) 39) (($ $ (-641 (-641 |#1|))) 38) (($ (-641 (-939 |#1|))) 37) (((-641 (-939 |#1|)) $) 36)) (-1698 (($ $) 15)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
-(((-1128 |#1|) (-140) (-1045)) (T -1128))
-((-2423 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-858)))) (-2027 (*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2304 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3669 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-3669 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))) (-4244 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-4361 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-2155 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-939 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-3094 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1128 *4)) (-4 *4 (-1045)))) (-2770 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2770 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2770 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-2770 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2012 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2012 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2536 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2536 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2536 (*1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) (-2357 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2526 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2526 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))) (-2526 (*1 *1 *2) (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-2526 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3964 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-939 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1045)))) (-3964 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1045)))) (-3964 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-939 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1045)))) (-3964 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1045)))) (-3964 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-939 *3)))) (-4 *3 (-1045)) (-4 *1 (-1128 *3)))) (-3964 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045)) (-4 *1 (-1128 *4)))) (-3964 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-641 (-939 *3)))))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-641 (-641 (-767))))))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-641 (-641 (-939 *3))))))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-641 (-171)))))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-171))))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2762 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767)))))) (-1698 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-1158 3 *3)))))
-(-13 (-1094) (-10 -8 (-15 -2027 ($)) (-15 -2027 ($ (-1158 3 |t#1|))) (-15 -1975 ((-767) $)) (-15 -2304 ((-767) $)) (-15 -3669 ($ (-641 $))) (-15 -3669 ($ $ $)) (-15 -4244 ($ (-641 $))) (-15 -4361 ((-641 $) $)) (-15 -2155 ((-641 $) $)) (-15 -3926 ($ $)) (-15 -2792 ((-767) $ (-641 (-939 |t#1|)))) (-15 -3094 ($ $ (-767) (-939 |t#1|))) (-15 -2770 ($ $ (-939 |t#1|))) (-15 -2770 ($ $ (-641 |t#1|))) (-15 -2770 ($ $ (-767))) (-15 -2770 ($ (-939 |t#1|))) (-15 -2770 ((-939 |t#1|) $)) (-15 -2743 ((-112) $)) (-15 -2012 ($ $ (-641 (-939 |t#1|)))) (-15 -2012 ($ $ (-641 (-641 |t#1|)))) (-15 -2012 ($ (-641 (-939 |t#1|)))) (-15 -2012 ((-641 (-939 |t#1|)) $)) (-15 -2836 ((-112) $)) (-15 -2536 ($ $ (-641 (-939 |t#1|)))) (-15 -2536 ($ $ (-641 (-641 |t#1|)))) (-15 -2536 ($ (-641 (-939 |t#1|)))) (-15 -2536 ((-641 (-939 |t#1|)) $)) (-15 -2357 ((-112) $)) (-15 -2526 ($ $ (-641 (-939 |t#1|)))) (-15 -2526 ($ $ (-641 (-641 |t#1|)))) (-15 -2526 ($ (-641 (-939 |t#1|)))) (-15 -2526 ((-641 (-939 |t#1|)) $)) (-15 -2324 ((-112) $)) (-15 -3964 ($ $ (-641 (-641 (-939 |t#1|))) (-641 (-171)) (-171))) (-15 -3964 ($ $ (-641 (-641 (-641 |t#1|))) (-641 (-171)) (-171))) (-15 -3964 ($ $ (-641 (-641 (-939 |t#1|))) (-112) (-112))) (-15 -3964 ($ $ (-641 (-641 (-641 |t#1|))) (-112) (-112))) (-15 -3964 ($ (-641 (-641 (-939 |t#1|))))) (-15 -3964 ($ (-641 (-641 (-939 |t#1|))) (-112) (-112))) (-15 -3964 ((-641 (-641 (-939 |t#1|))) $)) (-15 -2301 ((-112) $)) (-15 -4347 ((-641 (-939 |t#1|)) $)) (-15 -2902 ((-641 (-641 (-641 (-767)))) $)) (-15 -3340 ((-641 (-641 (-641 (-939 |t#1|)))) $)) (-15 -2561 ((-641 (-641 (-171))) $)) (-15 -2133 ((-641 (-171)) $)) (-15 -2637 ((-2 (|:| -2762 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $)) (-15 -1698 ($ $)) (-15 -4320 ((-1158 3 |t#1|) $)) (-15 -2423 ((-858) $))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 174) (($ (-1175)) NIL) (((-1175) $) 7)) (-2396 (((-112) $ (|[\|\|]| (-524))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-672))) 27) (((-112) $ (|[\|\|]| (-1269))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1109))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-677))) 51) (((-112) $ (|[\|\|]| (-517))) 55) (((-112) $ (|[\|\|]| (-1060))) 59) (((-112) $ (|[\|\|]| (-1270))) 63) (((-112) $ (|[\|\|]| (-525))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-667))) 75) (((-112) $ (|[\|\|]| (-311))) 79) (((-112) $ (|[\|\|]| (-1032))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-966))) 91) (((-112) $ (|[\|\|]| (-1067))) 95) (((-112) $ (|[\|\|]| (-1084))) 99) (((-112) $ (|[\|\|]| (-1090))) 103) (((-112) $ (|[\|\|]| (-624))) 107) (((-112) $ (|[\|\|]| (-1160))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-478))) 123) (((-112) $ (|[\|\|]| (-591))) 127) (((-112) $ (|[\|\|]| (-506))) 131) (((-112) $ (|[\|\|]| (-1152))) 135) (((-112) $ (|[\|\|]| (-564))) 139)) (-1860 (((-112) $ $) NIL)) (-3961 (((-524) $) 20) (((-218) $) 24) (((-672) $) 28) (((-1269) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1109) $) 44) (((-96) $) 48) (((-677) $) 52) (((-517) $) 56) (((-1060) $) 60) (((-1270) $) 64) (((-525) $) 68) (((-154) $) 72) (((-667) $) 76) (((-311) $) 80) (((-1032) $) 84) (((-180) $) 88) (((-966) $) 92) (((-1067) $) 96) (((-1084) $) 100) (((-1090) $) 104) (((-624) $) 108) (((-1160) $) 112) (((-156) $) 116) (((-137) $) 120) (((-478) $) 124) (((-591) $) 128) (((-506) $) 132) (((-1152) $) 136) (((-564) $) 140)) (-2974 (((-112) $ $) NIL)))
-(((-1129) (-1131)) (T -1129))
-NIL
-(-1131)
-((-1951 (((-641 (-1175)) (-1152)) 9)))
-(((-1130) (-10 -7 (-15 -1951 ((-641 (-1175)) (-1152))))) (T -1130))
-((-1951 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130)))))
-(-10 -7 (-15 -1951 ((-641 (-1175)) (-1152))))
-((-3009 (((-112) $ $) 7)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-1175)) 17) (((-1175) $) 16)) (-2396 (((-112) $ (|[\|\|]| (-524))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-672))) 77) (((-112) $ (|[\|\|]| (-1269))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1109))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-677))) 65) (((-112) $ (|[\|\|]| (-517))) 63) (((-112) $ (|[\|\|]| (-1060))) 61) (((-112) $ (|[\|\|]| (-1270))) 59) (((-112) $ (|[\|\|]| (-525))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-667))) 53) (((-112) $ (|[\|\|]| (-311))) 51) (((-112) $ (|[\|\|]| (-1032))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-966))) 45) (((-112) $ (|[\|\|]| (-1067))) 43) (((-112) $ (|[\|\|]| (-1084))) 41) (((-112) $ (|[\|\|]| (-1090))) 39) (((-112) $ (|[\|\|]| (-624))) 37) (((-112) $ (|[\|\|]| (-1160))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-478))) 29) (((-112) $ (|[\|\|]| (-591))) 27) (((-112) $ (|[\|\|]| (-506))) 25) (((-112) $ (|[\|\|]| (-1152))) 23) (((-112) $ (|[\|\|]| (-564))) 21)) (-1860 (((-112) $ $) 9)) (-3961 (((-524) $) 80) (((-218) $) 78) (((-672) $) 76) (((-1269) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1109) $) 68) (((-96) $) 66) (((-677) $) 64) (((-517) $) 62) (((-1060) $) 60) (((-1270) $) 58) (((-525) $) 56) (((-154) $) 54) (((-667) $) 52) (((-311) $) 50) (((-1032) $) 48) (((-180) $) 46) (((-966) $) 44) (((-1067) $) 42) (((-1084) $) 40) (((-1090) $) 38) (((-624) $) 36) (((-1160) $) 34) (((-156) $) 32) (((-137) $) 30) (((-478) $) 28) (((-591) $) 26) (((-506) $) 24) (((-1152) $) 22) (((-564) $) 20)) (-2974 (((-112) $ $) 6)))
-(((-1131) (-140)) (T -1131))
-((-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1269))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1060)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1270))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1032)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-966)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1067)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152)))) (-2396 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564)))))
-(-13 (-1077) (-1254) (-10 -8 (-15 -2396 ((-112) $ (|[\|\|]| (-524)))) (-15 -3961 ((-524) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-218)))) (-15 -3961 ((-218) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-672)))) (-15 -3961 ((-672) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-1269)))) (-15 -3961 ((-1269) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-138)))) (-15 -3961 ((-138) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-133)))) (-15 -3961 ((-133) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-1109)))) (-15 -3961 ((-1109) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-96)))) (-15 -3961 ((-96) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-677)))) (-15 -3961 ((-677) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-517)))) (-15 -3961 ((-517) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-1060)))) (-15 -3961 ((-1060) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-1270)))) (-15 -3961 ((-1270) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-525)))) (-15 -3961 ((-525) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-154)))) (-15 -3961 ((-154) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-667)))) (-15 -3961 ((-667) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-311)))) (-15 -3961 ((-311) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-1032)))) (-15 -3961 ((-1032) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-180)))) (-15 -3961 ((-180) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-966)))) (-15 -3961 ((-966) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-1067)))) (-15 -3961 ((-1067) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-1084)))) (-15 -3961 ((-1084) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-1090)))) (-15 -3961 ((-1090) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-624)))) (-15 -3961 ((-624) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-1160)))) (-15 -3961 ((-1160) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-156)))) (-15 -3961 ((-156) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-137)))) (-15 -3961 ((-137) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-478)))) (-15 -3961 ((-478) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-591)))) (-15 -3961 ((-591) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-506)))) (-15 -3961 ((-506) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-1152)))) (-15 -3961 ((-1152) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-564)))) (-15 -3961 ((-564) $))))
-(((-93) . T) ((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-858)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T) ((-1077) . T) ((-1254) . T))
-((-3041 (((-1264) (-641 (-858))) 23) (((-1264) (-858)) 22)) (-3096 (((-1264) (-641 (-858))) 21) (((-1264) (-858)) 20)) (-3111 (((-1264) (-641 (-858))) 19) (((-1264) (-858)) 11) (((-1264) (-1152) (-858)) 17)))
-(((-1132) (-10 -7 (-15 -3111 ((-1264) (-1152) (-858))) (-15 -3111 ((-1264) (-858))) (-15 -3096 ((-1264) (-858))) (-15 -3041 ((-1264) (-858))) (-15 -3111 ((-1264) (-641 (-858)))) (-15 -3096 ((-1264) (-641 (-858)))) (-15 -3041 ((-1264) (-641 (-858)))))) (T -1132))
-((-3041 (*1 *2 *3) (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3111 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132)))))
-(-10 -7 (-15 -3111 ((-1264) (-1152) (-858))) (-15 -3111 ((-1264) (-858))) (-15 -3096 ((-1264) (-858))) (-15 -3041 ((-1264) (-858))) (-15 -3111 ((-1264) (-641 (-858)))) (-15 -3096 ((-1264) (-641 (-858)))) (-15 -3041 ((-1264) (-641 (-858)))))
-((-3377 (($ $ $) 10)) (-2369 (($ $) 9)) (-2604 (($ $ $) 13)) (-3042 (($ $ $) 15)) (-1801 (($ $ $) 12)) (-1845 (($ $ $) 14)) (-2419 (($ $) 17)) (-3248 (($ $) 16)) (-3673 (($ $) 6)) (-3727 (($ $ $) 11) (($ $) 7)) (-1731 (($ $ $) 8)))
-(((-1133) (-140)) (T -1133))
-((-2419 (*1 *1 *1) (-4 *1 (-1133))) (-3248 (*1 *1 *1) (-4 *1 (-1133))) (-3042 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1845 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2604 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1801 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3727 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3377 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2369 (*1 *1 *1) (-4 *1 (-1133))) (-1731 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3727 (*1 *1 *1) (-4 *1 (-1133))) (-3673 (*1 *1 *1) (-4 *1 (-1133))))
-(-13 (-10 -8 (-15 -3673 ($ $)) (-15 -3727 ($ $)) (-15 -1731 ($ $ $)) (-15 -2369 ($ $)) (-15 -3377 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -1801 ($ $ $)) (-15 -2604 ($ $ $)) (-15 -1845 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3248 ($ $)) (-15 -2419 ($ $))))
-((-3009 (((-112) $ $) 44)) (-2128 ((|#1| $) 17)) (-1758 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3053 (((-112) $) 19)) (-2307 (($ $ |#1|) 30)) (-2548 (($ $ (-112)) 32)) (-3736 (($ $) 33)) (-1302 (($ $ |#2|) 31)) (-2766 (((-1152) $) NIL)) (-3807 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-4052 (((-1114) $) NIL)) (-1976 (((-112) $) 16)) (-2994 (($) 13)) (-3926 (($ $) 29)) (-2435 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3577 |#2|))) 23) (((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -3577 |#2|)))) 26) (((-641 $) |#1| (-641 |#2|)) 28)) (-2940 ((|#2| $) 18)) (-2423 (((-858) $) 53)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 42)))
-(((-1134 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -2994 ($)) (-15 -1976 ((-112) $)) (-15 -2128 (|#1| $)) (-15 -2940 (|#2| $)) (-15 -3053 ((-112) $)) (-15 -2435 ($ |#1| |#2| (-112))) (-15 -2435 ($ |#1| |#2|)) (-15 -2435 ($ (-2 (|:| |val| |#1|) (|:| -3577 |#2|)))) (-15 -2435 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -3577 |#2|))))) (-15 -2435 ((-641 $) |#1| (-641 |#2|))) (-15 -3926 ($ $)) (-15 -2307 ($ $ |#1|)) (-15 -1302 ($ $ |#2|)) (-15 -2548 ($ $ (-112))) (-15 -3736 ($ $)) (-15 -3807 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1758 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1134))
-((-2994 (*1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-2128 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)) (-4 *3 (-13 (-1094) (-34))))) (-2940 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2435 (*1 *1 *2 *3) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3577 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -3577 *5)))) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5)))) (-2435 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5)) (-4 *3 (-13 (-1094) (-34))))) (-3926 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2307 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1302 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))) (-4 *2 (-13 (-1094) (-34))))) (-2548 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3736 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3807 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))) (-1758 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))))))
-(-13 (-1094) (-10 -8 (-15 -2994 ($)) (-15 -1976 ((-112) $)) (-15 -2128 (|#1| $)) (-15 -2940 (|#2| $)) (-15 -3053 ((-112) $)) (-15 -2435 ($ |#1| |#2| (-112))) (-15 -2435 ($ |#1| |#2|)) (-15 -2435 ($ (-2 (|:| |val| |#1|) (|:| -3577 |#2|)))) (-15 -2435 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -3577 |#2|))))) (-15 -2435 ((-641 $) |#1| (-641 |#2|))) (-15 -3926 ($ $)) (-15 -2307 ($ $ |#1|)) (-15 -1302 ($ $ |#2|)) (-15 -2548 ($ $ (-112))) (-15 -3736 ($ $)) (-15 -3807 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1758 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-3009 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-2128 (((-1134 |#1| |#2|) $) 27)) (-3683 (($ $) 91)) (-2211 (((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2705 (($ $ $ (-641 (-1134 |#1| |#2|))) 108) (($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1876 (((-112) $ (-767)) NIL)) (-2925 (((-1134 |#1| |#2|) $ (-1134 |#1| |#2|)) 46 (|has| $ (-6 -4408)))) (-3904 (((-1134 |#1| |#2|) $ "value" (-1134 |#1| |#2|)) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 44 (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-2129 (((-641 (-2 (|:| |val| |#1|) (|:| -3577 |#2|))) $) 95)) (-1945 (($ (-1134 |#1| |#2|) $) 42)) (-2591 (($ (-1134 |#1| |#2|) $) 34)) (-3035 (((-641 (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) 54)) (-3734 (((-112) (-1134 |#1| |#2|) $) 97)) (-1675 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 (-1134 |#1| |#2|)) $) 58 (|has| $ (-6 -4407)))) (-3369 (((-112) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-1134 |#1| |#2|) (-1094))))) (-2714 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 50 (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 49)) (-3619 (((-112) $ (-767)) NIL)) (-2730 (((-641 (-1134 |#1| |#2|)) $) 56)) (-1841 (((-112) $) 45)) (-2766 (((-1152) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-4052 (((-1114) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-3786 (((-3 $ "failed") $) 89)) (-4377 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-1134 |#1| |#2|)))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-294 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-1134 |#1| |#2|) (-1134 |#1| |#2|)) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-641 (-1134 |#1| |#2|)) (-641 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094))))) (-3076 (((-112) $ $) 53)) (-1976 (((-112) $) 24)) (-2994 (($) 26)) (-4366 (((-1134 |#1| |#2|) $ "value") NIL)) (-3277 (((-564) $ $) NIL)) (-3206 (((-112) $) 47)) (-4062 (((-767) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4407))) (((-767) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-1134 |#1| |#2|) (-1094))))) (-3926 (($ $) 52)) (-2435 (($ (-1134 |#1| |#2|)) 10) (($ |#1| |#2| (-641 $)) 13) (($ |#1| |#2| (-641 (-1134 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-641 |#2|)) 18)) (-2100 (((-641 |#2|) $) 96)) (-2423 (((-858) $) 87 (|has| (-1134 |#1| |#2|) (-611 (-858))))) (-3154 (((-641 $) $) 31)) (-4059 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-1860 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-1368 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 70 (|has| (-1134 |#1| |#2|) (-1094)))) (-2181 (((-767) $) 64 (|has| $ (-6 -4407)))))
-(((-1135 |#1| |#2|) (-13 (-1006 (-1134 |#1| |#2|)) (-10 -8 (-6 -4408) (-6 -4407) (-15 -3786 ((-3 $ "failed") $)) (-15 -3683 ($ $)) (-15 -2435 ($ (-1134 |#1| |#2|))) (-15 -2435 ($ |#1| |#2| (-641 $))) (-15 -2435 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -2435 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -2100 ((-641 |#2|) $)) (-15 -2129 ((-641 (-2 (|:| |val| |#1|) (|:| -3577 |#2|))) $)) (-15 -3734 ((-112) (-1134 |#1| |#2|) $)) (-15 -2211 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2591 ($ (-1134 |#1| |#2|) $)) (-15 -1945 ($ (-1134 |#1| |#2|) $)) (-15 -2705 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -2705 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1135))
-((-3786 (*1 *1 *1) (|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3683 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1135 *2 *3))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1134 *2 *3))) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)))) (-2435 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4)))) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3734 (*1 *2 *3 *1) (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5)))) (-2211 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *5 *6)))) (-2591 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-1945 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2705 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2705 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *1 (-1135 *4 *5)))))
-(-13 (-1006 (-1134 |#1| |#2|)) (-10 -8 (-6 -4408) (-6 -4407) (-15 -3786 ((-3 $ "failed") $)) (-15 -3683 ($ $)) (-15 -2435 ($ (-1134 |#1| |#2|))) (-15 -2435 ($ |#1| |#2| (-641 $))) (-15 -2435 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -2435 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -2100 ((-641 |#2|) $)) (-15 -2129 ((-641 (-2 (|:| |val| |#1|) (|:| -3577 |#2|))) $)) (-15 -3734 ((-112) (-1134 |#1| |#2|) $)) (-15 -2211 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2591 ($ (-1134 |#1| |#2|) $)) (-15 -1945 ($ (-1134 |#1| |#2|) $)) (-15 -2705 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -2705 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3816 (($ $) NIL)) (-3847 ((|#2| $) NIL)) (-4239 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2205 (($ (-685 |#2|)) 56)) (-3999 (((-112) $) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-3483 (($ |#2|) 14)) (-4080 (($) NIL T CONST)) (-1679 (($ $) 69 (|has| |#2| (-307)))) (-4086 (((-240 |#1| |#2|) $ (-564)) 42)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) ((|#2| $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) 83)) (-2514 (((-767) $) 71 (|has| |#2| (-556)))) (-2652 ((|#2| $ (-564) (-564)) NIL)) (-3035 (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-4112 (((-112) $) NIL)) (-2907 (((-767) $) 73 (|has| |#2| (-556)))) (-2383 (((-641 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-556)))) (-2667 (((-767) $) NIL)) (-4238 (($ |#2|) 25)) (-2681 (((-767) $) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-2665 ((|#2| $) 67 (|has| |#2| (-6 (-4409 "*"))))) (-1795 (((-564) $) NIL)) (-2980 (((-564) $) NIL)) (-1554 (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2283 (((-564) $) NIL)) (-2287 (((-564) $) NIL)) (-2322 (($ (-641 (-641 |#2|))) 37)) (-2714 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3587 (((-641 (-641 |#2|)) $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-2540 (((-3 $ "failed") $) 80 (|has| |#2| (-363)))) (-4052 (((-1114) $) NIL)) (-2998 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-4377 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) NIL)) (-3254 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2868 ((|#2| $) NIL)) (-2006 (($ (-641 |#2|)) 50)) (-2701 (((-112) $) NIL)) (-1773 (((-240 |#1| |#2|) $) NIL)) (-1540 ((|#2| $) 65 (|has| |#2| (-6 (-4409 "*"))))) (-4062 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-3926 (($ $) NIL)) (-1311 (((-536) $) 89 (|has| |#2| (-612 (-536))))) (-1575 (((-240 |#1| |#2|) $ (-564)) 44)) (-2423 (((-858) $) 47) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1034 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) 52)) (-3719 (((-767)) 23 T CONST)) (-1860 (((-112) $ $) NIL)) (-1368 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3113 (((-112) $) NIL)) (-2403 (($) 16 T CONST)) (-2417 (($) 21 T CONST)) (-4063 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) 63) (($ $ (-564)) 82 (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1136 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -4238 ($ |#2|)) (-15 -3816 ($ $)) (-15 -2205 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4409 "*"))) (-6 -4396) |%noBranch|) (IF (|has| |#2| (-6 (-4409 "*"))) (IF (|has| |#2| (-6 -4404)) (-6 -4404) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-767) (-1045)) (T -1136))
-((-4238 (*1 *1 *2) (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045)))) (-3816 (*1 *1 *1) (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-685 *4)) (-4 *4 (-1045)) (-5 *1 (-1136 *3 *4)) (-14 *3 (-767)))))
-(-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -4238 ($ |#2|)) (-15 -3816 ($ $)) (-15 -2205 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4409 "*"))) (-6 -4396) |%noBranch|) (IF (|has| |#2| (-6 (-4409 "*"))) (IF (|has| |#2| (-6 -4404)) (-6 -4404) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
-((-3890 (($ $) 19)) (-2505 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-2834 (((-112) $ $) 24)) (-3364 (($ $) 17)) (-4366 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) 31)) (-2423 (($ (-144)) 29) (((-858) $) NIL)))
-(((-1137 |#1|) (-10 -8 (-15 -2423 ((-858) |#1|)) (-15 -4366 (|#1| |#1| |#1|)) (-15 -2505 (|#1| |#1| (-141))) (-15 -2505 (|#1| |#1| (-144))) (-15 -2423 (|#1| (-144))) (-15 -2834 ((-112) |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3364 (|#1| |#1|)) (-15 -4366 (|#1| |#1| (-1226 (-564)))) (-15 -4366 ((-144) |#1| (-564))) (-15 -4366 ((-144) |#1| (-564) (-144)))) (-1138)) (T -1137))
-NIL
-(-10 -8 (-15 -2423 ((-858) |#1|)) (-15 -4366 (|#1| |#1| |#1|)) (-15 -2505 (|#1| |#1| (-141))) (-15 -2505 (|#1| |#1| (-144))) (-15 -2423 (|#1| (-144))) (-15 -2834 ((-112) |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3364 (|#1| |#1|)) (-15 -4366 (|#1| |#1| (-1226 (-564)))) (-15 -4366 ((-144) |#1| (-564))) (-15 -4366 ((-144) |#1| (-564) (-144))))
-((-3009 (((-112) $ $) 19 (|has| (-144) (-1094)))) (-2587 (($ $) 121)) (-3890 (($ $) 122)) (-2505 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-3236 (((-1264) $ (-564) (-564)) 41 (|has| $ (-6 -4408)))) (-2008 (((-112) $ $) 119)) (-1984 (((-112) $ $ (-564)) 118)) (-1335 (((-641 $) $ (-144)) 111) (((-641 $) $ (-141)) 110)) (-3833 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-846)))) (-3963 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4408))) (($ $) 89 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4408))))) (-2484 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-846)))) (-1876 (((-112) $ (-767)) 8)) (-3904 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4408))) (((-144) $ (-1226 (-564)) (-144)) 59 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-1537 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2563 (($ $) 91 (|has| $ (-6 -4408)))) (-3200 (($ $) 101)) (-3741 (($ $ (-1226 (-564)) $) 115)) (-2696 (($ $) 79 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ (-144) $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4407)))) (-1316 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4407)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4407)))) (-2726 (((-144) $ (-564) (-144)) 54 (|has| $ (-6 -4408)))) (-2652 (((-144) $ (-564)) 52)) (-2834 (((-112) $ $) 120)) (-3998 (((-564) (-1 (-112) (-144)) $) 98) (((-564) (-144) $) 97 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 96 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 114) (((-564) (-141) $ (-564)) 113)) (-3035 (((-641 (-144)) $) 31 (|has| $ (-6 -4407)))) (-4238 (($ (-767) (-144)) 70)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 44 (|has| (-564) (-846)))) (-2855 (($ $ $) 88 (|has| (-144) (-846)))) (-3669 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-846)))) (-1554 (((-641 (-144)) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 45 (|has| (-564) (-846)))) (-1497 (($ $ $) 87 (|has| (-144) (-846)))) (-4017 (((-112) $ $ (-144)) 116)) (-2113 (((-767) $ $ (-144)) 117)) (-2714 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2590 (($ $) 123)) (-3364 (($ $) 124)) (-3619 (((-112) $ (-767)) 10)) (-1546 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-2766 (((-1152) $) 22 (|has| (-144) (-1094)))) (-4248 (($ (-144) $ (-564)) 61) (($ $ $ (-564)) 60)) (-3050 (((-641 (-564)) $) 47)) (-1563 (((-112) (-564) $) 48)) (-4052 (((-1114) $) 21 (|has| (-144) (-1094)))) (-2658 (((-144) $) 43 (|has| (-564) (-846)))) (-2139 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-1592 (($ $ (-144)) 42 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-144)))) 27 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-2075 (((-641 (-144)) $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 (((-144) $ (-564) (-144)) 51) (((-144) $ (-564)) 50) (($ $ (-1226 (-564))) 64) (($ $ $) 103)) (-2114 (($ $ (-564)) 63) (($ $ (-1226 (-564))) 62)) (-4062 (((-767) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4407))) (((-767) (-144) $) 29 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4407))))) (-3806 (($ $ $ (-564)) 92 (|has| $ (-6 -4408)))) (-3926 (($ $) 13)) (-1311 (((-536) $) 80 (|has| (-144) (-612 (-536))))) (-2435 (($ (-641 (-144))) 71)) (-3696 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-641 $)) 66)) (-2423 (($ (-144)) 112) (((-858) $) 18 (|has| (-144) (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| (-144) (-1094)))) (-1368 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) 85 (|has| (-144) (-846)))) (-3011 (((-112) $ $) 84 (|has| (-144) (-846)))) (-2974 (((-112) $ $) 20 (|has| (-144) (-1094)))) (-3023 (((-112) $ $) 86 (|has| (-144) (-846)))) (-2999 (((-112) $ $) 83 (|has| (-144) (-846)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-1138) (-140)) (T -1138))
-((-3364 (*1 *1 *1) (-4 *1 (-1138))) (-2590 (*1 *1 *1) (-4 *1 (-1138))) (-3890 (*1 *1 *1) (-4 *1 (-1138))) (-2587 (*1 *1 *1) (-4 *1 (-1138))) (-2834 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-2008 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-1984 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112)))) (-2113 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-767)))) (-4017 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3741 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564))))) (-3998 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)))) (-3998 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138)))) (-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-2505 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-2505 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-1546 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-1546 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-1537 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-1537 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-4366 (*1 *1 *1 *1) (-4 *1 (-1138))))
-(-13 (-19 (-144)) (-10 -8 (-15 -3364 ($ $)) (-15 -2590 ($ $)) (-15 -3890 ($ $)) (-15 -2587 ($ $)) (-15 -2834 ((-112) $ $)) (-15 -2008 ((-112) $ $)) (-15 -1984 ((-112) $ $ (-564))) (-15 -2113 ((-767) $ $ (-144))) (-15 -4017 ((-112) $ $ (-144))) (-15 -3741 ($ $ (-1226 (-564)) $)) (-15 -3998 ((-564) $ $ (-564))) (-15 -3998 ((-564) (-141) $ (-564))) (-15 -2423 ($ (-144))) (-15 -1335 ((-641 $) $ (-144))) (-15 -1335 ((-641 $) $ (-141))) (-15 -2505 ($ $ (-144))) (-15 -2505 ($ $ (-141))) (-15 -1546 ($ $ (-144))) (-15 -1546 ($ $ (-141))) (-15 -1537 ($ $ (-144))) (-15 -1537 ($ $ (-141))) (-15 -4366 ($ $ $))))
-(((-34) . T) ((-102) -2807 (|has| (-144) (-1094)) (|has| (-144) (-846))) ((-611 (-858)) -2807 (|has| (-144) (-1094)) (|has| (-144) (-846)) (|has| (-144) (-611 (-858)))) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-846) |has| (-144) (-846)) ((-1094) -2807 (|has| (-144) (-1094)) (|has| (-144) (-846))) ((-1209) . T))
-((-2642 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) (-767)) 113)) (-2176 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767)) 61)) (-1565 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-767)) 98)) (-3273 (((-767) (-641 |#4|) (-641 |#5|)) 30)) (-2024 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767)) 63) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767) (-112)) 65)) (-3384 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 85)) (-1311 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) 90)) (-4065 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|) 60)) (-2108 (((-767) (-641 |#4|) (-641 |#5|)) 21)))
-(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2108 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -3273 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -4065 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|)) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767))) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|)) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767))) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|)) (-15 -3384 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3384 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2642 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) (-767))) (-15 -1311 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)))) (-15 -1565 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1139))
-((-1565 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3577 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1264)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3577 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1152)) (-5 *1 (-1139 *4 *5 *6 *7 *8)))) (-2642 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -3577 *11)))))) (-5 *6 (-767)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -3577 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1139 *7 *8 *9 *10 *11)))) (-3384 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-3384 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2024 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2024 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-2024 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) (-2176 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-4065 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3273 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2108 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -3273 ((-767) (-641 |#4|) (-641 |#5|))) (-15 -4065 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|)) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767))) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|)) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5| (-767))) (-15 -2024 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) |#4| |#5|)) (-15 -3384 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3384 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2642 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))))) (-767))) (-15 -1311 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|)))) (-15 -1565 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3577 |#5|))) (-767))))
-((-3009 (((-112) $ $) NIL)) (-3605 (((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 |#4|)))) (-641 |#4|)) NIL)) (-2578 (((-641 $) (-641 |#4|)) 122) (((-641 $) (-641 |#4|) (-112)) 123) (((-641 $) (-641 |#4|) (-112) (-112)) 121) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 124)) (-3836 (((-641 |#3|) $) NIL)) (-3342 (((-112) $) NIL)) (-1594 (((-112) $) NIL (|has| |#1| (-556)))) (-3631 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3494 ((|#4| |#4| $) NIL)) (-2683 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| $) 95)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-1667 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 73)) (-4080 (($) NIL T CONST)) (-1968 (((-112) $) 29 (|has| |#1| (-556)))) (-2238 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1489 (((-112) $) NIL (|has| |#1| (-556)))) (-2961 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3703 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) NIL)) (-3120 (($ (-641 |#4|)) NIL)) (-2671 (((-3 $ "failed") $) 45)) (-2405 ((|#4| |#4| $) 76)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2591 (($ |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 89 (|has| |#1| (-556)))) (-3870 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2248 ((|#4| |#4| $) NIL)) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4020 (((-2 (|:| -1604 (-641 |#4|)) (|:| -2319 (-641 |#4|))) $) NIL)) (-4014 (((-112) |#4| $) NIL)) (-3071 (((-112) |#4| $) NIL)) (-1865 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1715 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 137)) (-3035 (((-641 |#4|) $) 18 (|has| $ (-6 -4407)))) (-2675 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3378 ((|#3| $) 38)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#4|) $) 19 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2714 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) 23)) (-2814 (((-641 |#3|) $) NIL)) (-3169 (((-112) |#3| $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-2227 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-2146 (((-641 (-2 (|:| |val| |#4|) (|:| -3577 $))) |#4| |#4| $) 115)) (-2615 (((-3 |#4| "failed") $) 42)) (-4022 (((-641 $) |#4| $) 100)) (-1995 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-4259 (((-641 (-2 (|:| |val| (-112)) (|:| -3577 $))) |#4| $) 110) (((-112) |#4| $) 63)) (-3888 (((-641 $) |#4| $) 119) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 120) (((-641 $) |#4| (-641 $)) NIL)) (-3389 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 132)) (-3531 (($ |#4| $) 86) (($ (-641 |#4|) $) 87) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 85)) (-3167 (((-641 |#4|) $) NIL)) (-3441 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4241 ((|#4| |#4| $) NIL)) (-2582 (((-112) $ $) NIL)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1929 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3347 ((|#4| |#4| $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 (((-3 |#4| "failed") $) 40)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2533 (((-3 $ "failed") $ |#4|) 58)) (-4016 (($ $ |#4|) NIL) (((-641 $) |#4| $) 102) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 97)) (-4377 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 17)) (-2994 (($) 14)) (-1568 (((-767) $) NIL)) (-4062 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) 13)) (-1311 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2435 (($ (-641 |#4|)) 22)) (-1834 (($ $ |#3|) 52)) (-1648 (($ $ |#3|) 54)) (-1492 (($ $) NIL)) (-2577 (($ $ |#3|) NIL)) (-2423 (((-858) $) 35) (((-641 |#4|) $) 46)) (-3840 (((-767) $) NIL (|has| |#3| (-368)))) (-1860 (((-112) $ $) NIL)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3212 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-3418 (((-641 $) |#4| $) 64) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-1368 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3579 (((-641 |#3|) $) NIL)) (-1947 (((-112) |#4| $) NIL)) (-1816 (((-112) |#3| $) 72)) (-2974 (((-112) $ $) NIL)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1140 |#1| |#2| |#3| |#4|) (-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3531 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2578 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -2578 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -3389 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -1715 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1140))
-((-3531 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-2578 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-2578 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-3389 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-1715 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1140 *5 *6 *7 *8))))) (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
-(-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3531 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2578 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -2578 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -3389 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -1715 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2462 ((|#1| $) 37)) (-3557 (($ (-641 |#1|)) 45)) (-1876 (((-112) $ (-767)) NIL)) (-4080 (($) NIL T CONST)) (-3780 ((|#1| |#1| $) 40)) (-2026 ((|#1| $) 35)) (-3035 (((-641 |#1|) $) 18 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 22)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3149 ((|#1| $) 38)) (-2566 (($ |#1| $) 41)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2554 ((|#1| $) 36)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 32)) (-2994 (($) 43)) (-1928 (((-767) $) 30)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) 27)) (-2423 (((-858) $) 14 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1863 (($ (-641 |#1|)) NIL)) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 17 (|has| |#1| (-1094)))) (-2181 (((-767) $) 31 (|has| $ (-6 -4407)))))
-(((-1141 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -3557 ($ (-641 |#1|))))) (-1209)) (T -1141))
-((-3557 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3)))))
-(-13 (-1115 |#1|) (-10 -8 (-15 -3557 ($ (-641 |#1|)))))
-((-3904 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 55) ((|#2| $ (-564) |#2|) 52)) (-2643 (((-112) $) 12)) (-2714 (($ (-1 |#2| |#2|) $) 50)) (-2658 ((|#2| $) NIL) (($ $ (-767)) 20)) (-1592 (($ $ |#2|) 51)) (-1555 (((-112) $) 11)) (-4366 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1226 (-564))) 38) ((|#2| $ (-564)) 29) ((|#2| $ (-564) |#2|) NIL)) (-3634 (($ $ $) 58) (($ $ |#2|) NIL)) (-3696 (($ $ $) 40) (($ |#2| $) NIL) (($ (-641 $)) 47) (($ $ |#2|) NIL)))
-(((-1142 |#1| |#2|) (-10 -8 (-15 -2643 ((-112) |#1|)) (-15 -1555 ((-112) |#1|)) (-15 -3904 (|#2| |#1| (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564))) (-15 -1592 (|#1| |#1| |#2|)) (-15 -3696 (|#1| |#1| |#2|)) (-15 -3696 (|#1| (-641 |#1|))) (-15 -4366 (|#1| |#1| (-1226 (-564)))) (-15 -3904 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3904 (|#2| |#1| "last" |#2|)) (-15 -3904 (|#1| |#1| "rest" |#1|)) (-15 -3904 (|#2| |#1| "first" |#2|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -4366 (|#2| |#1| "last")) (-15 -4366 (|#1| |#1| "rest")) (-15 -2658 (|#1| |#1| (-767))) (-15 -4366 (|#2| |#1| "first")) (-15 -2658 (|#2| |#1|)) (-15 -3696 (|#1| |#2| |#1|)) (-15 -3696 (|#1| |#1| |#1|)) (-15 -3904 (|#2| |#1| "value" |#2|)) (-15 -4366 (|#2| |#1| "value")) (-15 -2714 (|#1| (-1 |#2| |#2|) |#1|))) (-1143 |#2|) (-1209)) (T -1142))
-NIL
-(-10 -8 (-15 -2643 ((-112) |#1|)) (-15 -1555 ((-112) |#1|)) (-15 -3904 (|#2| |#1| (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564) |#2|)) (-15 -4366 (|#2| |#1| (-564))) (-15 -1592 (|#1| |#1| |#2|)) (-15 -3696 (|#1| |#1| |#2|)) (-15 -3696 (|#1| (-641 |#1|))) (-15 -4366 (|#1| |#1| (-1226 (-564)))) (-15 -3904 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3904 (|#2| |#1| "last" |#2|)) (-15 -3904 (|#1| |#1| "rest" |#1|)) (-15 -3904 (|#2| |#1| "first" |#2|)) (-15 -3634 (|#1| |#1| |#2|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -4366 (|#2| |#1| "last")) (-15 -4366 (|#1| |#1| "rest")) (-15 -2658 (|#1| |#1| (-767))) (-15 -4366 (|#2| |#1| "first")) (-15 -2658 (|#2| |#1|)) (-15 -3696 (|#1| |#2| |#1|)) (-15 -3696 (|#1| |#1| |#1|)) (-15 -3904 (|#2| |#1| "value" |#2|)) (-15 -4366 (|#2| |#1| "value")) (-15 -2714 (|#1| (-1 |#2| |#2|) |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2128 ((|#1| $) 49)) (-1783 ((|#1| $) 66)) (-1403 (($ $) 68)) (-3236 (((-1264) $ (-564) (-564)) 98 (|has| $ (-6 -4408)))) (-3611 (($ $ (-564)) 53 (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) 8)) (-2925 ((|#1| $ |#1|) 40 (|has| $ (-6 -4408)))) (-1886 (($ $ $) 57 (|has| $ (-6 -4408)))) (-1776 ((|#1| $ |#1|) 55 (|has| $ (-6 -4408)))) (-4265 ((|#1| $ |#1|) 59 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4408))) (($ $ "rest" $) 56 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) 118 (|has| $ (-6 -4408))) ((|#1| $ (-564) |#1|) 87 (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 42 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4407)))) (-1772 ((|#1| $) 67)) (-4080 (($) 7 T CONST)) (-2671 (($ $) 74) (($ $ (-767)) 72)) (-2696 (($ $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4407))) (($ |#1| $) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2726 ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 88)) (-2643 (((-112) $) 84)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) 51)) (-1675 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4238 (($ (-767) |#1|) 109)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 96 (|has| (-564) (-846)))) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 95 (|has| (-564) (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3619 (((-112) $ (-767)) 10)) (-2730 (((-641 |#1|) $) 46)) (-1841 (((-112) $) 50)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2615 ((|#1| $) 71) (($ $ (-767)) 69)) (-4248 (($ $ $ (-564)) 117) (($ |#1| $ (-564)) 116)) (-3050 (((-641 (-564)) $) 93)) (-1563 (((-112) (-564) $) 92)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2658 ((|#1| $) 77) (($ $ (-767)) 75)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1592 (($ $ |#1|) 97 (|has| $ (-6 -4408)))) (-1555 (((-112) $) 85)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) 91)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1226 (-564))) 113) ((|#1| $ (-564)) 90) ((|#1| $ (-564) |#1|) 89)) (-3277 (((-564) $ $) 45)) (-2114 (($ $ (-1226 (-564))) 115) (($ $ (-564)) 114)) (-3206 (((-112) $) 47)) (-3068 (($ $) 63)) (-2602 (($ $) 60 (|has| $ (-6 -4408)))) (-3004 (((-767) $) 64)) (-1977 (($ $) 65)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-1311 (((-536) $) 99 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 108)) (-3634 (($ $ $) 62 (|has| $ (-6 -4408))) (($ $ |#1|) 61 (|has| $ (-6 -4408)))) (-3696 (($ $ $) 79) (($ |#1| $) 78) (($ (-641 $)) 111) (($ $ |#1|) 110)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) 52)) (-4059 (((-112) $ $) 44 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-1143 |#1|) (-140) (-1209)) (T -1143))
-((-1555 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(-13 (-1247 |t#1|) (-647 |t#1|) (-10 -8 (-15 -1555 ((-112) $)) (-15 -2643 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T) ((-1247 |#1|) . T))
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-3236 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#2| $ |#1| |#2|) NIL)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2327 (((-3 |#2| "failed") |#1| $) NIL)) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-1945 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) NIL)) (-2591 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) NIL)) (-3035 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 ((|#1| $) NIL (|has| |#1| (-846)))) (-1554 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2898 ((|#1| $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3454 (((-641 |#1|) $) NIL)) (-3565 (((-112) |#1| $) NIL)) (-3149 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-2566 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-3050 (((-641 |#1|) $) NIL)) (-1563 (((-112) |#1| $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2658 ((|#2| $) NIL (|has| |#1| (-846)))) (-2139 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL)) (-1592 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3853 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-2423 (((-858) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1860 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1144 |#1| |#2| |#3|) (-1185 |#1| |#2|) (-1094) (-1094) |#2|) (T -1144))
-NIL
-(-1185 |#1| |#2|)
-((-3009 (((-112) $ $) 7)) (-1846 (((-3 $ "failed") $) 14)) (-2766 (((-1152) $) 10)) (-3431 (($) 15 T CONST)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2974 (((-112) $ $) 6)))
-(((-1145) (-140)) (T -1145))
-((-3431 (*1 *1) (-4 *1 (-1145))) (-1846 (*1 *1 *1) (|partial| -4 *1 (-1145))))
-(-13 (-1094) (-10 -8 (-15 -3431 ($) -2959) (-15 -1846 ((-3 $ "failed") $))))
-(((-102) . T) ((-611 (-858)) . T) ((-1094) . T))
-((-4371 (((-1150 |#1|) (-1150 |#1|)) 17)) (-1962 (((-1150 |#1|) (-1150 |#1|)) 13)) (-2941 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 20)) (-3158 (((-1150 |#1|) (-1150 |#1|)) 15)))
-(((-1146 |#1|) (-10 -7 (-15 -1962 ((-1150 |#1|) (-1150 |#1|))) (-15 -3158 ((-1150 |#1|) (-1150 |#1|))) (-15 -4371 ((-1150 |#1|) (-1150 |#1|))) (-15 -2941 ((-1150 |#1|) (-1150 |#1|) (-564) (-564)))) (-13 (-556) (-147))) (T -1146))
-((-2941 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1146 *4)))) (-4371 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-3158 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-1962 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))))
-(-10 -7 (-15 -1962 ((-1150 |#1|) (-1150 |#1|))) (-15 -3158 ((-1150 |#1|) (-1150 |#1|))) (-15 -4371 ((-1150 |#1|) (-1150 |#1|))) (-15 -2941 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))))
-((-3696 (((-1150 |#1|) (-1150 (-1150 |#1|))) 15)))
-(((-1147 |#1|) (-10 -7 (-15 -3696 ((-1150 |#1|) (-1150 (-1150 |#1|))))) (-1209)) (T -1147))
-((-3696 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-1209)))))
-(-10 -7 (-15 -3696 ((-1150 |#1|) (-1150 (-1150 |#1|)))))
-((-2903 (((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 25)) (-1316 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 26)) (-4357 (((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|)) 16)))
-(((-1148 |#1| |#2|) (-10 -7 (-15 -4357 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -2903 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -1316 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)))) (-1209) (-1209)) (T -1148))
-((-1316 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2)))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209)) (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1148 *5 *6)))))
-(-10 -7 (-15 -4357 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -2903 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -1316 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))))
-((-4357 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)) 21)))
-(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -4357 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -1149))
-((-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-1149 *6 *7 *8)))))
-(-10 -7 (-15 -4357 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2128 ((|#1| $) NIL)) (-1783 ((|#1| $) NIL)) (-1403 (($ $) 67)) (-3236 (((-1264) $ (-564) (-564)) 98 (|has| $ (-6 -4408)))) (-3611 (($ $ (-564)) 127 (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3814 (((-858) $) 56 (|has| |#1| (-1094)))) (-2584 (((-112)) 55 (|has| |#1| (-1094)))) (-2925 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-1886 (($ $ $) 115 (|has| $ (-6 -4408))) (($ $ (-564) $) 140)) (-1776 ((|#1| $ |#1|) 124 (|has| $ (-6 -4408)))) (-4265 ((|#1| $ |#1|) 119 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 121 (|has| $ (-6 -4408))) (($ $ "rest" $) 123 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) 126 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) 112 (|has| $ (-6 -4408))) ((|#1| $ (-564) |#1|) 76 (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) NIL (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) 79)) (-1772 ((|#1| $) NIL)) (-4080 (($) NIL T CONST)) (-3716 (($ $) 14)) (-2671 (($ $) 42) (($ $ (-767)) 110)) (-2148 (((-112) (-641 |#1|) $) 133 (|has| |#1| (-1094)))) (-1936 (($ (-641 |#1|)) 129)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) 78)) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2726 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) NIL)) (-2643 (((-112) $) NIL)) (-3035 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2632 (((-1264) (-564) $) 139 (|has| |#1| (-1094)))) (-2056 (((-767) $) 136)) (-3573 (((-641 $) $) NIL)) (-1675 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4238 (($ (-767) |#1|) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 94 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 84) (($ (-1 |#1| |#1| |#1|) $ $) 88)) (-3619 (((-112) $ (-767)) NIL)) (-2730 (((-641 |#1|) $) NIL)) (-1841 (((-112) $) NIL)) (-3773 (($ $) 113)) (-3258 (((-112) $) 13)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2615 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-4248 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) 95)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1601 (($ (-1 |#1|)) 142) (($ (-1 |#1| |#1|) |#1|) 143)) (-3758 ((|#1| $) 10)) (-2658 ((|#1| $) 41) (($ $ (-767)) 65)) (-4001 (((-2 (|:| |cycle?| (-112)) (|:| -1619 (-767)) (|:| |period| (-767))) (-767) $) 36)) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1649 (($ (-1 (-112) |#1|) $) 144)) (-1658 (($ (-1 (-112) |#1|) $) 145)) (-1592 (($ $ |#1|) 89 (|has| $ (-6 -4408)))) (-4016 (($ $ (-564)) 45)) (-1555 (((-112) $) 93)) (-4348 (((-112) $) 12)) (-1828 (((-112) $) 135)) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 30)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) 20)) (-2994 (($) 60)) (-4366 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 74) ((|#1| $ (-564) |#1|) NIL)) (-3277 (((-564) $ $) 64)) (-2114 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3124 (($ (-1 $)) 63)) (-3206 (((-112) $) 90)) (-3068 (($ $) 91)) (-2602 (($ $) 116 (|has| $ (-6 -4408)))) (-3004 (((-767) $) NIL)) (-1977 (($ $) NIL)) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) 59)) (-1311 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 73)) (-1718 (($ |#1| $) 114)) (-3634 (($ $ $) 117 (|has| $ (-6 -4408))) (($ $ |#1|) 118 (|has| $ (-6 -4408)))) (-3696 (($ $ $) 100) (($ |#1| $) 61) (($ (-641 $)) 105) (($ $ |#1|) 99)) (-2732 (($ $) 66)) (-2423 (($ (-641 |#1|)) 128) (((-858) $) 57 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) NIL)) (-4059 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 131 (|has| |#1| (-1094)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1150 |#1|) (-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4408) (-15 -1936 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -2148 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -4001 ((-2 (|:| |cycle?| (-112)) (|:| -1619 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -3124 ($ (-1 $))) (-15 -1718 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -2632 ((-1264) (-564) $)) (-15 -3814 ((-858) $)) (-15 -2584 ((-112)))) |%noBranch|) (-15 -1886 ($ $ (-564) $)) (-15 -1601 ($ (-1 |#1|))) (-15 -1601 ($ (-1 |#1| |#1|) |#1|)) (-15 -1649 ($ (-1 (-112) |#1|) $)) (-15 -1658 ($ (-1 (-112) |#1|) $)))) (-1209)) (T -1150))
-((-1936 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-2148 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)) (-5 *1 (-1150 *4)))) (-4001 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1619 (-767)) (|:| |period| (-767)))) (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-767)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-1718 (*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209)))) (-2632 (*1 *2 *3 *1) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-2584 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-1886 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-1601 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-1601 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-1649 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-1658 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
-(-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4408) (-15 -1936 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -2148 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -4001 ((-2 (|:| |cycle?| (-112)) (|:| -1619 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -3124 ($ (-1 $))) (-15 -1718 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -2632 ((-1264) (-564) $)) (-15 -3814 ((-858) $)) (-15 -2584 ((-112)))) |%noBranch|) (-15 -1886 ($ $ (-564) $)) (-15 -1601 ($ (-1 |#1|))) (-15 -1601 ($ (-1 |#1| |#1|) |#1|)) (-15 -1649 ($ (-1 (-112) |#1|) $)) (-15 -1658 ($ (-1 (-112) |#1|) $))))
-((-3009 (((-112) $ $) 19)) (-2587 (($ $) 121)) (-3890 (($ $) 122)) (-2505 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-3236 (((-1264) $ (-564) (-564)) 41 (|has| $ (-6 -4408)))) (-2008 (((-112) $ $) 119)) (-1984 (((-112) $ $ (-564)) 118)) (-4293 (($ (-564)) 128)) (-1335 (((-641 $) $ (-144)) 111) (((-641 $) $ (-141)) 110)) (-3833 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-846)))) (-3963 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4408))) (($ $) 89 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4408))))) (-2484 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-846)))) (-1876 (((-112) $ (-767)) 8)) (-3904 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4408))) (((-144) $ (-1226 (-564)) (-144)) 59 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-1537 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2563 (($ $) 91 (|has| $ (-6 -4408)))) (-3200 (($ $) 101)) (-3741 (($ $ (-1226 (-564)) $) 115)) (-2696 (($ $) 79 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ (-144) $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4407)))) (-1316 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4407)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4407)))) (-2726 (((-144) $ (-564) (-144)) 54 (|has| $ (-6 -4408)))) (-2652 (((-144) $ (-564)) 52)) (-2834 (((-112) $ $) 120)) (-3998 (((-564) (-1 (-112) (-144)) $) 98) (((-564) (-144) $) 97 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 96 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 114) (((-564) (-141) $ (-564)) 113)) (-3035 (((-641 (-144)) $) 31 (|has| $ (-6 -4407)))) (-4238 (($ (-767) (-144)) 70)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 44 (|has| (-564) (-846)))) (-2855 (($ $ $) 88 (|has| (-144) (-846)))) (-3669 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-846)))) (-1554 (((-641 (-144)) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 45 (|has| (-564) (-846)))) (-1497 (($ $ $) 87 (|has| (-144) (-846)))) (-4017 (((-112) $ $ (-144)) 116)) (-2113 (((-767) $ $ (-144)) 117)) (-2714 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2590 (($ $) 123)) (-3364 (($ $) 124)) (-3619 (((-112) $ (-767)) 10)) (-1546 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-2766 (((-1152) $) 22)) (-4248 (($ (-144) $ (-564)) 61) (($ $ $ (-564)) 60)) (-3050 (((-641 (-564)) $) 47)) (-1563 (((-112) (-564) $) 48)) (-4052 (((-1114) $) 21)) (-2658 (((-144) $) 43 (|has| (-564) (-846)))) (-2139 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-1592 (($ $ (-144)) 42 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-144)))) 27 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-2075 (((-641 (-144)) $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 (((-144) $ (-564) (-144)) 51) (((-144) $ (-564)) 50) (($ $ (-1226 (-564))) 64) (($ $ $) 103)) (-2114 (($ $ (-564)) 63) (($ $ (-1226 (-564))) 62)) (-4062 (((-767) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4407))) (((-767) (-144) $) 29 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4407))))) (-3806 (($ $ $ (-564)) 92 (|has| $ (-6 -4408)))) (-3926 (($ $) 13)) (-1311 (((-536) $) 80 (|has| (-144) (-612 (-536))))) (-2435 (($ (-641 (-144))) 71)) (-3696 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-641 $)) 66)) (-2423 (($ (-144)) 112) (((-858) $) 18)) (-1860 (((-112) $ $) 23)) (-1368 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4407)))) (-1613 (((-1152) $) 132) (((-1152) $ (-112)) 131) (((-1264) (-818) $) 130) (((-1264) (-818) $ (-112)) 129)) (-3034 (((-112) $ $) 85 (|has| (-144) (-846)))) (-3011 (((-112) $ $) 84 (|has| (-144) (-846)))) (-2974 (((-112) $ $) 20)) (-3023 (((-112) $ $) 86 (|has| (-144) (-846)))) (-2999 (((-112) $ $) 83 (|has| (-144) (-846)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-1151) (-140)) (T -1151))
-((-4293 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151)))))
-(-13 (-1138) (-1094) (-824) (-10 -8 (-15 -4293 ($ (-564)))))
-(((-34) . T) ((-102) . T) ((-611 (-858)) . T) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-824) . T) ((-846) |has| (-144) (-846)) ((-1094) . T) ((-1138) . T) ((-1209) . T))
-((-3009 (((-112) $ $) NIL)) (-2587 (($ $) NIL)) (-3890 (($ $) NIL)) (-2505 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-2008 (((-112) $ $) NIL)) (-1984 (((-112) $ $ (-564)) NIL)) (-4293 (($ (-564)) 8)) (-1335 (((-641 $) $ (-144)) NIL) (((-641 $) $ (-141)) NIL)) (-3833 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-3963 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-846))))) (-2484 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4408))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-1537 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-3741 (($ $ (-1226 (-564)) $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-2591 (($ (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4407)))) (-2726 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4408)))) (-2652 (((-144) $ (-564)) NIL)) (-2834 (((-112) $ $) NIL)) (-3998 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) NIL (|has| (-144) (-1094))) (((-564) $ $ (-564)) NIL) (((-564) (-141) $ (-564)) NIL)) (-3035 (((-641 (-144)) $) NIL (|has| $ (-6 -4407)))) (-4238 (($ (-767) (-144)) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| (-144) (-846)))) (-3669 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-1554 (((-641 (-144)) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| (-144) (-846)))) (-4017 (((-112) $ $ (-144)) NIL)) (-2113 (((-767) $ $ (-144)) NIL)) (-2714 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2590 (($ $) NIL)) (-3364 (($ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-1546 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2766 (((-1152) $) NIL)) (-4248 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 (((-144) $) NIL (|has| (-564) (-846)))) (-2139 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1592 (($ $ (-144)) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-2075 (((-641 (-144)) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) NIL)) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4062 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-2435 (($ (-641 (-144))) NIL)) (-3696 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2423 (($ (-144)) NIL) (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-1368 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-1613 (((-1152) $) 19) (((-1152) $ (-112)) 21) (((-1264) (-818) $) 22) (((-1264) (-818) $ (-112)) 23)) (-3034 (((-112) $ $) NIL (|has| (-144) (-846)))) (-3011 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2999 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1152) (-1151)) (T -1152))
-NIL
-(-1151)
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL)) (-3236 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-1152) |#1|) NIL)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-2327 (((-3 |#1| "failed") (-1152) $) NIL)) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094))))) (-1945 (($ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#1| "failed") (-1152) $) NIL)) (-2591 (($ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-1152)) NIL)) (-3035 (((-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-1152) $) NIL (|has| (-1152) (-846)))) (-1554 (((-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-1152) $) NIL (|has| (-1152) (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (-2807 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-3454 (((-641 (-1152)) $) NIL)) (-3565 (((-112) (-1152) $) NIL)) (-3149 (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL)) (-2566 (($ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL)) (-3050 (((-641 (-1152)) $) NIL)) (-1563 (((-112) (-1152) $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2658 ((|#1| $) NIL (|has| (-1152) (-846)))) (-2139 (((-3 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) "failed") (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL)) (-1592 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (($ $ (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL (-12 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-309 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-1152)) NIL) ((|#1| $ (-1152) |#1|) NIL)) (-3853 (($) NIL) (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL)) (-2423 (((-858) $) NIL (-2807 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-611 (-858))) (|has| |#1| (-611 (-858)))))) (-1860 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)))) NIL)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 (-1152)) (|:| -3813 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1153 |#1|) (-13 (-1185 (-1152) |#1|) (-10 -7 (-6 -4407))) (-1094)) (T -1153))
-NIL
-(-13 (-1185 (-1152) |#1|) (-10 -7 (-6 -4407)))
-((-4089 (((-1150 |#1|) (-1150 |#1|)) 84)) (-3293 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 42)) (-3752 (((-1150 |#1|) (-407 (-564)) (-1150 |#1|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3196 (((-1150 |#1|) |#1| (-1150 |#1|)) 141 (|has| |#1| (-363)))) (-3002 (((-1150 |#1|) (-1150 |#1|)) 99)) (-4125 (((-1150 (-564)) (-564)) 63)) (-4046 (((-1150 |#1|) (-1150 (-1150 |#1|))) 118 (|has| |#1| (-38 (-407 (-564)))))) (-3373 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 104)) (-3290 (((-1150 |#1|) |#1| (-564)) 53)) (-2360 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 66)) (-4039 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 138 (|has| |#1| (-363)))) (-3209 (((-1150 |#1|) |#1| (-1 (-1150 |#1|))) 117 (|has| |#1| (-38 (-407 (-564)))))) (-2996 (((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|))) 139 (|has| |#1| (-363)))) (-3543 (((-1150 |#1|) (-1150 |#1|)) 98)) (-2822 (((-1150 |#1|) (-1150 |#1|)) 82)) (-1459 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 105)) (-2070 (((-1150 |#1|) |#1| (-1150 |#1|)) 114 (|has| |#1| (-38 (-407 (-564)))))) (-3156 (((-1150 (-564)) (-564)) 62)) (-1452 (((-1150 |#1|) |#1|) 65)) (-3905 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 101)) (-2800 (((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|)) 72)) (-2998 (((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|)) 40)) (-4324 (((-1150 |#1|) (-1150 |#1|)) 100)) (-3291 (((-1150 |#1|) (-1150 |#1|) |#1|) 77)) (-1379 (((-1150 |#1|) (-1150 |#1|)) 68)) (-3841 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 78)) (-2423 (((-1150 |#1|) |#1|) 73)) (-3105 (((-1150 |#1|) (-1150 (-1150 |#1|))) 89)) (-3092 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41)) (-3082 (((-1150 |#1|) (-1150 |#1|)) 21) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 23)) (-3070 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 17)) (* (((-1150 |#1|) (-1150 |#1|) |#1|) 29) (((-1150 |#1|) |#1| (-1150 |#1|)) 26) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 27)))
-(((-1154 |#1|) (-10 -7 (-15 -3070 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3082 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3082 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -2998 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -3092 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3293 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -3290 ((-1150 |#1|) |#1| (-564))) (-15 -3156 ((-1150 (-564)) (-564))) (-15 -4125 ((-1150 (-564)) (-564))) (-15 -1452 ((-1150 |#1|) |#1|)) (-15 -2360 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1379 ((-1150 |#1|) (-1150 |#1|))) (-15 -2800 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -2423 ((-1150 |#1|) |#1|)) (-15 -3291 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -3841 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2822 ((-1150 |#1|) (-1150 |#1|))) (-15 -4089 ((-1150 |#1|) (-1150 |#1|))) (-15 -3105 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -3543 ((-1150 |#1|) (-1150 |#1|))) (-15 -3002 ((-1150 |#1|) (-1150 |#1|))) (-15 -4324 ((-1150 |#1|) (-1150 |#1|))) (-15 -3905 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -3373 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -1459 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -3209 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -4046 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -3752 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4039 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2996 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -3196 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|)) (-1045)) (T -1154))
-((-3196 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)))) (-4039 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3752 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045)) (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1045)))) (-3209 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)))) (-2070 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-1459 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045)) (-5 *1 (-1154 *4)))) (-3373 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045)) (-5 *1 (-1154 *4)))) (-3905 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045)) (-5 *1 (-1154 *4)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3543 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-1045)))) (-4089 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2822 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3841 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3291 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2423 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1045)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1045)) (-5 *1 (-1154 *4)))) (-1379 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2360 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-1452 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1045)))) (-4125 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1045)) (-5 *3 (-564)))) (-3156 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1045)) (-5 *3 (-564)))) (-3290 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1045)))) (-3293 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3092 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-2998 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3082 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3082 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))) (-3070 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))))
-(-10 -7 (-15 -3070 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3082 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3082 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -2998 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -3092 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3293 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -3290 ((-1150 |#1|) |#1| (-564))) (-15 -3156 ((-1150 (-564)) (-564))) (-15 -4125 ((-1150 (-564)) (-564))) (-15 -1452 ((-1150 |#1|) |#1|)) (-15 -2360 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1379 ((-1150 |#1|) (-1150 |#1|))) (-15 -2800 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -2423 ((-1150 |#1|) |#1|)) (-15 -3291 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -3841 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2822 ((-1150 |#1|) (-1150 |#1|))) (-15 -4089 ((-1150 |#1|) (-1150 |#1|))) (-15 -3105 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -3543 ((-1150 |#1|) (-1150 |#1|))) (-15 -3002 ((-1150 |#1|) (-1150 |#1|))) (-15 -4324 ((-1150 |#1|) (-1150 |#1|))) (-15 -3905 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -3373 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -1459 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -3209 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -4046 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -3752 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4039 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2996 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -3196 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|))
-((-3880 (((-1150 |#1|) (-1150 |#1|)) 60)) (-3745 (((-1150 |#1|) (-1150 |#1|)) 42)) (-3858 (((-1150 |#1|) (-1150 |#1|)) 56)) (-3722 (((-1150 |#1|) (-1150 |#1|)) 38)) (-3902 (((-1150 |#1|) (-1150 |#1|)) 63)) (-3766 (((-1150 |#1|) (-1150 |#1|)) 45)) (-3657 (((-1150 |#1|) (-1150 |#1|)) 34)) (-1689 (((-1150 |#1|) (-1150 |#1|)) 29)) (-3914 (((-1150 |#1|) (-1150 |#1|)) 64)) (-3777 (((-1150 |#1|) (-1150 |#1|)) 46)) (-3891 (((-1150 |#1|) (-1150 |#1|)) 61)) (-3756 (((-1150 |#1|) (-1150 |#1|)) 43)) (-3869 (((-1150 |#1|) (-1150 |#1|)) 58)) (-3735 (((-1150 |#1|) (-1150 |#1|)) 40)) (-3949 (((-1150 |#1|) (-1150 |#1|)) 68)) (-3811 (((-1150 |#1|) (-1150 |#1|)) 50)) (-3925 (((-1150 |#1|) (-1150 |#1|)) 66)) (-3787 (((-1150 |#1|) (-1150 |#1|)) 48)) (-3972 (((-1150 |#1|) (-1150 |#1|)) 71)) (-3837 (((-1150 |#1|) (-1150 |#1|)) 53)) (-2784 (((-1150 |#1|) (-1150 |#1|)) 72)) (-3848 (((-1150 |#1|) (-1150 |#1|)) 54)) (-3960 (((-1150 |#1|) (-1150 |#1|)) 70)) (-3825 (((-1150 |#1|) (-1150 |#1|)) 52)) (-3937 (((-1150 |#1|) (-1150 |#1|)) 69)) (-3799 (((-1150 |#1|) (-1150 |#1|)) 51)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 36)))
-(((-1155 |#1|) (-10 -7 (-15 -1689 ((-1150 |#1|) (-1150 |#1|))) (-15 -3657 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3722 ((-1150 |#1|) (-1150 |#1|))) (-15 -3735 ((-1150 |#1|) (-1150 |#1|))) (-15 -3745 ((-1150 |#1|) (-1150 |#1|))) (-15 -3756 ((-1150 |#1|) (-1150 |#1|))) (-15 -3766 ((-1150 |#1|) (-1150 |#1|))) (-15 -3777 ((-1150 |#1|) (-1150 |#1|))) (-15 -3787 ((-1150 |#1|) (-1150 |#1|))) (-15 -3799 ((-1150 |#1|) (-1150 |#1|))) (-15 -3811 ((-1150 |#1|) (-1150 |#1|))) (-15 -3825 ((-1150 |#1|) (-1150 |#1|))) (-15 -3837 ((-1150 |#1|) (-1150 |#1|))) (-15 -3848 ((-1150 |#1|) (-1150 |#1|))) (-15 -3858 ((-1150 |#1|) (-1150 |#1|))) (-15 -3869 ((-1150 |#1|) (-1150 |#1|))) (-15 -3880 ((-1150 |#1|) (-1150 |#1|))) (-15 -3891 ((-1150 |#1|) (-1150 |#1|))) (-15 -3902 ((-1150 |#1|) (-1150 |#1|))) (-15 -3914 ((-1150 |#1|) (-1150 |#1|))) (-15 -3925 ((-1150 |#1|) (-1150 |#1|))) (-15 -3937 ((-1150 |#1|) (-1150 |#1|))) (-15 -3949 ((-1150 |#1|) (-1150 |#1|))) (-15 -3960 ((-1150 |#1|) (-1150 |#1|))) (-15 -3972 ((-1150 |#1|) (-1150 |#1|))) (-15 -2784 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1155))
-((-2784 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3972 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3869 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3858 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3777 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3722 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3657 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))))
-(-10 -7 (-15 -1689 ((-1150 |#1|) (-1150 |#1|))) (-15 -3657 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3722 ((-1150 |#1|) (-1150 |#1|))) (-15 -3735 ((-1150 |#1|) (-1150 |#1|))) (-15 -3745 ((-1150 |#1|) (-1150 |#1|))) (-15 -3756 ((-1150 |#1|) (-1150 |#1|))) (-15 -3766 ((-1150 |#1|) (-1150 |#1|))) (-15 -3777 ((-1150 |#1|) (-1150 |#1|))) (-15 -3787 ((-1150 |#1|) (-1150 |#1|))) (-15 -3799 ((-1150 |#1|) (-1150 |#1|))) (-15 -3811 ((-1150 |#1|) (-1150 |#1|))) (-15 -3825 ((-1150 |#1|) (-1150 |#1|))) (-15 -3837 ((-1150 |#1|) (-1150 |#1|))) (-15 -3848 ((-1150 |#1|) (-1150 |#1|))) (-15 -3858 ((-1150 |#1|) (-1150 |#1|))) (-15 -3869 ((-1150 |#1|) (-1150 |#1|))) (-15 -3880 ((-1150 |#1|) (-1150 |#1|))) (-15 -3891 ((-1150 |#1|) (-1150 |#1|))) (-15 -3902 ((-1150 |#1|) (-1150 |#1|))) (-15 -3914 ((-1150 |#1|) (-1150 |#1|))) (-15 -3925 ((-1150 |#1|) (-1150 |#1|))) (-15 -3937 ((-1150 |#1|) (-1150 |#1|))) (-15 -3949 ((-1150 |#1|) (-1150 |#1|))) (-15 -3960 ((-1150 |#1|) (-1150 |#1|))) (-15 -3972 ((-1150 |#1|) (-1150 |#1|))) (-15 -2784 ((-1150 |#1|) (-1150 |#1|))))
-((-3880 (((-1150 |#1|) (-1150 |#1|)) 108)) (-3745 (((-1150 |#1|) (-1150 |#1|)) 65)) (-2854 (((-2 (|:| -3858 (-1150 |#1|)) (|:| -3869 (-1150 |#1|))) (-1150 |#1|)) 104)) (-3858 (((-1150 |#1|) (-1150 |#1|)) 105)) (-3283 (((-2 (|:| -3722 (-1150 |#1|)) (|:| -3735 (-1150 |#1|))) (-1150 |#1|)) 54)) (-3722 (((-1150 |#1|) (-1150 |#1|)) 55)) (-3902 (((-1150 |#1|) (-1150 |#1|)) 110)) (-3766 (((-1150 |#1|) (-1150 |#1|)) 72)) (-3657 (((-1150 |#1|) (-1150 |#1|)) 40)) (-1689 (((-1150 |#1|) (-1150 |#1|)) 37)) (-3914 (((-1150 |#1|) (-1150 |#1|)) 111)) (-3777 (((-1150 |#1|) (-1150 |#1|)) 73)) (-3891 (((-1150 |#1|) (-1150 |#1|)) 109)) (-3756 (((-1150 |#1|) (-1150 |#1|)) 68)) (-3869 (((-1150 |#1|) (-1150 |#1|)) 106)) (-3735 (((-1150 |#1|) (-1150 |#1|)) 56)) (-3949 (((-1150 |#1|) (-1150 |#1|)) 119)) (-3811 (((-1150 |#1|) (-1150 |#1|)) 94)) (-3925 (((-1150 |#1|) (-1150 |#1|)) 113)) (-3787 (((-1150 |#1|) (-1150 |#1|)) 90)) (-3972 (((-1150 |#1|) (-1150 |#1|)) 123)) (-3837 (((-1150 |#1|) (-1150 |#1|)) 98)) (-2784 (((-1150 |#1|) (-1150 |#1|)) 125)) (-3848 (((-1150 |#1|) (-1150 |#1|)) 100)) (-3960 (((-1150 |#1|) (-1150 |#1|)) 121)) (-3825 (((-1150 |#1|) (-1150 |#1|)) 96)) (-3937 (((-1150 |#1|) (-1150 |#1|)) 115)) (-3799 (((-1150 |#1|) (-1150 |#1|)) 92)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41)))
-(((-1156 |#1|) (-10 -7 (-15 -1689 ((-1150 |#1|) (-1150 |#1|))) (-15 -3657 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3283 ((-2 (|:| -3722 (-1150 |#1|)) (|:| -3735 (-1150 |#1|))) (-1150 |#1|))) (-15 -3722 ((-1150 |#1|) (-1150 |#1|))) (-15 -3735 ((-1150 |#1|) (-1150 |#1|))) (-15 -3745 ((-1150 |#1|) (-1150 |#1|))) (-15 -3756 ((-1150 |#1|) (-1150 |#1|))) (-15 -3766 ((-1150 |#1|) (-1150 |#1|))) (-15 -3777 ((-1150 |#1|) (-1150 |#1|))) (-15 -3787 ((-1150 |#1|) (-1150 |#1|))) (-15 -3799 ((-1150 |#1|) (-1150 |#1|))) (-15 -3811 ((-1150 |#1|) (-1150 |#1|))) (-15 -3825 ((-1150 |#1|) (-1150 |#1|))) (-15 -3837 ((-1150 |#1|) (-1150 |#1|))) (-15 -3848 ((-1150 |#1|) (-1150 |#1|))) (-15 -2854 ((-2 (|:| -3858 (-1150 |#1|)) (|:| -3869 (-1150 |#1|))) (-1150 |#1|))) (-15 -3858 ((-1150 |#1|) (-1150 |#1|))) (-15 -3869 ((-1150 |#1|) (-1150 |#1|))) (-15 -3880 ((-1150 |#1|) (-1150 |#1|))) (-15 -3891 ((-1150 |#1|) (-1150 |#1|))) (-15 -3902 ((-1150 |#1|) (-1150 |#1|))) (-15 -3914 ((-1150 |#1|) (-1150 |#1|))) (-15 -3925 ((-1150 |#1|) (-1150 |#1|))) (-15 -3937 ((-1150 |#1|) (-1150 |#1|))) (-15 -3949 ((-1150 |#1|) (-1150 |#1|))) (-15 -3960 ((-1150 |#1|) (-1150 |#1|))) (-15 -3972 ((-1150 |#1|) (-1150 |#1|))) (-15 -2784 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1156))
-((-2784 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3972 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3869 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3858 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2854 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3858 (-1150 *4)) (|:| -3869 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3777 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3722 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3283 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3722 (-1150 *4)) (|:| -3735 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3657 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))))
-(-10 -7 (-15 -1689 ((-1150 |#1|) (-1150 |#1|))) (-15 -3657 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3283 ((-2 (|:| -3722 (-1150 |#1|)) (|:| -3735 (-1150 |#1|))) (-1150 |#1|))) (-15 -3722 ((-1150 |#1|) (-1150 |#1|))) (-15 -3735 ((-1150 |#1|) (-1150 |#1|))) (-15 -3745 ((-1150 |#1|) (-1150 |#1|))) (-15 -3756 ((-1150 |#1|) (-1150 |#1|))) (-15 -3766 ((-1150 |#1|) (-1150 |#1|))) (-15 -3777 ((-1150 |#1|) (-1150 |#1|))) (-15 -3787 ((-1150 |#1|) (-1150 |#1|))) (-15 -3799 ((-1150 |#1|) (-1150 |#1|))) (-15 -3811 ((-1150 |#1|) (-1150 |#1|))) (-15 -3825 ((-1150 |#1|) (-1150 |#1|))) (-15 -3837 ((-1150 |#1|) (-1150 |#1|))) (-15 -3848 ((-1150 |#1|) (-1150 |#1|))) (-15 -2854 ((-2 (|:| -3858 (-1150 |#1|)) (|:| -3869 (-1150 |#1|))) (-1150 |#1|))) (-15 -3858 ((-1150 |#1|) (-1150 |#1|))) (-15 -3869 ((-1150 |#1|) (-1150 |#1|))) (-15 -3880 ((-1150 |#1|) (-1150 |#1|))) (-15 -3891 ((-1150 |#1|) (-1150 |#1|))) (-15 -3902 ((-1150 |#1|) (-1150 |#1|))) (-15 -3914 ((-1150 |#1|) (-1150 |#1|))) (-15 -3925 ((-1150 |#1|) (-1150 |#1|))) (-15 -3937 ((-1150 |#1|) (-1150 |#1|))) (-15 -3949 ((-1150 |#1|) (-1150 |#1|))) (-15 -3960 ((-1150 |#1|) (-1150 |#1|))) (-15 -3972 ((-1150 |#1|) (-1150 |#1|))) (-15 -2784 ((-1150 |#1|) (-1150 |#1|))))
-((-4157 (((-954 |#2|) |#2| |#2|) 50)) (-2571 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307)))))
-(((-1157 |#1| |#2|) (-10 -7 (-15 -4157 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2571 (|#2| |#2| |#1|)) |%noBranch|)) (-556) (-1235 |#1|)) (T -1157))
-((-2571 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1235 *3)))) (-4157 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-954 *3)) (-5 *1 (-1157 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -4157 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2571 (|#2| |#2| |#1|)) |%noBranch|))
-((-3009 (((-112) $ $) NIL)) (-2169 (($ $ (-641 (-767))) 81)) (-4320 (($) 33)) (-1915 (($ $) 51)) (-2899 (((-641 $) $) 60)) (-3710 (((-112) $) 19)) (-3528 (((-641 (-939 |#2|)) $) 88)) (-2668 (($ $) 82)) (-4124 (((-767) $) 47)) (-4238 (($) 32)) (-3323 (($ $ (-641 (-767)) (-939 |#2|)) 74) (($ $ (-641 (-767)) (-767)) 75) (($ $ (-767) (-939 |#2|)) 77)) (-3669 (($ $ $) 57) (($ (-641 $)) 59)) (-2278 (((-767) $) 89)) (-1841 (((-112) $) 15)) (-2766 (((-1152) $) NIL)) (-1732 (((-112) $) 22)) (-4052 (((-1114) $) NIL)) (-2443 (((-171) $) 87)) (-4294 (((-939 |#2|) $) 83)) (-4298 (((-767) $) 84)) (-4285 (((-112) $) 86)) (-2055 (($ $ (-641 (-767)) (-171)) 80)) (-3595 (($ $) 52)) (-2423 (((-858) $) 100)) (-3313 (($ $ (-641 (-767)) (-112)) 79)) (-3154 (((-641 $) $) 11)) (-3299 (($ $ (-767)) 46)) (-2063 (($ $) 43)) (-1860 (((-112) $ $) NIL)) (-2720 (($ $ $ (-939 |#2|) (-767)) 70)) (-4024 (($ $ (-939 |#2|)) 69)) (-2068 (($ $ (-641 (-767)) (-939 |#2|)) 66) (($ $ (-641 (-767)) (-767)) 72) (((-767) $ (-939 |#2|)) 73)) (-2974 (((-112) $ $) 94)))
-(((-1158 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1841 ((-112) $)) (-15 -3710 ((-112) $)) (-15 -1732 ((-112) $)) (-15 -4238 ($)) (-15 -4320 ($)) (-15 -2063 ($ $)) (-15 -3299 ($ $ (-767))) (-15 -3154 ((-641 $) $)) (-15 -4124 ((-767) $)) (-15 -1915 ($ $)) (-15 -3595 ($ $)) (-15 -3669 ($ $ $)) (-15 -3669 ($ (-641 $))) (-15 -2899 ((-641 $) $)) (-15 -2068 ($ $ (-641 (-767)) (-939 |#2|))) (-15 -4024 ($ $ (-939 |#2|))) (-15 -2720 ($ $ $ (-939 |#2|) (-767))) (-15 -3323 ($ $ (-641 (-767)) (-939 |#2|))) (-15 -2068 ($ $ (-641 (-767)) (-767))) (-15 -3323 ($ $ (-641 (-767)) (-767))) (-15 -2068 ((-767) $ (-939 |#2|))) (-15 -3323 ($ $ (-767) (-939 |#2|))) (-15 -3313 ($ $ (-641 (-767)) (-112))) (-15 -2055 ($ $ (-641 (-767)) (-171))) (-15 -2169 ($ $ (-641 (-767)))) (-15 -4294 ((-939 |#2|) $)) (-15 -4298 ((-767) $)) (-15 -4285 ((-112) $)) (-15 -2443 ((-171) $)) (-15 -2278 ((-767) $)) (-15 -2668 ($ $)) (-15 -3528 ((-641 (-939 |#2|)) $)))) (-917) (-1045)) (T -1158))
-((-1841 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4238 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-4320 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2063 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-3299 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1915 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-3595 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-3669 (*1 *1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-3669 (*1 *1 *2) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2068 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) (-4024 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)))) (-2720 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) (-3323 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) (-2068 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-767)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-3323 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-767)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-2068 (*1 *2 *1 *3) (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) (-3323 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))) (-3313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-767))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-2169 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-939 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2668 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-641 (-939 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))))
-(-13 (-1094) (-10 -8 (-15 -1841 ((-112) $)) (-15 -3710 ((-112) $)) (-15 -1732 ((-112) $)) (-15 -4238 ($)) (-15 -4320 ($)) (-15 -2063 ($ $)) (-15 -3299 ($ $ (-767))) (-15 -3154 ((-641 $) $)) (-15 -4124 ((-767) $)) (-15 -1915 ($ $)) (-15 -3595 ($ $)) (-15 -3669 ($ $ $)) (-15 -3669 ($ (-641 $))) (-15 -2899 ((-641 $) $)) (-15 -2068 ($ $ (-641 (-767)) (-939 |#2|))) (-15 -4024 ($ $ (-939 |#2|))) (-15 -2720 ($ $ $ (-939 |#2|) (-767))) (-15 -3323 ($ $ (-641 (-767)) (-939 |#2|))) (-15 -2068 ($ $ (-641 (-767)) (-767))) (-15 -3323 ($ $ (-641 (-767)) (-767))) (-15 -2068 ((-767) $ (-939 |#2|))) (-15 -3323 ($ $ (-767) (-939 |#2|))) (-15 -3313 ($ $ (-641 (-767)) (-112))) (-15 -2055 ($ $ (-641 (-767)) (-171))) (-15 -2169 ($ $ (-641 (-767)))) (-15 -4294 ((-939 |#2|) $)) (-15 -4298 ((-767) $)) (-15 -4285 ((-112) $)) (-15 -2443 ((-171) $)) (-15 -2278 ((-767) $)) (-15 -2668 ($ $)) (-15 -3528 ((-641 (-939 |#2|)) $))))
-((-3009 (((-112) $ $) NIL)) (-1827 ((|#2| $) 11)) (-1813 ((|#1| $) 10)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2435 (($ |#1| |#2|) 9)) (-2423 (((-858) $) 16)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1159 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -2435 ($ |#1| |#2|)) (-15 -1813 (|#1| $)) (-15 -1827 (|#2| $)))) (-1094) (-1094)) (T -1159))
-((-2435 (*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1813 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094)))) (-1827 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -2435 ($ |#1| |#2|)) (-15 -1813 (|#1| $)) (-15 -1827 (|#2| $))))
-((-3009 (((-112) $ $) NIL)) (-4138 (((-1129) $) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1160) (-13 (-1077) (-10 -8 (-15 -4138 ((-1129) $))))) (T -1160))
-((-4138 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160)))))
-(-13 (-1077) (-10 -8 (-15 -4138 ((-1129) $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4198 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) 11)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3063 (($ $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3330 (((-112) $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1709 (($ $ (-564)) NIL) (($ $ (-564) (-564)) 75)) (-4289 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-1521 (((-1168 |#1| |#2| |#3|) $) 42)) (-1640 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 32)) (-3892 (((-1168 |#1| |#2| |#3|) $) 33)) (-3880 (($ $) 116 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2683 (($ $) NIL (|has| |#1| (-363)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3858 (($ $) 112 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3249 (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2808 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3902 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))))) (-3120 (((-1168 |#1| |#2| |#3|) $) 140) (((-1170) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))))) (-2963 (($ $) 37) (($ (-564) $) 38)) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) NIL)) (-4277 (((-685 (-1168 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2511 (-685 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1168 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-3293 (((-3 $ "failed") $) 54)) (-3697 (((-407 (-948 |#1|)) $ (-564)) 74 (|has| |#1| (-556))) (((-407 (-948 |#1|)) $ (-564) (-564)) 76 (|has| |#1| (-556)))) (-2534 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1339 (((-112) $) NIL (|has| |#1| (-363)))) (-2384 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-4243 (((-112) $) 28)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-882 (-564))) (|has| |#1| (-363))))) (-3744 (((-564) $) NIL) (((-564) $ (-564)) 26)) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL (|has| |#1| (-363)))) (-2323 (((-1168 |#1| |#2| |#3|) $) 44 (|has| |#1| (-363)))) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1846 (((-3 $ "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-3326 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-1747 (($ $ (-917)) NIL)) (-3262 (($ (-1 |#1| (-564)) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-564)) 19) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-2855 (($ $ $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1497 (($ $ $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-3657 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3903 (($ (-564) (-1168 |#1| |#2| |#3|)) 36)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-363)))) (-2070 (($ $) 79 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 80 (|has| |#1| (-38 (-407 (-564)))))) (-3431 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1687 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2882 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3688 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4016 (($ $ (-564)) 158)) (-2998 (((-3 $ "failed") $ $) 55 (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1689 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1168 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1168 |#1| |#2| |#3|)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ (-564)) NIL) (($ $ $) 61 (|has| (-564) (-1106))) (($ $ (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-286 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3254 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 57) (($ $ (-767)) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 56 (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-2827 (($ $) NIL (|has| |#1| (-363)))) (-2336 (((-1168 |#1| |#2| |#3|) $) 46 (|has| |#1| (-363)))) (-1568 (((-564) $) 43)) (-3914 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 98 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 118 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 114 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-1311 (((-536) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-888 (-564)))) (|has| |#1| (-363))))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2732 (($ $) NIL)) (-2423 (((-858) $) 162) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1168 |#1| |#2| |#3|)) 30) (($ (-1255 |#2|)) 25) (($ (-1170)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-2007 ((|#1| $ (-564)) 77)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3639 ((|#1| $) 12)) (-3448 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 104 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3925 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 100 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 108 (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 110 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 106 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 102 (|has| |#1| (-38 (-407 (-564)))))) (-3673 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2403 (($) 21 T CONST)) (-2417 (($) 16 T CONST)) (-4063 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-3034 (((-112) $ $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3011 (((-112) $ $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2999 (((-112) $ $) NIL (-2807 (-12 (|has| (-1168 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 49 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) 50 (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 23)) (** (($ $ (-917)) NIL) (($ $ (-767)) 60) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) 83 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 137 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1168 |#1| |#2| |#3|)) 48 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) $) 47 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1161 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -2423 ($ (-1255 |#2|))) (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1161))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -2423 ($ (-1255 |#2|))) (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-4305 ((|#2| |#2| (-1086 |#2|)) 26) ((|#2| |#2| (-1170)) 28)))
-(((-1162 |#1| |#2|) (-10 -7 (-15 -4305 (|#2| |#2| (-1170))) (-15 -4305 (|#2| |#2| (-1086 |#2|)))) (-13 (-556) (-1034 (-564)) (-637 (-564))) (-13 (-430 |#1|) (-160) (-27) (-1194))) (T -1162))
-((-4305 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))) (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)))) (-4305 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))))))
-(-10 -7 (-15 -4305 (|#2| |#2| (-1170))) (-15 -4305 (|#2| |#2| (-1086 |#2|))))
-((-4305 (((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1086 (-407 (-948 |#1|)))) 31) (((-407 (-948 |#1|)) (-948 |#1|) (-1086 (-948 |#1|))) 44) (((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1170)) 33) (((-407 (-948 |#1|)) (-948 |#1|) (-1170)) 36)))
-(((-1163 |#1|) (-10 -7 (-15 -4305 ((-407 (-948 |#1|)) (-948 |#1|) (-1170))) (-15 -4305 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1170))) (-15 -4305 ((-407 (-948 |#1|)) (-948 |#1|) (-1086 (-948 |#1|)))) (-15 -4305 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1086 (-407 (-948 |#1|)))))) (-13 (-556) (-1034 (-564)))) (T -1163))
-((-4305 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-13 (-556) (-1034 (-564)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1163 *5)))) (-4305 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-948 *5))) (-5 *3 (-948 *5)) (-4 *5 (-13 (-556) (-1034 (-564)))) (-5 *2 (-407 *3)) (-5 *1 (-1163 *5)))) (-4305 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564)))) (-5 *2 (-3 (-407 (-948 *5)) (-316 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-407 (-948 *5))))) (-4305 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564)))) (-5 *2 (-407 (-948 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-948 *5)))))
-(-10 -7 (-15 -4305 ((-407 (-948 |#1|)) (-948 |#1|) (-1170))) (-15 -4305 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1170))) (-15 -4305 ((-407 (-948 |#1|)) (-948 |#1|) (-1086 (-948 |#1|)))) (-15 -4305 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1086 (-407 (-948 |#1|))))))
-((-4357 (((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)) 13)))
-(((-1164 |#1| |#2|) (-10 -7 (-15 -4357 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)))) (-1045) (-1045)) (T -1164))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6)))))
-(-10 -7 (-15 -4357 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))))
-((-2753 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 51)) (-3688 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 52)))
-(((-1165 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3688 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -2753 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))))) (-789) (-846) (-452) (-945 |#3| |#1| |#2|)) (T -1165))
-((-2753 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))))
-(-10 -7 (-15 -3688 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -2753 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))))
-((-3009 (((-112) $ $) 170)) (-1494 (((-112) $) 42)) (-3690 (((-1259 |#1|) $ (-767)) NIL)) (-3836 (((-641 (-1076)) $) NIL)) (-2039 (($ (-1166 |#1|)) NIL)) (-3660 (((-1166 $) $ (-1076)) 81) (((-1166 |#1|) $) 70)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) 163 (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-1076))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2931 (($ $ $) 157 (|has| |#1| (-556)))) (-4199 (((-418 (-1166 $)) (-1166 $)) 94 (|has| |#1| (-905)))) (-2683 (($ $) NIL (|has| |#1| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 114 (|has| |#1| (-905)))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1668 (($ $ (-767)) 60)) (-3715 (($ $ (-767)) 62)) (-2899 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-3120 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-1076) $) NIL)) (-2746 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 159 (|has| |#1| (-172)))) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) 79)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-1843 (($ $ $) 130)) (-1835 (($ $ $) NIL (|has| |#1| (-556)))) (-4300 (((-2 (|:| -4376 |#1|) (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-556)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2571 (($ $) 164 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#1| (-905)))) (-3850 (($ $ |#1| (-767) $) 68)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1076) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1076) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-2454 (((-858) $ (-858)) 147)) (-3744 (((-767) $ $) NIL (|has| |#1| (-556)))) (-4112 (((-112) $) 47)) (-2497 (((-767) $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-3824 (($ (-1166 |#1|) (-1076)) 72) (($ (-1166 $) (-1076)) 88)) (-1747 (($ $ (-767)) 50)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-767)) 86) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-1076)) NIL) (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 152)) (-2043 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1948 (($ (-1 (-767) (-767)) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-2806 (((-1166 |#1|) $) NIL)) (-3025 (((-3 (-1076) "failed") $) NIL)) (-3971 (($ $) NIL)) (-3982 ((|#1| $) 75)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2766 (((-1152) $) NIL)) (-1429 (((-2 (|:| -3979 $) (|:| -4071 $)) $ (-767)) 59)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-1076)) (|:| -1838 (-767))) "failed") $) NIL)) (-2070 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3431 (($) NIL (|has| |#1| (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) 49)) (-3954 ((|#1| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 102 (|has| |#1| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 166 (|has| |#1| (-452)))) (-2736 (($ $ (-767) |#1| $) 122)) (-2037 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) 99 (|has| |#1| (-905)))) (-3688 (((-418 $) $) 107 (|has| |#1| (-905)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-2998 (((-3 $ "failed") $ |#1|) 162 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 123 (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ |#1|) 149) (($ $ $) 150) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-3296 (((-3 $ "failed") $ (-767)) 53)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 171 (|has| |#1| (-363)))) (-1330 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) 155 (|has| |#1| (-172)))) (-3254 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1568 (((-767) $) 77) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4090 ((|#1| $) 161 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-4244 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2423 (((-858) $) 148) (($ (-564)) NIL) (($ |#1|) 76) (($ (-1076)) NIL) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-767)) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) 40 (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2403 (($) 17 T CONST)) (-2417 (($) 19 T CONST)) (-4063 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2974 (((-112) $ $) 119)) (-3092 (($ $ |#1|) 172 (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 89)) (** (($ $ (-917)) 14) (($ $ (-767)) 12)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 128) (($ $ |#1|) NIL)))
-(((-1166 |#1|) (-13 (-1235 |#1|) (-10 -8 (-15 -2454 ((-858) $ (-858))) (-15 -2736 ($ $ (-767) |#1| $)))) (-1045)) (T -1166))
-((-2454 (*1 *2 *1 *2) (-12 (-5 *2 (-858)) (-5 *1 (-1166 *3)) (-4 *3 (-1045)))) (-2736 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1166 *3)) (-4 *3 (-1045)))))
-(-13 (-1235 |#1|) (-10 -8 (-15 -2454 ((-858) $ (-858))) (-15 -2736 ($ $ (-767) |#1| $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) 11)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1709 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4289 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3880 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-363)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3858 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 36)) (-3120 (((-1161 |#1| |#2| |#3|) $) NIL) (((-1168 |#1| |#2| |#3|) $) NIL)) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2966 (((-407 (-564)) $) 59)) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-3915 (($ (-407 (-564)) (-1161 |#1| |#2| |#3|)) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1339 (((-112) $) NIL (|has| |#1| (-363)))) (-4243 (((-112) $) NIL)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1747 (($ $ (-917)) NIL) (($ $ (-407 (-564))) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-407 (-564))) 20) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2716 (((-1161 |#1| |#2| |#3|) $) 41)) (-4342 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) NIL)) (-3903 (((-1161 |#1| |#2| |#3|) $) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-363)))) (-2070 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4016 (($ $ (-407 (-564))) NIL)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1689 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-1568 (((-407 (-564)) $) NIL)) (-3914 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) NIL)) (-2423 (((-858) $) 62) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1161 |#1| |#2| |#3|)) 30) (($ (-1168 |#1| |#2| |#3|)) 31) (($ (-1255 |#2|)) 26) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2007 ((|#1| $ (-407 (-564))) NIL)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-3639 ((|#1| $) 12)) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 22 T CONST)) (-2417 (($) 16 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 24)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1167 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1034 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1167))
-((-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1034 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 131)) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) 121)) (-3052 (((-1232 |#2| |#1|) $ (-767)) 69)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1709 (($ $ (-767)) 85) (($ $ (-767) (-767)) 82)) (-4289 (((-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 107)) (-3880 (($ $) 175 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3858 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 120) (($ (-1150 |#1|)) 115)) (-3902 (($ $) 179 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) 25)) (-2437 (($ $) 28)) (-3423 (((-948 |#1|) $ (-767)) 81) (((-948 |#1|) $ (-767) (-767)) 83)) (-4243 (((-112) $) 126)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-767) $) 128) (((-767) $ (-767)) 130)) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1747 (($ $ (-917)) NIL)) (-3262 (($ (-1 |#1| (-564)) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-767)) 13) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3657 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-2070 (($ $) 135 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 136 (|has| |#1| (-38 (-407 (-564)))))) (-4052 (((-1114) $) NIL)) (-4016 (($ $ (-767)) 15)) (-2998 (((-3 $ "failed") $ $) 26 (|has| |#1| (-556)))) (-1689 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-4366 ((|#1| $ (-767)) 124) (($ $ $) 134 (|has| (-767) (-1106)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1255 |#2|)) 31)) (-1568 (((-767) $) NIL)) (-3914 (($ $) 181 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 157 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 177 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) NIL)) (-2423 (((-858) $) 208) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 55) (($ (-1255 |#2|)) 36)) (-3191 (((-1150 |#1|) $) 103)) (-2007 ((|#1| $ (-767)) 123)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-3639 ((|#1| $) 58)) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) 187 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 163 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) 183 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 191 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 167 (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-767)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) 193 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 169 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 189 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 165 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 185 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 161 (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 17 T CONST)) (-2417 (($) 20 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) 200)) (-3070 (($ $ $) 35)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 205 (|has| |#1| (-363))) (($ $ $) 140 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 143 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1168 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -2423 ($ (-1232 |#2| |#1|))) (-15 -3052 ((-1232 |#2| |#1|) $ (-767))) (-15 -2423 ($ (-1255 |#2|))) (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1168))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) (-3052 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1170)) (-14 *6 *4))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1250 |#1|) (-10 -8 (-15 -2423 ($ (-1232 |#2| |#1|))) (-15 -3052 ((-1232 |#2| |#1|) $ (-767))) (-15 -2423 ($ (-1255 |#2|))) (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-2423 (((-858) $) 33) (($ (-1170)) 35)) (-2807 (($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 46)) (-2795 (($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39) (($ $) 40)) (-3095 (($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-3084 (($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 43)) (-3072 (($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 42)) (-3059 (($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 44)) (-2035 (($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 45)))
-(((-1169) (-13 (-611 (-858)) (-10 -8 (-15 -2423 ($ (-1170))) (-15 -3095 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3072 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3084 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3059 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2807 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2035 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2795 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2795 ($ $))))) (T -1169))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169)))) (-3095 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-3072 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-3084 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-3059 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2807 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2035 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2795 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2795 (*1 *1 *1) (-5 *1 (-1169))))
-(-13 (-611 (-858)) (-10 -8 (-15 -2423 ($ (-1170))) (-15 -3095 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3072 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3084 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3059 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2807 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2035 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2795 ($ (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2795 ($ $))))
-((-3009 (((-112) $ $) NIL)) (-3106 (($ $ (-641 (-858))) 64)) (-4143 (($ $ (-641 (-858))) 62)) (-4293 (((-1152) $) 103)) (-2595 (((-2 (|:| -3718 (-641 (-858))) (|:| -3878 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -3122 (-641 (-858))) (|:| |args| (-641 (-858)))) $) 109)) (-2091 (((-112) $) 23)) (-1861 (($ $ (-641 (-641 (-858)))) 61) (($ $ (-2 (|:| -3718 (-641 (-858))) (|:| -3878 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -3122 (-641 (-858))) (|:| |args| (-641 (-858))))) 101)) (-4080 (($) 163 T CONST)) (-1404 (((-1264)) 137)) (-1513 (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 71) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 78)) (-4238 (($) 123) (($ $) 132)) (-2562 (($ $) 102)) (-2855 (($ $ $) NIL)) (-1497 (($ $ $) NIL)) (-2522 (((-641 $) $) 138)) (-2766 (((-1152) $) 115)) (-4052 (((-1114) $) NIL)) (-4366 (($ $ (-641 (-858))) 63)) (-1311 (((-536) $) 48) (((-1170) $) 49) (((-888 (-564)) $) 82) (((-888 (-379)) $) 80)) (-2423 (((-858) $) 55) (($ (-1152)) 50)) (-1860 (((-112) $ $) NIL)) (-3748 (($ $ (-641 (-858))) 65)) (-1613 (((-1152) $) 34) (((-1152) $ (-112)) 35) (((-1264) (-818) $) 36) (((-1264) (-818) $ (-112)) 37)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 51)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) 52)))
-(((-1170) (-13 (-846) (-612 (-536)) (-824) (-612 (-1170)) (-614 (-1152)) (-612 (-888 (-564))) (-612 (-888 (-379))) (-882 (-564)) (-882 (-379)) (-10 -8 (-15 -4238 ($)) (-15 -4238 ($ $)) (-15 -1404 ((-1264))) (-15 -2562 ($ $)) (-15 -2091 ((-112) $)) (-15 -2595 ((-2 (|:| -3718 (-641 (-858))) (|:| -3878 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -3122 (-641 (-858))) (|:| |args| (-641 (-858)))) $)) (-15 -1861 ($ $ (-641 (-641 (-858))))) (-15 -1861 ($ $ (-2 (|:| -3718 (-641 (-858))) (|:| -3878 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -3122 (-641 (-858))) (|:| |args| (-641 (-858)))))) (-15 -4143 ($ $ (-641 (-858)))) (-15 -3106 ($ $ (-641 (-858)))) (-15 -3748 ($ $ (-641 (-858)))) (-15 -4366 ($ $ (-641 (-858)))) (-15 -4293 ((-1152) $)) (-15 -2522 ((-641 $) $)) (-15 -4080 ($) -2959)))) (T -1170))
-((-4238 (*1 *1) (-5 *1 (-1170))) (-4238 (*1 *1 *1) (-5 *1 (-1170))) (-1404 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170)))) (-2562 (*1 *1 *1) (-5 *1 (-1170))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170)))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3718 (-641 (-858))) (|:| -3878 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -3122 (-641 (-858))) (|:| |args| (-641 (-858))))) (-5 *1 (-1170)))) (-1861 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-858)))) (-5 *1 (-1170)))) (-1861 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3718 (-641 (-858))) (|:| -3878 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -3122 (-641 (-858))) (|:| |args| (-641 (-858))))) (-5 *1 (-1170)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))) (-3106 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))) (-3748 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170)))) (-4080 (*1 *1) (-5 *1 (-1170))))
-(-13 (-846) (-612 (-536)) (-824) (-612 (-1170)) (-614 (-1152)) (-612 (-888 (-564))) (-612 (-888 (-379))) (-882 (-564)) (-882 (-379)) (-10 -8 (-15 -4238 ($)) (-15 -4238 ($ $)) (-15 -1404 ((-1264))) (-15 -2562 ($ $)) (-15 -2091 ((-112) $)) (-15 -2595 ((-2 (|:| -3718 (-641 (-858))) (|:| -3878 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -3122 (-641 (-858))) (|:| |args| (-641 (-858)))) $)) (-15 -1861 ($ $ (-641 (-641 (-858))))) (-15 -1861 ($ $ (-2 (|:| -3718 (-641 (-858))) (|:| -3878 (-641 (-858))) (|:| |presup| (-641 (-858))) (|:| -3122 (-641 (-858))) (|:| |args| (-641 (-858)))))) (-15 -4143 ($ $ (-641 (-858)))) (-15 -3106 ($ $ (-641 (-858)))) (-15 -3748 ($ $ (-641 (-858)))) (-15 -4366 ($ $ (-641 (-858)))) (-15 -4293 ((-1152) $)) (-15 -2522 ((-641 $) $)) (-15 -4080 ($) -2959)))
-((-2431 (((-1259 |#1|) |#1| (-917)) 18) (((-1259 |#1|) (-641 |#1|)) 25)))
-(((-1171 |#1|) (-10 -7 (-15 -2431 ((-1259 |#1|) (-641 |#1|))) (-15 -2431 ((-1259 |#1|) |#1| (-917)))) (-1045)) (T -1171))
-((-2431 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1045)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1045)) (-5 *2 (-1259 *4)) (-5 *1 (-1171 *4)))))
-(-10 -7 (-15 -2431 ((-1259 |#1|) (-641 |#1|))) (-15 -2431 ((-1259 |#1|) |#1| (-917))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3120 (((-564) $) NIL (|has| |#1| (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1034 (-407 (-564))))) ((|#1| $) NIL)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2571 (($ $) NIL (|has| |#1| (-452)))) (-3850 (($ $ |#1| (-967) $) NIL)) (-4112 (((-112) $) 17)) (-2497 (((-767) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-967)) NIL)) (-2043 (((-967) $) NIL)) (-1948 (($ (-1 (-967) (-967)) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 ((|#1| $) NIL)) (-2736 (($ $ (-967) |#1| $) NIL (-12 (|has| (-967) (-131)) (|has| |#1| (-556))))) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1568 (((-967) $) NIL)) (-4090 ((|#1| $) NIL (|has| |#1| (-452)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-2807 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1034 (-407 (-564))))))) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ (-967)) NIL)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2403 (($) 11 T CONST)) (-2417 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 21)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1172 |#1|) (-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-967) (-131)) (-15 -2736 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|))) (-1045)) (T -1172))
-((-2736 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))))
-(-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-967) (-131)) (-15 -2736 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|)))
-((-3358 (((-1174) (-1170) $) 25)) (-3086 (($) 29)) (-4013 (((-3 (|:| |fst| (-434)) (|:| -1836 "void")) (-1170) $) 22)) (-3219 (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -1836 "void")) $) 41) (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) 42) (((-1264) (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) 43)) (-3356 (((-1264) (-1170)) 58)) (-4197 (((-1264) (-1170) $) 55) (((-1264) (-1170)) 56) (((-1264)) 57)) (-2429 (((-1264) (-1170)) 37)) (-3265 (((-1170)) 36)) (-2994 (($) 34)) (-4129 (((-437) (-1170) (-437) (-1170) $) 45) (((-437) (-641 (-1170)) (-437) (-1170) $) 49) (((-437) (-1170) (-437)) 46) (((-437) (-1170) (-437) (-1170)) 50)) (-2761 (((-1170)) 35)) (-2423 (((-858) $) 28)) (-4270 (((-1264)) 30) (((-1264) (-1170)) 33)) (-3546 (((-641 (-1170)) (-1170) $) 24)) (-3692 (((-1264) (-1170) (-641 (-1170)) $) 38) (((-1264) (-1170) (-641 (-1170))) 39) (((-1264) (-641 (-1170))) 40)))
-(((-1173) (-13 (-611 (-858)) (-10 -8 (-15 -3086 ($)) (-15 -4270 ((-1264))) (-15 -4270 ((-1264) (-1170))) (-15 -4129 ((-437) (-1170) (-437) (-1170) $)) (-15 -4129 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -4129 ((-437) (-1170) (-437))) (-15 -4129 ((-437) (-1170) (-437) (-1170))) (-15 -2429 ((-1264) (-1170))) (-15 -2761 ((-1170))) (-15 -3265 ((-1170))) (-15 -3692 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -3692 ((-1264) (-1170) (-641 (-1170)))) (-15 -3692 ((-1264) (-641 (-1170)))) (-15 -3219 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -1836 "void")) $)) (-15 -3219 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -1836 "void")))) (-15 -3219 ((-1264) (-3 (|:| |fst| (-434)) (|:| -1836 "void")))) (-15 -4197 ((-1264) (-1170) $)) (-15 -4197 ((-1264) (-1170))) (-15 -4197 ((-1264))) (-15 -3356 ((-1264) (-1170))) (-15 -2994 ($)) (-15 -4013 ((-3 (|:| |fst| (-434)) (|:| -1836 "void")) (-1170) $)) (-15 -3546 ((-641 (-1170)) (-1170) $)) (-15 -3358 ((-1174) (-1170) $))))) (T -1173))
-((-3086 (*1 *1) (-5 *1 (-1173))) (-4270 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-4270 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-4129 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-4129 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170)) (-5 *1 (-1173)))) (-4129 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-4129 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2761 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-3265 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-3692 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3219 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-4197 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-4197 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-4197 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2994 (*1 *1) (-5 *1 (-1173))) (-4013 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-5 *1 (-1173)))) (-3546 (*1 *2 *3 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170)))) (-3358 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173)))))
-(-13 (-611 (-858)) (-10 -8 (-15 -3086 ($)) (-15 -4270 ((-1264))) (-15 -4270 ((-1264) (-1170))) (-15 -4129 ((-437) (-1170) (-437) (-1170) $)) (-15 -4129 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -4129 ((-437) (-1170) (-437))) (-15 -4129 ((-437) (-1170) (-437) (-1170))) (-15 -2429 ((-1264) (-1170))) (-15 -2761 ((-1170))) (-15 -3265 ((-1170))) (-15 -3692 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -3692 ((-1264) (-1170) (-641 (-1170)))) (-15 -3692 ((-1264) (-641 (-1170)))) (-15 -3219 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -1836 "void")) $)) (-15 -3219 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -1836 "void")))) (-15 -3219 ((-1264) (-3 (|:| |fst| (-434)) (|:| -1836 "void")))) (-15 -4197 ((-1264) (-1170) $)) (-15 -4197 ((-1264) (-1170))) (-15 -4197 ((-1264))) (-15 -3356 ((-1264) (-1170))) (-15 -2994 ($)) (-15 -4013 ((-3 (|:| |fst| (-434)) (|:| -1836 "void")) (-1170) $)) (-15 -3546 ((-641 (-1170)) (-1170) $)) (-15 -3358 ((-1174) (-1170) $))))
-((-2166 (((-641 (-641 (-3 (|:| -2562 (-1170)) (|:| -3548 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564))))))))) $) 66)) (-3968 (((-641 (-3 (|:| -2562 (-1170)) (|:| -3548 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564)))))))) (-434) $) 47)) (-1678 (($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-437))))) 17)) (-3356 (((-1264) $) 74)) (-4041 (((-641 (-1170)) $) 22)) (-2657 (((-1098) $) 60)) (-2231 (((-437) (-1170) $) 27)) (-3797 (((-641 (-1170)) $) 30)) (-2994 (($) 19)) (-4129 (((-437) (-641 (-1170)) (-437) $) 25) (((-437) (-1170) (-437) $) 24)) (-2423 (((-858) $) 9) (((-1182 (-1170) (-437)) $) 13)))
-(((-1174) (-13 (-611 (-858)) (-10 -8 (-15 -2423 ((-1182 (-1170) (-437)) $)) (-15 -2994 ($)) (-15 -4129 ((-437) (-641 (-1170)) (-437) $)) (-15 -4129 ((-437) (-1170) (-437) $)) (-15 -2231 ((-437) (-1170) $)) (-15 -4041 ((-641 (-1170)) $)) (-15 -3968 ((-641 (-3 (|:| -2562 (-1170)) (|:| -3548 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564)))))))) (-434) $)) (-15 -3797 ((-641 (-1170)) $)) (-15 -2166 ((-641 (-641 (-3 (|:| -2562 (-1170)) (|:| -3548 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564))))))))) $)) (-15 -2657 ((-1098) $)) (-15 -3356 ((-1264) $)) (-15 -1678 ($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-437))))))))) (T -1174))
-((-2423 (*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174)))) (-2994 (*1 *1) (-5 *1 (-1174))) (-4129 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174)))) (-4129 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174)))) (-2231 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-3968 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-641 (-3 (|:| -2562 (-1170)) (|:| -3548 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564))))))))) (-5 *1 (-1174)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-3 (|:| -2562 (-1170)) (|:| -3548 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564)))))))))) (-5 *1 (-1174)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174)))) (-1678 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-437))))) (-5 *1 (-1174)))))
-(-13 (-611 (-858)) (-10 -8 (-15 -2423 ((-1182 (-1170) (-437)) $)) (-15 -2994 ($)) (-15 -4129 ((-437) (-641 (-1170)) (-437) $)) (-15 -4129 ((-437) (-1170) (-437) $)) (-15 -2231 ((-437) (-1170) $)) (-15 -4041 ((-641 (-1170)) $)) (-15 -3968 ((-641 (-3 (|:| -2562 (-1170)) (|:| -3548 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564)))))))) (-434) $)) (-15 -3797 ((-641 (-1170)) $)) (-15 -2166 ((-641 (-641 (-3 (|:| -2562 (-1170)) (|:| -3548 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564))))))))) $)) (-15 -2657 ((-1098) $)) (-15 -3356 ((-1264) $)) (-15 -1678 ($ (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-437))))))))
-((-3009 (((-112) $ $) NIL)) (-4284 (((-3 (-564) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-506) "failed") $) 43) (((-3 (-1152) "failed") $) 47)) (-3120 (((-564) $) 30) (((-225) $) 36) (((-506) $) 40) (((-1152) $) 48)) (-3374 (((-112) $) 53)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1450 (((-3 (-564) (-225) (-506) (-1152) $) $) 55)) (-3148 (((-641 $) $) 57)) (-1311 (((-1098) $) 24) (($ (-1098)) 25)) (-2421 (((-112) $) 56)) (-2423 (((-858) $) 23) (($ (-564)) 26) (($ (-225)) 32) (($ (-506)) 38) (($ (-1152)) 44) (((-536) $) 59) (((-564) $) 31) (((-225) $) 37) (((-506) $) 41) (((-1152) $) 49)) (-2396 (((-112) $ (|[\|\|]| (-564))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-506))) 19) (((-112) $ (|[\|\|]| (-1152))) 16)) (-2793 (($ (-506) (-641 $)) 51) (($ $ (-641 $)) 52)) (-1860 (((-112) $ $) NIL)) (-3961 (((-564) $) 27) (((-225) $) 33) (((-506) $) 39) (((-1152) $) 45)) (-2974 (((-112) $ $) 7)))
-(((-1175) (-13 (-1254) (-1094) (-1034 (-564)) (-1034 (-225)) (-1034 (-506)) (-1034 (-1152)) (-611 (-536)) (-10 -8 (-15 -1311 ((-1098) $)) (-15 -1311 ($ (-1098))) (-15 -2423 ((-564) $)) (-15 -3961 ((-564) $)) (-15 -2423 ((-225) $)) (-15 -3961 ((-225) $)) (-15 -2423 ((-506) $)) (-15 -3961 ((-506) $)) (-15 -2423 ((-1152) $)) (-15 -3961 ((-1152) $)) (-15 -2793 ($ (-506) (-641 $))) (-15 -2793 ($ $ (-641 $))) (-15 -3374 ((-112) $)) (-15 -1450 ((-3 (-564) (-225) (-506) (-1152) $) $)) (-15 -3148 ((-641 $) $)) (-15 -2421 ((-112) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-564)))) (-15 -2396 ((-112) $ (|[\|\|]| (-225)))) (-15 -2396 ((-112) $ (|[\|\|]| (-506)))) (-15 -2396 ((-112) $ (|[\|\|]| (-1152))))))) (T -1175))
-((-1311 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-2793 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175)))) (-2793 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1152) (-1175))) (-5 *1 (-1175)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-2396 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-2396 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-2396 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-2396 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)) (-5 *1 (-1175)))))
-(-13 (-1254) (-1094) (-1034 (-564)) (-1034 (-225)) (-1034 (-506)) (-1034 (-1152)) (-611 (-536)) (-10 -8 (-15 -1311 ((-1098) $)) (-15 -1311 ($ (-1098))) (-15 -2423 ((-564) $)) (-15 -3961 ((-564) $)) (-15 -2423 ((-225) $)) (-15 -3961 ((-225) $)) (-15 -2423 ((-506) $)) (-15 -3961 ((-506) $)) (-15 -2423 ((-1152) $)) (-15 -3961 ((-1152) $)) (-15 -2793 ($ (-506) (-641 $))) (-15 -2793 ($ $ (-641 $))) (-15 -3374 ((-112) $)) (-15 -1450 ((-3 (-564) (-225) (-506) (-1152) $) $)) (-15 -3148 ((-641 $) $)) (-15 -2421 ((-112) $)) (-15 -2396 ((-112) $ (|[\|\|]| (-564)))) (-15 -2396 ((-112) $ (|[\|\|]| (-225)))) (-15 -2396 ((-112) $ (|[\|\|]| (-506)))) (-15 -2396 ((-112) $ (|[\|\|]| (-1152))))))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) 22)) (-4080 (($) 12 T CONST)) (-2534 (($) 27)) (-2855 (($ $ $) NIL) (($) 19 T CONST)) (-1497 (($ $ $) NIL) (($) 20 T CONST)) (-3256 (((-917) $) 24)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) 23)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-1176 |#1|) (-13 (-840) (-10 -8 (-15 -4080 ($) -2959))) (-917)) (T -1176))
-((-4080 (*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))))
-(-13 (-840) (-10 -8 (-15 -4080 ($) -2959)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2362 ((|#1| $) 45)) (-3697 (((-112) $ (-769)) 8)) (-1976 (($) 7 T CONST)) (-1428 ((|#1| |#1| $) 47)) (-1744 ((|#1| $) 46)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2730 ((|#1| $) 40)) (-3183 (($ |#1| $) 41)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-3388 ((|#1| $) 42)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-1930 (((-769) $) 44)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) 43)) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-1118 |#1|) (-140) (-1212)) (T -1118))
+((-1428 (*1 *2 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212)))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4410) (-15 -1428 (|t#1| |t#1| $)) (-15 -1744 (|t#1| $)) (-15 -2362 (|t#1| $)) (-15 -1930 ((-769) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-3815 ((|#3| $) 87)) (-4278 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-3027 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#3| $) 47)) (-4315 (((-687 (-564)) (-687 $)) NIL) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL) (((-2 (|:| -1780 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 $) (-1262 $)) 84) (((-687 |#3|) (-687 $)) 76)) (-3175 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173)) NIL) (($ $ (-769)) NIL) (($ $) NIL)) (-1921 ((|#3| $) 89)) (-1925 ((|#4| $) 43)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#3|) 25)) (** (($ $ (-919)) NIL) (($ $ (-769)) 24) (($ $ (-564)) 95)))
+(((-1119 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -1921 (|#3| |#1|)) (-15 -3815 (|#3| |#1|)) (-15 -1925 (|#4| |#1|)) (-15 -4315 ((-687 |#3|) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -2327 (|#1| |#3|)) (-15 -4278 ((-3 |#3| "failed") |#1|)) (-15 -3027 (|#3| |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1 |#3| |#3|) (-769))) (-15 -3175 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2327 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919))) (-15 -2327 ((-860) |#1|))) (-1120 |#2| |#3| |#4| |#5|) (-769) (-1047) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1119))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -1921 (|#3| |#1|)) (-15 -3815 (|#3| |#1|)) (-15 -1925 (|#4| |#1|)) (-15 -4315 ((-687 |#3|) (-687 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 |#3|)) (|:| |vec| (-1262 |#3|))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 |#1|) (-1262 |#1|))) (-15 -4315 ((-687 (-564)) (-687 |#1|))) (-15 -2327 (|#1| |#3|)) (-15 -4278 ((-3 |#3| "failed") |#1|)) (-15 -3027 (|#3| |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1 |#3| |#3|) (-769))) (-15 -3175 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2327 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3815 ((|#2| $) 77)) (-4129 (((-112) $) 117)) (-1532 (((-3 $ "failed") $ $) 20)) (-3873 (((-112) $) 115)) (-3697 (((-112) $ (-769)) 107)) (-2540 (($ |#2|) 80)) (-1976 (($) 18 T CONST)) (-4239 (($ $) 134 (|has| |#2| (-307)))) (-2600 ((|#3| $ (-564)) 129)) (-4278 (((-3 (-564) "failed") $) 92 (|has| |#2| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) 89 (|has| |#2| (-1036 (-407 (-564))))) (((-3 |#2| "failed") $) 86)) (-3027 (((-564) $) 91 (|has| |#2| (-1036 (-564)))) (((-407 (-564)) $) 88 (|has| |#2| (-1036 (-407 (-564))))) ((|#2| $) 87)) (-4315 (((-687 (-564)) (-687 $)) 84 (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 83 (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 82) (((-687 |#2|) (-687 $)) 81)) (-3104 (((-3 $ "failed") $) 37)) (-2414 (((-769) $) 135 (|has| |#2| (-556)))) (-2551 ((|#2| $ (-564) (-564)) 127)) (-2936 (((-642 |#2|) $) 100 (|has| $ (-6 -4410)))) (-3953 (((-112) $) 35)) (-2054 (((-769) $) 136 (|has| |#2| (-556)))) (-4286 (((-642 |#4|) $) 137 (|has| |#2| (-556)))) (-2567 (((-769) $) 123)) (-2579 (((-769) $) 124)) (-3462 (((-112) $ (-769)) 108)) (-3422 ((|#2| $) 72 (|has| |#2| (-6 (-4412 "*"))))) (-3491 (((-564) $) 119)) (-3865 (((-564) $) 121)) (-3234 (((-642 |#2|) $) 99 (|has| $ (-6 -4410)))) (-2776 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3054 (((-564) $) 120)) (-2977 (((-564) $) 122)) (-2244 (($ (-642 (-642 |#2|))) 114)) (-2613 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-1624 (((-642 (-642 |#2|)) $) 125)) (-3576 (((-112) $ (-769)) 109)) (-3315 (((-1155) $) 10)) (-4168 (((-3 $ "failed") $) 71 (|has| |#2| (-363)))) (-4033 (((-1117) $) 11)) (-2896 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-556)))) (-2121 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#2|))) 96 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) 95 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) 93 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) 113)) (-3719 (((-112) $) 110)) (-2972 (($) 111)) (-4368 ((|#2| $ (-564) (-564) |#2|) 128) ((|#2| $ (-564) (-564)) 126)) (-3175 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-769)) 55) (($ $ (-642 (-1173)) (-642 (-769))) 48 (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) 47 (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) 46 (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) 45 (|has| |#2| (-898 (-1173)))) (($ $ (-769)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-1921 ((|#2| $) 76)) (-3548 (($ (-642 |#2|)) 79)) (-2877 (((-112) $) 116)) (-1925 ((|#3| $) 78)) (-1504 ((|#2| $) 73 (|has| |#2| (-6 (-4412 "*"))))) (-4043 (((-769) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4410))) (((-769) |#2| $) 98 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 112)) (-3022 ((|#4| $ (-564)) 130)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 90 (|has| |#2| (-1036 (-407 (-564))))) (($ |#2|) 85)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2710 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4410)))) (-1332 (((-112) $) 118)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-769)) 53) (($ $ (-642 (-1173)) (-642 (-769))) 52 (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) 51 (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) 50 (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) 49 (|has| |#2| (-898 (-1173)))) (($ $ (-769)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#2|) 133 (|has| |#2| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 70 (|has| |#2| (-363)))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2127 (((-769) $) 106 (|has| $ (-6 -4410)))))
+(((-1120 |#1| |#2| |#3| |#4|) (-140) (-769) (-1047) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1120))
+((-2540 (*1 *1 *2) (-12 (-4 *2 (-1047)) (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-642 *4)) (-4 *4 (-1047)) (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1047)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1047)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))) (-4168 (*1 *1 *1) (|partial| -12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))))
+(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1051 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-715 |t#2|)) |%noBranch|) (-15 -2540 ($ |t#2|)) (-15 -3548 ($ (-642 |t#2|))) (-15 -1925 (|t#3| $)) (-15 -3815 (|t#2| $)) (-15 -1921 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4412 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1504 (|t#2| $)) (-15 -3422 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -4168 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4412 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#2| (-1036 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#2|) . T) ((-611 (-860)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-644 (-564)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-638 |#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-6 (-4412 "*")))) ((-637 (-564)) |has| |#2| (-637 (-564))) ((-637 |#2|) . T) ((-715 |#2|) -2706 (|has| |#2| (-172)) (|has| |#2| (-6 (-4412 "*")))) ((-724) . T) ((-898 (-1173)) |has| |#2| (-898 (-1173))) ((-1051 |#1| |#1| |#2| |#3| |#4|) . T) ((-1036 #0#) |has| |#2| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#2| (-1036 (-564))) ((-1036 |#2|) . T) ((-1049 |#2|) . T) ((-1054 |#2|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1212) . T))
+((-1507 ((|#4| |#4|) 82)) (-2935 ((|#4| |#4|) 77)) (-2910 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4263 (-642 |#3|))) |#4| |#3|) 92)) (-3308 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 81)) (-3384 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 79)))
+(((-1121 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2935 (|#4| |#4|)) (-15 -3384 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1507 (|#4| |#4|)) (-15 -3308 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2910 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4263 (-642 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|)) (T -1121))
+((-2910 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4)))) (-5 *1 (-1121 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))) (-3308 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1121 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-1507 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-3384 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1121 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))) (-2935 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))))
+(-10 -7 (-15 -2935 (|#4| |#4|)) (-15 -3384 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1507 (|#4| |#4|)) (-15 -3308 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2910 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4263 (-642 |#3|))) |#4| |#3|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 18)) (-3802 (((-642 |#2|) $) 177)) (-3615 (((-1169 $) $ |#2|) 63) (((-1169 |#1|) $) 52)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 117 (|has| |#1| (-556)))) (-1387 (($ $) 119 (|has| |#1| (-556)))) (-2037 (((-112) $) 121 (|has| |#1| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 |#2|)) 216)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-4316 (($ $) NIL (|has| |#1| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) 171) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 |#2| "failed") $) NIL)) (-3027 ((|#1| $) 169) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) ((|#2| $) NIL)) (-2022 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-1718 (($ $) 220)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) 91)) (-3246 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#1| (-907)))) (-2575 (($ $ |#1| (-531 |#2|) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| |#1| (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| |#1| (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-3953 (((-112) $) 20)) (-3934 (((-769) $) 30)) (-3790 (($ (-1169 |#1|) |#2|) 57) (($ (-1169 $) |#2|) 74)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) 41)) (-3774 (($ |#1| (-531 |#2|)) 81) (($ $ |#2| (-769)) 61) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ |#2|) NIL)) (-1398 (((-531 |#2|) $) 208) (((-769) $ |#2|) 209) (((-642 (-769)) $ (-642 |#2|)) 210)) (-2026 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) 129)) (-4184 (((-3 |#2| "failed") $) 180)) (-3950 (($ $) 219)) (-3962 ((|#1| $) 46)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3315 (((-1155) $) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| |#2|) (|:| -2700 (-769))) "failed") $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) 42)) (-3932 ((|#1| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 149 (|has| |#1| (-452)))) (-2080 (($ (-642 $)) 154 (|has| |#1| (-452))) (($ $ $) 139 (|has| |#1| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#1| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-907)))) (-2896 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 127 (|has| |#1| (-556)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ |#2| |#1|) 183) (($ $ (-642 |#2|) (-642 |#1|)) 198) (($ $ |#2| $) 182) (($ $ (-642 |#2|) (-642 $)) 197)) (-1846 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3175 (($ $ |#2|) 218) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2775 (((-531 |#2|) $) 204) (((-769) $ |#2|) 199) (((-642 (-769)) $ (-642 |#2|)) 202)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| |#1| (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| |#1| (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4028 ((|#1| $) 135 (|has| |#1| (-452))) (($ $ |#2|) 138 (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2327 (((-860) $) 160) (($ (-564)) 85) (($ |#1|) 86) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-3849 (((-642 |#1|) $) 163)) (-2102 ((|#1| $ (-531 |#2|)) 83) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) 88 T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) 124 (|has| |#1| (-556)))) (-2312 (($) 12 T CONST)) (-2322 (($) 14 T CONST)) (-4044 (($ $ |#2|) NIL) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2872 (((-112) $ $) 107)) (-2998 (($ $ |#1|) 133 (|has| |#1| (-363)))) (-2987 (($ $) 94) (($ $ $) 105)) (-2974 (($ $ $) 58)) (** (($ $ (-919)) 111) (($ $ (-769)) 110)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 97) (($ $ $) 75) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 100) (($ $ |#1|) NIL)))
+(((-1122 |#1| |#2|) (-947 |#1| (-531 |#2|) |#2|) (-1047) (-848)) (T -1122))
+NIL
+(-947 |#1| (-531 |#2|) |#2|)
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 |#2|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-3851 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3875 (($ $) 156 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3359 (((-950 |#1|) $ (-769)) NIL) (((-950 |#1|) $ (-769) (-769)) NIL)) (-1941 (((-112) $) NIL)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-769) $ |#2|) NIL) (((-769) $ |#2| (-769)) NIL)) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2316 (((-112) $) NIL)) (-3774 (($ $ (-642 |#2|) (-642 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-769)) 63) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4107 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-407 (-564)))))) (-4033 (((-1117) $) NIL)) (-4251 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3804 (($ $ (-769)) 16)) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1723 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (($ $ |#2| $) 106) (($ $ (-642 |#2|) (-642 $)) 99) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL)) (-3175 (($ $ |#2|) 109) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2775 (((-531 |#2|) $) NIL)) (-2532 (((-1 (-1153 |#3|) |#3|) (-642 |#2|) (-642 (-1153 |#3|))) 87)) (-3888 (($ $) 158 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) 18)) (-2327 (((-860) $) 199) (($ (-564)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#2|) 70) (($ |#3|) 68)) (-2102 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL) ((|#3| $ (-769)) 43)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2683 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 52 T CONST)) (-2322 (($) 62 T CONST)) (-4044 (($ $ |#2|) NIL) (($ $ (-642 |#2|)) NIL) (($ $ |#2| (-769)) NIL) (($ $ (-642 |#2|) (-642 (-769))) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) 201 (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 66)) (** (($ $ (-919)) NIL) (($ $ (-769)) 77) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 112 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 65) (($ $ (-407 (-564))) 117 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 115 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
+(((-1123 |#1| |#2| |#3|) (-13 (-738 |#1| |#2|) (-10 -8 (-15 -2102 (|#3| $ (-769))) (-15 -2327 ($ |#2|)) (-15 -2327 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2532 ((-1 (-1153 |#3|) |#3|) (-642 |#2|) (-642 (-1153 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ($ $ |#2| |#1|)) (-15 -4251 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1047) (-848) (-947 |#1| (-531 |#2|) |#2|)) (T -1123))
+((-2102 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *2 (-947 *4 (-531 *5) *5)) (-5 *1 (-1123 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-848)))) (-2327 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *2 (-848)) (-5 *1 (-1123 *3 *2 *4)) (-4 *4 (-947 *3 (-531 *2) *2)))) (-2327 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-848)) (-5 *1 (-1123 *3 *4 *2)) (-4 *2 (-947 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-848)) (-5 *1 (-1123 *3 *4 *2)) (-4 *2 (-947 *3 (-531 *4) *4)))) (-2532 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-1153 *7))) (-4 *6 (-848)) (-4 *7 (-947 *5 (-531 *6) *6)) (-4 *5 (-1047)) (-5 *2 (-1 (-1153 *7) *7)) (-5 *1 (-1123 *5 *6 *7)))) (-4107 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-4 *2 (-848)) (-5 *1 (-1123 *3 *2 *4)) (-4 *4 (-947 *3 (-531 *2) *2)))) (-4251 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1123 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1047)) (-4 *3 (-848)) (-5 *1 (-1123 *4 *3 *5)) (-4 *5 (-947 *4 (-531 *3) *3)))))
+(-13 (-738 |#1| |#2|) (-10 -8 (-15 -2102 (|#3| $ (-769))) (-15 -2327 ($ |#2|)) (-15 -2327 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2532 ((-1 (-1153 |#3|) |#3|) (-642 |#2|) (-642 (-1153 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ($ $ |#2| |#1|)) (-15 -4251 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2907 (((-112) $ $) 7)) (-3126 (((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 |#4|)))) (-642 |#4|)) 86)) (-4208 (((-642 $) (-642 |#4|)) 87) (((-642 $) (-642 |#4|) (-112)) 112)) (-3802 (((-642 |#3|) $) 34)) (-3317 (((-112) $) 27)) (-4293 (((-112) $) 18 (|has| |#1| (-556)))) (-3831 (((-112) |#4| $) 102) (((-112) $) 98)) (-3923 ((|#4| |#4| $) 93)) (-4316 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| $) 127)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) 28)) (-3697 (((-112) $ (-769)) 45)) (-1700 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 80)) (-1976 (($) 46 T CONST)) (-1496 (((-112) $) 23 (|has| |#1| (-556)))) (-4375 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2888 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2850 (((-112) $) 26 (|has| |#1| (-556)))) (-1975 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2627 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) 37)) (-3027 (($ (-642 |#4|)) 36)) (-2570 (((-3 $ "failed") $) 83)) (-1493 ((|#4| |#4| $) 90)) (-2595 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1597 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1821 ((|#4| |#4| $) 88)) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1738 (((-2 (|:| -1639 (-642 |#4|)) (|:| -2241 (-642 |#4|))) $) 106)) (-2561 (((-112) |#4| $) 137)) (-3204 (((-112) |#4| $) 134)) (-3936 (((-112) |#4| $) 138) (((-112) $) 135)) (-2936 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-2846 (((-112) |#4| $) 105) (((-112) $) 104)) (-3290 ((|#3| $) 35)) (-3462 (((-112) $ (-769)) 44)) (-3234 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) 48)) (-3370 (((-642 |#3|) $) 33)) (-4120 (((-112) |#3| $) 32)) (-3576 (((-112) $ (-769)) 43)) (-3315 (((-1155) $) 10)) (-4162 (((-3 |#4| (-642 $)) |#4| |#4| $) 129)) (-2899 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| |#4| $) 128)) (-2514 (((-3 |#4| "failed") $) 84)) (-2340 (((-642 $) |#4| $) 130)) (-3902 (((-3 (-112) (-642 $)) |#4| $) 133)) (-2685 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2452 (((-642 $) |#4| $) 126) (((-642 $) (-642 |#4|) $) 125) (((-642 $) (-642 |#4|) (-642 $)) 124) (((-642 $) |#4| (-642 $)) 123)) (-4193 (($ |#4| $) 118) (($ (-642 |#4|) $) 117)) (-2743 (((-642 |#4|) $) 108)) (-3350 (((-112) |#4| $) 100) (((-112) $) 96)) (-1415 ((|#4| |#4| $) 91)) (-3819 (((-112) $ $) 111)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-2262 (((-112) |#4| $) 101) (((-112) $) 97)) (-1372 ((|#4| |#4| $) 92)) (-4033 (((-1117) $) 11)) (-2557 (((-3 |#4| "failed") $) 85)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3724 (((-3 $ "failed") $ |#4|) 79)) (-3804 (($ $ |#4|) 78) (((-642 $) |#4| $) 116) (((-642 $) |#4| (-642 $)) 115) (((-642 $) (-642 |#4|) $) 114) (((-642 $) (-642 |#4|) (-642 $)) 113)) (-2121 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) 39)) (-3719 (((-112) $) 42)) (-2972 (($) 41)) (-2775 (((-769) $) 107)) (-4043 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3901 (($ $) 40)) (-1314 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2337 (($ (-642 |#4|)) 61)) (-3153 (($ $ |#3|) 29)) (-3696 (($ $ |#3|) 31)) (-3114 (($ $) 89)) (-1749 (($ $ |#3|) 30)) (-2327 (((-860) $) 12) (((-642 |#4|) $) 38)) (-4195 (((-769) $) 77 (|has| |#3| (-368)))) (-1648 (((-112) $ $) 9)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3497 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) 99)) (-4325 (((-642 $) |#4| $) 122) (((-642 $) |#4| (-642 $)) 121) (((-642 $) (-642 |#4|) $) 120) (((-642 $) (-642 |#4|) (-642 $)) 119)) (-2710 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-2240 (((-642 |#3|) $) 82)) (-3503 (((-112) |#4| $) 136)) (-1362 (((-112) |#3| $) 81)) (-2872 (((-112) $ $) 6)) (-2127 (((-769) $) 47 (|has| $ (-6 -4410)))))
+(((-1124 |#1| |#2| |#3| |#4|) (-140) (-452) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -1124))
+NIL
+(-13 (-1106 |t#1| |t#2| |t#3| |t#4|) (-782 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-782 |#1| |#2| |#3| |#4|) . T) ((-974 |#1| |#2| |#3| |#4|) . T) ((-1068 |#1| |#2| |#3| |#4|) . T) ((-1097) . T) ((-1106 |#1| |#2| |#3| |#4|) . T) ((-1205 |#1| |#2| |#3| |#4|) . T) ((-1212) . T))
+((-1616 (((-642 |#2|) |#1|) 15)) (-2032 (((-642 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-642 |#2|) |#1|) 63)) (-1576 (((-642 |#2|) |#2| |#2| |#2|) 45) (((-642 |#2|) |#1|) 61)) (-2247 ((|#2| |#1|) 56)) (-2783 (((-2 (|:| |solns| (-642 |#2|)) (|:| |maps| (-642 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3336 (((-642 |#2|) |#2| |#2|) 42) (((-642 |#2|) |#1|) 60)) (-3021 (((-642 |#2|) |#2| |#2| |#2| |#2|) 46) (((-642 |#2|) |#1|) 62)) (-1421 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-2584 ((|#2| |#2| |#2| |#2|) 53)) (-4350 ((|#2| |#2| |#2|) 52)) (-3862 ((|#2| |#2| |#2| |#2| |#2|) 54)))
+(((-1125 |#1| |#2|) (-10 -7 (-15 -1616 ((-642 |#2|) |#1|)) (-15 -2247 (|#2| |#1|)) (-15 -2783 ((-2 (|:| |solns| (-642 |#2|)) (|:| |maps| (-642 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3336 ((-642 |#2|) |#1|)) (-15 -1576 ((-642 |#2|) |#1|)) (-15 -3021 ((-642 |#2|) |#1|)) (-15 -2032 ((-642 |#2|) |#1|)) (-15 -3336 ((-642 |#2|) |#2| |#2|)) (-15 -1576 ((-642 |#2|) |#2| |#2| |#2|)) (-15 -3021 ((-642 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2032 ((-642 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4350 (|#2| |#2| |#2|)) (-15 -2584 (|#2| |#2| |#2| |#2|)) (-15 -3862 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1421 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1238 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (T -1125))
+((-1421 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))) (-3862 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))) (-2584 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))) (-4350 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))) (-2032 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))) (-3021 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))) (-1576 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))) (-3336 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))) (-2032 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) (-3021 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) (-1576 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-2 (|:| |solns| (-642 *5)) (|:| |maps| (-642 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1125 *3 *5)) (-4 *3 (-1238 *5)))) (-2247 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))) (-1616 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4)))))
+(-10 -7 (-15 -1616 ((-642 |#2|) |#1|)) (-15 -2247 (|#2| |#1|)) (-15 -2783 ((-2 (|:| |solns| (-642 |#2|)) (|:| |maps| (-642 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3336 ((-642 |#2|) |#1|)) (-15 -1576 ((-642 |#2|) |#1|)) (-15 -3021 ((-642 |#2|) |#1|)) (-15 -2032 ((-642 |#2|) |#1|)) (-15 -3336 ((-642 |#2|) |#2| |#2|)) (-15 -1576 ((-642 |#2|) |#2| |#2| |#2|)) (-15 -3021 ((-642 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2032 ((-642 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4350 (|#2| |#2| |#2|)) (-15 -2584 (|#2| |#2| |#2| |#2|)) (-15 -3862 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1421 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-2203 (((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|))))) 128) (((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173))) 127) (((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|)))) 125) (((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|))) (-642 (-1173))) 123) (((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|)))) 101) (((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|))) (-1173)) 102) (((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|))) 96) (((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|)) (-1173)) 82)) (-1835 (((-642 (-642 (-316 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173))) 121) (((-642 (-316 |#1|)) (-407 (-950 |#1|)) (-1173)) 54)) (-2168 (((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-407 (-950 |#1|)) (-1173)) 132) (((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173)) 131)))
+(((-1126 |#1|) (-10 -7 (-15 -2203 ((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -2203 ((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|)))) (-15 -2203 ((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -2203 ((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|))))) (-15 -2203 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -2203 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|))))) (-15 -2203 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173)))) (-15 -2203 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -1835 ((-642 (-316 |#1|)) (-407 (-950 |#1|)) (-1173))) (-15 -1835 ((-642 (-642 (-316 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -2168 ((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -2168 ((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-407 (-950 |#1|)) (-1173)))) (-13 (-307) (-147))) (T -1126))
+((-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-1162 (-642 (-316 *5)) (-642 (-294 (-316 *5))))) (-5 *1 (-1126 *5)))) (-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-950 *5)))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-1162 (-642 (-316 *5)) (-642 (-294 (-316 *5))))) (-5 *1 (-1126 *5)))) (-1835 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-316 *5)))) (-5 *1 (-1126 *5)))) (-1835 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-316 *5))) (-5 *1 (-1126 *5)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-642 (-294 (-407 (-950 *4))))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *4))))) (-5 *1 (-1126 *4)))) (-2203 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-294 (-407 (-950 *5))))) (-5 *4 (-642 (-1173))) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *5))))) (-5 *1 (-1126 *5)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-642 (-407 (-950 *4)))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *4))))) (-5 *1 (-1126 *4)))) (-2203 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *5))))) (-5 *1 (-1126 *5)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-950 *4)))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1126 *4)))) (-2203 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-950 *5)))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1126 *5)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1126 *4)))) (-2203 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1126 *5)))))
+(-10 -7 (-15 -2203 ((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|)) (-1173))) (-15 -2203 ((-642 (-294 (-316 |#1|))) (-407 (-950 |#1|)))) (-15 -2203 ((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -2203 ((-642 (-294 (-316 |#1|))) (-294 (-407 (-950 |#1|))))) (-15 -2203 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -2203 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-407 (-950 |#1|))))) (-15 -2203 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173)))) (-15 -2203 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -1835 ((-642 (-316 |#1|)) (-407 (-950 |#1|)) (-1173))) (-15 -1835 ((-642 (-642 (-316 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -2168 ((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -2168 ((-1162 (-642 (-316 |#1|)) (-642 (-294 (-316 |#1|)))) (-407 (-950 |#1|)) (-1173))))
+((-3247 (((-407 (-1169 (-316 |#1|))) (-1262 (-316 |#1|)) (-407 (-1169 (-316 |#1|))) (-564)) 38)) (-4013 (((-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|)))) 49)))
+(((-1127 |#1|) (-10 -7 (-15 -4013 ((-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))))) (-15 -3247 ((-407 (-1169 (-316 |#1|))) (-1262 (-316 |#1|)) (-407 (-1169 (-316 |#1|))) (-564)))) (-556)) (T -1127))
+((-3247 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1169 (-316 *5)))) (-5 *3 (-1262 (-316 *5))) (-5 *4 (-564)) (-4 *5 (-556)) (-5 *1 (-1127 *5)))) (-4013 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1169 (-316 *3)))) (-4 *3 (-556)) (-5 *1 (-1127 *3)))))
+(-10 -7 (-15 -4013 ((-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))) (-407 (-1169 (-316 |#1|))))) (-15 -3247 ((-407 (-1169 (-316 |#1|))) (-1262 (-316 |#1|)) (-407 (-1169 (-316 |#1|))) (-564))))
+((-1616 (((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-316 |#1|))) (-642 (-1173))) 255) (((-642 (-294 (-316 |#1|))) (-316 |#1|) (-1173)) 29) (((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1173)) 35) (((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 34) (((-642 (-294 (-316 |#1|))) (-316 |#1|)) 30)))
+(((-1128 |#1|) (-10 -7 (-15 -1616 ((-642 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -1616 ((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -1616 ((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1173))) (-15 -1616 ((-642 (-294 (-316 |#1|))) (-316 |#1|) (-1173))) (-15 -1616 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-316 |#1|))) (-642 (-1173))))) (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (T -1128))
+((-1616 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-1173))) (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *5))))) (-5 *1 (-1128 *5)) (-5 *3 (-642 (-294 (-316 *5)))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1128 *5)) (-5 *3 (-316 *5)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1128 *5)) (-5 *3 (-294 (-316 *5))))) (-1616 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-294 (-316 *4))))) (-1616 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147))) (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-316 *4)))))
+(-10 -7 (-15 -1616 ((-642 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -1616 ((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -1616 ((-642 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1173))) (-15 -1616 ((-642 (-294 (-316 |#1|))) (-316 |#1|) (-1173))) (-15 -1616 ((-642 (-642 (-294 (-316 |#1|)))) (-642 (-294 (-316 |#1|))) (-642 (-1173)))))
+((-2691 ((|#2| |#2|) 30 (|has| |#1| (-848))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3255 ((|#2| |#2|) 29 (|has| |#1| (-848))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
+(((-1129 |#1| |#2|) (-10 -7 (-15 -3255 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2691 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-848)) (PROGN (-15 -3255 (|#2| |#2|)) (-15 -2691 (|#2| |#2|))) |%noBranch|)) (-1212) (-13 (-602 (-564) |#1|) (-10 -7 (-6 -4410) (-6 -4411)))) (T -1129))
+((-2691 (*1 *2 *2) (-12 (-4 *3 (-848)) (-4 *3 (-1212)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4410) (-6 -4411)))))) (-3255 (*1 *2 *2) (-12 (-4 *3 (-848)) (-4 *3 (-1212)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4410) (-6 -4411)))))) (-2691 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-1129 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4410) (-6 -4411)))))) (-3255 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-1129 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4410) (-6 -4411)))))))
+(-10 -7 (-15 -3255 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2691 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-848)) (PROGN (-15 -3255 (|#2| |#2|)) (-15 -2691 (|#2| |#2|))) |%noBranch|))
+((-2907 (((-112) $ $) NIL)) (-3682 (((-1161 3 |#1|) $) 142)) (-2025 (((-112) $) 100)) (-3614 (($ $ (-642 (-941 |#1|))) 44) (($ $ (-642 (-642 |#1|))) 103) (($ (-642 (-941 |#1|))) 102) (((-642 (-941 |#1|)) $) 101)) (-1784 (((-112) $) 71)) (-2669 (($ $ (-941 |#1|)) 75) (($ $ (-642 |#1|)) 80) (($ $ (-769)) 82) (($ (-941 |#1|)) 76) (((-941 |#1|) $) 74)) (-2536 (((-2 (|:| -2747 (-769)) (|:| |curves| (-769)) (|:| |polygons| (-769)) (|:| |constructs| (-769))) $) 140)) (-3556 (((-769) $) 53)) (-4153 (((-769) $) 52)) (-2506 (($ $ (-769) (-941 |#1|)) 67)) (-2883 (((-112) $) 113)) (-2808 (($ $ (-642 (-642 (-941 |#1|))) (-642 (-171)) (-171)) 120) (($ $ (-642 (-642 (-642 |#1|))) (-642 (-171)) (-171)) 122) (($ $ (-642 (-642 (-941 |#1|))) (-112) (-112)) 117) (($ $ (-642 (-642 (-642 |#1|))) (-112) (-112)) 129) (($ (-642 (-642 (-941 |#1|)))) 118) (($ (-642 (-642 (-941 |#1|))) (-112) (-112)) 119) (((-642 (-642 (-941 |#1|))) $) 116)) (-2740 (($ (-642 $)) 56) (($ $ $) 57)) (-4138 (((-642 (-171)) $) 135)) (-4347 (((-642 (-941 |#1|)) $) 132)) (-3159 (((-642 (-642 (-171))) $) 134)) (-1454 (((-642 (-642 (-642 (-941 |#1|)))) $) NIL)) (-1335 (((-642 (-642 (-642 (-769)))) $) 133)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1614 (((-769) $ (-642 (-941 |#1|))) 65)) (-3584 (((-112) $) 83)) (-3100 (($ $ (-642 (-941 |#1|))) 85) (($ $ (-642 (-642 |#1|))) 91) (($ (-642 (-941 |#1|))) 86) (((-642 (-941 |#1|)) $) 84)) (-1384 (($) 48) (($ (-1161 3 |#1|)) 49)) (-3901 (($ $) 63)) (-3987 (((-642 $) $) 62)) (-2065 (($ (-642 $)) 59)) (-1310 (((-642 $) $) 61)) (-2327 (((-860) $) 147)) (-2898 (((-112) $) 93)) (-3199 (($ $ (-642 (-941 |#1|))) 95) (($ $ (-642 (-642 |#1|))) 98) (($ (-642 (-941 |#1|))) 96) (((-642 (-941 |#1|)) $) 94)) (-3217 (($ $) 141)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1130 |#1|) (-1131 |#1|) (-1047)) (T -1130))
+NIL
+(-1131 |#1|)
+((-2907 (((-112) $ $) 7)) (-3682 (((-1161 3 |#1|) $) 14)) (-2025 (((-112) $) 30)) (-3614 (($ $ (-642 (-941 |#1|))) 34) (($ $ (-642 (-642 |#1|))) 33) (($ (-642 (-941 |#1|))) 32) (((-642 (-941 |#1|)) $) 31)) (-1784 (((-112) $) 45)) (-2669 (($ $ (-941 |#1|)) 50) (($ $ (-642 |#1|)) 49) (($ $ (-769)) 48) (($ (-941 |#1|)) 47) (((-941 |#1|) $) 46)) (-2536 (((-2 (|:| -2747 (-769)) (|:| |curves| (-769)) (|:| |polygons| (-769)) (|:| |constructs| (-769))) $) 16)) (-3556 (((-769) $) 59)) (-4153 (((-769) $) 60)) (-2506 (($ $ (-769) (-941 |#1|)) 51)) (-2883 (((-112) $) 22)) (-2808 (($ $ (-642 (-642 (-941 |#1|))) (-642 (-171)) (-171)) 29) (($ $ (-642 (-642 (-642 |#1|))) (-642 (-171)) (-171)) 28) (($ $ (-642 (-642 (-941 |#1|))) (-112) (-112)) 27) (($ $ (-642 (-642 (-642 |#1|))) (-112) (-112)) 26) (($ (-642 (-642 (-941 |#1|)))) 25) (($ (-642 (-642 (-941 |#1|))) (-112) (-112)) 24) (((-642 (-642 (-941 |#1|))) $) 23)) (-2740 (($ (-642 $)) 58) (($ $ $) 57)) (-4138 (((-642 (-171)) $) 17)) (-4347 (((-642 (-941 |#1|)) $) 21)) (-3159 (((-642 (-642 (-171))) $) 18)) (-1454 (((-642 (-642 (-642 (-941 |#1|)))) $) 19)) (-1335 (((-642 (-642 (-642 (-769)))) $) 20)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-1614 (((-769) $ (-642 (-941 |#1|))) 52)) (-3584 (((-112) $) 40)) (-3100 (($ $ (-642 (-941 |#1|))) 44) (($ $ (-642 (-642 |#1|))) 43) (($ (-642 (-941 |#1|))) 42) (((-642 (-941 |#1|)) $) 41)) (-1384 (($) 62) (($ (-1161 3 |#1|)) 61)) (-3901 (($ $) 53)) (-3987 (((-642 $) $) 54)) (-2065 (($ (-642 $)) 56)) (-1310 (((-642 $) $) 55)) (-2327 (((-860) $) 12)) (-2898 (((-112) $) 35)) (-3199 (($ $ (-642 (-941 |#1|))) 39) (($ $ (-642 (-642 |#1|))) 38) (($ (-642 (-941 |#1|))) 37) (((-642 (-941 |#1|)) $) 36)) (-3217 (($ $) 15)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
+(((-1131 |#1|) (-140) (-1047)) (T -1131))
+((-2327 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-860)))) (-1384 (*1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-1161 3 *3)) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-2740 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))) (-2065 (*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-1310 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)))) (-3987 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)))) (-3901 (*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))) (-1614 (*1 *2 *1 *3) (-12 (-5 *3 (-642 (-941 *4))) (-4 *1 (-1131 *4)) (-4 *4 (-1047)) (-5 *2 (-769)))) (-2506 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *3 (-941 *4)) (-4 *1 (-1131 *4)) (-4 *4 (-1047)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-941 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-2669 (*1 *1 *2) (-12 (-5 *2 (-941 *3)) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-941 *3)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))) (-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3100 (*1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))) (-3199 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3199 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3199 (*1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))) (-3614 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3614 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))) (-2808 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-642 (-642 (-941 *5)))) (-5 *3 (-642 (-171))) (-5 *4 (-171)) (-4 *1 (-1131 *5)) (-4 *5 (-1047)))) (-2808 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-642 (-642 (-642 *5)))) (-5 *3 (-642 (-171))) (-5 *4 (-171)) (-4 *1 (-1131 *5)) (-4 *5 (-1047)))) (-2808 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-642 (-642 (-941 *4)))) (-5 *3 (-112)) (-4 *1 (-1131 *4)) (-4 *4 (-1047)))) (-2808 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-642 (-642 (-642 *4)))) (-5 *3 (-112)) (-4 *1 (-1131 *4)) (-4 *4 (-1047)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-941 *3)))) (-4 *3 (-1047)) (-4 *1 (-1131 *3)))) (-2808 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-642 (-642 (-941 *4)))) (-5 *3 (-112)) (-4 *4 (-1047)) (-4 *1 (-1131 *4)))) (-2808 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-642 (-941 *3)))))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-642 (-642 (-769))))))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-642 (-642 (-941 *3))))))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-642 (-171)))))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-171))))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -2747 (-769)) (|:| |curves| (-769)) (|:| |polygons| (-769)) (|:| |constructs| (-769)))))) (-3217 (*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-1161 3 *3)))))
+(-13 (-1097) (-10 -8 (-15 -1384 ($)) (-15 -1384 ($ (-1161 3 |t#1|))) (-15 -4153 ((-769) $)) (-15 -3556 ((-769) $)) (-15 -2740 ($ (-642 $))) (-15 -2740 ($ $ $)) (-15 -2065 ($ (-642 $))) (-15 -1310 ((-642 $) $)) (-15 -3987 ((-642 $) $)) (-15 -3901 ($ $)) (-15 -1614 ((-769) $ (-642 (-941 |t#1|)))) (-15 -2506 ($ $ (-769) (-941 |t#1|))) (-15 -2669 ($ $ (-941 |t#1|))) (-15 -2669 ($ $ (-642 |t#1|))) (-15 -2669 ($ $ (-769))) (-15 -2669 ($ (-941 |t#1|))) (-15 -2669 ((-941 |t#1|) $)) (-15 -1784 ((-112) $)) (-15 -3100 ($ $ (-642 (-941 |t#1|)))) (-15 -3100 ($ $ (-642 (-642 |t#1|)))) (-15 -3100 ($ (-642 (-941 |t#1|)))) (-15 -3100 ((-642 (-941 |t#1|)) $)) (-15 -3584 ((-112) $)) (-15 -3199 ($ $ (-642 (-941 |t#1|)))) (-15 -3199 ($ $ (-642 (-642 |t#1|)))) (-15 -3199 ($ (-642 (-941 |t#1|)))) (-15 -3199 ((-642 (-941 |t#1|)) $)) (-15 -2898 ((-112) $)) (-15 -3614 ($ $ (-642 (-941 |t#1|)))) (-15 -3614 ($ $ (-642 (-642 |t#1|)))) (-15 -3614 ($ (-642 (-941 |t#1|)))) (-15 -3614 ((-642 (-941 |t#1|)) $)) (-15 -2025 ((-112) $)) (-15 -2808 ($ $ (-642 (-642 (-941 |t#1|))) (-642 (-171)) (-171))) (-15 -2808 ($ $ (-642 (-642 (-642 |t#1|))) (-642 (-171)) (-171))) (-15 -2808 ($ $ (-642 (-642 (-941 |t#1|))) (-112) (-112))) (-15 -2808 ($ $ (-642 (-642 (-642 |t#1|))) (-112) (-112))) (-15 -2808 ($ (-642 (-642 (-941 |t#1|))))) (-15 -2808 ($ (-642 (-642 (-941 |t#1|))) (-112) (-112))) (-15 -2808 ((-642 (-642 (-941 |t#1|))) $)) (-15 -2883 ((-112) $)) (-15 -4347 ((-642 (-941 |t#1|)) $)) (-15 -1335 ((-642 (-642 (-642 (-769)))) $)) (-15 -1454 ((-642 (-642 (-642 (-941 |t#1|)))) $)) (-15 -3159 ((-642 (-642 (-171))) $)) (-15 -4138 ((-642 (-171)) $)) (-15 -2536 ((-2 (|:| -2747 (-769)) (|:| |curves| (-769)) (|:| |polygons| (-769)) (|:| |constructs| (-769))) $)) (-15 -3217 ($ $)) (-15 -3682 ((-1161 3 |t#1|) $)) (-15 -2327 ((-860) $))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 174) (($ (-1178)) NIL) (((-1178) $) 7)) (-2305 (((-112) $ (|[\|\|]| (-524))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-674))) 27) (((-112) $ (|[\|\|]| (-1272))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1112))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-679))) 51) (((-112) $ (|[\|\|]| (-517))) 55) (((-112) $ (|[\|\|]| (-1063))) 59) (((-112) $ (|[\|\|]| (-1273))) 63) (((-112) $ (|[\|\|]| (-525))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-669))) 75) (((-112) $ (|[\|\|]| (-311))) 79) (((-112) $ (|[\|\|]| (-1034))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-968))) 91) (((-112) $ (|[\|\|]| (-1070))) 95) (((-112) $ (|[\|\|]| (-1087))) 99) (((-112) $ (|[\|\|]| (-1093))) 103) (((-112) $ (|[\|\|]| (-624))) 107) (((-112) $ (|[\|\|]| (-1163))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-478))) 123) (((-112) $ (|[\|\|]| (-591))) 127) (((-112) $ (|[\|\|]| (-506))) 131) (((-112) $ (|[\|\|]| (-1155))) 135) (((-112) $ (|[\|\|]| (-564))) 139)) (-1648 (((-112) $ $) NIL)) (-3939 (((-524) $) 20) (((-218) $) 24) (((-674) $) 28) (((-1272) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1112) $) 44) (((-96) $) 48) (((-679) $) 52) (((-517) $) 56) (((-1063) $) 60) (((-1273) $) 64) (((-525) $) 68) (((-154) $) 72) (((-669) $) 76) (((-311) $) 80) (((-1034) $) 84) (((-180) $) 88) (((-968) $) 92) (((-1070) $) 96) (((-1087) $) 100) (((-1093) $) 104) (((-624) $) 108) (((-1163) $) 112) (((-156) $) 116) (((-137) $) 120) (((-478) $) 124) (((-591) $) 128) (((-506) $) 132) (((-1155) $) 136) (((-564) $) 140)) (-2872 (((-112) $ $) NIL)))
+(((-1132) (-1134)) (T -1132))
+NIL
+(-1134)
+((-1947 (((-642 (-1178)) (-1155)) 9)))
+(((-1133) (-10 -7 (-15 -1947 ((-642 (-1178)) (-1155))))) (T -1133))
+((-1947 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-642 (-1178))) (-5 *1 (-1133)))))
+(-10 -7 (-15 -1947 ((-642 (-1178)) (-1155))))
+((-2907 (((-112) $ $) 7)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-1178)) 17) (((-1178) $) 16)) (-2305 (((-112) $ (|[\|\|]| (-524))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-674))) 77) (((-112) $ (|[\|\|]| (-1272))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1112))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-679))) 65) (((-112) $ (|[\|\|]| (-517))) 63) (((-112) $ (|[\|\|]| (-1063))) 61) (((-112) $ (|[\|\|]| (-1273))) 59) (((-112) $ (|[\|\|]| (-525))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-669))) 53) (((-112) $ (|[\|\|]| (-311))) 51) (((-112) $ (|[\|\|]| (-1034))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-968))) 45) (((-112) $ (|[\|\|]| (-1070))) 43) (((-112) $ (|[\|\|]| (-1087))) 41) (((-112) $ (|[\|\|]| (-1093))) 39) (((-112) $ (|[\|\|]| (-624))) 37) (((-112) $ (|[\|\|]| (-1163))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-478))) 29) (((-112) $ (|[\|\|]| (-591))) 27) (((-112) $ (|[\|\|]| (-506))) 25) (((-112) $ (|[\|\|]| (-1155))) 23) (((-112) $ (|[\|\|]| (-564))) 21)) (-1648 (((-112) $ $) 9)) (-3939 (((-524) $) 80) (((-218) $) 78) (((-674) $) 76) (((-1272) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1112) $) 68) (((-96) $) 66) (((-679) $) 64) (((-517) $) 62) (((-1063) $) 60) (((-1273) $) 58) (((-525) $) 56) (((-154) $) 54) (((-669) $) 52) (((-311) $) 50) (((-1034) $) 48) (((-180) $) 46) (((-968) $) 44) (((-1070) $) 42) (((-1087) $) 40) (((-1093) $) 38) (((-624) $) 36) (((-1163) $) 34) (((-156) $) 32) (((-137) $) 30) (((-478) $) 28) (((-591) $) 26) (((-506) $) 24) (((-1155) $) 22) (((-564) $) 20)) (-2872 (((-112) $ $) 6)))
+(((-1134) (-140)) (T -1134))
+((-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-524)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-218)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-674)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1272))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1272)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-138)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-133)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1112)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-96)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-679))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-679)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-517)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1063)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1273))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1273)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-525)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-154)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-669)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-311)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1034))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1034)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-180)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-968))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-968)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1070)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1087)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1093)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-624)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1163)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-156)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-137)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-478)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-591)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-506)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1155)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-564)))))
+(-13 (-1080) (-1257) (-10 -8 (-15 -2305 ((-112) $ (|[\|\|]| (-524)))) (-15 -3939 ((-524) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-218)))) (-15 -3939 ((-218) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-674)))) (-15 -3939 ((-674) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-1272)))) (-15 -3939 ((-1272) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-138)))) (-15 -3939 ((-138) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-133)))) (-15 -3939 ((-133) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-1112)))) (-15 -3939 ((-1112) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-96)))) (-15 -3939 ((-96) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-679)))) (-15 -3939 ((-679) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-517)))) (-15 -3939 ((-517) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-1063)))) (-15 -3939 ((-1063) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-1273)))) (-15 -3939 ((-1273) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-525)))) (-15 -3939 ((-525) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-154)))) (-15 -3939 ((-154) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-669)))) (-15 -3939 ((-669) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-311)))) (-15 -3939 ((-311) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-1034)))) (-15 -3939 ((-1034) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-180)))) (-15 -3939 ((-180) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-968)))) (-15 -3939 ((-968) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-1070)))) (-15 -3939 ((-1070) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-1087)))) (-15 -3939 ((-1087) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-1093)))) (-15 -3939 ((-1093) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-624)))) (-15 -3939 ((-624) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-1163)))) (-15 -3939 ((-1163) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-156)))) (-15 -3939 ((-156) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-137)))) (-15 -3939 ((-137) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-478)))) (-15 -3939 ((-478) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-591)))) (-15 -3939 ((-591) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-506)))) (-15 -3939 ((-506) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-1155)))) (-15 -3939 ((-1155) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-564)))) (-15 -3939 ((-564) $))))
+(((-93) . T) ((-102) . T) ((-614 #0=(-1178)) . T) ((-611 (-860)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1097) . T) ((-1080) . T) ((-1257) . T))
+((-2399 (((-1267) (-642 (-860))) 23) (((-1267) (-860)) 22)) (-1492 (((-1267) (-642 (-860))) 21) (((-1267) (-860)) 20)) (-3019 (((-1267) (-642 (-860))) 19) (((-1267) (-860)) 11) (((-1267) (-1155) (-860)) 17)))
+(((-1135) (-10 -7 (-15 -3019 ((-1267) (-1155) (-860))) (-15 -3019 ((-1267) (-860))) (-15 -1492 ((-1267) (-860))) (-15 -2399 ((-1267) (-860))) (-15 -3019 ((-1267) (-642 (-860)))) (-15 -1492 ((-1267) (-642 (-860)))) (-15 -2399 ((-1267) (-642 (-860)))))) (T -1135))
+((-2399 (*1 *2 *3) (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))) (-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135)))))
+(-10 -7 (-15 -3019 ((-1267) (-1155) (-860))) (-15 -3019 ((-1267) (-860))) (-15 -1492 ((-1267) (-860))) (-15 -2399 ((-1267) (-860))) (-15 -3019 ((-1267) (-642 (-860)))) (-15 -1492 ((-1267) (-642 (-860)))) (-15 -2399 ((-1267) (-642 (-860)))))
+((-2056 (($ $ $) 10)) (-1771 (($ $) 9)) (-3657 (($ $ $) 13)) (-2996 (($ $ $) 15)) (-3718 (($ $ $) 12)) (-1484 (($ $ $) 14)) (-2283 (($ $) 17)) (-2372 (($ $) 16)) (-1381 (($ $) 6)) (-4035 (($ $ $) 11) (($ $) 7)) (-2003 (($ $ $) 8)))
+(((-1136) (-140)) (T -1136))
+((-2283 (*1 *1 *1) (-4 *1 (-1136))) (-2372 (*1 *1 *1) (-4 *1 (-1136))) (-2996 (*1 *1 *1 *1) (-4 *1 (-1136))) (-1484 (*1 *1 *1 *1) (-4 *1 (-1136))) (-3657 (*1 *1 *1 *1) (-4 *1 (-1136))) (-3718 (*1 *1 *1 *1) (-4 *1 (-1136))) (-4035 (*1 *1 *1 *1) (-4 *1 (-1136))) (-2056 (*1 *1 *1 *1) (-4 *1 (-1136))) (-1771 (*1 *1 *1) (-4 *1 (-1136))) (-2003 (*1 *1 *1 *1) (-4 *1 (-1136))) (-4035 (*1 *1 *1) (-4 *1 (-1136))) (-1381 (*1 *1 *1) (-4 *1 (-1136))))
+(-13 (-10 -8 (-15 -1381 ($ $)) (-15 -4035 ($ $)) (-15 -2003 ($ $ $)) (-15 -1771 ($ $)) (-15 -2056 ($ $ $)) (-15 -4035 ($ $ $)) (-15 -3718 ($ $ $)) (-15 -3657 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -2996 ($ $ $)) (-15 -2372 ($ $)) (-15 -2283 ($ $))))
+((-2907 (((-112) $ $) 44)) (-2085 ((|#1| $) 17)) (-3139 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2956 (((-112) $) 19)) (-3674 (($ $ |#1|) 30)) (-3652 (($ $ (-112)) 32)) (-2451 (($ $) 33)) (-1637 (($ $ |#2|) 31)) (-3315 (((-1155) $) NIL)) (-1872 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-4033 (((-1117) $) NIL)) (-3719 (((-112) $) 16)) (-2972 (($) 13)) (-3901 (($ $) 29)) (-2337 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3530 |#2|))) 23) (((-642 $) (-642 (-2 (|:| |val| |#1|) (|:| -3530 |#2|)))) 26) (((-642 $) |#1| (-642 |#2|)) 28)) (-2839 ((|#2| $) 18)) (-2327 (((-860) $) 53)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 42)))
+(((-1137 |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -2972 ($)) (-15 -3719 ((-112) $)) (-15 -2085 (|#1| $)) (-15 -2839 (|#2| $)) (-15 -2956 ((-112) $)) (-15 -2337 ($ |#1| |#2| (-112))) (-15 -2337 ($ |#1| |#2|)) (-15 -2337 ($ (-2 (|:| |val| |#1|) (|:| -3530 |#2|)))) (-15 -2337 ((-642 $) (-642 (-2 (|:| |val| |#1|) (|:| -3530 |#2|))))) (-15 -2337 ((-642 $) |#1| (-642 |#2|))) (-15 -3901 ($ $)) (-15 -3674 ($ $ |#1|)) (-15 -1637 ($ $ |#2|)) (-15 -3652 ($ $ (-112))) (-15 -2451 ($ $)) (-15 -1872 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3139 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1097) (-34)) (-13 (-1097) (-34))) (T -1137))
+((-2972 (*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))) (-2085 (*1 *2 *1) (-12 (-4 *2 (-13 (-1097) (-34))) (-5 *1 (-1137 *2 *3)) (-4 *3 (-13 (-1097) (-34))))) (-2839 (*1 *2 *1) (-12 (-4 *2 (-13 (-1097) (-34))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-13 (-1097) (-34))))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))) (-2337 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-2337 (*1 *1 *2 *3) (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3530 *4))) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1137 *3 *4)))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-642 (-2 (|:| |val| *4) (|:| -3530 *5)))) (-4 *4 (-13 (-1097) (-34))) (-4 *5 (-13 (-1097) (-34))) (-5 *2 (-642 (-1137 *4 *5))) (-5 *1 (-1137 *4 *5)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *4 (-642 *5)) (-4 *5 (-13 (-1097) (-34))) (-5 *2 (-642 (-1137 *3 *5))) (-5 *1 (-1137 *3 *5)) (-4 *3 (-13 (-1097) (-34))))) (-3901 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-3674 (*1 *1 *1 *2) (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-1637 (*1 *1 *1 *2) (-12 (-5 *1 (-1137 *3 *2)) (-4 *3 (-13 (-1097) (-34))) (-4 *2 (-13 (-1097) (-34))))) (-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))) (-2451 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-1872 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1097) (-34))) (-4 *6 (-13 (-1097) (-34))) (-5 *2 (-112)) (-5 *1 (-1137 *5 *6)))) (-3139 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1097) (-34))) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-13 (-1097) (-34))))))
+(-13 (-1097) (-10 -8 (-15 -2972 ($)) (-15 -3719 ((-112) $)) (-15 -2085 (|#1| $)) (-15 -2839 (|#2| $)) (-15 -2956 ((-112) $)) (-15 -2337 ($ |#1| |#2| (-112))) (-15 -2337 ($ |#1| |#2|)) (-15 -2337 ($ (-2 (|:| |val| |#1|) (|:| -3530 |#2|)))) (-15 -2337 ((-642 $) (-642 (-2 (|:| |val| |#1|) (|:| -3530 |#2|))))) (-15 -2337 ((-642 $) |#1| (-642 |#2|))) (-15 -3901 ($ $)) (-15 -3674 ($ $ |#1|)) (-15 -1637 ($ $ |#2|)) (-15 -3652 ($ $ (-112))) (-15 -2451 ($ $)) (-15 -1872 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3139 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2907 (((-112) $ $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-2085 (((-1137 |#1| |#2|) $) 27)) (-1586 (($ $) 91)) (-4135 (((-112) (-1137 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1946 (($ $ $ (-642 (-1137 |#1| |#2|))) 108) (($ $ $ (-642 (-1137 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3697 (((-112) $ (-769)) NIL)) (-3070 (((-1137 |#1| |#2|) $ (-1137 |#1| |#2|)) 46 (|has| $ (-6 -4411)))) (-3877 (((-1137 |#1| |#2|) $ "value" (-1137 |#1| |#2|)) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 44 (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-2086 (((-642 (-2 (|:| |val| |#1|) (|:| -3530 |#2|))) $) 95)) (-2265 (($ (-1137 |#1| |#2|) $) 42)) (-2490 (($ (-1137 |#1| |#2|) $) 34)) (-2936 (((-642 (-1137 |#1| |#2|)) $) NIL (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) 54)) (-2643 (((-112) (-1137 |#1| |#2|) $) 97)) (-1847 (((-112) $ $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 (-1137 |#1| |#2|)) $) 58 (|has| $ (-6 -4410)))) (-2776 (((-112) (-1137 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-1137 |#1| |#2|) (-1097))))) (-2613 (($ (-1 (-1137 |#1| |#2|) (-1137 |#1| |#2|)) $) 50 (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-1137 |#1| |#2|) (-1137 |#1| |#2|)) $) 49)) (-3576 (((-112) $ (-769)) NIL)) (-2628 (((-642 (-1137 |#1| |#2|)) $) 56)) (-2376 (((-112) $) 45)) (-3315 (((-1155) $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-4033 (((-1117) $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-1755 (((-3 $ "failed") $) 89)) (-2121 (((-112) (-1 (-112) (-1137 |#1| |#2|)) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-1137 |#1| |#2|)))) NIL (-12 (|has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|))) (|has| (-1137 |#1| |#2|) (-1097)))) (($ $ (-294 (-1137 |#1| |#2|))) NIL (-12 (|has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|))) (|has| (-1137 |#1| |#2|) (-1097)))) (($ $ (-1137 |#1| |#2|) (-1137 |#1| |#2|)) NIL (-12 (|has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|))) (|has| (-1137 |#1| |#2|) (-1097)))) (($ $ (-642 (-1137 |#1| |#2|)) (-642 (-1137 |#1| |#2|))) NIL (-12 (|has| (-1137 |#1| |#2|) (-309 (-1137 |#1| |#2|))) (|has| (-1137 |#1| |#2|) (-1097))))) (-4245 (((-112) $ $) 53)) (-3719 (((-112) $) 24)) (-2972 (($) 26)) (-4368 (((-1137 |#1| |#2|) $ "value") NIL)) (-2137 (((-564) $ $) NIL)) (-1392 (((-112) $) 47)) (-4043 (((-769) (-1 (-112) (-1137 |#1| |#2|)) $) NIL (|has| $ (-6 -4410))) (((-769) (-1137 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-1137 |#1| |#2|) (-1097))))) (-3901 (($ $) 52)) (-2337 (($ (-1137 |#1| |#2|)) 10) (($ |#1| |#2| (-642 $)) 13) (($ |#1| |#2| (-642 (-1137 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-642 |#2|)) 18)) (-2061 (((-642 |#2|) $) 96)) (-2327 (((-860) $) 87 (|has| (-1137 |#1| |#2|) (-611 (-860))))) (-1512 (((-642 $) $) 31)) (-3820 (((-112) $ $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-1648 (((-112) $ $) NIL (|has| (-1137 |#1| |#2|) (-1097)))) (-2710 (((-112) (-1 (-112) (-1137 |#1| |#2|)) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 70 (|has| (-1137 |#1| |#2|) (-1097)))) (-2127 (((-769) $) 64 (|has| $ (-6 -4410)))))
+(((-1138 |#1| |#2|) (-13 (-1008 (-1137 |#1| |#2|)) (-10 -8 (-6 -4411) (-6 -4410) (-15 -1755 ((-3 $ "failed") $)) (-15 -1586 ($ $)) (-15 -2337 ($ (-1137 |#1| |#2|))) (-15 -2337 ($ |#1| |#2| (-642 $))) (-15 -2337 ($ |#1| |#2| (-642 (-1137 |#1| |#2|)))) (-15 -2337 ($ |#1| |#2| |#1| (-642 |#2|))) (-15 -2061 ((-642 |#2|) $)) (-15 -2086 ((-642 (-2 (|:| |val| |#1|) (|:| -3530 |#2|))) $)) (-15 -2643 ((-112) (-1137 |#1| |#2|) $)) (-15 -4135 ((-112) (-1137 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2490 ($ (-1137 |#1| |#2|) $)) (-15 -2265 ($ (-1137 |#1| |#2|) $)) (-15 -1946 ($ $ $ (-642 (-1137 |#1| |#2|)))) (-15 -1946 ($ $ $ (-642 (-1137 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1097) (-34)) (-13 (-1097) (-34))) (T -1138))
+((-1755 (*1 *1 *1) (|partial| -12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-1586 (*1 *1 *1) (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))) (-2337 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-642 (-1138 *2 *3))) (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))))) (-2337 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-642 (-1137 *2 *3))) (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34))) (-5 *1 (-1138 *2 *3)))) (-2337 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-642 *3)) (-4 *3 (-13 (-1097) (-34))) (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34))))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-642 *4)) (-5 *1 (-1138 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))) (-2086 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4)))) (-5 *1 (-1138 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))) (-2643 (*1 *2 *3 *1) (-12 (-5 *3 (-1137 *4 *5)) (-4 *4 (-13 (-1097) (-34))) (-4 *5 (-13 (-1097) (-34))) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5)))) (-4135 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1137 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1097) (-34))) (-4 *6 (-13 (-1097) (-34))) (-5 *2 (-112)) (-5 *1 (-1138 *5 *6)))) (-2490 (*1 *1 *2 *1) (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))) (-1946 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-642 (-1137 *3 *4))) (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))) (-1946 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-1137 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1097) (-34))) (-4 *5 (-13 (-1097) (-34))) (-5 *1 (-1138 *4 *5)))))
+(-13 (-1008 (-1137 |#1| |#2|)) (-10 -8 (-6 -4411) (-6 -4410) (-15 -1755 ((-3 $ "failed") $)) (-15 -1586 ($ $)) (-15 -2337 ($ (-1137 |#1| |#2|))) (-15 -2337 ($ |#1| |#2| (-642 $))) (-15 -2337 ($ |#1| |#2| (-642 (-1137 |#1| |#2|)))) (-15 -2337 ($ |#1| |#2| |#1| (-642 |#2|))) (-15 -2061 ((-642 |#2|) $)) (-15 -2086 ((-642 (-2 (|:| |val| |#1|) (|:| -3530 |#2|))) $)) (-15 -2643 ((-112) (-1137 |#1| |#2|) $)) (-15 -4135 ((-112) (-1137 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2490 ($ (-1137 |#1| |#2|) $)) (-15 -2265 ($ (-1137 |#1| |#2|) $)) (-15 -1946 ($ $ $ (-642 (-1137 |#1| |#2|)))) (-15 -1946 ($ $ $ (-642 (-1137 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3673 (($ $) NIL)) (-3815 ((|#2| $) NIL)) (-4129 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-3003 (($ (-687 |#2|)) 56)) (-3873 (((-112) $) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-2540 (($ |#2|) 14)) (-1976 (($) NIL T CONST)) (-4239 (($ $) 69 (|has| |#2| (-307)))) (-2600 (((-240 |#1| |#2|) $ (-564)) 42)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) ((|#2| $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) 83)) (-2414 (((-769) $) 71 (|has| |#2| (-556)))) (-2551 ((|#2| $ (-564) (-564)) NIL)) (-2936 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3953 (((-112) $) NIL)) (-2054 (((-769) $) 73 (|has| |#2| (-556)))) (-4286 (((-642 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-556)))) (-2567 (((-769) $) NIL)) (-4227 (($ |#2|) 25)) (-2579 (((-769) $) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-3422 ((|#2| $) 67 (|has| |#2| (-6 (-4412 "*"))))) (-3491 (((-564) $) NIL)) (-3865 (((-564) $) NIL)) (-3234 (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3054 (((-564) $) NIL)) (-2977 (((-564) $) NIL)) (-2244 (($ (-642 (-642 |#2|))) 37)) (-2613 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1624 (((-642 (-642 |#2|)) $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-4168 (((-3 $ "failed") $) 80 (|has| |#2| (-363)))) (-4033 (((-1117) $) NIL)) (-2896 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-2121 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) NIL)) (-3175 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1921 ((|#2| $) NIL)) (-3548 (($ (-642 |#2|)) 50)) (-2877 (((-112) $) NIL)) (-1925 (((-240 |#1| |#2|) $) NIL)) (-1504 ((|#2| $) 65 (|has| |#2| (-6 (-4412 "*"))))) (-4043 (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3901 (($ $) NIL)) (-1314 (((-536) $) 89 (|has| |#2| (-612 (-536))))) (-3022 (((-240 |#1| |#2|) $ (-564)) 44)) (-2327 (((-860) $) 47) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1036 (-407 (-564))))) (($ |#2|) NIL) (((-687 |#2|) $) 52)) (-2756 (((-769)) 23 T CONST)) (-1648 (((-112) $ $) NIL)) (-2710 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-1332 (((-112) $) NIL)) (-2312 (($) 16 T CONST)) (-2322 (($) 21 T CONST)) (-4044 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-769)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) 63) (($ $ (-564)) 82 (|has| |#2| (-363)))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1139 |#1| |#2|) (-13 (-1120 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-687 |#2|)) (-10 -8 (-15 -4227 ($ |#2|)) (-15 -3673 ($ $)) (-15 -3003 ($ (-687 |#2|))) (IF (|has| |#2| (-6 (-4412 "*"))) (-6 -4399) |%noBranch|) (IF (|has| |#2| (-6 (-4412 "*"))) (IF (|has| |#2| (-6 -4407)) (-6 -4407) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-769) (-1047)) (T -1139))
+((-4227 (*1 *1 *2) (-12 (-5 *1 (-1139 *3 *2)) (-14 *3 (-769)) (-4 *2 (-1047)))) (-3673 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-14 *2 (-769)) (-4 *3 (-1047)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-687 *4)) (-4 *4 (-1047)) (-5 *1 (-1139 *3 *4)) (-14 *3 (-769)))))
+(-13 (-1120 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-687 |#2|)) (-10 -8 (-15 -4227 ($ |#2|)) (-15 -3673 ($ $)) (-15 -3003 ($ (-687 |#2|))) (IF (|has| |#2| (-6 (-4412 "*"))) (-6 -4399) |%noBranch|) (IF (|has| |#2| (-6 (-4412 "*"))) (IF (|has| |#2| (-6 -4407)) (-6 -4407) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
+((-3235 (($ $) 19)) (-4192 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-2735 (((-112) $ $) 24)) (-1436 (($ $) 17)) (-4368 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1229 (-564))) NIL) (($ $ $) 31)) (-2327 (($ (-144)) 29) (((-860) $) NIL)))
+(((-1140 |#1|) (-10 -8 (-15 -2327 ((-860) |#1|)) (-15 -4368 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1| (-141))) (-15 -4192 (|#1| |#1| (-144))) (-15 -2327 (|#1| (-144))) (-15 -2735 ((-112) |#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -1436 (|#1| |#1|)) (-15 -4368 (|#1| |#1| (-1229 (-564)))) (-15 -4368 ((-144) |#1| (-564))) (-15 -4368 ((-144) |#1| (-564) (-144)))) (-1141)) (T -1140))
+NIL
+(-10 -8 (-15 -2327 ((-860) |#1|)) (-15 -4368 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1| (-141))) (-15 -4192 (|#1| |#1| (-144))) (-15 -2327 (|#1| (-144))) (-15 -2735 ((-112) |#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -1436 (|#1| |#1|)) (-15 -4368 (|#1| |#1| (-1229 (-564)))) (-15 -4368 ((-144) |#1| (-564))) (-15 -4368 ((-144) |#1| (-564) (-144))))
+((-2907 (((-112) $ $) 19 (|has| (-144) (-1097)))) (-2817 (($ $) 121)) (-3235 (($ $) 122)) (-4192 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-1765 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-1990 (((-112) $ $) 119)) (-1972 (((-112) $ $ (-564)) 118)) (-1414 (((-642 $) $ (-144)) 111) (((-642 $) $ (-141)) 110)) (-1757 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-848)))) (-2239 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| (-144) (-848)) (|has| $ (-6 -4411))))) (-2383 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-848)))) (-3697 (((-112) $ (-769)) 8)) (-3877 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4411))) (((-144) $ (-1229 (-564)) (-144)) 59 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-1564 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2087 (($ $) 91 (|has| $ (-6 -4411)))) (-3115 (($ $) 101)) (-2663 (($ $ (-1229 (-564)) $) 115)) (-2595 (($ $) 79 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ (-144) $) 78 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4410)))) (-1320 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4410)))) (-2625 (((-144) $ (-564) (-144)) 54 (|has| $ (-6 -4411)))) (-2551 (((-144) $ (-564)) 52)) (-2735 (((-112) $ $) 120)) (-3979 (((-564) (-1 (-112) (-144)) $) 98) (((-564) (-144) $) 97 (|has| (-144) (-1097))) (((-564) (-144) $ (-564)) 96 (|has| (-144) (-1097))) (((-564) $ $ (-564)) 114) (((-564) (-141) $ (-564)) 113)) (-2936 (((-642 (-144)) $) 31 (|has| $ (-6 -4410)))) (-4227 (($ (-769) (-144)) 70)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 44 (|has| (-564) (-848)))) (-2755 (($ $ $) 88 (|has| (-144) (-848)))) (-2740 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-848)))) (-3234 (((-642 (-144)) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 45 (|has| (-564) (-848)))) (-1520 (($ $ $) 87 (|has| (-144) (-848)))) (-3998 (((-112) $ $ (-144)) 116)) (-2072 (((-769) $ $ (-144)) 117)) (-2613 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2226 (($ $) 123)) (-1436 (($ $) 124)) (-3576 (((-112) $ (-769)) 10)) (-1574 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3315 (((-1155) $) 22 (|has| (-144) (-1097)))) (-4238 (($ (-144) $ (-564)) 61) (($ $ $ (-564)) 60)) (-3997 (((-642 (-564)) $) 47)) (-4145 (((-112) (-564) $) 48)) (-4033 (((-1117) $) 21 (|has| (-144) (-1097)))) (-2557 (((-144) $) 43 (|has| (-564) (-848)))) (-3254 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2696 (($ $ (-144)) 42 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-144)))) 27 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-294 (-144))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-642 (-144)) (-642 (-144))) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2724 (((-642 (-144)) $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 (((-144) $ (-564) (-144)) 51) (((-144) $ (-564)) 50) (($ $ (-1229 (-564))) 64) (($ $ $) 103)) (-2073 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4043 (((-769) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4410))) (((-769) (-144) $) 29 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-2568 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3901 (($ $) 13)) (-1314 (((-536) $) 80 (|has| (-144) (-612 (-536))))) (-2337 (($ (-642 (-144))) 71)) (-3651 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2327 (($ (-144)) 112) (((-860) $) 18 (|has| (-144) (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| (-144) (-1097)))) (-2710 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) 85 (|has| (-144) (-848)))) (-2908 (((-112) $ $) 84 (|has| (-144) (-848)))) (-2872 (((-112) $ $) 20 (|has| (-144) (-1097)))) (-2922 (((-112) $ $) 86 (|has| (-144) (-848)))) (-2897 (((-112) $ $) 83 (|has| (-144) (-848)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-1141) (-140)) (T -1141))
+((-1436 (*1 *1 *1) (-4 *1 (-1141))) (-2226 (*1 *1 *1) (-4 *1 (-1141))) (-3235 (*1 *1 *1) (-4 *1 (-1141))) (-2817 (*1 *1 *1) (-4 *1 (-1141))) (-2735 (*1 *2 *1 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-112)))) (-1990 (*1 *2 *1 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-112)))) (-1972 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-564)) (-5 *2 (-112)))) (-2072 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-144)) (-5 *2 (-769)))) (-3998 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-144)) (-5 *2 (-112)))) (-2663 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1229 (-564))))) (-3979 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-564)))) (-3979 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-564)) (-5 *3 (-141)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1141)))) (-1414 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-642 *1)) (-4 *1 (-1141)))) (-1414 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-642 *1)) (-4 *1 (-1141)))) (-4192 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144)))) (-4192 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141)))) (-1574 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144)))) (-1574 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141)))) (-1564 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144)))) (-1564 (*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141)))) (-4368 (*1 *1 *1 *1) (-4 *1 (-1141))))
+(-13 (-19 (-144)) (-10 -8 (-15 -1436 ($ $)) (-15 -2226 ($ $)) (-15 -3235 ($ $)) (-15 -2817 ($ $)) (-15 -2735 ((-112) $ $)) (-15 -1990 ((-112) $ $)) (-15 -1972 ((-112) $ $ (-564))) (-15 -2072 ((-769) $ $ (-144))) (-15 -3998 ((-112) $ $ (-144))) (-15 -2663 ($ $ (-1229 (-564)) $)) (-15 -3979 ((-564) $ $ (-564))) (-15 -3979 ((-564) (-141) $ (-564))) (-15 -2327 ($ (-144))) (-15 -1414 ((-642 $) $ (-144))) (-15 -1414 ((-642 $) $ (-141))) (-15 -4192 ($ $ (-144))) (-15 -4192 ($ $ (-141))) (-15 -1574 ($ $ (-144))) (-15 -1574 ($ $ (-141))) (-15 -1564 ($ $ (-144))) (-15 -1564 ($ $ (-141))) (-15 -4368 ($ $ $))))
+(((-34) . T) ((-102) -2706 (|has| (-144) (-1097)) (|has| (-144) (-848))) ((-611 (-860)) -2706 (|has| (-144) (-1097)) (|has| (-144) (-848)) (|has| (-144) (-611 (-860)))) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))) ((-649 #0#) . T) ((-19 #0#) . T) ((-848) |has| (-144) (-848)) ((-1097) -2706 (|has| (-144) (-1097)) (|has| (-144) (-848))) ((-1212) . T))
+((-3666 (((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) (-769)) 113)) (-3122 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769)) 61)) (-1596 (((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-769)) 98)) (-3597 (((-769) (-642 |#4|) (-642 |#5|)) 30)) (-2134 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769)) 63) (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769) (-112)) 65)) (-3412 (((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112)) 85)) (-1314 (((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) 90)) (-2789 (((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|) 60)) (-3549 (((-769) (-642 |#4|) (-642 |#5|)) 21)))
+(((-1142 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3549 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -3597 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -2789 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|)) (-15 -3122 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769))) (-15 -3122 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|)) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769) (-112))) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769))) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|)) (-15 -3412 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3412 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3666 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) (-769))) (-15 -1314 ((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)))) (-15 -1596 ((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-769)))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|) (-1106 |#1| |#2| |#3| |#4|)) (T -1142))
+((-1596 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -3530 *9)))) (-5 *4 (-769)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-1267)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -3530 *8))) (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1106 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1155)) (-5 *1 (-1142 *4 *5 *6 *7 *8)))) (-3666 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-642 *11)) (|:| |todo| (-642 (-2 (|:| |val| *3) (|:| -3530 *11)))))) (-5 *6 (-769)) (-5 *2 (-642 (-2 (|:| |val| (-642 *10)) (|:| -3530 *11)))) (-5 *3 (-642 *10)) (-5 *4 (-642 *11)) (-4 *10 (-1062 *7 *8 *9)) (-4 *11 (-1106 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-791)) (-4 *9 (-848)) (-5 *1 (-1142 *7 *8 *9 *10 *11)))) (-3412 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))) (-3412 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))) (-2134 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3)))) (-2134 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1142 *6 *7 *8 *3 *4)) (-4 *4 (-1106 *6 *7 *8 *3)))) (-2134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-769)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-791)) (-4 *9 (-848)) (-4 *3 (-1062 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1142 *7 *8 *9 *3 *4)) (-4 *4 (-1106 *7 *8 *9 *3)))) (-3122 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3)))) (-3122 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *3 (-1062 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1142 *6 *7 *8 *3 *4)) (-4 *4 (-1106 *6 *7 *8 *3)))) (-2789 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-642 *4)) (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4)))))) (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3549 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -3597 ((-769) (-642 |#4|) (-642 |#5|))) (-15 -2789 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|)) (-15 -3122 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769))) (-15 -3122 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|)) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769) (-112))) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5| (-769))) (-15 -2134 ((-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) |#4| |#5|)) (-15 -3412 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112))) (-15 -3412 ((-642 |#5|) (-642 |#4|) (-642 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3666 ((-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-642 |#4|) (-642 |#5|) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-2 (|:| |done| (-642 |#5|)) (|:| |todo| (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))))) (-769))) (-15 -1314 ((-1155) (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|)))) (-15 -1596 ((-1267) (-642 (-2 (|:| |val| (-642 |#4|)) (|:| -3530 |#5|))) (-769))))
+((-2907 (((-112) $ $) NIL)) (-3126 (((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 |#4|)))) (-642 |#4|)) NIL)) (-4208 (((-642 $) (-642 |#4|)) 122) (((-642 $) (-642 |#4|) (-112)) 123) (((-642 $) (-642 |#4|) (-112) (-112)) 121) (((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112)) 124)) (-3802 (((-642 |#3|) $) NIL)) (-3317 (((-112) $) NIL)) (-4293 (((-112) $) NIL (|has| |#1| (-556)))) (-3831 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3923 ((|#4| |#4| $) NIL)) (-4316 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| $) 95)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-1700 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 73)) (-1976 (($) NIL T CONST)) (-1496 (((-112) $) 29 (|has| |#1| (-556)))) (-4375 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2888 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2850 (((-112) $) NIL (|has| |#1| (-556)))) (-1975 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2627 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) NIL)) (-3027 (($ (-642 |#4|)) NIL)) (-2570 (((-3 $ "failed") $) 45)) (-1493 ((|#4| |#4| $) 76)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2490 (($ |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 89 (|has| |#1| (-556)))) (-1597 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1821 ((|#4| |#4| $) NIL)) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1738 (((-2 (|:| -1639 (-642 |#4|)) (|:| -2241 (-642 |#4|))) $) NIL)) (-2561 (((-112) |#4| $) NIL)) (-3204 (((-112) |#4| $) NIL)) (-3936 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2246 (((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112)) 137)) (-2936 (((-642 |#4|) $) 18 (|has| $ (-6 -4410)))) (-2846 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3290 ((|#3| $) 38)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#4|) $) 19 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2613 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) 23)) (-3370 (((-642 |#3|) $) NIL)) (-4120 (((-112) |#3| $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-4162 (((-3 |#4| (-642 $)) |#4| |#4| $) NIL)) (-2899 (((-642 (-2 (|:| |val| |#4|) (|:| -3530 $))) |#4| |#4| $) 115)) (-2514 (((-3 |#4| "failed") $) 42)) (-2340 (((-642 $) |#4| $) 100)) (-3902 (((-3 (-112) (-642 $)) |#4| $) NIL)) (-2685 (((-642 (-2 (|:| |val| (-112)) (|:| -3530 $))) |#4| $) 110) (((-112) |#4| $) 63)) (-2452 (((-642 $) |#4| $) 119) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) 120) (((-642 $) |#4| (-642 $)) NIL)) (-1299 (((-642 $) (-642 |#4|) (-112) (-112) (-112)) 132)) (-4193 (($ |#4| $) 86) (($ (-642 |#4|) $) 87) (((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 85)) (-2743 (((-642 |#4|) $) NIL)) (-3350 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1415 ((|#4| |#4| $) NIL)) (-3819 (((-112) $ $) NIL)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-2262 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1372 ((|#4| |#4| $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 (((-3 |#4| "failed") $) 40)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3724 (((-3 $ "failed") $ |#4|) 58)) (-3804 (($ $ |#4|) NIL) (((-642 $) |#4| $) 102) (((-642 $) |#4| (-642 $)) NIL) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) 97)) (-2121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 17)) (-2972 (($) 14)) (-2775 (((-769) $) NIL)) (-4043 (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) 13)) (-1314 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2337 (($ (-642 |#4|)) 22)) (-3153 (($ $ |#3|) 52)) (-3696 (($ $ |#3|) 54)) (-3114 (($ $) NIL)) (-1749 (($ $ |#3|) NIL)) (-2327 (((-860) $) 35) (((-642 |#4|) $) 46)) (-4195 (((-769) $) NIL (|has| |#3| (-368)))) (-1648 (((-112) $ $) NIL)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3497 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) NIL)) (-4325 (((-642 $) |#4| $) 64) (((-642 $) |#4| (-642 $)) NIL) (((-642 $) (-642 |#4|) $) NIL) (((-642 $) (-642 |#4|) (-642 $)) NIL)) (-2710 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-2240 (((-642 |#3|) $) NIL)) (-3503 (((-112) |#4| $) NIL)) (-1362 (((-112) |#3| $) 72)) (-2872 (((-112) $ $) NIL)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1143 |#1| |#2| |#3| |#4|) (-13 (-1106 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4193 ((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4208 ((-642 $) (-642 |#4|) (-112) (-112))) (-15 -4208 ((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112))) (-15 -1299 ((-642 $) (-642 |#4|) (-112) (-112) (-112))) (-15 -2246 ((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112))))) (-452) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -1143))
+((-4193 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1143 *5 *6 *7 *3))) (-5 *1 (-1143 *5 *6 *7 *3)) (-4 *3 (-1062 *5 *6 *7)))) (-4208 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8)))) (-4208 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8)))) (-1299 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8)))) (-2246 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-642 *8)) (|:| |towers| (-642 (-1143 *5 *6 *7 *8))))) (-5 *1 (-1143 *5 *6 *7 *8)) (-5 *3 (-642 *8)))))
+(-13 (-1106 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4193 ((-642 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4208 ((-642 $) (-642 |#4|) (-112) (-112))) (-15 -4208 ((-642 $) (-642 |#4|) (-112) (-112) (-112) (-112))) (-15 -1299 ((-642 $) (-642 |#4|) (-112) (-112) (-112))) (-15 -2246 ((-2 (|:| |val| (-642 |#4|)) (|:| |towers| (-642 $))) (-642 |#4|) (-112) (-112)))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2362 ((|#1| $) 37)) (-3506 (($ (-642 |#1|)) 45)) (-3697 (((-112) $ (-769)) NIL)) (-1976 (($) NIL T CONST)) (-1428 ((|#1| |#1| $) 40)) (-1744 ((|#1| $) 35)) (-2936 (((-642 |#1|) $) 18 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 22)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2730 ((|#1| $) 38)) (-3183 (($ |#1| $) 41)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3388 ((|#1| $) 36)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 32)) (-2972 (($) 43)) (-1930 (((-769) $) 30)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) 27)) (-2327 (((-860) $) 14 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4386 (($ (-642 |#1|)) NIL)) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 17 (|has| |#1| (-1097)))) (-2127 (((-769) $) 31 (|has| $ (-6 -4410)))))
+(((-1144 |#1|) (-13 (-1118 |#1|) (-10 -8 (-15 -3506 ($ (-642 |#1|))))) (-1212)) (T -1144))
+((-3506 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1144 *3)))))
+(-13 (-1118 |#1|) (-10 -8 (-15 -3506 ($ (-642 |#1|)))))
+((-3877 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1229 (-564)) |#2|) 55) ((|#2| $ (-564) |#2|) 52)) (-3297 (((-112) $) 12)) (-2613 (($ (-1 |#2| |#2|) $) 50)) (-2557 ((|#2| $) NIL) (($ $ (-769)) 20)) (-2696 (($ $ |#2|) 51)) (-2531 (((-112) $) 11)) (-4368 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1229 (-564))) 38) ((|#2| $ (-564)) 29) ((|#2| $ (-564) |#2|) NIL)) (-2582 (($ $ $) 58) (($ $ |#2|) NIL)) (-3651 (($ $ $) 40) (($ |#2| $) NIL) (($ (-642 $)) 47) (($ $ |#2|) NIL)))
+(((-1145 |#1| |#2|) (-10 -8 (-15 -3297 ((-112) |#1|)) (-15 -2531 ((-112) |#1|)) (-15 -3877 (|#2| |#1| (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564))) (-15 -2696 (|#1| |#1| |#2|)) (-15 -3651 (|#1| |#1| |#2|)) (-15 -3651 (|#1| (-642 |#1|))) (-15 -4368 (|#1| |#1| (-1229 (-564)))) (-15 -3877 (|#2| |#1| (-1229 (-564)) |#2|)) (-15 -3877 (|#2| |#1| "last" |#2|)) (-15 -3877 (|#1| |#1| "rest" |#1|)) (-15 -3877 (|#2| |#1| "first" |#2|)) (-15 -2582 (|#1| |#1| |#2|)) (-15 -2582 (|#1| |#1| |#1|)) (-15 -4368 (|#2| |#1| "last")) (-15 -4368 (|#1| |#1| "rest")) (-15 -2557 (|#1| |#1| (-769))) (-15 -4368 (|#2| |#1| "first")) (-15 -2557 (|#2| |#1|)) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -4368 (|#2| |#1| "value")) (-15 -2613 (|#1| (-1 |#2| |#2|) |#1|))) (-1146 |#2|) (-1212)) (T -1145))
+NIL
+(-10 -8 (-15 -3297 ((-112) |#1|)) (-15 -2531 ((-112) |#1|)) (-15 -3877 (|#2| |#1| (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564) |#2|)) (-15 -4368 (|#2| |#1| (-564))) (-15 -2696 (|#1| |#1| |#2|)) (-15 -3651 (|#1| |#1| |#2|)) (-15 -3651 (|#1| (-642 |#1|))) (-15 -4368 (|#1| |#1| (-1229 (-564)))) (-15 -3877 (|#2| |#1| (-1229 (-564)) |#2|)) (-15 -3877 (|#2| |#1| "last" |#2|)) (-15 -3877 (|#1| |#1| "rest" |#1|)) (-15 -3877 (|#2| |#1| "first" |#2|)) (-15 -2582 (|#1| |#1| |#2|)) (-15 -2582 (|#1| |#1| |#1|)) (-15 -4368 (|#2| |#1| "last")) (-15 -4368 (|#1| |#1| "rest")) (-15 -2557 (|#1| |#1| (-769))) (-15 -4368 (|#2| |#1| "first")) (-15 -2557 (|#2| |#1|)) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -4368 (|#2| |#1| "value")) (-15 -2613 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2085 ((|#1| $) 49)) (-1807 ((|#1| $) 66)) (-1416 (($ $) 68)) (-1765 (((-1267) $ (-564) (-564)) 98 (|has| $ (-6 -4411)))) (-3256 (($ $ (-564)) 53 (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) 8)) (-3070 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-1505 (($ $ $) 57 (|has| $ (-6 -4411)))) (-2153 ((|#1| $ |#1|) 55 (|has| $ (-6 -4411)))) (-4059 ((|#1| $ |#1|) 59 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4411))) (($ $ "rest" $) 56 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 118 (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) 87 (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4410)))) (-1799 ((|#1| $) 67)) (-1976 (($) 7 T CONST)) (-2570 (($ $) 74) (($ $ (-769)) 72)) (-2595 (($ $) 100 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4410))) (($ |#1| $) 101 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2625 ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 88)) (-3297 (((-112) $) 84)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) 51)) (-1847 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-4227 (($ (-769) |#1|) 109)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 96 (|has| (-564) (-848)))) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 95 (|has| (-564) (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3576 (((-112) $ (-769)) 10)) (-2628 (((-642 |#1|) $) 46)) (-2376 (((-112) $) 50)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2514 ((|#1| $) 71) (($ $ (-769)) 69)) (-4238 (($ $ $ (-564)) 117) (($ |#1| $ (-564)) 116)) (-3997 (((-642 (-564)) $) 93)) (-4145 (((-112) (-564) $) 92)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2557 ((|#1| $) 77) (($ $ (-769)) 75)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2696 (($ $ |#1|) 97 (|has| $ (-6 -4411)))) (-2531 (((-112) $) 85)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) 91)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1229 (-564))) 113) ((|#1| $ (-564)) 90) ((|#1| $ (-564) |#1|) 89)) (-2137 (((-564) $ $) 45)) (-2073 (($ $ (-1229 (-564))) 115) (($ $ (-564)) 114)) (-1392 (((-112) $) 47)) (-1444 (($ $) 63)) (-2960 (($ $) 60 (|has| $ (-6 -4411)))) (-3399 (((-769) $) 64)) (-3848 (($ $) 65)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-1314 (((-536) $) 99 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 108)) (-2582 (($ $ $) 62 (|has| $ (-6 -4411))) (($ $ |#1|) 61 (|has| $ (-6 -4411)))) (-3651 (($ $ $) 79) (($ |#1| $) 78) (($ (-642 $)) 111) (($ $ |#1|) 110)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) 52)) (-3820 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-1146 |#1|) (-140) (-1212)) (T -1146))
+((-2531 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))))
+(-13 (-1250 |t#1|) (-649 |t#1|) (-10 -8 (-15 -2531 ((-112) $)) (-15 -3297 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T) ((-1250 |#1|) . T))
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-1765 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#2| $ |#1| |#2|) NIL)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2248 (((-3 |#2| "failed") |#1| $) NIL)) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2265 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) NIL)) (-2490 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) NIL)) (-2936 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 ((|#1| $) NIL (|has| |#1| (-848)))) (-3234 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3421 ((|#1| $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3393 (((-642 |#1|) $) NIL)) (-2835 (((-112) |#1| $) NIL)) (-2730 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3183 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3997 (((-642 |#1|) $) NIL)) (-4145 (((-112) |#1| $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2557 ((|#2| $) NIL (|has| |#1| (-848)))) (-3254 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL)) (-2696 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2593 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2327 (((-860) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1648 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1147 |#1| |#2| |#3|) (-1188 |#1| |#2|) (-1097) (-1097) |#2|) (T -1147))
+NIL
+(-1188 |#1| |#2|)
+((-2907 (((-112) $ $) 7)) (-3157 (((-3 $ "failed") $) 14)) (-3315 (((-1155) $) 10)) (-3366 (($) 15 T CONST)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2872 (((-112) $ $) 6)))
+(((-1148) (-140)) (T -1148))
+((-3366 (*1 *1) (-4 *1 (-1148))) (-3157 (*1 *1 *1) (|partial| -4 *1 (-1148))))
+(-13 (-1097) (-10 -8 (-15 -3366 ($) -2858) (-15 -3157 ((-3 $ "failed") $))))
+(((-102) . T) ((-611 (-860)) . T) ((-1097) . T))
+((-1909 (((-1153 |#1|) (-1153 |#1|)) 17)) (-2009 (((-1153 |#1|) (-1153 |#1|)) 13)) (-2470 (((-1153 |#1|) (-1153 |#1|) (-564) (-564)) 20)) (-3452 (((-1153 |#1|) (-1153 |#1|)) 15)))
+(((-1149 |#1|) (-10 -7 (-15 -2009 ((-1153 |#1|) (-1153 |#1|))) (-15 -3452 ((-1153 |#1|) (-1153 |#1|))) (-15 -1909 ((-1153 |#1|) (-1153 |#1|))) (-15 -2470 ((-1153 |#1|) (-1153 |#1|) (-564) (-564)))) (-13 (-556) (-147))) (T -1149))
+((-2470 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1149 *4)))) (-1909 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1149 *3)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1149 *3)))) (-2009 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1149 *3)))))
+(-10 -7 (-15 -2009 ((-1153 |#1|) (-1153 |#1|))) (-15 -3452 ((-1153 |#1|) (-1153 |#1|))) (-15 -1909 ((-1153 |#1|) (-1153 |#1|))) (-15 -2470 ((-1153 |#1|) (-1153 |#1|) (-564) (-564))))
+((-3651 (((-1153 |#1|) (-1153 (-1153 |#1|))) 15)))
+(((-1150 |#1|) (-10 -7 (-15 -3651 ((-1153 |#1|) (-1153 (-1153 |#1|))))) (-1212)) (T -1150))
+((-3651 (*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-1212)))))
+(-10 -7 (-15 -3651 ((-1153 |#1|) (-1153 (-1153 |#1|)))))
+((-1910 (((-1153 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|)) 25)) (-1320 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|)) 26)) (-4358 (((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|)) 16)))
+(((-1151 |#1| |#2|) (-10 -7 (-15 -4358 ((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|))) (-15 -1910 ((-1153 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|))) (-15 -1320 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|)))) (-1212) (-1212)) (T -1151))
+((-1320 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1153 *5)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-1151 *5 *2)))) (-1910 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1153 *6)) (-4 *6 (-1212)) (-4 *3 (-1212)) (-5 *2 (-1153 *3)) (-5 *1 (-1151 *6 *3)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1153 *6)) (-5 *1 (-1151 *5 *6)))))
+(-10 -7 (-15 -4358 ((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|))) (-15 -1910 ((-1153 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|))) (-15 -1320 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1153 |#1|))))
+((-4358 (((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-1153 |#2|)) 21)))
+(((-1152 |#1| |#2| |#3|) (-10 -7 (-15 -4358 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-1153 |#2|)))) (-1212) (-1212) (-1212)) (T -1152))
+((-4358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1153 *6)) (-5 *5 (-1153 *7)) (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8)) (-5 *1 (-1152 *6 *7 *8)))))
+(-10 -7 (-15 -4358 ((-1153 |#3|) (-1 |#3| |#1| |#2|) (-1153 |#1|) (-1153 |#2|))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2085 ((|#1| $) NIL)) (-1807 ((|#1| $) NIL)) (-1416 (($ $) 67)) (-1765 (((-1267) $ (-564) (-564)) 98 (|has| $ (-6 -4411)))) (-3256 (($ $ (-564)) 127 (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-1407 (((-860) $) 56 (|has| |#1| (-1097)))) (-3887 (((-112)) 55 (|has| |#1| (-1097)))) (-3070 ((|#1| $ |#1|) NIL (|has| $ (-6 -4411)))) (-1505 (($ $ $) 115 (|has| $ (-6 -4411))) (($ $ (-564) $) 140)) (-2153 ((|#1| $ |#1|) 124 (|has| $ (-6 -4411)))) (-4059 ((|#1| $ |#1|) 119 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 121 (|has| $ (-6 -4411))) (($ $ "rest" $) 123 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) 126 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 112 (|has| $ (-6 -4411))) ((|#1| $ (-564) |#1|) 76 (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) NIL (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) 79)) (-1799 ((|#1| $) NIL)) (-1976 (($) NIL T CONST)) (-4309 (($ $) 14)) (-2570 (($ $) 42) (($ $ (-769)) 110)) (-2463 (((-112) (-642 |#1|) $) 133 (|has| |#1| (-1097)))) (-4291 (($ (-642 |#1|)) 129)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) 78)) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2625 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) NIL)) (-3297 (((-112) $) NIL)) (-2936 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2530 (((-1267) (-564) $) 139 (|has| |#1| (-1097)))) (-1954 (((-769) $) 136)) (-2622 (((-642 $) $) NIL)) (-1847 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4227 (($ (-769) |#1|) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 94 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 84) (($ (-1 |#1| |#1| |#1|) $ $) 88)) (-3576 (((-112) $ (-769)) NIL)) (-2628 (((-642 |#1|) $) NIL)) (-2376 (((-112) $) NIL)) (-4355 (($ $) 113)) (-1896 (((-112) $) 13)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2514 ((|#1| $) NIL) (($ $ (-769)) NIL)) (-4238 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) 95)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-1638 (($ (-1 |#1|)) 142) (($ (-1 |#1| |#1|) |#1|) 143)) (-2467 ((|#1| $) 10)) (-2557 ((|#1| $) 41) (($ $ (-769)) 65)) (-3365 (((-2 (|:| |cycle?| (-112)) (|:| -1654 (-769)) (|:| |period| (-769))) (-769) $) 36)) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ (-1 (-112) |#1|) $) 144)) (-1691 (($ (-1 (-112) |#1|) $) 145)) (-2696 (($ $ |#1|) 89 (|has| $ (-6 -4411)))) (-3804 (($ $ (-564)) 45)) (-2531 (((-112) $) 93)) (-2537 (((-112) $) 12)) (-3728 (((-112) $) 135)) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 30)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) 20)) (-2972 (($) 60)) (-4368 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1229 (-564))) NIL) ((|#1| $ (-564)) 74) ((|#1| $ (-564) |#1|) NIL)) (-2137 (((-564) $ $) 64)) (-2073 (($ $ (-1229 (-564))) NIL) (($ $ (-564)) NIL)) (-2075 (($ (-1 $)) 63)) (-1392 (((-112) $) 90)) (-1444 (($ $) 91)) (-2960 (($ $) 116 (|has| $ (-6 -4411)))) (-3399 (((-769) $) NIL)) (-3848 (($ $) NIL)) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) 59)) (-1314 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 73)) (-1750 (($ |#1| $) 114)) (-2582 (($ $ $) 117 (|has| $ (-6 -4411))) (($ $ |#1|) 118 (|has| $ (-6 -4411)))) (-3651 (($ $ $) 100) (($ |#1| $) 61) (($ (-642 $)) 105) (($ $ |#1|) 99)) (-4318 (($ $) 66)) (-2327 (($ (-642 |#1|)) 128) (((-860) $) 57 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) NIL)) (-3820 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 131 (|has| |#1| (-1097)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1153 |#1|) (-13 (-672 |#1|) (-614 (-642 |#1|)) (-10 -8 (-6 -4411) (-15 -4291 ($ (-642 |#1|))) (IF (|has| |#1| (-1097)) (-15 -2463 ((-112) (-642 |#1|) $)) |%noBranch|) (-15 -3365 ((-2 (|:| |cycle?| (-112)) (|:| -1654 (-769)) (|:| |period| (-769))) (-769) $)) (-15 -2075 ($ (-1 $))) (-15 -1750 ($ |#1| $)) (IF (|has| |#1| (-1097)) (PROGN (-15 -2530 ((-1267) (-564) $)) (-15 -1407 ((-860) $)) (-15 -3887 ((-112)))) |%noBranch|) (-15 -1505 ($ $ (-564) $)) (-15 -1638 ($ (-1 |#1|))) (-15 -1638 ($ (-1 |#1| |#1|) |#1|)) (-15 -1682 ($ (-1 (-112) |#1|) $)) (-15 -1691 ($ (-1 (-112) |#1|) $)))) (-1212)) (T -1153))
+((-4291 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))) (-2463 (*1 *2 *3 *1) (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-4 *4 (-1212)) (-5 *2 (-112)) (-5 *1 (-1153 *4)))) (-3365 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1654 (-769)) (|:| |period| (-769)))) (-5 *1 (-1153 *4)) (-4 *4 (-1212)) (-5 *3 (-769)))) (-2075 (*1 *1 *2) (-12 (-5 *2 (-1 (-1153 *3))) (-5 *1 (-1153 *3)) (-4 *3 (-1212)))) (-1750 (*1 *1 *2 *1) (-12 (-5 *1 (-1153 *2)) (-4 *2 (-1212)))) (-2530 (*1 *2 *3 *1) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1153 *4)) (-4 *4 (-1097)) (-4 *4 (-1212)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-1153 *3)) (-4 *3 (-1097)) (-4 *3 (-1212)))) (-3887 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3)) (-4 *3 (-1097)) (-4 *3 (-1212)))) (-1505 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1153 *3)) (-4 *3 (-1212)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))) (-1638 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))) (-1682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))) (-1691 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))))
+(-13 (-672 |#1|) (-614 (-642 |#1|)) (-10 -8 (-6 -4411) (-15 -4291 ($ (-642 |#1|))) (IF (|has| |#1| (-1097)) (-15 -2463 ((-112) (-642 |#1|) $)) |%noBranch|) (-15 -3365 ((-2 (|:| |cycle?| (-112)) (|:| -1654 (-769)) (|:| |period| (-769))) (-769) $)) (-15 -2075 ($ (-1 $))) (-15 -1750 ($ |#1| $)) (IF (|has| |#1| (-1097)) (PROGN (-15 -2530 ((-1267) (-564) $)) (-15 -1407 ((-860) $)) (-15 -3887 ((-112)))) |%noBranch|) (-15 -1505 ($ $ (-564) $)) (-15 -1638 ($ (-1 |#1|))) (-15 -1638 ($ (-1 |#1| |#1|) |#1|)) (-15 -1682 ($ (-1 (-112) |#1|) $)) (-15 -1691 ($ (-1 (-112) |#1|) $))))
+((-2907 (((-112) $ $) 19)) (-2817 (($ $) 121)) (-3235 (($ $) 122)) (-4192 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-1765 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-1990 (((-112) $ $) 119)) (-1972 (((-112) $ $ (-564)) 118)) (-4287 (($ (-564)) 128)) (-1414 (((-642 $) $ (-144)) 111) (((-642 $) $ (-141)) 110)) (-1757 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-848)))) (-2239 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| (-144) (-848)) (|has| $ (-6 -4411))))) (-2383 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-848)))) (-3697 (((-112) $ (-769)) 8)) (-3877 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4411))) (((-144) $ (-1229 (-564)) (-144)) 59 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-1564 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2087 (($ $) 91 (|has| $ (-6 -4411)))) (-3115 (($ $) 101)) (-2663 (($ $ (-1229 (-564)) $) 115)) (-2595 (($ $) 79 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ (-144) $) 78 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4410)))) (-1320 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4410)))) (-2625 (((-144) $ (-564) (-144)) 54 (|has| $ (-6 -4411)))) (-2551 (((-144) $ (-564)) 52)) (-2735 (((-112) $ $) 120)) (-3979 (((-564) (-1 (-112) (-144)) $) 98) (((-564) (-144) $) 97 (|has| (-144) (-1097))) (((-564) (-144) $ (-564)) 96 (|has| (-144) (-1097))) (((-564) $ $ (-564)) 114) (((-564) (-141) $ (-564)) 113)) (-2936 (((-642 (-144)) $) 31 (|has| $ (-6 -4410)))) (-4227 (($ (-769) (-144)) 70)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 44 (|has| (-564) (-848)))) (-2755 (($ $ $) 88 (|has| (-144) (-848)))) (-2740 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-848)))) (-3234 (((-642 (-144)) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 45 (|has| (-564) (-848)))) (-1520 (($ $ $) 87 (|has| (-144) (-848)))) (-3998 (((-112) $ $ (-144)) 116)) (-2072 (((-769) $ $ (-144)) 117)) (-2613 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2226 (($ $) 123)) (-1436 (($ $) 124)) (-3576 (((-112) $ (-769)) 10)) (-1574 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3315 (((-1155) $) 22)) (-4238 (($ (-144) $ (-564)) 61) (($ $ $ (-564)) 60)) (-3997 (((-642 (-564)) $) 47)) (-4145 (((-112) (-564) $) 48)) (-4033 (((-1117) $) 21)) (-2557 (((-144) $) 43 (|has| (-564) (-848)))) (-3254 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2696 (($ $ (-144)) 42 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-144)))) 27 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-294 (-144))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-642 (-144)) (-642 (-144))) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2724 (((-642 (-144)) $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 (((-144) $ (-564) (-144)) 51) (((-144) $ (-564)) 50) (($ $ (-1229 (-564))) 64) (($ $ $) 103)) (-2073 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-4043 (((-769) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4410))) (((-769) (-144) $) 29 (-12 (|has| (-144) (-1097)) (|has| $ (-6 -4410))))) (-2568 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3901 (($ $) 13)) (-1314 (((-536) $) 80 (|has| (-144) (-612 (-536))))) (-2337 (($ (-642 (-144))) 71)) (-3651 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2327 (($ (-144)) 112) (((-860) $) 18)) (-1648 (((-112) $ $) 23)) (-2710 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4410)))) (-1605 (((-1155) $) 132) (((-1155) $ (-112)) 131) (((-1267) (-820) $) 130) (((-1267) (-820) $ (-112)) 129)) (-2934 (((-112) $ $) 85 (|has| (-144) (-848)))) (-2908 (((-112) $ $) 84 (|has| (-144) (-848)))) (-2872 (((-112) $ $) 20)) (-2922 (((-112) $ $) 86 (|has| (-144) (-848)))) (-2897 (((-112) $ $) 83 (|has| (-144) (-848)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-1154) (-140)) (T -1154))
+((-4287 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1154)))))
+(-13 (-1141) (-1097) (-826) (-10 -8 (-15 -4287 ($ (-564)))))
+(((-34) . T) ((-102) . T) ((-611 (-860)) . T) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))) ((-649 #0#) . T) ((-19 #0#) . T) ((-826) . T) ((-848) |has| (-144) (-848)) ((-1097) . T) ((-1141) . T) ((-1212) . T))
+((-2907 (((-112) $ $) NIL)) (-2817 (($ $) NIL)) (-3235 (($ $) NIL)) (-4192 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1990 (((-112) $ $) NIL)) (-1972 (((-112) $ $ (-564)) NIL)) (-4287 (($ (-564)) 8)) (-1414 (((-642 $) $ (-144)) NIL) (((-642 $) $ (-141)) NIL)) (-1757 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-848)))) (-2239 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-848))))) (-2383 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4411))) (((-144) $ (-1229 (-564)) (-144)) NIL (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-1564 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2663 (($ $ (-1229 (-564)) $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2490 (($ (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4410))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4410)))) (-2625 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4411)))) (-2551 (((-144) $ (-564)) NIL)) (-2735 (((-112) $ $) NIL)) (-3979 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1097))) (((-564) (-144) $ (-564)) NIL (|has| (-144) (-1097))) (((-564) $ $ (-564)) NIL) (((-564) (-141) $ (-564)) NIL)) (-2936 (((-642 (-144)) $) NIL (|has| $ (-6 -4410)))) (-4227 (($ (-769) (-144)) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| (-144) (-848)))) (-2740 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-848)))) (-3234 (((-642 (-144)) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| (-144) (-848)))) (-3998 (((-112) $ $ (-144)) NIL)) (-2072 (((-769) $ $ (-144)) NIL)) (-2613 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2226 (($ $) NIL)) (-1436 (($ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-1574 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3315 (((-1155) $) NIL)) (-4238 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 (((-144) $) NIL (|has| (-564) (-848)))) (-3254 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2696 (($ $ (-144)) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097)))) (($ $ (-642 (-144)) (-642 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2724 (((-642 (-144)) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1229 (-564))) NIL) (($ $ $) NIL)) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-4043 (((-769) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410))) (((-769) (-144) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-144) (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-2337 (($ (-642 (-144))) NIL)) (-3651 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2327 (($ (-144)) NIL) (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2710 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4410)))) (-1605 (((-1155) $) 19) (((-1155) $ (-112)) 21) (((-1267) (-820) $) 22) (((-1267) (-820) $ (-112)) 23)) (-2934 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2908 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2897 (((-112) $ $) NIL (|has| (-144) (-848)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1155) (-1154)) (T -1155))
+NIL
+(-1154)
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)) (|has| |#1| (-1097))))) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL)) (-1765 (((-1267) $ (-1155) (-1155)) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-1155) |#1|) NIL)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-2248 (((-3 |#1| "failed") (-1155) $) NIL)) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097))))) (-2265 (($ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#1| "failed") (-1155) $) NIL)) (-2490 (($ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-1155) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-1155)) NIL)) (-2936 (((-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-1155) $) NIL (|has| (-1155) (-848)))) (-3234 (((-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-1155) $) NIL (|has| (-1155) (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (-2706 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)) (|has| |#1| (-1097))))) (-3393 (((-642 (-1155)) $) NIL)) (-2835 (((-112) (-1155) $) NIL)) (-2730 (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL)) (-3183 (($ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL)) (-3997 (((-642 (-1155)) $) NIL)) (-4145 (((-112) (-1155) $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)) (|has| |#1| (-1097))))) (-2557 ((|#1| $) NIL (|has| (-1155) (-848)))) (-3254 (((-3 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) "failed") (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL)) (-2696 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (($ $ (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL (-12 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-309 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-1155)) NIL) ((|#1| $ (-1155) |#1|) NIL)) (-2593 (($) NIL) (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL)) (-2327 (((-860) $) NIL (-2706 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-611 (-860))) (|has| |#1| (-611 (-860)))))) (-1648 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)) (|has| |#1| (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)))) NIL)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 (-1155)) (|:| -3778 |#1|)) (-1097)) (|has| |#1| (-1097))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1156 |#1|) (-13 (-1188 (-1155) |#1|) (-10 -7 (-6 -4410))) (-1097)) (T -1156))
+NIL
+(-13 (-1188 (-1155) |#1|) (-10 -7 (-6 -4410)))
+((-1391 (((-1153 |#1|) (-1153 |#1|)) 84)) (-3104 (((-3 (-1153 |#1|) "failed") (-1153 |#1|)) 42)) (-4363 (((-1153 |#1|) (-407 (-564)) (-1153 |#1|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (((-1153 |#1|) |#1| (-1153 |#1|)) 141 (|has| |#1| (-363)))) (-1478 (((-1153 |#1|) (-1153 |#1|)) 99)) (-2081 (((-1153 (-564)) (-564)) 63)) (-2193 (((-1153 |#1|) (-1153 (-1153 |#1|))) 118 (|has| |#1| (-38 (-407 (-564)))))) (-1761 (((-1153 |#1|) (-564) (-564) (-1153 |#1|)) 104)) (-3214 (((-1153 |#1|) |#1| (-564)) 53)) (-2183 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 66)) (-2315 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 138 (|has| |#1| (-363)))) (-3059 (((-1153 |#1|) |#1| (-1 (-1153 |#1|))) 117 (|has| |#1| (-38 (-407 (-564)))))) (-3349 (((-1153 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1153 |#1|))) 139 (|has| |#1| (-363)))) (-3596 (((-1153 |#1|) (-1153 |#1|)) 98)) (-2864 (((-1153 |#1|) (-1153 |#1|)) 82)) (-2355 (((-1153 |#1|) (-564) (-564) (-1153 |#1|)) 105)) (-4107 (((-1153 |#1|) |#1| (-1153 |#1|)) 114 (|has| |#1| (-38 (-407 (-564)))))) (-2512 (((-1153 (-564)) (-564)) 62)) (-1470 (((-1153 |#1|) |#1|) 65)) (-3632 (((-1153 |#1|) (-1153 |#1|) (-564) (-564)) 101)) (-1302 (((-1153 |#1|) (-1 |#1| (-564)) (-1153 |#1|)) 72)) (-2896 (((-3 (-1153 |#1|) "failed") (-1153 |#1|) (-1153 |#1|)) 40)) (-2893 (((-1153 |#1|) (-1153 |#1|)) 100)) (-3215 (((-1153 |#1|) (-1153 |#1|) |#1|) 77)) (-3835 (((-1153 |#1|) (-1153 |#1|)) 68)) (-3909 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 78)) (-2327 (((-1153 |#1|) |#1|) 73)) (-3309 (((-1153 |#1|) (-1153 (-1153 |#1|))) 89)) (-2998 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 41)) (-2987 (((-1153 |#1|) (-1153 |#1|)) 21) (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 23)) (-2974 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 17)) (* (((-1153 |#1|) (-1153 |#1|) |#1|) 29) (((-1153 |#1|) |#1| (-1153 |#1|)) 26) (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 27)))
+(((-1157 |#1|) (-10 -7 (-15 -2974 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2987 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2987 ((-1153 |#1|) (-1153 |#1|))) (-15 * ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 * ((-1153 |#1|) |#1| (-1153 |#1|))) (-15 * ((-1153 |#1|) (-1153 |#1|) |#1|)) (-15 -2896 ((-3 (-1153 |#1|) "failed") (-1153 |#1|) (-1153 |#1|))) (-15 -2998 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3104 ((-3 (-1153 |#1|) "failed") (-1153 |#1|))) (-15 -3214 ((-1153 |#1|) |#1| (-564))) (-15 -2512 ((-1153 (-564)) (-564))) (-15 -2081 ((-1153 (-564)) (-564))) (-15 -1470 ((-1153 |#1|) |#1|)) (-15 -2183 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3835 ((-1153 |#1|) (-1153 |#1|))) (-15 -1302 ((-1153 |#1|) (-1 |#1| (-564)) (-1153 |#1|))) (-15 -2327 ((-1153 |#1|) |#1|)) (-15 -3215 ((-1153 |#1|) (-1153 |#1|) |#1|)) (-15 -3909 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2864 ((-1153 |#1|) (-1153 |#1|))) (-15 -1391 ((-1153 |#1|) (-1153 |#1|))) (-15 -3309 ((-1153 |#1|) (-1153 (-1153 |#1|)))) (-15 -3596 ((-1153 |#1|) (-1153 |#1|))) (-15 -1478 ((-1153 |#1|) (-1153 |#1|))) (-15 -2893 ((-1153 |#1|) (-1153 |#1|))) (-15 -3632 ((-1153 |#1|) (-1153 |#1|) (-564) (-564))) (-15 -1761 ((-1153 |#1|) (-564) (-564) (-1153 |#1|))) (-15 -2355 ((-1153 |#1|) (-564) (-564) (-1153 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ((-1153 |#1|) |#1| (-1153 |#1|))) (-15 -3059 ((-1153 |#1|) |#1| (-1 (-1153 |#1|)))) (-15 -2193 ((-1153 |#1|) (-1153 (-1153 |#1|)))) (-15 -4363 ((-1153 |#1|) (-407 (-564)) (-1153 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2315 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3349 ((-1153 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1153 |#1|)))) (-15 -3752 ((-1153 |#1|) |#1| (-1153 |#1|)))) |%noBranch|)) (-1047)) (T -1157))
+((-3752 (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-3349 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1153 *4))) (-4 *4 (-363)) (-4 *4 (-1047)) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4)))) (-2315 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-363)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-4363 (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1047)) (-5 *3 (-407 (-564))) (-5 *1 (-1157 *4)))) (-2193 (*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1047)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1153 *3))) (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)))) (-4107 (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2355 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047)) (-5 *1 (-1157 *4)))) (-1761 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047)) (-5 *1 (-1157 *4)))) (-3632 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047)) (-5 *1 (-1157 *4)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-1478 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4)) (-4 *4 (-1047)))) (-1391 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2864 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-3909 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-3215 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2327 (*1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-1047)))) (-1302 (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1047)) (-5 *1 (-1157 *4)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2183 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-1470 (*1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-1047)))) (-2081 (*1 *2 *3) (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1157 *4)) (-4 *4 (-1047)) (-5 *3 (-564)))) (-2512 (*1 *2 *3) (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1157 *4)) (-4 *4 (-1047)) (-5 *3 (-564)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-1047)))) (-3104 (*1 *2 *2) (|partial| -12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2998 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2896 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2987 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))) (-2974 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))))
+(-10 -7 (-15 -2974 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2987 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2987 ((-1153 |#1|) (-1153 |#1|))) (-15 * ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 * ((-1153 |#1|) |#1| (-1153 |#1|))) (-15 * ((-1153 |#1|) (-1153 |#1|) |#1|)) (-15 -2896 ((-3 (-1153 |#1|) "failed") (-1153 |#1|) (-1153 |#1|))) (-15 -2998 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3104 ((-3 (-1153 |#1|) "failed") (-1153 |#1|))) (-15 -3214 ((-1153 |#1|) |#1| (-564))) (-15 -2512 ((-1153 (-564)) (-564))) (-15 -2081 ((-1153 (-564)) (-564))) (-15 -1470 ((-1153 |#1|) |#1|)) (-15 -2183 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3835 ((-1153 |#1|) (-1153 |#1|))) (-15 -1302 ((-1153 |#1|) (-1 |#1| (-564)) (-1153 |#1|))) (-15 -2327 ((-1153 |#1|) |#1|)) (-15 -3215 ((-1153 |#1|) (-1153 |#1|) |#1|)) (-15 -3909 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2864 ((-1153 |#1|) (-1153 |#1|))) (-15 -1391 ((-1153 |#1|) (-1153 |#1|))) (-15 -3309 ((-1153 |#1|) (-1153 (-1153 |#1|)))) (-15 -3596 ((-1153 |#1|) (-1153 |#1|))) (-15 -1478 ((-1153 |#1|) (-1153 |#1|))) (-15 -2893 ((-1153 |#1|) (-1153 |#1|))) (-15 -3632 ((-1153 |#1|) (-1153 |#1|) (-564) (-564))) (-15 -1761 ((-1153 |#1|) (-564) (-564) (-1153 |#1|))) (-15 -2355 ((-1153 |#1|) (-564) (-564) (-1153 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ((-1153 |#1|) |#1| (-1153 |#1|))) (-15 -3059 ((-1153 |#1|) |#1| (-1 (-1153 |#1|)))) (-15 -2193 ((-1153 |#1|) (-1153 (-1153 |#1|)))) (-15 -4363 ((-1153 |#1|) (-407 (-564)) (-1153 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2315 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3349 ((-1153 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1153 |#1|)))) (-15 -3752 ((-1153 |#1|) |#1| (-1153 |#1|)))) |%noBranch|))
+((-3851 (((-1153 |#1|) (-1153 |#1|)) 60)) (-3704 (((-1153 |#1|) (-1153 |#1|)) 42)) (-3827 (((-1153 |#1|) (-1153 |#1|)) 56)) (-3679 (((-1153 |#1|) (-1153 |#1|)) 38)) (-3875 (((-1153 |#1|) (-1153 |#1|)) 63)) (-3727 (((-1153 |#1|) (-1153 |#1|)) 45)) (-3612 (((-1153 |#1|) (-1153 |#1|)) 34)) (-1723 (((-1153 |#1|) (-1153 |#1|)) 29)) (-3888 (((-1153 |#1|) (-1153 |#1|)) 64)) (-3739 (((-1153 |#1|) (-1153 |#1|)) 46)) (-3863 (((-1153 |#1|) (-1153 |#1|)) 61)) (-3716 (((-1153 |#1|) (-1153 |#1|)) 43)) (-3839 (((-1153 |#1|) (-1153 |#1|)) 58)) (-3693 (((-1153 |#1|) (-1153 |#1|)) 40)) (-3926 (((-1153 |#1|) (-1153 |#1|)) 68)) (-3776 (((-1153 |#1|) (-1153 |#1|)) 50)) (-3900 (((-1153 |#1|) (-1153 |#1|)) 66)) (-3750 (((-1153 |#1|) (-1153 |#1|)) 48)) (-3951 (((-1153 |#1|) (-1153 |#1|)) 71)) (-3803 (((-1153 |#1|) (-1153 |#1|)) 53)) (-2683 (((-1153 |#1|) (-1153 |#1|)) 72)) (-3816 (((-1153 |#1|) (-1153 |#1|)) 54)) (-3938 (((-1153 |#1|) (-1153 |#1|)) 70)) (-3791 (((-1153 |#1|) (-1153 |#1|)) 52)) (-3913 (((-1153 |#1|) (-1153 |#1|)) 69)) (-3763 (((-1153 |#1|) (-1153 |#1|)) 51)) (** (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 36)))
+(((-1158 |#1|) (-10 -7 (-15 -1723 ((-1153 |#1|) (-1153 |#1|))) (-15 -3612 ((-1153 |#1|) (-1153 |#1|))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3679 ((-1153 |#1|) (-1153 |#1|))) (-15 -3693 ((-1153 |#1|) (-1153 |#1|))) (-15 -3704 ((-1153 |#1|) (-1153 |#1|))) (-15 -3716 ((-1153 |#1|) (-1153 |#1|))) (-15 -3727 ((-1153 |#1|) (-1153 |#1|))) (-15 -3739 ((-1153 |#1|) (-1153 |#1|))) (-15 -3750 ((-1153 |#1|) (-1153 |#1|))) (-15 -3763 ((-1153 |#1|) (-1153 |#1|))) (-15 -3776 ((-1153 |#1|) (-1153 |#1|))) (-15 -3791 ((-1153 |#1|) (-1153 |#1|))) (-15 -3803 ((-1153 |#1|) (-1153 |#1|))) (-15 -3816 ((-1153 |#1|) (-1153 |#1|))) (-15 -3827 ((-1153 |#1|) (-1153 |#1|))) (-15 -3839 ((-1153 |#1|) (-1153 |#1|))) (-15 -3851 ((-1153 |#1|) (-1153 |#1|))) (-15 -3863 ((-1153 |#1|) (-1153 |#1|))) (-15 -3875 ((-1153 |#1|) (-1153 |#1|))) (-15 -3888 ((-1153 |#1|) (-1153 |#1|))) (-15 -3900 ((-1153 |#1|) (-1153 |#1|))) (-15 -3913 ((-1153 |#1|) (-1153 |#1|))) (-15 -3926 ((-1153 |#1|) (-1153 |#1|))) (-15 -3938 ((-1153 |#1|) (-1153 |#1|))) (-15 -3951 ((-1153 |#1|) (-1153 |#1|))) (-15 -2683 ((-1153 |#1|) (-1153 |#1|)))) (-38 (-407 (-564)))) (T -1158))
+((-2683 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3776 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3750 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))) (-1723 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1158 *3)))))
+(-10 -7 (-15 -1723 ((-1153 |#1|) (-1153 |#1|))) (-15 -3612 ((-1153 |#1|) (-1153 |#1|))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -3679 ((-1153 |#1|) (-1153 |#1|))) (-15 -3693 ((-1153 |#1|) (-1153 |#1|))) (-15 -3704 ((-1153 |#1|) (-1153 |#1|))) (-15 -3716 ((-1153 |#1|) (-1153 |#1|))) (-15 -3727 ((-1153 |#1|) (-1153 |#1|))) (-15 -3739 ((-1153 |#1|) (-1153 |#1|))) (-15 -3750 ((-1153 |#1|) (-1153 |#1|))) (-15 -3763 ((-1153 |#1|) (-1153 |#1|))) (-15 -3776 ((-1153 |#1|) (-1153 |#1|))) (-15 -3791 ((-1153 |#1|) (-1153 |#1|))) (-15 -3803 ((-1153 |#1|) (-1153 |#1|))) (-15 -3816 ((-1153 |#1|) (-1153 |#1|))) (-15 -3827 ((-1153 |#1|) (-1153 |#1|))) (-15 -3839 ((-1153 |#1|) (-1153 |#1|))) (-15 -3851 ((-1153 |#1|) (-1153 |#1|))) (-15 -3863 ((-1153 |#1|) (-1153 |#1|))) (-15 -3875 ((-1153 |#1|) (-1153 |#1|))) (-15 -3888 ((-1153 |#1|) (-1153 |#1|))) (-15 -3900 ((-1153 |#1|) (-1153 |#1|))) (-15 -3913 ((-1153 |#1|) (-1153 |#1|))) (-15 -3926 ((-1153 |#1|) (-1153 |#1|))) (-15 -3938 ((-1153 |#1|) (-1153 |#1|))) (-15 -3951 ((-1153 |#1|) (-1153 |#1|))) (-15 -2683 ((-1153 |#1|) (-1153 |#1|))))
+((-3851 (((-1153 |#1|) (-1153 |#1|)) 108)) (-3704 (((-1153 |#1|) (-1153 |#1|)) 65)) (-3818 (((-2 (|:| -3827 (-1153 |#1|)) (|:| -3839 (-1153 |#1|))) (-1153 |#1|)) 104)) (-3827 (((-1153 |#1|) (-1153 |#1|)) 105)) (-2156 (((-2 (|:| -3679 (-1153 |#1|)) (|:| -3693 (-1153 |#1|))) (-1153 |#1|)) 54)) (-3679 (((-1153 |#1|) (-1153 |#1|)) 55)) (-3875 (((-1153 |#1|) (-1153 |#1|)) 110)) (-3727 (((-1153 |#1|) (-1153 |#1|)) 72)) (-3612 (((-1153 |#1|) (-1153 |#1|)) 40)) (-1723 (((-1153 |#1|) (-1153 |#1|)) 37)) (-3888 (((-1153 |#1|) (-1153 |#1|)) 111)) (-3739 (((-1153 |#1|) (-1153 |#1|)) 73)) (-3863 (((-1153 |#1|) (-1153 |#1|)) 109)) (-3716 (((-1153 |#1|) (-1153 |#1|)) 68)) (-3839 (((-1153 |#1|) (-1153 |#1|)) 106)) (-3693 (((-1153 |#1|) (-1153 |#1|)) 56)) (-3926 (((-1153 |#1|) (-1153 |#1|)) 119)) (-3776 (((-1153 |#1|) (-1153 |#1|)) 94)) (-3900 (((-1153 |#1|) (-1153 |#1|)) 113)) (-3750 (((-1153 |#1|) (-1153 |#1|)) 90)) (-3951 (((-1153 |#1|) (-1153 |#1|)) 123)) (-3803 (((-1153 |#1|) (-1153 |#1|)) 98)) (-2683 (((-1153 |#1|) (-1153 |#1|)) 125)) (-3816 (((-1153 |#1|) (-1153 |#1|)) 100)) (-3938 (((-1153 |#1|) (-1153 |#1|)) 121)) (-3791 (((-1153 |#1|) (-1153 |#1|)) 96)) (-3913 (((-1153 |#1|) (-1153 |#1|)) 115)) (-3763 (((-1153 |#1|) (-1153 |#1|)) 92)) (** (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 41)))
+(((-1159 |#1|) (-10 -7 (-15 -1723 ((-1153 |#1|) (-1153 |#1|))) (-15 -3612 ((-1153 |#1|) (-1153 |#1|))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2156 ((-2 (|:| -3679 (-1153 |#1|)) (|:| -3693 (-1153 |#1|))) (-1153 |#1|))) (-15 -3679 ((-1153 |#1|) (-1153 |#1|))) (-15 -3693 ((-1153 |#1|) (-1153 |#1|))) (-15 -3704 ((-1153 |#1|) (-1153 |#1|))) (-15 -3716 ((-1153 |#1|) (-1153 |#1|))) (-15 -3727 ((-1153 |#1|) (-1153 |#1|))) (-15 -3739 ((-1153 |#1|) (-1153 |#1|))) (-15 -3750 ((-1153 |#1|) (-1153 |#1|))) (-15 -3763 ((-1153 |#1|) (-1153 |#1|))) (-15 -3776 ((-1153 |#1|) (-1153 |#1|))) (-15 -3791 ((-1153 |#1|) (-1153 |#1|))) (-15 -3803 ((-1153 |#1|) (-1153 |#1|))) (-15 -3816 ((-1153 |#1|) (-1153 |#1|))) (-15 -3818 ((-2 (|:| -3827 (-1153 |#1|)) (|:| -3839 (-1153 |#1|))) (-1153 |#1|))) (-15 -3827 ((-1153 |#1|) (-1153 |#1|))) (-15 -3839 ((-1153 |#1|) (-1153 |#1|))) (-15 -3851 ((-1153 |#1|) (-1153 |#1|))) (-15 -3863 ((-1153 |#1|) (-1153 |#1|))) (-15 -3875 ((-1153 |#1|) (-1153 |#1|))) (-15 -3888 ((-1153 |#1|) (-1153 |#1|))) (-15 -3900 ((-1153 |#1|) (-1153 |#1|))) (-15 -3913 ((-1153 |#1|) (-1153 |#1|))) (-15 -3926 ((-1153 |#1|) (-1153 |#1|))) (-15 -3938 ((-1153 |#1|) (-1153 |#1|))) (-15 -3951 ((-1153 |#1|) (-1153 |#1|))) (-15 -2683 ((-1153 |#1|) (-1153 |#1|)))) (-38 (-407 (-564)))) (T -1159))
+((-2683 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3827 (-1153 *4)) (|:| -3839 (-1153 *4)))) (-5 *1 (-1159 *4)) (-5 *3 (-1153 *4)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3776 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3750 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-2156 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3679 (-1153 *4)) (|:| -3693 (-1153 *4)))) (-5 *1 (-1159 *4)) (-5 *3 (-1153 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))) (-1723 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1159 *3)))))
+(-10 -7 (-15 -1723 ((-1153 |#1|) (-1153 |#1|))) (-15 -3612 ((-1153 |#1|) (-1153 |#1|))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -2156 ((-2 (|:| -3679 (-1153 |#1|)) (|:| -3693 (-1153 |#1|))) (-1153 |#1|))) (-15 -3679 ((-1153 |#1|) (-1153 |#1|))) (-15 -3693 ((-1153 |#1|) (-1153 |#1|))) (-15 -3704 ((-1153 |#1|) (-1153 |#1|))) (-15 -3716 ((-1153 |#1|) (-1153 |#1|))) (-15 -3727 ((-1153 |#1|) (-1153 |#1|))) (-15 -3739 ((-1153 |#1|) (-1153 |#1|))) (-15 -3750 ((-1153 |#1|) (-1153 |#1|))) (-15 -3763 ((-1153 |#1|) (-1153 |#1|))) (-15 -3776 ((-1153 |#1|) (-1153 |#1|))) (-15 -3791 ((-1153 |#1|) (-1153 |#1|))) (-15 -3803 ((-1153 |#1|) (-1153 |#1|))) (-15 -3816 ((-1153 |#1|) (-1153 |#1|))) (-15 -3818 ((-2 (|:| -3827 (-1153 |#1|)) (|:| -3839 (-1153 |#1|))) (-1153 |#1|))) (-15 -3827 ((-1153 |#1|) (-1153 |#1|))) (-15 -3839 ((-1153 |#1|) (-1153 |#1|))) (-15 -3851 ((-1153 |#1|) (-1153 |#1|))) (-15 -3863 ((-1153 |#1|) (-1153 |#1|))) (-15 -3875 ((-1153 |#1|) (-1153 |#1|))) (-15 -3888 ((-1153 |#1|) (-1153 |#1|))) (-15 -3900 ((-1153 |#1|) (-1153 |#1|))) (-15 -3913 ((-1153 |#1|) (-1153 |#1|))) (-15 -3926 ((-1153 |#1|) (-1153 |#1|))) (-15 -3938 ((-1153 |#1|) (-1153 |#1|))) (-15 -3951 ((-1153 |#1|) (-1153 |#1|))) (-15 -2683 ((-1153 |#1|) (-1153 |#1|))))
+((-2728 (((-956 |#2|) |#2| |#2|) 50)) (-3246 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307)))))
+(((-1160 |#1| |#2|) (-10 -7 (-15 -2728 ((-956 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -3246 (|#2| |#2| |#1|)) |%noBranch|)) (-556) (-1238 |#1|)) (T -1160))
+((-3246 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1160 *3 *2)) (-4 *2 (-1238 *3)))) (-2728 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-956 *3)) (-5 *1 (-1160 *4 *3)) (-4 *3 (-1238 *4)))))
+(-10 -7 (-15 -2728 ((-956 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -3246 (|#2| |#2| |#1|)) |%noBranch|))
+((-2907 (((-112) $ $) NIL)) (-3800 (($ $ (-642 (-769))) 81)) (-3682 (($) 33)) (-3165 (($ $) 51)) (-2486 (((-642 $) $) 60)) (-1441 (((-112) $) 19)) (-3507 (((-642 (-941 |#2|)) $) 88)) (-3905 (($ $) 82)) (-2370 (((-769) $) 47)) (-4227 (($) 32)) (-3625 (($ $ (-642 (-769)) (-941 |#2|)) 74) (($ $ (-642 (-769)) (-769)) 75) (($ $ (-769) (-941 |#2|)) 77)) (-2740 (($ $ $) 57) (($ (-642 $)) 59)) (-2209 (((-769) $) 89)) (-2376 (((-112) $) 15)) (-3315 (((-1155) $) NIL)) (-3000 (((-112) $) 22)) (-4033 (((-1117) $) NIL)) (-4250 (((-171) $) 87)) (-1883 (((-941 |#2|) $) 83)) (-2109 (((-769) $) 84)) (-2442 (((-112) $) 86)) (-2676 (($ $ (-642 (-769)) (-171)) 80)) (-4140 (($ $) 52)) (-2327 (((-860) $) 100)) (-3521 (($ $ (-642 (-769)) (-112)) 79)) (-1512 (((-642 $) $) 11)) (-3999 (($ $ (-769)) 46)) (-2746 (($ $) 43)) (-1648 (((-112) $ $) NIL)) (-2949 (($ $ $ (-941 |#2|) (-769)) 70)) (-2777 (($ $ (-941 |#2|)) 69)) (-1405 (($ $ (-642 (-769)) (-941 |#2|)) 66) (($ $ (-642 (-769)) (-769)) 72) (((-769) $ (-941 |#2|)) 73)) (-2872 (((-112) $ $) 94)))
+(((-1161 |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -2376 ((-112) $)) (-15 -1441 ((-112) $)) (-15 -3000 ((-112) $)) (-15 -4227 ($)) (-15 -3682 ($)) (-15 -2746 ($ $)) (-15 -3999 ($ $ (-769))) (-15 -1512 ((-642 $) $)) (-15 -2370 ((-769) $)) (-15 -3165 ($ $)) (-15 -4140 ($ $)) (-15 -2740 ($ $ $)) (-15 -2740 ($ (-642 $))) (-15 -2486 ((-642 $) $)) (-15 -1405 ($ $ (-642 (-769)) (-941 |#2|))) (-15 -2777 ($ $ (-941 |#2|))) (-15 -2949 ($ $ $ (-941 |#2|) (-769))) (-15 -3625 ($ $ (-642 (-769)) (-941 |#2|))) (-15 -1405 ($ $ (-642 (-769)) (-769))) (-15 -3625 ($ $ (-642 (-769)) (-769))) (-15 -1405 ((-769) $ (-941 |#2|))) (-15 -3625 ($ $ (-769) (-941 |#2|))) (-15 -3521 ($ $ (-642 (-769)) (-112))) (-15 -2676 ($ $ (-642 (-769)) (-171))) (-15 -3800 ($ $ (-642 (-769)))) (-15 -1883 ((-941 |#2|) $)) (-15 -2109 ((-769) $)) (-15 -2442 ((-112) $)) (-15 -4250 ((-171) $)) (-15 -2209 ((-769) $)) (-15 -3905 ($ $)) (-15 -3507 ((-642 (-941 |#2|)) $)))) (-919) (-1047)) (T -1161))
+((-2376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-4227 (*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-3682 (*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-2746 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-3999 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-3165 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-4140 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-2740 (*1 *1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-1405 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-941 *5)) (-4 *5 (-1047)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) (-2777 (*1 *1 *1 *2) (-12 (-5 *2 (-941 *4)) (-4 *4 (-1047)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)))) (-2949 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-941 *5)) (-5 *3 (-769)) (-4 *5 (-1047)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) (-3625 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-941 *5)) (-4 *5 (-1047)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) (-1405 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-769)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)) (-4 *5 (-1047)))) (-3625 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-769)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)) (-4 *5 (-1047)))) (-1405 (*1 *2 *1 *3) (-12 (-5 *3 (-941 *5)) (-4 *5 (-1047)) (-5 *2 (-769)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) (-3625 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *3 (-941 *5)) (-4 *5 (-1047)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))) (-3521 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-112)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)) (-4 *5 (-1047)))) (-2676 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-642 (-769))) (-5 *3 (-171)) (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)) (-4 *5 (-1047)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-1883 (*1 *2 *1) (-12 (-5 *2 (-941 *4)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-642 (-941 *4))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919)) (-4 *4 (-1047)))))
+(-13 (-1097) (-10 -8 (-15 -2376 ((-112) $)) (-15 -1441 ((-112) $)) (-15 -3000 ((-112) $)) (-15 -4227 ($)) (-15 -3682 ($)) (-15 -2746 ($ $)) (-15 -3999 ($ $ (-769))) (-15 -1512 ((-642 $) $)) (-15 -2370 ((-769) $)) (-15 -3165 ($ $)) (-15 -4140 ($ $)) (-15 -2740 ($ $ $)) (-15 -2740 ($ (-642 $))) (-15 -2486 ((-642 $) $)) (-15 -1405 ($ $ (-642 (-769)) (-941 |#2|))) (-15 -2777 ($ $ (-941 |#2|))) (-15 -2949 ($ $ $ (-941 |#2|) (-769))) (-15 -3625 ($ $ (-642 (-769)) (-941 |#2|))) (-15 -1405 ($ $ (-642 (-769)) (-769))) (-15 -3625 ($ $ (-642 (-769)) (-769))) (-15 -1405 ((-769) $ (-941 |#2|))) (-15 -3625 ($ $ (-769) (-941 |#2|))) (-15 -3521 ($ $ (-642 (-769)) (-112))) (-15 -2676 ($ $ (-642 (-769)) (-171))) (-15 -3800 ($ $ (-642 (-769)))) (-15 -1883 ((-941 |#2|) $)) (-15 -2109 ((-769) $)) (-15 -2442 ((-112) $)) (-15 -4250 ((-171) $)) (-15 -2209 ((-769) $)) (-15 -3905 ($ $)) (-15 -3507 ((-642 (-941 |#2|)) $))))
+((-2907 (((-112) $ $) NIL)) (-1843 ((|#2| $) 11)) (-1833 ((|#1| $) 10)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2337 (($ |#1| |#2|) 9)) (-2327 (((-860) $) 16)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1162 |#1| |#2|) (-13 (-1097) (-10 -8 (-15 -2337 ($ |#1| |#2|)) (-15 -1833 (|#1| $)) (-15 -1843 (|#2| $)))) (-1097) (-1097)) (T -1162))
+((-2337 (*1 *1 *2 *3) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-1833 (*1 *2 *1) (-12 (-4 *2 (-1097)) (-5 *1 (-1162 *2 *3)) (-4 *3 (-1097)))) (-1843 (*1 *2 *1) (-12 (-4 *2 (-1097)) (-5 *1 (-1162 *3 *2)) (-4 *3 (-1097)))))
+(-13 (-1097) (-10 -8 (-15 -2337 ($ |#1| |#2|)) (-15 -1833 (|#1| $)) (-15 -1843 (|#2| $))))
+((-2907 (((-112) $ $) NIL)) (-4119 (((-1132) $) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 15) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1163) (-13 (-1080) (-10 -8 (-15 -4119 ((-1132) $))))) (T -1163))
+((-4119 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1163)))))
+(-13 (-1080) (-10 -8 (-15 -4119 ((-1132) $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3703 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) 11)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1387 (($ $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2037 (((-112) $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1726 (($ $ (-564)) NIL) (($ $ (-564) (-564)) 75)) (-2674 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-2206 (((-1171 |#1| |#2| |#3|) $) 42)) (-2639 (((-3 (-1171 |#1| |#2| |#3|) "failed") $) 32)) (-3864 (((-1171 |#1| |#2| |#3|) $) 33)) (-3851 (($ $) 116 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-4316 (($ $) NIL (|has| |#1| (-363)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3827 (($ $) 112 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-2959 (((-564) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-2707 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3875 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-1171 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1173) "failed") $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))))) (-3027 (((-1171 |#1| |#2| |#3|) $) 140) (((-1173) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))))) (-3517 (($ $) 37) (($ (-564) $) 38)) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) NIL)) (-4315 (((-687 (-1171 |#1| |#2| |#3|)) (-687 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1780 (-687 (-1171 |#1| |#2| |#3|))) (|:| |vec| (-1262 (-1171 |#1| |#2| |#3|)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-3104 (((-3 $ "failed") $) 54)) (-1399 (((-407 (-950 |#1|)) $ (-564)) 74 (|has| |#1| (-556))) (((-407 (-950 |#1|)) $ (-564) (-564)) 76 (|has| |#1| (-556)))) (-2433 (($) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1469 (((-112) $) NIL (|has| |#1| (-363)))) (-2538 (((-112) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-1941 (((-112) $) 28)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-884 (-379))) (|has| |#1| (-363)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-884 (-564))) (|has| |#1| (-363))))) (-1427 (((-564) $) NIL) (((-564) $ (-564)) 26)) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL (|has| |#1| (-363)))) (-2245 (((-1171 |#1| |#2| |#3|) $) 44 (|has| |#1| (-363)))) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3157 (((-3 $ "failed") $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1148)) (|has| |#1| (-363))))) (-3333 (((-112) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-3267 (($ $ (-919)) NIL)) (-1502 (($ (-1 |#1| (-564)) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-564)) 19) (($ $ (-1079) (-564)) NIL) (($ $ (-642 (-1079)) (-642 (-564))) NIL)) (-2755 (($ $ $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-1520 (($ $ $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-3612 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3876 (($ (-564) (-1171 |#1| |#2| |#3|)) 36)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| |#1| (-363)))) (-4107 (($ $) 79 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 80 (|has| |#1| (-38 (-407 (-564)))))) (-3366 (($) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1148)) (|has| |#1| (-363))) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2903 (($ $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2759 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-3643 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3804 (($ $ (-564)) 158)) (-2896 (((-3 $ "failed") $ $) 55 (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1723 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1173) (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-514 (-1173) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-514 (-1173) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-294 (-1171 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-1171 |#1| |#2| |#3|)) (-642 (-1171 |#1| |#2| |#3|))) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-309 (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ (-564)) NIL) (($ $ $) 61 (|has| (-564) (-1109))) (($ $ (-1171 |#1| |#2| |#3|)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-286 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3175 (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) (-769)) NIL (|has| |#1| (-363))) (($ $ (-1258 |#2|)) 57) (($ $ (-769)) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 56 (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-2618 (($ $) NIL (|has| |#1| (-363)))) (-2255 (((-1171 |#1| |#2| |#3|) $) 46 (|has| |#1| (-363)))) (-2775 (((-564) $) 43)) (-3888 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 98 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 118 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 114 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-1314 (((-536) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1020)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1020)) (|has| |#1| (-363)))) (((-890 (-379)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-612 (-890 (-379)))) (|has| |#1| (-363)))) (((-890 (-564)) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-612 (-890 (-564)))) (|has| |#1| (-363))))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-4318 (($ $) NIL)) (-2327 (((-860) $) 162) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1171 |#1| |#2| |#3|)) 30) (($ (-1258 |#2|)) 25) (($ (-1173)) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (($ $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-2102 ((|#1| $ (-564)) 77)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-2756 (((-769)) NIL T CONST)) (-3594 ((|#1| $) 12)) (-3264 (((-1171 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 104 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3900 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 100 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 108 (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 110 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 106 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 102 (|has| |#1| (-38 (-407 (-564)))))) (-1381 (($ $) NIL (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-2312 (($) 21 T CONST)) (-2322 (($) 16 T CONST)) (-4044 (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) (-769)) NIL (|has| |#1| (-363))) (($ $ (-769)) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-2934 (((-112) $ $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2908 (((-112) $ $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2897 (((-112) $ $) NIL (-2706 (-12 (|has| (-1171 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1171 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 49 (|has| |#1| (-363))) (($ (-1171 |#1| |#2| |#3|) (-1171 |#1| |#2| |#3|)) 50 (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 23)) (** (($ $ (-919)) NIL) (($ $ (-769)) 60) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) 83 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 137 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1171 |#1| |#2| |#3|)) 48 (|has| |#1| (-363))) (($ (-1171 |#1| |#2| |#3|) $) 47 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1164 |#1| |#2| |#3|) (-13 (-1224 |#1| (-1171 |#1| |#2| |#3|)) (-10 -8 (-15 -2327 ($ (-1258 |#2|))) (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1164))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))))
+(-13 (-1224 |#1| (-1171 |#1| |#2| |#3|)) (-10 -8 (-15 -2327 ($ (-1258 |#2|))) (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|)))
+((-4301 ((|#2| |#2| (-1089 |#2|)) 26) ((|#2| |#2| (-1173)) 28)))
+(((-1165 |#1| |#2|) (-10 -7 (-15 -4301 (|#2| |#2| (-1173))) (-15 -4301 (|#2| |#2| (-1089 |#2|)))) (-13 (-556) (-1036 (-564)) (-637 (-564))) (-13 (-430 |#1|) (-160) (-27) (-1197))) (T -1165))
+((-4301 (*1 *2 *2 *3) (-12 (-5 *3 (-1089 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1197))) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1165 *4 *2)))) (-4301 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1165 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1197))))))
+(-10 -7 (-15 -4301 (|#2| |#2| (-1173))) (-15 -4301 (|#2| |#2| (-1089 |#2|))))
+((-4301 (((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1089 (-407 (-950 |#1|)))) 31) (((-407 (-950 |#1|)) (-950 |#1|) (-1089 (-950 |#1|))) 44) (((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1173)) 33) (((-407 (-950 |#1|)) (-950 |#1|) (-1173)) 36)))
+(((-1166 |#1|) (-10 -7 (-15 -4301 ((-407 (-950 |#1|)) (-950 |#1|) (-1173))) (-15 -4301 ((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1173))) (-15 -4301 ((-407 (-950 |#1|)) (-950 |#1|) (-1089 (-950 |#1|)))) (-15 -4301 ((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1089 (-407 (-950 |#1|)))))) (-13 (-556) (-1036 (-564)))) (T -1166))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-1089 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5))) (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1166 *5)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-1089 (-950 *5))) (-5 *3 (-950 *5)) (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-407 *3)) (-5 *1 (-1166 *5)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-3 (-407 (-950 *5)) (-316 *5))) (-5 *1 (-1166 *5)) (-5 *3 (-407 (-950 *5))))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-407 (-950 *5))) (-5 *1 (-1166 *5)) (-5 *3 (-950 *5)))))
+(-10 -7 (-15 -4301 ((-407 (-950 |#1|)) (-950 |#1|) (-1173))) (-15 -4301 ((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1173))) (-15 -4301 ((-407 (-950 |#1|)) (-950 |#1|) (-1089 (-950 |#1|)))) (-15 -4301 ((-3 (-407 (-950 |#1|)) (-316 |#1|)) (-407 (-950 |#1|)) (-1089 (-407 (-950 |#1|))))))
+((-4358 (((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|)) 13)))
+(((-1167 |#1| |#2|) (-10 -7 (-15 -4358 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|)))) (-1047) (-1047)) (T -1167))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-1169 *6)) (-5 *1 (-1167 *5 *6)))))
+(-10 -7 (-15 -4358 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|))))
+((-1978 (((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|))) 51)) (-3643 (((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|))) 52)))
+(((-1168 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3643 ((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|)))) (-15 -1978 ((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|))))) (-791) (-848) (-452) (-947 |#3| |#1| |#2|)) (T -1168))
+((-1978 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-452)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 (-407 *7)))) (-5 *1 (-1168 *4 *5 *6 *7)) (-5 *3 (-1169 (-407 *7))))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-452)) (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 (-407 *7)))) (-5 *1 (-1168 *4 *5 *6 *7)) (-5 *3 (-1169 (-407 *7))))))
+(-10 -7 (-15 -3643 ((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|)))) (-15 -1978 ((-418 (-1169 (-407 |#4|))) (-1169 (-407 |#4|)))))
+((-2907 (((-112) $ $) 170)) (-2952 (((-112) $) 42)) (-4159 (((-1262 |#1|) $ (-769)) NIL)) (-3802 (((-642 (-1079)) $) NIL)) (-3742 (($ (-1169 |#1|)) NIL)) (-3615 (((-1169 $) $ (-1079)) 81) (((-1169 |#1|) $) 70)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) 163 (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-1079))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1804 (($ $ $) 157 (|has| |#1| (-556)))) (-2951 (((-418 (-1169 $)) (-1169 $)) 94 (|has| |#1| (-907)))) (-4316 (($ $) NIL (|has| |#1| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 114 (|has| |#1| (-907)))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3047 (($ $ (-769)) 60)) (-1537 (($ $ (-769)) 62)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-1079) "failed") $) NIL)) (-3027 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-1079) $) NIL)) (-2022 (($ $ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $ $) 159 (|has| |#1| (-172)))) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) 79)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) NIL) (((-687 |#1|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-1307 (($ $ $) 130)) (-4036 (($ $ $) NIL (|has| |#1| (-556)))) (-3437 (((-2 (|:| -4378 |#1|) (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-556)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-3246 (($ $) 164 (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#1| (-907)))) (-2575 (($ $ |#1| (-769) $) 68)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1079) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1079) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-4057 (((-860) $ (-860)) 147)) (-1427 (((-769) $ $) NIL (|has| |#1| (-556)))) (-3953 (((-112) $) 47)) (-3934 (((-769) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| |#1| (-1148)))) (-3790 (($ (-1169 |#1|) (-1079)) 72) (($ (-1169 $) (-1079)) 88)) (-3267 (($ $ (-769)) 50)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-769)) 86) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-1079)) NIL) (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 152)) (-1398 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-2026 (($ (-1 (-769) (-769)) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-2099 (((-1169 |#1|) $) NIL)) (-4184 (((-3 (-1079) "failed") $) NIL)) (-3950 (($ $) NIL)) (-3962 ((|#1| $) 75)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3315 (((-1155) $) NIL)) (-4148 (((-2 (|:| -1420 $) (|:| -3045 $)) $ (-769)) 59)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-1079)) (|:| -2700 (-769))) "failed") $) NIL)) (-4107 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3366 (($) NIL (|has| |#1| (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) 49)) (-3932 ((|#1| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 102 (|has| |#1| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-452))) (($ $ $) 166 (|has| |#1| (-452)))) (-2914 (($ $ (-769) |#1| $) 122)) (-1643 (((-418 (-1169 $)) (-1169 $)) 100 (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) 99 (|has| |#1| (-907)))) (-3643 (((-418 $) $) 107 (|has| |#1| (-907)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-2896 (((-3 $ "failed") $ |#1|) 162 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 123 (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1079) |#1|) NIL) (($ $ (-642 (-1079)) (-642 |#1|)) NIL) (($ $ (-1079) $) NIL) (($ $ (-642 (-1079)) (-642 $)) NIL)) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ |#1|) 149) (($ $ $) 150) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-2863 (((-3 $ "failed") $ (-769)) 53)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 171 (|has| |#1| (-363)))) (-1846 (($ $ (-1079)) NIL (|has| |#1| (-172))) ((|#1| $) 155 (|has| |#1| (-172)))) (-3175 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2775 (((-769) $) 77) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1079) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4028 ((|#1| $) 161 (|has| |#1| (-452))) (($ $ (-1079)) NIL (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-907))))) (-2065 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-2327 (((-860) $) 148) (($ (-564)) NIL) (($ |#1|) 76) (($ (-1079)) NIL) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-769)) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) 40 (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2312 (($) 17 T CONST)) (-2322 (($) 19 T CONST)) (-4044 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2872 (((-112) $ $) 119)) (-2998 (($ $ |#1|) 172 (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 89)) (** (($ $ (-919)) 14) (($ $ (-769)) 12)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 128) (($ $ |#1|) NIL)))
+(((-1169 |#1|) (-13 (-1238 |#1|) (-10 -8 (-15 -4057 ((-860) $ (-860))) (-15 -2914 ($ $ (-769) |#1| $)))) (-1047)) (T -1169))
+((-4057 (*1 *2 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1169 *3)) (-4 *3 (-1047)))) (-2914 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1169 *3)) (-4 *3 (-1047)))))
+(-13 (-1238 |#1|) (-10 -8 (-15 -4057 ((-860) $ (-860))) (-15 -2914 ($ $ (-769) |#1| $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) 11)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1726 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-2674 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3851 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL (|has| |#1| (-363)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3875 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1171 |#1| |#2| |#3|) "failed") $) 36)) (-3027 (((-1164 |#1| |#2| |#3|) $) NIL) (((-1171 |#1| |#2| |#3|) $) NIL)) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2169 (((-407 (-564)) $) 59)) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-3889 (($ (-407 (-564)) (-1164 |#1| |#2| |#3|)) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1469 (((-112) $) NIL (|has| |#1| (-363)))) (-1941 (((-112) $) NIL)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3267 (($ $ (-919)) NIL) (($ $ (-407 (-564))) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-407 (-564))) 20) (($ $ (-1079) (-407 (-564))) NIL) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2440 (((-1164 |#1| |#2| |#3|) $) 41)) (-2228 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) NIL)) (-3876 (((-1164 |#1| |#2| |#3|) $) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| |#1| (-363)))) (-4107 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3804 (($ $ (-407 (-564))) NIL)) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1723 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1109)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1258 |#2|)) 38)) (-2775 (((-407 (-564)) $) NIL)) (-3888 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) NIL)) (-2327 (((-860) $) 62) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1164 |#1| |#2| |#3|)) 30) (($ (-1171 |#1| |#2| |#3|)) 31) (($ (-1258 |#2|)) 26) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2102 ((|#1| $ (-407 (-564))) NIL)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-3594 ((|#1| $) 12)) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 22 T CONST)) (-2322 (($) 16 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 24)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1170 |#1| |#2| |#3|) (-13 (-1245 |#1| (-1164 |#1| |#2| |#3|)) (-1036 (-1171 |#1| |#2| |#3|)) (-614 (-1258 |#2|)) (-10 -8 (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1170))
+((-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))))
+(-13 (-1245 |#1| (-1164 |#1| |#2| |#3|)) (-1036 (-1171 |#1| |#2| |#3|)) (-614 (-1258 |#2|)) (-10 -8 (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 131)) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) 121)) (-1762 (((-1235 |#2| |#1|) $ (-769)) 69)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1726 (($ $ (-769)) 85) (($ $ (-769) (-769)) 82)) (-2674 (((-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|))) $) 107)) (-3851 (($ $) 175 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|)))) 120) (($ (-1153 |#1|)) 115)) (-3875 (($ $) 179 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) 25)) (-2208 (($ $) 28)) (-3359 (((-950 |#1|) $ (-769)) 81) (((-950 |#1|) $ (-769) (-769)) 83)) (-1941 (((-112) $) 126)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-769) $) 128) (((-769) $ (-769)) 130)) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3267 (($ $ (-919)) NIL)) (-1502 (($ (-1 |#1| (-564)) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-769)) 13) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4107 (($ $) 135 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 136 (|has| |#1| (-38 (-407 (-564)))))) (-4033 (((-1117) $) NIL)) (-3804 (($ $ (-769)) 15)) (-2896 (((-3 $ "failed") $ $) 26 (|has| |#1| (-556)))) (-1723 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-769)))))) (-4368 ((|#1| $ (-769)) 124) (($ $ $) 134 (|has| (-769) (-1109)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $ (-1258 |#2|)) 31)) (-2775 (((-769) $) NIL)) (-3888 (($ $) 181 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 157 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 177 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) NIL)) (-2327 (((-860) $) 208) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1235 |#2| |#1|)) 55) (($ (-1258 |#2|)) 36)) (-3849 (((-1153 |#1|) $) 103)) (-2102 ((|#1| $ (-769)) 123)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-3594 ((|#1| $) 58)) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) 187 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 163 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) 183 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 191 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 167 (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-769)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-769)))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) 193 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 169 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 189 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 165 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 185 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 161 (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 17 T CONST)) (-2322 (($) 20 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) 200)) (-2974 (($ $ $) 35)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ |#1|) 205 (|has| |#1| (-363))) (($ $ $) 140 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 143 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1171 |#1| |#2| |#3|) (-13 (-1253 |#1|) (-10 -8 (-15 -2327 ($ (-1235 |#2| |#1|))) (-15 -1762 ((-1235 |#2| |#1|) $ (-769))) (-15 -2327 ($ (-1258 |#2|))) (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1171))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1235 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3) (-5 *1 (-1171 *3 *4 *5)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1235 *5 *4)) (-5 *1 (-1171 *4 *5 *6)) (-4 *4 (-1047)) (-14 *5 (-1173)) (-14 *6 *4))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))))
+(-13 (-1253 |#1|) (-10 -8 (-15 -2327 ($ (-1235 |#2| |#1|))) (-15 -1762 ((-1235 |#2| |#1|) $ (-769))) (-15 -2327 ($ (-1258 |#2|))) (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|)))
+((-2327 (((-860) $) 33) (($ (-1173)) 35)) (-2706 (($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 46)) (-2695 (($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39) (($ $) 40)) (-3001 (($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-2989 (($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 43)) (-2976 (($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 42)) (-2962 (($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 44)) (-2010 (($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 45)))
+(((-1172) (-13 (-611 (-860)) (-10 -8 (-15 -2327 ($ (-1173))) (-15 -3001 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2976 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2989 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2962 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2706 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2010 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2695 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2695 ($ $))))) (T -1172))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1172)))) (-3001 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2976 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2989 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2962 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2706 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2010 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172)))) (-5 *1 (-1172)))) (-2695 (*1 *1 *1) (-5 *1 (-1172))))
+(-13 (-611 (-860)) (-10 -8 (-15 -2327 ($ (-1173))) (-15 -3001 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2976 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2989 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2962 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2706 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2010 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2695 ($ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2695 ($ $))))
+((-2907 (((-112) $ $) NIL)) (-1756 (($ $ (-642 (-860))) 64)) (-3619 (($ $ (-642 (-860))) 62)) (-4287 (((-1155) $) 103)) (-2491 (((-2 (|:| -2435 (-642 (-860))) (|:| -3532 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -1969 (-642 (-860))) (|:| |args| (-642 (-860)))) $) 109)) (-1844 (((-112) $) 23)) (-1873 (($ $ (-642 (-642 (-860)))) 61) (($ $ (-2 (|:| -2435 (-642 (-860))) (|:| -3532 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -1969 (-642 (-860))) (|:| |args| (-642 (-860))))) 101)) (-1976 (($) 163 T CONST)) (-4304 (((-1267)) 137)) (-2453 (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 71) (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 78)) (-4227 (($) 123) (($ $) 132)) (-2461 (($ $) 102)) (-2755 (($ $ $) NIL)) (-1520 (($ $ $) NIL)) (-2421 (((-642 $) $) 138)) (-3315 (((-1155) $) 115)) (-4033 (((-1117) $) NIL)) (-4368 (($ $ (-642 (-860))) 63)) (-1314 (((-536) $) 48) (((-1173) $) 49) (((-890 (-564)) $) 82) (((-890 (-379)) $) 80)) (-2327 (((-860) $) 55) (($ (-1155)) 50)) (-1648 (((-112) $ $) NIL)) (-1581 (($ $ (-642 (-860))) 65)) (-1605 (((-1155) $) 34) (((-1155) $ (-112)) 35) (((-1267) (-820) $) 36) (((-1267) (-820) $ (-112)) 37)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 51)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) 52)))
+(((-1173) (-13 (-848) (-612 (-536)) (-826) (-612 (-1173)) (-614 (-1155)) (-612 (-890 (-564))) (-612 (-890 (-379))) (-884 (-564)) (-884 (-379)) (-10 -8 (-15 -4227 ($)) (-15 -4227 ($ $)) (-15 -4304 ((-1267))) (-15 -2461 ($ $)) (-15 -1844 ((-112) $)) (-15 -2491 ((-2 (|:| -2435 (-642 (-860))) (|:| -3532 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -1969 (-642 (-860))) (|:| |args| (-642 (-860)))) $)) (-15 -1873 ($ $ (-642 (-642 (-860))))) (-15 -1873 ($ $ (-2 (|:| -2435 (-642 (-860))) (|:| -3532 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -1969 (-642 (-860))) (|:| |args| (-642 (-860)))))) (-15 -3619 ($ $ (-642 (-860)))) (-15 -1756 ($ $ (-642 (-860)))) (-15 -1581 ($ $ (-642 (-860)))) (-15 -4368 ($ $ (-642 (-860)))) (-15 -4287 ((-1155) $)) (-15 -2421 ((-642 $) $)) (-15 -1976 ($) -2858)))) (T -1173))
+((-4227 (*1 *1) (-5 *1 (-1173))) (-4227 (*1 *1 *1) (-5 *1 (-1173))) (-4304 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1173)))) (-2461 (*1 *1 *1) (-5 *1 (-1173))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2435 (-642 (-860))) (|:| -3532 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -1969 (-642 (-860))) (|:| |args| (-642 (-860))))) (-5 *1 (-1173)))) (-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-642 (-860)))) (-5 *1 (-1173)))) (-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2435 (-642 (-860))) (|:| -3532 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -1969 (-642 (-860))) (|:| |args| (-642 (-860))))) (-5 *1 (-1173)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))) (-1581 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1173)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1173)))) (-1976 (*1 *1) (-5 *1 (-1173))))
+(-13 (-848) (-612 (-536)) (-826) (-612 (-1173)) (-614 (-1155)) (-612 (-890 (-564))) (-612 (-890 (-379))) (-884 (-564)) (-884 (-379)) (-10 -8 (-15 -4227 ($)) (-15 -4227 ($ $)) (-15 -4304 ((-1267))) (-15 -2461 ($ $)) (-15 -1844 ((-112) $)) (-15 -2491 ((-2 (|:| -2435 (-642 (-860))) (|:| -3532 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -1969 (-642 (-860))) (|:| |args| (-642 (-860)))) $)) (-15 -1873 ($ $ (-642 (-642 (-860))))) (-15 -1873 ($ $ (-2 (|:| -2435 (-642 (-860))) (|:| -3532 (-642 (-860))) (|:| |presup| (-642 (-860))) (|:| -1969 (-642 (-860))) (|:| |args| (-642 (-860)))))) (-15 -3619 ($ $ (-642 (-860)))) (-15 -1756 ($ $ (-642 (-860)))) (-15 -1581 ($ $ (-642 (-860)))) (-15 -4368 ($ $ (-642 (-860)))) (-15 -4287 ((-1155) $)) (-15 -2421 ((-642 $) $)) (-15 -1976 ($) -2858)))
+((-1884 (((-1262 |#1|) |#1| (-919)) 18) (((-1262 |#1|) (-642 |#1|)) 25)))
+(((-1174 |#1|) (-10 -7 (-15 -1884 ((-1262 |#1|) (-642 |#1|))) (-15 -1884 ((-1262 |#1|) |#1| (-919)))) (-1047)) (T -1174))
+((-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-5 *2 (-1262 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1047)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-1047)) (-5 *2 (-1262 *4)) (-5 *1 (-1174 *4)))))
+(-10 -7 (-15 -1884 ((-1262 |#1|) (-642 |#1|))) (-15 -1884 ((-1262 |#1|) |#1| (-919))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1036 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-3027 (((-564) $) NIL (|has| |#1| (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1036 (-407 (-564))))) ((|#1| $) NIL)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-452)))) (-2575 (($ $ |#1| (-969) $) NIL)) (-3953 (((-112) $) 17)) (-3934 (((-769) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-969)) NIL)) (-1398 (((-969) $) NIL)) (-2026 (($ (-1 (-969) (-969)) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 ((|#1| $) NIL)) (-2914 (($ $ (-969) |#1| $) NIL (-12 (|has| (-969) (-131)) (|has| |#1| (-556))))) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2775 (((-969) $) NIL)) (-4028 ((|#1| $) NIL (|has| |#1| (-452)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-2706 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1036 (-407 (-564))))))) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ (-969)) NIL)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#1| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2312 (($) 11 T CONST)) (-2322 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 21)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1175 |#1|) (-13 (-326 |#1| (-969)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-969) (-131)) (-15 -2914 ($ $ (-969) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|))) (-1047)) (T -1175))
+((-2914 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-969)) (-4 *2 (-131)) (-5 *1 (-1175 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))))
+(-13 (-326 |#1| (-969)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-969) (-131)) (-15 -2914 ($ $ (-969) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|)))
+((-3300 (((-1177) (-1173) $) 25)) (-1932 (($) 29)) (-1628 (((-3 (|:| |fst| (-434)) (|:| -1852 "void")) (-1173) $) 22)) (-2931 (((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -1852 "void")) $) 41) (((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) 42) (((-1267) (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) 43)) (-1536 (((-1267) (-1173)) 58)) (-1587 (((-1267) (-1173) $) 55) (((-1267) (-1173)) 56) (((-1267)) 57)) (-2082 (((-1267) (-1173)) 37)) (-3610 (((-1173)) 36)) (-2972 (($) 34)) (-4110 (((-437) (-1173) (-437) (-1173) $) 45) (((-437) (-642 (-1173)) (-437) (-1173) $) 49) (((-437) (-1173) (-437)) 46) (((-437) (-1173) (-437) (-1173)) 50)) (-4132 (((-1173)) 35)) (-2327 (((-860) $) 28)) (-3645 (((-1267)) 30) (((-1267) (-1173)) 33)) (-4146 (((-642 (-1173)) (-1173) $) 24)) (-2802 (((-1267) (-1173) (-642 (-1173)) $) 38) (((-1267) (-1173) (-642 (-1173))) 39) (((-1267) (-642 (-1173))) 40)))
+(((-1176) (-13 (-611 (-860)) (-10 -8 (-15 -1932 ($)) (-15 -3645 ((-1267))) (-15 -3645 ((-1267) (-1173))) (-15 -4110 ((-437) (-1173) (-437) (-1173) $)) (-15 -4110 ((-437) (-642 (-1173)) (-437) (-1173) $)) (-15 -4110 ((-437) (-1173) (-437))) (-15 -4110 ((-437) (-1173) (-437) (-1173))) (-15 -2082 ((-1267) (-1173))) (-15 -4132 ((-1173))) (-15 -3610 ((-1173))) (-15 -2802 ((-1267) (-1173) (-642 (-1173)) $)) (-15 -2802 ((-1267) (-1173) (-642 (-1173)))) (-15 -2802 ((-1267) (-642 (-1173)))) (-15 -2931 ((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -1852 "void")) $)) (-15 -2931 ((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -1852 "void")))) (-15 -2931 ((-1267) (-3 (|:| |fst| (-434)) (|:| -1852 "void")))) (-15 -1587 ((-1267) (-1173) $)) (-15 -1587 ((-1267) (-1173))) (-15 -1587 ((-1267))) (-15 -1536 ((-1267) (-1173))) (-15 -2972 ($)) (-15 -1628 ((-3 (|:| |fst| (-434)) (|:| -1852 "void")) (-1173) $)) (-15 -4146 ((-642 (-1173)) (-1173) $)) (-15 -3300 ((-1177) (-1173) $))))) (T -1176))
+((-1932 (*1 *1) (-5 *1 (-1176))) (-3645 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1176)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-4110 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176)))) (-4110 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-642 (-1173))) (-5 *4 (-1173)) (-5 *1 (-1176)))) (-4110 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176)))) (-4110 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-4132 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1176)))) (-3610 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1176)))) (-2802 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-2931 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1173)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-1587 (*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-1587 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1176)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))) (-2972 (*1 *1) (-5 *1 (-1176))) (-1628 (*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-5 *1 (-1176)))) (-4146 (*1 *2 *3 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1176)) (-5 *3 (-1173)))) (-3300 (*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-1177)) (-5 *1 (-1176)))))
+(-13 (-611 (-860)) (-10 -8 (-15 -1932 ($)) (-15 -3645 ((-1267))) (-15 -3645 ((-1267) (-1173))) (-15 -4110 ((-437) (-1173) (-437) (-1173) $)) (-15 -4110 ((-437) (-642 (-1173)) (-437) (-1173) $)) (-15 -4110 ((-437) (-1173) (-437))) (-15 -4110 ((-437) (-1173) (-437) (-1173))) (-15 -2082 ((-1267) (-1173))) (-15 -4132 ((-1173))) (-15 -3610 ((-1173))) (-15 -2802 ((-1267) (-1173) (-642 (-1173)) $)) (-15 -2802 ((-1267) (-1173) (-642 (-1173)))) (-15 -2802 ((-1267) (-642 (-1173)))) (-15 -2931 ((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -1852 "void")) $)) (-15 -2931 ((-1267) (-1173) (-3 (|:| |fst| (-434)) (|:| -1852 "void")))) (-15 -2931 ((-1267) (-3 (|:| |fst| (-434)) (|:| -1852 "void")))) (-15 -1587 ((-1267) (-1173) $)) (-15 -1587 ((-1267) (-1173))) (-15 -1587 ((-1267))) (-15 -1536 ((-1267) (-1173))) (-15 -2972 ($)) (-15 -1628 ((-3 (|:| |fst| (-434)) (|:| -1852 "void")) (-1173) $)) (-15 -4146 ((-642 (-1173)) (-1173) $)) (-15 -3300 ((-1177) (-1173) $))))
+((-4210 (((-642 (-642 (-3 (|:| -2461 (-1173)) (|:| -2673 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564))))))))) $) 66)) (-3599 (((-642 (-3 (|:| -2461 (-1173)) (|:| -2673 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564)))))))) (-434) $) 47)) (-1713 (($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-437))))) 17)) (-1536 (((-1267) $) 74)) (-3825 (((-642 (-1173)) $) 22)) (-1742 (((-1101) $) 60)) (-2895 (((-437) (-1173) $) 27)) (-4061 (((-642 (-1173)) $) 30)) (-2972 (($) 19)) (-4110 (((-437) (-642 (-1173)) (-437) $) 25) (((-437) (-1173) (-437) $) 24)) (-2327 (((-860) $) 9) (((-1185 (-1173) (-437)) $) 13)))
+(((-1177) (-13 (-611 (-860)) (-10 -8 (-15 -2327 ((-1185 (-1173) (-437)) $)) (-15 -2972 ($)) (-15 -4110 ((-437) (-642 (-1173)) (-437) $)) (-15 -4110 ((-437) (-1173) (-437) $)) (-15 -2895 ((-437) (-1173) $)) (-15 -3825 ((-642 (-1173)) $)) (-15 -3599 ((-642 (-3 (|:| -2461 (-1173)) (|:| -2673 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564)))))))) (-434) $)) (-15 -4061 ((-642 (-1173)) $)) (-15 -4210 ((-642 (-642 (-3 (|:| -2461 (-1173)) (|:| -2673 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564))))))))) $)) (-15 -1742 ((-1101) $)) (-15 -1536 ((-1267) $)) (-15 -1713 ($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-437))))))))) (T -1177))
+((-2327 (*1 *2 *1) (-12 (-5 *2 (-1185 (-1173) (-437))) (-5 *1 (-1177)))) (-2972 (*1 *1) (-5 *1 (-1177))) (-4110 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-642 (-1173))) (-5 *1 (-1177)))) (-4110 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1177)))) (-2895 (*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-437)) (-5 *1 (-1177)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1177)))) (-3599 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-642 (-3 (|:| -2461 (-1173)) (|:| -2673 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564))))))))) (-5 *1 (-1177)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1177)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-3 (|:| -2461 (-1173)) (|:| -2673 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564)))))))))) (-5 *1 (-1177)))) (-1742 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1177)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1177)))) (-1713 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-437))))) (-5 *1 (-1177)))))
+(-13 (-611 (-860)) (-10 -8 (-15 -2327 ((-1185 (-1173) (-437)) $)) (-15 -2972 ($)) (-15 -4110 ((-437) (-642 (-1173)) (-437) $)) (-15 -4110 ((-437) (-1173) (-437) $)) (-15 -2895 ((-437) (-1173) $)) (-15 -3825 ((-642 (-1173)) $)) (-15 -3599 ((-642 (-3 (|:| -2461 (-1173)) (|:| -2673 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564)))))))) (-434) $)) (-15 -4061 ((-642 (-1173)) $)) (-15 -4210 ((-642 (-642 (-3 (|:| -2461 (-1173)) (|:| -2673 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564))))))))) $)) (-15 -1742 ((-1101) $)) (-15 -1536 ((-1267) $)) (-15 -1713 ($ (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-437))))))))
+((-2907 (((-112) $ $) NIL)) (-4278 (((-3 (-564) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-506) "failed") $) 43) (((-3 (-1155) "failed") $) 47)) (-3027 (((-564) $) 30) (((-225) $) 36) (((-506) $) 40) (((-1155) $) 48)) (-2708 (((-112) $) 53)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-4382 (((-3 (-564) (-225) (-506) (-1155) $) $) 55)) (-3006 (((-642 $) $) 57)) (-1314 (((-1101) $) 24) (($ (-1101)) 25)) (-1813 (((-112) $) 56)) (-2327 (((-860) $) 23) (($ (-564)) 26) (($ (-225)) 32) (($ (-506)) 38) (($ (-1155)) 44) (((-536) $) 59) (((-564) $) 31) (((-225) $) 37) (((-506) $) 41) (((-1155) $) 49)) (-2305 (((-112) $ (|[\|\|]| (-564))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-506))) 19) (((-112) $ (|[\|\|]| (-1155))) 16)) (-1432 (($ (-506) (-642 $)) 51) (($ $ (-642 $)) 52)) (-1648 (((-112) $ $) NIL)) (-3939 (((-564) $) 27) (((-225) $) 33) (((-506) $) 39) (((-1155) $) 45)) (-2872 (((-112) $ $) 7)))
+(((-1178) (-13 (-1257) (-1097) (-1036 (-564)) (-1036 (-225)) (-1036 (-506)) (-1036 (-1155)) (-611 (-536)) (-10 -8 (-15 -1314 ((-1101) $)) (-15 -1314 ($ (-1101))) (-15 -2327 ((-564) $)) (-15 -3939 ((-564) $)) (-15 -2327 ((-225) $)) (-15 -3939 ((-225) $)) (-15 -2327 ((-506) $)) (-15 -3939 ((-506) $)) (-15 -2327 ((-1155) $)) (-15 -3939 ((-1155) $)) (-15 -1432 ($ (-506) (-642 $))) (-15 -1432 ($ $ (-642 $))) (-15 -2708 ((-112) $)) (-15 -4382 ((-3 (-564) (-225) (-506) (-1155) $) $)) (-15 -3006 ((-642 $) $)) (-15 -1813 ((-112) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-564)))) (-15 -2305 ((-112) $ (|[\|\|]| (-225)))) (-15 -2305 ((-112) $ (|[\|\|]| (-506)))) (-15 -2305 ((-112) $ (|[\|\|]| (-1155))))))) (T -1178))
+((-1314 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1178)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-1101)) (-5 *1 (-1178)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1178)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1178)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1178)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1178)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1178)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1178)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1178)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1178)))) (-1432 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-642 (-1178))) (-5 *1 (-1178)))) (-1432 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1178)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178)))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1155) (-1178))) (-5 *1 (-1178)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1178)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1178)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1178)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1178)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)) (-5 *1 (-1178)))))
+(-13 (-1257) (-1097) (-1036 (-564)) (-1036 (-225)) (-1036 (-506)) (-1036 (-1155)) (-611 (-536)) (-10 -8 (-15 -1314 ((-1101) $)) (-15 -1314 ($ (-1101))) (-15 -2327 ((-564) $)) (-15 -3939 ((-564) $)) (-15 -2327 ((-225) $)) (-15 -3939 ((-225) $)) (-15 -2327 ((-506) $)) (-15 -3939 ((-506) $)) (-15 -2327 ((-1155) $)) (-15 -3939 ((-1155) $)) (-15 -1432 ($ (-506) (-642 $))) (-15 -1432 ($ $ (-642 $))) (-15 -2708 ((-112) $)) (-15 -4382 ((-3 (-564) (-225) (-506) (-1155) $) $)) (-15 -3006 ((-642 $) $)) (-15 -1813 ((-112) $)) (-15 -2305 ((-112) $ (|[\|\|]| (-564)))) (-15 -2305 ((-112) $ (|[\|\|]| (-225)))) (-15 -2305 ((-112) $ (|[\|\|]| (-506)))) (-15 -2305 ((-112) $ (|[\|\|]| (-1155))))))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) 22)) (-1976 (($) 12 T CONST)) (-2433 (($) 27)) (-2755 (($ $ $) NIL) (($) 19 T CONST)) (-1520 (($ $ $) NIL) (($) 20 T CONST)) (-1945 (((-919) $) 24)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) 23)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-1179 |#1|) (-13 (-842) (-10 -8 (-15 -1976 ($) -2858))) (-919)) (T -1179))
+((-1976 (*1 *1) (-12 (-5 *1 (-1179 *2)) (-14 *2 (-919)))))
+(-13 (-842) (-10 -8 (-15 -1976 ($) -2858)))
((|Integer|) (NOT (< @1 (INTEGER-LENGTH |#1|))))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) 19 T CONST)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) 12 T CONST)) (-1497 (($ $ $) NIL) (($) 18 T CONST)) (-3256 (((-917) $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-2284 (($ $ $) 21)) (-2273 (($ $ $) 20)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-1177 |#1|) (-13 (-840) (-10 -8 (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959))) (-917)) (T -1177))
-((-2273 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917)))) (-4080 (*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917)))))
-(-13 (-840) (-10 -8 (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) 19 T CONST)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) 12 T CONST)) (-1520 (($ $ $) NIL) (($) 18 T CONST)) (-1945 (((-919) $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-2213 (($ $ $) 21)) (-2204 (($ $ $) 20)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-1180 |#1|) (-13 (-842) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858))) (-919)) (T -1180))
+((-2204 (*1 *1 *1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919)))) (-2213 (*1 *1 *1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919)))) (-1976 (*1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919)))))
+(-13 (-842) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))
((|NonNegativeInteger|) (NOT (< @1 (INTEGER-LENGTH |#1|))))
-((-3854 (((-641 (-641 (-948 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170))) 70)) (-4256 (((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|)))) 84) (((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|))) 80) (((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170)) 85) (((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170)) 79) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|))))) 112) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|)))) 111) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170))) 113) (((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|))) (-641 (-1170))) 110)))
-(((-1178 |#1|) (-10 -7 (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170)))) (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|))))) (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -4256 ((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170))) (-15 -4256 ((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -4256 ((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)))) (-15 -4256 ((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))))) (-15 -3854 ((-641 (-641 (-948 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170))))) (-556)) (T -1178))
-((-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-948 *5)))) (-5 *1 (-1178 *5)))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-948 *4)))))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-407 (-948 *4))))) (-4256 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-294 (-407 (-948 *5)))))) (-4256 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-407 (-948 *5))))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-948 *4))))))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-948 *4)))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-1178 *4)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-1178 *5)) (-5 *3 (-641 (-294 (-407 (-948 *5))))))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-1178 *5)))))
-(-10 -7 (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))) (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|)))) (-641 (-1170)))) (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-407 (-948 |#1|))))) (-15 -4256 ((-641 (-641 (-294 (-407 (-948 |#1|))))) (-641 (-294 (-407 (-948 |#1|)))))) (-15 -4256 ((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1170))) (-15 -4256 ((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1170))) (-15 -4256 ((-641 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)))) (-15 -4256 ((-641 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))))) (-15 -3854 ((-641 (-641 (-948 |#1|))) (-641 (-407 (-948 |#1|))) (-641 (-1170)))))
-((-2593 (((-1152)) 7)) (-4135 (((-1152)) 11 T CONST)) (-4247 (((-1264) (-1152)) 13)) (-2860 (((-1152)) 8 T CONST)) (-2978 (((-130)) 10 T CONST)))
-(((-1179) (-13 (-1209) (-10 -7 (-15 -2593 ((-1152))) (-15 -2860 ((-1152)) -2959) (-15 -2978 ((-130)) -2959) (-15 -4135 ((-1152)) -2959) (-15 -4247 ((-1264) (-1152)))))) (T -1179))
-((-2593 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-2860 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-2978 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179)))) (-4135 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-4247 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179)))))
-(-13 (-1209) (-10 -7 (-15 -2593 ((-1152))) (-15 -2860 ((-1152)) -2959) (-15 -2978 ((-130)) -2959) (-15 -4135 ((-1152)) -2959) (-15 -4247 ((-1264) (-1152)))))
-((-3337 (((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 55)) (-4139 (((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|))) 38)) (-3081 (((-1181 (-641 |#1|)) (-641 |#1|)) 49)) (-1831 (((-641 (-641 |#1|)) (-641 |#1|)) 45)) (-1907 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))) 52)) (-2346 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|)))) 51)) (-3434 (((-641 (-641 |#1|)) (-641 (-641 |#1|))) 43)) (-2540 (((-641 |#1|) (-641 |#1|)) 46)) (-1544 (((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 32)) (-1859 (((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 29)) (-2873 (((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|))) 24)) (-1550 (((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 57)) (-3438 (((-641 (-641 |#1|)) (-1181 (-641 |#1|))) 59)))
-(((-1180 |#1|) (-10 -7 (-15 -2873 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -1859 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -1544 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -3337 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -1550 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -3438 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -4139 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -3081 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -3434 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -1831 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -2540 ((-641 |#1|) (-641 |#1|))) (-15 -2346 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -1907 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))))) (-846)) (T -1180))
-((-1907 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4)))) (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4)))))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4)))))) (-2346 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-846)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5) (|:| |f4| (-641 *5)))) (-5 *1 (-1180 *6)) (-5 *4 (-641 *5)))) (-2540 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-1180 *3)))) (-1831 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-846)) (-5 *1 (-1180 *3)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-641 (-641 (-641 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4))))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-846)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)))) (-1550 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-4 *4 (-846)))) (-3337 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-4 *4 (-846)) (-5 *1 (-1180 *4)))) (-1544 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-846)) (-5 *1 (-1180 *4)))) (-1859 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-641 *5)) (-4 *5 (-846)) (-5 *1 (-1180 *5)))) (-2873 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-641 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4)))) (-5 *1 (-1180 *6)) (-5 *5 (-641 *4)))))
-(-10 -7 (-15 -2873 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -1859 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -1544 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -3337 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -1550 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -3438 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -4139 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -3081 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -3434 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -1831 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -2540 ((-641 |#1|) (-641 |#1|))) (-15 -2346 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -1907 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|))))))
-((-3675 (($ (-641 (-641 |#1|))) 10)) (-3587 (((-641 (-641 |#1|)) $) 11)) (-2423 (((-858) $) 38)))
-(((-1181 |#1|) (-10 -8 (-15 -3675 ($ (-641 (-641 |#1|)))) (-15 -3587 ((-641 (-641 |#1|)) $)) (-15 -2423 ((-858) $))) (-1094)) (T -1181))
-((-2423 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-3675 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3)))))
-(-10 -8 (-15 -3675 ($ (-641 (-641 |#1|)))) (-15 -3587 ((-641 (-641 |#1|)) $)) (-15 -2423 ((-858) $)))
-((-3009 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-4231 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-3236 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#2| $ |#1| |#2|) NIL)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2327 (((-3 |#2| "failed") |#1| $) NIL)) (-4080 (($) NIL T CONST)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-1945 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) NIL)) (-2591 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) NIL)) (-3035 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) NIL)) (-1956 ((|#1| $) NIL (|has| |#1| (-846)))) (-1554 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-641 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2898 ((|#1| $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3454 (((-641 |#1|) $) NIL)) (-3565 (((-112) |#1| $) NIL)) (-3149 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-2566 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-3050 (((-641 |#1|) $) NIL)) (-1563 (((-112) |#1| $) NIL)) (-4052 (((-1114) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2658 ((|#2| $) NIL (|has| |#1| (-846)))) (-2139 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL)) (-1592 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3853 (($) NIL) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-2423 (((-858) $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858))) (|has| |#2| (-611 (-858)))))) (-1860 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) NIL)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) NIL (-2807 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1182 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4407))) (-1094) (-1094)) (T -1182))
-NIL
-(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4407)))
-((-4018 ((|#1| (-641 |#1|)) 49)) (-3504 ((|#1| |#1| (-564)) 24)) (-2288 (((-1166 |#1|) |#1| (-917)) 20)))
-(((-1183 |#1|) (-10 -7 (-15 -4018 (|#1| (-641 |#1|))) (-15 -2288 ((-1166 |#1|) |#1| (-917))) (-15 -3504 (|#1| |#1| (-564)))) (-363)) (T -1183))
-((-3504 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-363)))) (-4018 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))))
-(-10 -7 (-15 -4018 (|#1| (-641 |#1|))) (-15 -2288 ((-1166 |#1|) |#1| (-917))) (-15 -3504 (|#1| |#1| (-564))))
-((-4231 (($) 10) (($ (-641 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)))) 14)) (-1945 (($ (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3035 (((-641 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) $) 39) (((-641 |#3|) $) 41)) (-2714 (($ (-1 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4357 (($ (-1 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3149 (((-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) $) 60)) (-2566 (($ (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) $) 16)) (-3050 (((-641 |#2|) $) 19)) (-1563 (((-112) |#2| $) 65)) (-2139 (((-3 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) "failed") (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) $) 64)) (-2554 (((-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) $) 69)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2075 (((-641 |#3|) $) 43)) (-4366 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) $) NIL) (((-767) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) $) NIL) (((-767) |#3| $) NIL) (((-767) (-1 (-112) |#3|) $) 79)) (-2423 (((-858) $) 27)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2974 (((-112) $ $) 51)))
-(((-1184 |#1| |#2| |#3|) (-10 -8 (-15 -2974 ((-112) |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -4357 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4231 (|#1| (-641 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))))) (-15 -4231 (|#1|)) (-15 -4357 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2714 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4377 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4062 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -3035 ((-641 |#3|) |#1|)) (-15 -4062 ((-767) |#3| |#1|)) (-15 -4366 (|#3| |#1| |#2| |#3|)) (-15 -4366 (|#3| |#1| |#2|)) (-15 -2075 ((-641 |#3|) |#1|)) (-15 -1563 ((-112) |#2| |#1|)) (-15 -3050 ((-641 |#2|) |#1|)) (-15 -1945 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1945 (|#1| (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -1945 (|#1| (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)) (-15 -2139 ((-3 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) "failed") (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -3149 ((-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)) (-15 -2566 (|#1| (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)) (-15 -2554 ((-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)) (-15 -4062 ((-767) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)) (-15 -3035 ((-641 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -4062 ((-767) (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -4377 ((-112) (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -1368 ((-112) (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -2714 (|#1| (-1 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -4357 (|#1| (-1 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|))) (-1185 |#2| |#3|) (-1094) (-1094)) (T -1184))
-NIL
-(-10 -8 (-15 -2974 ((-112) |#1| |#1|)) (-15 -2423 ((-858) |#1|)) (-15 -4357 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4231 (|#1| (-641 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))))) (-15 -4231 (|#1|)) (-15 -4357 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2714 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1368 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4377 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4062 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -3035 ((-641 |#3|) |#1|)) (-15 -4062 ((-767) |#3| |#1|)) (-15 -4366 (|#3| |#1| |#2| |#3|)) (-15 -4366 (|#3| |#1| |#2|)) (-15 -2075 ((-641 |#3|) |#1|)) (-15 -1563 ((-112) |#2| |#1|)) (-15 -3050 ((-641 |#2|) |#1|)) (-15 -1945 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1945 (|#1| (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -1945 (|#1| (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)) (-15 -2139 ((-3 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) "failed") (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -3149 ((-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)) (-15 -2566 (|#1| (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)) (-15 -2554 ((-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)) (-15 -4062 ((-767) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) |#1|)) (-15 -3035 ((-641 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -4062 ((-767) (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -4377 ((-112) (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -1368 ((-112) (-1 (-112) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -2714 (|#1| (-1 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)) (-15 -4357 (|#1| (-1 (-2 (|:| -1901 |#2|) (|:| -3813 |#3|)) (-2 (|:| -1901 |#2|) (|:| -3813 |#3|))) |#1|)))
-((-3009 (((-112) $ $) 19 (-2807 (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-4231 (($) 73) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 72)) (-3236 (((-1264) $ |#1| |#1|) 100 (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) 8)) (-3904 ((|#2| $ |#1| |#2|) 74)) (-1466 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 46 (|has| $ (-6 -4407)))) (-1667 (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 56 (|has| $ (-6 -4407)))) (-2327 (((-3 |#2| "failed") |#1| $) 62)) (-4080 (($) 7 T CONST)) (-2696 (($ $) 59 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407))))) (-1945 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 48 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 47 (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 63)) (-2591 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 55 (|has| $ (-6 -4407)))) (-1316 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 57 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 54 (|has| $ (-6 -4407))) (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 53 (|has| $ (-6 -4407)))) (-2726 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4408)))) (-2652 ((|#2| $ |#1|) 89)) (-3035 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 31 (|has| $ (-6 -4407))) (((-641 |#2|) $) 80 (|has| $ (-6 -4407)))) (-3097 (((-112) $ (-767)) 9)) (-1956 ((|#1| $) 97 (|has| |#1| (-846)))) (-1554 (((-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 30 (|has| $ (-6 -4407))) (((-641 |#2|) $) 81 (|has| $ (-6 -4407)))) (-3369 (((-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4407))))) (-2898 ((|#1| $) 96 (|has| |#1| (-846)))) (-2714 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 35 (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4408)))) (-4357 (($ (-1 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-3619 (((-112) $ (-767)) 10)) (-2766 (((-1152) $) 22 (-2807 (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-3454 (((-641 |#1|) $) 64)) (-3565 (((-112) |#1| $) 65)) (-3149 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 40)) (-2566 (($ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 41)) (-3050 (((-641 |#1|) $) 94)) (-1563 (((-112) |#1| $) 93)) (-4052 (((-1114) $) 21 (-2807 (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-2658 ((|#2| $) 98 (|has| |#1| (-846)))) (-2139 (((-3 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) "failed") (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 52)) (-1592 (($ $ |#2|) 99 (|has| $ (-6 -4408)))) (-2554 (((-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 42)) (-4377 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 33 (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))))) 27 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 26 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) 25 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 24 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1094))))) (-2075 (((-641 |#2|) $) 92)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3853 (($) 50) (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 49)) (-4062 (((-767) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 32 (|has| $ (-6 -4407))) (((-767) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| $ (-6 -4407)))) (((-767) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4407)))) (-3926 (($ $) 13)) (-1311 (((-536) $) 60 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))))) (-2435 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 51)) (-2423 (((-858) $) 18 (-2807 (|has| |#2| (-611 (-858))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858)))))) (-1860 (((-112) $ $) 23 (-2807 (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-1863 (($ (-641 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) 43)) (-1368 (((-112) (-1 (-112) (-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) $) 34 (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (-2807 (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-1185 |#1| |#2|) (-140) (-1094) (-1094)) (T -1185))
-((-3904 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-4231 (*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1901 *3) (|:| -3813 *4)))) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4)))) (-4357 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
-(-13 (-608 |t#1| |t#2|) (-602 |t#1| |t#2|) (-10 -8 (-15 -3904 (|t#2| $ |t#1| |t#2|)) (-15 -4231 ($)) (-15 -4231 ($ (-641 (-2 (|:| -1901 |t#1|) (|:| -3813 |t#2|))))) (-15 -4357 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -1901 |#1|) (|:| -3813 |#2|))) . T) ((-102) -2807 (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))) ((-611 (-858)) -2807 (|has| |#2| (-1094)) (|has| |#2| (-611 (-858))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-611 (-858)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-602 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-309 (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)))) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-1094) -2807 (|has| |#2| (-1094)) (|has| (-2 (|:| -1901 |#1|) (|:| -3813 |#2|)) (-1094))) ((-1209) . T))
-((-4359 (((-112)) 29)) (-3385 (((-1264) (-1152)) 31)) (-3093 (((-112)) 41)) (-3659 (((-1264)) 39)) (-2272 (((-1264) (-1152) (-1152)) 30)) (-1691 (((-112)) 42)) (-2566 (((-1264) |#1| |#2|) 53)) (-1692 (((-1264)) 27)) (-3184 (((-3 |#2| "failed") |#1|) 51)) (-3215 (((-1264)) 40)))
-(((-1186 |#1| |#2|) (-10 -7 (-15 -1692 ((-1264))) (-15 -2272 ((-1264) (-1152) (-1152))) (-15 -3385 ((-1264) (-1152))) (-15 -3659 ((-1264))) (-15 -3215 ((-1264))) (-15 -4359 ((-112))) (-15 -3093 ((-112))) (-15 -1691 ((-112))) (-15 -3184 ((-3 |#2| "failed") |#1|)) (-15 -2566 ((-1264) |#1| |#2|))) (-1094) (-1094)) (T -1186))
-((-2566 (*1 *2 *3 *4) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3184 (*1 *2 *3) (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094)))) (-1691 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3093 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4359 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3215 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3659 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-2272 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-1692 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
-(-10 -7 (-15 -1692 ((-1264))) (-15 -2272 ((-1264) (-1152) (-1152))) (-15 -3385 ((-1264) (-1152))) (-15 -3659 ((-1264))) (-15 -3215 ((-1264))) (-15 -4359 ((-112))) (-15 -3093 ((-112))) (-15 -1691 ((-112))) (-15 -3184 ((-3 |#2| "failed") |#1|)) (-15 -2566 ((-1264) |#1| |#2|)))
-((-2302 (((-1152) (-1152)) 22)) (-3301 (((-52) (-1152)) 25)))
-(((-1187) (-10 -7 (-15 -3301 ((-52) (-1152))) (-15 -2302 ((-1152) (-1152))))) (T -1187))
-((-2302 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187)))))
-(-10 -7 (-15 -3301 ((-52) (-1152))) (-15 -2302 ((-1152) (-1152))))
-((-2423 (((-1189) |#1|) 11)))
-(((-1188 |#1|) (-10 -7 (-15 -2423 ((-1189) |#1|))) (-1094)) (T -1188))
-((-2423 (*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094)))))
-(-10 -7 (-15 -2423 ((-1189) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1899 (((-641 (-1152)) $) 39)) (-3702 (((-641 (-1152)) $ (-641 (-1152))) 42)) (-2124 (((-641 (-1152)) $ (-641 (-1152))) 41)) (-2794 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-3281 (((-641 (-1152)) $) 38)) (-4238 (($) 26)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-4185 (((-641 (-1152)) $) 40)) (-1630 (((-1264) $ (-564)) 35) (((-1264) $) 36)) (-1311 (($ (-858) (-564)) 32) (($ (-858) (-564) (-858)) NIL)) (-2423 (((-858) $) 53) (($ (-858)) 31)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1189) (-13 (-1094) (-614 (-858)) (-10 -8 (-15 -1311 ($ (-858) (-564))) (-15 -1311 ($ (-858) (-564) (-858))) (-15 -1630 ((-1264) $ (-564))) (-15 -1630 ((-1264) $)) (-15 -4185 ((-641 (-1152)) $)) (-15 -1899 ((-641 (-1152)) $)) (-15 -4238 ($)) (-15 -3281 ((-641 (-1152)) $)) (-15 -2794 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -3702 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2124 ((-641 (-1152)) $ (-641 (-1152))))))) (T -1189))
-((-1311 (*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-1311 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-1630 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-4238 (*1 *1) (-5 *1 (-1189))) (-3281 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-2794 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-3702 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-2124 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(-13 (-1094) (-614 (-858)) (-10 -8 (-15 -1311 ($ (-858) (-564))) (-15 -1311 ($ (-858) (-564) (-858))) (-15 -1630 ((-1264) $ (-564))) (-15 -1630 ((-1264) $)) (-15 -4185 ((-641 (-1152)) $)) (-15 -1899 ((-641 (-1152)) $)) (-15 -4238 ($)) (-15 -3281 ((-641 (-1152)) $)) (-15 -2794 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -3702 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2124 ((-641 (-1152)) $ (-641 (-1152))))))
-((-3009 (((-112) $ $) NIL)) (-2464 (((-1152) $ (-1152)) 17) (((-1152) $) 16)) (-4079 (((-1152) $ (-1152)) 15)) (-3871 (($ $ (-1152)) NIL)) (-2712 (((-3 (-1152) "failed") $) 11)) (-3907 (((-1152) $) 8)) (-3687 (((-3 (-1152) "failed") $) 12)) (-1676 (((-1152) $) 9)) (-2319 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-2562 (((-388) $) NIL)) (-2766 (((-1152) $) NIL)) (-2058 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1496 (((-112) $) 21)) (-2423 (((-858) $) NIL)) (-3179 (($ $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1190) (-13 (-364 (-388) (-1152)) (-10 -8 (-15 -2464 ((-1152) $ (-1152))) (-15 -2464 ((-1152) $)) (-15 -3907 ((-1152) $)) (-15 -2712 ((-3 (-1152) "failed") $)) (-15 -3687 ((-3 (-1152) "failed") $)) (-15 -1496 ((-112) $))))) (T -1190))
-((-2464 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-2712 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3687 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))))
-(-13 (-364 (-388) (-1152)) (-10 -8 (-15 -2464 ((-1152) $ (-1152))) (-15 -2464 ((-1152) $)) (-15 -3907 ((-1152) $)) (-15 -2712 ((-3 (-1152) "failed") $)) (-15 -3687 ((-3 (-1152) "failed") $)) (-15 -1496 ((-112) $))))
-((-3249 (((-3 (-564) "failed") |#1|) 19)) (-4297 (((-3 (-564) "failed") |#1|) 14)) (-2389 (((-564) (-1152)) 33)))
-(((-1191 |#1|) (-10 -7 (-15 -3249 ((-3 (-564) "failed") |#1|)) (-15 -4297 ((-3 (-564) "failed") |#1|)) (-15 -2389 ((-564) (-1152)))) (-1045)) (T -1191))
-((-2389 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4)) (-4 *4 (-1045)))) (-4297 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1045)))) (-3249 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1045)))))
-(-10 -7 (-15 -3249 ((-3 (-564) "failed") |#1|)) (-15 -4297 ((-3 (-564) "failed") |#1|)) (-15 -2389 ((-564) (-1152))))
-((-2144 (((-1127 (-225))) 9)))
-(((-1192) (-10 -7 (-15 -2144 ((-1127 (-225)))))) (T -1192))
-((-2144 (*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192)))))
-(-10 -7 (-15 -2144 ((-1127 (-225)))))
-((-4274 (($) 12)) (-3949 (($ $) 36)) (-3925 (($ $) 34)) (-3787 (($ $) 26)) (-3972 (($ $) 18)) (-2784 (($ $) 16)) (-3960 (($ $) 20)) (-3825 (($ $) 31)) (-3937 (($ $) 35)) (-3799 (($ $) 30)))
-(((-1193 |#1|) (-10 -8 (-15 -4274 (|#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3972 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3799 (|#1| |#1|))) (-1194)) (T -1193))
-NIL
-(-10 -8 (-15 -4274 (|#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3972 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)))
-((-3880 (($ $) 26)) (-3745 (($ $) 11)) (-3858 (($ $) 27)) (-3722 (($ $) 10)) (-3902 (($ $) 28)) (-3766 (($ $) 9)) (-4274 (($) 16)) (-3657 (($ $) 19)) (-1689 (($ $) 18)) (-3914 (($ $) 29)) (-3777 (($ $) 8)) (-3891 (($ $) 30)) (-3756 (($ $) 7)) (-3869 (($ $) 31)) (-3735 (($ $) 6)) (-3949 (($ $) 20)) (-3811 (($ $) 32)) (-3925 (($ $) 21)) (-3787 (($ $) 33)) (-3972 (($ $) 22)) (-3837 (($ $) 34)) (-2784 (($ $) 23)) (-3848 (($ $) 35)) (-3960 (($ $) 24)) (-3825 (($ $) 36)) (-3937 (($ $) 25)) (-3799 (($ $) 37)) (** (($ $ $) 17)))
-(((-1194) (-140)) (T -1194))
-((-4274 (*1 *1) (-4 *1 (-1194))))
-(-13 (-1197) (-95) (-493) (-35) (-284) (-10 -8 (-15 -4274 ($))))
-(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-1197) . T))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2128 ((|#1| $) 19)) (-2185 (($ |#1| (-641 $)) 28) (($ (-641 |#1|)) 35) (($ |#1|) 30)) (-1876 (((-112) $ (-767)) 71)) (-2925 ((|#1| $ |#1|) 14 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 13 (|has| $ (-6 -4408)))) (-4080 (($) NIL T CONST)) (-3035 (((-641 |#1|) $) 75 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) 63)) (-1675 (((-112) $ $) 49 (|has| |#1| (-1094)))) (-3097 (((-112) $ (-767)) 61)) (-1554 (((-641 |#1|) $) 76 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2714 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 27)) (-3619 (((-112) $ (-767)) 60)) (-2730 (((-641 |#1|) $) 54)) (-1841 (((-112) $) 52)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4377 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 105)) (-1976 (((-112) $) 9)) (-2994 (($) 10)) (-4366 ((|#1| $ "value") NIL)) (-3277 (((-564) $ $) 48)) (-3390 (((-641 $) $) 88)) (-1652 (((-112) $ $) 108)) (-1938 (((-641 $) $) 103)) (-2095 (($ $) 104)) (-3206 (((-112) $) 83)) (-4062 (((-767) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4407))) (((-767) |#1| $) 17 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3926 (($ $) 87)) (-2423 (((-858) $) 90 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) 12)) (-4059 (((-112) $ $) 39 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 37 (|has| |#1| (-1094)))) (-2181 (((-767) $) 58 (|has| $ (-6 -4407)))))
-(((-1195 |#1|) (-13 (-1006 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -2185 ($ |#1| (-641 $))) (-15 -2185 ($ (-641 |#1|))) (-15 -2185 ($ |#1|)) (-15 -3206 ((-112) $)) (-15 -2095 ($ $)) (-15 -1938 ((-641 $) $)) (-15 -1652 ((-112) $ $)) (-15 -3390 ((-641 $) $)))) (-1094)) (T -1195))
-((-3206 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-2185 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3)))) (-2185 (*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2095 (*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-1652 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
-(-13 (-1006 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -2185 ($ |#1| (-641 $))) (-15 -2185 ($ (-641 |#1|))) (-15 -2185 ($ |#1|)) (-15 -3206 ((-112) $)) (-15 -2095 ($ $)) (-15 -1938 ((-641 $) $)) (-15 -1652 ((-112) $ $)) (-15 -3390 ((-641 $) $))))
-((-3745 (($ $) 15)) (-3766 (($ $) 12)) (-3777 (($ $) 10)) (-3756 (($ $) 17)))
-(((-1196 |#1|) (-10 -8 (-15 -3756 (|#1| |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -3745 (|#1| |#1|))) (-1197)) (T -1196))
-NIL
-(-10 -8 (-15 -3756 (|#1| |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)))
-((-3745 (($ $) 11)) (-3722 (($ $) 10)) (-3766 (($ $) 9)) (-3777 (($ $) 8)) (-3756 (($ $) 7)) (-3735 (($ $) 6)))
+((-3478 (((-642 (-642 (-950 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173))) 70)) (-1616 (((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|)))) 84) (((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|))) 80) (((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173)) 85) (((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173)) 79) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|))))) 112) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|)))) 111) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173))) 113) (((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|))) (-642 (-1173))) 110)))
+(((-1181 |#1|) (-10 -7 (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173)))) (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|))))) (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -1616 ((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173))) (-15 -1616 ((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -1616 ((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|)))) (-15 -1616 ((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|))))) (-15 -3478 ((-642 (-642 (-950 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173))))) (-556)) (T -1181))
+((-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-950 *5)))) (-5 *1 (-1181 *5)))) (-1616 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *4))))) (-5 *1 (-1181 *4)) (-5 *3 (-294 (-407 (-950 *4)))))) (-1616 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *4))))) (-5 *1 (-1181 *4)) (-5 *3 (-407 (-950 *4))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *5))))) (-5 *1 (-1181 *5)) (-5 *3 (-294 (-407 (-950 *5)))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *4 (-1173)) (-4 *5 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *5))))) (-5 *1 (-1181 *5)) (-5 *3 (-407 (-950 *5))))) (-1616 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-1181 *4)) (-5 *3 (-642 (-294 (-407 (-950 *4))))))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-642 (-407 (-950 *4)))) (-4 *4 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-1181 *4)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *4 (-642 (-1173))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-1181 *5)) (-5 *3 (-642 (-294 (-407 (-950 *5))))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173))) (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-1181 *5)))))
+(-10 -7 (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))) (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|)))) (-642 (-1173)))) (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-407 (-950 |#1|))))) (-15 -1616 ((-642 (-642 (-294 (-407 (-950 |#1|))))) (-642 (-294 (-407 (-950 |#1|)))))) (-15 -1616 ((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|)) (-1173))) (-15 -1616 ((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|))) (-1173))) (-15 -1616 ((-642 (-294 (-407 (-950 |#1|)))) (-407 (-950 |#1|)))) (-15 -1616 ((-642 (-294 (-407 (-950 |#1|)))) (-294 (-407 (-950 |#1|))))) (-15 -3478 ((-642 (-642 (-950 |#1|))) (-642 (-407 (-950 |#1|))) (-642 (-1173)))))
+((-2554 (((-1155)) 7)) (-1696 (((-1155)) 11 T CONST)) (-4236 (((-1267) (-1155)) 13)) (-1448 (((-1155)) 8 T CONST)) (-2191 (((-130)) 10 T CONST)))
+(((-1182) (-13 (-1212) (-10 -7 (-15 -2554 ((-1155))) (-15 -1448 ((-1155)) -2858) (-15 -2191 ((-130)) -2858) (-15 -1696 ((-1155)) -2858) (-15 -4236 ((-1267) (-1155)))))) (T -1182))
+((-2554 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182)))) (-1448 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182)))) (-2191 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1182)))) (-1696 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182)))) (-4236 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1182)))))
+(-13 (-1212) (-10 -7 (-15 -2554 ((-1155))) (-15 -1448 ((-1155)) -2858) (-15 -2191 ((-130)) -2858) (-15 -1696 ((-1155)) -2858) (-15 -4236 ((-1267) (-1155)))))
+((-2836 (((-642 (-642 |#1|)) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|)))) 55)) (-4294 (((-642 (-642 (-642 |#1|))) (-642 (-642 |#1|))) 38)) (-2608 (((-1184 (-642 |#1|)) (-642 |#1|)) 49)) (-3181 (((-642 (-642 |#1|)) (-642 |#1|)) 45)) (-1912 (((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 (-642 (-642 |#1|)))) 52)) (-4232 (((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 |#1|) (-642 (-642 (-642 |#1|))) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|)))) 51)) (-1514 (((-642 (-642 |#1|)) (-642 (-642 |#1|))) 43)) (-4168 (((-642 |#1|) (-642 |#1|)) 46)) (-1559 (((-642 (-642 (-642 |#1|))) (-642 |#1|) (-642 (-642 (-642 |#1|)))) 32)) (-1365 (((-642 (-642 (-642 |#1|))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 (-642 |#1|)))) 29)) (-3325 (((-2 (|:| |fs| (-112)) (|:| |sd| (-642 |#1|)) (|:| |td| (-642 (-642 |#1|)))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 |#1|))) 24)) (-2912 (((-642 (-642 |#1|)) (-642 (-642 (-642 |#1|)))) 57)) (-4161 (((-642 (-642 |#1|)) (-1184 (-642 |#1|))) 59)))
+(((-1183 |#1|) (-10 -7 (-15 -3325 ((-2 (|:| |fs| (-112)) (|:| |sd| (-642 |#1|)) (|:| |td| (-642 (-642 |#1|)))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 |#1|)))) (-15 -1365 ((-642 (-642 (-642 |#1|))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 (-642 |#1|))))) (-15 -1559 ((-642 (-642 (-642 |#1|))) (-642 |#1|) (-642 (-642 (-642 |#1|))))) (-15 -2836 ((-642 (-642 |#1|)) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))))) (-15 -2912 ((-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))))) (-15 -4161 ((-642 (-642 |#1|)) (-1184 (-642 |#1|)))) (-15 -4294 ((-642 (-642 (-642 |#1|))) (-642 (-642 |#1|)))) (-15 -2608 ((-1184 (-642 |#1|)) (-642 |#1|))) (-15 -1514 ((-642 (-642 |#1|)) (-642 (-642 |#1|)))) (-15 -3181 ((-642 (-642 |#1|)) (-642 |#1|))) (-15 -4168 ((-642 |#1|) (-642 |#1|))) (-15 -4232 ((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 |#1|) (-642 (-642 (-642 |#1|))) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|))))) (-15 -1912 ((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 (-642 (-642 |#1|)))))) (-848)) (T -1183))
+((-1912 (*1 *2 *3) (-12 (-4 *4 (-848)) (-5 *2 (-2 (|:| |f1| (-642 *4)) (|:| |f2| (-642 (-642 (-642 *4)))) (|:| |f3| (-642 (-642 *4))) (|:| |f4| (-642 (-642 (-642 *4)))))) (-5 *1 (-1183 *4)) (-5 *3 (-642 (-642 (-642 *4)))))) (-4232 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-848)) (-5 *3 (-642 *6)) (-5 *5 (-642 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-642 *5)) (|:| |f3| *5) (|:| |f4| (-642 *5)))) (-5 *1 (-1183 *6)) (-5 *4 (-642 *5)))) (-4168 (*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-1183 *3)))) (-3181 (*1 *2 *3) (-12 (-4 *4 (-848)) (-5 *2 (-642 (-642 *4))) (-5 *1 (-1183 *4)) (-5 *3 (-642 *4)))) (-1514 (*1 *2 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-848)) (-5 *1 (-1183 *3)))) (-2608 (*1 *2 *3) (-12 (-4 *4 (-848)) (-5 *2 (-1184 (-642 *4))) (-5 *1 (-1183 *4)) (-5 *3 (-642 *4)))) (-4294 (*1 *2 *3) (-12 (-4 *4 (-848)) (-5 *2 (-642 (-642 (-642 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-642 (-642 *4))))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-1184 (-642 *4))) (-4 *4 (-848)) (-5 *2 (-642 (-642 *4))) (-5 *1 (-1183 *4)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-642 (-642 (-642 *4)))) (-5 *2 (-642 (-642 *4))) (-5 *1 (-1183 *4)) (-4 *4 (-848)))) (-2836 (*1 *2 *2 *3) (-12 (-5 *3 (-642 (-642 (-642 *4)))) (-5 *2 (-642 (-642 *4))) (-4 *4 (-848)) (-5 *1 (-1183 *4)))) (-1559 (*1 *2 *3 *2) (-12 (-5 *2 (-642 (-642 (-642 *4)))) (-5 *3 (-642 *4)) (-4 *4 (-848)) (-5 *1 (-1183 *4)))) (-1365 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-642 (-642 (-642 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-642 *5)) (-4 *5 (-848)) (-5 *1 (-1183 *5)))) (-3325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-848)) (-5 *4 (-642 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-642 *4)))) (-5 *1 (-1183 *6)) (-5 *5 (-642 *4)))))
+(-10 -7 (-15 -3325 ((-2 (|:| |fs| (-112)) (|:| |sd| (-642 |#1|)) (|:| |td| (-642 (-642 |#1|)))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 |#1|)))) (-15 -1365 ((-642 (-642 (-642 |#1|))) (-1 (-112) |#1| |#1|) (-642 |#1|) (-642 (-642 (-642 |#1|))))) (-15 -1559 ((-642 (-642 (-642 |#1|))) (-642 |#1|) (-642 (-642 (-642 |#1|))))) (-15 -2836 ((-642 (-642 |#1|)) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))))) (-15 -2912 ((-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))))) (-15 -4161 ((-642 (-642 |#1|)) (-1184 (-642 |#1|)))) (-15 -4294 ((-642 (-642 (-642 |#1|))) (-642 (-642 |#1|)))) (-15 -2608 ((-1184 (-642 |#1|)) (-642 |#1|))) (-15 -1514 ((-642 (-642 |#1|)) (-642 (-642 |#1|)))) (-15 -3181 ((-642 (-642 |#1|)) (-642 |#1|))) (-15 -4168 ((-642 |#1|) (-642 |#1|))) (-15 -4232 ((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 |#1|) (-642 (-642 (-642 |#1|))) (-642 (-642 |#1|)) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|))) (-642 (-642 (-642 |#1|))))) (-15 -1912 ((-2 (|:| |f1| (-642 |#1|)) (|:| |f2| (-642 (-642 (-642 |#1|)))) (|:| |f3| (-642 (-642 |#1|))) (|:| |f4| (-642 (-642 (-642 |#1|))))) (-642 (-642 (-642 |#1|))))))
+((-1298 (($ (-642 (-642 |#1|))) 10)) (-1624 (((-642 (-642 |#1|)) $) 11)) (-2327 (((-860) $) 38)))
+(((-1184 |#1|) (-10 -8 (-15 -1298 ($ (-642 (-642 |#1|)))) (-15 -1624 ((-642 (-642 |#1|)) $)) (-15 -2327 ((-860) $))) (-1097)) (T -1184))
+((-2327 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-1184 *3)) (-4 *3 (-1097)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 *3))) (-5 *1 (-1184 *3)) (-4 *3 (-1097)))) (-1298 (*1 *1 *2) (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-1184 *3)))))
+(-10 -8 (-15 -1298 ($ (-642 (-642 |#1|)))) (-15 -1624 ((-642 (-642 |#1|)) $)) (-15 -2327 ((-860) $)))
+((-2907 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4218 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-1765 (((-1267) $ |#1| |#1|) NIL (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#2| $ |#1| |#2|) NIL)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2248 (((-3 |#2| "failed") |#1| $) NIL)) (-1976 (($) NIL T CONST)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2265 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) NIL)) (-2490 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) NIL)) (-2936 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) NIL)) (-2040 ((|#1| $) NIL (|has| |#1| (-848)))) (-3234 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-642 |#2|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-3421 ((|#1| $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-3393 (((-642 |#1|) $) NIL)) (-2835 (((-112) |#1| $) NIL)) (-2730 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3183 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-3997 (((-642 |#1|) $) NIL)) (-4145 (((-112) |#1| $) NIL)) (-4033 (((-1117) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2557 ((|#2| $) NIL (|has| |#1| (-848)))) (-3254 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL)) (-2696 (($ $ |#2|) NIL (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2593 (($) NIL) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) NIL (-12 (|has| $ (-6 -4410)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (((-769) |#2| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097)))) (((-769) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2327 (((-860) $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860))) (|has| |#2| (-611 (-860)))))) (-1648 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) NIL)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) NIL (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) NIL (-2706 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| |#2| (-1097))))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1185 |#1| |#2|) (-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410))) (-1097) (-1097)) (T -1185))
+NIL
+(-13 (-1188 |#1| |#2|) (-10 -7 (-6 -4410)))
+((-4054 ((|#1| (-642 |#1|)) 49)) (-2796 ((|#1| |#1| (-564)) 24)) (-3786 (((-1169 |#1|) |#1| (-919)) 20)))
+(((-1186 |#1|) (-10 -7 (-15 -4054 (|#1| (-642 |#1|))) (-15 -3786 ((-1169 |#1|) |#1| (-919))) (-15 -2796 (|#1| |#1| (-564)))) (-363)) (T -1186))
+((-2796 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1186 *2)) (-4 *2 (-363)))) (-3786 (*1 *2 *3 *4) (-12 (-5 *4 (-919)) (-5 *2 (-1169 *3)) (-5 *1 (-1186 *3)) (-4 *3 (-363)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-5 *1 (-1186 *2)) (-4 *2 (-363)))))
+(-10 -7 (-15 -4054 (|#1| (-642 |#1|))) (-15 -3786 ((-1169 |#1|) |#1| (-919))) (-15 -2796 (|#1| |#1| (-564))))
+((-4218 (($) 10) (($ (-642 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)))) 14)) (-2265 (($ (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2936 (((-642 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) $) 39) (((-642 |#3|) $) 41)) (-2613 (($ (-1 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4358 (($ (-1 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2730 (((-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) $) 60)) (-3183 (($ (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) $) 16)) (-3997 (((-642 |#2|) $) 19)) (-4145 (((-112) |#2| $) 65)) (-3254 (((-3 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) "failed") (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) $) 64)) (-3388 (((-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) $) 69)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2724 (((-642 |#3|) $) 43)) (-4368 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) $) NIL) (((-769) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) $) NIL) (((-769) |#3| $) NIL) (((-769) (-1 (-112) |#3|) $) 79)) (-2327 (((-860) $) 27)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2872 (((-112) $ $) 51)))
+(((-1187 |#1| |#2| |#3|) (-10 -8 (-15 -2872 ((-112) |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -4358 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4218 (|#1| (-642 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))))) (-15 -4218 (|#1|)) (-15 -4358 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2613 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2121 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4043 ((-769) (-1 (-112) |#3|) |#1|)) (-15 -2936 ((-642 |#3|) |#1|)) (-15 -4043 ((-769) |#3| |#1|)) (-15 -4368 (|#3| |#1| |#2| |#3|)) (-15 -4368 (|#3| |#1| |#2|)) (-15 -2724 ((-642 |#3|) |#1|)) (-15 -4145 ((-112) |#2| |#1|)) (-15 -3997 ((-642 |#2|) |#1|)) (-15 -2265 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2265 (|#1| (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -2265 (|#1| (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)) (-15 -3254 ((-3 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) "failed") (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -2730 ((-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)) (-15 -3183 (|#1| (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)) (-15 -3388 ((-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)) (-15 -4043 ((-769) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)) (-15 -2936 ((-642 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -4043 ((-769) (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -2121 ((-112) (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -2710 ((-112) (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -2613 (|#1| (-1 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -4358 (|#1| (-1 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|))) (-1188 |#2| |#3|) (-1097) (-1097)) (T -1187))
+NIL
+(-10 -8 (-15 -2872 ((-112) |#1| |#1|)) (-15 -2327 ((-860) |#1|)) (-15 -4358 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4218 (|#1| (-642 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))))) (-15 -4218 (|#1|)) (-15 -4358 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2613 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2710 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2121 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4043 ((-769) (-1 (-112) |#3|) |#1|)) (-15 -2936 ((-642 |#3|) |#1|)) (-15 -4043 ((-769) |#3| |#1|)) (-15 -4368 (|#3| |#1| |#2| |#3|)) (-15 -4368 (|#3| |#1| |#2|)) (-15 -2724 ((-642 |#3|) |#1|)) (-15 -4145 ((-112) |#2| |#1|)) (-15 -3997 ((-642 |#2|) |#1|)) (-15 -2265 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2265 (|#1| (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -2265 (|#1| (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)) (-15 -3254 ((-3 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) "failed") (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -2730 ((-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)) (-15 -3183 (|#1| (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)) (-15 -3388 ((-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)) (-15 -4043 ((-769) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) |#1|)) (-15 -2936 ((-642 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -4043 ((-769) (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -2121 ((-112) (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -2710 ((-112) (-1 (-112) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -2613 (|#1| (-1 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)) (-15 -4358 (|#1| (-1 (-2 (|:| -1907 |#2|) (|:| -3778 |#3|)) (-2 (|:| -1907 |#2|) (|:| -3778 |#3|))) |#1|)))
+((-2907 (((-112) $ $) 19 (-2706 (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-4218 (($) 73) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 72)) (-1765 (((-1267) $ |#1| |#1|) 100 (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) 8)) (-3877 ((|#2| $ |#1| |#2|) 74)) (-2462 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 46 (|has| $ (-6 -4410)))) (-1700 (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 56 (|has| $ (-6 -4410)))) (-2248 (((-3 |#2| "failed") |#1| $) 62)) (-1976 (($) 7 T CONST)) (-2595 (($ $) 59 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410))))) (-2265 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 48 (|has| $ (-6 -4410))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 47 (|has| $ (-6 -4410))) (((-3 |#2| "failed") |#1| $) 63)) (-2490 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 55 (|has| $ (-6 -4410)))) (-1320 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 57 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 54 (|has| $ (-6 -4410))) (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 53 (|has| $ (-6 -4410)))) (-2625 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4411)))) (-2551 ((|#2| $ |#1|) 89)) (-2936 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 31 (|has| $ (-6 -4410))) (((-642 |#2|) $) 80 (|has| $ (-6 -4410)))) (-3462 (((-112) $ (-769)) 9)) (-2040 ((|#1| $) 97 (|has| |#1| (-848)))) (-3234 (((-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 30 (|has| $ (-6 -4410))) (((-642 |#2|) $) 81 (|has| $ (-6 -4410)))) (-2776 (((-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410))))) (-3421 ((|#1| $) 96 (|has| |#1| (-848)))) (-2613 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 35 (|has| $ (-6 -4411))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4411)))) (-4358 (($ (-1 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-3576 (((-112) $ (-769)) 10)) (-3315 (((-1155) $) 22 (-2706 (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-3393 (((-642 |#1|) $) 64)) (-2835 (((-112) |#1| $) 65)) (-2730 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 40)) (-3183 (($ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 41)) (-3997 (((-642 |#1|) $) 94)) (-4145 (((-112) |#1| $) 93)) (-4033 (((-1117) $) 21 (-2706 (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2557 ((|#2| $) 98 (|has| |#1| (-848)))) (-3254 (((-3 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) "failed") (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 52)) (-2696 (($ $ |#2|) 99 (|has| $ (-6 -4411)))) (-3388 (((-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 42)) (-2121 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 33 (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))))) 27 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-294 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 26 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) 25 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 24 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)))) (($ $ (-642 |#2|) (-642 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-294 |#2|)) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097)))) (($ $ (-642 (-294 |#2|))) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4410)) (|has| |#2| (-1097))))) (-2724 (((-642 |#2|) $) 92)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2593 (($) 50) (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 49)) (-4043 (((-769) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 32 (|has| $ (-6 -4410))) (((-769) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| $ (-6 -4410)))) (((-769) |#2| $) 82 (-12 (|has| |#2| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4410)))) (-3901 (($ $) 13)) (-1314 (((-536) $) 60 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))))) (-2337 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 51)) (-2327 (((-860) $) 18 (-2706 (|has| |#2| (-611 (-860))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860)))))) (-1648 (((-112) $ $) 23 (-2706 (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-4386 (($ (-642 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) 43)) (-2710 (((-112) (-1 (-112) (-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) $) 34 (|has| $ (-6 -4410))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (-2706 (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-1188 |#1| |#2|) (-140) (-1097) (-1097)) (T -1188))
+((-3877 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))) (-4218 (*1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-642 (-2 (|:| -1907 *3) (|:| -3778 *4)))) (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *1 (-1188 *3 *4)))) (-4358 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))))
+(-13 (-608 |t#1| |t#2|) (-602 |t#1| |t#2|) (-10 -8 (-15 -3877 (|t#2| $ |t#1| |t#2|)) (-15 -4218 ($)) (-15 -4218 ($ (-642 (-2 (|:| -1907 |t#1|) (|:| -3778 |t#2|))))) (-15 -4358 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1907 |#1|) (|:| -3778 |#2|))) . T) ((-102) -2706 (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))) ((-611 (-860)) -2706 (|has| |#2| (-1097)) (|has| |#2| (-611 (-860))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-611 (-860)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-602 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-309 (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)))) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1097))) ((-608 |#1| |#2|) . T) ((-1097) -2706 (|has| |#2| (-1097)) (|has| (-2 (|:| -1907 |#1|) (|:| -3778 |#2|)) (-1097))) ((-1212) . T))
+((-3302 (((-112)) 29)) (-3361 (((-1267) (-1155)) 31)) (-1409 (((-112)) 41)) (-2341 (((-1267)) 39)) (-2029 (((-1267) (-1155) (-1155)) 30)) (-1498 (((-112)) 42)) (-3183 (((-1267) |#1| |#2|) 53)) (-3669 (((-1267)) 27)) (-2349 (((-3 |#2| "failed") |#1|) 51)) (-1545 (((-1267)) 40)))
+(((-1189 |#1| |#2|) (-10 -7 (-15 -3669 ((-1267))) (-15 -2029 ((-1267) (-1155) (-1155))) (-15 -3361 ((-1267) (-1155))) (-15 -2341 ((-1267))) (-15 -1545 ((-1267))) (-15 -3302 ((-112))) (-15 -1409 ((-112))) (-15 -1498 ((-112))) (-15 -2349 ((-3 |#2| "failed") |#1|)) (-15 -3183 ((-1267) |#1| |#2|))) (-1097) (-1097)) (T -1189))
+((-3183 (*1 *2 *3 *4) (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-2349 (*1 *2 *3) (|partial| -12 (-4 *2 (-1097)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-1097)))) (-1498 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-1409 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-3302 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-1545 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-2341 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1189 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097)))) (-2029 (*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1189 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097)))) (-3669 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097)))))
+(-10 -7 (-15 -3669 ((-1267))) (-15 -2029 ((-1267) (-1155) (-1155))) (-15 -3361 ((-1267) (-1155))) (-15 -2341 ((-1267))) (-15 -1545 ((-1267))) (-15 -3302 ((-112))) (-15 -1409 ((-112))) (-15 -1498 ((-112))) (-15 -2349 ((-3 |#2| "failed") |#1|)) (-15 -3183 ((-1267) |#1| |#2|)))
+((-3990 (((-1155) (-1155)) 22)) (-3985 (((-52) (-1155)) 25)))
+(((-1190) (-10 -7 (-15 -3985 ((-52) (-1155))) (-15 -3990 ((-1155) (-1155))))) (T -1190))
+((-3990 (*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1190)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-1190)))))
+(-10 -7 (-15 -3985 ((-52) (-1155))) (-15 -3990 ((-1155) (-1155))))
+((-2327 (((-1192) |#1|) 11)))
+(((-1191 |#1|) (-10 -7 (-15 -2327 ((-1192) |#1|))) (-1097)) (T -1191))
+((-2327 (*1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *1 (-1191 *3)) (-4 *3 (-1097)))))
+(-10 -7 (-15 -2327 ((-1192) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-1905 (((-642 (-1155)) $) 39)) (-4029 (((-642 (-1155)) $ (-642 (-1155))) 42)) (-2978 (((-642 (-1155)) $ (-642 (-1155))) 41)) (-3649 (((-642 (-1155)) $ (-642 (-1155))) 43)) (-4307 (((-642 (-1155)) $) 38)) (-4227 (($) 26)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2745 (((-642 (-1155)) $) 40)) (-1664 (((-1267) $ (-564)) 35) (((-1267) $) 36)) (-1314 (($ (-860) (-564)) 32) (($ (-860) (-564) (-860)) NIL)) (-2327 (((-860) $) 53) (($ (-860)) 31)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1192) (-13 (-1097) (-614 (-860)) (-10 -8 (-15 -1314 ($ (-860) (-564))) (-15 -1314 ($ (-860) (-564) (-860))) (-15 -1664 ((-1267) $ (-564))) (-15 -1664 ((-1267) $)) (-15 -2745 ((-642 (-1155)) $)) (-15 -1905 ((-642 (-1155)) $)) (-15 -4227 ($)) (-15 -4307 ((-642 (-1155)) $)) (-15 -3649 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -4029 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -2978 ((-642 (-1155)) $ (-642 (-1155))))))) (T -1192))
+((-1314 (*1 *1 *2 *3) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-1192)))) (-1314 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-1192)))) (-1664 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1192)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1192)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))) (-4227 (*1 *1) (-5 *1 (-1192))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))) (-3649 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))) (-4029 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))) (-2978 (*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))))
+(-13 (-1097) (-614 (-860)) (-10 -8 (-15 -1314 ($ (-860) (-564))) (-15 -1314 ($ (-860) (-564) (-860))) (-15 -1664 ((-1267) $ (-564))) (-15 -1664 ((-1267) $)) (-15 -2745 ((-642 (-1155)) $)) (-15 -1905 ((-642 (-1155)) $)) (-15 -4227 ($)) (-15 -4307 ((-642 (-1155)) $)) (-15 -3649 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -4029 ((-642 (-1155)) $ (-642 (-1155)))) (-15 -2978 ((-642 (-1155)) $ (-642 (-1155))))))
+((-2907 (((-112) $ $) NIL)) (-1692 (((-1155) $ (-1155)) 17) (((-1155) $) 16)) (-4143 (((-1155) $ (-1155)) 15)) (-2371 (($ $ (-1155)) NIL)) (-3269 (((-3 (-1155) "failed") $) 11)) (-3450 (((-1155) $) 8)) (-2757 (((-3 (-1155) "failed") $) 12)) (-3213 (((-1155) $) 9)) (-2241 (($ (-388)) NIL) (($ (-388) (-1155)) NIL)) (-2461 (((-388) $) NIL)) (-3315 (((-1155) $) NIL)) (-2446 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2499 (((-112) $) 21)) (-2327 (((-860) $) NIL)) (-2528 (($ $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1193) (-13 (-364 (-388) (-1155)) (-10 -8 (-15 -1692 ((-1155) $ (-1155))) (-15 -1692 ((-1155) $)) (-15 -3450 ((-1155) $)) (-15 -3269 ((-3 (-1155) "failed") $)) (-15 -2757 ((-3 (-1155) "failed") $)) (-15 -2499 ((-112) $))))) (T -1193))
+((-1692 (*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1193)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1193)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1193)))) (-3269 (*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-1193)))) (-2757 (*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-1193)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))))
+(-13 (-364 (-388) (-1155)) (-10 -8 (-15 -1692 ((-1155) $ (-1155))) (-15 -1692 ((-1155) $)) (-15 -3450 ((-1155) $)) (-15 -3269 ((-3 (-1155) "failed") $)) (-15 -2757 ((-3 (-1155) "failed") $)) (-15 -2499 ((-112) $))))
+((-2959 (((-3 (-564) "failed") |#1|) 19)) (-2533 (((-3 (-564) "failed") |#1|) 14)) (-2112 (((-564) (-1155)) 33)))
+(((-1194 |#1|) (-10 -7 (-15 -2959 ((-3 (-564) "failed") |#1|)) (-15 -2533 ((-3 (-564) "failed") |#1|)) (-15 -2112 ((-564) (-1155)))) (-1047)) (T -1194))
+((-2112 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-564)) (-5 *1 (-1194 *4)) (-4 *4 (-1047)))) (-2533 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1194 *3)) (-4 *3 (-1047)))) (-2959 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1194 *3)) (-4 *3 (-1047)))))
+(-10 -7 (-15 -2959 ((-3 (-564) "failed") |#1|)) (-15 -2533 ((-3 (-564) "failed") |#1|)) (-15 -2112 ((-564) (-1155))))
+((-3368 (((-1130 (-225))) 9)))
+(((-1195) (-10 -7 (-15 -3368 ((-1130 (-225)))))) (T -1195))
+((-3368 (*1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1195)))))
+(-10 -7 (-15 -3368 ((-1130 (-225)))))
+((-4265 (($) 12)) (-3926 (($ $) 36)) (-3900 (($ $) 34)) (-3750 (($ $) 26)) (-3951 (($ $) 18)) (-2683 (($ $) 16)) (-3938 (($ $) 20)) (-3791 (($ $) 31)) (-3913 (($ $) 35)) (-3763 (($ $) 30)))
+(((-1196 |#1|) (-10 -8 (-15 -4265 (|#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -2683 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3750 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3763 (|#1| |#1|))) (-1197)) (T -1196))
+NIL
+(-10 -8 (-15 -4265 (|#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -2683 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3750 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)))
+((-3851 (($ $) 26)) (-3704 (($ $) 11)) (-3827 (($ $) 27)) (-3679 (($ $) 10)) (-3875 (($ $) 28)) (-3727 (($ $) 9)) (-4265 (($) 16)) (-3612 (($ $) 19)) (-1723 (($ $) 18)) (-3888 (($ $) 29)) (-3739 (($ $) 8)) (-3863 (($ $) 30)) (-3716 (($ $) 7)) (-3839 (($ $) 31)) (-3693 (($ $) 6)) (-3926 (($ $) 20)) (-3776 (($ $) 32)) (-3900 (($ $) 21)) (-3750 (($ $) 33)) (-3951 (($ $) 22)) (-3803 (($ $) 34)) (-2683 (($ $) 23)) (-3816 (($ $) 35)) (-3938 (($ $) 24)) (-3791 (($ $) 36)) (-3913 (($ $) 25)) (-3763 (($ $) 37)) (** (($ $ $) 17)))
(((-1197) (-140)) (T -1197))
-((-3745 (*1 *1 *1) (-4 *1 (-1197))) (-3722 (*1 *1 *1) (-4 *1 (-1197))) (-3766 (*1 *1 *1) (-4 *1 (-1197))) (-3777 (*1 *1 *1) (-4 *1 (-1197))) (-3756 (*1 *1 *1) (-4 *1 (-1197))) (-3735 (*1 *1 *1) (-4 *1 (-1197))))
-(-13 (-10 -8 (-15 -3735 ($ $)) (-15 -3756 ($ $)) (-15 -3777 ($ $)) (-15 -3766 ($ $)) (-15 -3722 ($ $)) (-15 -3745 ($ $))))
-((-1549 ((|#2| |#2|) 98)) (-2466 (((-112) |#2|) 29)) (-3712 ((|#2| |#2|) 33)) (-3723 ((|#2| |#2|) 35)) (-2219 ((|#2| |#2| (-1170)) 92) ((|#2| |#2|) 93)) (-1481 (((-169 |#2|) |#2|) 31)) (-2752 ((|#2| |#2| (-1170)) 94) ((|#2| |#2|) 95)))
-(((-1198 |#1| |#2|) (-10 -7 (-15 -2219 (|#2| |#2|)) (-15 -2219 (|#2| |#2| (-1170))) (-15 -2752 (|#2| |#2|)) (-15 -2752 (|#2| |#2| (-1170))) (-15 -1549 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -3723 (|#2| |#2|)) (-15 -2466 ((-112) |#2|)) (-15 -1481 ((-169 |#2|) |#2|))) (-13 (-452) (-1034 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -1198))
-((-1481 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-2466 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3723 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2752 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2219 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
-(-10 -7 (-15 -2219 (|#2| |#2|)) (-15 -2219 (|#2| |#2| (-1170))) (-15 -2752 (|#2| |#2|)) (-15 -2752 (|#2| |#2| (-1170))) (-15 -1549 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -3723 (|#2| |#2|)) (-15 -2466 ((-112) |#2|)) (-15 -1481 ((-169 |#2|) |#2|)))
-((-3118 ((|#4| |#4| |#1|) 32)) (-3670 ((|#4| |#4| |#1|) 33)))
-(((-1199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3118 (|#4| |#4| |#1|)) (-15 -3670 (|#4| |#4| |#1|))) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1199))
-((-3670 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3118 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(-10 -7 (-15 -3118 (|#4| |#4| |#1|)) (-15 -3670 (|#4| |#4| |#1|)))
-((-2639 ((|#2| |#2|) 148)) (-4094 ((|#2| |#2|) 145)) (-3881 ((|#2| |#2|) 136)) (-2257 ((|#2| |#2|) 133)) (-2626 ((|#2| |#2|) 141)) (-3879 ((|#2| |#2|) 129)) (-3467 ((|#2| |#2|) 44)) (-2243 ((|#2| |#2|) 105)) (-1380 ((|#2| |#2|) 88)) (-1357 ((|#2| |#2|) 143)) (-3602 ((|#2| |#2|) 131)) (-3624 ((|#2| |#2|) 153)) (-3352 ((|#2| |#2|) 151)) (-2515 ((|#2| |#2|) 152)) (-3057 ((|#2| |#2|) 150)) (-2203 ((|#2| |#2|) 163)) (-3568 ((|#2| |#2|) 30 (-12 (|has| |#2| (-612 (-888 |#1|))) (|has| |#2| (-882 |#1|)) (|has| |#1| (-612 (-888 |#1|))) (|has| |#1| (-882 |#1|))))) (-3901 ((|#2| |#2|) 89)) (-2597 ((|#2| |#2|) 154)) (-1641 ((|#2| |#2|) 155)) (-2448 ((|#2| |#2|) 142)) (-2645 ((|#2| |#2|) 130)) (-2362 ((|#2| |#2|) 149)) (-1451 ((|#2| |#2|) 147)) (-1421 ((|#2| |#2|) 137)) (-2662 ((|#2| |#2|) 135)) (-3839 ((|#2| |#2|) 139)) (-1669 ((|#2| |#2|) 127)))
-(((-1200 |#1| |#2|) (-10 -7 (-15 -1641 (|#2| |#2|)) (-15 -1380 (|#2| |#2|)) (-15 -2203 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -3901 (|#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -1421 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -2645 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -3602 (|#2| |#2|)) (-15 -1357 (|#2| |#2|)) (-15 -3879 (|#2| |#2|)) (-15 -2626 (|#2| |#2|)) (-15 -3881 (|#2| |#2|)) (-15 -2639 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -3057 (|#2| |#2|)) (-15 -3352 (|#2| |#2|)) (-15 -2515 (|#2| |#2|)) (-15 -3624 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-612 (-888 |#1|))) (IF (|has| |#2| (-612 (-888 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -3568 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-452) (-13 (-430 |#1|) (-1194))) (T -1200))
-((-3568 (*1 *2 *2) (-12 (-4 *3 (-612 (-888 *3))) (-4 *3 (-882 *3)) (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-612 (-888 *3))) (-4 *2 (-882 *3)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2515 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3352 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2639 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3881 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3879 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1357 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3602 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2645 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2362 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1421 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2597 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2203 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1380 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1641 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))))
-(-10 -7 (-15 -1641 (|#2| |#2|)) (-15 -1380 (|#2| |#2|)) (-15 -2203 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -3901 (|#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -1421 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -2645 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -3602 (|#2| |#2|)) (-15 -1357 (|#2| |#2|)) (-15 -3879 (|#2| |#2|)) (-15 -2626 (|#2| |#2|)) (-15 -3881 (|#2| |#2|)) (-15 -2639 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -3057 (|#2| |#2|)) (-15 -3352 (|#2| |#2|)) (-15 -2515 (|#2| |#2|)) (-15 -3624 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-612 (-888 |#1|))) (IF (|has| |#2| (-612 (-888 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -3568 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-3631 (((-112) |#5| $) 68) (((-112) $) 110)) (-3494 ((|#5| |#5| $) 83)) (-1667 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2961 (((-641 |#5|) (-641 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-4284 (((-3 $ "failed") (-641 |#5|)) 135)) (-2671 (((-3 $ "failed") $) 120)) (-2405 ((|#5| |#5| $) 102)) (-3870 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-2248 ((|#5| |#5| $) 106)) (-1316 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-4020 (((-2 (|:| -1604 (-641 |#5|)) (|:| -2319 (-641 |#5|))) $) 63)) (-2675 (((-112) |#5| $) 66) (((-112) $) 111)) (-3378 ((|#4| $) 116)) (-2615 (((-3 |#5| "failed") $) 118)) (-3167 (((-641 |#5|) $) 55)) (-3441 (((-112) |#5| $) 75) (((-112) $) 115)) (-4241 ((|#5| |#5| $) 89)) (-2582 (((-112) $ $) 29)) (-1929 (((-112) |#5| $) 71) (((-112) $) 113)) (-3347 ((|#5| |#5| $) 86)) (-2658 (((-3 |#5| "failed") $) 117)) (-4016 (($ $ |#5|) 136)) (-1568 (((-767) $) 60)) (-2435 (($ (-641 |#5|)) 133)) (-1834 (($ $ |#4|) 131)) (-1648 (($ $ |#4|) 129)) (-1492 (($ $) 128)) (-2423 (((-858) $) NIL) (((-641 |#5|) $) 121)) (-3840 (((-767) $) 140)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3212 (((-112) $ (-1 (-112) |#5| (-641 |#5|))) 108)) (-3579 (((-641 |#4|) $) 123)) (-1816 (((-112) |#4| $) 126)) (-2974 (((-112) $ $) 20)))
-(((-1201 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3840 ((-767) |#1|)) (-15 -4016 (|#1| |#1| |#5|)) (-15 -1667 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1816 ((-112) |#4| |#1|)) (-15 -3579 ((-641 |#4|) |#1|)) (-15 -2671 ((-3 |#1| "failed") |#1|)) (-15 -2615 ((-3 |#5| "failed") |#1|)) (-15 -2658 ((-3 |#5| "failed") |#1|)) (-15 -2248 (|#5| |#5| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -2405 (|#5| |#5| |#1|)) (-15 -4241 (|#5| |#5| |#1|)) (-15 -3347 (|#5| |#5| |#1|)) (-15 -3494 (|#5| |#5| |#1|)) (-15 -2961 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1316 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3441 ((-112) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -3631 ((-112) |#1|)) (-15 -3212 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -3441 ((-112) |#5| |#1|)) (-15 -1929 ((-112) |#5| |#1|)) (-15 -3631 ((-112) |#5| |#1|)) (-15 -3870 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2675 ((-112) |#1|)) (-15 -2675 ((-112) |#5| |#1|)) (-15 -4020 ((-2 (|:| -1604 (-641 |#5|)) (|:| -2319 (-641 |#5|))) |#1|)) (-15 -1568 ((-767) |#1|)) (-15 -3167 ((-641 |#5|) |#1|)) (-15 -3576 ((-3 (-2 (|:| |bas| |#1|) (|:| -2462 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3576 ((-3 (-2 (|:| |bas| |#1|) (|:| -2462 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2582 ((-112) |#1| |#1|)) (-15 -1834 (|#1| |#1| |#4|)) (-15 -1648 (|#1| |#1| |#4|)) (-15 -3378 (|#4| |#1|)) (-15 -4284 ((-3 |#1| "failed") (-641 |#5|))) (-15 -2423 ((-641 |#5|) |#1|)) (-15 -2435 (|#1| (-641 |#5|))) (-15 -1316 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1316 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1667 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1316 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|))) (-1202 |#2| |#3| |#4| |#5|) (-556) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1201))
-NIL
-(-10 -8 (-15 -3840 ((-767) |#1|)) (-15 -4016 (|#1| |#1| |#5|)) (-15 -1667 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1816 ((-112) |#4| |#1|)) (-15 -3579 ((-641 |#4|) |#1|)) (-15 -2671 ((-3 |#1| "failed") |#1|)) (-15 -2615 ((-3 |#5| "failed") |#1|)) (-15 -2658 ((-3 |#5| "failed") |#1|)) (-15 -2248 (|#5| |#5| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -2405 (|#5| |#5| |#1|)) (-15 -4241 (|#5| |#5| |#1|)) (-15 -3347 (|#5| |#5| |#1|)) (-15 -3494 (|#5| |#5| |#1|)) (-15 -2961 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1316 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3441 ((-112) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -3631 ((-112) |#1|)) (-15 -3212 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -3441 ((-112) |#5| |#1|)) (-15 -1929 ((-112) |#5| |#1|)) (-15 -3631 ((-112) |#5| |#1|)) (-15 -3870 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2675 ((-112) |#1|)) (-15 -2675 ((-112) |#5| |#1|)) (-15 -4020 ((-2 (|:| -1604 (-641 |#5|)) (|:| -2319 (-641 |#5|))) |#1|)) (-15 -1568 ((-767) |#1|)) (-15 -3167 ((-641 |#5|) |#1|)) (-15 -3576 ((-3 (-2 (|:| |bas| |#1|) (|:| -2462 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3576 ((-3 (-2 (|:| |bas| |#1|) (|:| -2462 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2582 ((-112) |#1| |#1|)) (-15 -1834 (|#1| |#1| |#4|)) (-15 -1648 (|#1| |#1| |#4|)) (-15 -3378 (|#4| |#1|)) (-15 -4284 ((-3 |#1| "failed") (-641 |#5|))) (-15 -2423 ((-641 |#5|) |#1|)) (-15 -2435 (|#1| (-641 |#5|))) (-15 -1316 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1316 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1667 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1316 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2423 ((-858) |#1|)) (-15 -2974 ((-112) |#1| |#1|)))
-((-3009 (((-112) $ $) 7)) (-3605 (((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 |#4|)))) (-641 |#4|)) 86)) (-2578 (((-641 $) (-641 |#4|)) 87)) (-3836 (((-641 |#3|) $) 34)) (-3342 (((-112) $) 27)) (-1594 (((-112) $) 18 (|has| |#1| (-556)))) (-3631 (((-112) |#4| $) 102) (((-112) $) 98)) (-3494 ((|#4| |#4| $) 93)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) 28)) (-1876 (((-112) $ (-767)) 45)) (-1667 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 80)) (-4080 (($) 46 T CONST)) (-1968 (((-112) $) 23 (|has| |#1| (-556)))) (-2238 (((-112) $ $) 25 (|has| |#1| (-556)))) (-3956 (((-112) $ $) 24 (|has| |#1| (-556)))) (-1489 (((-112) $) 26 (|has| |#1| (-556)))) (-2961 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3703 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) 20 (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) 37)) (-3120 (($ (-641 |#4|)) 36)) (-2671 (((-3 $ "failed") $) 83)) (-2405 ((|#4| |#4| $) 90)) (-2696 (($ $) 69 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#4| $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3870 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2248 ((|#4| |#4| $) 88)) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4020 (((-2 (|:| -1604 (-641 |#4|)) (|:| -2319 (-641 |#4|))) $) 106)) (-3035 (((-641 |#4|) $) 53 (|has| $ (-6 -4407)))) (-2675 (((-112) |#4| $) 105) (((-112) $) 104)) (-3378 ((|#3| $) 35)) (-3097 (((-112) $ (-767)) 44)) (-1554 (((-641 |#4|) $) 54 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) 48)) (-2814 (((-641 |#3|) $) 33)) (-3169 (((-112) |#3| $) 32)) (-3619 (((-112) $ (-767)) 43)) (-2766 (((-1152) $) 10)) (-2615 (((-3 |#4| "failed") $) 84)) (-3167 (((-641 |#4|) $) 108)) (-3441 (((-112) |#4| $) 100) (((-112) $) 96)) (-4241 ((|#4| |#4| $) 91)) (-2582 (((-112) $ $) 111)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-1929 (((-112) |#4| $) 101) (((-112) $) 97)) (-3347 ((|#4| |#4| $) 92)) (-4052 (((-1114) $) 11)) (-2658 (((-3 |#4| "failed") $) 85)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2533 (((-3 $ "failed") $ |#4|) 79)) (-4016 (($ $ |#4|) 78)) (-4377 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) 39)) (-1976 (((-112) $) 42)) (-2994 (($) 41)) (-1568 (((-767) $) 107)) (-4062 (((-767) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4407)))) (-3926 (($ $) 40)) (-1311 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2435 (($ (-641 |#4|)) 61)) (-1834 (($ $ |#3|) 29)) (-1648 (($ $ |#3|) 31)) (-1492 (($ $) 89)) (-2577 (($ $ |#3|) 30)) (-2423 (((-858) $) 12) (((-641 |#4|) $) 38)) (-3840 (((-767) $) 77 (|has| |#3| (-368)))) (-1860 (((-112) $ $) 9)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3212 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 99)) (-1368 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-3579 (((-641 |#3|) $) 82)) (-1816 (((-112) |#3| $) 81)) (-2974 (((-112) $ $) 6)) (-2181 (((-767) $) 47 (|has| $ (-6 -4407)))))
-(((-1202 |#1| |#2| |#3| |#4|) (-140) (-556) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1202))
-((-2582 (*1 *2 *1 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3576 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2462 (-641 *8)))) (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8)))) (-3576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2462 (-641 *9)))) (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9)))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *6)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-2 (|:| -1604 (-641 *6)) (|:| -2319 (-641 *6)))))) (-2675 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3870 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)))) (-3631 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1929 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3441 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3212 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-1316 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7)))) (-2961 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)))) (-3494 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3347 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4241 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2405 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1492 (*1 *1 *1) (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-2248 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2578 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-3605 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| -1604 *1) (|:| -2319 (-641 *7))))) (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-2658 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2615 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2671 (*1 *1 *1) (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5)))) (-1816 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-1667 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3)))) (-2533 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4016 (*1 *1 *1 *2) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-767)))))
-(-13 (-972 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -2582 ((-112) $ $)) (-15 -3576 ((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3576 ((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3167 ((-641 |t#4|) $)) (-15 -1568 ((-767) $)) (-15 -4020 ((-2 (|:| -1604 (-641 |t#4|)) (|:| -2319 (-641 |t#4|))) $)) (-15 -2675 ((-112) |t#4| $)) (-15 -2675 ((-112) $)) (-15 -3870 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3631 ((-112) |t#4| $)) (-15 -1929 ((-112) |t#4| $)) (-15 -3441 ((-112) |t#4| $)) (-15 -3212 ((-112) $ (-1 (-112) |t#4| (-641 |t#4|)))) (-15 -3631 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -3441 ((-112) $)) (-15 -1316 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2961 ((-641 |t#4|) (-641 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3494 (|t#4| |t#4| $)) (-15 -3347 (|t#4| |t#4| $)) (-15 -4241 (|t#4| |t#4| $)) (-15 -2405 (|t#4| |t#4| $)) (-15 -1492 ($ $)) (-15 -2248 (|t#4| |t#4| $)) (-15 -2578 ((-641 $) (-641 |t#4|))) (-15 -3605 ((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 |t#4|)))) (-641 |t#4|))) (-15 -2658 ((-3 |t#4| "failed") $)) (-15 -2615 ((-3 |t#4| "failed") $)) (-15 -2671 ((-3 $ "failed") $)) (-15 -3579 ((-641 |t#3|) $)) (-15 -1816 ((-112) |t#3| $)) (-15 -1667 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2533 ((-3 $ "failed") $ |t#4|)) (-15 -4016 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -3840 ((-767) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-858)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1209) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-1170)) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-3880 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3858 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-3423 (((-948 |#1|) $ (-767)) 20) (((-948 |#1|) $ (-767) (-767)) NIL)) (-4243 (((-112) $) NIL)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-767) $ (-1170)) NIL) (((-767) $ (-1170) (-767)) NIL)) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4003 (((-112) $) NIL)) (-3810 (($ $ (-641 (-1170)) (-641 (-531 (-1170)))) NIL) (($ $ (-1170) (-531 (-1170))) NIL) (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-2070 (($ $ (-1170)) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4052 (((-1114) $) NIL)) (-4340 (($ (-1 $) (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4016 (($ $ (-767)) NIL)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1689 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3291 (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-3254 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-1568 (((-531 (-1170)) $) NIL)) (-3914 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-1170)) NIL) (($ (-948 |#1|)) NIL)) (-2007 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (((-948 |#1|) $ (-767)) NIL)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2784 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) NIL T CONST)) (-2417 (($) NIL T CONST)) (-4063 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1203 |#1|) (-13 (-736 |#1| (-1170)) (-10 -8 (-15 -2007 ((-948 |#1|) $ (-767))) (-15 -2423 ($ (-1170))) (-15 -2423 ($ (-948 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ($ $ (-1170) |#1|)) (-15 -4340 ($ (-1 $) (-1170) |#1|))) |%noBranch|))) (-1045)) (T -1203))
-((-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-948 *4)) (-5 *1 (-1203 *4)) (-4 *4 (-1045)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1045)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-5 *1 (-1203 *3)))) (-2070 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)))) (-4340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1045)))))
-(-13 (-736 |#1| (-1170)) (-10 -8 (-15 -2007 ((-948 |#1|) $ (-767))) (-15 -2423 ($ (-1170))) (-15 -2423 ($ (-948 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ($ $ (-1170) |#1|)) (-15 -4340 ($ (-1 $) (-1170) |#1|))) |%noBranch|)))
-((-3473 (($ |#1| (-641 (-641 (-939 (-225)))) (-112)) 19)) (-2495 (((-112) $ (-112)) 18)) (-3341 (((-112) $) 17)) (-3706 (((-641 (-641 (-939 (-225)))) $) 13)) (-3733 ((|#1| $) 8)) (-4217 (((-112) $) 15)))
-(((-1204 |#1|) (-10 -8 (-15 -3733 (|#1| $)) (-15 -3706 ((-641 (-641 (-939 (-225)))) $)) (-15 -4217 ((-112) $)) (-15 -3341 ((-112) $)) (-15 -2495 ((-112) $ (-112))) (-15 -3473 ($ |#1| (-641 (-641 (-939 (-225)))) (-112)))) (-970)) (T -1204))
-((-3473 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-112)) (-5 *1 (-1204 *2)) (-4 *2 (-970)))) (-2495 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-1204 *3)) (-4 *3 (-970)))) (-3733 (*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-970)))))
-(-10 -8 (-15 -3733 (|#1| $)) (-15 -3706 ((-641 (-641 (-939 (-225)))) $)) (-15 -4217 ((-112) $)) (-15 -3341 ((-112) $)) (-15 -2495 ((-112) $ (-112))) (-15 -3473 ($ |#1| (-641 (-641 (-939 (-225)))) (-112))))
-((-3586 (((-939 (-225)) (-939 (-225))) 31)) (-2770 (((-939 (-225)) (-225) (-225) (-225) (-225)) 10)) (-3522 (((-641 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-641 (-641 (-225)))) 60)) (-3270 (((-225) (-939 (-225)) (-939 (-225))) 27)) (-3015 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 28)) (-3912 (((-641 (-641 (-225))) (-564)) 48)) (-3082 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 26)) (-3070 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 24)) (* (((-939 (-225)) (-225) (-939 (-225))) 22)))
-(((-1205) (-10 -7 (-15 -2770 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -3070 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3082 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3270 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -3015 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3586 ((-939 (-225)) (-939 (-225)))) (-15 -3912 ((-641 (-641 (-225))) (-564))) (-15 -3522 ((-641 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-641 (-641 (-225))))))) (T -1205))
-((-3522 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 (-939 *4))) (-5 *1 (-1205)) (-5 *3 (-939 *4)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205)))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) (-3015 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) (-3270 (*1 *2 *3 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1205)))) (-3082 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) (-3070 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1205)))) (-2770 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)) (-5 *3 (-225)))))
-(-10 -7 (-15 -2770 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -3070 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3082 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3270 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -3015 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3586 ((-939 (-225)) (-939 (-225)))) (-15 -3912 ((-641 (-641 (-225))) (-564))) (-15 -3522 ((-641 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-641 (-641 (-225))))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1667 ((|#1| $ (-767)) 18)) (-2581 (((-767) $) 13)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2423 (((-954 |#1|) $) 12) (($ (-954 |#1|)) 11) (((-858) $) 29 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2974 (((-112) $ $) 22 (|has| |#1| (-1094)))))
-(((-1206 |#1|) (-13 (-490 (-954 |#1|)) (-10 -8 (-15 -1667 (|#1| $ (-767))) (-15 -2581 ((-767) $)) (IF (|has| |#1| (-611 (-858))) (-6 (-611 (-858))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1206))
-((-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-1206 *2)) (-4 *2 (-1209)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1206 *3)) (-4 *3 (-1209)))))
-(-13 (-490 (-954 |#1|)) (-10 -8 (-15 -1667 (|#1| $ (-767))) (-15 -2581 ((-767) $)) (IF (|has| |#1| (-611 (-858))) (-6 (-611 (-858))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
-((-1867 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)) 96)) (-4068 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 88)) (-4310 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 70)))
-(((-1207 |#1|) (-10 -7 (-15 -4068 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -4310 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -1867 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)))) (-349)) (T -1207))
-((-1867 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5)))) (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5))))) (-4310 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))) (-4068 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))))
-(-10 -7 (-15 -4068 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -4310 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -1867 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 9) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1208) (-1077)) (T -1208))
-NIL
-(-1077)
-NIL
-(((-1209) (-140)) (T -1209))
-NIL
-(-13 (-10 -7 (-6 -3615)))
-((-4303 (((-112)) 18)) (-3743 (((-1264) (-641 |#1|) (-641 |#1|)) 22) (((-1264) (-641 |#1|)) 23)) (-3097 (((-112) |#1| |#1|) 38 (|has| |#1| (-846)))) (-3619 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-1680 ((|#1| (-641 |#1|)) 39 (|has| |#1| (-846))) ((|#1| (-641 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-4351 (((-2 (|:| -2600 (-641 |#1|)) (|:| -3479 (-641 |#1|)))) 20)))
-(((-1210 |#1|) (-10 -7 (-15 -3743 ((-1264) (-641 |#1|))) (-15 -3743 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -4351 ((-2 (|:| -2600 (-641 |#1|)) (|:| -3479 (-641 |#1|))))) (-15 -3619 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3619 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1680 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4303 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -1680 (|#1| (-641 |#1|))) (-15 -3097 ((-112) |#1| |#1|))) |%noBranch|)) (-1094)) (T -1210))
-((-3097 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-846)) (-4 *3 (-1094)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-846)) (-5 *1 (-1210 *2)))) (-4303 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-1680 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-1094)))) (-3619 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112)) (-5 *1 (-1210 *3)))) (-3619 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-4351 (*1 *2) (-12 (-5 *2 (-2 (|:| -2600 (-641 *3)) (|:| -3479 (-641 *3)))) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-3743 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4)))))
-(-10 -7 (-15 -3743 ((-1264) (-641 |#1|))) (-15 -3743 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -4351 ((-2 (|:| -2600 (-641 |#1|)) (|:| -3479 (-641 |#1|))))) (-15 -3619 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3619 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1680 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4303 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -1680 (|#1| (-641 |#1|))) (-15 -3097 ((-112) |#1| |#1|))) |%noBranch|))
-((-2670 (((-1264) (-641 (-1170)) (-641 (-1170))) 14) (((-1264) (-641 (-1170))) 12)) (-1814 (((-1264)) 16)) (-2102 (((-2 (|:| -3479 (-641 (-1170))) (|:| -2600 (-641 (-1170))))) 20)))
-(((-1211) (-10 -7 (-15 -2670 ((-1264) (-641 (-1170)))) (-15 -2670 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -2102 ((-2 (|:| -3479 (-641 (-1170))) (|:| -2600 (-641 (-1170)))))) (-15 -1814 ((-1264))))) (T -1211))
-((-1814 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211)))) (-2102 (*1 *2) (-12 (-5 *2 (-2 (|:| -3479 (-641 (-1170))) (|:| -2600 (-641 (-1170))))) (-5 *1 (-1211)))) (-2670 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))))
-(-10 -7 (-15 -2670 ((-1264) (-641 (-1170)))) (-15 -2670 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -2102 ((-2 (|:| -3479 (-641 (-1170))) (|:| -2600 (-641 (-1170)))))) (-15 -1814 ((-1264))))
-((-2683 (($ $) 17)) (-1339 (((-112) $) 28)))
-(((-1212 |#1|) (-10 -8 (-15 -2683 (|#1| |#1|)) (-15 -1339 ((-112) |#1|))) (-1213)) (T -1212))
-NIL
-(-10 -8 (-15 -2683 (|#1| |#1|)) (-15 -1339 ((-112) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 53)) (-2753 (((-418 $) $) 54)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-1339 (((-112) $) 55)) (-4112 (((-112) $) 32)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-3688 (((-418 $) $) 52)) (-2998 (((-3 $ "failed") $ $) 44)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25)))
-(((-1213) (-140)) (T -1213))
-((-1339 (*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) (-2683 (*1 *1 *1) (-4 *1 (-1213))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))))
-(-13 (-452) (-10 -8 (-15 -1339 ((-112) $)) (-15 -2753 ((-418 $) $)) (-15 -2683 ($ $)) (-15 -3688 ((-418 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) NIL T CONST)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-3256 (((-917) $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-2284 (($ $ $) NIL)) (-2273 (($ $ $) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-1214) (-13 (-840) (-10 -8 (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))) (T -1214))
-((-2273 (*1 *1 *1 *1) (-5 *1 (-1214))) (-2284 (*1 *1 *1 *1) (-5 *1 (-1214))) (-4080 (*1 *1) (-5 *1 (-1214))))
-(-13 (-840) (-10 -8 (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))
+((-4265 (*1 *1) (-4 *1 (-1197))))
+(-13 (-1200) (-95) (-493) (-35) (-284) (-10 -8 (-15 -4265 ($))))
+(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-1200) . T))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2085 ((|#1| $) 19)) (-2131 (($ |#1| (-642 $)) 28) (($ (-642 |#1|)) 35) (($ |#1|) 30)) (-3697 (((-112) $ (-769)) 71)) (-3070 ((|#1| $ |#1|) 14 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 13 (|has| $ (-6 -4411)))) (-1976 (($) NIL T CONST)) (-2936 (((-642 |#1|) $) 75 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) 63)) (-1847 (((-112) $ $) 49 (|has| |#1| (-1097)))) (-3462 (((-112) $ (-769)) 61)) (-3234 (((-642 |#1|) $) 76 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2613 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 27)) (-3576 (((-112) $ (-769)) 60)) (-2628 (((-642 |#1|) $) 54)) (-2376 (((-112) $) 52)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2121 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 105)) (-3719 (((-112) $) 9)) (-2972 (($) 10)) (-4368 ((|#1| $ "value") NIL)) (-2137 (((-564) $ $) 48)) (-2294 (((-642 $) $) 88)) (-2257 (((-112) $ $) 108)) (-3034 (((-642 $) $) 103)) (-3908 (($ $) 104)) (-1392 (((-112) $) 83)) (-4043 (((-769) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4410))) (((-769) |#1| $) 17 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3901 (($ $) 87)) (-2327 (((-860) $) 90 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) 12)) (-3820 (((-112) $ $) 39 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 37 (|has| |#1| (-1097)))) (-2127 (((-769) $) 58 (|has| $ (-6 -4410)))))
+(((-1198 |#1|) (-13 (-1008 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -2131 ($ |#1| (-642 $))) (-15 -2131 ($ (-642 |#1|))) (-15 -2131 ($ |#1|)) (-15 -1392 ((-112) $)) (-15 -3908 ($ $)) (-15 -3034 ((-642 $) $)) (-15 -2257 ((-112) $ $)) (-15 -2294 ((-642 $) $)))) (-1097)) (T -1198))
+((-1392 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))) (-2131 (*1 *1 *2 *3) (-12 (-5 *3 (-642 (-1198 *2))) (-5 *1 (-1198 *2)) (-4 *2 (-1097)))) (-2131 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-1198 *3)))) (-2131 (*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1097)))) (-3908 (*1 *1 *1) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1097)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-642 (-1198 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))) (-2257 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))) (-2294 (*1 *2 *1) (-12 (-5 *2 (-642 (-1198 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))))
+(-13 (-1008 |#1|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -2131 ($ |#1| (-642 $))) (-15 -2131 ($ (-642 |#1|))) (-15 -2131 ($ |#1|)) (-15 -1392 ((-112) $)) (-15 -3908 ($ $)) (-15 -3034 ((-642 $) $)) (-15 -2257 ((-112) $ $)) (-15 -2294 ((-642 $) $))))
+((-3704 (($ $) 15)) (-3727 (($ $) 12)) (-3739 (($ $) 10)) (-3716 (($ $) 17)))
+(((-1199 |#1|) (-10 -8 (-15 -3716 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3704 (|#1| |#1|))) (-1200)) (T -1199))
+NIL
+(-10 -8 (-15 -3716 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3704 (|#1| |#1|)))
+((-3704 (($ $) 11)) (-3679 (($ $) 10)) (-3727 (($ $) 9)) (-3739 (($ $) 8)) (-3716 (($ $) 7)) (-3693 (($ $) 6)))
+(((-1200) (-140)) (T -1200))
+((-3704 (*1 *1 *1) (-4 *1 (-1200))) (-3679 (*1 *1 *1) (-4 *1 (-1200))) (-3727 (*1 *1 *1) (-4 *1 (-1200))) (-3739 (*1 *1 *1) (-4 *1 (-1200))) (-3716 (*1 *1 *1) (-4 *1 (-1200))) (-3693 (*1 *1 *1) (-4 *1 (-1200))))
+(-13 (-10 -8 (-15 -3693 ($ $)) (-15 -3716 ($ $)) (-15 -3739 ($ $)) (-15 -3727 ($ $)) (-15 -3679 ($ $)) (-15 -3704 ($ $))))
+((-2320 ((|#2| |#2|) 98)) (-1647 (((-112) |#2|) 29)) (-3668 ((|#2| |#2|) 33)) (-3680 ((|#2| |#2|) 35)) (-1578 ((|#2| |#2| (-1173)) 92) ((|#2| |#2|) 93)) (-3227 (((-169 |#2|) |#2|) 31)) (-2279 ((|#2| |#2| (-1173)) 94) ((|#2| |#2|) 95)))
+(((-1201 |#1| |#2|) (-10 -7 (-15 -1578 (|#2| |#2|)) (-15 -1578 (|#2| |#2| (-1173))) (-15 -2279 (|#2| |#2|)) (-15 -2279 (|#2| |#2| (-1173))) (-15 -2320 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -1647 ((-112) |#2|)) (-15 -3227 ((-169 |#2|) |#2|))) (-13 (-452) (-1036 (-564)) (-637 (-564))) (-13 (-27) (-1197) (-430 |#1|))) (T -1201))
+((-3227 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-169 *3)) (-5 *1 (-1201 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-1647 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-1201 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))) (-3680 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) (-2279 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))) (-1578 (*1 *2 *2 *3) (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))))
+(-10 -7 (-15 -1578 (|#2| |#2|)) (-15 -1578 (|#2| |#2| (-1173))) (-15 -2279 (|#2| |#2|)) (-15 -2279 (|#2| |#2| (-1173))) (-15 -2320 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -1647 ((-112) |#2|)) (-15 -3227 ((-169 |#2|) |#2|)))
+((-1375 ((|#4| |#4| |#1|) 32)) (-2149 ((|#4| |#4| |#1|) 33)))
+(((-1202 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1375 (|#4| |#4| |#1|)) (-15 -2149 (|#4| |#4| |#1|))) (-556) (-373 |#1|) (-373 |#1|) (-685 |#1| |#2| |#3|)) (T -1202))
+((-2149 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1202 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))) (-1375 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1202 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))))
+(-10 -7 (-15 -1375 (|#4| |#4| |#1|)) (-15 -2149 (|#4| |#4| |#1|)))
+((-1567 ((|#2| |#2|) 148)) (-2494 ((|#2| |#2|) 145)) (-1592 ((|#2| |#2|) 136)) (-2353 ((|#2| |#2|) 133)) (-2947 ((|#2| |#2|) 141)) (-2766 ((|#2| |#2|) 129)) (-4198 ((|#2| |#2|) 44)) (-2569 ((|#2| |#2|) 105)) (-3640 ((|#2| |#2|) 88)) (-2108 ((|#2| |#2|) 143)) (-2764 ((|#2| |#2|) 131)) (-2019 ((|#2| |#2|) 153)) (-3303 ((|#2| |#2|) 151)) (-1862 ((|#2| |#2|) 152)) (-2994 ((|#2| |#2|) 150)) (-1994 ((|#2| |#2|) 163)) (-1423 ((|#2| |#2|) 30 (-12 (|has| |#2| (-612 (-890 |#1|))) (|has| |#2| (-884 |#1|)) (|has| |#1| (-612 (-890 |#1|))) (|has| |#1| (-884 |#1|))))) (-2083 ((|#2| |#2|) 89)) (-1348 ((|#2| |#2|) 154)) (-1675 ((|#2| |#2|) 155)) (-3323 ((|#2| |#2|) 142)) (-1781 ((|#2| |#2|) 130)) (-2223 ((|#2| |#2|) 149)) (-1324 ((|#2| |#2|) 147)) (-2139 ((|#2| |#2|) 137)) (-2266 ((|#2| |#2|) 135)) (-2975 ((|#2| |#2|) 139)) (-4367 ((|#2| |#2|) 127)))
+(((-1203 |#1| |#2|) (-10 -7 (-15 -1675 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -1994 (|#2| |#2|)) (-15 -2569 (|#2| |#2|)) (-15 -4198 (|#2| |#2|)) (-15 -2083 (|#2| |#2|)) (-15 -1348 (|#2| |#2|)) (-15 -4367 (|#2| |#2|)) (-15 -2975 (|#2| |#2|)) (-15 -2139 (|#2| |#2|)) (-15 -2223 (|#2| |#2|)) (-15 -1781 (|#2| |#2|)) (-15 -3323 (|#2| |#2|)) (-15 -2764 (|#2| |#2|)) (-15 -2108 (|#2| |#2|)) (-15 -2766 (|#2| |#2|)) (-15 -2947 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -1324 (|#2| |#2|)) (-15 -2994 (|#2| |#2|)) (-15 -3303 (|#2| |#2|)) (-15 -1862 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (IF (|has| |#1| (-884 |#1|)) (IF (|has| |#1| (-612 (-890 |#1|))) (IF (|has| |#2| (-612 (-890 |#1|))) (IF (|has| |#2| (-884 |#1|)) (-15 -1423 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-452) (-13 (-430 |#1|) (-1197))) (T -1203))
+((-1423 (*1 *2 *2) (-12 (-4 *3 (-612 (-890 *3))) (-4 *3 (-884 *3)) (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-612 (-890 *3))) (-4 *2 (-884 *3)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2019 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3303 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2994 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1324 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2494 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2947 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2766 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2108 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3323 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1781 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2223 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2139 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2975 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-4367 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1348 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2083 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-4198 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-2569 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))) (-1675 (*1 *2 *2) (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-430 *3) (-1197))))))
+(-10 -7 (-15 -1675 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -1994 (|#2| |#2|)) (-15 -2569 (|#2| |#2|)) (-15 -4198 (|#2| |#2|)) (-15 -2083 (|#2| |#2|)) (-15 -1348 (|#2| |#2|)) (-15 -4367 (|#2| |#2|)) (-15 -2975 (|#2| |#2|)) (-15 -2139 (|#2| |#2|)) (-15 -2223 (|#2| |#2|)) (-15 -1781 (|#2| |#2|)) (-15 -3323 (|#2| |#2|)) (-15 -2764 (|#2| |#2|)) (-15 -2108 (|#2| |#2|)) (-15 -2766 (|#2| |#2|)) (-15 -2947 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -1324 (|#2| |#2|)) (-15 -2994 (|#2| |#2|)) (-15 -3303 (|#2| |#2|)) (-15 -1862 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (IF (|has| |#1| (-884 |#1|)) (IF (|has| |#1| (-612 (-890 |#1|))) (IF (|has| |#2| (-612 (-890 |#1|))) (IF (|has| |#2| (-884 |#1|)) (-15 -1423 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3831 (((-112) |#5| $) 68) (((-112) $) 110)) (-3923 ((|#5| |#5| $) 83)) (-1700 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-1975 (((-642 |#5|) (-642 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-4278 (((-3 $ "failed") (-642 |#5|)) 135)) (-2570 (((-3 $ "failed") $) 120)) (-1493 ((|#5| |#5| $) 102)) (-1597 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-1821 ((|#5| |#5| $) 106)) (-1320 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1738 (((-2 (|:| -1639 (-642 |#5|)) (|:| -2241 (-642 |#5|))) $) 63)) (-2846 (((-112) |#5| $) 66) (((-112) $) 111)) (-3290 ((|#4| $) 116)) (-2514 (((-3 |#5| "failed") $) 118)) (-2743 (((-642 |#5|) $) 55)) (-3350 (((-112) |#5| $) 75) (((-112) $) 115)) (-1415 ((|#5| |#5| $) 89)) (-3819 (((-112) $ $) 29)) (-2262 (((-112) |#5| $) 71) (((-112) $) 113)) (-1372 ((|#5| |#5| $) 86)) (-2557 (((-3 |#5| "failed") $) 117)) (-3804 (($ $ |#5|) 136)) (-2775 (((-769) $) 60)) (-2337 (($ (-642 |#5|)) 133)) (-3153 (($ $ |#4|) 131)) (-3696 (($ $ |#4|) 129)) (-3114 (($ $) 128)) (-2327 (((-860) $) NIL) (((-642 |#5|) $) 121)) (-4195 (((-769) $) 140)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3497 (((-112) $ (-1 (-112) |#5| (-642 |#5|))) 108)) (-2240 (((-642 |#4|) $) 123)) (-1362 (((-112) |#4| $) 126)) (-2872 (((-112) $ $) 20)))
+(((-1204 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4195 ((-769) |#1|)) (-15 -3804 (|#1| |#1| |#5|)) (-15 -1700 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1362 ((-112) |#4| |#1|)) (-15 -2240 ((-642 |#4|) |#1|)) (-15 -2570 ((-3 |#1| "failed") |#1|)) (-15 -2514 ((-3 |#5| "failed") |#1|)) (-15 -2557 ((-3 |#5| "failed") |#1|)) (-15 -1821 (|#5| |#5| |#1|)) (-15 -3114 (|#1| |#1|)) (-15 -1493 (|#5| |#5| |#1|)) (-15 -1415 (|#5| |#5| |#1|)) (-15 -1372 (|#5| |#5| |#1|)) (-15 -3923 (|#5| |#5| |#1|)) (-15 -1975 ((-642 |#5|) (-642 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1320 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3350 ((-112) |#1|)) (-15 -2262 ((-112) |#1|)) (-15 -3831 ((-112) |#1|)) (-15 -3497 ((-112) |#1| (-1 (-112) |#5| (-642 |#5|)))) (-15 -3350 ((-112) |#5| |#1|)) (-15 -2262 ((-112) |#5| |#1|)) (-15 -3831 ((-112) |#5| |#1|)) (-15 -1597 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2846 ((-112) |#1|)) (-15 -2846 ((-112) |#5| |#1|)) (-15 -1738 ((-2 (|:| -1639 (-642 |#5|)) (|:| -2241 (-642 |#5|))) |#1|)) (-15 -2775 ((-769) |#1|)) (-15 -2743 ((-642 |#5|) |#1|)) (-15 -2232 ((-3 (-2 (|:| |bas| |#1|) (|:| -2362 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2232 ((-3 (-2 (|:| |bas| |#1|) (|:| -2362 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3819 ((-112) |#1| |#1|)) (-15 -3153 (|#1| |#1| |#4|)) (-15 -3696 (|#1| |#1| |#4|)) (-15 -3290 (|#4| |#1|)) (-15 -4278 ((-3 |#1| "failed") (-642 |#5|))) (-15 -2327 ((-642 |#5|) |#1|)) (-15 -2337 (|#1| (-642 |#5|))) (-15 -1320 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1320 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1700 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1320 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|))) (-1205 |#2| |#3| |#4| |#5|) (-556) (-791) (-848) (-1062 |#2| |#3| |#4|)) (T -1204))
+NIL
+(-10 -8 (-15 -4195 ((-769) |#1|)) (-15 -3804 (|#1| |#1| |#5|)) (-15 -1700 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1362 ((-112) |#4| |#1|)) (-15 -2240 ((-642 |#4|) |#1|)) (-15 -2570 ((-3 |#1| "failed") |#1|)) (-15 -2514 ((-3 |#5| "failed") |#1|)) (-15 -2557 ((-3 |#5| "failed") |#1|)) (-15 -1821 (|#5| |#5| |#1|)) (-15 -3114 (|#1| |#1|)) (-15 -1493 (|#5| |#5| |#1|)) (-15 -1415 (|#5| |#5| |#1|)) (-15 -1372 (|#5| |#5| |#1|)) (-15 -3923 (|#5| |#5| |#1|)) (-15 -1975 ((-642 |#5|) (-642 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1320 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3350 ((-112) |#1|)) (-15 -2262 ((-112) |#1|)) (-15 -3831 ((-112) |#1|)) (-15 -3497 ((-112) |#1| (-1 (-112) |#5| (-642 |#5|)))) (-15 -3350 ((-112) |#5| |#1|)) (-15 -2262 ((-112) |#5| |#1|)) (-15 -3831 ((-112) |#5| |#1|)) (-15 -1597 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2846 ((-112) |#1|)) (-15 -2846 ((-112) |#5| |#1|)) (-15 -1738 ((-2 (|:| -1639 (-642 |#5|)) (|:| -2241 (-642 |#5|))) |#1|)) (-15 -2775 ((-769) |#1|)) (-15 -2743 ((-642 |#5|) |#1|)) (-15 -2232 ((-3 (-2 (|:| |bas| |#1|) (|:| -2362 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2232 ((-3 (-2 (|:| |bas| |#1|) (|:| -2362 (-642 |#5|))) "failed") (-642 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3819 ((-112) |#1| |#1|)) (-15 -3153 (|#1| |#1| |#4|)) (-15 -3696 (|#1| |#1| |#4|)) (-15 -3290 (|#4| |#1|)) (-15 -4278 ((-3 |#1| "failed") (-642 |#5|))) (-15 -2327 ((-642 |#5|) |#1|)) (-15 -2337 (|#1| (-642 |#5|))) (-15 -1320 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1320 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1700 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1320 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2327 ((-860) |#1|)) (-15 -2872 ((-112) |#1| |#1|)))
+((-2907 (((-112) $ $) 7)) (-3126 (((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 |#4|)))) (-642 |#4|)) 86)) (-4208 (((-642 $) (-642 |#4|)) 87)) (-3802 (((-642 |#3|) $) 34)) (-3317 (((-112) $) 27)) (-4293 (((-112) $) 18 (|has| |#1| (-556)))) (-3831 (((-112) |#4| $) 102) (((-112) $) 98)) (-3923 ((|#4| |#4| $) 93)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) 28)) (-3697 (((-112) $ (-769)) 45)) (-1700 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) 80)) (-1976 (($) 46 T CONST)) (-1496 (((-112) $) 23 (|has| |#1| (-556)))) (-4375 (((-112) $ $) 25 (|has| |#1| (-556)))) (-2888 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2850 (((-112) $) 26 (|has| |#1| (-556)))) (-1975 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2627 (((-642 |#4|) (-642 |#4|) $) 19 (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) 20 (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) 37)) (-3027 (($ (-642 |#4|)) 36)) (-2570 (((-3 $ "failed") $) 83)) (-1493 ((|#4| |#4| $) 90)) (-2595 (($ $) 69 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#4| $) 68 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1597 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1821 ((|#4| |#4| $) 88)) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1738 (((-2 (|:| -1639 (-642 |#4|)) (|:| -2241 (-642 |#4|))) $) 106)) (-2936 (((-642 |#4|) $) 53 (|has| $ (-6 -4410)))) (-2846 (((-112) |#4| $) 105) (((-112) $) 104)) (-3290 ((|#3| $) 35)) (-3462 (((-112) $ (-769)) 44)) (-3234 (((-642 |#4|) $) 54 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) 48)) (-3370 (((-642 |#3|) $) 33)) (-4120 (((-112) |#3| $) 32)) (-3576 (((-112) $ (-769)) 43)) (-3315 (((-1155) $) 10)) (-2514 (((-3 |#4| "failed") $) 84)) (-2743 (((-642 |#4|) $) 108)) (-3350 (((-112) |#4| $) 100) (((-112) $) 96)) (-1415 ((|#4| |#4| $) 91)) (-3819 (((-112) $ $) 111)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-556)))) (-2262 (((-112) |#4| $) 101) (((-112) $) 97)) (-1372 ((|#4| |#4| $) 92)) (-4033 (((-1117) $) 11)) (-2557 (((-3 |#4| "failed") $) 85)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3724 (((-3 $ "failed") $ |#4|) 79)) (-3804 (($ $ |#4|) 78)) (-2121 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) 60 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) 39)) (-3719 (((-112) $) 42)) (-2972 (($) 41)) (-2775 (((-769) $) 107)) (-4043 (((-769) |#4| $) 55 (-12 (|has| |#4| (-1097)) (|has| $ (-6 -4410)))) (((-769) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4410)))) (-3901 (($ $) 40)) (-1314 (((-536) $) 70 (|has| |#4| (-612 (-536))))) (-2337 (($ (-642 |#4|)) 61)) (-3153 (($ $ |#3|) 29)) (-3696 (($ $ |#3|) 31)) (-3114 (($ $) 89)) (-1749 (($ $ |#3|) 30)) (-2327 (((-860) $) 12) (((-642 |#4|) $) 38)) (-4195 (((-769) $) 77 (|has| |#3| (-368)))) (-1648 (((-112) $ $) 9)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3497 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) 99)) (-2710 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4410)))) (-2240 (((-642 |#3|) $) 82)) (-1362 (((-112) |#3| $) 81)) (-2872 (((-112) $ $) 6)) (-2127 (((-769) $) 47 (|has| $ (-6 -4410)))))
+(((-1205 |#1| |#2| |#3| |#4|) (-140) (-556) (-791) (-848) (-1062 |t#1| |t#2| |t#3|)) (T -1205))
+((-3819 (*1 *2 *1 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-2232 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2362 (-642 *8)))) (-5 *3 (-642 *8)) (-4 *1 (-1205 *5 *6 *7 *8)))) (-2232 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-791)) (-4 *8 (-848)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2362 (-642 *9)))) (-5 *3 (-642 *9)) (-4 *1 (-1205 *6 *7 *8 *9)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *6)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-769)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-2 (|:| -1639 (-642 *6)) (|:| -2241 (-642 *6)))))) (-2846 (*1 *2 *3 *1) (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-2846 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-1597 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1205 *5 *6 *7 *3)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112)))) (-3831 (*1 *2 *3 *1) (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-2262 (*1 *2 *3 *1) (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-3350 (*1 *2 *3 *1) (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-642 *7))) (-4 *1 (-1205 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))) (-1320 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1205 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *2 (-1062 *5 *6 *7)))) (-1975 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-642 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1205 *5 *6 *7 *8)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)))) (-3923 (*1 *2 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-1372 (*1 *2 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-1415 (*1 *2 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-1493 (*1 *2 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-3114 (*1 *1 *1) (-12 (-4 *1 (-1205 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-1062 *2 *3 *4)))) (-1821 (*1 *2 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1)) (-4 *1 (-1205 *4 *5 *6 *7)))) (-3126 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-642 (-2 (|:| -1639 *1) (|:| -2241 (-642 *7))))) (-5 *3 (-642 *7)) (-4 *1 (-1205 *4 *5 *6 *7)))) (-2557 (*1 *2 *1) (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-2514 (*1 *2 *1) (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-2570 (*1 *1 *1) (|partial| -12 (-4 *1 (-1205 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-1062 *2 *3 *4)))) (-2240 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5)))) (-1362 (*1 *2 *3 *1) (-12 (-4 *1 (-1205 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *3 (-848)) (-4 *6 (-1062 *4 *5 *3)) (-5 *2 (-112)))) (-1700 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1205 *4 *5 *3 *2)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *3 (-848)) (-4 *2 (-1062 *4 *5 *3)))) (-3724 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-3804 (*1 *1 *1 *2) (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))) (-4195 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-769)))))
+(-13 (-974 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4410) (-6 -4411) (-15 -3819 ((-112) $ $)) (-15 -2232 ((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |t#4|))) "failed") (-642 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2232 ((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |t#4|))) "failed") (-642 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2743 ((-642 |t#4|) $)) (-15 -2775 ((-769) $)) (-15 -1738 ((-2 (|:| -1639 (-642 |t#4|)) (|:| -2241 (-642 |t#4|))) $)) (-15 -2846 ((-112) |t#4| $)) (-15 -2846 ((-112) $)) (-15 -1597 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3831 ((-112) |t#4| $)) (-15 -2262 ((-112) |t#4| $)) (-15 -3350 ((-112) |t#4| $)) (-15 -3497 ((-112) $ (-1 (-112) |t#4| (-642 |t#4|)))) (-15 -3831 ((-112) $)) (-15 -2262 ((-112) $)) (-15 -3350 ((-112) $)) (-15 -1320 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1975 ((-642 |t#4|) (-642 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3923 (|t#4| |t#4| $)) (-15 -1372 (|t#4| |t#4| $)) (-15 -1415 (|t#4| |t#4| $)) (-15 -1493 (|t#4| |t#4| $)) (-15 -3114 ($ $)) (-15 -1821 (|t#4| |t#4| $)) (-15 -4208 ((-642 $) (-642 |t#4|))) (-15 -3126 ((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 |t#4|)))) (-642 |t#4|))) (-15 -2557 ((-3 |t#4| "failed") $)) (-15 -2514 ((-3 |t#4| "failed") $)) (-15 -2570 ((-3 $ "failed") $)) (-15 -2240 ((-642 |t#3|) $)) (-15 -1362 ((-112) |t#3| $)) (-15 -1700 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3724 ((-3 $ "failed") $ |t#4|)) (-15 -3804 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -4195 ((-769) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-611 (-642 |#4|)) . T) ((-611 (-860)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))) ((-974 |#1| |#2| |#3| |#4|) . T) ((-1097) . T) ((-1212) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-1173)) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-3851 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3875 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-3359 (((-950 |#1|) $ (-769)) 20) (((-950 |#1|) $ (-769) (-769)) NIL)) (-1941 (((-112) $) NIL)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-769) $ (-1173)) NIL) (((-769) $ (-1173) (-769)) NIL)) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2316 (((-112) $) NIL)) (-3774 (($ $ (-642 (-1173)) (-642 (-531 (-1173)))) NIL) (($ $ (-1173) (-531 (-1173))) NIL) (($ |#1| (-531 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4107 (($ $ (-1173)) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4033 (((-1117) $) NIL)) (-4251 (($ (-1 $) (-1173) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3804 (($ $ (-769)) NIL)) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1723 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3215 (($ $ (-1173) $) NIL) (($ $ (-642 (-1173)) (-642 $)) NIL) (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL)) (-3175 (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-2775 (((-531 (-1173)) $) NIL)) (-3888 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-1173)) NIL) (($ (-950 |#1|)) NIL)) (-2102 ((|#1| $ (-531 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (((-950 |#1|) $ (-769)) NIL)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2683 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) NIL T CONST)) (-2322 (($) NIL T CONST)) (-4044 (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1206 |#1|) (-13 (-738 |#1| (-1173)) (-10 -8 (-15 -2102 ((-950 |#1|) $ (-769))) (-15 -2327 ($ (-1173))) (-15 -2327 ($ (-950 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ($ $ (-1173) |#1|)) (-15 -4251 ($ (-1 $) (-1173) |#1|))) |%noBranch|))) (-1047)) (T -1206))
+((-2102 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-950 *4)) (-5 *1 (-1206 *4)) (-4 *4 (-1047)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1206 *3)) (-4 *3 (-1047)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1047)) (-5 *1 (-1206 *3)))) (-4107 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *1 (-1206 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)))) (-4251 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1206 *4))) (-5 *3 (-1173)) (-5 *1 (-1206 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1047)))))
+(-13 (-738 |#1| (-1173)) (-10 -8 (-15 -2102 ((-950 |#1|) $ (-769))) (-15 -2327 ($ (-1173))) (-15 -2327 ($ (-950 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ($ $ (-1173) |#1|)) (-15 -4251 ($ (-1 $) (-1173) |#1|))) |%noBranch|)))
+((-3861 (($ |#1| (-642 (-642 (-941 (-225)))) (-112)) 19)) (-2814 (((-112) $ (-112)) 18)) (-4377 (((-112) $) 17)) (-4266 (((-642 (-642 (-941 (-225)))) $) 13)) (-3710 ((|#1| $) 8)) (-4097 (((-112) $) 15)))
+(((-1207 |#1|) (-10 -8 (-15 -3710 (|#1| $)) (-15 -4266 ((-642 (-642 (-941 (-225)))) $)) (-15 -4097 ((-112) $)) (-15 -4377 ((-112) $)) (-15 -2814 ((-112) $ (-112))) (-15 -3861 ($ |#1| (-642 (-642 (-941 (-225)))) (-112)))) (-972)) (T -1207))
+((-3861 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-112)) (-5 *1 (-1207 *2)) (-4 *2 (-972)))) (-2814 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972)))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-1207 *3)) (-4 *3 (-972)))) (-3710 (*1 *2 *1) (-12 (-5 *1 (-1207 *2)) (-4 *2 (-972)))))
+(-10 -8 (-15 -3710 (|#1| $)) (-15 -4266 ((-642 (-642 (-941 (-225)))) $)) (-15 -4097 ((-112) $)) (-15 -4377 ((-112) $)) (-15 -2814 ((-112) $ (-112))) (-15 -3861 ($ |#1| (-642 (-642 (-941 (-225)))) (-112))))
+((-3638 (((-941 (-225)) (-941 (-225))) 31)) (-2669 (((-941 (-225)) (-225) (-225) (-225) (-225)) 10)) (-3466 (((-642 (-941 (-225))) (-941 (-225)) (-941 (-225)) (-941 (-225)) (-225) (-642 (-642 (-225)))) 60)) (-2619 (((-225) (-941 (-225)) (-941 (-225))) 27)) (-2909 (((-941 (-225)) (-941 (-225)) (-941 (-225))) 28)) (-1668 (((-642 (-642 (-225))) (-564)) 48)) (-2987 (((-941 (-225)) (-941 (-225)) (-941 (-225))) 26)) (-2974 (((-941 (-225)) (-941 (-225)) (-941 (-225))) 24)) (* (((-941 (-225)) (-225) (-941 (-225))) 22)))
+(((-1208) (-10 -7 (-15 -2669 ((-941 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-941 (-225)) (-225) (-941 (-225)))) (-15 -2974 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -2987 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -2619 ((-225) (-941 (-225)) (-941 (-225)))) (-15 -2909 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -3638 ((-941 (-225)) (-941 (-225)))) (-15 -1668 ((-642 (-642 (-225))) (-564))) (-15 -3466 ((-642 (-941 (-225))) (-941 (-225)) (-941 (-225)) (-941 (-225)) (-225) (-642 (-642 (-225))))))) (T -1208))
+((-3466 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-642 (-642 (-225)))) (-5 *4 (-225)) (-5 *2 (-642 (-941 *4))) (-5 *1 (-1208)) (-5 *3 (-941 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-642 (-642 (-225)))) (-5 *1 (-1208)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) (-2909 (*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) (-2619 (*1 *2 *3 *3) (-12 (-5 *3 (-941 (-225))) (-5 *2 (-225)) (-5 *1 (-1208)))) (-2987 (*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) (-2974 (*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-941 (-225))) (-5 *3 (-225)) (-5 *1 (-1208)))) (-2669 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)) (-5 *3 (-225)))))
+(-10 -7 (-15 -2669 ((-941 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-941 (-225)) (-225) (-941 (-225)))) (-15 -2974 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -2987 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -2619 ((-225) (-941 (-225)) (-941 (-225)))) (-15 -2909 ((-941 (-225)) (-941 (-225)) (-941 (-225)))) (-15 -3638 ((-941 (-225)) (-941 (-225)))) (-15 -1668 ((-642 (-642 (-225))) (-564))) (-15 -3466 ((-642 (-941 (-225))) (-941 (-225)) (-941 (-225)) (-941 (-225)) (-225) (-642 (-642 (-225))))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-1700 ((|#1| $ (-769)) 18)) (-2480 (((-769) $) 13)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2327 (((-956 |#1|) $) 12) (($ (-956 |#1|)) 11) (((-860) $) 29 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2872 (((-112) $ $) 22 (|has| |#1| (-1097)))))
+(((-1209 |#1|) (-13 (-490 (-956 |#1|)) (-10 -8 (-15 -1700 (|#1| $ (-769))) (-15 -2480 ((-769) $)) (IF (|has| |#1| (-611 (-860))) (-6 (-611 (-860))) |%noBranch|) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|))) (-1212)) (T -1209))
+((-1700 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-1209 *2)) (-4 *2 (-1212)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1209 *3)) (-4 *3 (-1212)))))
+(-13 (-490 (-956 |#1|)) (-10 -8 (-15 -1700 (|#1| $ (-769))) (-15 -2480 ((-769) $)) (IF (|has| |#1| (-611 (-860))) (-6 (-611 (-860))) |%noBranch|) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|)))
+((-3464 (((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)) (-564)) 96)) (-2803 (((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|))) 88)) (-3772 (((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|))) 70)))
+(((-1210 |#1|) (-10 -7 (-15 -2803 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)))) (-15 -3772 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)))) (-15 -3464 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)) (-564)))) (-349)) (T -1210))
+((-3464 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1169 (-1169 *5)))) (-5 *1 (-1210 *5)) (-5 *3 (-1169 (-1169 *5))))) (-3772 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1169 (-1169 *4)))) (-5 *1 (-1210 *4)) (-5 *3 (-1169 (-1169 *4))))) (-2803 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1169 (-1169 *4)))) (-5 *1 (-1210 *4)) (-5 *3 (-1169 (-1169 *4))))))
+(-10 -7 (-15 -2803 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)))) (-15 -3772 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)))) (-15 -3464 ((-418 (-1169 (-1169 |#1|))) (-1169 (-1169 |#1|)) (-564))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 9) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1211) (-1080)) (T -1211))
+NIL
+(-1080)
+NIL
+(((-1212) (-140)) (T -1212))
+NIL
+(-13 (-10 -7 (-6 -3570)))
+((-2665 (((-112)) 18)) (-1317 (((-1267) (-642 |#1|) (-642 |#1|)) 22) (((-1267) (-642 |#1|)) 23)) (-3462 (((-112) |#1| |#1|) 38 (|has| |#1| (-848)))) (-3576 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-1480 ((|#1| (-642 |#1|)) 39 (|has| |#1| (-848))) ((|#1| (-642 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-3737 (((-2 (|:| -2827 (-642 |#1|)) (|:| -4233 (-642 |#1|)))) 20)))
+(((-1213 |#1|) (-10 -7 (-15 -1317 ((-1267) (-642 |#1|))) (-15 -1317 ((-1267) (-642 |#1|) (-642 |#1|))) (-15 -3737 ((-2 (|:| -2827 (-642 |#1|)) (|:| -4233 (-642 |#1|))))) (-15 -3576 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3576 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1480 (|#1| (-642 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2665 ((-112))) (IF (|has| |#1| (-848)) (PROGN (-15 -1480 (|#1| (-642 |#1|))) (-15 -3462 ((-112) |#1| |#1|))) |%noBranch|)) (-1097)) (T -1213))
+((-3462 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-848)) (-4 *3 (-1097)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-848)) (-5 *1 (-1213 *2)))) (-2665 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1097)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1213 *2)) (-4 *2 (-1097)))) (-3576 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1097)) (-5 *2 (-112)) (-5 *1 (-1213 *3)))) (-3576 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1097)))) (-3737 (*1 *2) (-12 (-5 *2 (-2 (|:| -2827 (-642 *3)) (|:| -4233 (-642 *3)))) (-5 *1 (-1213 *3)) (-4 *3 (-1097)))) (-1317 (*1 *2 *3 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-5 *2 (-1267)) (-5 *1 (-1213 *4)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-5 *2 (-1267)) (-5 *1 (-1213 *4)))))
+(-10 -7 (-15 -1317 ((-1267) (-642 |#1|))) (-15 -1317 ((-1267) (-642 |#1|) (-642 |#1|))) (-15 -3737 ((-2 (|:| -2827 (-642 |#1|)) (|:| -4233 (-642 |#1|))))) (-15 -3576 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3576 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1480 (|#1| (-642 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2665 ((-112))) (IF (|has| |#1| (-848)) (PROGN (-15 -1480 (|#1| (-642 |#1|))) (-15 -3462 ((-112) |#1| |#1|))) |%noBranch|))
+((-2873 (((-1267) (-642 (-1173)) (-642 (-1173))) 14) (((-1267) (-642 (-1173))) 12)) (-2636 (((-1267)) 16)) (-4082 (((-2 (|:| -4233 (-642 (-1173))) (|:| -2827 (-642 (-1173))))) 20)))
+(((-1214) (-10 -7 (-15 -2873 ((-1267) (-642 (-1173)))) (-15 -2873 ((-1267) (-642 (-1173)) (-642 (-1173)))) (-15 -4082 ((-2 (|:| -4233 (-642 (-1173))) (|:| -2827 (-642 (-1173)))))) (-15 -2636 ((-1267))))) (T -1214))
+((-2636 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1214)))) (-4082 (*1 *2) (-12 (-5 *2 (-2 (|:| -4233 (-642 (-1173))) (|:| -2827 (-642 (-1173))))) (-5 *1 (-1214)))) (-2873 (*1 *2 *3 *3) (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1214)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1214)))))
+(-10 -7 (-15 -2873 ((-1267) (-642 (-1173)))) (-15 -2873 ((-1267) (-642 (-1173)) (-642 (-1173)))) (-15 -4082 ((-2 (|:| -4233 (-642 (-1173))) (|:| -2827 (-642 (-1173)))))) (-15 -2636 ((-1267))))
+((-4316 (($ $) 17)) (-1469 (((-112) $) 28)))
+(((-1215 |#1|) (-10 -8 (-15 -4316 (|#1| |#1|)) (-15 -1469 ((-112) |#1|))) (-1216)) (T -1215))
+NIL
+(-10 -8 (-15 -4316 (|#1| |#1|)) (-15 -1469 ((-112) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 57)) (-1978 (((-418 $) $) 58)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-1469 (((-112) $) 59)) (-3953 (((-112) $) 35)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-3643 (((-418 $) $) 56)) (-2896 (((-3 $ "failed") $ $) 48)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27)))
+(((-1216) (-140)) (T -1216))
+((-1469 (*1 *2 *1) (-12 (-4 *1 (-1216)) (-5 *2 (-112)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1216)))) (-4316 (*1 *1 *1) (-4 *1 (-1216))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1216)))))
+(-13 (-452) (-10 -8 (-15 -1469 ((-112) $)) (-15 -1978 ((-418 $) $)) (-15 -4316 ($ $)) (-15 -3643 ((-418 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 (-564)) . T) ((-644 $) . T) ((-646 $) . T) ((-638 $) . T) ((-715 $) . T) ((-724) . T) ((-1049 $) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) NIL T CONST)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-919) $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-2213 (($ $ $) NIL)) (-2204 (($ $ $) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-1217) (-13 (-842) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))) (T -1217))
+((-2204 (*1 *1 *1 *1) (-5 *1 (-1217))) (-2213 (*1 *1 *1 *1) (-5 *1 (-1217))) (-1976 (*1 *1) (-5 *1 (-1217))))
+(-13 (-842) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))
((|NonNegativeInteger|) (NOT (< 16 (INTEGER-LENGTH |#1|))))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) NIL T CONST)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-3256 (((-917) $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-2284 (($ $ $) NIL)) (-2273 (($ $ $) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-1215) (-13 (-840) (-10 -8 (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))) (T -1215))
-((-2273 (*1 *1 *1 *1) (-5 *1 (-1215))) (-2284 (*1 *1 *1 *1) (-5 *1 (-1215))) (-4080 (*1 *1) (-5 *1 (-1215))))
-(-13 (-840) (-10 -8 (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) NIL T CONST)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-919) $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-2213 (($ $ $) NIL)) (-2204 (($ $ $) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-1218) (-13 (-842) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))) (T -1218))
+((-2204 (*1 *1 *1 *1) (-5 *1 (-1218))) (-2213 (*1 *1 *1 *1) (-5 *1 (-1218))) (-1976 (*1 *1) (-5 *1 (-1218))))
+(-13 (-842) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))
((|NonNegativeInteger|) (NOT (< 32 (INTEGER-LENGTH |#1|))))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) NIL T CONST)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-3256 (((-917) $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-2284 (($ $ $) NIL)) (-2273 (($ $ $) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-1216) (-13 (-840) (-10 -8 (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))) (T -1216))
-((-2273 (*1 *1 *1 *1) (-5 *1 (-1216))) (-2284 (*1 *1 *1 *1) (-5 *1 (-1216))) (-4080 (*1 *1) (-5 *1 (-1216))))
-(-13 (-840) (-10 -8 (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) NIL T CONST)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-919) $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-2213 (($ $ $) NIL)) (-2204 (($ $ $) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-1219) (-13 (-842) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))) (T -1219))
+((-2204 (*1 *1 *1 *1) (-5 *1 (-1219))) (-2213 (*1 *1 *1 *1) (-5 *1 (-1219))) (-1976 (*1 *1) (-5 *1 (-1219))))
+(-13 (-842) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))
((|NonNegativeInteger|) (NOT (< 64 (INTEGER-LENGTH |#1|))))
-((-3009 (((-112) $ $) NIL)) (-2622 (((-767)) NIL)) (-4080 (($) NIL T CONST)) (-2534 (($) NIL)) (-2855 (($ $ $) NIL) (($) NIL T CONST)) (-1497 (($ $ $) NIL) (($) NIL T CONST)) (-3256 (((-917) $) NIL)) (-2766 (((-1152) $) NIL)) (-2083 (($ (-917)) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) NIL)) (-2284 (($ $ $) NIL)) (-2273 (($ $ $) NIL)) (-1860 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3011 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL)) (-2999 (((-112) $ $) NIL)))
-(((-1217) (-13 (-840) (-10 -8 (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))) (T -1217))
-((-2273 (*1 *1 *1 *1) (-5 *1 (-1217))) (-2284 (*1 *1 *1 *1) (-5 *1 (-1217))) (-4080 (*1 *1) (-5 *1 (-1217))))
-(-13 (-840) (-10 -8 (-15 -2273 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -4080 ($) -2959)))
+((-2907 (((-112) $ $) NIL)) (-2521 (((-769)) NIL)) (-1976 (($) NIL T CONST)) (-2433 (($) NIL)) (-2755 (($ $ $) NIL) (($) NIL T CONST)) (-1520 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-919) $) NIL)) (-3315 (((-1155) $) NIL)) (-2047 (($ (-919)) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) NIL)) (-2213 (($ $ $) NIL)) (-2204 (($ $ $) NIL)) (-1648 (((-112) $ $) NIL)) (-2934 (((-112) $ $) NIL)) (-2908 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)))
+(((-1220) (-13 (-842) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))) (T -1220))
+((-2204 (*1 *1 *1 *1) (-5 *1 (-1220))) (-2213 (*1 *1 *1 *1) (-5 *1 (-1220))) (-1976 (*1 *1) (-5 *1 (-1220))))
+(-13 (-842) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1976 ($) -2858)))
((|NonNegativeInteger|) (NOT (< 8 (INTEGER-LENGTH |#1|))))
-((-4357 (((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)) 23)))
-(((-1218 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4357 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) (-1045) (-1045) (-1170) (-1170) |#1| |#2|) (T -1218))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170)))))
-(-10 -7 (-15 -4357 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3836 (((-641 (-1076)) $) 78)) (-3395 (((-1170) $) 107)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 55 (|has| |#1| (-556)))) (-3063 (($ $) 56 (|has| |#1| (-556)))) (-3330 (((-112) $) 58 (|has| |#1| (-556)))) (-1709 (($ $ (-564)) 102) (($ $ (-564) (-564)) 101)) (-4289 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 109)) (-3880 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 166 (|has| |#1| (-363)))) (-2753 (((-418 $) $) 167 (|has| |#1| (-363)))) (-3700 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3162 (((-112) $ $) 157 (|has| |#1| (-363)))) (-3858 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 177)) (-3902 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) 18 T CONST)) (-2946 (($ $ $) 161 (|has| |#1| (-363)))) (-1684 (($ $) 64)) (-3293 (((-3 $ "failed") $) 34)) (-3697 (((-407 (-948 |#1|)) $ (-564)) 175 (|has| |#1| (-556))) (((-407 (-948 |#1|)) $ (-564) (-564)) 174 (|has| |#1| (-556)))) (-2960 (($ $ $) 160 (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 155 (|has| |#1| (-363)))) (-1339 (((-112) $) 168 (|has| |#1| (-363)))) (-4243 (((-112) $) 77)) (-4274 (($) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-564) $) 104) (((-564) $ (-564)) 103)) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 120 (|has| |#1| (-38 (-407 (-564)))))) (-1747 (($ $ (-917)) 105)) (-3262 (($ (-1 |#1| (-564)) $) 176)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 164 (|has| |#1| (-363)))) (-4003 (((-112) $) 66)) (-3810 (($ |#1| (-564)) 65) (($ $ (-1076) (-564)) 80) (($ $ (-641 (-1076)) (-641 (-564))) 79)) (-4357 (($ (-1 |#1| |#1|) $) 67)) (-3657 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) 69)) (-3982 ((|#1| $) 70)) (-2084 (($ (-641 $)) 153 (|has| |#1| (-363))) (($ $ $) 152 (|has| |#1| (-363)))) (-2766 (((-1152) $) 10)) (-3936 (($ $) 169 (|has| |#1| (-363)))) (-2070 (($ $) 173 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 172 (-2807 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-955)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 154 (|has| |#1| (-363)))) (-2123 (($ (-641 $)) 151 (|has| |#1| (-363))) (($ $ $) 150 (|has| |#1| (-363)))) (-3688 (((-418 $) $) 165 (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 162 (|has| |#1| (-363)))) (-4016 (($ $ (-564)) 99)) (-2998 (((-3 $ "failed") $ $) 54 (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 156 (|has| |#1| (-363)))) (-1689 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-1700 (((-767) $) 158 (|has| |#1| (-363)))) (-4366 ((|#1| $ (-564)) 108) (($ $ $) 85 (|has| (-564) (-1106)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 159 (|has| |#1| (-363)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) 93 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-767)) 92 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 91 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 90 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1568 (((-564) $) 68)) (-3914 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) 76)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 51 (|has| |#1| (-172))) (($ (-407 (-564))) 61 (|has| |#1| (-38 (-407 (-564))))) (($ $) 53 (|has| |#1| (-556)))) (-2007 ((|#1| $ (-564)) 63)) (-2420 (((-3 $ "failed") $) 52 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-3639 ((|#1| $) 106)) (-1860 (((-112) $ $) 9)) (-3949 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) 57 (|has| |#1| (-556)))) (-3925 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-564)) 100 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) 97 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-767)) 96 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 95 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 94 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-767)) 89 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 87 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 62 (|has| |#1| (-363))) (($ $ $) 171 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 170 (|has| |#1| (-363))) (($ $ $) 148 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 119 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 72) (($ |#1| $) 71) (($ (-407 (-564)) $) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 59 (|has| |#1| (-38 (-407 (-564)))))))
-(((-1219 |#1|) (-140) (-1045)) (T -1219))
-((-2808 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1219 *3)))) (-3262 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1045)))) (-3697 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1045)) (-4 *4 (-556)) (-5 *2 (-407 (-948 *4))))) (-3697 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1045)) (-4 *4 (-556)) (-5 *2 (-407 (-948 *4))))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))) (-2070 (*1 *1 *1 *2) (-2807 (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -3836 ((-641 *2) *3))) (|has| *3 (-15 -2070 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
-(-13 (-1237 |t#1| (-564)) (-10 -8 (-15 -2808 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |t#1|))))) (-15 -3262 ($ (-1 |t#1| (-564)) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -3697 ((-407 (-948 |t#1|)) $ (-564))) (-15 -3697 ((-407 (-948 |t#1|)) $ (-564) (-564)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ($ $)) (IF (|has| |t#1| (-15 -2070 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -3836 ((-641 (-1170)) |t#1|))) (-15 -2070 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-564))) (-15 -2070 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-564) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))) ((-969 |#1| #0# (-1076)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1051 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T))
-((-1494 (((-112) $) 12)) (-4284 (((-3 |#3| "failed") $) 17) (((-3 (-1170) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL)) (-3120 ((|#3| $) 14) (((-1170) $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL)))
-(((-1220 |#1| |#2| |#3|) (-10 -8 (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-1170) "failed") |#1|)) (-15 -3120 ((-1170) |#1|)) (-15 -4284 ((-3 |#3| "failed") |#1|)) (-15 -3120 (|#3| |#1|)) (-15 -1494 ((-112) |#1|))) (-1221 |#2| |#3|) (-1045) (-1250 |#2|)) (T -1220))
-NIL
-(-10 -8 (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -4284 ((-3 (-1170) "failed") |#1|)) (-15 -3120 ((-1170) |#1|)) (-15 -4284 ((-3 |#3| "failed") |#1|)) (-15 -3120 (|#3| |#1|)) (-15 -1494 ((-112) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4198 ((|#2| $) 232 (-2358 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3836 (((-641 (-1076)) $) 78)) (-3395 (((-1170) $) 107)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 55 (|has| |#1| (-556)))) (-3063 (($ $) 56 (|has| |#1| (-556)))) (-3330 (((-112) $) 58 (|has| |#1| (-556)))) (-1709 (($ $ (-564)) 102) (($ $ (-564) (-564)) 101)) (-4289 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 109)) (-1521 ((|#2| $) 268)) (-1640 (((-3 |#2| "failed") $) 264)) (-3892 ((|#2| $) 265)) (-3880 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) 20)) (-4199 (((-418 (-1166 $)) (-1166 $)) 241 (-2358 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2683 (($ $) 166 (|has| |#1| (-363)))) (-2753 (((-418 $) $) 167 (|has| |#1| (-363)))) (-3700 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 238 (-2358 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3162 (((-112) $ $) 157 (|has| |#1| (-363)))) (-3858 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3249 (((-564) $) 250 (-2358 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2808 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 177)) (-3902 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#2| "failed") $) 271) (((-3 (-564) "failed") $) 261 (-2358 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) 259 (-2358 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) 243 (-2358 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363))))) (-3120 ((|#2| $) 272) (((-564) $) 260 (-2358 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) 258 (-2358 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-1170) $) 242 (-2358 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363))))) (-2963 (($ $) 267) (($ (-564) $) 266)) (-2946 (($ $ $) 161 (|has| |#1| (-363)))) (-1684 (($ $) 64)) (-4277 (((-685 |#2|) (-685 $)) 222 (|has| |#1| (-363))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 221 (|has| |#1| (-363))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 220 (-2358 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) 219 (-2358 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-3293 (((-3 $ "failed") $) 34)) (-3697 (((-407 (-948 |#1|)) $ (-564)) 175 (|has| |#1| (-556))) (((-407 (-948 |#1|)) $ (-564) (-564)) 174 (|has| |#1| (-556)))) (-2534 (($) 234 (-2358 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2960 (($ $ $) 160 (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 155 (|has| |#1| (-363)))) (-1339 (((-112) $) 168 (|has| |#1| (-363)))) (-2384 (((-112) $) 248 (-2358 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-4243 (((-112) $) 77)) (-4274 (($) 149 (|has| |#1| (-38 (-407 (-564)))))) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 226 (-2358 (|has| |#2| (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 225 (-2358 (|has| |#2| (-882 (-564))) (|has| |#1| (-363))))) (-3744 (((-564) $) 104) (((-564) $ (-564)) 103)) (-4112 (((-112) $) 32)) (-1717 (($ $) 230 (|has| |#1| (-363)))) (-2323 ((|#2| $) 228 (|has| |#1| (-363)))) (-3614 (($ $ (-564)) 120 (|has| |#1| (-38 (-407 (-564)))))) (-1846 (((-3 $ "failed") $) 262 (-2358 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-3326 (((-112) $) 249 (-2358 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-1747 (($ $ (-917)) 105)) (-3262 (($ (-1 |#1| (-564)) $) 176)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 164 (|has| |#1| (-363)))) (-4003 (((-112) $) 66)) (-3810 (($ |#1| (-564)) 65) (($ $ (-1076) (-564)) 80) (($ $ (-641 (-1076)) (-641 (-564))) 79)) (-2855 (($ $ $) 252 (-2358 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1497 (($ $ $) 253 (-2358 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-4357 (($ (-1 |#1| |#1|) $) 67) (($ (-1 |#2| |#2|) $) 214 (|has| |#1| (-363)))) (-3657 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) 69)) (-3982 ((|#1| $) 70)) (-2084 (($ (-641 $)) 153 (|has| |#1| (-363))) (($ $ $) 152 (|has| |#1| (-363)))) (-3903 (($ (-564) |#2|) 269)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 169 (|has| |#1| (-363)))) (-2070 (($ $) 173 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 172 (-2807 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-955)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3431 (($) 263 (-2358 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 154 (|has| |#1| (-363)))) (-2123 (($ (-641 $)) 151 (|has| |#1| (-363))) (($ $ $) 150 (|has| |#1| (-363)))) (-1687 (($ $) 233 (-2358 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2882 ((|#2| $) 236 (-2358 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2037 (((-418 (-1166 $)) (-1166 $)) 239 (-2358 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-1348 (((-418 (-1166 $)) (-1166 $)) 240 (-2358 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3688 (((-418 $) $) 165 (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 162 (|has| |#1| (-363)))) (-4016 (($ $ (-564)) 99)) (-2998 (((-3 $ "failed") $ $) 54 (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 156 (|has| |#1| (-363)))) (-1689 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) 213 (-2358 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) 212 (-2358 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) 211 (-2358 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 210 (-2358 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 209 (-2358 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) 208 (-2358 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-1700 (((-767) $) 158 (|has| |#1| (-363)))) (-4366 ((|#1| $ (-564)) 108) (($ $ $) 85 (|has| (-564) (-1106))) (($ $ |#2|) 207 (-2358 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 159 (|has| |#1| (-363)))) (-3254 (($ $ (-1 |#2| |#2|)) 218 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 217 (|has| |#1| (-363))) (($ $ (-767)) 88 (-2807 (-2358 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 86 (-2807 (-2358 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) 93 (-2807 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-767)) 92 (-2807 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 91 (-2807 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 90 (-2807 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-2827 (($ $) 231 (|has| |#1| (-363)))) (-2336 ((|#2| $) 229 (|has| |#1| (-363)))) (-1568 (((-564) $) 68)) (-3914 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-1311 (((-225) $) 247 (-2358 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-379) $) 246 (-2358 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-536) $) 245 (-2358 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-888 (-379)) $) 224 (-2358 (|has| |#2| (-612 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-564)) $) 223 (-2358 (|has| |#2| (-612 (-888 (-564)))) (|has| |#1| (-363))))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 237 (-2358 (-2358 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#1| (-363))))) (-2732 (($ $) 76)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 51 (|has| |#1| (-172))) (($ |#2|) 270) (($ (-1170)) 244 (-2358 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 61 (|has| |#1| (-38 (-407 (-564))))) (($ $) 53 (|has| |#1| (-556)))) (-2007 ((|#1| $ (-564)) 63)) (-2420 (((-3 $ "failed") $) 52 (-2807 (-2358 (-2807 (|has| |#2| (-145)) (-2358 (|has| $ (-145)) (|has| |#2| (-905)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3719 (((-767)) 29 T CONST)) (-3639 ((|#1| $) 106)) (-3448 ((|#2| $) 235 (-2358 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1860 (((-112) $ $) 9)) (-3949 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) 57 (|has| |#1| (-556)))) (-3925 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-564)) 100 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3673 (($ $) 251 (-2358 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-1 |#2| |#2|)) 216 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 215 (|has| |#1| (-363))) (($ $ (-767)) 89 (-2807 (-2358 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 87 (-2807 (-2358 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) 97 (-2807 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-767)) 96 (-2807 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 95 (-2807 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 94 (-2807 (-2358 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-3034 (((-112) $ $) 255 (-2358 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3011 (((-112) $ $) 256 (-2358 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2974 (((-112) $ $) 6)) (-3023 (((-112) $ $) 254 (-2358 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2999 (((-112) $ $) 257 (-2358 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3092 (($ $ |#1|) 62 (|has| |#1| (-363))) (($ $ $) 171 (|has| |#1| (-363))) (($ |#2| |#2|) 227 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 170 (|has| |#1| (-363))) (($ $ $) 148 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 119 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 72) (($ |#1| $) 71) (($ $ |#2|) 206 (|has| |#1| (-363))) (($ |#2| $) 205 (|has| |#1| (-363))) (($ (-407 (-564)) $) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 59 (|has| |#1| (-38 (-407 (-564)))))))
-(((-1221 |#1| |#2|) (-140) (-1045) (-1250 |t#1|)) (T -1221))
-((-1568 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1250 *3)) (-5 *2 (-564)))) (-3903 (*1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *4 (-1045)) (-4 *1 (-1221 *4 *3)) (-4 *3 (-1250 *4)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1250 *3)))) (-2963 (*1 *1 *1) (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1250 *2)))) (-2963 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1250 *3)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1250 *3)))) (-1640 (*1 *2 *1) (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1250 *3)))))
-(-13 (-1219 |t#1|) (-1034 |t#2|) (-614 |t#2|) (-10 -8 (-15 -3903 ($ (-564) |t#2|)) (-15 -1568 ((-564) $)) (-15 -1521 (|t#2| $)) (-15 -2963 ($ $)) (-15 -2963 ($ (-564) $)) (-15 -3892 (|t#2| $)) (-15 -1640 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-988 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2807 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2807 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-614 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1170)))) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-612 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-612 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536)))) ((-612 (-888 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-888 (-379))))) ((-612 (-888 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-888 (-564))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -2807 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 (-1170) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1170) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-556) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 |#2|) |has| |#1| (-363)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((-637 |#2|) |has| |#1| (-363)) ((-713 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 |#2|) |has| |#1| (-363)) ((-713 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-787) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-788) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-790) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-791) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-816) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-844) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-846) -2807 (-12 (|has| |#1| (-363)) (|has| |#2| (-846))) (-12 (|has| |#1| (-363)) (|has| |#2| (-816)))) ((-896 (-1170)) -2807 (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1170)))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))) ((-882 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-379)))) ((-882 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-564)))) ((-880 |#2|) |has| |#1| (-363)) ((-905) -12 (|has| |#1| (-363)) (|has| |#2| (-905))) ((-969 |#1| #0# (-1076)) . T) ((-916) |has| |#1| (-363)) ((-988 |#2|) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1018) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-1034 (-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-564)))) ((-1034 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-564)))) ((-1034 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1170)))) ((-1034 |#2|) . T) ((-1051 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1051 |#1|) . T) ((-1051 |#2|) |has| |#1| (-363)) ((-1051 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) -12 (|has| |#1| (-363)) (|has| |#2| (-1145))) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1209) |has| |#1| (-363)) ((-1213) |has| |#1| (-363)) ((-1219 |#1|) . T) ((-1237 |#1| #0#) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 79)) (-4198 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) 98)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1709 (($ $ (-564)) 107) (($ $ (-564) (-564)) 109)) (-4289 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 51)) (-1521 ((|#2| $) 11)) (-1640 (((-3 |#2| "failed") $) 35)) (-3892 ((|#2| $) 36)) (-3880 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2683 (($ $) NIL (|has| |#1| (-363)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3858 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3249 (((-564) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2808 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 59)) (-3902 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) 155) (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) NIL (-12 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363))))) (-3120 ((|#2| $) 154) (((-564) $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1034 (-564))) (|has| |#1| (-363)))) (((-1170) $) NIL (-12 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363))))) (-2963 (($ $) 65) (($ (-564) $) 28)) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) NIL)) (-4277 (((-685 |#2|) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-3293 (((-3 $ "failed") $) 86)) (-3697 (((-407 (-948 |#1|)) $ (-564)) 122 (|has| |#1| (-556))) (((-407 (-948 |#1|)) $ (-564) (-564)) 124 (|has| |#1| (-556)))) (-2534 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1339 (((-112) $) NIL (|has| |#1| (-363)))) (-2384 (((-112) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-4243 (((-112) $) 72)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#2| (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| |#2| (-882 (-564))) (|has| |#1| (-363))))) (-3744 (((-564) $) 103) (((-564) $ (-564)) 105)) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL (|has| |#1| (-363)))) (-2323 ((|#2| $) 163 (|has| |#1| (-363)))) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1846 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-3326 (((-112) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-1747 (($ $ (-917)) 146)) (-3262 (($ (-1 |#1| (-564)) $) 142)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-564)) 20) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-2855 (($ $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1497 (($ $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-4357 (($ (-1 |#1| |#1|) $) 139) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-3657 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3903 (($ (-564) |#2|) 10)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 157 (|has| |#1| (-363)))) (-2070 (($ $) 226 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 231 (-2807 (-12 (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194)))))) (-3431 (($) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1687 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2882 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3688 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4016 (($ $ (-564)) 136)) (-2998 (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1689 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ (-564)) 101) (($ $ $) 88 (|has| (-564) (-1106))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3254 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2807 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 147 (-2807 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2807 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2807 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2807 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) 151 (-2807 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-2827 (($ $) NIL (|has| |#1| (-363)))) (-2336 ((|#2| $) 164 (|has| |#1| (-363)))) (-1568 (((-564) $) 12)) (-3914 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-1311 (((-225) $) NIL (-12 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| |#2| (-612 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-564)) $) NIL (-12 (|has| |#2| (-612 (-888 (-564)))) (|has| |#1| (-363))))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2732 (($ $) 134)) (-2423 (((-858) $) 265) (($ (-564)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1170)) NIL (-12 (|has| |#2| (-1034 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 167 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2007 ((|#1| $ (-564)) 83)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#2| (-905)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3719 (((-767)) 153 T CONST)) (-3639 ((|#1| $) 100)) (-3448 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 220 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-564)) 132 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) 222 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3673 (($ $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2403 (($) 13 T CONST)) (-2417 (($) 18 T CONST)) (-4063 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2807 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2807 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2807 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2807 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2807 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| |#2| (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-3034 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3011 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2974 (((-112) $ $) 71)) (-3023 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2999 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 161 (|has| |#1| (-363))) (($ |#2| |#2|) 162 (|has| |#1| (-363)))) (-3082 (($ $) 225) (($ $ $) 76)) (-3070 (($ $ $) 74)) (** (($ $ (-917)) NIL) (($ $ (-767)) 82) (($ $ (-564)) 158 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 170 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 77) (($ $ |#1|) NIL) (($ |#1| $) 150) (($ $ |#2|) 160 (|has| |#1| (-363))) (($ |#2| $) 159 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1222 |#1| |#2|) (-1221 |#1| |#2|) (-1045) (-1250 |#1|)) (T -1222))
-NIL
-(-1221 |#1| |#2|)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4198 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) 10)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3063 (($ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3330 (((-112) $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1709 (($ $ (-564)) NIL) (($ $ (-564) (-564)) NIL)) (-4289 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-1521 (((-1251 |#1| |#2| |#3|) $) NIL)) (-1640 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL)) (-3892 (((-1251 |#1| |#2| |#3|) $) NIL)) (-3880 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2683 (($ $) NIL (|has| |#1| (-363)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3858 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3249 (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2808 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))))) (-3120 (((-1251 |#1| |#2| |#3|) $) NIL) (((-1170) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))))) (-2963 (($ $) NIL) (($ (-564) $) NIL)) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) NIL)) (-4277 (((-685 (-1251 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2511 (-685 (-1251 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1251 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-3293 (((-3 $ "failed") $) NIL)) (-3697 (((-407 (-948 |#1|)) $ (-564)) NIL (|has| |#1| (-556))) (((-407 (-948 |#1|)) $ (-564) (-564)) NIL (|has| |#1| (-556)))) (-2534 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1339 (((-112) $) NIL (|has| |#1| (-363)))) (-2384 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-4243 (((-112) $) NIL)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-882 (-564))) (|has| |#1| (-363))))) (-3744 (((-564) $) NIL) (((-564) $ (-564)) NIL)) (-4112 (((-112) $) NIL)) (-1717 (($ $) NIL (|has| |#1| (-363)))) (-2323 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1846 (((-3 $ "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-3326 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-1747 (($ $ (-917)) NIL)) (-3262 (($ (-1 |#1| (-564)) $) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-564)) 18) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-2855 (($ $ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1497 (($ $ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-3657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3903 (($ (-564) (-1251 |#1| |#2| |#3|)) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-363)))) (-2070 (($ $) 27 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 28 (|has| |#1| (-38 (-407 (-564)))))) (-3431 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1687 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2882 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3688 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4016 (($ $ (-564)) NIL)) (-2998 (((-3 $ "failed") $ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1689 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1251 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1251 |#1| |#2| |#3|)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ (-564)) NIL) (($ $ $) NIL (|has| (-564) (-1106))) (($ $ (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-286 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3254 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 26) (($ $ (-767)) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 25 (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-2827 (($ $) NIL (|has| |#1| (-363)))) (-2336 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-1568 (((-564) $) NIL)) (-3914 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1311 (((-536) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-888 (-564)))) (|has| |#1| (-363))))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2732 (($ $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1251 |#1| |#2| |#3|)) NIL) (($ (-1255 |#2|)) 24) (($ (-1170)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-1034 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-2007 ((|#1| $ (-564)) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3639 ((|#1| $) 11)) (-3448 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3925 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3673 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2403 (($) 20 T CONST)) (-2417 (($) 15 T CONST)) (-4063 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170) (-767)) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-641 (-1170))) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170)))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-896 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-896 (-1170))))))) (-3034 (((-112) $ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3011 (((-112) $ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2974 (((-112) $ $) NIL)) (-3023 (((-112) $ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2999 (((-112) $ $) NIL (-2807 (-12 (|has| (-1251 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 22)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1223 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -2423 ($ (-1255 |#2|))) (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1223))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -2423 ($ (-1255 |#2|))) (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-2501 (((-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))) |#1| (-112)) 13)) (-3600 (((-418 |#1|) |#1|) 26)) (-3688 (((-418 |#1|) |#1|) 24)))
-(((-1224 |#1|) (-10 -7 (-15 -3688 ((-418 |#1|) |#1|)) (-15 -3600 ((-418 |#1|) |#1|)) (-15 -2501 ((-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))) |#1| (-112)))) (-1235 (-564))) (T -1224))
-((-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| *3) (|:| -2173 (-564))))))) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-3600 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
-(-10 -7 (-15 -3688 ((-418 |#1|) |#1|)) (-15 -3600 ((-418 |#1|) |#1|)) (-15 -2501 ((-2 (|:| |contp| (-564)) (|:| -1572 (-641 (-2 (|:| |irr| |#1|) (|:| -2173 (-564)))))) |#1| (-112))))
-((-4357 (((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 23 (|has| |#1| (-844))) (((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 17)))
-(((-1225 |#1| |#2|) (-10 -7 (-15 -4357 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-844)) (-15 -4357 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1225))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-844)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1225 *5 *6)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6)))))
-(-10 -7 (-15 -4357 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-844)) (-15 -4357 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4194 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4357 (((-1150 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-844)))) (-2600 ((|#1| $) 15)) (-2030 ((|#1| $) 12)) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2852 (((-564) $) 19)) (-3479 ((|#1| $) 18)) (-2876 ((|#1| $) 13)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3910 (((-112) $) 17)) (-1641 (((-1150 |#1|) $) 41 (|has| |#1| (-844))) (((-1150 |#1|) (-641 $)) 40 (|has| |#1| (-844)))) (-1311 (($ |#1|) 26)) (-2423 (($ (-1088 |#1|)) 25) (((-858) $) 37 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3612 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2719 (($ $ (-564)) 14)) (-2974 (((-112) $ $) 30 (|has| |#1| (-1094)))))
-(((-1226 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -3612 ($ |#1|)) (-15 -4194 ($ |#1|)) (-15 -2423 ($ (-1088 |#1|))) (-15 -3910 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|))) (-1209)) (T -1226))
-((-3612 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-4194 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209)))))
-(-13 (-1087 |#1|) (-10 -8 (-15 -3612 ($ |#1|)) (-15 -4194 ($ |#1|)) (-15 -2423 ($ (-1088 |#1|))) (-15 -3910 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|)))
-((-4357 (((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)) 15)))
-(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4357 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)))) (-1170) (-1045) (-1170) (-1045)) (T -1227))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1232 *5 *6)) (-14 *5 (-1170)) (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1232 *7 *8)) (-5 *1 (-1227 *5 *6 *7 *8)) (-14 *7 (-1170)))))
-(-10 -7 (-15 -4357 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|))))
-((-1566 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2201 ((|#1| |#3|) 13)) (-1434 ((|#3| |#3|) 19)))
-(((-1228 |#1| |#2| |#3|) (-10 -7 (-15 -2201 (|#1| |#3|)) (-15 -1434 (|#3| |#3|)) (-15 -1566 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-988 |#1|) (-1235 |#2|)) (T -1228))
-((-1566 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-1434 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-988 *3)) (-5 *1 (-1228 *3 *4 *2)) (-4 *2 (-1235 *4)))) (-2201 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -2201 (|#1| |#3|)) (-15 -1434 (|#3| |#3|)) (-15 -1566 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2125 (((-3 |#2| "failed") |#2| (-767) |#1|) 37)) (-4099 (((-3 |#2| "failed") |#2| (-767)) 38)) (-2801 (((-3 (-2 (|:| -4328 |#2|) (|:| -4337 |#2|)) "failed") |#2|) 52)) (-1530 (((-641 |#2|) |#2|) 54)) (-2740 (((-3 |#2| "failed") |#2| |#2|) 48)))
-(((-1229 |#1| |#2|) (-10 -7 (-15 -4099 ((-3 |#2| "failed") |#2| (-767))) (-15 -2125 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -2740 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2801 ((-3 (-2 (|:| -4328 |#2|) (|:| -4337 |#2|)) "failed") |#2|)) (-15 -1530 ((-641 |#2|) |#2|))) (-13 (-556) (-147)) (-1235 |#1|)) (T -1229))
-((-1530 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3)) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-2801 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| -4328 *3) (|:| -4337 *3))) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-2740 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1235 *3)))) (-2125 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))) (-4099 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))))
-(-10 -7 (-15 -4099 ((-3 |#2| "failed") |#2| (-767))) (-15 -2125 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -2740 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2801 ((-3 (-2 (|:| -4328 |#2|) (|:| -4337 |#2|)) "failed") |#2|)) (-15 -1530 ((-641 |#2|) |#2|)))
-((-3617 (((-3 (-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) "failed") |#2| |#2|) 30)))
-(((-1230 |#1| |#2|) (-10 -7 (-15 -3617 ((-3 (-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) "failed") |#2| |#2|))) (-556) (-1235 |#1|)) (T -1230))
-((-3617 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-1230 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -3617 ((-3 (-2 (|:| -3979 |#2|) (|:| -4071 |#2|)) "failed") |#2| |#2|)))
-((-3884 ((|#2| |#2| |#2|) 22)) (-2131 ((|#2| |#2| |#2|) 36)) (-1414 ((|#2| |#2| |#2| (-767) (-767)) 44)))
-(((-1231 |#1| |#2|) (-10 -7 (-15 -3884 (|#2| |#2| |#2|)) (-15 -2131 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2| (-767) (-767)))) (-1045) (-1235 |#1|)) (T -1231))
-((-1414 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1231 *4 *2)) (-4 *2 (-1235 *4)))) (-2131 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))) (-3884 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))))
-(-10 -7 (-15 -3884 (|#2| |#2| |#2|)) (-15 -2131 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2| (-767) (-767))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3690 (((-1259 |#2|) $ (-767)) NIL)) (-3836 (((-641 (-1076)) $) NIL)) (-2039 (($ (-1166 |#2|)) NIL)) (-3660 (((-1166 $) $ (-1076)) NIL) (((-1166 |#2|) $) NIL)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-3063 (($ $) NIL (|has| |#2| (-556)))) (-3330 (((-112) $) NIL (|has| |#2| (-556)))) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-1076))) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2931 (($ $ $) NIL (|has| |#2| (-556)))) (-4199 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-2683 (($ $) NIL (|has| |#2| (-452)))) (-2753 (((-418 $) $) NIL (|has| |#2| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3162 (((-112) $ $) NIL (|has| |#2| (-363)))) (-1668 (($ $ (-767)) NIL)) (-3715 (($ $ (-767)) NIL)) (-2899 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1034 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-3120 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1034 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1034 (-564)))) (((-1076) $) NIL)) (-2746 (($ $ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2946 (($ $ $) NIL (|has| |#2| (-363)))) (-1684 (($ $) NIL)) (-4277 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2960 (($ $ $) NIL (|has| |#2| (-363)))) (-1843 (($ $ $) NIL)) (-1835 (($ $ $) NIL (|has| |#2| (-556)))) (-4300 (((-2 (|:| -4376 |#2|) (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#2| (-556)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-2571 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-3993 (((-641 $) $) NIL)) (-1339 (((-112) $) NIL (|has| |#2| (-905)))) (-3850 (($ $ |#2| (-767) $) NIL)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1076) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) NIL (-12 (|has| (-1076) (-882 (-564))) (|has| |#2| (-882 (-564)))))) (-3744 (((-767) $ $) NIL (|has| |#2| (-556)))) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-1846 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-3824 (($ (-1166 |#2|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-1747 (($ $ (-767)) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3810 (($ |#2| (-767)) 18) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-1076)) NIL) (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL)) (-2043 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1948 (($ (-1 (-767) (-767)) $) NIL)) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-2806 (((-1166 |#2|) $) NIL)) (-3025 (((-3 (-1076) "failed") $) NIL)) (-3971 (($ $) NIL)) (-3982 ((|#2| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2766 (((-1152) $) NIL)) (-1429 (((-2 (|:| -3979 $) (|:| -4071 $)) $ (-767)) NIL)) (-1958 (((-3 (-641 $) "failed") $) NIL)) (-1301 (((-3 (-641 $) "failed") $) NIL)) (-3401 (((-3 (-2 (|:| |var| (-1076)) (|:| -1838 (-767))) "failed") $) NIL)) (-2070 (($ $) NIL (|has| |#2| (-38 (-407 (-564)))))) (-3431 (($) NIL (|has| |#2| (-1145)) CONST)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 ((|#2| $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2123 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2736 (($ $ (-767) |#2| $) NIL)) (-2037 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-905)))) (-3688 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#2| (-363)))) (-2998 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-3291 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) NIL) (($ $ (-641 (-1076)) (-641 |#2|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-1700 (((-767) $) NIL (|has| |#2| (-363)))) (-4366 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-556))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-556)))) (-3296 (((-3 $ "failed") $ (-767)) NIL)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#2| (-363)))) (-1330 (($ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-3254 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1568 (((-767) $) NIL) (((-767) $ (-1076)) NIL) (((-641 (-767)) $ (-641 (-1076))) NIL)) (-1311 (((-888 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#2| (-612 (-888 (-379)))))) (((-888 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#2| (-612 (-888 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4090 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-4244 (((-3 $ "failed") $ $) NIL (|has| |#2| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-556)))) (-2423 (((-858) $) 13) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) NIL) (($ (-1255 |#1|)) 20) (($ (-407 (-564))) NIL (-2807 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1034 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3191 (((-641 |#2|) $) NIL)) (-2007 ((|#2| $ (-767)) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2420 (((-3 $ "failed") $) NIL (-2807 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2403 (($) NIL T CONST)) (-2417 (($) 14 T CONST)) (-4063 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1170) (-767)) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) NIL (|has| |#2| (-896 (-1170)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1232 |#1| |#2|) (-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -2736 ($ $ (-767) |#2| $)))) (-1170) (-1045)) (T -1232))
-((-2736 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170)) (-4 *3 (-1045)))))
-(-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -2736 ($ $ (-767) |#2| $))))
-((-4357 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1233 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4357 (|#4| (-1 |#3| |#1|) |#2|))) (-1045) (-1235 |#1|) (-1045) (-1235 |#3|)) (T -1233))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1235 *6)) (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1235 *5)))))
-(-10 -7 (-15 -4357 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3690 (((-1259 |#2|) $ (-767)) 129)) (-3836 (((-641 (-1076)) $) 16)) (-2039 (($ (-1166 |#2|)) 80)) (-1737 (((-767) $) NIL) (((-767) $ (-641 (-1076))) 21)) (-4199 (((-418 (-1166 $)) (-1166 $)) 205)) (-2683 (($ $) 195)) (-2753 (((-418 $) $) 193)) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 95)) (-1668 (($ $ (-767)) 84)) (-3715 (($ $ (-767)) 86)) (-2899 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-4284 (((-3 |#2| "failed") $) 132) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL)) (-3120 ((|#2| $) 130) (((-407 (-564)) $) NIL) (((-564) $) NIL) (((-1076) $) NIL)) (-1835 (($ $ $) 171)) (-4300 (((-2 (|:| -4376 |#2|) (|:| -3979 $) (|:| -4071 $)) $ $) 173)) (-3744 (((-767) $ $) 190)) (-1846 (((-3 $ "failed") $) 138)) (-3810 (($ |#2| (-767)) NIL) (($ $ (-1076) (-767)) 59) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-2043 (((-767) $) NIL) (((-767) $ (-1076)) 54) (((-641 (-767)) $ (-641 (-1076))) 55)) (-2806 (((-1166 |#2|) $) 72)) (-3025 (((-3 (-1076) "failed") $) 52)) (-1429 (((-2 (|:| -3979 $) (|:| -4071 $)) $ (-767)) 83)) (-2070 (($ $) 219)) (-3431 (($) 134)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 202)) (-2037 (((-418 (-1166 $)) (-1166 $)) 101)) (-1348 (((-418 (-1166 $)) (-1166 $)) 99)) (-3688 (((-418 $) $) 120)) (-3291 (($ $ (-641 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) 39) (($ $ (-641 (-1076)) (-641 |#2|)) 36) (($ $ (-1076) $) 32) (($ $ (-641 (-1076)) (-641 $)) 30)) (-1700 (((-767) $) 208)) (-4366 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 165) ((|#2| (-407 $) |#2|) 207) (((-407 $) $ (-407 $)) 189)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 212)) (-3254 (($ $ (-1076)) 158) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL) (($ $ (-767)) NIL) (($ $) 156) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-767)) NIL) (($ $ (-641 (-1170)) (-641 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 155) (($ $ (-1 |#2| |#2|) $) 150)) (-1568 (((-767) $) NIL) (((-767) $ (-1076)) 17) (((-641 (-767)) $ (-641 (-1076))) 23)) (-4090 ((|#2| $) NIL) (($ $ (-1076)) 140)) (-4244 (((-3 $ "failed") $ $) 181) (((-3 (-407 $) "failed") (-407 $) $) 177)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) 64) (($ (-407 (-564))) NIL) (($ $) NIL)))
-(((-1234 |#1| |#2|) (-10 -8 (-15 -2423 (|#1| |#1|)) (-15 -2805 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2753 ((-418 |#1|) |#1|)) (-15 -2683 (|#1| |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -3431 (|#1|)) (-15 -1846 ((-3 |#1| "failed") |#1|)) (-15 -4366 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -1700 ((-767) |#1|)) (-15 -1389 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -4366 (|#2| (-407 |#1|) |#2|)) (-15 -2899 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4300 ((-2 (|:| -4376 |#2|) (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -4244 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -4244 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3744 ((-767) |#1| |#1|)) (-15 -4366 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3715 (|#1| |#1| (-767))) (-15 -1668 (|#1| |#1| (-767))) (-15 -1429 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| (-767))) (-15 -2039 (|#1| (-1166 |#2|))) (-15 -2806 ((-1166 |#2|) |#1|)) (-15 -3690 ((-1259 |#2|) |#1| (-767))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -4366 (|#1| |#1| |#1|)) (-15 -4366 (|#2| |#1| |#2|)) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -4199 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -1348 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2037 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4192 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4090 (|#1| |#1| (-1076))) (-15 -3836 ((-641 (-1076)) |#1|)) (-15 -1737 ((-767) |#1| (-641 (-1076)))) (-15 -1737 ((-767) |#1|)) (-15 -3810 (|#1| |#1| (-641 (-1076)) (-641 (-767)))) (-15 -3810 (|#1| |#1| (-1076) (-767))) (-15 -2043 ((-641 (-767)) |#1| (-641 (-1076)))) (-15 -2043 ((-767) |#1| (-1076))) (-15 -3025 ((-3 (-1076) "failed") |#1|)) (-15 -1568 ((-641 (-767)) |#1| (-641 (-1076)))) (-15 -1568 ((-767) |#1| (-1076))) (-15 -2423 (|#1| (-1076))) (-15 -4284 ((-3 (-1076) "failed") |#1|)) (-15 -3120 ((-1076) |#1|)) (-15 -3291 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -3291 (|#1| |#1| (-1076) |#1|)) (-15 -3291 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -3291 (|#1| |#1| (-1076) |#2|)) (-15 -3291 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| (-294 |#1|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -1568 ((-767) |#1|)) (-15 -3810 (|#1| |#2| (-767))) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -2043 ((-767) |#1|)) (-15 -4090 (|#2| |#1|)) (-15 -3254 (|#1| |#1| (-641 (-1076)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1076) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1076)))) (-15 -3254 (|#1| |#1| (-1076))) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|))) (-1235 |#2|) (-1045)) (T -1234))
-NIL
-(-10 -8 (-15 -2423 (|#1| |#1|)) (-15 -2805 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2753 ((-418 |#1|) |#1|)) (-15 -2683 (|#1| |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -3431 (|#1|)) (-15 -1846 ((-3 |#1| "failed") |#1|)) (-15 -4366 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -1700 ((-767) |#1|)) (-15 -1389 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -4366 (|#2| (-407 |#1|) |#2|)) (-15 -2899 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4300 ((-2 (|:| -4376 |#2|) (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -4244 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -4244 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3744 ((-767) |#1| |#1|)) (-15 -4366 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3715 (|#1| |#1| (-767))) (-15 -1668 (|#1| |#1| (-767))) (-15 -1429 ((-2 (|:| -3979 |#1|) (|:| -4071 |#1|)) |#1| (-767))) (-15 -2039 (|#1| (-1166 |#2|))) (-15 -2806 ((-1166 |#2|) |#1|)) (-15 -3690 ((-1259 |#2|) |#1| (-767))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3254 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1170) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1170)))) (-15 -3254 (|#1| |#1| (-1170))) (-15 -3254 (|#1| |#1|)) (-15 -3254 (|#1| |#1| (-767))) (-15 -4366 (|#1| |#1| |#1|)) (-15 -4366 (|#2| |#1| |#2|)) (-15 -3688 ((-418 |#1|) |#1|)) (-15 -4199 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -1348 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2037 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -4192 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4090 (|#1| |#1| (-1076))) (-15 -3836 ((-641 (-1076)) |#1|)) (-15 -1737 ((-767) |#1| (-641 (-1076)))) (-15 -1737 ((-767) |#1|)) (-15 -3810 (|#1| |#1| (-641 (-1076)) (-641 (-767)))) (-15 -3810 (|#1| |#1| (-1076) (-767))) (-15 -2043 ((-641 (-767)) |#1| (-641 (-1076)))) (-15 -2043 ((-767) |#1| (-1076))) (-15 -3025 ((-3 (-1076) "failed") |#1|)) (-15 -1568 ((-641 (-767)) |#1| (-641 (-1076)))) (-15 -1568 ((-767) |#1| (-1076))) (-15 -2423 (|#1| (-1076))) (-15 -4284 ((-3 (-1076) "failed") |#1|)) (-15 -3120 ((-1076) |#1|)) (-15 -3291 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -3291 (|#1| |#1| (-1076) |#1|)) (-15 -3291 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -3291 (|#1| |#1| (-1076) |#2|)) (-15 -3291 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -3291 (|#1| |#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| (-294 |#1|))) (-15 -3291 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -1568 ((-767) |#1|)) (-15 -3810 (|#1| |#2| (-767))) (-15 -4284 ((-3 (-564) "failed") |#1|)) (-15 -3120 ((-564) |#1|)) (-15 -4284 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3120 ((-407 (-564)) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -4284 ((-3 |#2| "failed") |#1|)) (-15 -2423 (|#1| |#2|)) (-15 -2043 ((-767) |#1|)) (-15 -4090 (|#2| |#1|)) (-15 -3254 (|#1| |#1| (-641 (-1076)) (-641 (-767)))) (-15 -3254 (|#1| |#1| (-1076) (-767))) (-15 -3254 (|#1| |#1| (-641 (-1076)))) (-15 -3254 (|#1| |#1| (-1076))) (-15 -2423 (|#1| (-564))) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3690 (((-1259 |#1|) $ (-767)) 232)) (-3836 (((-641 (-1076)) $) 104)) (-2039 (($ (-1166 |#1|)) 230)) (-3660 (((-1166 $) $ (-1076)) 119) (((-1166 |#1|) $) 118)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 81 (|has| |#1| (-556)))) (-3063 (($ $) 82 (|has| |#1| (-556)))) (-3330 (((-112) $) 84 (|has| |#1| (-556)))) (-1737 (((-767) $) 106) (((-767) $ (-641 (-1076))) 105)) (-4012 (((-3 $ "failed") $ $) 20)) (-2931 (($ $ $) 217 (|has| |#1| (-556)))) (-4199 (((-418 (-1166 $)) (-1166 $)) 94 (|has| |#1| (-905)))) (-2683 (($ $) 92 (|has| |#1| (-452)))) (-2753 (((-418 $) $) 91 (|has| |#1| (-452)))) (-4192 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 97 (|has| |#1| (-905)))) (-3162 (((-112) $ $) 202 (|has| |#1| (-363)))) (-1668 (($ $ (-767)) 225)) (-3715 (($ $ (-767)) 224)) (-2899 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 212 (|has| |#1| (-452)))) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#1| "failed") $) 158) (((-3 (-407 (-564)) "failed") $) 155 (|has| |#1| (-1034 (-407 (-564))))) (((-3 (-564) "failed") $) 153 (|has| |#1| (-1034 (-564)))) (((-3 (-1076) "failed") $) 130)) (-3120 ((|#1| $) 157) (((-407 (-564)) $) 156 (|has| |#1| (-1034 (-407 (-564))))) (((-564) $) 154 (|has| |#1| (-1034 (-564)))) (((-1076) $) 131)) (-2746 (($ $ $ (-1076)) 102 (|has| |#1| (-172))) ((|#1| $ $) 220 (|has| |#1| (-172)))) (-2946 (($ $ $) 206 (|has| |#1| (-363)))) (-1684 (($ $) 148)) (-4277 (((-685 (-564)) (-685 $)) 128 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 127 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2511 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 126) (((-685 |#1|) (-685 $)) 125)) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 205 (|has| |#1| (-363)))) (-1843 (($ $ $) 223)) (-1835 (($ $ $) 214 (|has| |#1| (-556)))) (-4300 (((-2 (|:| -4376 |#1|) (|:| -3979 $) (|:| -4071 $)) $ $) 213 (|has| |#1| (-556)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 200 (|has| |#1| (-363)))) (-2571 (($ $) 170 (|has| |#1| (-452))) (($ $ (-1076)) 99 (|has| |#1| (-452)))) (-3993 (((-641 $) $) 103)) (-1339 (((-112) $) 90 (|has| |#1| (-905)))) (-3850 (($ $ |#1| (-767) $) 166)) (-1513 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 78 (-12 (|has| (-1076) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-564) $) $ (-888 (-564)) (-885 (-564) $)) 77 (-12 (|has| (-1076) (-882 (-564))) (|has| |#1| (-882 (-564)))))) (-3744 (((-767) $ $) 218 (|has| |#1| (-556)))) (-4112 (((-112) $) 32)) (-2497 (((-767) $) 163)) (-1846 (((-3 $ "failed") $) 198 (|has| |#1| (-1145)))) (-3824 (($ (-1166 |#1|) (-1076)) 111) (($ (-1166 $) (-1076)) 110)) (-1747 (($ $ (-767)) 229)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 209 (|has| |#1| (-363)))) (-2210 (((-641 $) $) 120)) (-4003 (((-112) $) 146)) (-3810 (($ |#1| (-767)) 147) (($ $ (-1076) (-767)) 113) (($ $ (-641 (-1076)) (-641 (-767))) 112)) (-1384 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $ (-1076)) 114) (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 227)) (-2043 (((-767) $) 164) (((-767) $ (-1076)) 116) (((-641 (-767)) $ (-641 (-1076))) 115)) (-1948 (($ (-1 (-767) (-767)) $) 165)) (-4357 (($ (-1 |#1| |#1|) $) 145)) (-2806 (((-1166 |#1|) $) 231)) (-3025 (((-3 (-1076) "failed") $) 117)) (-3971 (($ $) 143)) (-3982 ((|#1| $) 142)) (-2084 (($ (-641 $)) 88 (|has| |#1| (-452))) (($ $ $) 87 (|has| |#1| (-452)))) (-2766 (((-1152) $) 10)) (-1429 (((-2 (|:| -3979 $) (|:| -4071 $)) $ (-767)) 226)) (-1958 (((-3 (-641 $) "failed") $) 108)) (-1301 (((-3 (-641 $) "failed") $) 109)) (-3401 (((-3 (-2 (|:| |var| (-1076)) (|:| -1838 (-767))) "failed") $) 107)) (-2070 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3431 (($) 197 (|has| |#1| (-1145)) CONST)) (-4052 (((-1114) $) 11)) (-3944 (((-112) $) 160)) (-3954 ((|#1| $) 161)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 89 (|has| |#1| (-452)))) (-2123 (($ (-641 $)) 86 (|has| |#1| (-452))) (($ $ $) 85 (|has| |#1| (-452)))) (-2037 (((-418 (-1166 $)) (-1166 $)) 96 (|has| |#1| (-905)))) (-1348 (((-418 (-1166 $)) (-1166 $)) 95 (|has| |#1| (-905)))) (-3688 (((-418 $) $) 93 (|has| |#1| (-905)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 208 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 207 (|has| |#1| (-363)))) (-2998 (((-3 $ "failed") $ |#1|) 168 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 80 (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 201 (|has| |#1| (-363)))) (-3291 (($ $ (-641 (-294 $))) 139) (($ $ (-294 $)) 138) (($ $ $ $) 137) (($ $ (-641 $) (-641 $)) 136) (($ $ (-1076) |#1|) 135) (($ $ (-641 (-1076)) (-641 |#1|)) 134) (($ $ (-1076) $) 133) (($ $ (-641 (-1076)) (-641 $)) 132)) (-1700 (((-767) $) 203 (|has| |#1| (-363)))) (-4366 ((|#1| $ |#1|) 250) (($ $ $) 249) (((-407 $) (-407 $) (-407 $)) 219 (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) 211 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 199 (|has| |#1| (-556)))) (-3296 (((-3 $ "failed") $ (-767)) 228)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 204 (|has| |#1| (-363)))) (-1330 (($ $ (-1076)) 101 (|has| |#1| (-172))) ((|#1| $) 221 (|has| |#1| (-172)))) (-3254 (($ $ (-1076)) 43) (($ $ (-641 (-1076))) 42) (($ $ (-1076) (-767)) 41) (($ $ (-641 (-1076)) (-641 (-767))) 40) (($ $ (-767)) 247) (($ $) 245) (($ $ (-1170)) 244 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 243 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 242 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 241 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 234) (($ $ (-1 |#1| |#1|)) 233) (($ $ (-1 |#1| |#1|) $) 222)) (-1568 (((-767) $) 144) (((-767) $ (-1076)) 124) (((-641 (-767)) $ (-641 (-1076))) 123)) (-1311 (((-888 (-379)) $) 76 (-12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379)))))) (((-888 (-564)) $) 75 (-12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564)))))) (((-536) $) 74 (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4090 ((|#1| $) 169 (|has| |#1| (-452))) (($ $ (-1076)) 100 (|has| |#1| (-452)))) (-3895 (((-3 (-1259 $) "failed") (-685 $)) 98 (-2358 (|has| $ (-145)) (|has| |#1| (-905))))) (-4244 (((-3 $ "failed") $ $) 216 (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) 215 (|has| |#1| (-556)))) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 159) (($ (-1076)) 129) (($ (-407 (-564))) 72 (-2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 79 (|has| |#1| (-556)))) (-3191 (((-641 |#1|) $) 162)) (-2007 ((|#1| $ (-767)) 149) (($ $ (-1076) (-767)) 122) (($ $ (-641 (-1076)) (-641 (-767))) 121)) (-2420 (((-3 $ "failed") $) 73 (-2807 (-2358 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3719 (((-767)) 29 T CONST)) (-3242 (($ $ $ (-767)) 167 (|has| |#1| (-172)))) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 83 (|has| |#1| (-556)))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-1076)) 39) (($ $ (-641 (-1076))) 38) (($ $ (-1076) (-767)) 37) (($ $ (-641 (-1076)) (-641 (-767))) 36) (($ $ (-767)) 248) (($ $) 246) (($ $ (-1170)) 240 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170))) 239 (|has| |#1| (-896 (-1170)))) (($ $ (-1170) (-767)) 238 (|has| |#1| (-896 (-1170)))) (($ $ (-641 (-1170)) (-641 (-767))) 237 (|has| |#1| (-896 (-1170)))) (($ $ (-1 |#1| |#1|) (-767)) 236) (($ $ (-1 |#1| |#1|)) 235)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 150 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 152 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 151 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 141) (($ $ |#1|) 140)))
-(((-1235 |#1|) (-140) (-1045)) (T -1235))
-((-3690 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1235 *4)) (-4 *4 (-1045)) (-5 *2 (-1259 *4)))) (-2806 (*1 *2 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-5 *2 (-1166 *3)))) (-2039 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1045)) (-4 *1 (-1235 *3)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) (-3296 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) (-1384 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-1235 *3)))) (-1429 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-1235 *4)))) (-1668 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) (-1843 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)))) (-3254 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-2746 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-4366 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-4 *3 (-556)))) (-3744 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-4 *3 (-556)) (-5 *2 (-767)))) (-2931 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-4244 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-4244 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-4 *3 (-556)))) (-1835 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))) (-4300 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -4376 *3) (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-1235 *3)))) (-2899 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1235 *3)))) (-4366 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))))
-(-13 (-945 |t#1| (-767) (-1076)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -3690 ((-1259 |t#1|) $ (-767))) (-15 -2806 ((-1166 |t#1|) $)) (-15 -2039 ($ (-1166 |t#1|))) (-15 -1747 ($ $ (-767))) (-15 -3296 ((-3 $ "failed") $ (-767))) (-15 -1384 ((-2 (|:| -3979 $) (|:| -4071 $)) $ $)) (-15 -1429 ((-2 (|:| -3979 $) (|:| -4071 $)) $ (-767))) (-15 -1668 ($ $ (-767))) (-15 -3715 ($ $ (-767))) (-15 -1843 ($ $ $)) (-15 -3254 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -1330 (|t#1| $)) (-15 -2746 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -4366 ((-407 $) (-407 $) (-407 $))) (-15 -3744 ((-767) $ $)) (-15 -2931 ($ $ $)) (-15 -4244 ((-3 $ "failed") $ $)) (-15 -4244 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -1835 ($ $ $)) (-15 -4300 ((-2 (|:| -4376 |t#1|) (|:| -3979 $) (|:| -4071 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -2899 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4403) (-15 -4366 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-15 -2070 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-767)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2807 (|has| |#1| (-1034 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1076)) . T) ((-614 |#1|) . T) ((-614 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))) ((-612 (-888 (-379))) -12 (|has| (-1076) (-612 (-888 (-379)))) (|has| |#1| (-612 (-888 (-379))))) ((-612 (-888 (-564))) -12 (|has| (-1076) (-612 (-888 (-564)))) (|has| |#1| (-612 (-888 (-564))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-556)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2807 (|has| |#1| (-905)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-556) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-722) . T) ((-896 #2#) . T) ((-896 (-1170)) |has| |#1| (-896 (-1170))) ((-882 (-379)) -12 (|has| (-1076) (-882 (-379))) (|has| |#1| (-882 (-379)))) ((-882 (-564)) -12 (|has| (-1076) (-882 (-564))) (|has| |#1| (-882 (-564)))) ((-945 |#1| #0# #2#) . T) ((-905) |has| |#1| (-905)) ((-916) |has| |#1| (-363)) ((-1034 (-407 (-564))) |has| |#1| (-1034 (-407 (-564)))) ((-1034 (-564)) |has| |#1| (-1034 (-564))) ((-1034 #2#) . T) ((-1034 |#1|) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-905)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1213) |has| |#1| (-905)))
-((-3836 (((-641 (-1076)) $) 34)) (-1684 (($ $) 31)) (-3810 (($ |#2| |#3|) NIL) (($ $ (-1076) |#3|) 28) (($ $ (-641 (-1076)) (-641 |#3|)) 27)) (-3971 (($ $) 14)) (-3982 ((|#2| $) 12)) (-1568 ((|#3| $) 10)))
-(((-1236 |#1| |#2| |#3|) (-10 -8 (-15 -3836 ((-641 (-1076)) |#1|)) (-15 -3810 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -3810 (|#1| |#1| (-1076) |#3|)) (-15 -1684 (|#1| |#1|)) (-15 -3810 (|#1| |#2| |#3|)) (-15 -1568 (|#3| |#1|)) (-15 -3971 (|#1| |#1|)) (-15 -3982 (|#2| |#1|))) (-1237 |#2| |#3|) (-1045) (-788)) (T -1236))
-NIL
-(-10 -8 (-15 -3836 ((-641 (-1076)) |#1|)) (-15 -3810 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -3810 (|#1| |#1| (-1076) |#3|)) (-15 -1684 (|#1| |#1|)) (-15 -3810 (|#1| |#2| |#3|)) (-15 -1568 (|#3| |#1|)) (-15 -3971 (|#1| |#1|)) (-15 -3982 (|#2| |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3836 (((-641 (-1076)) $) 78)) (-3395 (((-1170) $) 107)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 55 (|has| |#1| (-556)))) (-3063 (($ $) 56 (|has| |#1| (-556)))) (-3330 (((-112) $) 58 (|has| |#1| (-556)))) (-1709 (($ $ |#2|) 102) (($ $ |#2| |#2|) 101)) (-4289 (((-1150 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 109)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-1684 (($ $) 64)) (-3293 (((-3 $ "failed") $) 34)) (-4243 (((-112) $) 77)) (-3744 ((|#2| $) 104) ((|#2| $ |#2|) 103)) (-4112 (((-112) $) 32)) (-1747 (($ $ (-917)) 105)) (-4003 (((-112) $) 66)) (-3810 (($ |#1| |#2|) 65) (($ $ (-1076) |#2|) 80) (($ $ (-641 (-1076)) (-641 |#2|)) 79)) (-4357 (($ (-1 |#1| |#1|) $) 67)) (-3971 (($ $) 69)) (-3982 ((|#1| $) 70)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-4016 (($ $ |#2|) 99)) (-2998 (((-3 $ "failed") $ $) 54 (|has| |#1| (-556)))) (-3291 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4366 ((|#1| $ |#2|) 108) (($ $ $) 85 (|has| |#2| (-1106)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) 93 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-767)) 92 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 91 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 90 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1568 ((|#2| $) 68)) (-2732 (($ $) 76)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ (-407 (-564))) 61 (|has| |#1| (-38 (-407 (-564))))) (($ $) 53 (|has| |#1| (-556))) (($ |#1|) 51 (|has| |#1| (-172)))) (-2007 ((|#1| $ |#2|) 63)) (-2420 (((-3 $ "failed") $) 52 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-3639 ((|#1| $) 106)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 57 (|has| |#1| (-556)))) (-3646 ((|#1| $ |#2|) 100 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) 97 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-767)) 96 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 95 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 94 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 89 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 62 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 72) (($ |#1| $) 71) (($ (-407 (-564)) $) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 59 (|has| |#1| (-38 (-407 (-564)))))))
-(((-1237 |#1| |#2|) (-140) (-1045) (-788)) (T -1237))
-((-4289 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4366 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3395 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1170)))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3744 (*1 *2 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1709 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1709 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3646 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2423 (*2 (-1170)))) (-4 *2 (-1045)))) (-4016 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3291 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3)))))
-(-13 (-969 |t#1| |t#2| (-1076)) (-10 -8 (-15 -4289 ((-1150 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4366 (|t#1| $ |t#2|)) (-15 -3395 ((-1170) $)) (-15 -3639 (|t#1| $)) (-15 -1747 ($ $ (-917))) (-15 -3744 (|t#2| $)) (-15 -3744 (|t#2| $ |t#2|)) (-15 -1709 ($ $ |t#2|)) (-15 -1709 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2423 (|t#1| (-1170)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3646 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4016 ($ $ |t#2|)) (IF (|has| |t#2| (-1106)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-896 (-1170))) (-6 (-896 (-1170))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3291 ((-1150 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1106)) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-896 (-1170)))) ((-969 |#1| |#2| (-1076)) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-2683 ((|#2| |#2|) 12)) (-2753 (((-418 |#2|) |#2|) 14)) (-4349 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))) 30)))
-(((-1238 |#1| |#2|) (-10 -7 (-15 -2753 ((-418 |#2|) |#2|)) (-15 -2683 (|#2| |#2|)) (-15 -4349 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) (-556) (-13 (-1235 |#1|) (-556) (-10 -8 (-15 -2123 ($ $ $))))) (T -1238))
-((-4349 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-564)))) (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2123 ($ $ $))))) (-4 *3 (-556)) (-5 *1 (-1238 *3 *4)))) (-2683 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2123 ($ $ $))))))) (-2753 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3)) (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -2123 ($ $ $))))))))
-(-10 -7 (-15 -2753 ((-418 |#2|) |#2|)) (-15 -2683 (|#2| |#2|)) (-15 -4349 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))))))
-((-4357 (((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)) 24)))
-(((-1239 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4357 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) (-1045) (-1045) (-1170) (-1170) |#1| |#2|) (T -1239))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170)))))
-(-10 -7 (-15 -4357 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3836 (((-641 (-1076)) $) 78)) (-3395 (((-1170) $) 107)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 55 (|has| |#1| (-556)))) (-3063 (($ $) 56 (|has| |#1| (-556)))) (-3330 (((-112) $) 58 (|has| |#1| (-556)))) (-1709 (($ $ (-407 (-564))) 102) (($ $ (-407 (-564)) (-407 (-564))) 101)) (-4289 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 109)) (-3880 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 166 (|has| |#1| (-363)))) (-2753 (((-418 $) $) 167 (|has| |#1| (-363)))) (-3700 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3162 (((-112) $ $) 157 (|has| |#1| (-363)))) (-3858 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 175)) (-3902 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) 18 T CONST)) (-2946 (($ $ $) 161 (|has| |#1| (-363)))) (-1684 (($ $) 64)) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 160 (|has| |#1| (-363)))) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 155 (|has| |#1| (-363)))) (-1339 (((-112) $) 168 (|has| |#1| (-363)))) (-4243 (((-112) $) 77)) (-4274 (($) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-407 (-564)) $) 104) (((-407 (-564)) $ (-407 (-564))) 103)) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 120 (|has| |#1| (-38 (-407 (-564)))))) (-1747 (($ $ (-917)) 105) (($ $ (-407 (-564))) 174)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 164 (|has| |#1| (-363)))) (-4003 (((-112) $) 66)) (-3810 (($ |#1| (-407 (-564))) 65) (($ $ (-1076) (-407 (-564))) 80) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 79)) (-4357 (($ (-1 |#1| |#1|) $) 67)) (-3657 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) 69)) (-3982 ((|#1| $) 70)) (-2084 (($ (-641 $)) 153 (|has| |#1| (-363))) (($ $ $) 152 (|has| |#1| (-363)))) (-2766 (((-1152) $) 10)) (-3936 (($ $) 169 (|has| |#1| (-363)))) (-2070 (($ $) 173 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 172 (-2807 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-955)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 154 (|has| |#1| (-363)))) (-2123 (($ (-641 $)) 151 (|has| |#1| (-363))) (($ $ $) 150 (|has| |#1| (-363)))) (-3688 (((-418 $) $) 165 (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 162 (|has| |#1| (-363)))) (-4016 (($ $ (-407 (-564))) 99)) (-2998 (((-3 $ "failed") $ $) 54 (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 156 (|has| |#1| (-363)))) (-1689 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-1700 (((-767) $) 158 (|has| |#1| (-363)))) (-4366 ((|#1| $ (-407 (-564))) 108) (($ $ $) 85 (|has| (-407 (-564)) (-1106)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 159 (|has| |#1| (-363)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) 93 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-767)) 92 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 91 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 90 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1568 (((-407 (-564)) $) 68)) (-3914 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) 76)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 51 (|has| |#1| (-172))) (($ (-407 (-564))) 61 (|has| |#1| (-38 (-407 (-564))))) (($ $) 53 (|has| |#1| (-556)))) (-2007 ((|#1| $ (-407 (-564))) 63)) (-2420 (((-3 $ "failed") $) 52 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-3639 ((|#1| $) 106)) (-1860 (((-112) $ $) 9)) (-3949 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) 57 (|has| |#1| (-556)))) (-3925 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-407 (-564))) 100 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) 97 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-767)) 96 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 95 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 94 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-767)) 89 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 62 (|has| |#1| (-363))) (($ $ $) 171 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 170 (|has| |#1| (-363))) (($ $ $) 148 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 119 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 72) (($ |#1| $) 71) (($ (-407 (-564)) $) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 59 (|has| |#1| (-38 (-407 (-564)))))))
-(((-1240 |#1|) (-140) (-1045)) (T -1240))
-((-2808 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) (-4 *4 (-1045)) (-4 *1 (-1240 *4)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1045)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))) (-2070 (*1 *1 *1 *2) (-2807 (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -3836 ((-641 *2) *3))) (|has| *3 (-15 -2070 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
-(-13 (-1237 |t#1| (-407 (-564))) (-10 -8 (-15 -2808 ($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |t#1|))))) (-15 -1747 ($ $ (-407 (-564)))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ($ $)) (IF (|has| |t#1| (-15 -2070 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -3836 ((-641 (-1170)) |t#1|))) (-15 -2070 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-564))) (-15 -2070 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170)))) ((-969 |#1| #0# (-1076)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1051 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T))
-((-1494 (((-112) $) 12)) (-4284 (((-3 |#3| "failed") $) 17)) (-3120 ((|#3| $) 14)))
-(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -4284 ((-3 |#3| "failed") |#1|)) (-15 -3120 (|#3| |#1|)) (-15 -1494 ((-112) |#1|))) (-1242 |#2| |#3|) (-1045) (-1219 |#2|)) (T -1241))
-NIL
-(-10 -8 (-15 -4284 ((-3 |#3| "failed") |#1|)) (-15 -3120 (|#3| |#1|)) (-15 -1494 ((-112) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3836 (((-641 (-1076)) $) 78)) (-3395 (((-1170) $) 107)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 55 (|has| |#1| (-556)))) (-3063 (($ $) 56 (|has| |#1| (-556)))) (-3330 (((-112) $) 58 (|has| |#1| (-556)))) (-1709 (($ $ (-407 (-564))) 102) (($ $ (-407 (-564)) (-407 (-564))) 101)) (-4289 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 109)) (-3880 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 166 (|has| |#1| (-363)))) (-2753 (((-418 $) $) 167 (|has| |#1| (-363)))) (-3700 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3162 (((-112) $ $) 157 (|has| |#1| (-363)))) (-3858 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 175)) (-3902 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#2| "failed") $) 186)) (-3120 ((|#2| $) 187)) (-2946 (($ $ $) 161 (|has| |#1| (-363)))) (-1684 (($ $) 64)) (-3293 (((-3 $ "failed") $) 34)) (-2966 (((-407 (-564)) $) 183)) (-2960 (($ $ $) 160 (|has| |#1| (-363)))) (-3915 (($ (-407 (-564)) |#2|) 184)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 155 (|has| |#1| (-363)))) (-1339 (((-112) $) 168 (|has| |#1| (-363)))) (-4243 (((-112) $) 77)) (-4274 (($) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-407 (-564)) $) 104) (((-407 (-564)) $ (-407 (-564))) 103)) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 120 (|has| |#1| (-38 (-407 (-564)))))) (-1747 (($ $ (-917)) 105) (($ $ (-407 (-564))) 174)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 164 (|has| |#1| (-363)))) (-4003 (((-112) $) 66)) (-3810 (($ |#1| (-407 (-564))) 65) (($ $ (-1076) (-407 (-564))) 80) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 79)) (-4357 (($ (-1 |#1| |#1|) $) 67)) (-3657 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) 69)) (-3982 ((|#1| $) 70)) (-2084 (($ (-641 $)) 153 (|has| |#1| (-363))) (($ $ $) 152 (|has| |#1| (-363)))) (-2716 ((|#2| $) 182)) (-4342 (((-3 |#2| "failed") $) 180)) (-3903 ((|#2| $) 181)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 169 (|has| |#1| (-363)))) (-2070 (($ $) 173 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 172 (-2807 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-955)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 154 (|has| |#1| (-363)))) (-2123 (($ (-641 $)) 151 (|has| |#1| (-363))) (($ $ $) 150 (|has| |#1| (-363)))) (-3688 (((-418 $) $) 165 (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 162 (|has| |#1| (-363)))) (-4016 (($ $ (-407 (-564))) 99)) (-2998 (((-3 $ "failed") $ $) 54 (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 156 (|has| |#1| (-363)))) (-1689 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-1700 (((-767) $) 158 (|has| |#1| (-363)))) (-4366 ((|#1| $ (-407 (-564))) 108) (($ $ $) 85 (|has| (-407 (-564)) (-1106)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 159 (|has| |#1| (-363)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) 93 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-767)) 92 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 91 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 90 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1568 (((-407 (-564)) $) 68)) (-3914 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) 76)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 51 (|has| |#1| (-172))) (($ |#2|) 185) (($ (-407 (-564))) 61 (|has| |#1| (-38 (-407 (-564))))) (($ $) 53 (|has| |#1| (-556)))) (-2007 ((|#1| $ (-407 (-564))) 63)) (-2420 (((-3 $ "failed") $) 52 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-3639 ((|#1| $) 106)) (-1860 (((-112) $ $) 9)) (-3949 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) 57 (|has| |#1| (-556)))) (-3925 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-407 (-564))) 100 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) 97 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-767)) 96 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 95 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 94 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-767)) 89 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 62 (|has| |#1| (-363))) (($ $ $) 171 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 170 (|has| |#1| (-363))) (($ $ $) 148 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 119 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 72) (($ |#1| $) 71) (($ (-407 (-564)) $) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 59 (|has| |#1| (-38 (-407 (-564)))))))
-(((-1242 |#1| |#2|) (-140) (-1045) (-1219 |t#1|)) (T -1242))
-((-1568 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-3915 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1045)) (-4 *1 (-1242 *4 *3)) (-4 *3 (-1219 *4)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-2716 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1219 *3)))) (-3903 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1219 *3)))) (-4342 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1219 *3)))))
-(-13 (-1240 |t#1|) (-1034 |t#2|) (-614 |t#2|) (-10 -8 (-15 -3915 ($ (-407 (-564)) |t#2|)) (-15 -2966 ((-407 (-564)) $)) (-15 -2716 (|t#2| $)) (-15 -1568 ((-407 (-564)) $)) (-15 -3903 (|t#2| $)) (-15 -4342 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170)))) ((-969 |#1| #0# (-1076)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1034 |#2|) . T) ((-1051 #1#) -2807 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T) ((-1240 |#1|) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) 104)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1709 (($ $ (-407 (-564))) 116) (($ $ (-407 (-564)) (-407 (-564))) 118)) (-4289 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 54)) (-3880 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-363)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3858 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 65)) (-3902 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) NIL)) (-3120 ((|#2| $) NIL)) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) 85)) (-2966 (((-407 (-564)) $) 13)) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-3915 (($ (-407 (-564)) |#2|) 11)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1339 (((-112) $) NIL (|has| |#1| (-363)))) (-4243 (((-112) $) 74)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-407 (-564)) $) 113) (((-407 (-564)) $ (-407 (-564))) 114)) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1747 (($ $ (-917)) 130) (($ $ (-407 (-564))) 128)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-407 (-564))) 33) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-4357 (($ (-1 |#1| |#1|) $) 125)) (-3657 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2716 ((|#2| $) 12)) (-4342 (((-3 |#2| "failed") $) 44)) (-3903 ((|#2| $) 45)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) 101 (|has| |#1| (-363)))) (-2070 (($ $) 146 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 151 (-2807 (-12 (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194)))))) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4016 (($ $ (-407 (-564))) 122)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1689 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ (-407 (-564))) 108) (($ $ $) 94 (|has| (-407 (-564)) (-1106)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) 138 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1568 (((-407 (-564)) $) 16)) (-3914 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) 120)) (-2423 (((-858) $) NIL) (($ (-564)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-407 (-564))) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2007 ((|#1| $ (-407 (-564))) 107)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) 127 T CONST)) (-3639 ((|#1| $) 106)) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 21 T CONST)) (-2417 (($) 17 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2974 (((-112) $ $) 72)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-3082 (($ $) 142) (($ $ $) 78)) (-3070 (($ $ $) 76)) (** (($ $ (-917)) NIL) (($ $ (-767)) 82) (($ $ (-564)) 157 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1243 |#1| |#2|) (-1242 |#1| |#2|) (-1045) (-1219 |#1|)) (T -1243))
-NIL
-(-1242 |#1| |#2|)
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) 11)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) NIL (|has| |#1| (-556)))) (-1709 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-4289 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3880 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-2683 (($ $) NIL (|has| |#1| (-363)))) (-2753 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3162 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3858 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-767) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1251 |#1| |#2| |#3|) "failed") $) 22)) (-3120 (((-1223 |#1| |#2| |#3|) $) NIL) (((-1251 |#1| |#2| |#3|) $) NIL)) (-2946 (($ $ $) NIL (|has| |#1| (-363)))) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2966 (((-407 (-564)) $) 69)) (-2960 (($ $ $) NIL (|has| |#1| (-363)))) (-3915 (($ (-407 (-564)) (-1223 |#1| |#2| |#3|)) NIL)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1339 (((-112) $) NIL (|has| |#1| (-363)))) (-4243 (((-112) $) NIL)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-4112 (((-112) $) NIL)) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1747 (($ $ (-917)) NIL) (($ $ (-407 (-564))) NIL)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-407 (-564))) 30) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2084 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2716 (((-1223 |#1| |#2| |#3|) $) 72)) (-4342 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) NIL)) (-3903 (((-1223 |#1| |#2| |#3|) $) NIL)) (-2766 (((-1152) $) NIL)) (-3936 (($ $) NIL (|has| |#1| (-363)))) (-2070 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-2807 (-12 (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-4052 (((-1114) $) NIL)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2123 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3688 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3274 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) NIL (|has| |#1| (-363)))) (-4016 (($ $ (-407 (-564))) NIL)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1820 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1689 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-1700 (((-767) $) NIL (|has| |#1| (-363)))) (-4366 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) NIL (|has| |#1| (-363)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-1568 (((-407 (-564)) $) NIL)) (-3914 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) NIL)) (-2423 (((-858) $) 109) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1223 |#1| |#2| |#3|)) 16) (($ (-1251 |#1| |#2| |#3|)) 17) (($ (-1255 |#2|)) 36) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2007 ((|#1| $ (-407 (-564))) NIL)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-3639 ((|#1| $) 12)) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-407 (-564))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 32 T CONST)) (-2417 (($) 26 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 34)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1244 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1034 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1244))
-((-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1034 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3254 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 37)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-3063 (($ $) NIL)) (-3330 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 (-564) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1034 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1034 (-407 (-564))))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 22)) (-3120 (((-564) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1034 (-564)))) (((-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1034 (-407 (-564))))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-1684 (($ $) 41)) (-3293 (((-3 $ "failed") $) 27)) (-2571 (($ $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-3850 (($ $ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) 11)) (-4003 (((-112) $) NIL)) (-3810 (($ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 25)) (-2043 (((-319 |#2| |#3| |#4|) $) NIL)) (-1948 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-4357 (($ (-1 (-1244 |#2| |#3| |#4|) (-1244 |#2| |#3| |#4|)) $) NIL)) (-4120 (((-3 (-839 |#2|) "failed") $) 91)) (-3971 (($ $) NIL)) (-3982 (((-1244 |#2| |#3| |#4|) $) 20)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-3944 (((-112) $) NIL)) (-3954 (((-1244 |#2| |#3| |#4|) $) NIL)) (-2998 (((-3 $ "failed") $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-556))) (((-3 $ "failed") $ $) NIL)) (-1393 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $) 73)) (-1568 (((-319 |#2| |#3| |#4|) $) 17)) (-4090 (((-1244 |#2| |#3| |#4|) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ (-1244 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL (-2807 (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))) (|has| (-1244 |#2| |#3| |#4|) (-1034 (-407 (-564))))))) (-3191 (((-641 (-1244 |#2| |#3| |#4|)) $) NIL)) (-2007 (((-1244 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-2420 (((-3 $ "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-145)))) (-3719 (((-767)) NIL T CONST)) (-3242 (($ $ $ (-767)) NIL (|has| (-1244 |#2| |#3| |#4|) (-172)))) (-1860 (((-112) $ $) NIL)) (-2119 (((-112) $ $) NIL)) (-2403 (($) 79 T CONST)) (-2417 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-1244 |#2| |#3| |#4|)) NIL) (($ (-1244 |#2| |#3| |#4|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))))))
-(((-1245 |#1| |#2| |#3| |#4|) (-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -4120 ((-3 (-839 |#2|) "failed") $)) (-15 -1393 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $)))) (-13 (-1034 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -1245))
-((-4120 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1034 (-564)) (-637 (-564)) (-452))) (-5 *2 (-839 *4)) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))) (-1393 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1034 (-564)) (-637 (-564)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) (|:| |%type| (-1152)))) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))))
-(-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -4120 ((-3 (-839 |#2|) "failed") $)) (-15 -1393 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $))))
-((-2128 ((|#2| $) 34)) (-1783 ((|#2| $) 18)) (-1403 (($ $) 52)) (-3611 (($ $ (-564)) 84)) (-1876 (((-112) $ (-767)) 46)) (-2925 ((|#2| $ |#2|) 82)) (-1776 ((|#2| $ |#2|) 78)) (-3904 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-4082 (($ $ (-641 $)) 81)) (-1772 ((|#2| $) 17)) (-2671 (($ $) NIL) (($ $ (-767)) 59)) (-3573 (((-641 $) $) 31)) (-1675 (((-112) $ $) 69)) (-3097 (((-112) $ (-767)) 45)) (-3619 (((-112) $ (-767)) 43)) (-1841 (((-112) $) 33)) (-2615 ((|#2| $) 25) (($ $ (-767)) 64)) (-4366 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3206 (((-112) $) 23)) (-3068 (($ $) 55)) (-2602 (($ $) 85)) (-3004 (((-767) $) 58)) (-1977 (($ $) 57)) (-3696 (($ $ $) 77) (($ |#2| $) NIL)) (-3154 (((-641 $) $) 32)) (-2974 (((-112) $ $) 67)) (-2181 (((-767) $) 51)))
-(((-1246 |#1| |#2|) (-10 -8 (-15 -3611 (|#1| |#1| (-564))) (-15 -3904 (|#2| |#1| "last" |#2|)) (-15 -1776 (|#2| |#1| |#2|)) (-15 -3904 (|#1| |#1| "rest" |#1|)) (-15 -3904 (|#2| |#1| "first" |#2|)) (-15 -2602 (|#1| |#1|)) (-15 -3068 (|#1| |#1|)) (-15 -3004 ((-767) |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -1783 (|#2| |#1|)) (-15 -1772 (|#2| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -2615 (|#1| |#1| (-767))) (-15 -4366 (|#2| |#1| "last")) (-15 -2615 (|#2| |#1|)) (-15 -2671 (|#1| |#1| (-767))) (-15 -4366 (|#1| |#1| "rest")) (-15 -2671 (|#1| |#1|)) (-15 -4366 (|#2| |#1| "first")) (-15 -3696 (|#1| |#2| |#1|)) (-15 -3696 (|#1| |#1| |#1|)) (-15 -2925 (|#2| |#1| |#2|)) (-15 -3904 (|#2| |#1| "value" |#2|)) (-15 -4082 (|#1| |#1| (-641 |#1|))) (-15 -1675 ((-112) |#1| |#1|)) (-15 -3206 ((-112) |#1|)) (-15 -4366 (|#2| |#1| "value")) (-15 -2128 (|#2| |#1|)) (-15 -1841 ((-112) |#1|)) (-15 -3573 ((-641 |#1|) |#1|)) (-15 -3154 ((-641 |#1|) |#1|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -2181 ((-767) |#1|)) (-15 -1876 ((-112) |#1| (-767))) (-15 -3097 ((-112) |#1| (-767))) (-15 -3619 ((-112) |#1| (-767)))) (-1247 |#2|) (-1209)) (T -1246))
-NIL
-(-10 -8 (-15 -3611 (|#1| |#1| (-564))) (-15 -3904 (|#2| |#1| "last" |#2|)) (-15 -1776 (|#2| |#1| |#2|)) (-15 -3904 (|#1| |#1| "rest" |#1|)) (-15 -3904 (|#2| |#1| "first" |#2|)) (-15 -2602 (|#1| |#1|)) (-15 -3068 (|#1| |#1|)) (-15 -3004 ((-767) |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -1783 (|#2| |#1|)) (-15 -1772 (|#2| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -2615 (|#1| |#1| (-767))) (-15 -4366 (|#2| |#1| "last")) (-15 -2615 (|#2| |#1|)) (-15 -2671 (|#1| |#1| (-767))) (-15 -4366 (|#1| |#1| "rest")) (-15 -2671 (|#1| |#1|)) (-15 -4366 (|#2| |#1| "first")) (-15 -3696 (|#1| |#2| |#1|)) (-15 -3696 (|#1| |#1| |#1|)) (-15 -2925 (|#2| |#1| |#2|)) (-15 -3904 (|#2| |#1| "value" |#2|)) (-15 -4082 (|#1| |#1| (-641 |#1|))) (-15 -1675 ((-112) |#1| |#1|)) (-15 -3206 ((-112) |#1|)) (-15 -4366 (|#2| |#1| "value")) (-15 -2128 (|#2| |#1|)) (-15 -1841 ((-112) |#1|)) (-15 -3573 ((-641 |#1|) |#1|)) (-15 -3154 ((-641 |#1|) |#1|)) (-15 -2974 ((-112) |#1| |#1|)) (-15 -2181 ((-767) |#1|)) (-15 -1876 ((-112) |#1| (-767))) (-15 -3097 ((-112) |#1| (-767))) (-15 -3619 ((-112) |#1| (-767))))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2128 ((|#1| $) 49)) (-1783 ((|#1| $) 66)) (-1403 (($ $) 68)) (-3611 (($ $ (-564)) 53 (|has| $ (-6 -4408)))) (-1876 (((-112) $ (-767)) 8)) (-2925 ((|#1| $ |#1|) 40 (|has| $ (-6 -4408)))) (-1886 (($ $ $) 57 (|has| $ (-6 -4408)))) (-1776 ((|#1| $ |#1|) 55 (|has| $ (-6 -4408)))) (-4265 ((|#1| $ |#1|) 59 (|has| $ (-6 -4408)))) (-3904 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4408))) (($ $ "rest" $) 56 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4408)))) (-4082 (($ $ (-641 $)) 42 (|has| $ (-6 -4408)))) (-1772 ((|#1| $) 67)) (-4080 (($) 7 T CONST)) (-2671 (($ $) 74) (($ $ (-767)) 72)) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-3573 (((-641 $) $) 51)) (-1675 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-3097 (((-112) $ (-767)) 9)) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36)) (-3619 (((-112) $ (-767)) 10)) (-2730 (((-641 |#1|) $) 46)) (-1841 (((-112) $) 50)) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2615 ((|#1| $) 71) (($ $ (-767)) 69)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2658 ((|#1| $) 77) (($ $ (-767)) 75)) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3277 (((-564) $ $) 45)) (-3206 (((-112) $) 47)) (-3068 (($ $) 63)) (-2602 (($ $) 60 (|has| $ (-6 -4408)))) (-3004 (((-767) $) 64)) (-1977 (($ $) 65)) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3926 (($ $) 13)) (-3634 (($ $ $) 62 (|has| $ (-6 -4408))) (($ $ |#1|) 61 (|has| $ (-6 -4408)))) (-3696 (($ $ $) 79) (($ |#1| $) 78)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-3154 (((-641 $) $) 52)) (-4059 (((-112) $ $) 44 (|has| |#1| (-1094)))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-1247 |#1|) (-140) (-1209)) (T -1247))
-((-3696 (*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3696 (*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2658 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2671 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2615 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-1403 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1977 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))) (-3068 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3634 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3634 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2602 (*1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4265 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3904 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1886 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3904 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4408)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-1776 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3904 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3611 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4408)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))))
-(-13 (-1006 |t#1|) (-10 -8 (-15 -3696 ($ $ $)) (-15 -3696 ($ |t#1| $)) (-15 -2658 (|t#1| $)) (-15 -4366 (|t#1| $ "first")) (-15 -2658 ($ $ (-767))) (-15 -2671 ($ $)) (-15 -4366 ($ $ "rest")) (-15 -2671 ($ $ (-767))) (-15 -2615 (|t#1| $)) (-15 -4366 (|t#1| $ "last")) (-15 -2615 ($ $ (-767))) (-15 -1403 ($ $)) (-15 -1772 (|t#1| $)) (-15 -1783 (|t#1| $)) (-15 -1977 ($ $)) (-15 -3004 ((-767) $)) (-15 -3068 ($ $)) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3634 ($ $ $)) (-15 -3634 ($ $ |t#1|)) (-15 -2602 ($ $)) (-15 -4265 (|t#1| $ |t#1|)) (-15 -3904 (|t#1| $ "first" |t#1|)) (-15 -1886 ($ $ $)) (-15 -3904 ($ $ "rest" $)) (-15 -1776 (|t#1| $ |t#1|)) (-15 -3904 (|t#1| $ "last" |t#1|)) (-15 -3611 ($ $ (-564)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-611 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1006 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-4357 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4357 (|#4| (-1 |#2| |#1|) |#3|))) (-1045) (-1045) (-1250 |#1|) (-1250 |#2|)) (T -1248))
-((-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1250 *6)) (-5 *1 (-1248 *5 *6 *4 *2)) (-4 *4 (-1250 *5)))))
-(-10 -7 (-15 -4357 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1494 (((-112) $) 17)) (-3880 (($ $) 106)) (-3745 (($ $) 82)) (-3858 (($ $) 102)) (-3722 (($ $) 78)) (-3902 (($ $) 110)) (-3766 (($ $) 86)) (-3657 (($ $) 76)) (-1689 (($ $) 74)) (-3914 (($ $) 112)) (-3777 (($ $) 88)) (-3891 (($ $) 108)) (-3756 (($ $) 84)) (-3869 (($ $) 104)) (-3735 (($ $) 80)) (-2423 (((-858) $) 62) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3949 (($ $) 118)) (-3811 (($ $) 94)) (-3925 (($ $) 114)) (-3787 (($ $) 90)) (-3972 (($ $) 122)) (-3837 (($ $) 98)) (-2784 (($ $) 124)) (-3848 (($ $) 100)) (-3960 (($ $) 120)) (-3825 (($ $) 96)) (-3937 (($ $) 116)) (-3799 (($ $) 92)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-407 (-564))) 72)))
-(((-1249 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3745 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -3735 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -3880 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -3972 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -1689 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2423 (|#1| |#2|)) (-15 -2423 (|#1| |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -1494 ((-112) |#1|)) (-15 -2423 ((-858) |#1|))) (-1250 |#2|) (-1045)) (T -1249))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3745 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -3735 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -3880 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -3972 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -1689 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2423 (|#1| |#2|)) (-15 -2423 (|#1| |#1|)) (-15 -2423 (|#1| (-407 (-564)))) (-15 -2423 (|#1| (-564))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -1494 ((-112) |#1|)) (-15 -2423 ((-858) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3836 (((-641 (-1076)) $) 78)) (-3395 (((-1170) $) 107)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 55 (|has| |#1| (-556)))) (-3063 (($ $) 56 (|has| |#1| (-556)))) (-3330 (((-112) $) 58 (|has| |#1| (-556)))) (-1709 (($ $ (-767)) 102) (($ $ (-767) (-767)) 101)) (-4289 (((-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 109)) (-3880 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) 20)) (-3700 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3858 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 159) (($ (-1150 |#1|)) 157)) (-3902 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) 18 T CONST)) (-1684 (($ $) 64)) (-3293 (((-3 $ "failed") $) 34)) (-2437 (($ $) 156)) (-3423 (((-948 |#1|) $ (-767)) 154) (((-948 |#1|) $ (-767) (-767)) 153)) (-4243 (((-112) $) 77)) (-4274 (($) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-767) $) 104) (((-767) $ (-767)) 103)) (-4112 (((-112) $) 32)) (-3614 (($ $ (-564)) 120 (|has| |#1| (-38 (-407 (-564)))))) (-1747 (($ $ (-917)) 105)) (-3262 (($ (-1 |#1| (-564)) $) 155)) (-4003 (((-112) $) 66)) (-3810 (($ |#1| (-767)) 65) (($ $ (-1076) (-767)) 80) (($ $ (-641 (-1076)) (-641 (-767))) 79)) (-4357 (($ (-1 |#1| |#1|) $) 67)) (-3657 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) 69)) (-3982 ((|#1| $) 70)) (-2766 (((-1152) $) 10)) (-2070 (($ $) 151 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 150 (-2807 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-955)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-4052 (((-1114) $) 11)) (-4016 (($ $ (-767)) 99)) (-2998 (((-3 $ "failed") $ $) 54 (|has| |#1| (-556)))) (-1689 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3291 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-4366 ((|#1| $ (-767)) 108) (($ $ $) 85 (|has| (-767) (-1106)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) 93 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1170) (-767)) 92 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-641 (-1170))) 91 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1170)) 90 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-1568 (((-767) $) 68)) (-3914 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) 76)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ (-407 (-564))) 61 (|has| |#1| (-38 (-407 (-564))))) (($ $) 53 (|has| |#1| (-556))) (($ |#1|) 51 (|has| |#1| (-172)))) (-3191 (((-1150 |#1|) $) 158)) (-2007 ((|#1| $ (-767)) 63)) (-2420 (((-3 $ "failed") $) 52 (|has| |#1| (-145)))) (-3719 (((-767)) 29 T CONST)) (-3639 ((|#1| $) 106)) (-1860 (((-112) $ $) 9)) (-3949 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) 57 (|has| |#1| (-556)))) (-3925 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-767)) 100 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) 97 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1170) (-767)) 96 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-641 (-1170))) 95 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1170)) 94 (-12 (|has| |#1| (-896 (-1170))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 89 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 87 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 62 (|has| |#1| (-363)))) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ |#1|) 152 (|has| |#1| (-363))) (($ $ $) 148 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 119 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 72) (($ |#1| $) 71) (($ (-407 (-564)) $) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 59 (|has| |#1| (-38 (-407 (-564)))))))
-(((-1250 |#1|) (-140) (-1045)) (T -1250))
-((-2808 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-767)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1250 *3)))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1045)) (-5 *2 (-1150 *3)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-4 *1 (-1250 *3)))) (-2437 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)))) (-3262 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1045)))) (-3423 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1250 *4)) (-4 *4 (-1045)) (-5 *2 (-948 *4)))) (-3423 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1250 *4)) (-4 *4 (-1045)) (-5 *2 (-948 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564)))))) (-2070 (*1 *1 *1 *2) (-2807 (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -3836 ((-641 *2) *3))) (|has| *3 (-15 -2070 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
-(-13 (-1237 |t#1| (-767)) (-10 -8 (-15 -2808 ($ (-1150 (-2 (|:| |k| (-767)) (|:| |c| |t#1|))))) (-15 -3191 ((-1150 |t#1|) $)) (-15 -2808 ($ (-1150 |t#1|))) (-15 -2437 ($ $)) (-15 -3262 ($ (-1 |t#1| (-564)) $)) (-15 -3423 ((-948 |t#1|) $ (-767))) (-15 -3423 ((-948 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -2070 ($ $)) (IF (|has| |t#1| (-15 -2070 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -3836 ((-641 (-1170)) |t#1|))) (-15 -2070 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-564))) (-15 -2070 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1194))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-767)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-858)) . T) ((-172) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-767) |#1|))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-767) (-1106)) ((-290) |has| |#1| (-556)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-564)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-556)) ((-722) . T) ((-896 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170)))) ((-969 |#1| #0# (-1076)) . T) ((-998) |has| |#1| (-38 (-407 (-564)))) ((-1051 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1051 |#1|) . T) ((-1051 $) -2807 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1237 |#1| #0#) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3836 (((-641 (-1076)) $) NIL)) (-3395 (((-1170) $) 93)) (-3052 (((-1232 |#2| |#1|) $ (-767)) 74)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-3063 (($ $) NIL (|has| |#1| (-556)))) (-3330 (((-112) $) 144 (|has| |#1| (-556)))) (-1709 (($ $ (-767)) 130) (($ $ (-767) (-767)) 132)) (-4289 (((-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 43)) (-3880 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4012 (((-3 $ "failed") $ $) NIL)) (-3700 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3858 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3722 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2808 (($ (-1150 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 53) (($ (-1150 |#1|)) NIL)) (-3902 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3766 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4080 (($) NIL T CONST)) (-4089 (($ $) 136)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-2437 (($ $) 142)) (-3423 (((-948 |#1|) $ (-767)) 64) (((-948 |#1|) $ (-767) (-767)) 66)) (-4243 (((-112) $) NIL)) (-4274 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3744 (((-767) $) NIL) (((-767) $ (-767)) NIL)) (-4112 (((-112) $) NIL)) (-3002 (($ $) 120)) (-3614 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3373 (($ (-564) (-564) $) 138)) (-1747 (($ $ (-917)) 141)) (-3262 (($ (-1 |#1| (-564)) $) 114)) (-4003 (((-112) $) NIL)) (-3810 (($ |#1| (-767)) 16) (($ $ (-1076) (-767)) NIL) (($ $ (-641 (-1076)) (-641 (-767))) NIL)) (-4357 (($ (-1 |#1| |#1|) $) 101)) (-3657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3971 (($ $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-3543 (($ $) 118)) (-2822 (($ $) 116)) (-1459 (($ (-564) (-564) $) 140)) (-2070 (($ $) 152 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 158 (-2807 (-12 (|has| |#1| (-15 -2070 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -3836 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-955)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 153 (|has| |#1| (-38 (-407 (-564)))))) (-4052 (((-1114) $) NIL)) (-3905 (($ $ (-564) (-564)) 124)) (-4016 (($ $ (-767)) 126)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1689 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4324 (($ $) 122)) (-3291 (((-1150 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-4366 ((|#1| $ (-767)) 98) (($ $ $) 134 (|has| (-767) (-1106)))) (-3254 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) 111 (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1255 |#2|)) 106)) (-1568 (((-767) $) NIL)) (-3914 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3777 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3756 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3869 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2732 (($ $) 128)) (-2423 (((-858) $) NIL) (($ (-564)) 26) (($ (-407 (-564))) 150 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 84) (($ (-1255 |#2|)) 22)) (-3191 (((-1150 |#1|) $) NIL)) (-2007 ((|#1| $ (-767)) 97)) (-2420 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3719 (((-767)) NIL T CONST)) (-3639 ((|#1| $) 94)) (-1860 (((-112) $ $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2119 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3925 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3972 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3646 ((|#1| $ (-767)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -2423 (|#1| (-1170))))))) (-2784 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3960 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3799 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($) 18 T CONST)) (-2417 (($) 13 T CONST)) (-4063 (($ $ (-641 (-1170)) (-641 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1170))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-2974 (((-112) $ $) NIL)) (-3092 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) 110)) (-3070 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 147 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1251 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -2423 ($ (-1232 |#2| |#1|))) (-15 -3052 ((-1232 |#2| |#1|) $ (-767))) (-15 -2423 ($ (-1255 |#2|))) (-15 -3254 ($ $ (-1255 |#2|))) (-15 -2822 ($ $)) (-15 -3543 ($ $)) (-15 -3002 ($ $)) (-15 -4324 ($ $)) (-15 -3905 ($ $ (-564) (-564))) (-15 -4089 ($ $)) (-15 -3373 ($ (-564) (-564) $)) (-15 -1459 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|))) (-1045) (-1170) |#1|) (T -1251))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5)))) (-3052 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1170)) (-14 *6 *4))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2822 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) (-14 *4 *2))) (-3543 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) (-14 *4 *2))) (-3002 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) (-14 *4 *2))) (-4324 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) (-14 *4 *2))) (-3905 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3))) (-4089 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170)) (-14 *4 *2))) (-3373 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3))) (-1459 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1170)) (-14 *5 *3))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(-13 (-1250 |#1|) (-10 -8 (-15 -2423 ($ (-1232 |#2| |#1|))) (-15 -3052 ((-1232 |#2| |#1|) $ (-767))) (-15 -2423 ($ (-1255 |#2|))) (-15 -3254 ($ $ (-1255 |#2|))) (-15 -2822 ($ $)) (-15 -3543 ($ $)) (-15 -3002 ($ $)) (-15 -4324 ($ $)) (-15 -3905 ($ $ (-564) (-564))) (-15 -4089 ($ $)) (-15 -3373 ($ (-564) (-564) $)) (-15 -1459 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -2070 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-2737 (((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|))) 24)) (-1699 (((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1602 (((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|)) 13)) (-2942 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1729 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4251 ((|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|)) 60)) (-3883 (((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))) 66)) (-2053 ((|#2| |#2| |#2|) 43)))
-(((-1252 |#1| |#2|) (-10 -7 (-15 -1602 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -1699 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2737 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -2053 (|#2| |#2| |#2|)) (-15 -1729 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2942 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4251 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -3883 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))))) (-38 (-407 (-564))) (-1250 |#1|)) (T -1252))
-((-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6)))) (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6)) (-5 *1 (-1252 *5 *6)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5)) (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5)) (-5 *1 (-1252 *5 *2)))) (-2942 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-2053 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1250 *3)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))))
-(-10 -7 (-15 -1602 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -1699 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2737 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -2053 (|#2| |#2| |#2|)) (-15 -1729 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2942 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4251 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -3883 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|))))))
-((-2031 ((|#2| |#4| (-767)) 34)) (-1908 ((|#4| |#2|) 29)) (-2605 ((|#4| (-407 |#2|)) 53 (|has| |#1| (-556)))) (-4028 (((-1 |#4| (-641 |#4|)) |#3|) 46)))
-(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1908 (|#4| |#2|)) (-15 -2031 (|#2| |#4| (-767))) (-15 -4028 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -2605 (|#4| (-407 |#2|))) |%noBranch|)) (-1045) (-1235 |#1|) (-652 |#2|) (-1250 |#1|)) (T -1253))
-((-2605 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556)) (-4 *4 (-1045)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2)) (-4 *6 (-652 *5)))) (-4028 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6))) (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1235 *5)) (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5)))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3)))))
-(-10 -7 (-15 -1908 (|#4| |#2|)) (-15 -2031 (|#2| |#4| (-767))) (-15 -4028 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -2605 (|#4| (-407 |#2|))) |%noBranch|))
-NIL
-(((-1254) (-140)) (T -1254))
-NIL
-(-13 (-10 -7 (-6 -3615)))
-((-3009 (((-112) $ $) NIL)) (-3395 (((-1170)) 12)) (-2766 (((-1152) $) 18)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 11) (((-1170) $) 8)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) 15)))
-(((-1255 |#1|) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -2423 ((-1170) $)) (-15 -3395 ((-1170))))) (-1170)) (T -1255))
-((-2423 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))) (-3395 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))))
-(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -2423 ((-1170) $)) (-15 -3395 ((-1170)))))
-((-4122 (($ (-767)) 19)) (-1712 (((-685 |#2|) $ $) 41)) (-3224 ((|#2| $) 51)) (-2581 ((|#2| $) 50)) (-3270 ((|#2| $ $) 36)) (-3015 (($ $ $) 47)) (-3082 (($ $) 23) (($ $ $) 29)) (-3070 (($ $ $) 15)) (* (($ (-564) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
-(((-1256 |#1| |#2|) (-10 -8 (-15 -3224 (|#2| |#1|)) (-15 -2581 (|#2| |#1|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 -1712 ((-685 |#2|) |#1| |#1|)) (-15 -3270 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 -4122 (|#1| (-767))) (-15 -3070 (|#1| |#1| |#1|))) (-1257 |#2|) (-1209)) (T -1256))
-NIL
-(-10 -8 (-15 -3224 (|#2| |#1|)) (-15 -2581 (|#2| |#1|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 -1712 ((-685 |#2|) |#1| |#1|)) (-15 -3270 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1|)) (-15 -4122 (|#1| (-767))) (-15 -3070 (|#1| |#1| |#1|)))
-((-3009 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4122 (($ (-767)) 113 (|has| |#1| (-23)))) (-3236 (((-1264) $ (-564) (-564)) 41 (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4408))) (($ $) 89 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4408))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) 8)) (-3904 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) 59 (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4407)))) (-4080 (($) 7 T CONST)) (-2563 (($ $) 91 (|has| $ (-6 -4408)))) (-3200 (($ $) 101)) (-2696 (($ $) 79 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2591 (($ |#1| $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) 52)) (-3998 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1094)))) (-3035 (((-641 |#1|) $) 31 (|has| $ (-6 -4407)))) (-1712 (((-685 |#1|) $ $) 106 (|has| |#1| (-1045)))) (-4238 (($ (-767) |#1|) 70)) (-3097 (((-112) $ (-767)) 9)) (-1956 (((-564) $) 44 (|has| (-564) (-846)))) (-2855 (($ $ $) 88 (|has| |#1| (-846)))) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-2898 (((-564) $) 45 (|has| (-564) (-846)))) (-1497 (($ $ $) 87 (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3224 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-3619 (((-112) $ (-767)) 10)) (-2581 ((|#1| $) 104 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-2766 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3050 (((-641 (-564)) $) 47)) (-1563 (((-112) (-564) $) 48)) (-4052 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2658 ((|#1| $) 43 (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1592 (($ $ |#1|) 42 (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) 14)) (-3417 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) 49)) (-1976 (((-112) $) 11)) (-2994 (($) 12)) (-4366 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1226 (-564))) 64)) (-3270 ((|#1| $ $) 107 (|has| |#1| (-1045)))) (-2114 (($ $ (-564)) 63) (($ $ (-1226 (-564))) 62)) (-3015 (($ $ $) 105 (|has| |#1| (-1045)))) (-4062 (((-767) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407))) (((-767) |#1| $) 29 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4407))))) (-3806 (($ $ $ (-564)) 92 (|has| $ (-6 -4408)))) (-3926 (($ $) 13)) (-1311 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 71)) (-3696 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-641 $)) 66)) (-2423 (((-858) $) 18 (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) 23 (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) 85 (|has| |#1| (-846)))) (-3011 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2974 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-3023 (((-112) $ $) 86 (|has| |#1| (-846)))) (-2999 (((-112) $ $) 83 (|has| |#1| (-846)))) (-3082 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3070 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-564) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-722))) (($ $ |#1|) 108 (|has| |#1| (-722)))) (-2181 (((-767) $) 6 (|has| $ (-6 -4407)))))
-(((-1257 |#1|) (-140) (-1209)) (T -1257))
-((-3070 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209)))) (-3082 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (-3082 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-722)))) (-3270 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1045)))) (-1712 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1045)) (-5 *2 (-685 *3)))) (-3015 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1045)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-998)) (-4 *2 (-1045)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-998)) (-4 *2 (-1045)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3070 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4122 ($ (-767))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3082 ($ $)) (-15 -3082 ($ $ $)) (-15 * ($ (-564) $))) |%noBranch|) (IF (|has| |t#1| (-722)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-15 -3270 (|t#1| $ $)) (-15 -1712 ((-685 |t#1|) $ $)) (-15 -3015 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-998)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -2581 (|t#1| $)) (-15 -3224 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-611 (-858)) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846)) (|has| |#1| (-611 (-858)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1094) -2807 (|has| |#1| (-1094)) (|has| |#1| (-846))) ((-1209) . T))
-((-2903 (((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 13)) (-1316 ((|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 15)) (-4357 (((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)) 30) (((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|)) 18)))
-(((-1258 |#1| |#2|) (-10 -7 (-15 -2903 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -1316 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -4357 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -4357 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)))) (-1209) (-1209)) (T -1258))
-((-4357 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-1316 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2)))) (-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5)))))
-(-10 -7 (-15 -2903 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -1316 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -4357 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -4357 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|))))
-((-3009 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4122 (($ (-767)) NIL (|has| |#1| (-23)))) (-3240 (($ (-641 |#1|)) 11)) (-3236 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4408)))) (-3833 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-3963 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-2484 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-1876 (((-112) $ (-767)) NIL)) (-3904 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4408)))) (-1667 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4080 (($) NIL T CONST)) (-2563 (($ $) NIL (|has| $ (-6 -4408)))) (-3200 (($ $) NIL)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1316 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2726 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4408)))) (-2652 ((|#1| $ (-564)) NIL)) (-3998 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3035 (((-641 |#1|) $) 15 (|has| $ (-6 -4407)))) (-1712 (((-685 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-4238 (($ (-767) |#1|) NIL)) (-3097 (((-112) $ (-767)) NIL)) (-1956 (((-564) $) NIL (|has| (-564) (-846)))) (-2855 (($ $ $) NIL (|has| |#1| (-846)))) (-3669 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1554 (((-641 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3369 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2898 (((-564) $) NIL (|has| (-564) (-846)))) (-1497 (($ $ $) NIL (|has| |#1| (-846)))) (-2714 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3224 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3619 (((-112) $ (-767)) NIL)) (-2581 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-2766 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4248 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3050 (((-641 (-564)) $) NIL)) (-1563 (((-112) (-564) $) NIL)) (-4052 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2658 ((|#1| $) NIL (|has| (-564) (-846)))) (-2139 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1592 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-4377 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3076 (((-112) $ $) NIL)) (-3417 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-2075 (((-641 |#1|) $) NIL)) (-1976 (((-112) $) NIL)) (-2994 (($) NIL)) (-4366 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3270 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-2114 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3015 (($ $ $) NIL (|has| |#1| (-1045)))) (-4062 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1094))))) (-3806 (($ $ $ (-564)) NIL (|has| $ (-6 -4408)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) 19 (|has| |#1| (-612 (-536))))) (-2435 (($ (-641 |#1|)) 10)) (-3696 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-2423 (((-858) $) NIL (|has| |#1| (-611 (-858))))) (-1860 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1368 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3011 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2974 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3023 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2999 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3082 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3070 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1259 |#1|) (-13 (-1257 |#1|) (-10 -8 (-15 -3240 ($ (-641 |#1|))))) (-1209)) (T -1259))
-((-3240 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3)))))
-(-13 (-1257 |#1|) (-10 -8 (-15 -3240 ($ (-641 |#1|)))))
-((-3009 (((-112) $ $) NIL)) (-2174 (((-1152) $ (-1152)) 109) (((-1152) $ (-1152) (-1152)) 107) (((-1152) $ (-1152) (-641 (-1152))) 106)) (-2057 (($) 69)) (-3943 (((-1264) $ (-468) (-917)) 54)) (-3170 (((-1264) $ (-917) (-1152)) 91) (((-1264) $ (-917) (-870)) 92)) (-3477 (((-1264) $ (-917) (-379) (-379)) 57)) (-3348 (((-1264) $ (-1152)) 86)) (-3823 (((-1264) $ (-917) (-1152)) 96)) (-2052 (((-1264) $ (-917) (-379) (-379)) 58)) (-4379 (((-1264) $ (-917) (-917)) 55)) (-2153 (((-1264) $) 87)) (-2742 (((-1264) $ (-917) (-1152)) 95)) (-4126 (((-1264) $ (-468) (-917)) 40)) (-2762 (((-1264) $ (-917) (-1152)) 94)) (-4264 (((-641 (-263)) $) 29) (($ $ (-641 (-263))) 30)) (-3324 (((-1264) $ (-767) (-767)) 52)) (-2844 (($ $) 71) (($ (-468) (-641 (-263))) 72)) (-2766 (((-1152) $) NIL)) (-1901 (((-564) $) 47)) (-4052 (((-1114) $) NIL)) (-2744 (((-1259 (-3 (-468) "undefined")) $) 46)) (-4114 (((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2762 (-564)) (|:| -3513 (-564)) (|:| |spline| (-564)) (|:| -1411 (-564)) (|:| |axesColor| (-870)) (|:| -3170 (-564)) (|:| |unitsColor| (-870)) (|:| |showing| (-564)))) $) 45)) (-3125 (((-1264) $ (-917) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-870) (-564) (-870) (-564)) 85)) (-3461 (((-641 (-939 (-225))) $) NIL)) (-3641 (((-468) $ (-917)) 42)) (-2956 (((-1264) $ (-767) (-767) (-917) (-917)) 50)) (-2382 (((-1264) $ (-1152)) 97)) (-3513 (((-1264) $ (-917) (-1152)) 93)) (-2423 (((-858) $) 104)) (-1604 (((-1264) $) 98)) (-1860 (((-112) $ $) NIL)) (-1411 (((-1264) $ (-917) (-1152)) 89) (((-1264) $ (-917) (-870)) 90)) (-2974 (((-112) $ $) NIL)))
-(((-1260) (-13 (-1094) (-10 -8 (-15 -3461 ((-641 (-939 (-225))) $)) (-15 -2057 ($)) (-15 -2844 ($ $)) (-15 -4264 ((-641 (-263)) $)) (-15 -4264 ($ $ (-641 (-263)))) (-15 -2844 ($ (-468) (-641 (-263)))) (-15 -3125 ((-1264) $ (-917) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-870) (-564) (-870) (-564))) (-15 -4114 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2762 (-564)) (|:| -3513 (-564)) (|:| |spline| (-564)) (|:| -1411 (-564)) (|:| |axesColor| (-870)) (|:| -3170 (-564)) (|:| |unitsColor| (-870)) (|:| |showing| (-564)))) $)) (-15 -2744 ((-1259 (-3 (-468) "undefined")) $)) (-15 -3348 ((-1264) $ (-1152))) (-15 -4126 ((-1264) $ (-468) (-917))) (-15 -3641 ((-468) $ (-917))) (-15 -1411 ((-1264) $ (-917) (-1152))) (-15 -1411 ((-1264) $ (-917) (-870))) (-15 -3170 ((-1264) $ (-917) (-1152))) (-15 -3170 ((-1264) $ (-917) (-870))) (-15 -2762 ((-1264) $ (-917) (-1152))) (-15 -2742 ((-1264) $ (-917) (-1152))) (-15 -3513 ((-1264) $ (-917) (-1152))) (-15 -2382 ((-1264) $ (-1152))) (-15 -1604 ((-1264) $)) (-15 -2956 ((-1264) $ (-767) (-767) (-917) (-917))) (-15 -2052 ((-1264) $ (-917) (-379) (-379))) (-15 -3477 ((-1264) $ (-917) (-379) (-379))) (-15 -3823 ((-1264) $ (-917) (-1152))) (-15 -3324 ((-1264) $ (-767) (-767))) (-15 -3943 ((-1264) $ (-468) (-917))) (-15 -4379 ((-1264) $ (-917) (-917))) (-15 -2174 ((-1152) $ (-1152))) (-15 -2174 ((-1152) $ (-1152) (-1152))) (-15 -2174 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -2153 ((-1264) $)) (-15 -1901 ((-564) $)) (-15 -2423 ((-858) $))))) (T -1260))
-((-2423 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1260)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-641 (-939 (-225)))) (-5 *1 (-1260)))) (-2057 (*1 *1) (-5 *1 (-1260))) (-2844 (*1 *1 *1) (-5 *1 (-1260))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-4264 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260)))) (-3125 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-917)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-870)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2762 (-564)) (|:| -3513 (-564)) (|:| |spline| (-564)) (|:| -1411 (-564)) (|:| |axesColor| (-870)) (|:| -3170 (-564)) (|:| |unitsColor| (-870)) (|:| |showing| (-564))))) (-5 *1 (-1260)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260)))) (-3348 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4126 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3641 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-468)) (-5 *1 (-1260)))) (-1411 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1411 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3170 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3170 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2762 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2742 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3513 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2382 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2956 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2052 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3477 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3823 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3324 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3943 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4379 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2174 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-2174 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-2174 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260)))))
-(-13 (-1094) (-10 -8 (-15 -3461 ((-641 (-939 (-225))) $)) (-15 -2057 ($)) (-15 -2844 ($ $)) (-15 -4264 ((-641 (-263)) $)) (-15 -4264 ($ $ (-641 (-263)))) (-15 -2844 ($ (-468) (-641 (-263)))) (-15 -3125 ((-1264) $ (-917) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-870) (-564) (-870) (-564))) (-15 -4114 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2762 (-564)) (|:| -3513 (-564)) (|:| |spline| (-564)) (|:| -1411 (-564)) (|:| |axesColor| (-870)) (|:| -3170 (-564)) (|:| |unitsColor| (-870)) (|:| |showing| (-564)))) $)) (-15 -2744 ((-1259 (-3 (-468) "undefined")) $)) (-15 -3348 ((-1264) $ (-1152))) (-15 -4126 ((-1264) $ (-468) (-917))) (-15 -3641 ((-468) $ (-917))) (-15 -1411 ((-1264) $ (-917) (-1152))) (-15 -1411 ((-1264) $ (-917) (-870))) (-15 -3170 ((-1264) $ (-917) (-1152))) (-15 -3170 ((-1264) $ (-917) (-870))) (-15 -2762 ((-1264) $ (-917) (-1152))) (-15 -2742 ((-1264) $ (-917) (-1152))) (-15 -3513 ((-1264) $ (-917) (-1152))) (-15 -2382 ((-1264) $ (-1152))) (-15 -1604 ((-1264) $)) (-15 -2956 ((-1264) $ (-767) (-767) (-917) (-917))) (-15 -2052 ((-1264) $ (-917) (-379) (-379))) (-15 -3477 ((-1264) $ (-917) (-379) (-379))) (-15 -3823 ((-1264) $ (-917) (-1152))) (-15 -3324 ((-1264) $ (-767) (-767))) (-15 -3943 ((-1264) $ (-468) (-917))) (-15 -4379 ((-1264) $ (-917) (-917))) (-15 -2174 ((-1152) $ (-1152))) (-15 -2174 ((-1152) $ (-1152) (-1152))) (-15 -2174 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -2153 ((-1264) $)) (-15 -1901 ((-564) $)) (-15 -2423 ((-858) $))))
-((-3009 (((-112) $ $) NIL)) (-3178 (((-1264) $ (-379)) 172) (((-1264) $ (-379) (-379) (-379)) 173)) (-2174 (((-1152) $ (-1152)) 180) (((-1152) $ (-1152) (-1152)) 178) (((-1152) $ (-1152) (-641 (-1152))) 177)) (-2686 (($) 67)) (-3889 (((-1264) $ (-379) (-379) (-379) (-379) (-379)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1264) $ (-564) (-564) (-379) (-379) (-379)) 147) (((-1264) $ (-379) (-379)) 148) (((-1264) $ (-379) (-379) (-379)) 155)) (-2266 (((-379)) 125) (((-379) (-379)) 126)) (-3447 (((-379)) 120) (((-379) (-379)) 122)) (-1541 (((-379)) 123) (((-379) (-379)) 124)) (-4230 (((-379)) 129) (((-379) (-379)) 130)) (-3585 (((-379)) 127) (((-379) (-379)) 128)) (-3477 (((-1264) $ (-379) (-379)) 174)) (-3348 (((-1264) $ (-1152)) 156)) (-4320 (((-1127 (-225)) $) 68) (($ $ (-1127 (-225))) 69)) (-3495 (((-1264) $ (-1152)) 188)) (-3501 (((-1264) $ (-1152)) 189)) (-1733 (((-1264) $ (-379) (-379)) 154) (((-1264) $ (-564) (-564)) 171)) (-4379 (((-1264) $ (-917) (-917)) 163)) (-2153 (((-1264) $) 140)) (-1671 (((-1264) $ (-1152)) 187)) (-3130 (((-1264) $ (-1152)) 137)) (-4264 (((-641 (-263)) $) 70) (($ $ (-641 (-263))) 71)) (-3324 (((-1264) $ (-767) (-767)) 162)) (-3094 (((-1264) $ (-767) (-939 (-225))) 194)) (-1605 (($ $) 73) (($ (-1127 (-225)) (-1152)) 74) (($ (-1127 (-225)) (-641 (-263))) 75)) (-2116 (((-1264) $ (-379) (-379) (-379)) 134)) (-2766 (((-1152) $) NIL)) (-1901 (((-564) $) 131)) (-3160 (((-1264) $ (-379)) 175)) (-3225 (((-1264) $ (-379)) 192)) (-4052 (((-1114) $) NIL)) (-3566 (((-1264) $ (-379)) 191)) (-3500 (((-1264) $ (-1152)) 139)) (-2956 (((-1264) $ (-767) (-767) (-917) (-917)) 161)) (-4002 (((-1264) $ (-1152)) 136)) (-2382 (((-1264) $ (-1152)) 138)) (-3775 (((-1264) $ (-157) (-157)) 160)) (-2423 (((-858) $) 169)) (-1604 (((-1264) $) 141)) (-2880 (((-1264) $ (-1152)) 190)) (-1860 (((-112) $ $) NIL)) (-1411 (((-1264) $ (-1152)) 135)) (-2974 (((-112) $ $) NIL)))
-(((-1261) (-13 (-1094) (-10 -8 (-15 -3447 ((-379))) (-15 -3447 ((-379) (-379))) (-15 -1541 ((-379))) (-15 -1541 ((-379) (-379))) (-15 -2266 ((-379))) (-15 -2266 ((-379) (-379))) (-15 -3585 ((-379))) (-15 -3585 ((-379) (-379))) (-15 -4230 ((-379))) (-15 -4230 ((-379) (-379))) (-15 -2686 ($)) (-15 -1605 ($ $)) (-15 -1605 ($ (-1127 (-225)) (-1152))) (-15 -1605 ($ (-1127 (-225)) (-641 (-263)))) (-15 -4320 ((-1127 (-225)) $)) (-15 -4320 ($ $ (-1127 (-225)))) (-15 -3094 ((-1264) $ (-767) (-939 (-225)))) (-15 -4264 ((-641 (-263)) $)) (-15 -4264 ($ $ (-641 (-263)))) (-15 -3324 ((-1264) $ (-767) (-767))) (-15 -4379 ((-1264) $ (-917) (-917))) (-15 -3348 ((-1264) $ (-1152))) (-15 -2956 ((-1264) $ (-767) (-767) (-917) (-917))) (-15 -3889 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -3889 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3889 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3889 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -3889 ((-1264) $ (-379) (-379))) (-15 -3889 ((-1264) $ (-379) (-379) (-379))) (-15 -2382 ((-1264) $ (-1152))) (-15 -1411 ((-1264) $ (-1152))) (-15 -4002 ((-1264) $ (-1152))) (-15 -3130 ((-1264) $ (-1152))) (-15 -3500 ((-1264) $ (-1152))) (-15 -1733 ((-1264) $ (-379) (-379))) (-15 -1733 ((-1264) $ (-564) (-564))) (-15 -3178 ((-1264) $ (-379))) (-15 -3178 ((-1264) $ (-379) (-379) (-379))) (-15 -3477 ((-1264) $ (-379) (-379))) (-15 -1671 ((-1264) $ (-1152))) (-15 -3566 ((-1264) $ (-379))) (-15 -3225 ((-1264) $ (-379))) (-15 -3495 ((-1264) $ (-1152))) (-15 -3501 ((-1264) $ (-1152))) (-15 -2880 ((-1264) $ (-1152))) (-15 -2116 ((-1264) $ (-379) (-379) (-379))) (-15 -3160 ((-1264) $ (-379))) (-15 -2153 ((-1264) $)) (-15 -3775 ((-1264) $ (-157) (-157))) (-15 -2174 ((-1152) $ (-1152))) (-15 -2174 ((-1152) $ (-1152) (-1152))) (-15 -2174 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -1604 ((-1264) $)) (-15 -1901 ((-564) $))))) (T -1261))
-((-3447 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1541 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1541 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2266 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3585 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-4230 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2686 (*1 *1) (-5 *1 (-1261))) (-1605 (*1 *1 *1) (-5 *1 (-1261))) (-1605 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261)))) (-1605 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-4320 (*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-3094 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-4264 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-3324 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4379 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3348 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2956 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3889 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1261)))) (-3889 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3889 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3889 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3889 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2382 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1411 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4002 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3130 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1733 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1733 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3178 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3178 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3477 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1671 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3225 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3495 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3501 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2880 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2116 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3160 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3775 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2174 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-2174 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-2174 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261)))))
-(-13 (-1094) (-10 -8 (-15 -3447 ((-379))) (-15 -3447 ((-379) (-379))) (-15 -1541 ((-379))) (-15 -1541 ((-379) (-379))) (-15 -2266 ((-379))) (-15 -2266 ((-379) (-379))) (-15 -3585 ((-379))) (-15 -3585 ((-379) (-379))) (-15 -4230 ((-379))) (-15 -4230 ((-379) (-379))) (-15 -2686 ($)) (-15 -1605 ($ $)) (-15 -1605 ($ (-1127 (-225)) (-1152))) (-15 -1605 ($ (-1127 (-225)) (-641 (-263)))) (-15 -4320 ((-1127 (-225)) $)) (-15 -4320 ($ $ (-1127 (-225)))) (-15 -3094 ((-1264) $ (-767) (-939 (-225)))) (-15 -4264 ((-641 (-263)) $)) (-15 -4264 ($ $ (-641 (-263)))) (-15 -3324 ((-1264) $ (-767) (-767))) (-15 -4379 ((-1264) $ (-917) (-917))) (-15 -3348 ((-1264) $ (-1152))) (-15 -2956 ((-1264) $ (-767) (-767) (-917) (-917))) (-15 -3889 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -3889 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3889 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3889 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -3889 ((-1264) $ (-379) (-379))) (-15 -3889 ((-1264) $ (-379) (-379) (-379))) (-15 -2382 ((-1264) $ (-1152))) (-15 -1411 ((-1264) $ (-1152))) (-15 -4002 ((-1264) $ (-1152))) (-15 -3130 ((-1264) $ (-1152))) (-15 -3500 ((-1264) $ (-1152))) (-15 -1733 ((-1264) $ (-379) (-379))) (-15 -1733 ((-1264) $ (-564) (-564))) (-15 -3178 ((-1264) $ (-379))) (-15 -3178 ((-1264) $ (-379) (-379) (-379))) (-15 -3477 ((-1264) $ (-379) (-379))) (-15 -1671 ((-1264) $ (-1152))) (-15 -3566 ((-1264) $ (-379))) (-15 -3225 ((-1264) $ (-379))) (-15 -3495 ((-1264) $ (-1152))) (-15 -3501 ((-1264) $ (-1152))) (-15 -2880 ((-1264) $ (-1152))) (-15 -2116 ((-1264) $ (-379) (-379) (-379))) (-15 -3160 ((-1264) $ (-379))) (-15 -2153 ((-1264) $)) (-15 -3775 ((-1264) $ (-157) (-157))) (-15 -2174 ((-1152) $ (-1152))) (-15 -2174 ((-1152) $ (-1152) (-1152))) (-15 -2174 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -1604 ((-1264) $)) (-15 -1901 ((-564) $))))
-((-2617 (((-641 (-1152)) (-641 (-1152))) 104) (((-641 (-1152))) 96)) (-3493 (((-641 (-1152))) 94)) (-2439 (((-641 (-917)) (-641 (-917))) 69) (((-641 (-917))) 64)) (-2611 (((-641 (-767)) (-641 (-767))) 61) (((-641 (-767))) 55)) (-2811 (((-1264)) 71)) (-2840 (((-917) (-917)) 87) (((-917)) 86)) (-2537 (((-917) (-917)) 85) (((-917)) 84)) (-1349 (((-870) (-870)) 81) (((-870)) 80)) (-3933 (((-225)) 91) (((-225) (-379)) 93)) (-3471 (((-917)) 88) (((-917) (-917)) 89)) (-1959 (((-917) (-917)) 83) (((-917)) 82)) (-2225 (((-870) (-870)) 75) (((-870)) 73)) (-2112 (((-870) (-870)) 77) (((-870)) 76)) (-4023 (((-870) (-870)) 79) (((-870)) 78)))
-(((-1262) (-10 -7 (-15 -2225 ((-870))) (-15 -2225 ((-870) (-870))) (-15 -2112 ((-870))) (-15 -2112 ((-870) (-870))) (-15 -4023 ((-870))) (-15 -4023 ((-870) (-870))) (-15 -1349 ((-870))) (-15 -1349 ((-870) (-870))) (-15 -1959 ((-917))) (-15 -1959 ((-917) (-917))) (-15 -2611 ((-641 (-767)))) (-15 -2611 ((-641 (-767)) (-641 (-767)))) (-15 -2439 ((-641 (-917)))) (-15 -2439 ((-641 (-917)) (-641 (-917)))) (-15 -2811 ((-1264))) (-15 -2617 ((-641 (-1152)))) (-15 -2617 ((-641 (-1152)) (-641 (-1152)))) (-15 -3493 ((-641 (-1152)))) (-15 -2537 ((-917))) (-15 -2840 ((-917))) (-15 -2537 ((-917) (-917))) (-15 -2840 ((-917) (-917))) (-15 -3471 ((-917) (-917))) (-15 -3471 ((-917))) (-15 -3933 ((-225) (-379))) (-15 -3933 ((-225))))) (T -1262))
-((-3933 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262)))) (-3471 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-2840 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-2840 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-2537 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-3493 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-2617 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-2617 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-2811 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262)))) (-2439 (*1 *2 *2) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1262)))) (-2439 (*1 *2) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1262)))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1262)))) (-2611 (*1 *2) (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1262)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-1959 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))) (-1349 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-1349 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-4023 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-2112 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-2112 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))) (-2225 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))))
-(-10 -7 (-15 -2225 ((-870))) (-15 -2225 ((-870) (-870))) (-15 -2112 ((-870))) (-15 -2112 ((-870) (-870))) (-15 -4023 ((-870))) (-15 -4023 ((-870) (-870))) (-15 -1349 ((-870))) (-15 -1349 ((-870) (-870))) (-15 -1959 ((-917))) (-15 -1959 ((-917) (-917))) (-15 -2611 ((-641 (-767)))) (-15 -2611 ((-641 (-767)) (-641 (-767)))) (-15 -2439 ((-641 (-917)))) (-15 -2439 ((-641 (-917)) (-641 (-917)))) (-15 -2811 ((-1264))) (-15 -2617 ((-641 (-1152)))) (-15 -2617 ((-641 (-1152)) (-641 (-1152)))) (-15 -3493 ((-641 (-1152)))) (-15 -2537 ((-917))) (-15 -2840 ((-917))) (-15 -2537 ((-917) (-917))) (-15 -2840 ((-917) (-917))) (-15 -3471 ((-917) (-917))) (-15 -3471 ((-917))) (-15 -3933 ((-225) (-379))) (-15 -3933 ((-225))))
-((-2475 (((-468) (-641 (-641 (-939 (-225)))) (-641 (-263))) 22) (((-468) (-641 (-641 (-939 (-225))))) 21) (((-468) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263))) 20)) (-1745 (((-1260) (-641 (-641 (-939 (-225)))) (-641 (-263))) 33) (((-1260) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263))) 32)) (-2423 (((-1260) (-468)) 48)))
-(((-1263) (-10 -7 (-15 -2475 ((-468) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263)))) (-15 -2475 ((-468) (-641 (-641 (-939 (-225)))))) (-15 -2475 ((-468) (-641 (-641 (-939 (-225)))) (-641 (-263)))) (-15 -1745 ((-1260) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263)))) (-15 -1745 ((-1260) (-641 (-641 (-939 (-225)))) (-641 (-263)))) (-15 -2423 ((-1260) (-468))))) (T -1263))
-((-2423 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-1745 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *6 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-2475 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))))
-(-10 -7 (-15 -2475 ((-468) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263)))) (-15 -2475 ((-468) (-641 (-641 (-939 (-225)))))) (-15 -2475 ((-468) (-641 (-641 (-939 (-225)))) (-641 (-263)))) (-15 -1745 ((-1260) (-641 (-641 (-939 (-225)))) (-870) (-870) (-917) (-641 (-263)))) (-15 -1745 ((-1260) (-641 (-641 (-939 (-225)))) (-641 (-263)))) (-15 -2423 ((-1260) (-468))))
-((-1836 (($) 7)) (-2423 (((-858) $) 10)))
-(((-1264) (-13 (-611 (-858)) (-10 -8 (-15 -1836 ($))))) (T -1264))
-((-1836 (*1 *1) (-5 *1 (-1264))))
-(-13 (-611 (-858)) (-10 -8 (-15 -1836 ($))))
-((-3092 (($ $ |#2|) 10)))
-(((-1265 |#1| |#2|) (-10 -8 (-15 -3092 (|#1| |#1| |#2|))) (-1266 |#2|) (-363)) (T -1265))
-NIL
-(-10 -8 (-15 -3092 (|#1| |#1| |#2|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-4327 (((-134)) 29)) (-2423 (((-858) $) 12)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2974 (((-112) $ $) 6)) (-3092 (($ $ |#1|) 30)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ |#1| $) 24) (($ $ |#1|) 27)))
-(((-1266 |#1|) (-140) (-363)) (T -1266))
-((-3092 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-363)))) (-4327 (*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
-(-13 (-713 |t#1|) (-10 -8 (-15 -3092 ($ $ |t#1|)) (-15 -4327 ((-134)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1094) . T))
-((-2061 (((-641 (-1203 |#1|)) (-1170) (-1203 |#1|)) 83)) (-2848 (((-1150 (-1150 (-948 |#1|))) (-1170) (-1150 (-948 |#1|))) 63)) (-2277 (((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-767) (-1203 |#1|) (-1150 (-1203 |#1|))) 74)) (-1469 (((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767)) 65)) (-2830 (((-1 (-1166 (-948 |#1|)) (-948 |#1|)) (-1170)) 32)) (-3013 (((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767)) 64)))
-(((-1267 |#1|) (-10 -7 (-15 -1469 ((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767))) (-15 -3013 ((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767))) (-15 -2848 ((-1150 (-1150 (-948 |#1|))) (-1170) (-1150 (-948 |#1|)))) (-15 -2830 ((-1 (-1166 (-948 |#1|)) (-948 |#1|)) (-1170))) (-15 -2061 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -2277 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-767) (-1203 |#1|) (-1150 (-1203 |#1|))))) (-363)) (T -1267))
-((-2277 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1203 *6)) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6)) (-5 *5 (-1150 *4)))) (-2061 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5))) (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-948 *4)) (-948 *4))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-948 *5)))) (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-948 *5))))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1150 (-948 *4)) (-1150 (-948 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1150 (-948 *4)) (-1150 (-948 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
-(-10 -7 (-15 -1469 ((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767))) (-15 -3013 ((-1 (-1150 (-948 |#1|)) (-1150 (-948 |#1|))) (-767))) (-15 -2848 ((-1150 (-1150 (-948 |#1|))) (-1170) (-1150 (-948 |#1|)))) (-15 -2830 ((-1 (-1166 (-948 |#1|)) (-948 |#1|)) (-1170))) (-15 -2061 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -2277 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-767) (-1203 |#1|) (-1150 (-1203 |#1|)))))
-((-3838 (((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 85)) (-2457 (((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 84)))
-(((-1268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2457 ((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3838 ((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|))) (-349) (-1235 |#1|) (-1235 |#2|) (-409 |#2| |#3|)) (T -1268))
-((-3838 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-2457 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -2047 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
-(-10 -7 (-15 -2457 ((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3838 ((-2 (|:| -2047 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)))
-((-3009 (((-112) $ $) NIL)) (-1551 (((-1129) $) 11)) (-2493 (((-1129) $) 9)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1269) (-13 (-1077) (-10 -8 (-15 -2493 ((-1129) $)) (-15 -1551 ((-1129) $))))) (T -1269))
-((-2493 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))))
-(-13 (-1077) (-10 -8 (-15 -2493 ((-1129) $)) (-15 -1551 ((-1129) $))))
-((-3009 (((-112) $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2940 (((-1129) $) 9)) (-2423 (((-858) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1860 (((-112) $ $) NIL)) (-2974 (((-112) $ $) NIL)))
-(((-1270) (-13 (-1077) (-10 -8 (-15 -2940 ((-1129) $))))) (T -1270))
-((-2940 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270)))))
-(-13 (-1077) (-10 -8 (-15 -2940 ((-1129) $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 57)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) NIL)) (-4112 (((-112) $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2423 (((-858) $) 80) (($ (-564)) NIL) (($ |#4|) 64) ((|#4| $) 69) (($ |#1|) NIL (|has| |#1| (-172)))) (-3719 (((-767)) NIL T CONST)) (-2411 (((-1264) (-767)) 16)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 37 T CONST)) (-2417 (($) 83 T CONST)) (-2974 (((-112) $ $) 86)) (-3092 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3082 (($ $) 88) (($ $ $) NIL)) (-3070 (($ $ $) 62)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 90) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-1271 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3092 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2411 ((-1264) (-767))))) (-1045) (-846) (-789) (-945 |#1| |#3| |#2|) (-641 |#2|) (-641 (-767)) (-767)) (T -1271))
-((-3092 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-789)) (-14 *6 (-641 *3)) (-5 *1 (-1271 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-945 *2 *4 *3)) (-14 *7 (-641 (-767))) (-14 *8 (-767)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-14 *8 (-641 *5)) (-5 *2 (-1264)) (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-945 *4 *6 *5)) (-14 *9 (-641 *3)) (-14 *10 *3))))
-(-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3092 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2411 ((-1264) (-767)))))
-((-3009 (((-112) $ $) NIL)) (-3605 (((-641 (-2 (|:| -1604 $) (|:| -2319 (-641 |#4|)))) (-641 |#4|)) NIL)) (-2578 (((-641 $) (-641 |#4|)) 96)) (-3836 (((-641 |#3|) $) NIL)) (-3342 (((-112) $) NIL)) (-1594 (((-112) $) NIL (|has| |#1| (-556)))) (-3631 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3494 ((|#4| |#4| $) NIL)) (-2484 (((-2 (|:| |under| $) (|:| -2882 $) (|:| |upper| $)) $ |#3|) NIL)) (-1876 (((-112) $ (-767)) NIL)) (-1667 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4080 (($) NIL T CONST)) (-1968 (((-112) $) NIL (|has| |#1| (-556)))) (-2238 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1489 (((-112) $) NIL (|has| |#1| (-556)))) (-2961 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3703 (((-641 |#4|) (-641 |#4|) $) 28 (|has| |#1| (-556)))) (-2601 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-4284 (((-3 $ "failed") (-641 |#4|)) NIL)) (-3120 (($ (-641 |#4|)) NIL)) (-2671 (((-3 $ "failed") $) 78)) (-2405 ((|#4| |#4| $) 83)) (-2696 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2591 (($ |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-4071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3870 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2248 ((|#4| |#4| $) NIL)) (-1316 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4020 (((-2 (|:| -1604 (-641 |#4|)) (|:| -2319 (-641 |#4|))) $) NIL)) (-3035 (((-641 |#4|) $) NIL (|has| $ (-6 -4407)))) (-2675 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3378 ((|#3| $) 84)) (-3097 (((-112) $ (-767)) NIL)) (-1554 (((-641 |#4|) $) 32 (|has| $ (-6 -4407)))) (-3369 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094))))) (-2165 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-641 |#4|)) 38)) (-2714 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4408)))) (-4357 (($ (-1 |#4| |#4|) $) NIL)) (-2814 (((-641 |#3|) $) NIL)) (-3169 (((-112) |#3| $) NIL)) (-3619 (((-112) $ (-767)) NIL)) (-2766 (((-1152) $) NIL)) (-2615 (((-3 |#4| "failed") $) NIL)) (-3167 (((-641 |#4|) $) 54)) (-3441 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4241 ((|#4| |#4| $) 82)) (-2582 (((-112) $ $) 93)) (-3157 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1929 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3347 ((|#4| |#4| $) NIL)) (-4052 (((-1114) $) NIL)) (-2658 (((-3 |#4| "failed") $) 77)) (-2139 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2533 (((-3 $ "failed") $ |#4|) NIL)) (-4016 (($ $ |#4|) NIL)) (-4377 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3291 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3076 (((-112) $ $) NIL)) (-1976 (((-112) $) 75)) (-2994 (($) 46)) (-1568 (((-767) $) NIL)) (-4062 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1094)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3926 (($ $) NIL)) (-1311 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2435 (($ (-641 |#4|)) NIL)) (-1834 (($ $ |#3|) NIL)) (-1648 (($ $ |#3|) NIL)) (-1492 (($ $) NIL)) (-2577 (($ $ |#3|) NIL)) (-2423 (((-858) $) NIL) (((-641 |#4|) $) 63)) (-3840 (((-767) $) NIL (|has| |#3| (-368)))) (-2331 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-641 |#4|)) 45)) (-4227 (((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-641 $) (-641 |#4|)) 74)) (-1860 (((-112) $ $) NIL)) (-3576 (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2462 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3212 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-1368 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-3579 (((-641 |#3|) $) NIL)) (-1816 (((-112) |#3| $) NIL)) (-2974 (((-112) $ $) NIL)) (-2181 (((-767) $) NIL (|has| $ (-6 -4407)))))
-(((-1272 |#1| |#2| |#3| |#4|) (-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2165 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2165 ((-3 $ "failed") (-641 |#4|))) (-15 -2331 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2331 ((-3 $ "failed") (-641 |#4|))) (-15 -4227 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4227 ((-641 $) (-641 |#4|))))) (-556) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1272))
-((-2165 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-2165 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-2331 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-2331 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-4227 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-641 (-1272 *6 *7 *8 *9))) (-5 *1 (-1272 *6 *7 *8 *9)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-1272 *4 *5 *6 *7))) (-5 *1 (-1272 *4 *5 *6 *7)))))
-(-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2165 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2165 ((-3 $ "failed") (-641 |#4|))) (-15 -2331 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2331 ((-3 $ "failed") (-641 |#4|))) (-15 -4227 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4227 ((-641 $) (-641 |#4|)))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-4012 (((-3 $ "failed") $ $) 20)) (-4080 (($) 18 T CONST)) (-3293 (((-3 $ "failed") $) 34)) (-4112 (((-112) $) 32)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#1|) 40)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ |#1|) 42) (($ |#1| $) 41)))
-(((-1273 |#1|) (-140) (-1045)) (T -1273))
-NIL
-(-13 (-1045) (-111 |t#1| |t#1|) (-614 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-858)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T))
-((-3009 (((-112) $ $) 67)) (-1494 (((-112) $) NIL)) (-3058 (((-641 |#1|) $) 52)) (-1661 (($ $ (-767)) 46)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4280 (($ $ (-767)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-4080 (($) NIL T CONST)) (-1662 (($ $ $) 70) (($ $ (-815 |#1|)) 56) (($ $ |#1|) 60)) (-4284 (((-3 (-815 |#1|) "failed") $) NIL)) (-3120 (((-815 |#1|) $) NIL)) (-1684 (($ $) 39)) (-3293 (((-3 $ "failed") $) NIL)) (-4299 (((-112) $) NIL)) (-4100 (($ $) NIL)) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3290 (($ (-815 |#1|) |#2|) 38)) (-4275 (($ $) 40)) (-4304 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 12)) (-1470 (((-815 |#1|) $) NIL)) (-1333 (((-815 |#1|) $) 41)) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-4107 (($ $ $) 69) (($ $ (-815 |#1|)) 58) (($ $ |#1|) 62)) (-3171 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3971 (((-815 |#1|) $) 35)) (-3982 ((|#2| $) 37)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1568 (((-767) $) 43)) (-2252 (((-112) $) 47)) (-2959 ((|#2| $) NIL)) (-2423 (((-858) $) NIL) (($ (-815 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-564)) NIL)) (-3191 (((-641 |#2|) $) NIL)) (-2007 ((|#2| $ (-815 |#1|)) NIL)) (-4376 ((|#2| $ $) 76) ((|#2| $ (-815 |#1|)) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 13 T CONST)) (-2417 (($) 19 T CONST)) (-2404 (((-641 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2974 (((-112) $ $) 44)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 28)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-815 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
-(((-1274 |#1| |#2|) (-13 (-382 |#2| (-815 |#1|)) (-1280 |#1| |#2|)) (-846) (-1045)) (T -1274))
-NIL
-(-13 (-382 |#2| (-815 |#1|)) (-1280 |#1| |#2|))
-((-3657 ((|#3| |#3| (-767)) 30)) (-1689 ((|#3| |#3| (-767)) 36)) (-1881 ((|#3| |#3| |#3| (-767)) 37)))
-(((-1275 |#1| |#2| |#3|) (-10 -7 (-15 -1689 (|#3| |#3| (-767))) (-15 -3657 (|#3| |#3| (-767))) (-15 -1881 (|#3| |#3| |#3| (-767)))) (-13 (-1045) (-713 (-407 (-564)))) (-846) (-1280 |#2| |#1|)) (T -1275))
-((-1881 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564))))) (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-3657 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564))))) (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-1689 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564))))) (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))))
-(-10 -7 (-15 -1689 (|#3| |#3| (-767))) (-15 -3657 (|#3| |#3| (-767))) (-15 -1881 (|#3| |#3| |#3| (-767))))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3058 (((-641 |#1|) $) 42)) (-4012 (((-3 $ "failed") $ $) 20)) (-4280 (($ $ $) 45 (|has| |#2| (-172))) (($ $ (-767)) 44 (|has| |#2| (-172)))) (-4080 (($) 18 T CONST)) (-1662 (($ $ |#1|) 56) (($ $ (-815 |#1|)) 55) (($ $ $) 54)) (-4284 (((-3 (-815 |#1|) "failed") $) 66)) (-3120 (((-815 |#1|) $) 67)) (-3293 (((-3 $ "failed") $) 34)) (-4299 (((-112) $) 47)) (-4100 (($ $) 46)) (-4112 (((-112) $) 32)) (-4003 (((-112) $) 52)) (-3290 (($ (-815 |#1|) |#2|) 53)) (-4275 (($ $) 51)) (-4304 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 62)) (-1470 (((-815 |#1|) $) 63)) (-4357 (($ (-1 |#2| |#2|) $) 43)) (-4107 (($ $ |#1|) 59) (($ $ (-815 |#1|)) 58) (($ $ $) 57)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-2252 (((-112) $) 49)) (-2959 ((|#2| $) 48)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#2|) 70) (($ (-815 |#1|)) 65) (($ |#1|) 50)) (-4376 ((|#2| $ (-815 |#1|)) 61) ((|#2| $ $) 60)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ |#2| $) 69) (($ $ |#2|) 68) (($ |#1| $) 64)))
-(((-1276 |#1| |#2|) (-140) (-846) (-1045)) (T -1276))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-4304 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4))))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-815 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-4376 (*1 *2 *1 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-4107 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-4107 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1662 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1662 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-1662 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3290 (*1 *1 *2 *3) (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1276 *4 *3)) (-4 *3 (-1045)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-4275 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-2423 (*1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-4100 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4280 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)) (-4 *3 (-172)))) (-4280 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-4 *4 (-172)))) (-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-3058 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-641 *3)))))
-(-13 (-1045) (-1273 |t#2|) (-1034 (-815 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1470 ((-815 |t#1|) $)) (-15 -4304 ((-2 (|:| |k| (-815 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4376 (|t#2| $ (-815 |t#1|))) (-15 -4376 (|t#2| $ $)) (-15 -4107 ($ $ |t#1|)) (-15 -4107 ($ $ (-815 |t#1|))) (-15 -4107 ($ $ $)) (-15 -1662 ($ $ |t#1|)) (-15 -1662 ($ $ (-815 |t#1|))) (-15 -1662 ($ $ $)) (-15 -3290 ($ (-815 |t#1|) |t#2|)) (-15 -4003 ((-112) $)) (-15 -4275 ($ $)) (-15 -2423 ($ |t#1|)) (-15 -2252 ((-112) $)) (-15 -2959 (|t#2| $)) (-15 -4299 ((-112) $)) (-15 -4100 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -4280 ($ $ $)) (-15 -4280 ($ $ (-767)))) |%noBranch|) (-15 -4357 ($ (-1 |t#2| |t#2|) $)) (-15 -3058 ((-641 |t#1|) $)) (IF (|has| |t#2| (-6 -4400)) (-6 -4400) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-815 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-858)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #0#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1273 |#2|) . T))
-((-1872 (((-112) $) 15)) (-1816 (((-112) $) 14)) (-3037 (($ $) 19) (($ $ (-767)) 21)))
-(((-1277 |#1| |#2|) (-10 -8 (-15 -3037 (|#1| |#1| (-767))) (-15 -3037 (|#1| |#1|)) (-15 -1872 ((-112) |#1|)) (-15 -1816 ((-112) |#1|))) (-1278 |#2|) (-363)) (T -1277))
-NIL
-(-10 -8 (-15 -3037 (|#1| |#1| (-767))) (-15 -3037 (|#1| |#1|)) (-15 -1872 ((-112) |#1|)) (-15 -1816 ((-112) |#1|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-1660 (((-2 (|:| -2885 $) (|:| -4394 $) (|:| |associate| $)) $) 43)) (-3063 (($ $) 42)) (-3330 (((-112) $) 40)) (-1872 (((-112) $) 96)) (-3497 (((-767)) 92)) (-4012 (((-3 $ "failed") $ $) 20)) (-2683 (($ $) 75)) (-2753 (((-418 $) $) 74)) (-3162 (((-112) $ $) 61)) (-4080 (($) 18 T CONST)) (-4284 (((-3 |#1| "failed") $) 103)) (-3120 ((|#1| $) 104)) (-2946 (($ $ $) 57)) (-3293 (((-3 $ "failed") $) 34)) (-2960 (($ $ $) 58)) (-1583 (((-2 (|:| -4376 (-641 $)) (|:| -2249 $)) (-641 $)) 53)) (-3456 (($ $ (-767)) 89 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 88 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1339 (((-112) $) 73)) (-3744 (((-829 (-917)) $) 86 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4112 (((-112) $) 32)) (-1308 (((-3 (-641 $) "failed") (-641 $) $) 54)) (-2084 (($ $ $) 48) (($ (-641 $)) 47)) (-2766 (((-1152) $) 10)) (-3936 (($ $) 72)) (-2695 (((-112) $) 95)) (-4052 (((-1114) $) 11)) (-2805 (((-1166 $) (-1166 $) (-1166 $)) 46)) (-2123 (($ $ $) 50) (($ (-641 $)) 49)) (-3688 (((-418 $) $) 76)) (-1967 (((-829 (-917))) 93)) (-3274 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2249 $)) $ $) 56) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 55)) (-2998 (((-3 $ "failed") $ $) 44)) (-1820 (((-3 (-641 $) "failed") (-641 $) $) 52)) (-1700 (((-767) $) 60)) (-1389 (((-2 (|:| -3979 $) (|:| -4071 $)) $ $) 59)) (-4255 (((-3 (-767) "failed") $ $) 87 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4327 (((-134)) 101)) (-1568 (((-829 (-917)) $) 94)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ $) 45) (($ (-407 (-564))) 68) (($ |#1|) 102)) (-2420 (((-3 $ "failed") $) 85 (-2807 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2119 (((-112) $ $) 41)) (-1816 (((-112) $) 97)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-3037 (($ $) 91 (|has| |#1| (-368))) (($ $ (-767)) 90 (|has| |#1| (-368)))) (-2974 (((-112) $ $) 6)) (-3092 (($ $ $) 67) (($ $ |#1|) 100)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33) (($ $ (-564)) 71)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ $ (-407 (-564))) 70) (($ (-407 (-564)) $) 69) (($ $ |#1|) 99) (($ |#1| $) 98)))
-(((-1278 |#1|) (-140) (-363)) (T -1278))
-((-1816 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) (-1967 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) (-3497 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-767)))) (-3037 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-3037 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368)))))
-(-13 (-363) (-1034 |t#1|) (-1266 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -1816 ((-112) $)) (-15 -1872 ((-112) $)) (-15 -2695 ((-112) $)) (-15 -1568 ((-829 (-917)) $)) (-15 -1967 ((-829 (-917)))) (-15 -3497 ((-767))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -3037 ($ $)) (-15 -3037 ($ $ (-767)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2807 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -2807 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T) ((-1266 |#1|) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3058 (((-641 |#1|) $) 99)) (-1661 (($ $ (-767)) 103)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4280 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-767)) NIL (|has| |#2| (-172)))) (-4080 (($) NIL T CONST)) (-1662 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-4284 (((-3 (-815 |#1|) "failed") $) NIL) (((-3 (-889 |#1|) "failed") $) NIL)) (-3120 (((-815 |#1|) $) NIL) (((-889 |#1|) $) NIL)) (-1684 (($ $) 102)) (-3293 (((-3 $ "failed") $) NIL)) (-4299 (((-112) $) 91)) (-4100 (($ $) 94)) (-2897 (($ $ $ (-767)) 104)) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3290 (($ (-815 |#1|) |#2|) NIL) (($ (-889 |#1|) |#2|) 29)) (-4275 (($ $) 121)) (-4304 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1470 (((-815 |#1|) $) NIL)) (-1333 (((-815 |#1|) $) NIL)) (-4357 (($ (-1 |#2| |#2|) $) NIL)) (-4107 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-3657 (($ $ (-767)) 114 (|has| |#2| (-713 (-407 (-564)))))) (-3171 (((-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3971 (((-889 |#1|) $) 84)) (-3982 ((|#2| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1689 (($ $ (-767)) 111 (|has| |#2| (-713 (-407 (-564)))))) (-1568 (((-767) $) 100)) (-2252 (((-112) $) 85)) (-2959 ((|#2| $) 89)) (-2423 (((-858) $) 70) (($ (-564)) NIL) (($ |#2|) 60) (($ (-815 |#1|)) NIL) (($ |#1|) 72) (($ (-889 |#1|)) NIL) (($ (-660 |#1| |#2|)) 48) (((-1274 |#1| |#2|) $) 77) (((-1283 |#1| |#2|) $) 82)) (-3191 (((-641 |#2|) $) NIL)) (-2007 ((|#2| $ (-889 |#1|)) NIL)) (-4376 ((|#2| $ (-815 |#1|)) NIL) ((|#2| $ $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 21 T CONST)) (-2417 (($) 28 T CONST)) (-2404 (((-641 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2194 (((-3 (-660 |#1| |#2|) "failed") $) 120)) (-2974 (((-112) $ $) 78)) (-3082 (($ $) 113) (($ $ $) 112)) (-3070 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-889 |#1|)) NIL)))
-(((-1279 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-382 |#2| (-889 |#1|)) (-10 -8 (-15 -2423 ($ (-660 |#1| |#2|))) (-15 -2423 ((-1274 |#1| |#2|) $)) (-15 -2423 ((-1283 |#1| |#2|) $)) (-15 -2194 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -2897 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-564)))) (PROGN (-15 -1689 ($ $ (-767))) (-15 -3657 ($ $ (-767)))) |%noBranch|))) (-846) (-172)) (T -1279))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-1279 *3 *4)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-2194 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-2897 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1689 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-713 (-407 (-564)))) (-4 *3 (-846)) (-4 *4 (-172)))) (-3657 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-713 (-407 (-564)))) (-4 *3 (-846)) (-4 *4 (-172)))))
-(-13 (-1280 |#1| |#2|) (-382 |#2| (-889 |#1|)) (-10 -8 (-15 -2423 ($ (-660 |#1| |#2|))) (-15 -2423 ((-1274 |#1| |#2|) $)) (-15 -2423 ((-1283 |#1| |#2|) $)) (-15 -2194 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -2897 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-564)))) (PROGN (-15 -1689 ($ $ (-767))) (-15 -3657 ($ $ (-767)))) |%noBranch|)))
-((-3009 (((-112) $ $) 7)) (-1494 (((-112) $) 17)) (-3058 (((-641 |#1|) $) 42)) (-1661 (($ $ (-767)) 75)) (-4012 (((-3 $ "failed") $ $) 20)) (-4280 (($ $ $) 45 (|has| |#2| (-172))) (($ $ (-767)) 44 (|has| |#2| (-172)))) (-4080 (($) 18 T CONST)) (-1662 (($ $ |#1|) 56) (($ $ (-815 |#1|)) 55) (($ $ $) 54)) (-4284 (((-3 (-815 |#1|) "failed") $) 66)) (-3120 (((-815 |#1|) $) 67)) (-3293 (((-3 $ "failed") $) 34)) (-4299 (((-112) $) 47)) (-4100 (($ $) 46)) (-4112 (((-112) $) 32)) (-4003 (((-112) $) 52)) (-3290 (($ (-815 |#1|) |#2|) 53)) (-4275 (($ $) 51)) (-4304 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 62)) (-1470 (((-815 |#1|) $) 63)) (-1333 (((-815 |#1|) $) 77)) (-4357 (($ (-1 |#2| |#2|) $) 43)) (-4107 (($ $ |#1|) 59) (($ $ (-815 |#1|)) 58) (($ $ $) 57)) (-2766 (((-1152) $) 10)) (-4052 (((-1114) $) 11)) (-1568 (((-767) $) 76)) (-2252 (((-112) $) 49)) (-2959 ((|#2| $) 48)) (-2423 (((-858) $) 12) (($ (-564)) 30) (($ |#2|) 70) (($ (-815 |#1|)) 65) (($ |#1|) 50)) (-4376 ((|#2| $ (-815 |#1|)) 61) ((|#2| $ $) 60)) (-3719 (((-767)) 29 T CONST)) (-1860 (((-112) $ $) 9)) (-2403 (($) 19 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 6)) (-3082 (($ $) 23) (($ $ $) 22)) (-3070 (($ $ $) 15)) (** (($ $ (-917)) 26) (($ $ (-767)) 33)) (* (($ (-917) $) 14) (($ (-767) $) 16) (($ (-564) $) 21) (($ $ $) 25) (($ |#2| $) 69) (($ $ |#2|) 68) (($ |#1| $) 64)))
-(((-1280 |#1| |#2|) (-140) (-846) (-1045)) (T -1280))
-((-1333 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-1661 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))))
-(-13 (-1276 |t#1| |t#2|) (-10 -8 (-15 -1333 ((-815 |t#1|) $)) (-15 -1568 ((-767) $)) (-15 -1661 ($ $ (-767)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-815 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-858)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #0#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1106) . T) ((-1094) . T) ((-1273 |#2|) . T) ((-1276 |#1| |#2|) . T))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-3058 (((-641 (-1170)) $) NIL)) (-3078 (($ (-1274 (-1170) |#1|)) NIL)) (-1661 (($ $ (-767)) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4280 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-767)) NIL (|has| |#1| (-172)))) (-4080 (($) NIL T CONST)) (-1662 (($ $ (-1170)) NIL) (($ $ (-815 (-1170))) NIL) (($ $ $) NIL)) (-4284 (((-3 (-815 (-1170)) "failed") $) NIL)) (-3120 (((-815 (-1170)) $) NIL)) (-3293 (((-3 $ "failed") $) NIL)) (-4299 (((-112) $) NIL)) (-4100 (($ $) NIL)) (-4112 (((-112) $) NIL)) (-4003 (((-112) $) NIL)) (-3290 (($ (-815 (-1170)) |#1|) NIL)) (-4275 (($ $) NIL)) (-4304 (((-2 (|:| |k| (-815 (-1170))) (|:| |c| |#1|)) $) NIL)) (-1470 (((-815 (-1170)) $) NIL)) (-1333 (((-815 (-1170)) $) NIL)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-4107 (($ $ (-1170)) NIL) (($ $ (-815 (-1170))) NIL) (($ $ $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1641 (((-1274 (-1170) |#1|) $) NIL)) (-1568 (((-767) $) NIL)) (-2252 (((-112) $) NIL)) (-2959 ((|#1| $) NIL)) (-2423 (((-858) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-815 (-1170))) NIL) (($ (-1170)) NIL)) (-4376 ((|#1| $ (-815 (-1170))) NIL) ((|#1| $ $) NIL)) (-3719 (((-767)) NIL T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) NIL T CONST)) (-4021 (((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $) NIL)) (-2417 (($) NIL T CONST)) (-2974 (((-112) $ $) NIL)) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1170) $) NIL)))
-(((-1281 |#1|) (-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -1641 ((-1274 (-1170) |#1|) $)) (-15 -3078 ($ (-1274 (-1170) |#1|))) (-15 -4021 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $)))) (-1045)) (T -1281))
-((-1641 (*1 *2 *1) (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1045)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1045)) (-5 *1 (-1281 *3)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3))))) (-5 *1 (-1281 *3)) (-4 *3 (-1045)))))
-(-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -1641 ((-1274 (-1170) |#1|) $)) (-15 -3078 ($ (-1274 (-1170) |#1|))) (-15 -4021 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $))))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) NIL)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4080 (($) NIL T CONST)) (-4284 (((-3 |#2| "failed") $) NIL)) (-3120 ((|#2| $) NIL)) (-1684 (($ $) NIL)) (-3293 (((-3 $ "failed") $) 41)) (-4299 (((-112) $) 35)) (-4100 (($ $) 37)) (-4112 (((-112) $) NIL)) (-2497 (((-767) $) NIL)) (-2210 (((-641 $) $) NIL)) (-4003 (((-112) $) NIL)) (-3290 (($ |#2| |#1|) NIL)) (-1470 ((|#2| $) 24)) (-1333 ((|#2| $) 22)) (-4357 (($ (-1 |#1| |#1|) $) NIL)) (-3171 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3971 ((|#2| $) NIL)) (-3982 ((|#1| $) NIL)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-2252 (((-112) $) 32)) (-2959 ((|#1| $) 33)) (-2423 (((-858) $) 64) (($ (-564)) 45) (($ |#1|) 40) (($ |#2|) NIL)) (-3191 (((-641 |#1|) $) NIL)) (-2007 ((|#1| $ |#2|) NIL)) (-4376 ((|#1| $ |#2|) 28)) (-3719 (((-767)) 14 T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 29 T CONST)) (-2417 (($) 11 T CONST)) (-2404 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2974 (((-112) $ $) 30)) (-3092 (($ $ |#1|) 66 (|has| |#1| (-363)))) (-3082 (($ $) NIL) (($ $ $) NIL)) (-3070 (($ $ $) 49)) (** (($ $ (-917)) NIL) (($ $ (-767)) 51)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) NIL) (($ $ $) 50) (($ |#1| $) 46) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2181 (((-767) $) 16)))
-(((-1282 |#1| |#2|) (-13 (-1045) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2181 ((-767) $)) (-15 -1333 (|#2| $)) (-15 -1470 (|#2| $)) (-15 -1684 ($ $)) (-15 -4376 (|#1| $ |#2|)) (-15 -2252 ((-112) $)) (-15 -2959 (|#1| $)) (-15 -4299 ((-112) $)) (-15 -4100 ($ $)) (-15 -4357 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -3092 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|))) (-1045) (-842)) (T -1282))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-1684 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-4357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1282 *3 *4)) (-4 *4 (-842)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-1333 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1045)))) (-1470 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1045)))) (-4376 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-842)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-2959 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-842)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-4100 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-3092 (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-842)))))
-(-13 (-1045) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2181 ((-767) $)) (-15 -1333 (|#2| $)) (-15 -1470 (|#2| $)) (-15 -1684 ($ $)) (-15 -4376 (|#1| $ |#2|)) (-15 -2252 ((-112) $)) (-15 -2959 (|#1| $)) (-15 -4299 ((-112) $)) (-15 -4100 ($ $)) (-15 -4357 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -3092 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|)))
-((-3009 (((-112) $ $) 27)) (-1494 (((-112) $) NIL)) (-3058 (((-641 |#1|) $) 131)) (-3078 (($ (-1274 |#1| |#2|)) 50)) (-1661 (($ $ (-767)) 38)) (-4012 (((-3 $ "failed") $ $) NIL)) (-4280 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-767)) 52 (|has| |#2| (-172)))) (-4080 (($) NIL T CONST)) (-1662 (($ $ |#1|) 113) (($ $ (-815 |#1|)) 114) (($ $ $) 26)) (-4284 (((-3 (-815 |#1|) "failed") $) NIL)) (-3120 (((-815 |#1|) $) NIL)) (-3293 (((-3 $ "failed") $) 121)) (-4299 (((-112) $) 116)) (-4100 (($ $) 117)) (-4112 (((-112) $) NIL)) (-4003 (((-112) $) NIL)) (-3290 (($ (-815 |#1|) |#2|) 20)) (-4275 (($ $) NIL)) (-4304 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1470 (((-815 |#1|) $) 122)) (-1333 (((-815 |#1|) $) 125)) (-4357 (($ (-1 |#2| |#2|) $) 130)) (-4107 (($ $ |#1|) 111) (($ $ (-815 |#1|)) 112) (($ $ $) 62)) (-2766 (((-1152) $) NIL)) (-4052 (((-1114) $) NIL)) (-1641 (((-1274 |#1| |#2|) $) 93)) (-1568 (((-767) $) 128)) (-2252 (((-112) $) 80)) (-2959 ((|#2| $) 32)) (-2423 (((-858) $) 72) (($ (-564)) 86) (($ |#2|) 84) (($ (-815 |#1|)) 18) (($ |#1|) 83)) (-4376 ((|#2| $ (-815 |#1|)) 115) ((|#2| $ $) 28)) (-3719 (((-767)) 119 T CONST)) (-1860 (((-112) $ $) NIL)) (-2403 (($) 15 T CONST)) (-4021 (((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2417 (($) 33 T CONST)) (-2974 (((-112) $ $) 14)) (-3082 (($ $) 97) (($ $ $) 100)) (-3070 (($ $ $) 61)) (** (($ $ (-917)) NIL) (($ $ (-767)) 55)) (* (($ (-917) $) NIL) (($ (-767) $) 53) (($ (-564) $) 105) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 91)))
-(((-1283 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-10 -8 (-15 -1641 ((-1274 |#1| |#2|) $)) (-15 -3078 ($ (-1274 |#1| |#2|))) (-15 -4021 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-846) (-1045)) (T -1283))
-((-1641 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *1 (-1283 *3 *4)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4))))) (-5 *1 (-1283 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))))
-(-13 (-1280 |#1| |#2|) (-10 -8 (-15 -1641 ((-1274 |#1| |#2|) $)) (-15 -3078 ($ (-1274 |#1| |#2|))) (-15 -4021 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-2425 (((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)) 20) (((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|))) 13)))
-(((-1284 |#1|) (-10 -7 (-15 -2425 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -2425 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)))) (-1209)) (T -1284))
-((-2425 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564)) (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1284 *4)) (-4 *4 (-1209)))))
-(-10 -7 (-15 -2425 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -2425 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564))))
-((-4048 (((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|))) 174) (((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112)) 173) (((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112)) 172) (((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112) (-112)) 171) (((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-1042 |#1| |#2|)) 156)) (-3220 (((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|))) 85) (((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112)) 84) (((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112) (-112)) 83)) (-2753 (((-641 (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|)) 73)) (-2367 (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|))) 140) (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112)) 139) (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112)) 138) (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112) (-112)) 137) (((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 132)) (-2964 (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|))) 145) (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112)) 144) (((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112)) 143) (((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 142)) (-1311 (((-641 (-776 |#1| (-860 |#3|))) (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) 111) (((-1166 (-1020 (-407 |#1|))) (-1166 |#1|)) 102) (((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|))) 109) (((-948 (-1020 (-407 |#1|))) (-948 |#1|)) 107) (((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|))) 33)))
-(((-1285 |#1| |#2| |#3|) (-10 -7 (-15 -3220 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112) (-112))) (-15 -3220 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112))) (-15 -3220 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)))) (-15 -4048 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-1042 |#1| |#2|))) (-15 -4048 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112) (-112))) (-15 -4048 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -4048 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112))) (-15 -4048 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -2367 ((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2367 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2367 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -2367 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112))) (-15 -2367 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)))) (-15 -2964 ((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2964 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -2964 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112))) (-15 -2964 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)))) (-15 -2753 ((-641 (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -1311 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -1311 ((-948 (-1020 (-407 |#1|))) (-948 |#1|))) (-15 -1311 ((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -1311 ((-1166 (-1020 (-407 |#1|))) (-1166 |#1|))) (-15 -1311 ((-641 (-776 |#1| (-860 |#3|))) (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))))) (-13 (-844) (-307) (-147) (-1018)) (-641 (-1170)) (-641 (-1170))) (T -1285))
-((-1311 (*1 *2 *3) (-12 (-5 *3 (-1140 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-776 *4 (-860 *6)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-1166 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *6))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-641 (-1170))) (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *5))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-1140 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2964 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2367 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2367 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-4048 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-2 (|:| -3560 (-1166 *4)) (|:| -4225 (-641 (-948 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-948 *4))) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-4048 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-2 (|:| -3560 (-1166 *5)) (|:| -4225 (-641 (-948 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4048 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-2 (|:| -3560 (-1166 *5)) (|:| -4225 (-641 (-948 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4048 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-2 (|:| -3560 (-1166 *5)) (|:| -4225 (-641 (-948 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-2 (|:| -3560 (-1166 *4)) (|:| -4225 (-641 (-948 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-1042 *4 *5))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3220 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))))
-(-10 -7 (-15 -3220 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112) (-112))) (-15 -3220 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)) (-112))) (-15 -3220 ((-641 (-1042 |#1| |#2|)) (-641 (-948 |#1|)))) (-15 -4048 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-1042 |#1| |#2|))) (-15 -4048 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112) (-112))) (-15 -4048 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -4048 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)) (-112))) (-15 -4048 ((-641 (-2 (|:| -3560 (-1166 |#1|)) (|:| -4225 (-641 (-948 |#1|))))) (-641 (-948 |#1|)))) (-15 -2367 ((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2367 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2367 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -2367 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112))) (-15 -2367 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)))) (-15 -2964 ((-641 (-641 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2964 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112) (-112))) (-15 -2964 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)) (-112))) (-15 -2964 ((-641 (-641 (-1020 (-407 |#1|)))) (-641 (-948 |#1|)))) (-15 -2753 ((-641 (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -1311 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -1311 ((-948 (-1020 (-407 |#1|))) (-948 |#1|))) (-15 -1311 ((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -1311 ((-1166 (-1020 (-407 |#1|))) (-1166 |#1|))) (-15 -1311 ((-641 (-776 |#1| (-860 |#3|))) (-1140 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|))))))
-((-2365 (((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|) 21)) (-2796 (((-112) (-1259 |#1|)) 12)) (-2477 (((-3 (-1259 (-564)) "failed") (-1259 |#1|)) 16)))
-(((-1286 |#1|) (-10 -7 (-15 -2796 ((-112) (-1259 |#1|))) (-15 -2477 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -2365 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|))) (-637 (-564))) (T -1286))
-((-2365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4)))) (-2477 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) (-5 *1 (-1286 *4)))))
-(-10 -7 (-15 -2796 ((-112) (-1259 |#1|))) (-15 -2477 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -2365 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|)))
-((-3009 (((-112) $ $) NIL)) (-1494 (((-112) $) 11)) (-4012 (((-3 $ "failed") $ $) NIL)) (-2622 (((-767)) 8)) (-4080 (($) NIL T CONST)) (-3293 (((-3 $ "failed") $) 58)) (-2534 (($) 49)) (-4112 (((-112) $) 57)) (-1846 (((-3 $ "failed") $) 40)) (-3256 (((-917) $) 15)) (-2766 (((-1152) $) NIL)) (-3431 (($) 32 T CONST)) (-2083 (($ (-917)) 50)) (-4052 (((-1114) $) NIL)) (-1311 (((-564) $) 13)) (-2423 (((-858) $) 27) (($ (-564)) 24)) (-3719 (((-767)) 9 T CONST)) (-1860 (((-112) $ $) 60)) (-2403 (($) 29 T CONST)) (-2417 (($) 31 T CONST)) (-2974 (((-112) $ $) 38)) (-3082 (($ $) 52) (($ $ $) 47)) (-3070 (($ $ $) 35)) (** (($ $ (-917)) NIL) (($ $ (-767)) 54)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-564) $) 44) (($ $ $) 43)))
-(((-1287 |#1|) (-13 (-172) (-368) (-612 (-564)) (-1145)) (-917)) (T -1287))
-NIL
-(-13 (-172) (-368) (-612 (-564)) (-1145))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3205068 3205073 3205078 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3205053 3205058 3205063 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3205038 3205043 3205048 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3205023 3205028 3205033 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1287 3204166 3204898 3204975 "ZMOD" 3204980 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1286 3203276 3203440 3203649 "ZLINDEP" 3203998 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1285 3192576 3194344 3196316 "ZDSOLVE" 3201406 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1284 3191822 3191963 3192152 "YSTREAM" 3192422 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1283 3189596 3191123 3191327 "XRPOLY" 3191665 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1282 3186149 3187467 3188042 "XPR" 3189068 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1281 3183870 3185480 3185684 "XPOLY" 3185980 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1280 3181627 3182995 3183050 "XPOLYC" 3183338 NIL XPOLYC (NIL T T) -9 NIL 3183451 NIL) (-1279 3178002 3180144 3180532 "XPBWPOLY" 3181285 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1278 3173878 3176165 3176207 "XF" 3176828 NIL XF (NIL T) -9 NIL 3177228 NIL) (-1277 3173499 3173587 3173756 "XF-" 3173761 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1276 3168799 3170088 3170143 "XFALG" 3172315 NIL XFALG (NIL T T) -9 NIL 3173104 NIL) (-1275 3167932 3168036 3168241 "XEXPPKG" 3168691 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1274 3166041 3167782 3167878 "XDPOLY" 3167883 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1273 3164952 3165552 3165595 "XALG" 3165600 NIL XALG (NIL T) -9 NIL 3165711 NIL) (-1272 3158394 3162929 3163423 "WUTSET" 3164544 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1271 3156650 3157446 3157769 "WP" 3158205 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1270 3156252 3156472 3156542 "WHILEAST" 3156602 T WHILEAST (NIL) -8 NIL NIL NIL) (-1269 3155724 3155969 3156063 "WHEREAST" 3156180 T WHEREAST (NIL) -8 NIL NIL NIL) (-1268 3154610 3154808 3155103 "WFFINTBS" 3155521 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1267 3152514 3152941 3153403 "WEIER" 3154182 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1266 3151635 3152085 3152127 "VSPACE" 3152263 NIL VSPACE (NIL T) -9 NIL 3152337 NIL) (-1265 3151473 3151500 3151591 "VSPACE-" 3151596 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1264 3151281 3151324 3151392 "VOID" 3151427 T VOID (NIL) -8 NIL NIL NIL) (-1263 3149417 3149776 3150182 "VIEW" 3150897 T VIEW (NIL) -7 NIL NIL NIL) (-1262 3145841 3146480 3147217 "VIEWDEF" 3148702 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1261 3135145 3137389 3139562 "VIEW3D" 3143690 T VIEW3D (NIL) -8 NIL NIL NIL) (-1260 3127396 3129056 3130635 "VIEW2D" 3133588 T VIEW2D (NIL) -8 NIL NIL NIL) (-1259 3122750 3127166 3127258 "VECTOR" 3127339 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1258 3121327 3121586 3121904 "VECTOR2" 3122480 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1257 3114806 3119111 3119154 "VECTCAT" 3120147 NIL VECTCAT (NIL T) -9 NIL 3120733 NIL) (-1256 3113820 3114074 3114464 "VECTCAT-" 3114469 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1255 3113274 3113471 3113591 "VARIABLE" 3113735 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1254 3113207 3113212 3113242 "UTYPE" 3113247 T UTYPE (NIL) -9 NIL NIL NIL) (-1253 3112037 3112191 3112453 "UTSODETL" 3113033 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1252 3109477 3109937 3110461 "UTSODE" 3111578 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1251 3101314 3107103 3107592 "UTS" 3109046 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3092522 3097881 3097924 "UTSCAT" 3099036 NIL UTSCAT (NIL T) -9 NIL 3099793 NIL) (-1249 3089869 3090592 3091581 "UTSCAT-" 3091586 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1248 3089496 3089539 3089672 "UTS2" 3089820 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1247 3083722 3086334 3086377 "URAGG" 3088447 NIL URAGG (NIL T) -9 NIL 3089170 NIL) (-1246 3080661 3081524 3082647 "URAGG-" 3082652 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1245 3076371 3079296 3079761 "UPXSSING" 3080325 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1244 3068437 3075618 3075891 "UPXS" 3076156 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1243 3061510 3068341 3068413 "UPXSCONS" 3068418 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1242 3051720 3058505 3058567 "UPXSCCA" 3059141 NIL UPXSCCA (NIL T T) -9 NIL 3059374 NIL) (-1241 3051358 3051443 3051617 "UPXSCCA-" 3051622 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1240 3041421 3047979 3048022 "UPXSCAT" 3048670 NIL UPXSCAT (NIL T) -9 NIL 3049278 NIL) (-1239 3040851 3040930 3041109 "UPXS2" 3041336 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1238 3039505 3039758 3040109 "UPSQFREE" 3040594 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1237 3033258 3036307 3036362 "UPSCAT" 3037523 NIL UPSCAT (NIL T T) -9 NIL 3038297 NIL) (-1236 3032462 3032669 3032996 "UPSCAT-" 3033001 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1235 3018577 3026337 3026380 "UPOLYC" 3028481 NIL UPOLYC (NIL T) -9 NIL 3029702 NIL) (-1234 3009905 3012331 3015478 "UPOLYC-" 3015483 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1233 3009532 3009575 3009708 "UPOLYC2" 3009856 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1232 3001343 3009215 3009344 "UP" 3009451 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1231 3000682 3000789 3000953 "UPMP" 3001232 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1230 3000235 3000316 3000455 "UPDIVP" 3000595 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1229 2998803 2999052 2999368 "UPDECOMP" 2999984 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1228 2998038 2998150 2998335 "UPCDEN" 2998687 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1227 2997557 2997626 2997775 "UP2" 2997963 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1226 2996024 2996761 2997038 "UNISEG" 2997315 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1225 2995239 2995366 2995571 "UNISEG2" 2995867 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1224 2994299 2994479 2994705 "UNIFACT" 2995055 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1223 2978231 2993476 2993727 "ULS" 2994106 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1222 2966230 2978135 2978207 "ULSCONS" 2978212 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1221 2948811 2960788 2960850 "ULSCCAT" 2961488 NIL ULSCCAT (NIL T T) -9 NIL 2961776 NIL) (-1220 2947861 2948106 2948494 "ULSCCAT-" 2948499 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1219 2937701 2944173 2944216 "ULSCAT" 2945079 NIL ULSCAT (NIL T) -9 NIL 2945809 NIL) (-1218 2937131 2937210 2937389 "ULS2" 2937616 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1217 2936258 2936768 2936875 "UINT8" 2936986 T UINT8 (NIL) -8 NIL NIL 2937071) (-1216 2935384 2935894 2936001 "UINT64" 2936112 T UINT64 (NIL) -8 NIL NIL 2936197) (-1215 2934510 2935020 2935127 "UINT32" 2935238 T UINT32 (NIL) -8 NIL NIL 2935323) (-1214 2933636 2934146 2934253 "UINT16" 2934364 T UINT16 (NIL) -8 NIL NIL 2934449) (-1213 2932005 2932962 2932992 "UFD" 2933204 T UFD (NIL) -9 NIL 2933318 NIL) (-1212 2931799 2931845 2931940 "UFD-" 2931945 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1211 2930881 2931064 2931280 "UDVO" 2931605 T UDVO (NIL) -7 NIL NIL NIL) (-1210 2928697 2929106 2929577 "UDPO" 2930445 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1209 2928630 2928635 2928665 "TYPE" 2928670 T TYPE (NIL) -9 NIL NIL NIL) (-1208 2928390 2928585 2928616 "TYPEAST" 2928621 T TYPEAST (NIL) -8 NIL NIL NIL) (-1207 2927361 2927563 2927803 "TWOFACT" 2928184 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1206 2926384 2926770 2927005 "TUPLE" 2927161 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1205 2924075 2924594 2925133 "TUBETOOL" 2925867 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1204 2922924 2923129 2923370 "TUBE" 2923868 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1203 2917653 2921896 2922179 "TS" 2922676 NIL TS (NIL T) -8 NIL NIL NIL) (-1202 2906293 2910412 2910509 "TSETCAT" 2915778 NIL TSETCAT (NIL T T T T) -9 NIL 2917309 NIL) (-1201 2901025 2902625 2904516 "TSETCAT-" 2904521 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1200 2895664 2896511 2897440 "TRMANIP" 2900161 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1199 2895105 2895168 2895331 "TRIMAT" 2895596 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1198 2892971 2893208 2893565 "TRIGMNIP" 2894854 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1197 2892491 2892604 2892634 "TRIGCAT" 2892847 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1196 2892160 2892239 2892380 "TRIGCAT-" 2892385 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1195 2889005 2891018 2891299 "TREE" 2891914 NIL TREE (NIL T) -8 NIL NIL NIL) (-1194 2888279 2888807 2888837 "TRANFUN" 2888872 T TRANFUN (NIL) -9 NIL 2888938 NIL) (-1193 2887558 2887749 2888029 "TRANFUN-" 2888034 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1192 2887362 2887394 2887455 "TOPSP" 2887519 T TOPSP (NIL) -7 NIL NIL NIL) (-1191 2886710 2886825 2886979 "TOOLSIGN" 2887243 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1190 2885344 2885887 2886126 "TEXTFILE" 2886493 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1189 2883256 2883797 2884226 "TEX" 2884937 T TEX (NIL) -8 NIL NIL NIL) (-1188 2883037 2883068 2883140 "TEX1" 2883219 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1187 2882685 2882748 2882838 "TEMUTL" 2882969 T TEMUTL (NIL) -7 NIL NIL NIL) (-1186 2880839 2881119 2881444 "TBCMPPK" 2882408 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1185 2872616 2878999 2879055 "TBAGG" 2879455 NIL TBAGG (NIL T T) -9 NIL 2879666 NIL) (-1184 2867686 2869174 2870928 "TBAGG-" 2870933 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1183 2867070 2867177 2867322 "TANEXP" 2867575 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1182 2860460 2866927 2867020 "TABLE" 2867025 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1181 2859872 2859971 2860109 "TABLEAU" 2860357 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1180 2854480 2855700 2856948 "TABLBUMP" 2858658 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1179 2853702 2853849 2854030 "SYSTEM" 2854321 T SYSTEM (NIL) -8 NIL NIL NIL) (-1178 2850161 2850860 2851643 "SYSSOLP" 2852953 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1177 2849205 2849710 2849829 "SYSNNI" 2850015 NIL SYSNNI (NIL NIL) -8 NIL NIL 2850100) (-1176 2848512 2848971 2849050 "SYSINT" 2849110 NIL SYSINT (NIL NIL) -8 NIL NIL 2849155) (-1175 2844844 2845790 2846500 "SYNTAX" 2847824 T SYNTAX (NIL) -8 NIL NIL NIL) (-1174 2842002 2842604 2843236 "SYMTAB" 2844234 T SYMTAB (NIL) -8 NIL NIL NIL) (-1173 2837251 2838153 2839136 "SYMS" 2841041 T SYMS (NIL) -8 NIL NIL NIL) (-1172 2834486 2836709 2836939 "SYMPOLY" 2837056 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1171 2834003 2834078 2834201 "SYMFUNC" 2834398 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1170 2830022 2831315 2832128 "SYMBOL" 2833212 T SYMBOL (NIL) -8 NIL NIL NIL) (-1169 2823561 2825250 2826970 "SWITCH" 2828324 T SWITCH (NIL) -8 NIL NIL NIL) (-1168 2816795 2822382 2822685 "SUTS" 2823316 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2808861 2816042 2816315 "SUPXS" 2816580 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2800621 2808479 2808605 "SUP" 2808770 NIL SUP (NIL T) -8 NIL NIL NIL) (-1165 2799780 2799907 2800124 "SUPFRACF" 2800489 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1164 2799401 2799460 2799573 "SUP2" 2799715 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1163 2797849 2798123 2798479 "SUMRF" 2799100 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1162 2797184 2797250 2797442 "SUMFS" 2797770 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1161 2781151 2796361 2796612 "SULS" 2796991 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2780753 2780973 2781043 "SUCHTAST" 2781103 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1159 2780048 2780278 2780418 "SUCH" 2780661 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1158 2773914 2774954 2775913 "SUBSPACE" 2779136 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1157 2773344 2773434 2773598 "SUBRESP" 2773802 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1156 2766709 2768009 2769320 "STTF" 2772080 NIL STTF (NIL T) -7 NIL NIL NIL) (-1155 2760882 2762002 2763149 "STTFNC" 2765609 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1154 2752193 2754064 2755858 "STTAYLOR" 2759123 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1153 2745323 2752057 2752140 "STRTBL" 2752145 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1152 2740687 2745278 2745309 "STRING" 2745314 T STRING (NIL) -8 NIL NIL NIL) (-1151 2735548 2740060 2740090 "STRICAT" 2740149 T STRICAT (NIL) -9 NIL 2740211 NIL) (-1150 2728302 2733167 2733778 "STREAM" 2734972 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1149 2727812 2727889 2728033 "STREAM3" 2728219 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1148 2726794 2726977 2727212 "STREAM2" 2727625 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1147 2726482 2726534 2726627 "STREAM1" 2726736 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1146 2725498 2725679 2725910 "STINPROD" 2726298 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1145 2725050 2725260 2725290 "STEP" 2725370 T STEP (NIL) -9 NIL 2725448 NIL) (-1144 2718482 2724949 2725026 "STBL" 2725031 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1143 2713608 2717703 2717746 "STAGG" 2717899 NIL STAGG (NIL T) -9 NIL 2717988 NIL) (-1142 2711310 2711912 2712784 "STAGG-" 2712789 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1141 2709457 2711080 2711172 "STACK" 2711253 NIL STACK (NIL T) -8 NIL NIL NIL) (-1140 2702152 2707598 2708054 "SREGSET" 2709087 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1139 2694577 2695946 2697459 "SRDCMPK" 2700758 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1138 2687494 2692017 2692047 "SRAGG" 2693350 T SRAGG (NIL) -9 NIL 2693958 NIL) (-1137 2686511 2686766 2687145 "SRAGG-" 2687150 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1136 2680971 2685458 2685879 "SQMATRIX" 2686137 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1135 2674656 2677689 2678416 "SPLTREE" 2680316 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1134 2670619 2671312 2671958 "SPLNODE" 2674082 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1133 2669666 2669899 2669929 "SPFCAT" 2670373 T SPFCAT (NIL) -9 NIL NIL NIL) (-1132 2668403 2668613 2668877 "SPECOUT" 2669424 T SPECOUT (NIL) -7 NIL NIL NIL) (-1131 2660029 2661799 2661829 "SPADXPT" 2666221 T SPADXPT (NIL) -9 NIL 2668255 NIL) (-1130 2659790 2659830 2659899 "SPADPRSR" 2659982 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1129 2657945 2659745 2659776 "SPADAST" 2659781 T SPADAST (NIL) -8 NIL NIL NIL) (-1128 2649890 2651663 2651706 "SPACEC" 2656079 NIL SPACEC (NIL T) -9 NIL 2657895 NIL) (-1127 2648020 2649822 2649871 "SPACE3" 2649876 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1126 2646772 2646943 2647234 "SORTPAK" 2647825 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1125 2644864 2645167 2645579 "SOLVETRA" 2646436 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1124 2643914 2644136 2644397 "SOLVESER" 2644637 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1123 2639216 2640106 2641101 "SOLVERAD" 2642966 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1122 2635031 2635640 2636369 "SOLVEFOR" 2638583 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1121 2629301 2634380 2634477 "SNTSCAT" 2634482 NIL SNTSCAT (NIL T T T T) -9 NIL 2634552 NIL) (-1120 2623407 2627624 2628015 "SMTS" 2628991 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1119 2618091 2623295 2623372 "SMP" 2623377 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1118 2616250 2616551 2616949 "SMITH" 2617788 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1117 2609110 2613301 2613404 "SMATCAT" 2614755 NIL SMATCAT (NIL NIL T T T) -9 NIL 2615305 NIL) (-1116 2606050 2606873 2608051 "SMATCAT-" 2608056 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1115 2603716 2605286 2605329 "SKAGG" 2605590 NIL SKAGG (NIL T) -9 NIL 2605725 NIL) (-1114 2600024 2603132 2603327 "SINT" 2603514 T SINT (NIL) -8 NIL NIL 2603687) (-1113 2599796 2599834 2599900 "SIMPAN" 2599980 T SIMPAN (NIL) -7 NIL NIL NIL) (-1112 2599075 2599331 2599471 "SIG" 2599678 T SIG (NIL) -8 NIL NIL NIL) (-1111 2597913 2598134 2598409 "SIGNRF" 2598834 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1110 2596746 2596897 2597181 "SIGNEF" 2597742 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1109 2596052 2596329 2596453 "SIGAST" 2596644 T SIGAST (NIL) -8 NIL NIL NIL) (-1108 2593741 2594196 2594702 "SHP" 2595593 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1107 2587593 2593642 2593718 "SHDP" 2593723 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1106 2587166 2587358 2587388 "SGROUP" 2587481 T SGROUP (NIL) -9 NIL 2587543 NIL) (-1105 2587024 2587050 2587123 "SGROUP-" 2587128 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1104 2583859 2584557 2585280 "SGCF" 2586323 T SGCF (NIL) -7 NIL NIL NIL) (-1103 2578227 2583306 2583403 "SFRTCAT" 2583408 NIL SFRTCAT (NIL T T T T) -9 NIL 2583447 NIL) (-1102 2571648 2572666 2573802 "SFRGCD" 2577210 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1101 2564774 2565847 2567033 "SFQCMPK" 2570581 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1100 2564394 2564483 2564594 "SFORT" 2564715 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1099 2563512 2564234 2564355 "SEXOF" 2564360 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1098 2562619 2563393 2563461 "SEX" 2563466 T SEX (NIL) -8 NIL NIL NIL) (-1097 2558132 2558847 2558942 "SEXCAT" 2561879 NIL SEXCAT (NIL T T T T T) -9 NIL 2562457 NIL) (-1096 2555285 2558066 2558114 "SET" 2558119 NIL SET (NIL T) -8 NIL NIL NIL) (-1095 2553509 2553998 2554303 "SETMN" 2555026 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1094 2553005 2553157 2553187 "SETCAT" 2553363 T SETCAT (NIL) -9 NIL 2553473 NIL) (-1093 2552697 2552775 2552905 "SETCAT-" 2552910 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1092 2549058 2551158 2551201 "SETAGG" 2552071 NIL SETAGG (NIL T) -9 NIL 2552411 NIL) (-1091 2548516 2548632 2548869 "SETAGG-" 2548874 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1090 2547959 2548212 2548313 "SEQAST" 2548437 T SEQAST (NIL) -8 NIL NIL NIL) (-1089 2547158 2547452 2547513 "SEGXCAT" 2547799 NIL SEGXCAT (NIL T T) -9 NIL 2547919 NIL) (-1088 2546164 2546824 2547006 "SEG" 2547011 NIL SEG (NIL T) -8 NIL NIL NIL) (-1087 2545143 2545357 2545400 "SEGCAT" 2545922 NIL SEGCAT (NIL T) -9 NIL 2546143 NIL) (-1086 2544144 2544522 2544722 "SEGBIND" 2544978 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1085 2543765 2543824 2543937 "SEGBIND2" 2544079 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1084 2543338 2543566 2543643 "SEGAST" 2543710 T SEGAST (NIL) -8 NIL NIL NIL) (-1083 2542557 2542683 2542887 "SEG2" 2543182 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1082 2541967 2542492 2542539 "SDVAR" 2542544 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1081 2534494 2541737 2541867 "SDPOL" 2541872 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1080 2533087 2533353 2533672 "SCPKG" 2534209 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1079 2532251 2532423 2532615 "SCOPE" 2532917 T SCOPE (NIL) -8 NIL NIL NIL) (-1078 2531471 2531605 2531784 "SCACHE" 2532106 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1077 2531117 2531303 2531333 "SASTCAT" 2531338 T SASTCAT (NIL) -9 NIL 2531351 NIL) (-1076 2530604 2530952 2531028 "SAOS" 2531063 T SAOS (NIL) -8 NIL NIL NIL) (-1075 2530169 2530204 2530377 "SAERFFC" 2530563 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1074 2524108 2530066 2530146 "SAE" 2530151 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1073 2523701 2523736 2523895 "SAEFACT" 2524067 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1072 2522022 2522336 2522737 "RURPK" 2523367 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1071 2520659 2520965 2521270 "RULESET" 2521856 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1070 2517882 2518412 2518870 "RULE" 2520340 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1069 2517494 2517676 2517759 "RULECOLD" 2517834 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1068 2517284 2517312 2517383 "RTVALUE" 2517445 T RTVALUE (NIL) -8 NIL NIL NIL) (-1067 2516755 2517001 2517095 "RSTRCAST" 2517212 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1066 2511603 2512398 2513318 "RSETGCD" 2515954 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1065 2500833 2505912 2506009 "RSETCAT" 2510128 NIL RSETCAT (NIL T T T T) -9 NIL 2511225 NIL) (-1064 2498760 2499299 2500123 "RSETCAT-" 2500128 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1063 2491145 2492522 2494042 "RSDCMPK" 2497359 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1062 2489124 2489591 2489665 "RRCC" 2490751 NIL RRCC (NIL T T) -9 NIL 2491095 NIL) (-1061 2488475 2488649 2488928 "RRCC-" 2488933 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1060 2487918 2488171 2488272 "RPTAST" 2488396 T RPTAST (NIL) -8 NIL NIL NIL) (-1059 2462189 2471538 2471605 "RPOLCAT" 2482269 NIL RPOLCAT (NIL T T T) -9 NIL 2485428 NIL) (-1058 2453687 2456027 2459149 "RPOLCAT-" 2459154 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1057 2444618 2451898 2452380 "ROUTINE" 2453227 T ROUTINE (NIL) -8 NIL NIL NIL) (-1056 2441416 2444244 2444384 "ROMAN" 2444500 T ROMAN (NIL) -8 NIL NIL NIL) (-1055 2439660 2440276 2440536 "ROIRC" 2441221 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1054 2436018 2438296 2438326 "RNS" 2438630 T RNS (NIL) -9 NIL 2438903 NIL) (-1053 2434527 2434910 2435444 "RNS-" 2435519 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1052 2433950 2434358 2434388 "RNG" 2434393 T RNG (NIL) -9 NIL 2434414 NIL) (-1051 2433316 2433704 2433747 "RMODULE" 2433809 NIL RMODULE (NIL T) -9 NIL 2433851 NIL) (-1050 2432152 2432246 2432582 "RMCAT2" 2433217 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1049 2429002 2431498 2431795 "RMATRIX" 2431914 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1048 2421918 2424178 2424293 "RMATCAT" 2427652 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2428634 NIL) (-1047 2421293 2421440 2421747 "RMATCAT-" 2421752 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1046 2420860 2420935 2421063 "RINTERP" 2421212 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1045 2419953 2420507 2420537 "RING" 2420593 T RING (NIL) -9 NIL 2420685 NIL) (-1044 2419745 2419789 2419886 "RING-" 2419891 NIL RING- (NIL T) -8 NIL NIL NIL) (-1043 2418586 2418823 2419081 "RIDIST" 2419509 T RIDIST (NIL) -7 NIL NIL NIL) (-1042 2409875 2418054 2418260 "RGCHAIN" 2418434 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1041 2409225 2409631 2409672 "RGBCSPC" 2409730 NIL RGBCSPC (NIL T) -9 NIL 2409782 NIL) (-1040 2408383 2408764 2408805 "RGBCMDL" 2409037 NIL RGBCMDL (NIL T) -9 NIL 2409151 NIL) (-1039 2405377 2405991 2406661 "RF" 2407747 NIL RF (NIL T) -7 NIL NIL NIL) (-1038 2405023 2405086 2405189 "RFFACTOR" 2405308 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1037 2404748 2404783 2404880 "RFFACT" 2404982 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1036 2402865 2403229 2403611 "RFDIST" 2404388 T RFDIST (NIL) -7 NIL NIL NIL) (-1035 2402318 2402410 2402573 "RETSOL" 2402767 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1034 2401954 2402034 2402077 "RETRACT" 2402210 NIL RETRACT (NIL T) -9 NIL 2402297 NIL) (-1033 2401803 2401828 2401915 "RETRACT-" 2401920 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1032 2401405 2401625 2401695 "RETAST" 2401755 T RETAST (NIL) -8 NIL NIL NIL) (-1031 2394143 2401058 2401185 "RESULT" 2401300 T RESULT (NIL) -8 NIL NIL NIL) (-1030 2392734 2393412 2393611 "RESRING" 2394046 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1029 2392370 2392419 2392517 "RESLATC" 2392671 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1028 2392075 2392110 2392217 "REPSQ" 2392329 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1027 2389497 2390077 2390679 "REP" 2391495 T REP (NIL) -7 NIL NIL NIL) (-1026 2389194 2389229 2389340 "REPDB" 2389456 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1025 2383094 2384483 2385706 "REP2" 2388006 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1024 2379471 2380152 2380960 "REP1" 2382321 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1023 2372167 2377612 2378068 "REGSET" 2379101 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1022 2370932 2371315 2371565 "REF" 2371952 NIL REF (NIL T) -8 NIL NIL NIL) (-1021 2370309 2370412 2370579 "REDORDER" 2370816 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1020 2366277 2369522 2369749 "RECLOS" 2370137 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1019 2365329 2365510 2365725 "REALSOLV" 2366084 T REALSOLV (NIL) -7 NIL NIL NIL) (-1018 2365175 2365216 2365246 "REAL" 2365251 T REAL (NIL) -9 NIL 2365286 NIL) (-1017 2361658 2362460 2363344 "REAL0Q" 2364340 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1016 2357259 2358247 2359308 "REAL0" 2360639 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1015 2356730 2356976 2357070 "RDUCEAST" 2357187 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1014 2356135 2356207 2356414 "RDIV" 2356652 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1013 2355203 2355377 2355590 "RDIST" 2355957 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1012 2353800 2354087 2354459 "RDETRS" 2354911 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1011 2351612 2352066 2352604 "RDETR" 2353342 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1010 2350237 2350515 2350912 "RDEEFS" 2351328 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1009 2348746 2349052 2349477 "RDEEF" 2349925 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1008 2342972 2345882 2345912 "RCFIELD" 2347207 T RCFIELD (NIL) -9 NIL 2347937 NIL) (-1007 2341036 2341540 2342236 "RCFIELD-" 2342311 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1006 2337305 2339137 2339180 "RCAGG" 2340264 NIL RCAGG (NIL T) -9 NIL 2340729 NIL) (-1005 2336933 2337027 2337190 "RCAGG-" 2337195 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1004 2336268 2336380 2336545 "RATRET" 2336817 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1003 2335821 2335888 2336009 "RATFACT" 2336196 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1002 2335129 2335249 2335401 "RANDSRC" 2335691 T RANDSRC (NIL) -7 NIL NIL NIL) (-1001 2334863 2334907 2334980 "RADUTIL" 2335078 T RADUTIL (NIL) -7 NIL NIL NIL) (-1000 2327979 2333696 2334006 "RADIX" 2334587 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-999 2319600 2327823 2327951 "RADFF" 2327956 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-998 2319252 2319327 2319355 "RADCAT" 2319512 T RADCAT (NIL) -9 NIL NIL NIL) (-997 2319037 2319085 2319182 "RADCAT-" 2319187 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-996 2317140 2318812 2318901 "QUEUE" 2318981 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-995 2313681 2317077 2317122 "QUAT" 2317127 NIL QUAT (NIL T) -8 NIL NIL NIL) (-994 2313319 2313362 2313489 "QUATCT2" 2313632 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-993 2307031 2310368 2310408 "QUATCAT" 2311188 NIL QUATCAT (NIL T) -9 NIL 2311954 NIL) (-992 2303175 2304212 2305599 "QUATCAT-" 2305693 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-991 2300648 2302259 2302300 "QUAGG" 2302675 NIL QUAGG (NIL T) -9 NIL 2302850 NIL) (-990 2300253 2300473 2300541 "QQUTAST" 2300600 T QQUTAST (NIL) -8 NIL NIL NIL) (-989 2299151 2299651 2299823 "QFORM" 2300125 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-988 2290329 2295568 2295608 "QFCAT" 2296266 NIL QFCAT (NIL T) -9 NIL 2297267 NIL) (-987 2285901 2287102 2288693 "QFCAT-" 2288787 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-986 2285539 2285582 2285709 "QFCAT2" 2285852 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-985 2284999 2285109 2285239 "QEQUAT" 2285429 T QEQUAT (NIL) -8 NIL NIL NIL) (-984 2278146 2279218 2280402 "QCMPACK" 2283932 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-983 2275695 2276143 2276571 "QALGSET" 2277801 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-982 2274940 2275114 2275346 "QALGSET2" 2275515 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-981 2273630 2273854 2274171 "PWFFINTB" 2274713 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-980 2271812 2271980 2272334 "PUSHVAR" 2273444 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-979 2267730 2268784 2268825 "PTRANFN" 2270709 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-978 2266132 2266423 2266745 "PTPACK" 2267441 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-977 2265764 2265821 2265930 "PTFUNC2" 2266069 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-976 2260243 2264636 2264677 "PTCAT" 2264973 NIL PTCAT (NIL T) -9 NIL 2265126 NIL) (-975 2259901 2259936 2260060 "PSQFR" 2260202 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-974 2258496 2258794 2259128 "PSEUDLIN" 2259599 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-973 2245259 2247630 2249954 "PSETPK" 2256256 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-972 2238277 2241017 2241113 "PSETCAT" 2244134 NIL PSETCAT (NIL T T T T) -9 NIL 2244948 NIL) (-971 2236113 2236747 2237568 "PSETCAT-" 2237573 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-970 2235462 2235627 2235655 "PSCURVE" 2235923 T PSCURVE (NIL) -9 NIL 2236090 NIL) (-969 2231784 2233300 2233365 "PSCAT" 2234209 NIL PSCAT (NIL T T T) -9 NIL 2234449 NIL) (-968 2230847 2231063 2231463 "PSCAT-" 2231468 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-967 2229552 2230212 2230417 "PRTITION" 2230662 T PRTITION (NIL) -8 NIL NIL NIL) (-966 2229027 2229273 2229365 "PRTDAST" 2229480 T PRTDAST (NIL) -8 NIL NIL NIL) (-965 2218117 2220331 2222519 "PRS" 2226889 NIL PRS (NIL T T) -7 NIL NIL NIL) (-964 2215928 2217467 2217507 "PRQAGG" 2217690 NIL PRQAGG (NIL T) -9 NIL 2217792 NIL) (-963 2215132 2215437 2215465 "PROPLOG" 2215712 T PROPLOG (NIL) -9 NIL 2215878 NIL) (-962 2213562 2214083 2214340 "PROPFRML" 2214908 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-961 2213031 2213138 2213266 "PROPERTY" 2213454 T PROPERTY (NIL) -8 NIL NIL NIL) (-960 2207089 2211197 2212017 "PRODUCT" 2212257 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-959 2204367 2206547 2206781 "PR" 2206900 NIL PR (NIL T T) -8 NIL NIL NIL) (-958 2204163 2204195 2204254 "PRINT" 2204328 T PRINT (NIL) -7 NIL NIL NIL) (-957 2203503 2203620 2203772 "PRIMES" 2204043 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-956 2201568 2201969 2202435 "PRIMELT" 2203082 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-955 2201297 2201346 2201374 "PRIMCAT" 2201498 T PRIMCAT (NIL) -9 NIL NIL NIL) (-954 2197412 2201235 2201280 "PRIMARR" 2201285 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-953 2196419 2196597 2196825 "PRIMARR2" 2197230 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-952 2196062 2196118 2196229 "PREASSOC" 2196357 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-951 2195537 2195670 2195698 "PPCURVE" 2195903 T PPCURVE (NIL) -9 NIL 2196039 NIL) (-950 2195132 2195332 2195415 "PORTNUM" 2195474 T PORTNUM (NIL) -8 NIL NIL NIL) (-949 2192491 2192890 2193482 "POLYROOT" 2194713 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-948 2186673 2192095 2192255 "POLY" 2192364 NIL POLY (NIL T) -8 NIL NIL NIL) (-947 2186056 2186114 2186348 "POLYLIFT" 2186609 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-946 2182331 2182780 2183409 "POLYCATQ" 2185601 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-945 2169463 2174583 2174648 "POLYCAT" 2178162 NIL POLYCAT (NIL T T T) -9 NIL 2180040 NIL) (-944 2162912 2164774 2167158 "POLYCAT-" 2167163 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-943 2162499 2162567 2162687 "POLY2UP" 2162838 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-942 2162131 2162188 2162297 "POLY2" 2162436 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-941 2160816 2161055 2161331 "POLUTIL" 2161905 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-940 2159171 2159448 2159779 "POLTOPOL" 2160538 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-939 2154638 2159107 2159153 "POINT" 2159158 NIL POINT (NIL T) -8 NIL NIL NIL) (-938 2152825 2153182 2153557 "PNTHEORY" 2154283 T PNTHEORY (NIL) -7 NIL NIL NIL) (-937 2151283 2151580 2151979 "PMTOOLS" 2152523 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-936 2150876 2150954 2151071 "PMSYM" 2151199 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-935 2150386 2150455 2150629 "PMQFCAT" 2150801 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-934 2149741 2149851 2150007 "PMPRED" 2150263 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-933 2149134 2149220 2149382 "PMPREDFS" 2149642 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-932 2147798 2148006 2148384 "PMPLCAT" 2148896 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-931 2147330 2147409 2147561 "PMLSAGG" 2147713 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-930 2146803 2146879 2147061 "PMKERNEL" 2147248 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-929 2146420 2146495 2146608 "PMINS" 2146722 NIL PMINS (NIL T) -7 NIL NIL NIL) (-928 2145862 2145931 2146140 "PMFS" 2146345 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-927 2145090 2145208 2145413 "PMDOWN" 2145739 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-926 2144257 2144415 2144596 "PMASS" 2144929 T PMASS (NIL) -7 NIL NIL NIL) (-925 2143530 2143640 2143803 "PMASSFS" 2144144 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-924 2143185 2143253 2143347 "PLOTTOOL" 2143456 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-923 2137792 2138996 2140144 "PLOT" 2142057 T PLOT (NIL) -8 NIL NIL NIL) (-922 2133596 2134640 2135561 "PLOT3D" 2136891 T PLOT3D (NIL) -8 NIL NIL NIL) (-921 2132508 2132685 2132920 "PLOT1" 2133400 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-920 2107897 2112574 2117425 "PLEQN" 2127774 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-919 2107215 2107337 2107517 "PINTERP" 2107762 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-918 2106908 2106955 2107058 "PINTERPA" 2107162 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-917 2106129 2106677 2106764 "PI" 2106804 T PI (NIL) -8 NIL NIL 2106871) (-916 2104492 2105467 2105495 "PID" 2105677 T PID (NIL) -9 NIL 2105811 NIL) (-915 2104243 2104280 2104355 "PICOERCE" 2104449 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-914 2103563 2103702 2103878 "PGROEB" 2104099 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-913 2099150 2099964 2100869 "PGE" 2102678 T PGE (NIL) -7 NIL NIL NIL) (-912 2097273 2097520 2097886 "PGCD" 2098867 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-911 2096611 2096714 2096875 "PFRPAC" 2097157 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-910 2093252 2095159 2095512 "PFR" 2096290 NIL PFR (NIL T) -8 NIL NIL NIL) (-909 2091641 2091885 2092210 "PFOTOOLS" 2092999 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-908 2090174 2090413 2090764 "PFOQ" 2091398 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-907 2088675 2088887 2089243 "PFO" 2089958 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-906 2085228 2088564 2088633 "PF" 2088638 NIL PF (NIL NIL) -8 NIL NIL NIL) (-905 2082628 2083899 2083927 "PFECAT" 2084512 T PFECAT (NIL) -9 NIL 2084896 NIL) (-904 2082073 2082227 2082441 "PFECAT-" 2082446 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-903 2080676 2080928 2081229 "PFBRU" 2081822 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-902 2078541 2078894 2079326 "PFBR" 2080327 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-901 2074423 2075917 2076593 "PERM" 2077898 NIL PERM (NIL T) -8 NIL NIL NIL) (-900 2069657 2070630 2071500 "PERMGRP" 2073586 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-899 2067763 2068720 2068761 "PERMCAT" 2069207 NIL PERMCAT (NIL T) -9 NIL 2069512 NIL) (-898 2067416 2067457 2067581 "PERMAN" 2067716 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-897 2064904 2067081 2067203 "PENDTREE" 2067327 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-896 2062963 2063731 2063772 "PDRING" 2064429 NIL PDRING (NIL T) -9 NIL 2064715 NIL) (-895 2062066 2062284 2062646 "PDRING-" 2062651 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-894 2059281 2060059 2060727 "PDEPROB" 2061418 T PDEPROB (NIL) -8 NIL NIL NIL) (-893 2056826 2057330 2057885 "PDEPACK" 2058746 T PDEPACK (NIL) -7 NIL NIL NIL) (-892 2055738 2055928 2056179 "PDECOMP" 2056625 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-891 2053317 2054160 2054188 "PDECAT" 2054975 T PDECAT (NIL) -9 NIL 2055688 NIL) (-890 2053068 2053101 2053191 "PCOMP" 2053278 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-889 2051246 2051869 2052166 "PBWLB" 2052797 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-888 2043719 2045319 2046657 "PATTERN" 2049929 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-887 2043351 2043408 2043517 "PATTERN2" 2043656 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-886 2041108 2041496 2041953 "PATTERN1" 2042940 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-885 2038476 2039057 2039538 "PATRES" 2040673 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-884 2038040 2038107 2038239 "PATRES2" 2038403 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-883 2035923 2036328 2036735 "PATMATCH" 2037707 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-882 2035433 2035642 2035683 "PATMAB" 2035790 NIL PATMAB (NIL T) -9 NIL 2035873 NIL) (-881 2033951 2034287 2034545 "PATLRES" 2035238 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-880 2033497 2033620 2033661 "PATAB" 2033666 NIL PATAB (NIL T) -9 NIL 2033838 NIL) (-879 2030978 2031510 2032083 "PARTPERM" 2032944 T PARTPERM (NIL) -7 NIL NIL NIL) (-878 2030599 2030662 2030764 "PARSURF" 2030909 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-877 2030231 2030288 2030397 "PARSU2" 2030536 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-876 2029995 2030035 2030102 "PARSER" 2030184 T PARSER (NIL) -7 NIL NIL NIL) (-875 2029616 2029679 2029781 "PARSCURV" 2029926 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-874 2029248 2029305 2029414 "PARSC2" 2029553 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-873 2028887 2028945 2029042 "PARPCURV" 2029184 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-872 2028519 2028576 2028685 "PARPC2" 2028824 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-871 2028039 2028125 2028244 "PAN2EXPR" 2028420 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-870 2026816 2027160 2027388 "PALETTE" 2027831 T PALETTE (NIL) -8 NIL NIL NIL) (-869 2025209 2025821 2026181 "PAIR" 2026502 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-868 2019079 2024468 2024662 "PADICRC" 2025064 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-867 2012308 2018425 2018609 "PADICRAT" 2018927 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-866 2010623 2012245 2012290 "PADIC" 2012295 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-865 2007799 2009363 2009403 "PADICCT" 2009984 NIL PADICCT (NIL NIL) -9 NIL 2010266 NIL) (-864 2006756 2006956 2007224 "PADEPAC" 2007586 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-863 2005968 2006101 2006307 "PADE" 2006618 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-862 2004355 2005176 2005456 "OWP" 2005772 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-861 2003848 2004061 2004158 "OVERSET" 2004278 T OVERSET (NIL) -8 NIL NIL NIL) (-860 2002894 2003453 2003625 "OVAR" 2003716 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-859 2002158 2002279 2002440 "OUT" 2002753 T OUT (NIL) -7 NIL NIL NIL) (-858 1991029 1993267 1995467 "OUTFORM" 1999978 T OUTFORM (NIL) -8 NIL NIL NIL) (-857 1990365 1990626 1990753 "OUTBFILE" 1990922 T OUTBFILE (NIL) -8 NIL NIL NIL) (-856 1989672 1989837 1989865 "OUTBCON" 1990183 T OUTBCON (NIL) -9 NIL 1990349 NIL) (-855 1989273 1989385 1989542 "OUTBCON-" 1989547 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-854 1988653 1989002 1989091 "OSI" 1989204 T OSI (NIL) -8 NIL NIL NIL) (-853 1988183 1988521 1988549 "OSGROUP" 1988554 T OSGROUP (NIL) -9 NIL 1988576 NIL) (-852 1986928 1987155 1987440 "ORTHPOL" 1987930 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-851 1984479 1986763 1986884 "OREUP" 1986889 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-850 1981882 1984170 1984297 "ORESUP" 1984421 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-849 1979410 1979910 1980471 "OREPCTO" 1981371 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-848 1973200 1975401 1975442 "OREPCAT" 1977790 NIL OREPCAT (NIL T) -9 NIL 1978894 NIL) (-847 1970347 1971129 1972187 "OREPCAT-" 1972192 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-846 1969498 1969796 1969824 "ORDSET" 1970133 T ORDSET (NIL) -9 NIL 1970297 NIL) (-845 1968929 1969077 1969301 "ORDSET-" 1969306 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-844 1967529 1968320 1968348 "ORDRING" 1968550 T ORDRING (NIL) -9 NIL 1968675 NIL) (-843 1967174 1967268 1967412 "ORDRING-" 1967417 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-842 1966554 1967017 1967045 "ORDMON" 1967050 T ORDMON (NIL) -9 NIL 1967071 NIL) (-841 1965716 1965863 1966058 "ORDFUNS" 1966403 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-840 1965054 1965473 1965501 "ORDFIN" 1965566 T ORDFIN (NIL) -9 NIL 1965640 NIL) (-839 1961613 1963640 1964049 "ORDCOMP" 1964678 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-838 1960879 1961006 1961192 "ORDCOMP2" 1961473 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-837 1957460 1958370 1959184 "OPTPROB" 1960085 T OPTPROB (NIL) -8 NIL NIL NIL) (-836 1954262 1954901 1955605 "OPTPACK" 1956776 T OPTPACK (NIL) -7 NIL NIL NIL) (-835 1951949 1952715 1952743 "OPTCAT" 1953562 T OPTCAT (NIL) -9 NIL 1954212 NIL) (-834 1951365 1951626 1951731 "OPSIG" 1951864 T OPSIG (NIL) -8 NIL NIL NIL) (-833 1951133 1951172 1951238 "OPQUERY" 1951319 T OPQUERY (NIL) -7 NIL NIL NIL) (-832 1948264 1949444 1949948 "OP" 1950662 NIL OP (NIL T) -8 NIL NIL NIL) (-831 1947773 1947970 1948011 "OPERCAT" 1948146 NIL OPERCAT (NIL T) -9 NIL 1948214 NIL) (-830 1947619 1947646 1947732 "OPERCAT-" 1947737 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-829 1944431 1946416 1946785 "ONECOMP" 1947283 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-828 1943736 1943851 1944025 "ONECOMP2" 1944303 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-827 1943155 1943261 1943391 "OMSERVER" 1943626 T OMSERVER (NIL) -7 NIL NIL NIL) (-826 1940017 1942595 1942635 "OMSAGG" 1942696 NIL OMSAGG (NIL T) -9 NIL 1942760 NIL) (-825 1938640 1938903 1939185 "OMPKG" 1939755 T OMPKG (NIL) -7 NIL NIL NIL) (-824 1938070 1938173 1938201 "OM" 1938500 T OM (NIL) -9 NIL NIL NIL) (-823 1936617 1937619 1937788 "OMLO" 1937951 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-822 1935577 1935724 1935944 "OMEXPR" 1936443 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-821 1934868 1935123 1935259 "OMERR" 1935461 T OMERR (NIL) -8 NIL NIL NIL) (-820 1934019 1934289 1934449 "OMERRK" 1934728 T OMERRK (NIL) -8 NIL NIL NIL) (-819 1933470 1933696 1933804 "OMENC" 1933931 T OMENC (NIL) -8 NIL NIL NIL) (-818 1927365 1928550 1929721 "OMDEV" 1932319 T OMDEV (NIL) -8 NIL NIL NIL) (-817 1926434 1926605 1926799 "OMCONN" 1927191 T OMCONN (NIL) -8 NIL NIL NIL) (-816 1925021 1925997 1926025 "OINTDOM" 1926030 T OINTDOM (NIL) -9 NIL 1926051 NIL) (-815 1920800 1922011 1922727 "OFMONOID" 1924337 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-814 1920211 1920737 1920782 "ODVAR" 1920787 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-813 1917634 1919956 1920111 "ODR" 1920116 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-812 1910215 1917410 1917536 "ODPOL" 1917541 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-811 1904037 1910087 1910192 "ODP" 1910197 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-810 1902803 1903018 1903293 "ODETOOLS" 1903811 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-809 1899770 1900428 1901144 "ODESYS" 1902136 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-808 1894652 1895560 1896585 "ODERTRIC" 1898845 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-807 1894078 1894160 1894354 "ODERED" 1894564 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-806 1890966 1891514 1892191 "ODERAT" 1893501 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-805 1887923 1888390 1888987 "ODEPRRIC" 1890495 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-804 1885866 1886462 1886948 "ODEPROB" 1887457 T ODEPROB (NIL) -8 NIL NIL NIL) (-803 1882386 1882871 1883518 "ODEPRIM" 1885345 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-802 1881635 1881737 1881997 "ODEPAL" 1882278 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-801 1877797 1878588 1879452 "ODEPACK" 1880791 T ODEPACK (NIL) -7 NIL NIL NIL) (-800 1876858 1876965 1877187 "ODEINT" 1877686 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-799 1870959 1872384 1873831 "ODEIFTBL" 1875431 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-798 1866357 1867143 1868095 "ODEEF" 1870118 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-797 1865706 1865795 1866018 "ODECONST" 1866262 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-796 1863831 1864492 1864520 "ODECAT" 1865125 T ODECAT (NIL) -9 NIL 1865656 NIL) (-795 1860703 1863543 1863662 "OCT" 1863744 NIL OCT (NIL T) -8 NIL NIL NIL) (-794 1860341 1860384 1860511 "OCTCT2" 1860654 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-793 1855081 1857515 1857555 "OC" 1858652 NIL OC (NIL T) -9 NIL 1859510 NIL) (-792 1852308 1853056 1854046 "OC-" 1854140 NIL OC- (NIL T T) -8 NIL NIL NIL) (-791 1851660 1852128 1852156 "OCAMON" 1852161 T OCAMON (NIL) -9 NIL 1852182 NIL) (-790 1851191 1851532 1851560 "OASGP" 1851565 T OASGP (NIL) -9 NIL 1851585 NIL) (-789 1850452 1850941 1850969 "OAMONS" 1851009 T OAMONS (NIL) -9 NIL 1851052 NIL) (-788 1849866 1850299 1850327 "OAMON" 1850332 T OAMON (NIL) -9 NIL 1850352 NIL) (-787 1849144 1849662 1849690 "OAGROUP" 1849695 T OAGROUP (NIL) -9 NIL 1849715 NIL) (-786 1848834 1848884 1848972 "NUMTUBE" 1849088 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-785 1842407 1843925 1845461 "NUMQUAD" 1847318 T NUMQUAD (NIL) -7 NIL NIL NIL) (-784 1838163 1839151 1840176 "NUMODE" 1841402 T NUMODE (NIL) -7 NIL NIL NIL) (-783 1835518 1836398 1836426 "NUMINT" 1837349 T NUMINT (NIL) -9 NIL 1838113 NIL) (-782 1834466 1834663 1834881 "NUMFMT" 1835320 T NUMFMT (NIL) -7 NIL NIL NIL) (-781 1820825 1823770 1826302 "NUMERIC" 1831973 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-780 1815195 1820274 1820369 "NTSCAT" 1820374 NIL NTSCAT (NIL T T T T) -9 NIL 1820413 NIL) (-779 1814389 1814554 1814747 "NTPOLFN" 1815034 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-778 1802466 1811214 1812026 "NSUP" 1813610 NIL NSUP (NIL T) -8 NIL NIL NIL) (-777 1802098 1802155 1802264 "NSUP2" 1802403 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-776 1792326 1801872 1802005 "NSMP" 1802010 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-775 1790758 1791059 1791416 "NREP" 1792014 NIL NREP (NIL T) -7 NIL NIL NIL) (-774 1789349 1789601 1789959 "NPCOEF" 1790501 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-773 1788415 1788530 1788746 "NORMRETR" 1789230 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-772 1786456 1786746 1787155 "NORMPK" 1788123 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-771 1786141 1786169 1786293 "NORMMA" 1786422 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-770 1785941 1786098 1786127 "NONE" 1786132 T NONE (NIL) -8 NIL NIL NIL) (-769 1785730 1785759 1785828 "NONE1" 1785905 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-768 1785227 1785289 1785468 "NODE1" 1785662 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-767 1783507 1784358 1784613 "NNI" 1784960 T NNI (NIL) -8 NIL NIL 1785195) (-766 1781927 1782240 1782604 "NLINSOL" 1783175 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-765 1778168 1779163 1780062 "NIPROB" 1781048 T NIPROB (NIL) -8 NIL NIL NIL) (-764 1776925 1777159 1777461 "NFINTBAS" 1777930 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-763 1776099 1776575 1776616 "NETCLT" 1776788 NIL NETCLT (NIL T) -9 NIL 1776870 NIL) (-762 1774807 1775038 1775319 "NCODIV" 1775867 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-761 1774569 1774606 1774681 "NCNTFRAC" 1774764 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-760 1772749 1773113 1773533 "NCEP" 1774194 NIL NCEP (NIL T) -7 NIL NIL NIL) (-759 1771620 1772393 1772421 "NASRING" 1772531 T NASRING (NIL) -9 NIL 1772611 NIL) (-758 1771415 1771459 1771553 "NASRING-" 1771558 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-757 1770542 1771067 1771095 "NARNG" 1771212 T NARNG (NIL) -9 NIL 1771303 NIL) (-756 1770234 1770301 1770435 "NARNG-" 1770440 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-755 1769113 1769320 1769555 "NAGSP" 1770019 T NAGSP (NIL) -7 NIL NIL NIL) (-754 1760385 1762069 1763742 "NAGS" 1767460 T NAGS (NIL) -7 NIL NIL NIL) (-753 1758933 1759241 1759572 "NAGF07" 1760074 T NAGF07 (NIL) -7 NIL NIL NIL) (-752 1753471 1754762 1756069 "NAGF04" 1757646 T NAGF04 (NIL) -7 NIL NIL NIL) (-751 1746439 1748053 1749686 "NAGF02" 1751858 T NAGF02 (NIL) -7 NIL NIL NIL) (-750 1741663 1742763 1743880 "NAGF01" 1745342 T NAGF01 (NIL) -7 NIL NIL NIL) (-749 1735291 1736857 1738442 "NAGE04" 1740098 T NAGE04 (NIL) -7 NIL NIL NIL) (-748 1726460 1728581 1730711 "NAGE02" 1733181 T NAGE02 (NIL) -7 NIL NIL NIL) (-747 1722413 1723360 1724324 "NAGE01" 1725516 T NAGE01 (NIL) -7 NIL NIL NIL) (-746 1720208 1720742 1721300 "NAGD03" 1721875 T NAGD03 (NIL) -7 NIL NIL NIL) (-745 1711958 1713886 1715840 "NAGD02" 1718274 T NAGD02 (NIL) -7 NIL NIL NIL) (-744 1705769 1707194 1708634 "NAGD01" 1710538 T NAGD01 (NIL) -7 NIL NIL NIL) (-743 1701978 1702800 1703637 "NAGC06" 1704952 T NAGC06 (NIL) -7 NIL NIL NIL) (-742 1700443 1700775 1701131 "NAGC05" 1701642 T NAGC05 (NIL) -7 NIL NIL NIL) (-741 1699819 1699938 1700082 "NAGC02" 1700319 T NAGC02 (NIL) -7 NIL NIL NIL) (-740 1698853 1699436 1699476 "NAALG" 1699555 NIL NAALG (NIL T) -9 NIL 1699616 NIL) (-739 1698688 1698717 1698807 "NAALG-" 1698812 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-738 1692638 1693746 1694933 "MULTSQFR" 1697584 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-737 1691957 1692032 1692216 "MULTFACT" 1692550 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-736 1685015 1688920 1688973 "MTSCAT" 1690043 NIL MTSCAT (NIL T T) -9 NIL 1690557 NIL) (-735 1684727 1684781 1684873 "MTHING" 1684955 NIL MTHING (NIL T) -7 NIL NIL NIL) (-734 1684519 1684552 1684612 "MSYSCMD" 1684687 T MSYSCMD (NIL) -7 NIL NIL NIL) (-733 1680601 1683274 1683594 "MSET" 1684232 NIL MSET (NIL T) -8 NIL NIL NIL) (-732 1677670 1680162 1680203 "MSETAGG" 1680208 NIL MSETAGG (NIL T) -9 NIL 1680242 NIL) (-731 1673511 1675049 1675794 "MRING" 1676970 NIL MRING (NIL T T) -8 NIL NIL NIL) (-730 1673077 1673144 1673275 "MRF2" 1673438 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-729 1672695 1672730 1672874 "MRATFAC" 1673036 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-728 1670307 1670602 1671033 "MPRFF" 1672400 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-727 1664604 1670161 1670258 "MPOLY" 1670263 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-726 1664094 1664129 1664337 "MPCPF" 1664563 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-725 1663608 1663651 1663835 "MPC3" 1664045 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-724 1662803 1662884 1663105 "MPC2" 1663523 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-723 1661104 1661441 1661831 "MONOTOOL" 1662463 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-722 1660329 1660646 1660674 "MONOID" 1660893 T MONOID (NIL) -9 NIL 1661040 NIL) (-721 1659875 1659994 1660175 "MONOID-" 1660180 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-720 1650699 1656642 1656701 "MONOGEN" 1657375 NIL MONOGEN (NIL T T) -9 NIL 1657831 NIL) (-719 1647917 1648652 1649652 "MONOGEN-" 1649771 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-718 1646750 1647196 1647224 "MONADWU" 1647616 T MONADWU (NIL) -9 NIL 1647854 NIL) (-717 1646122 1646281 1646529 "MONADWU-" 1646534 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-716 1645481 1645725 1645753 "MONAD" 1645960 T MONAD (NIL) -9 NIL 1646072 NIL) (-715 1645166 1645244 1645376 "MONAD-" 1645381 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-714 1643455 1644079 1644358 "MOEBIUS" 1644919 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-713 1642821 1643225 1643265 "MODULE" 1643270 NIL MODULE (NIL T) -9 NIL 1643296 NIL) (-712 1642389 1642485 1642675 "MODULE-" 1642680 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-711 1640069 1640753 1641080 "MODRING" 1642213 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-710 1637013 1638174 1638695 "MODOP" 1639598 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-709 1635601 1636080 1636357 "MODMONOM" 1636876 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-708 1625642 1633892 1634306 "MODMON" 1635238 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-707 1622798 1624486 1624762 "MODFIELD" 1625517 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-706 1621775 1622079 1622269 "MMLFORM" 1622628 T MMLFORM (NIL) -8 NIL NIL NIL) (-705 1621301 1621344 1621523 "MMAP" 1621726 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-704 1619484 1620251 1620292 "MLO" 1620715 NIL MLO (NIL T) -9 NIL 1620957 NIL) (-703 1616850 1617366 1617968 "MLIFT" 1618965 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-702 1616241 1616325 1616479 "MKUCFUNC" 1616761 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-701 1615840 1615910 1616033 "MKRECORD" 1616164 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-700 1614887 1615049 1615277 "MKFUNC" 1615651 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-699 1614275 1614379 1614535 "MKFLCFN" 1614770 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-698 1613552 1613654 1613839 "MKBCFUNC" 1614168 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-697 1610259 1613106 1613242 "MINT" 1613436 T MINT (NIL) -8 NIL NIL NIL) (-696 1609071 1609314 1609591 "MHROWRED" 1610014 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-695 1604451 1607606 1608011 "MFLOAT" 1608686 T MFLOAT (NIL) -8 NIL NIL NIL) (-694 1603808 1603884 1604055 "MFINFACT" 1604363 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-693 1600123 1600971 1601855 "MESH" 1602944 T MESH (NIL) -7 NIL NIL NIL) (-692 1598513 1598825 1599178 "MDDFACT" 1599810 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-691 1595308 1597672 1597713 "MDAGG" 1597968 NIL MDAGG (NIL T) -9 NIL 1598111 NIL) (-690 1585051 1594601 1594808 "MCMPLX" 1595121 T MCMPLX (NIL) -8 NIL NIL NIL) (-689 1584192 1584338 1584538 "MCDEN" 1584900 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-688 1582082 1582352 1582732 "MCALCFN" 1583922 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-687 1581007 1581247 1581480 "MAYBE" 1581888 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-686 1578619 1579142 1579704 "MATSTOR" 1580478 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-685 1574576 1577991 1578239 "MATRIX" 1578404 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-684 1570340 1571049 1571785 "MATLIN" 1573933 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-683 1560446 1563632 1563709 "MATCAT" 1568589 NIL MATCAT (NIL T T T) -9 NIL 1570006 NIL) (-682 1556802 1557823 1559179 "MATCAT-" 1559184 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-681 1555396 1555549 1555882 "MATCAT2" 1556637 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-680 1553508 1553832 1554216 "MAPPKG3" 1555071 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-679 1552489 1552662 1552884 "MAPPKG2" 1553332 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-678 1550988 1551272 1551599 "MAPPKG1" 1552195 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-677 1550067 1550394 1550571 "MAPPAST" 1550831 T MAPPAST (NIL) -8 NIL NIL NIL) (-676 1549678 1549736 1549859 "MAPHACK3" 1550003 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-675 1549270 1549331 1549445 "MAPHACK2" 1549610 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-674 1548707 1548811 1548953 "MAPHACK1" 1549161 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-673 1546786 1547407 1547711 "MAGMA" 1548435 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-672 1546265 1546510 1546601 "MACROAST" 1546715 T MACROAST (NIL) -8 NIL NIL NIL) (-671 1542683 1544504 1544965 "M3D" 1545837 NIL M3D (NIL T) -8 NIL NIL NIL) (-670 1536789 1541052 1541093 "LZSTAGG" 1541875 NIL LZSTAGG (NIL T) -9 NIL 1542170 NIL) (-669 1532746 1533920 1535377 "LZSTAGG-" 1535382 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-668 1529833 1530637 1531124 "LWORD" 1532291 NIL LWORD (NIL T) -8 NIL NIL NIL) (-667 1529409 1529637 1529712 "LSTAST" 1529778 T LSTAST (NIL) -8 NIL NIL NIL) (-666 1522575 1529180 1529314 "LSQM" 1529319 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-665 1521799 1521938 1522166 "LSPP" 1522430 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-664 1519611 1519912 1520368 "LSMP" 1521488 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-663 1516390 1517064 1517794 "LSMP1" 1518913 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-662 1510267 1515557 1515598 "LSAGG" 1515660 NIL LSAGG (NIL T) -9 NIL 1515738 NIL) (-661 1506962 1507886 1509099 "LSAGG-" 1509104 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-660 1504561 1506106 1506355 "LPOLY" 1506757 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-659 1504143 1504228 1504351 "LPEFRAC" 1504470 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-658 1502464 1503237 1503490 "LO" 1503975 NIL LO (NIL T T T) -8 NIL NIL NIL) (-657 1502116 1502228 1502256 "LOGIC" 1502367 T LOGIC (NIL) -9 NIL 1502448 NIL) (-656 1501978 1502001 1502072 "LOGIC-" 1502077 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-655 1501171 1501311 1501504 "LODOOPS" 1501834 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-654 1498594 1501087 1501153 "LODO" 1501158 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-653 1497132 1497367 1497720 "LODOF" 1498341 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-652 1493454 1495885 1495926 "LODOCAT" 1496364 NIL LODOCAT (NIL T) -9 NIL 1496575 NIL) (-651 1493187 1493245 1493372 "LODOCAT-" 1493377 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-650 1490507 1493028 1493146 "LODO2" 1493151 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-649 1487942 1490444 1490489 "LODO1" 1490494 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-648 1486823 1486988 1487293 "LODEEF" 1487765 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-647 1482062 1484953 1484994 "LNAGG" 1485941 NIL LNAGG (NIL T) -9 NIL 1486385 NIL) (-646 1481209 1481423 1481765 "LNAGG-" 1481770 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-645 1477345 1478134 1478773 "LMOPS" 1480624 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-644 1476714 1477102 1477143 "LMODULE" 1477204 NIL LMODULE (NIL T) -9 NIL 1477246 NIL) (-643 1473912 1476359 1476482 "LMDICT" 1476624 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-642 1473611 1473820 1473880 "LITERAL" 1473885 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-641 1466794 1472557 1472855 "LIST" 1473346 NIL LIST (NIL T) -8 NIL NIL NIL) (-640 1466319 1466393 1466532 "LIST3" 1466714 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-639 1465326 1465504 1465732 "LIST2" 1466137 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-638 1463460 1463772 1464171 "LIST2MAP" 1464973 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-637 1462156 1462826 1462867 "LINEXP" 1463122 NIL LINEXP (NIL T) -9 NIL 1463271 NIL) (-636 1460803 1461063 1461360 "LINDEP" 1461908 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-635 1457570 1458289 1459066 "LIMITRF" 1460058 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-634 1455873 1456169 1456578 "LIMITPS" 1457265 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-633 1450301 1455384 1455612 "LIE" 1455694 NIL LIE (NIL T T) -8 NIL NIL NIL) (-632 1449324 1449793 1449833 "LIECAT" 1449973 NIL LIECAT (NIL T) -9 NIL 1450124 NIL) (-631 1449165 1449192 1449280 "LIECAT-" 1449285 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-630 1441661 1448614 1448779 "LIB" 1449020 T LIB (NIL) -8 NIL NIL NIL) (-629 1437296 1438179 1439114 "LGROBP" 1440778 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-628 1435305 1435579 1435928 "LF" 1437017 NIL LF (NIL T T) -7 NIL NIL NIL) (-627 1434145 1434837 1434865 "LFCAT" 1435072 T LFCAT (NIL) -9 NIL 1435211 NIL) (-626 1431047 1431677 1432365 "LEXTRIPK" 1433509 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-625 1427791 1428617 1429120 "LEXP" 1430627 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-624 1427267 1427512 1427604 "LETAST" 1427719 T LETAST (NIL) -8 NIL NIL NIL) (-623 1425665 1425978 1426379 "LEADCDET" 1426949 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-622 1424855 1424929 1425158 "LAZM3PK" 1425586 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-621 1419772 1422932 1423470 "LAUPOL" 1424367 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-620 1419351 1419395 1419556 "LAPLACE" 1419722 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-619 1417290 1418452 1418703 "LA" 1419184 NIL LA (NIL T T T) -8 NIL NIL NIL) (-618 1416337 1416921 1416962 "LALG" 1417024 NIL LALG (NIL T) -9 NIL 1417083 NIL) (-617 1416051 1416110 1416246 "LALG-" 1416251 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-616 1415886 1415910 1415951 "KVTFROM" 1416013 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-615 1414809 1415253 1415438 "KTVLOGIC" 1415721 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-614 1414644 1414668 1414709 "KRCFROM" 1414771 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-613 1413548 1413735 1414034 "KOVACIC" 1414444 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-612 1413383 1413407 1413448 "KONVERT" 1413510 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-611 1413218 1413242 1413283 "KOERCE" 1413345 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-610 1410900 1411688 1412089 "KERNEL" 1412850 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-609 1410396 1410477 1410609 "KERNEL2" 1410814 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-608 1404166 1408935 1408989 "KDAGG" 1409366 NIL KDAGG (NIL T T) -9 NIL 1409572 NIL) (-607 1403695 1403819 1404024 "KDAGG-" 1404029 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-606 1396843 1403356 1403511 "KAFILE" 1403573 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-605 1391271 1396354 1396582 "JORDAN" 1396664 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-604 1390650 1390920 1391041 "JOINAST" 1391170 T JOINAST (NIL) -8 NIL NIL NIL) (-603 1390496 1390555 1390610 "JAVACODE" 1390615 T JAVACODE (NIL) -8 NIL NIL NIL) (-602 1386748 1388701 1388755 "IXAGG" 1389684 NIL IXAGG (NIL T T) -9 NIL 1390143 NIL) (-601 1385667 1385973 1386392 "IXAGG-" 1386397 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-600 1381199 1385589 1385648 "IVECTOR" 1385653 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-599 1379965 1380202 1380468 "ITUPLE" 1380966 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-598 1378479 1378656 1378949 "ITRIGMNP" 1379787 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-597 1377224 1377428 1377711 "ITFUN3" 1378255 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-596 1376856 1376913 1377022 "ITFUN2" 1377161 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-595 1374658 1375718 1376017 "ITAYLOR" 1376590 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-594 1363603 1368795 1369958 "ISUPS" 1373528 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-593 1362707 1362847 1363083 "ISUMP" 1363450 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-592 1357921 1362508 1362587 "ISTRING" 1362660 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-591 1357397 1357642 1357734 "ISAST" 1357849 T ISAST (NIL) -8 NIL NIL NIL) (-590 1356606 1356688 1356904 "IRURPK" 1357311 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-589 1355542 1355743 1355983 "IRSN" 1356386 T IRSN (NIL) -7 NIL NIL NIL) (-588 1353613 1353968 1354397 "IRRF2F" 1355180 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-587 1353360 1353398 1353474 "IRREDFFX" 1353569 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-586 1351975 1352234 1352533 "IROOT" 1353093 NIL IROOT (NIL T) -7 NIL NIL NIL) (-585 1348579 1349659 1350351 "IR" 1351315 NIL IR (NIL T) -8 NIL NIL NIL) (-584 1346192 1346687 1347253 "IR2" 1348057 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-583 1345292 1345405 1345619 "IR2F" 1346075 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-582 1345083 1345117 1345177 "IPRNTPK" 1345252 T IPRNTPK (NIL) -7 NIL NIL NIL) (-581 1341663 1344972 1345041 "IPF" 1345046 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-580 1339990 1341588 1341645 "IPADIC" 1341650 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-579 1339302 1339550 1339680 "IP4ADDR" 1339880 T IP4ADDR (NIL) -8 NIL NIL NIL) (-578 1338775 1339006 1339116 "IOMODE" 1339212 T IOMODE (NIL) -8 NIL NIL NIL) (-577 1337848 1338372 1338499 "IOBFILE" 1338668 T IOBFILE (NIL) -8 NIL NIL NIL) (-576 1337336 1337752 1337780 "IOBCON" 1337785 T IOBCON (NIL) -9 NIL 1337806 NIL) (-575 1336847 1336905 1337088 "INVLAPLA" 1337272 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-574 1326495 1328849 1331235 "INTTR" 1334511 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-573 1322830 1323572 1324437 "INTTOOLS" 1325680 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-572 1322416 1322507 1322624 "INTSLPE" 1322733 T INTSLPE (NIL) -7 NIL NIL NIL) (-571 1320370 1322339 1322398 "INTRVL" 1322403 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-570 1317972 1318484 1319059 "INTRF" 1319855 NIL INTRF (NIL T) -7 NIL NIL NIL) (-569 1317383 1317480 1317622 "INTRET" 1317870 NIL INTRET (NIL T) -7 NIL NIL NIL) (-568 1315380 1315769 1316239 "INTRAT" 1316991 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-567 1312643 1313226 1313845 "INTPM" 1314865 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-566 1309387 1309987 1310725 "INTPAF" 1312029 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-565 1304566 1305528 1306579 "INTPACK" 1308356 T INTPACK (NIL) -7 NIL NIL NIL) (-564 1301443 1304295 1304422 "INT" 1304459 T INT (NIL) -8 NIL NIL NIL) (-563 1300695 1300847 1301055 "INTHERTR" 1301285 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-562 1300134 1300214 1300402 "INTHERAL" 1300609 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-561 1297980 1298423 1298880 "INTHEORY" 1299697 T INTHEORY (NIL) -7 NIL NIL NIL) (-560 1289386 1291007 1292779 "INTG0" 1296332 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-559 1269959 1274749 1279559 "INTFTBL" 1284596 T INTFTBL (NIL) -8 NIL NIL NIL) (-558 1269208 1269346 1269519 "INTFACT" 1269818 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-557 1266635 1267081 1267638 "INTEF" 1268762 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-556 1265068 1265807 1265835 "INTDOM" 1266136 T INTDOM (NIL) -9 NIL 1266343 NIL) (-555 1264437 1264611 1264853 "INTDOM-" 1264858 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-554 1260897 1262821 1262875 "INTCAT" 1263674 NIL INTCAT (NIL T) -9 NIL 1263994 NIL) (-553 1260369 1260472 1260600 "INTBIT" 1260789 T INTBIT (NIL) -7 NIL NIL NIL) (-552 1259068 1259222 1259529 "INTALG" 1260214 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-551 1258551 1258641 1258798 "INTAF" 1258972 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-550 1251894 1258361 1258501 "INTABL" 1258506 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-549 1251235 1251701 1251766 "INT8" 1251800 T INT8 (NIL) -8 NIL NIL 1251845) (-548 1250575 1251041 1251106 "INT64" 1251140 T INT64 (NIL) -8 NIL NIL 1251185) (-547 1249915 1250381 1250446 "INT32" 1250480 T INT32 (NIL) -8 NIL NIL 1250525) (-546 1249255 1249721 1249786 "INT16" 1249820 T INT16 (NIL) -8 NIL NIL 1249865) (-545 1244235 1246944 1246972 "INS" 1247906 T INS (NIL) -9 NIL 1248571 NIL) (-544 1241475 1242246 1243220 "INS-" 1243293 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1240250 1240477 1240775 "INPSIGN" 1241228 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1239368 1239485 1239682 "INPRODPF" 1240130 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1238262 1238379 1238616 "INPRODFF" 1239248 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1237262 1237414 1237674 "INNMFACT" 1238098 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1236459 1236556 1236744 "INMODGCD" 1237161 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1234967 1235212 1235536 "INFSP" 1236204 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1234151 1234268 1234451 "INFPROD0" 1234847 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1231006 1232216 1232731 "INFORM" 1233644 T INFORM (NIL) -8 NIL NIL NIL) (-535 1230616 1230676 1230774 "INFORM1" 1230941 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1230139 1230228 1230342 "INFINITY" 1230522 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1229315 1229859 1229960 "INETCLTS" 1230058 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1227931 1228181 1228502 "INEP" 1229063 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1227180 1227828 1227893 "INDE" 1227898 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1226744 1226812 1226929 "INCRMAPS" 1227107 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1225562 1226013 1226219 "INBFILE" 1226558 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1220862 1221798 1222742 "INBFF" 1224650 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1219770 1220039 1220067 "INBCON" 1220580 T INBCON (NIL) -9 NIL 1220846 NIL) (-526 1219022 1219245 1219521 "INBCON-" 1219526 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1218501 1218746 1218837 "INAST" 1218951 T INAST (NIL) -8 NIL NIL NIL) (-524 1217928 1218180 1218286 "IMPTAST" 1218415 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1214374 1217772 1217876 "IMATRIX" 1217881 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1213086 1213209 1213524 "IMATQF" 1214230 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1211306 1211533 1211870 "IMATLIN" 1212842 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1205884 1211230 1211288 "ILIST" 1211293 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1203789 1205744 1205857 "IIARRAY2" 1205862 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1199187 1203700 1203764 "IFF" 1203769 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1198534 1198804 1198920 "IFAST" 1199091 T IFAST (NIL) -8 NIL NIL NIL) (-516 1193529 1197826 1198014 "IFARRAY" 1198391 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1192709 1193433 1193506 "IFAMON" 1193511 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1192293 1192358 1192412 "IEVALAB" 1192619 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1191968 1192036 1192196 "IEVALAB-" 1192201 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1191599 1191882 1191945 "IDPO" 1191950 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1190849 1191488 1191563 "IDPOAMS" 1191568 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1190156 1190738 1190813 "IDPOAM" 1190818 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1189215 1189491 1189544 "IDPC" 1189957 NIL IDPC (NIL T T) -9 NIL 1190106 NIL) (-508 1188684 1189107 1189180 "IDPAM" 1189185 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1188060 1188576 1188649 "IDPAG" 1188654 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1187705 1187896 1187971 "IDENT" 1188005 T IDENT (NIL) -8 NIL NIL NIL) (-505 1183960 1184808 1185703 "IDECOMP" 1186862 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1176796 1177883 1178930 "IDEAL" 1182996 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1175960 1176072 1176271 "ICDEN" 1176680 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1175031 1175440 1175587 "ICARD" 1175833 T ICARD (NIL) -8 NIL NIL NIL) (-501 1173091 1173404 1173809 "IBPTOOLS" 1174708 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1168698 1172711 1172824 "IBITS" 1173010 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1165421 1165997 1166692 "IBATOOL" 1168115 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1163200 1163662 1164195 "IBACHIN" 1164956 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1161029 1163046 1163149 "IARRAY2" 1163154 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1157135 1160955 1161012 "IARRAY1" 1161017 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1151244 1155547 1156028 "IAN" 1156674 T IAN (NIL) -8 NIL NIL NIL) (-494 1150755 1150812 1150985 "IALGFACT" 1151181 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1150283 1150396 1150424 "HYPCAT" 1150631 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1149821 1149938 1150124 "HYPCAT-" 1150129 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1149416 1149616 1149699 "HOSTNAME" 1149758 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1149261 1149298 1149339 "HOMOTOP" 1149344 NIL HOMOTOP (NIL T) -9 NIL 1149377 NIL) (-489 1145893 1147271 1147312 "HOAGG" 1148293 NIL HOAGG (NIL T) -9 NIL 1148972 NIL) (-488 1144487 1144886 1145412 "HOAGG-" 1145417 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1138491 1144082 1144231 "HEXADEC" 1144358 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1137239 1137461 1137724 "HEUGCD" 1138268 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1136315 1137076 1137206 "HELLFDIV" 1137211 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1134494 1136092 1136180 "HEAP" 1136259 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1133757 1134046 1134180 "HEADAST" 1134380 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1127623 1133672 1133734 "HDP" 1133739 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1121611 1127258 1127410 "HDMP" 1127524 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1120935 1121075 1121239 "HB" 1121467 T HB (NIL) -7 NIL NIL NIL) (-479 1114321 1120781 1120885 "HASHTBL" 1120890 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1113797 1114042 1114134 "HASAST" 1114249 T HASAST (NIL) -8 NIL NIL NIL) (-477 1111575 1113419 1113601 "HACKPI" 1113635 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1107243 1111428 1111541 "GTSET" 1111546 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1100658 1107121 1107219 "GSTBL" 1107224 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1092936 1099689 1099954 "GSERIES" 1100449 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1092077 1092494 1092522 "GROUP" 1092725 T GROUP (NIL) -9 NIL 1092859 NIL) (-472 1091443 1091602 1091853 "GROUP-" 1091858 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1089810 1090131 1090518 "GROEBSOL" 1091120 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1088724 1089012 1089063 "GRMOD" 1089592 NIL GRMOD (NIL T T) -9 NIL 1089760 NIL) (-469 1088492 1088528 1088656 "GRMOD-" 1088661 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1083782 1084846 1085846 "GRIMAGE" 1087512 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1082248 1082509 1082833 "GRDEF" 1083478 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1081692 1081808 1081949 "GRAY" 1082127 T GRAY (NIL) -7 NIL NIL NIL) (-465 1080879 1081285 1081336 "GRALG" 1081489 NIL GRALG (NIL T T) -9 NIL 1081582 NIL) (-464 1080540 1080613 1080776 "GRALG-" 1080781 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1077317 1080125 1080303 "GPOLSET" 1080447 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1076671 1076728 1076986 "GOSPER" 1077254 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1072403 1073109 1073635 "GMODPOL" 1076370 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1071408 1071592 1071830 "GHENSEL" 1072215 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1065564 1066407 1067427 "GENUPS" 1070492 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1065261 1065312 1065401 "GENUFACT" 1065507 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1064673 1064750 1064915 "GENPGCD" 1065179 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1064147 1064182 1064395 "GENMFACT" 1064632 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1062713 1062970 1063277 "GENEEZ" 1063890 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1056858 1062324 1062486 "GDMP" 1062636 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1046200 1050629 1051735 "GCNAALG" 1055841 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1044593 1045455 1045483 "GCDDOM" 1045738 T GCDDOM (NIL) -9 NIL 1045895 NIL) (-451 1044063 1044190 1044405 "GCDDOM-" 1044410 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1042735 1042920 1043224 "GB" 1043842 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1031351 1033681 1036073 "GBINTERN" 1040426 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1029188 1029480 1029901 "GBF" 1031026 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1027969 1028134 1028401 "GBEUCLID" 1029004 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1027318 1027443 1027592 "GAUSSFAC" 1027840 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1025685 1025987 1026301 "GALUTIL" 1027037 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1023993 1024267 1024591 "GALPOLYU" 1025412 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1021358 1021648 1022055 "GALFACTU" 1023690 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1013163 1014663 1016271 "GALFACT" 1019790 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1010551 1011209 1011237 "FVFUN" 1012393 T FVFUN (NIL) -9 NIL 1013113 NIL) (-440 1009817 1009999 1010027 "FVC" 1010318 T FVC (NIL) -9 NIL 1010501 NIL) (-439 1009460 1009642 1009710 "FUNDESC" 1009769 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1009075 1009257 1009338 "FUNCTION" 1009412 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1006819 1007397 1007863 "FT" 1008629 T FT (NIL) -8 NIL NIL NIL) (-436 1005610 1006120 1006323 "FTEM" 1006636 T FTEM (NIL) -8 NIL NIL NIL) (-435 1003901 1004190 1004587 "FSUPFACT" 1005301 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1002298 1002587 1002919 "FST" 1003589 T FST (NIL) -8 NIL NIL NIL) (-433 1001497 1001603 1001791 "FSRED" 1002180 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 1000196 1000452 1000799 "FSPRMELT" 1001212 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 997502 997940 998426 "FSPECF" 999759 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 979657 987981 988022 "FS" 991906 NIL FS (NIL T) -9 NIL 994195 NIL) (-429 968300 971293 975350 "FS-" 975650 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 967828 967882 968052 "FSINT" 968241 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 966120 966821 967124 "FSERIES" 967607 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 965162 965278 965502 "FSCINT" 966000 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 961370 964106 964147 "FSAGG" 964517 NIL FSAGG (NIL T) -9 NIL 964776 NIL) (-424 959132 959733 960529 "FSAGG-" 960624 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 958174 958317 958544 "FSAGG2" 958985 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 955856 956136 956683 "FS2UPS" 957892 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 955490 955533 955662 "FS2" 955807 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 954368 954539 954841 "FS2EXPXP" 955315 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 953794 953909 954061 "FRUTIL" 954248 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 945207 949289 950647 "FR" 952468 NIL FR (NIL T) -8 NIL NIL NIL) (-417 940255 942925 942965 "FRNAALG" 944361 NIL FRNAALG (NIL T) -9 NIL 944968 NIL) (-416 935928 937004 938279 "FRNAALG-" 939029 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 935566 935609 935736 "FRNAAF2" 935879 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 933946 934420 934715 "FRMOD" 935378 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 931697 932329 932646 "FRIDEAL" 933737 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 930892 930979 931268 "FRIDEAL2" 931604 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 930025 930439 930480 "FRETRCT" 930485 NIL FRETRCT (NIL T) -9 NIL 930661 NIL) (-410 929137 929368 929719 "FRETRCT-" 929724 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 926315 927525 927584 "FRAMALG" 928466 NIL FRAMALG (NIL T T) -9 NIL 928758 NIL) (-408 924449 924904 925534 "FRAMALG-" 925757 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 918370 923924 924200 "FRAC" 924205 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 918006 918063 918170 "FRAC2" 918307 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 917642 917699 917806 "FR2" 917943 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 912280 915167 915195 "FPS" 916314 T FPS (NIL) -9 NIL 916871 NIL) (-403 911729 911838 912002 "FPS-" 912148 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 909149 910818 910846 "FPC" 911071 T FPC (NIL) -9 NIL 911213 NIL) (-401 908942 908982 909079 "FPC-" 909084 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 907732 908430 908471 "FPATMAB" 908476 NIL FPATMAB (NIL T) -9 NIL 908628 NIL) (-399 905405 905908 906334 "FPARFRAC" 907369 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 900798 901297 901979 "FORTRAN" 904837 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 898514 899014 899553 "FORT" 900279 T FORT (NIL) -7 NIL NIL NIL) (-396 896190 896752 896780 "FORTFN" 897840 T FORTFN (NIL) -9 NIL 898464 NIL) (-395 895954 896004 896032 "FORTCAT" 896091 T FORTCAT (NIL) -9 NIL 896153 NIL) (-394 894060 894570 894960 "FORMULA" 895584 T FORMULA (NIL) -8 NIL NIL NIL) (-393 893848 893878 893947 "FORMULA1" 894024 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 893371 893423 893596 "FORDER" 893790 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 892467 892631 892824 "FOP" 893198 T FOP (NIL) -7 NIL NIL NIL) (-390 891048 891747 891921 "FNLA" 892349 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 889777 890192 890220 "FNCAT" 890680 T FNCAT (NIL) -9 NIL 890940 NIL) (-388 889316 889736 889764 "FNAME" 889769 T FNAME (NIL) -8 NIL NIL NIL) (-387 887945 888908 888936 "FMTC" 888941 T FMTC (NIL) -9 NIL 888977 NIL) (-386 884278 885468 886097 "FMONOID" 887349 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 883470 884020 884169 "FM" 884174 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 880894 881540 881568 "FMFUN" 882712 T FMFUN (NIL) -9 NIL 883420 NIL) (-383 880163 880344 880372 "FMC" 880662 T FMC (NIL) -9 NIL 880844 NIL) (-382 877331 878191 878245 "FMCAT" 879440 NIL FMCAT (NIL T T) -9 NIL 879935 NIL) (-381 876197 877097 877197 "FM1" 877276 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 873971 874387 874881 "FLOATRP" 875748 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 867545 871700 872321 "FLOAT" 873370 T FLOAT (NIL) -8 NIL NIL NIL) (-378 864983 865483 866061 "FLOATCP" 867012 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 863758 864596 864637 "FLINEXP" 864642 NIL FLINEXP (NIL T) -9 NIL 864735 NIL) (-376 862912 863147 863475 "FLINEXP-" 863480 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 861988 862132 862356 "FLASORT" 862764 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 859179 860047 860099 "FLALG" 861326 NIL FLALG (NIL T T) -9 NIL 861793 NIL) (-373 852915 856665 856706 "FLAGG" 857968 NIL FLAGG (NIL T) -9 NIL 858620 NIL) (-372 851641 851980 852470 "FLAGG-" 852475 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 850683 850826 851053 "FLAGG2" 851494 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 847624 848632 848691 "FINRALG" 849819 NIL FINRALG (NIL T T) -9 NIL 850327 NIL) (-369 846784 847013 847352 "FINRALG-" 847357 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 846164 846403 846431 "FINITE" 846627 T FINITE (NIL) -9 NIL 846734 NIL) (-367 838596 840783 840823 "FINAALG" 844490 NIL FINAALG (NIL T) -9 NIL 845943 NIL) (-366 833928 834978 836122 "FINAALG-" 837501 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 833296 833683 833786 "FILE" 833858 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 831954 832292 832346 "FILECAT" 833030 NIL FILECAT (NIL T T) -9 NIL 833246 NIL) (-363 829788 831316 831344 "FIELD" 831384 T FIELD (NIL) -9 NIL 831464 NIL) (-362 828408 828793 829304 "FIELD-" 829309 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 826258 827043 827390 "FGROUP" 828094 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 825348 825512 825732 "FGLMICPK" 826090 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 821180 825273 825330 "FFX" 825335 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 820781 820842 820977 "FFSLPE" 821113 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 816770 817553 818349 "FFPOLY" 820017 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 816274 816310 816519 "FFPOLY2" 816728 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 812117 816193 816256 "FFP" 816261 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 807515 812028 812092 "FF" 812097 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 802641 806858 807048 "FFNBX" 807369 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 797570 801776 802034 "FFNBP" 802495 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 792203 796854 797065 "FFNB" 797403 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 791035 791233 791548 "FFINTBAS" 792000 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 787228 789442 789470 "FFIELDC" 790090 T FFIELDC (NIL) -9 NIL 790466 NIL) (-348 785890 786261 786758 "FFIELDC-" 786763 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 785459 785505 785629 "FFHOM" 785832 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 783154 783641 784158 "FFF" 784974 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 778772 782896 782997 "FFCGX" 783097 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 774393 778504 778611 "FFCGP" 778715 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 769576 774120 774228 "FFCG" 774329 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 751374 760447 760533 "FFCAT" 765698 NIL FFCAT (NIL T T T) -9 NIL 767149 NIL) (-341 746572 747619 748933 "FFCAT-" 750163 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 745983 746026 746261 "FFCAT2" 746523 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 735304 738955 740175 "FEXPR" 744835 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 734304 734739 734780 "FEVALAB" 734864 NIL FEVALAB (NIL T) -9 NIL 735125 NIL) (-337 733463 733673 734011 "FEVALAB-" 734016 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 732029 732846 733049 "FDIV" 733362 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 729069 729810 729925 "FDIVCAT" 731493 NIL FDIVCAT (NIL T T T T) -9 NIL 731930 NIL) (-334 728831 728858 729028 "FDIVCAT-" 729033 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 728051 728138 728415 "FDIV2" 728738 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 726737 726996 727285 "FCPAK1" 727782 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 725836 726237 726378 "FCOMP" 726628 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 709538 712986 716524 "FC" 722318 T FC (NIL) -8 NIL NIL NIL) (-329 702082 706102 706142 "FAXF" 707944 NIL FAXF (NIL T) -9 NIL 708636 NIL) (-328 699358 700016 700841 "FAXF-" 701306 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 694410 698734 698910 "FARRAY" 699215 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 689629 691695 691748 "FAMR" 692771 NIL FAMR (NIL T T) -9 NIL 693231 NIL) (-325 688519 688821 689256 "FAMR-" 689261 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 687688 688441 688494 "FAMONOID" 688499 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 685474 686184 686237 "FAMONC" 687178 NIL FAMONC (NIL T T) -9 NIL 687564 NIL) (-322 684139 685228 685365 "FAGROUP" 685370 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 681934 682253 682656 "FACUTIL" 683820 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 681033 681218 681440 "FACTFUNC" 681744 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 673455 680336 680535 "EXPUPXS" 680889 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 670938 671478 672064 "EXPRTUBE" 672889 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 667209 667801 668531 "EXPRODE" 670277 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 652694 665858 666287 "EXPR" 666813 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 647248 647835 648641 "EXPR2UPS" 651992 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 646880 646937 647046 "EXPR2" 647185 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 638271 646033 646323 "EXPEXPAN" 646717 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 638071 638228 638257 "EXIT" 638262 T EXIT (NIL) -8 NIL NIL NIL) (-311 637551 637795 637886 "EXITAST" 638000 T EXITAST (NIL) -8 NIL NIL NIL) (-310 637178 637240 637353 "EVALCYC" 637483 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 636719 636837 636878 "EVALAB" 637048 NIL EVALAB (NIL T) -9 NIL 637152 NIL) (-308 636200 636322 636543 "EVALAB-" 636548 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 633634 634936 634964 "EUCDOM" 635519 T EUCDOM (NIL) -9 NIL 635869 NIL) (-306 632039 632481 633071 "EUCDOM-" 633076 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 619577 622337 625087 "ESTOOLS" 629309 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 619209 619266 619375 "ESTOOLS2" 619514 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 618960 619002 619082 "ESTOOLS1" 619161 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 612997 614605 614633 "ES" 617401 T ES (NIL) -9 NIL 618811 NIL) (-301 607944 609231 611048 "ES-" 611212 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 604318 605079 605859 "ESCONT" 607184 T ESCONT (NIL) -7 NIL NIL NIL) (-299 604063 604095 604177 "ESCONT1" 604280 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 603738 603788 603888 "ES2" 604007 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 603368 603426 603535 "ES1" 603674 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 602584 602713 602889 "ERROR" 603212 T ERROR (NIL) -7 NIL NIL NIL) (-295 595976 602443 602534 "EQTBL" 602539 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 588479 591290 592739 "EQ" 594560 NIL -2035 (NIL T) -8 NIL NIL NIL) (-293 588111 588168 588277 "EQ2" 588416 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 583400 584449 585542 "EP" 587050 NIL EP (NIL T) -7 NIL NIL NIL) (-291 582000 582291 582597 "ENV" 583114 T ENV (NIL) -8 NIL NIL NIL) (-290 581145 581699 581727 "ENTIRER" 581732 T ENTIRER (NIL) -9 NIL 581778 NIL) (-289 577612 579100 579470 "EMR" 580944 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 576756 576941 576995 "ELTAGG" 577375 NIL ELTAGG (NIL T T) -9 NIL 577586 NIL) (-287 576475 576537 576678 "ELTAGG-" 576683 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 576264 576293 576347 "ELTAB" 576431 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 575390 575536 575735 "ELFUTS" 576115 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 575132 575188 575216 "ELEMFUN" 575321 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 575002 575023 575091 "ELEMFUN-" 575096 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 569846 573102 573143 "ELAGG" 574083 NIL ELAGG (NIL T) -9 NIL 574546 NIL) (-281 568131 568565 569228 "ELAGG-" 569233 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 566796 567074 567367 "ELABEXPR" 567858 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 559660 561463 562290 "EFUPXS" 566072 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 553110 554911 555721 "EFULS" 558936 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 550595 550953 551425 "EFSTRUC" 552742 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 540446 542012 543559 "EF" 549110 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 539520 539931 540080 "EAB" 540317 T EAB (NIL) -8 NIL NIL NIL) (-274 538702 539479 539507 "E04UCFA" 539512 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 537884 538661 538689 "E04NAFA" 538694 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 537066 537843 537871 "E04MBFA" 537876 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 536248 537025 537053 "E04JAFA" 537058 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 535432 536207 536235 "E04GCFA" 536240 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 534616 535391 535419 "E04FDFA" 535424 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 533798 534575 534603 "E04DGFA" 534608 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 527971 529323 530687 "E04AGNT" 532454 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 526651 527157 527197 "DVARCAT" 527672 NIL DVARCAT (NIL T) -9 NIL 527871 NIL) (-265 525855 526067 526381 "DVARCAT-" 526386 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 518992 525654 525783 "DSMP" 525788 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 513774 514937 516005 "DROPT" 517944 T DROPT (NIL) -8 NIL NIL NIL) (-262 513439 513498 513596 "DROPT1" 513709 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 508554 509680 510817 "DROPT0" 512322 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 506899 507224 507610 "DRAWPT" 508188 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 501486 502409 503488 "DRAW" 505873 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 501119 501172 501290 "DRAWHACK" 501427 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 499850 500119 500410 "DRAWCX" 500848 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 499365 499434 499585 "DRAWCURV" 499776 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 489833 491795 493910 "DRAWCFUN" 497270 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 486599 488528 488569 "DQAGG" 489198 NIL DQAGG (NIL T) -9 NIL 489471 NIL) (-253 475143 481604 481687 "DPOLCAT" 483539 NIL DPOLCAT (NIL T T T T) -9 NIL 484084 NIL) (-252 469979 471328 473286 "DPOLCAT-" 473291 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 463101 469840 469938 "DPMO" 469943 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 456126 462881 463048 "DPMM" 463053 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 455731 456045 456093 "DOMCTOR" 456098 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 454999 455253 455390 "DOMAIN" 455614 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 448987 454634 454786 "DMP" 454900 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 448587 448643 448787 "DLP" 448925 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 442409 447914 448104 "DLIST" 448429 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 439206 441262 441303 "DLAGG" 441853 NIL DLAGG (NIL T) -9 NIL 442083 NIL) (-243 437985 438649 438677 "DIVRING" 438769 T DIVRING (NIL) -9 NIL 438852 NIL) (-242 437222 437412 437712 "DIVRING-" 437717 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 435324 435681 436087 "DISPLAY" 436836 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 429212 435238 435301 "DIRPROD" 435306 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 428060 428263 428528 "DIRPROD2" 429005 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 417269 423275 423328 "DIRPCAT" 423738 NIL DIRPCAT (NIL NIL T) -9 NIL 424578 NIL) (-237 414595 415237 416118 "DIRPCAT-" 416455 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 413882 414042 414228 "DIOSP" 414429 T DIOSP (NIL) -7 NIL NIL NIL) (-235 410537 412794 412835 "DIOPS" 413269 NIL DIOPS (NIL T) -9 NIL 413498 NIL) (-234 410086 410200 410391 "DIOPS-" 410396 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 408944 409572 409600 "DIFRING" 409787 T DIFRING (NIL) -9 NIL 409897 NIL) (-232 408590 408667 408819 "DIFRING-" 408824 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 406361 407633 407674 "DIFEXT" 408037 NIL DIFEXT (NIL T) -9 NIL 408331 NIL) (-230 404646 405074 405740 "DIFEXT-" 405745 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 401921 404178 404219 "DIAGG" 404224 NIL DIAGG (NIL T) -9 NIL 404244 NIL) (-228 401305 401462 401714 "DIAGG-" 401719 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 396722 400264 400541 "DHMATRIX" 401074 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 392334 393243 394253 "DFSFUN" 395732 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 387412 391265 391577 "DFLOAT" 392042 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 385675 385956 386345 "DFINTTLS" 387120 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 382704 383696 384096 "DERHAM" 385341 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 380505 382479 382568 "DEQUEUE" 382648 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 379759 379892 380075 "DEGRED" 380367 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 376189 376934 377780 "DEFINTRF" 378987 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 373744 374213 374805 "DEFINTEF" 375708 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373094 373364 373479 "DEFAST" 373649 T DEFAST (NIL) -8 NIL NIL NIL) (-217 367098 372689 372838 "DECIMAL" 372965 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 364609 365068 365574 "DDFACT" 366642 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 364205 364248 364399 "DBLRESP" 364560 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362077 362438 362798 "DBASE" 363972 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 361319 361557 361703 "DATAARY" 361976 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 360425 361278 361306 "D03FAFA" 361311 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 359532 360384 360412 "D03EEFA" 360417 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 357482 357948 358437 "D03AGNT" 359063 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 356771 357441 357469 "D02EJFA" 357474 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356060 356730 356758 "D02CJFA" 356763 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 355349 356019 356047 "D02BHFA" 356052 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 354638 355308 355336 "D02BBFA" 355341 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 347835 349424 351030 "D02AGNT" 353052 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 345603 346126 346672 "D01WGTS" 347309 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 344670 345562 345590 "D01TRNS" 345595 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 343738 344629 344657 "D01GBFA" 344662 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 342806 343697 343725 "D01FCFA" 343730 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 341874 342765 342793 "D01ASFA" 342798 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 340942 341833 341861 "D01AQFA" 341866 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340010 340901 340929 "D01APFA" 340934 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339078 339969 339997 "D01ANFA" 340002 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 338146 339037 339065 "D01AMFA" 339070 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 337214 338105 338133 "D01ALFA" 338138 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 336282 337173 337201 "D01AKFA" 337206 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 335350 336241 336269 "D01AJFA" 336274 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 328645 330198 331759 "D01AGNT" 333809 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 327982 328110 328262 "CYCLOTOM" 328513 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 324717 325430 326157 "CYCLES" 327275 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324029 324163 324334 "CVMP" 324578 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 321870 322128 322497 "CTRIGMNP" 323757 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 321338 321664 321737 "CTOR" 321817 T CTOR (NIL) -8 NIL NIL NIL) (-186 320847 321069 321170 "CTORKIND" 321257 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 320169 320454 320482 "CTORCAT" 320664 T CTORCAT (NIL) -9 NIL 320777 NIL) (-184 319767 319878 320037 "CTORCAT-" 320042 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 319256 319470 319568 "CTORCALL" 319689 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 318630 318729 318882 "CSTTOOLS" 319153 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 314429 315086 315844 "CRFP" 317942 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 313904 314150 314242 "CRCEAST" 314357 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 312951 313136 313364 "CRAPACK" 313708 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 312335 312436 312640 "CPMATCH" 312827 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312060 312088 312194 "CPIMA" 312301 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 308424 309096 309814 "COORDSYS" 311395 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 307836 307957 308099 "CONTOUR" 308302 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 303727 305839 306331 "CONTFRAC" 307376 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 303607 303628 303656 "CONDUIT" 303693 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 302746 303300 303328 "COMRING" 303333 T COMRING (NIL) -9 NIL 303385 NIL) (-171 301800 302104 302288 "COMPPROP" 302582 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 301461 301496 301624 "COMPLPAT" 301759 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 291755 301270 301379 "COMPLEX" 301384 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 291391 291448 291555 "COMPLEX2" 291692 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 291109 291144 291242 "COMPFACT" 291350 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275585 285568 285608 "COMPCAT" 286612 NIL COMPCAT (NIL T) -9 NIL 287958 NIL) (-165 265095 268024 271651 "COMPCAT-" 272007 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 264824 264852 264955 "COMMUPC" 265061 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264618 264652 264711 "COMMONOP" 264785 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264174 264369 264456 "COMM" 264551 T COMM (NIL) -8 NIL NIL NIL) (-161 263750 263978 264053 "COMMAAST" 264119 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 262999 263193 263221 "COMBOPC" 263559 T COMBOPC (NIL) -9 NIL 263734 NIL) (-159 261895 262105 262347 "COMBINAT" 262789 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258352 258926 259553 "COMBF" 261317 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257110 257468 257703 "COLOR" 258137 T COLOR (NIL) -8 NIL NIL NIL) (-156 256586 256831 256923 "COLONAST" 257038 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256226 256273 256398 "CMPLXRT" 256533 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 255674 255926 256025 "CLLCTAST" 256147 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251174 252204 253284 "CLIP" 254614 T CLIP (NIL) -7 NIL NIL NIL) (-152 249520 250280 250519 "CLIF" 251001 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 245695 247666 247707 "CLAGG" 248636 NIL CLAGG (NIL T) -9 NIL 249172 NIL) (-150 244117 244574 245157 "CLAGG-" 245162 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 243661 243746 243886 "CINTSLPE" 244026 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241162 241633 242181 "CHVAR" 243189 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240371 240925 240953 "CHARZ" 240958 T CHARZ (NIL) -9 NIL 240973 NIL) (-146 240125 240165 240243 "CHARPOL" 240325 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239218 239805 239833 "CHARNZ" 239880 T CHARNZ (NIL) -9 NIL 239936 NIL) (-144 237180 237908 238243 "CHAR" 238903 T CHAR (NIL) -8 NIL NIL NIL) (-143 236906 236967 236995 "CFCAT" 237106 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236151 236262 236444 "CDEN" 236790 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232116 235304 235584 "CCLASS" 235891 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231423 231566 231729 "CATEGORY" 231973 T -10 (NIL) -8 NIL NIL NIL) (-139 231028 231342 231390 "CATCTOR" 231395 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230479 230731 230829 "CATAST" 230950 T CATAST (NIL) -8 NIL NIL NIL) (-137 229955 230200 230292 "CASEAST" 230407 T CASEAST (NIL) -8 NIL NIL NIL) (-136 224964 225984 226737 "CARTEN" 229258 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224072 224220 224441 "CARTEN2" 224811 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222387 223222 223479 "CARD" 223835 T CARD (NIL) -8 NIL NIL NIL) (-133 221963 222191 222266 "CAPSLAST" 222332 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221467 221675 221703 "CACHSET" 221835 T CACHSET (NIL) -9 NIL 221913 NIL) (-131 220937 221259 221287 "CABMON" 221337 T CABMON (NIL) -9 NIL 221393 NIL) (-130 220410 220641 220751 "BYTEORD" 220847 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219386 219944 220086 "BYTE" 220249 T BYTE (NIL) -8 NIL NIL 220371) (-128 214736 218891 219063 "BYTEBUF" 219234 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212245 214428 214535 "BTREE" 214662 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209694 211893 212015 "BTOURN" 212155 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207064 209164 209205 "BTCAT" 209273 NIL BTCAT (NIL T) -9 NIL 209350 NIL) (-124 206731 206811 206960 "BTCAT-" 206965 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201996 205874 205902 "BTAGG" 206124 T BTAGG (NIL) -9 NIL 206285 NIL) (-122 201486 201611 201817 "BTAGG-" 201822 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198481 200764 200979 "BSTREE" 201303 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197619 197745 197929 "BRILL" 198337 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194271 196345 196386 "BRAGG" 197035 NIL BRAGG (NIL T) -9 NIL 197293 NIL) (-118 192800 193206 193761 "BRAGG-" 193766 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186029 192146 192330 "BPADICRT" 192648 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184344 185966 186011 "BPADIC" 186016 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184042 184072 184186 "BOUNDZRO" 184308 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179134 180332 181275 "BOP" 183119 T BOP (NIL) -8 NIL NIL NIL) (-113 176915 177319 177794 "BOP1" 178692 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 175740 176489 176638 "BOOLEAN" 176786 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175076 175480 175534 "BMODULE" 175539 NIL BMODULE (NIL T T) -9 NIL 175604 NIL) (-110 170877 174874 174947 "BITS" 175023 T BITS (NIL) -8 NIL NIL NIL) (-109 170298 170417 170557 "BINDING" 170757 T BINDING (NIL) -8 NIL NIL NIL) (-108 164305 169895 170043 "BINARY" 170170 T BINARY (NIL) -8 NIL NIL NIL) (-107 162085 163560 163601 "BGAGG" 163861 NIL BGAGG (NIL T) -9 NIL 163998 NIL) (-106 161916 161948 162039 "BGAGG-" 162044 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160987 161300 161505 "BFUNCT" 161731 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159677 159855 160143 "BEZOUT" 160811 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156146 158529 158859 "BBTREE" 159380 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155880 155933 155961 "BASTYPE" 156080 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155732 155761 155834 "BASTYPE-" 155839 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155166 155242 155394 "BALFACT" 155643 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154022 154581 154767 "AUTOMOR" 155011 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153748 153753 153779 "ATTREG" 153784 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152000 152445 152797 "ATTRBUT" 153414 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151608 151828 151894 "ATTRAST" 151952 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151144 151257 151283 "ATRIG" 151484 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150953 150994 151081 "ATRIG-" 151086 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150598 150784 150810 "ASTCAT" 150815 T ASTCAT (NIL) -9 NIL 150845 NIL) (-92 150325 150384 150503 "ASTCAT-" 150508 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148474 150101 150189 "ASTACK" 150268 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146979 147276 147641 "ASSOCEQ" 148156 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146011 146638 146762 "ASP9" 146886 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145774 145959 145998 "ASP8" 146003 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144642 145379 145521 "ASP80" 145663 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143540 144277 144409 "ASP7" 144541 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142494 143217 143335 "ASP78" 143453 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141463 142174 142291 "ASP77" 142408 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140375 141101 141232 "ASP74" 141363 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139275 140010 140142 "ASP73" 140274 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138379 139101 139201 "ASP6" 139206 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137323 138056 138174 "ASP55" 138292 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136272 136997 137116 "ASP50" 137235 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135360 135973 136083 "ASP4" 136193 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134448 135061 135171 "ASP49" 135281 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133232 133987 134155 "ASP42" 134337 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132008 132765 132935 "ASP41" 133119 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130958 131685 131803 "ASP35" 131921 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130723 130906 130945 "ASP34" 130950 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130460 130527 130603 "ASP33" 130678 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129353 130095 130227 "ASP31" 130359 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129118 129301 129340 "ASP30" 129345 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128853 128922 128998 "ASP29" 129073 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128618 128801 128840 "ASP28" 128845 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128383 128566 128605 "ASP27" 128610 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127467 128081 128192 "ASP24" 128303 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126543 127269 127381 "ASP20" 127386 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125631 126244 126354 "ASP1" 126464 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124573 125305 125424 "ASP19" 125543 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124310 124377 124453 "ASP12" 124528 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123162 123909 124053 "ASP10" 124197 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121013 123006 123097 "ARRAY2" 123102 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116778 120661 120775 "ARRAY1" 120930 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115810 115983 116204 "ARRAY12" 116601 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110122 112040 112115 "ARR2CAT" 114745 NIL ARR2CAT (NIL T T T) -9 NIL 115503 NIL) (-56 107556 108300 109254 "ARR2CAT-" 109259 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106873 107183 107308 "ARITY" 107449 T ARITY (NIL) -8 NIL NIL NIL) (-54 105649 105801 106100 "APPRULE" 106709 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105300 105348 105467 "APPLYORE" 105595 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104247 104565 104760 "ANY" 105123 T ANY (NIL) -8 NIL NIL NIL) (-51 103525 103648 103805 "ANY1" 104121 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101055 101962 102289 "ANTISYM" 103249 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100547 100762 100858 "ANON" 100977 T ANON (NIL) -8 NIL NIL NIL) (-48 94796 99086 99540 "AN" 100111 T AN (NIL) -8 NIL NIL NIL) (-47 91018 92406 92457 "AMR" 93205 NIL AMR (NIL T T) -9 NIL 93805 NIL) (-46 90130 90351 90714 "AMR-" 90719 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74569 90047 90108 "ALIST" 90113 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71371 74163 74332 "ALGSC" 74487 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 67926 68481 69088 "ALGPKG" 70811 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67203 67304 67488 "ALGMFACT" 67812 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63154 63761 64379 "ALGMANIP" 66763 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54524 62780 62930 "ALGFF" 63087 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53720 53851 54030 "ALGFACT" 54382 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52751 53351 53389 "ALGEBRA" 53394 NIL ALGEBRA (NIL T) -9 NIL 53435 NIL) (-37 52469 52528 52660 "ALGEBRA-" 52665 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34562 50471 50523 "ALAGG" 50659 NIL ALAGG (NIL T T) -9 NIL 50820 NIL) (-35 34098 34211 34237 "AHYP" 34438 T AHYP (NIL) -9 NIL NIL NIL) (-34 33029 33277 33303 "AGG" 33802 T AGG (NIL) -9 NIL 34081 NIL) (-33 32463 32625 32839 "AGG-" 32844 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30269 30692 31097 "AF" 32105 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29749 29994 30084 "ADDAST" 30197 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29017 29276 29432 "ACPLOT" 29611 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18557 26360 26398 "ACFS" 27005 NIL ACFS (NIL T) -9 NIL 27244 NIL) (-28 16584 17074 17836 "ACFS-" 17841 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12823 14751 14777 "ACF" 15656 T ACF (NIL) -9 NIL 16068 NIL) (-26 11527 11861 12354 "ACF-" 12359 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11099 11294 11320 "ABELSG" 11412 T ABELSG (NIL) -9 NIL 11477 NIL) (-24 10966 10991 11057 "ABELSG-" 11062 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10309 10596 10622 "ABELMON" 10792 T ABELMON (NIL) -9 NIL 10904 NIL) (-22 9973 10057 10195 "ABELMON-" 10200 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9281 9653 9679 "ABELGRP" 9804 T ABELGRP (NIL) -9 NIL 9886 NIL) (-20 8744 8873 9089 "ABELGRP-" 9094 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8083 8122 "A1AGG" 8127 NIL A1AGG (NIL T) -9 NIL 8167 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-4358 (((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|)) 23)))
+(((-1221 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4358 ((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|)))) (-1047) (-1047) (-1173) (-1173) |#1| |#2|) (T -1221))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5 *7 *9)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-14 *7 (-1173)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1226 *6 *8 *10)) (-5 *1 (-1221 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1173)))))
+(-10 -7 (-15 -4358 ((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3802 (((-642 (-1079)) $) 86)) (-3329 (((-1173) $) 115)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-1387 (($ $) 64 (|has| |#1| (-556)))) (-2037 (((-112) $) 66 (|has| |#1| (-556)))) (-1726 (($ $ (-564)) 110) (($ $ (-564) (-564)) 109)) (-2674 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 117)) (-3851 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 174 (|has| |#1| (-363)))) (-1978 (((-418 $) $) 175 (|has| |#1| (-363)))) (-3655 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-4010 (((-112) $ $) 165 (|has| |#1| (-363)))) (-3827 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 185)) (-3875 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) 18 T CONST)) (-2845 (($ $ $) 169 (|has| |#1| (-363)))) (-1718 (($ $) 72)) (-3104 (((-3 $ "failed") $) 37)) (-1399 (((-407 (-950 |#1|)) $ (-564)) 183 (|has| |#1| (-556))) (((-407 (-950 |#1|)) $ (-564) (-564)) 182 (|has| |#1| (-556)))) (-2859 (($ $ $) 168 (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 163 (|has| |#1| (-363)))) (-1469 (((-112) $) 176 (|has| |#1| (-363)))) (-1941 (((-112) $) 85)) (-4265 (($) 157 (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-564) $) 112) (((-564) $ (-564)) 111)) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3267 (($ $ (-919)) 113)) (-1502 (($ (-1 |#1| (-564)) $) 184)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 172 (|has| |#1| (-363)))) (-2316 (((-112) $) 74)) (-3774 (($ |#1| (-564)) 73) (($ $ (-1079) (-564)) 88) (($ $ (-642 (-1079)) (-642 (-564))) 87)) (-4358 (($ (-1 |#1| |#1|) $) 75)) (-3612 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) 77)) (-3962 ((|#1| $) 78)) (-2049 (($ (-642 $)) 161 (|has| |#1| (-363))) (($ $ $) 160 (|has| |#1| (-363)))) (-3315 (((-1155) $) 10)) (-3911 (($ $) 177 (|has| |#1| (-363)))) (-4107 (($ $) 181 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 180 (-2706 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-957)) (|has| |#1| (-1197)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-38 (-407 (-564)))))))) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 162 (|has| |#1| (-363)))) (-2080 (($ (-642 $)) 159 (|has| |#1| (-363))) (($ $ $) 158 (|has| |#1| (-363)))) (-3643 (((-418 $) $) 173 (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 170 (|has| |#1| (-363)))) (-3804 (($ $ (-564)) 107)) (-2896 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 164 (|has| |#1| (-363)))) (-1723 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-2048 (((-769) $) 166 (|has| |#1| (-363)))) (-4368 ((|#1| $ (-564)) 116) (($ $ $) 93 (|has| (-564) (-1109)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 167 (|has| |#1| (-363)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) 101 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1173) (-769)) 100 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173))) 99 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1173)) 98 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-769)) 96 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2775 (((-564) $) 76)) (-3888 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) 84)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556)))) (-2102 ((|#1| $ (-564)) 71)) (-2439 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-3594 ((|#1| $) 114)) (-1648 (((-112) $ $) 9)) (-3926 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3900 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-564)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) 105 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1173) (-769)) 104 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173))) 103 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1173)) 102 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-769)) 97 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 70 (|has| |#1| (-363))) (($ $ $) 179 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 178 (|has| |#1| (-363))) (($ $ $) 156 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564)))))))
+(((-1222 |#1|) (-140) (-1047)) (T -1222))
+((-2707 (*1 *1 *2) (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1047)) (-4 *1 (-1222 *3)))) (-1502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1222 *3)) (-4 *3 (-1047)))) (-1399 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1222 *4)) (-4 *4 (-1047)) (-4 *4 (-556)) (-5 *2 (-407 (-950 *4))))) (-1399 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1222 *4)) (-4 *4 (-1047)) (-4 *4 (-556)) (-5 *2 (-407 (-950 *4))))) (-4107 (*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))) (-4107 (*1 *1 *1 *2) (-2706 (-12 (-5 *2 (-1173)) (-4 *1 (-1222 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1173)) (-4 *1 (-1222 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -3802 ((-642 *2) *3))) (|has| *3 (-15 -4107 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
+(-13 (-1240 |t#1| (-564)) (-10 -8 (-15 -2707 ($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |t#1|))))) (-15 -1502 ($ (-1 |t#1| (-564)) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -1399 ((-407 (-950 |t#1|)) $ (-564))) (-15 -1399 ((-407 (-950 |t#1|)) $ (-564) (-564)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ($ $)) (IF (|has| |t#1| (-15 -4107 (|t#1| |t#1| (-1173)))) (IF (|has| |t#1| (-15 -3802 ((-642 (-1173)) |t#1|))) (-15 -4107 ($ $ (-1173))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1197)) (IF (|has| |t#1| (-957)) (IF (|has| |t#1| (-29 (-564))) (-15 -4107 ($ $ (-1173))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1000)) (-6 (-1197))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-564) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-564) (-1109)) ((-290) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-715 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))) ((-971 |#1| #0# (-1079)) . T) ((-918) |has| |#1| (-363)) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1049 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1054 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))) ((-1216) |has| |#1| (-363)) ((-1240 |#1| #0#) . T))
+((-2952 (((-112) $) 12)) (-4278 (((-3 |#3| "failed") $) 17) (((-3 (-1173) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL)) (-3027 ((|#3| $) 14) (((-1173) $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL)))
+(((-1223 |#1| |#2| |#3|) (-10 -8 (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-1173) "failed") |#1|)) (-15 -3027 ((-1173) |#1|)) (-15 -4278 ((-3 |#3| "failed") |#1|)) (-15 -3027 (|#3| |#1|)) (-15 -2952 ((-112) |#1|))) (-1224 |#2| |#3|) (-1047) (-1253 |#2|)) (T -1223))
+NIL
+(-10 -8 (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -4278 ((-3 (-1173) "failed") |#1|)) (-15 -3027 ((-1173) |#1|)) (-15 -4278 ((-3 |#3| "failed") |#1|)) (-15 -3027 (|#3| |#1|)) (-15 -2952 ((-112) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3703 ((|#2| $) 242 (-2275 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3802 (((-642 (-1079)) $) 86)) (-3329 (((-1173) $) 115)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-1387 (($ $) 64 (|has| |#1| (-556)))) (-2037 (((-112) $) 66 (|has| |#1| (-556)))) (-1726 (($ $ (-564)) 110) (($ $ (-564) (-564)) 109)) (-2674 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 117)) (-2206 ((|#2| $) 278)) (-2639 (((-3 |#2| "failed") $) 274)) (-3864 ((|#2| $) 275)) (-3851 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) 20)) (-2951 (((-418 (-1169 $)) (-1169 $)) 251 (-2275 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-4316 (($ $) 174 (|has| |#1| (-363)))) (-1978 (((-418 $) $) 175 (|has| |#1| (-363)))) (-3655 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 248 (-2275 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-4010 (((-112) $ $) 165 (|has| |#1| (-363)))) (-3827 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2959 (((-564) $) 260 (-2275 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-2707 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 185)) (-3875 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#2| "failed") $) 281) (((-3 (-564) "failed") $) 271 (-2275 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) 269 (-2275 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-1173) "failed") $) 253 (-2275 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363))))) (-3027 ((|#2| $) 282) (((-564) $) 270 (-2275 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) 268 (-2275 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-1173) $) 252 (-2275 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363))))) (-3517 (($ $) 277) (($ (-564) $) 276)) (-2845 (($ $ $) 169 (|has| |#1| (-363)))) (-1718 (($ $) 72)) (-4315 (((-687 |#2|) (-687 $)) 232 (|has| |#1| (-363))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) 231 (|has| |#1| (-363))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 230 (-2275 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-687 (-564)) (-687 $)) 229 (-2275 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-3104 (((-3 $ "failed") $) 37)) (-1399 (((-407 (-950 |#1|)) $ (-564)) 183 (|has| |#1| (-556))) (((-407 (-950 |#1|)) $ (-564) (-564)) 182 (|has| |#1| (-556)))) (-2433 (($) 244 (-2275 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2859 (($ $ $) 168 (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 163 (|has| |#1| (-363)))) (-1469 (((-112) $) 176 (|has| |#1| (-363)))) (-2538 (((-112) $) 258 (-2275 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-1941 (((-112) $) 85)) (-4265 (($) 157 (|has| |#1| (-38 (-407 (-564)))))) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 236 (-2275 (|has| |#2| (-884 (-379))) (|has| |#1| (-363)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 235 (-2275 (|has| |#2| (-884 (-564))) (|has| |#1| (-363))))) (-1427 (((-564) $) 112) (((-564) $ (-564)) 111)) (-3953 (((-112) $) 35)) (-3071 (($ $) 240 (|has| |#1| (-363)))) (-2245 ((|#2| $) 238 (|has| |#1| (-363)))) (-1772 (($ $ (-564)) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3157 (((-3 $ "failed") $) 272 (-2275 (|has| |#2| (-1148)) (|has| |#1| (-363))))) (-3333 (((-112) $) 259 (-2275 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-3267 (($ $ (-919)) 113)) (-1502 (($ (-1 |#1| (-564)) $) 184)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 172 (|has| |#1| (-363)))) (-2316 (((-112) $) 74)) (-3774 (($ |#1| (-564)) 73) (($ $ (-1079) (-564)) 88) (($ $ (-642 (-1079)) (-642 (-564))) 87)) (-2755 (($ $ $) 262 (-2275 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-1520 (($ $ $) 263 (-2275 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-4358 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-363)))) (-3612 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) 77)) (-3962 ((|#1| $) 78)) (-2049 (($ (-642 $)) 161 (|has| |#1| (-363))) (($ $ $) 160 (|has| |#1| (-363)))) (-3876 (($ (-564) |#2|) 279)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 177 (|has| |#1| (-363)))) (-4107 (($ $) 181 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 180 (-2706 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-957)) (|has| |#1| (-1197)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3366 (($) 273 (-2275 (|has| |#2| (-1148)) (|has| |#1| (-363))) CONST)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 162 (|has| |#1| (-363)))) (-2080 (($ (-642 $)) 159 (|has| |#1| (-363))) (($ $ $) 158 (|has| |#1| (-363)))) (-2903 (($ $) 243 (-2275 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2759 ((|#2| $) 246 (-2275 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1643 (((-418 (-1169 $)) (-1169 $)) 249 (-2275 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-2923 (((-418 (-1169 $)) (-1169 $)) 250 (-2275 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-3643 (((-418 $) $) 173 (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 170 (|has| |#1| (-363)))) (-3804 (($ $ (-564)) 107)) (-2896 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 164 (|has| |#1| (-363)))) (-1723 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1173) |#2|) 223 (-2275 (|has| |#2| (-514 (-1173) |#2|)) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 |#2|)) 222 (-2275 (|has| |#2| (-514 (-1173) |#2|)) (|has| |#1| (-363)))) (($ $ (-642 (-294 |#2|))) 221 (-2275 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 220 (-2275 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 219 (-2275 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-642 |#2|) (-642 |#2|)) 218 (-2275 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-2048 (((-769) $) 166 (|has| |#1| (-363)))) (-4368 ((|#1| $ (-564)) 116) (($ $ $) 93 (|has| (-564) (-1109))) (($ $ |#2|) 217 (-2275 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 167 (|has| |#1| (-363)))) (-3175 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-769)) 227 (|has| |#1| (-363))) (($ $ (-769)) 96 (-2706 (-2275 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 94 (-2706 (-2275 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) 101 (-2706 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1173) (-769)) 100 (-2706 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-642 (-1173))) 99 (-2706 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1173)) 98 (-2706 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-2618 (($ $) 241 (|has| |#1| (-363)))) (-2255 ((|#2| $) 239 (|has| |#1| (-363)))) (-2775 (((-564) $) 76)) (-3888 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-1314 (((-225) $) 257 (-2275 (|has| |#2| (-1020)) (|has| |#1| (-363)))) (((-379) $) 256 (-2275 (|has| |#2| (-1020)) (|has| |#1| (-363)))) (((-536) $) 255 (-2275 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-890 (-379)) $) 234 (-2275 (|has| |#2| (-612 (-890 (-379)))) (|has| |#1| (-363)))) (((-890 (-564)) $) 233 (-2275 (|has| |#2| (-612 (-890 (-564)))) (|has| |#1| (-363))))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 247 (-2275 (-2275 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#1| (-363))))) (-4318 (($ $) 84)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1173)) 254 (-2275 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363)))) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556)))) (-2102 ((|#1| $ (-564)) 71)) (-2439 (((-3 $ "failed") $) 60 (-2706 (-2275 (-2706 (|has| |#2| (-145)) (-2275 (|has| $ (-145)) (|has| |#2| (-907)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-2756 (((-769)) 32 T CONST)) (-3594 ((|#1| $) 114)) (-3264 ((|#2| $) 245 (-2275 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1648 (((-112) $ $) 9)) (-3926 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3900 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-564)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-1381 (($ $) 261 (-2275 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-769)) 225 (|has| |#1| (-363))) (($ $ (-769)) 97 (-2706 (-2275 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 95 (-2706 (-2275 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) 105 (-2706 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1173) (-769)) 104 (-2706 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-642 (-1173))) 103 (-2706 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1173)) 102 (-2706 (-2275 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-2934 (((-112) $ $) 265 (-2275 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2908 (((-112) $ $) 266 (-2275 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2872 (((-112) $ $) 6)) (-2922 (((-112) $ $) 264 (-2275 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2897 (((-112) $ $) 267 (-2275 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2998 (($ $ |#1|) 70 (|has| |#1| (-363))) (($ $ $) 179 (|has| |#1| (-363))) (($ |#2| |#2|) 237 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 178 (|has| |#1| (-363))) (($ $ $) 156 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-363))) (($ |#2| $) 215 (|has| |#1| (-363))) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564)))))))
+(((-1224 |#1| |#2|) (-140) (-1047) (-1253 |t#1|)) (T -1224))
+((-2775 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1253 *3)) (-5 *2 (-564)))) (-3876 (*1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *4 (-1047)) (-4 *1 (-1224 *4 *3)) (-4 *3 (-1253 *4)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1253 *3)))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1253 *2)))) (-3517 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1253 *3)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1253 *3)))) (-2639 (*1 *2 *1) (|partial| -12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1253 *3)))))
+(-13 (-1222 |t#1|) (-1036 |t#2|) (-614 |t#2|) (-10 -8 (-15 -3876 ($ (-564) |t#2|)) (-15 -2775 ((-564) $)) (-15 -2206 (|t#2| $)) (-15 -3517 ($ $)) (-15 -3517 ($ (-564) $)) (-15 -3864 (|t#2| $)) (-15 -2639 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-990 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2706 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2706 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-614 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1173)) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-1173)))) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1020))) ((-612 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1020))) ((-612 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536)))) ((-612 (-890 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-890 (-379))))) ((-612 (-890 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-890 (-564))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -2706 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-564) (-1109)) ((-290) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 (-1173) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1173) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-556) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 |#2|) |has| |#1| (-363)) ((-644 $) . T) ((-646 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-646 |#1|) . T) ((-646 |#2|) |has| |#1| (-363)) ((-646 $) . T) ((-638 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-638 |#1|) |has| |#1| (-172)) ((-638 |#2|) |has| |#1| (-363)) ((-638 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-637 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((-637 |#2|) |has| |#1| (-363)) ((-715 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-715 |#1|) |has| |#1| (-172)) ((-715 |#2|) |has| |#1| (-363)) ((-715 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-724) . T) ((-789) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-790) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-792) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-793) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-818) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-846) -12 (|has| |#1| (-363)) (|has| |#2| (-818))) ((-848) -2706 (-12 (|has| |#1| (-363)) (|has| |#2| (-848))) (-12 (|has| |#1| (-363)) (|has| |#2| (-818)))) ((-898 (-1173)) -2706 (-12 (|has| |#1| (-363)) (|has| |#2| (-898 (-1173)))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))) ((-884 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-884 (-379)))) ((-884 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-884 (-564)))) ((-882 |#2|) |has| |#1| (-363)) ((-907) -12 (|has| |#1| (-363)) (|has| |#2| (-907))) ((-971 |#1| #0# (-1079)) . T) ((-918) |has| |#1| (-363)) ((-990 |#2|) |has| |#1| (-363)) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1020) -12 (|has| |#1| (-363)) (|has| |#2| (-1020))) ((-1036 (-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-564)))) ((-1036 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-564)))) ((-1036 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1036 (-1173)))) ((-1036 |#2|) . T) ((-1049 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1049 |#1|) . T) ((-1049 |#2|) |has| |#1| (-363)) ((-1049 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1054 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1054 |#1|) . T) ((-1054 |#2|) |has| |#1| (-363)) ((-1054 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) -12 (|has| |#1| (-363)) (|has| |#2| (-1148))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))) ((-1212) |has| |#1| (-363)) ((-1216) |has| |#1| (-363)) ((-1222 |#1|) . T) ((-1240 |#1| #0#) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 79)) (-3703 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) 98)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1726 (($ $ (-564)) 107) (($ $ (-564) (-564)) 109)) (-2674 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 51)) (-2206 ((|#2| $) 11)) (-2639 (((-3 |#2| "failed") $) 35)) (-3864 ((|#2| $) 36)) (-3851 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-4316 (($ $) NIL (|has| |#1| (-363)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3827 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-2959 (((-564) $) NIL (-12 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-2707 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 59)) (-3875 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) 155) (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-1173) "failed") $) NIL (-12 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363))))) (-3027 ((|#2| $) 154) (((-564) $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1036 (-564))) (|has| |#1| (-363)))) (((-1173) $) NIL (-12 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363))))) (-3517 (($ $) 65) (($ (-564) $) 28)) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) NIL)) (-4315 (((-687 |#2|) (-687 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-3104 (((-3 $ "failed") $) 86)) (-1399 (((-407 (-950 |#1|)) $ (-564)) 122 (|has| |#1| (-556))) (((-407 (-950 |#1|)) $ (-564) (-564)) 124 (|has| |#1| (-556)))) (-2433 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1469 (((-112) $) NIL (|has| |#1| (-363)))) (-2538 (((-112) $) NIL (-12 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-1941 (((-112) $) 72)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| |#2| (-884 (-379))) (|has| |#1| (-363)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| |#2| (-884 (-564))) (|has| |#1| (-363))))) (-1427 (((-564) $) 103) (((-564) $ (-564)) 105)) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL (|has| |#1| (-363)))) (-2245 ((|#2| $) 163 (|has| |#1| (-363)))) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3157 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1148)) (|has| |#1| (-363))))) (-3333 (((-112) $) NIL (-12 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-3267 (($ $ (-919)) 146)) (-1502 (($ (-1 |#1| (-564)) $) 142)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-564)) 20) (($ $ (-1079) (-564)) NIL) (($ $ (-642 (-1079)) (-642 (-564))) NIL)) (-2755 (($ $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-1520 (($ $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-4358 (($ (-1 |#1| |#1|) $) 139) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-3612 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3876 (($ (-564) |#2|) 10)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 157 (|has| |#1| (-363)))) (-4107 (($ $) 226 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 231 (-2706 (-12 (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197)))))) (-3366 (($) NIL (-12 (|has| |#2| (-1148)) (|has| |#1| (-363))) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2903 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2759 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| |#2| (-907)) (|has| |#1| (-363))))) (-3643 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3804 (($ $ (-564)) 136)) (-2896 (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1723 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1173) |#2|) NIL (-12 (|has| |#2| (-514 (-1173) |#2|)) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 |#2|)) NIL (-12 (|has| |#2| (-514 (-1173) |#2|)) (|has| |#1| (-363)))) (($ $ (-642 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-642 |#2|) (-642 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ (-564)) 101) (($ $ $) 88 (|has| (-564) (-1109))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3175 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#1| (-363))) (($ $ (-769)) NIL (-2706 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 147 (-2706 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2706 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2706 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2706 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) 151 (-2706 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-2618 (($ $) NIL (|has| |#1| (-363)))) (-2255 ((|#2| $) 164 (|has| |#1| (-363)))) (-2775 (((-564) $) 12)) (-3888 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-1314 (((-225) $) NIL (-12 (|has| |#2| (-1020)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1020)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-890 (-379)) $) NIL (-12 (|has| |#2| (-612 (-890 (-379)))) (|has| |#1| (-363)))) (((-890 (-564)) $) NIL (-12 (|has| |#2| (-612 (-890 (-564)))) (|has| |#1| (-363))))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907)) (|has| |#1| (-363))))) (-4318 (($ $) 134)) (-2327 (((-860) $) 265) (($ (-564)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1173)) NIL (-12 (|has| |#2| (-1036 (-1173))) (|has| |#1| (-363)))) (($ (-407 (-564))) 167 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2102 ((|#1| $ (-564)) 83)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#2| (-907)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-2756 (((-769)) 153 T CONST)) (-3594 ((|#1| $) 100)) (-3264 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 220 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-564)) 132 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) 222 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-1381 (($ $) NIL (-12 (|has| |#2| (-818)) (|has| |#1| (-363))))) (-2312 (($) 13 T CONST)) (-2322 (($) 18 T CONST)) (-4044 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-769)) NIL (|has| |#1| (-363))) (($ $ (-769)) NIL (-2706 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2706 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2706 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2706 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2706 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| |#2| (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-2934 (((-112) $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2908 (((-112) $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2872 (((-112) $ $) 71)) (-2922 (((-112) $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2897 (((-112) $ $) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-363))))) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 161 (|has| |#1| (-363))) (($ |#2| |#2|) 162 (|has| |#1| (-363)))) (-2987 (($ $) 225) (($ $ $) 76)) (-2974 (($ $ $) 74)) (** (($ $ (-919)) NIL) (($ $ (-769)) 82) (($ $ (-564)) 158 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 170 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 77) (($ $ |#1|) NIL) (($ |#1| $) 150) (($ $ |#2|) 160 (|has| |#1| (-363))) (($ |#2| $) 159 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1225 |#1| |#2|) (-1224 |#1| |#2|) (-1047) (-1253 |#1|)) (T -1225))
+NIL
+(-1224 |#1| |#2|)
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3703 (((-1254 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) 10)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1387 (($ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2037 (((-112) $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1726 (($ $ (-564)) NIL) (($ $ (-564) (-564)) NIL)) (-2674 (((-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-2206 (((-1254 |#1| |#2| |#3|) $) NIL)) (-2639 (((-3 (-1254 |#1| |#2| |#3|) "failed") $) NIL)) (-3864 (((-1254 |#1| |#2| |#3|) $) NIL)) (-3851 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-4316 (($ $) NIL (|has| |#1| (-363)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2959 (((-564) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-2707 (($ (-1153 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3875 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-1254 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1173) "failed") $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))))) (-3027 (((-1254 |#1| |#2| |#3|) $) NIL) (((-1173) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))))) (-3517 (($ $) NIL) (($ (-564) $) NIL)) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) NIL)) (-4315 (((-687 (-1254 |#1| |#2| |#3|)) (-687 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1780 (-687 (-1254 |#1| |#2| |#3|))) (|:| |vec| (-1262 (-1254 |#1| |#2| |#3|)))) (-687 $) (-1262 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-687 (-564)) (-687 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-3104 (((-3 $ "failed") $) NIL)) (-1399 (((-407 (-950 |#1|)) $ (-564)) NIL (|has| |#1| (-556))) (((-407 (-950 |#1|)) $ (-564) (-564)) NIL (|has| |#1| (-556)))) (-2433 (($) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1469 (((-112) $) NIL (|has| |#1| (-363)))) (-2538 (((-112) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-1941 (((-112) $) NIL)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-884 (-379))) (|has| |#1| (-363)))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-884 (-564))) (|has| |#1| (-363))))) (-1427 (((-564) $) NIL) (((-564) $ (-564)) NIL)) (-3953 (((-112) $) NIL)) (-3071 (($ $) NIL (|has| |#1| (-363)))) (-2245 (((-1254 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3157 (((-3 $ "failed") $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1148)) (|has| |#1| (-363))))) (-3333 (((-112) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-3267 (($ $ (-919)) NIL)) (-1502 (($ (-1 |#1| (-564)) $) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-564)) 18) (($ $ (-1079) (-564)) NIL) (($ $ (-642 (-1079)) (-642 (-564))) NIL)) (-2755 (($ $ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-1520 (($ $ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-3612 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3876 (($ (-564) (-1254 |#1| |#2| |#3|)) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| |#1| (-363)))) (-4107 (($ $) 27 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 28 (|has| |#1| (-38 (-407 (-564)))))) (-3366 (($) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1148)) (|has| |#1| (-363))) CONST)) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2903 (($ $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2759 (((-1254 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-3643 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3804 (($ $ (-564)) NIL)) (-2896 (((-3 $ "failed") $ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1723 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1173) (-1254 |#1| |#2| |#3|)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-514 (-1173) (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-1173)) (-642 (-1254 |#1| |#2| |#3|))) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-514 (-1173) (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-294 (-1254 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1254 |#1| |#2| |#3|))) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-642 (-1254 |#1| |#2| |#3|)) (-642 (-1254 |#1| |#2| |#3|))) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-309 (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ (-564)) NIL) (($ $ $) NIL (|has| (-564) (-1109))) (($ $ (-1254 |#1| |#2| |#3|)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-286 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3175 (($ $ (-1 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) (-769)) NIL (|has| |#1| (-363))) (($ $ (-1258 |#2|)) 26) (($ $ (-769)) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 25 (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-2618 (($ $) NIL (|has| |#1| (-363)))) (-2255 (((-1254 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-2775 (((-564) $) NIL)) (-3888 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1314 (((-536) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1020)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1020)) (|has| |#1| (-363)))) (((-890 (-379)) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-612 (-890 (-379)))) (|has| |#1| (-363)))) (((-890 (-564)) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-612 (-890 (-564)))) (|has| |#1| (-363))))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))))) (-4318 (($ $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1254 |#1| |#2| |#3|)) NIL) (($ (-1258 |#2|)) 24) (($ (-1173)) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-1173))) (|has| |#1| (-363)))) (($ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-1036 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-2102 ((|#1| $ (-564)) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-2756 (((-769)) NIL T CONST)) (-3594 ((|#1| $) 11)) (-3264 (((-1254 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-907)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1381 (($ $) NIL (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))))) (-2312 (($) 20 T CONST)) (-2322 (($) 15 T CONST)) (-4044 (($ $ (-1 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) (-769)) NIL (|has| |#1| (-363))) (($ $ (-769)) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173) (-769)) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-642 (-1173))) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173)))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-898 (-1173))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-898 (-1173))))))) (-2934 (((-112) $ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2908 (((-112) $ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2872 (((-112) $ $) NIL)) (-2922 (((-112) $ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2897 (((-112) $ $) NIL (-2706 (-12 (|has| (-1254 |#1| |#2| |#3|) (-818)) (|has| |#1| (-363))) (-12 (|has| (-1254 |#1| |#2| |#3|) (-848)) (|has| |#1| (-363)))))) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1254 |#1| |#2| |#3|) (-1254 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 22)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1254 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1254 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1226 |#1| |#2| |#3|) (-13 (-1224 |#1| (-1254 |#1| |#2| |#3|)) (-10 -8 (-15 -2327 ($ (-1258 |#2|))) (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1226))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))))
+(-13 (-1224 |#1| (-1254 |#1| |#2| |#3|)) (-10 -8 (-15 -2327 ($ (-1258 |#2|))) (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|)))
+((-2516 (((-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))) |#1| (-112)) 13)) (-2542 (((-418 |#1|) |#1|) 26)) (-3643 (((-418 |#1|) |#1|) 24)))
+(((-1227 |#1|) (-10 -7 (-15 -3643 ((-418 |#1|) |#1|)) (-15 -2542 ((-418 |#1|) |#1|)) (-15 -2516 ((-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))) |#1| (-112)))) (-1238 (-564))) (T -1227))
+((-2516 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| *3) (|:| -3672 (-564))))))) (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564))))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564))))) (-3643 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564))))))
+(-10 -7 (-15 -3643 ((-418 |#1|) |#1|)) (-15 -2542 ((-418 |#1|) |#1|)) (-15 -2516 ((-2 (|:| |contp| (-564)) (|:| -2649 (-642 (-2 (|:| |irr| |#1|) (|:| -3672 (-564)))))) |#1| (-112))))
+((-4358 (((-1153 |#2|) (-1 |#2| |#1|) (-1229 |#1|)) 23 (|has| |#1| (-846))) (((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|)) 17)))
+(((-1228 |#1| |#2|) (-10 -7 (-15 -4358 ((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) (IF (|has| |#1| (-846)) (-15 -4358 ((-1153 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) |%noBranch|)) (-1212) (-1212)) (T -1228))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-846)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1153 *6)) (-5 *1 (-1228 *5 *6)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1229 *6)) (-5 *1 (-1228 *5 *6)))))
+(-10 -7 (-15 -4358 ((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) (IF (|has| |#1| (-846)) (-15 -4358 ((-1153 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) |%noBranch|))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4177 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4358 (((-1153 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-846)))) (-2827 ((|#1| $) 15)) (-2006 ((|#1| $) 12)) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-2751 (((-564) $) 19)) (-4233 ((|#1| $) 18)) (-2774 ((|#1| $) 13)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-3670 (((-112) $) 17)) (-1675 (((-1153 |#1|) $) 41 (|has| |#1| (-846))) (((-1153 |#1|) (-642 $)) 40 (|has| |#1| (-846)))) (-1314 (($ |#1|) 26)) (-2327 (($ (-1091 |#1|)) 25) (((-860) $) 37 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-3567 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2617 (($ $ (-564)) 14)) (-2872 (((-112) $ $) 30 (|has| |#1| (-1097)))))
+(((-1229 |#1|) (-13 (-1090 |#1|) (-10 -8 (-15 -3567 ($ |#1|)) (-15 -4177 ($ |#1|)) (-15 -2327 ($ (-1091 |#1|))) (-15 -3670 ((-112) $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-1092 |#1| (-1153 |#1|))) |%noBranch|))) (-1212)) (T -1229))
+((-3567 (*1 *1 *2) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-1212)))) (-4177 (*1 *1 *2) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-1212)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-1091 *3)) (-4 *3 (-1212)) (-5 *1 (-1229 *3)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-1212)))))
+(-13 (-1090 |#1|) (-10 -8 (-15 -3567 ($ |#1|)) (-15 -4177 ($ |#1|)) (-15 -2327 ($ (-1091 |#1|))) (-15 -3670 ((-112) $)) (IF (|has| |#1| (-1097)) (-6 (-1097)) |%noBranch|) (IF (|has| |#1| (-846)) (-6 (-1092 |#1| (-1153 |#1|))) |%noBranch|)))
+((-4358 (((-1235 |#3| |#4|) (-1 |#4| |#2|) (-1235 |#1| |#2|)) 15)))
+(((-1230 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 ((-1235 |#3| |#4|) (-1 |#4| |#2|) (-1235 |#1| |#2|)))) (-1173) (-1047) (-1173) (-1047)) (T -1230))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1235 *5 *6)) (-14 *5 (-1173)) (-4 *6 (-1047)) (-4 *8 (-1047)) (-5 *2 (-1235 *7 *8)) (-5 *1 (-1230 *5 *6 *7 *8)) (-14 *7 (-1173)))))
+(-10 -7 (-15 -4358 ((-1235 |#3| |#4|) (-1 |#4| |#2|) (-1235 |#1| |#2|))))
+((-3356 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1602 ((|#1| |#3|) 13)) (-3283 ((|#3| |#3|) 19)))
+(((-1231 |#1| |#2| |#3|) (-10 -7 (-15 -1602 (|#1| |#3|)) (-15 -3283 (|#3| |#3|)) (-15 -3356 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-990 |#1|) (-1238 |#2|)) (T -1231))
+((-3356 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1231 *4 *5 *3)) (-4 *3 (-1238 *5)))) (-3283 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-990 *3)) (-5 *1 (-1231 *3 *4 *2)) (-4 *2 (-1238 *4)))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-1231 *2 *4 *3)) (-4 *3 (-1238 *4)))))
+(-10 -7 (-15 -1602 (|#1| |#3|)) (-15 -3283 (|#3| |#3|)) (-15 -3356 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3964 (((-3 |#2| "failed") |#2| (-769) |#1|) 37)) (-2447 (((-3 |#2| "failed") |#2| (-769)) 38)) (-1903 (((-3 (-2 (|:| -4326 |#2|) (|:| -4336 |#2|)) "failed") |#2|) 52)) (-4230 (((-642 |#2|) |#2|) 54)) (-2496 (((-3 |#2| "failed") |#2| |#2|) 48)))
+(((-1232 |#1| |#2|) (-10 -7 (-15 -2447 ((-3 |#2| "failed") |#2| (-769))) (-15 -3964 ((-3 |#2| "failed") |#2| (-769) |#1|)) (-15 -2496 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1903 ((-3 (-2 (|:| -4326 |#2|) (|:| -4336 |#2|)) "failed") |#2|)) (-15 -4230 ((-642 |#2|) |#2|))) (-13 (-556) (-147)) (-1238 |#1|)) (T -1232))
+((-4230 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-642 *3)) (-5 *1 (-1232 *4 *3)) (-4 *3 (-1238 *4)))) (-1903 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| -4326 *3) (|:| -4336 *3))) (-5 *1 (-1232 *4 *3)) (-4 *3 (-1238 *4)))) (-2496 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1232 *3 *2)) (-4 *2 (-1238 *3)))) (-3964 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-769)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1232 *4 *2)) (-4 *2 (-1238 *4)))) (-2447 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-769)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1232 *4 *2)) (-4 *2 (-1238 *4)))))
+(-10 -7 (-15 -2447 ((-3 |#2| "failed") |#2| (-769))) (-15 -3964 ((-3 |#2| "failed") |#2| (-769) |#1|)) (-15 -2496 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1903 ((-3 (-2 (|:| -4326 |#2|) (|:| -4336 |#2|)) "failed") |#2|)) (-15 -4230 ((-642 |#2|) |#2|)))
+((-2645 (((-3 (-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) "failed") |#2| |#2|) 30)))
+(((-1233 |#1| |#2|) (-10 -7 (-15 -2645 ((-3 (-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) "failed") |#2| |#2|))) (-556) (-1238 |#1|)) (T -1233))
+((-2645 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-1233 *4 *3)) (-4 *3 (-1238 *4)))))
+(-10 -7 (-15 -2645 ((-3 (-2 (|:| -1420 |#2|) (|:| -3045 |#2|)) "failed") |#2| |#2|)))
+((-2885 ((|#2| |#2| |#2|) 22)) (-2151 ((|#2| |#2| |#2|) 36)) (-2765 ((|#2| |#2| |#2| (-769) (-769)) 44)))
+(((-1234 |#1| |#2|) (-10 -7 (-15 -2885 (|#2| |#2| |#2|)) (-15 -2151 (|#2| |#2| |#2|)) (-15 -2765 (|#2| |#2| |#2| (-769) (-769)))) (-1047) (-1238 |#1|)) (T -1234))
+((-2765 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-769)) (-4 *4 (-1047)) (-5 *1 (-1234 *4 *2)) (-4 *2 (-1238 *4)))) (-2151 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1238 *3)))) (-2885 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1238 *3)))))
+(-10 -7 (-15 -2885 (|#2| |#2| |#2|)) (-15 -2151 (|#2| |#2| |#2|)) (-15 -2765 (|#2| |#2| |#2| (-769) (-769))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-4159 (((-1262 |#2|) $ (-769)) NIL)) (-3802 (((-642 (-1079)) $) NIL)) (-3742 (($ (-1169 |#2|)) NIL)) (-3615 (((-1169 $) $ (-1079)) NIL) (((-1169 |#2|) $) NIL)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1387 (($ $) NIL (|has| |#2| (-556)))) (-2037 (((-112) $) NIL (|has| |#2| (-556)))) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-1079))) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1804 (($ $ $) NIL (|has| |#2| (-556)))) (-2951 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-4316 (($ $) NIL (|has| |#2| (-452)))) (-1978 (((-418 $) $) NIL (|has| |#2| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-4010 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3047 (($ $ (-769)) NIL)) (-1537 (($ $ (-769)) NIL)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1036 (-564)))) (((-3 (-1079) "failed") $) NIL)) (-3027 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1036 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1036 (-564)))) (((-1079) $) NIL)) (-2022 (($ $ $ (-1079)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2845 (($ $ $) NIL (|has| |#2| (-363)))) (-1718 (($ $) NIL)) (-4315 (((-687 (-564)) (-687 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#2|)) (|:| |vec| (-1262 |#2|))) (-687 $) (-1262 $)) NIL) (((-687 |#2|) (-687 $)) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2859 (($ $ $) NIL (|has| |#2| (-363)))) (-1307 (($ $ $) NIL)) (-4036 (($ $ $) NIL (|has| |#2| (-556)))) (-3437 (((-2 (|:| -4378 |#2|) (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#2| (-556)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#2| (-363)))) (-3246 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1079)) NIL (|has| |#2| (-452)))) (-3974 (((-642 $) $) NIL)) (-1469 (((-112) $) NIL (|has| |#2| (-907)))) (-2575 (($ $ |#2| (-769) $) NIL)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) NIL (-12 (|has| (-1079) (-884 (-379))) (|has| |#2| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) NIL (-12 (|has| (-1079) (-884 (-564))) (|has| |#2| (-884 (-564)))))) (-1427 (((-769) $ $) NIL (|has| |#2| (-556)))) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-3157 (((-3 $ "failed") $) NIL (|has| |#2| (-1148)))) (-3790 (($ (-1169 |#2|) (-1079)) NIL) (($ (-1169 $) (-1079)) NIL)) (-3267 (($ $ (-769)) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#2| (-363)))) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3774 (($ |#2| (-769)) 18) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-1079)) NIL) (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL)) (-1398 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-2026 (($ (-1 (-769) (-769)) $) NIL)) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-2099 (((-1169 |#2|) $) NIL)) (-4184 (((-3 (-1079) "failed") $) NIL)) (-3950 (($ $) NIL)) (-3962 ((|#2| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3315 (((-1155) $) NIL)) (-4148 (((-2 (|:| -1420 $) (|:| -3045 $)) $ (-769)) NIL)) (-1572 (((-3 (-642 $) "failed") $) NIL)) (-1802 (((-3 (-642 $) "failed") $) NIL)) (-3611 (((-3 (-2 (|:| |var| (-1079)) (|:| -2700 (-769))) "failed") $) NIL)) (-4107 (($ $) NIL (|has| |#2| (-38 (-407 (-564)))))) (-3366 (($) NIL (|has| |#2| (-1148)) CONST)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 ((|#2| $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#2| (-452)))) (-2080 (($ (-642 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2914 (($ $ (-769) |#2| $) NIL)) (-1643 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) NIL (|has| |#2| (-907)))) (-3643 (((-418 $) $) NIL (|has| |#2| (-907)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#2| (-363)))) (-2896 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#2| (-363)))) (-3215 (($ $ (-642 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1079) |#2|) NIL) (($ $ (-642 (-1079)) (-642 |#2|)) NIL) (($ $ (-1079) $) NIL) (($ $ (-642 (-1079)) (-642 $)) NIL)) (-2048 (((-769) $) NIL (|has| |#2| (-363)))) (-4368 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-556))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-556)))) (-2863 (((-3 $ "failed") $ (-769)) NIL)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#2| (-363)))) (-1846 (($ $ (-1079)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-3175 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2775 (((-769) $) NIL) (((-769) $ (-1079)) NIL) (((-642 (-769)) $ (-642 (-1079))) NIL)) (-1314 (((-890 (-379)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#2| (-612 (-890 (-379)))))) (((-890 (-564)) $) NIL (-12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#2| (-612 (-890 (-564)))))) (((-536) $) NIL (-12 (|has| (-1079) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4028 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1079)) NIL (|has| |#2| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-907))))) (-2065 (((-3 $ "failed") $ $) NIL (|has| |#2| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-556)))) (-2327 (((-860) $) 13) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1079)) NIL) (($ (-1258 |#1|)) 20) (($ (-407 (-564))) NIL (-2706 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1036 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3849 (((-642 |#2|) $) NIL)) (-2102 ((|#2| $ (-769)) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-2439 (((-3 $ "failed") $) NIL (-2706 (-12 (|has| $ (-145)) (|has| |#2| (-907))) (|has| |#2| (-145))))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| |#2| (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL (|has| |#2| (-556)))) (-2312 (($) NIL T CONST)) (-2322 (($) 14 T CONST)) (-4044 (($ $ (-1079)) NIL) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) NIL) (($ $ (-1173)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1173) (-769)) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) NIL (|has| |#2| (-898 (-1173)))) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1235 |#1| |#2|) (-13 (-1238 |#2|) (-614 (-1258 |#1|)) (-10 -8 (-15 -2914 ($ $ (-769) |#2| $)))) (-1173) (-1047)) (T -1235))
+((-2914 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1235 *4 *3)) (-14 *4 (-1173)) (-4 *3 (-1047)))))
+(-13 (-1238 |#2|) (-614 (-1258 |#1|)) (-10 -8 (-15 -2914 ($ $ (-769) |#2| $))))
+((-4358 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1236 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 (|#4| (-1 |#3| |#1|) |#2|))) (-1047) (-1238 |#1|) (-1047) (-1238 |#3|)) (T -1236))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *2 (-1238 *6)) (-5 *1 (-1236 *5 *4 *6 *2)) (-4 *4 (-1238 *5)))))
+(-10 -7 (-15 -4358 (|#4| (-1 |#3| |#1|) |#2|)))
+((-4159 (((-1262 |#2|) $ (-769)) 129)) (-3802 (((-642 (-1079)) $) 16)) (-3742 (($ (-1169 |#2|)) 80)) (-4055 (((-769) $) NIL) (((-769) $ (-642 (-1079))) 21)) (-2951 (((-418 (-1169 $)) (-1169 $)) 205)) (-4316 (($ $) 195)) (-1978 (((-418 $) $) 193)) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 95)) (-3047 (($ $ (-769)) 84)) (-1537 (($ $ (-769)) 86)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-4278 (((-3 |#2| "failed") $) 132) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-1079) "failed") $) NIL)) (-3027 ((|#2| $) 130) (((-407 (-564)) $) NIL) (((-564) $) NIL) (((-1079) $) NIL)) (-4036 (($ $ $) 171)) (-3437 (((-2 (|:| -4378 |#2|) (|:| -1420 $) (|:| -3045 $)) $ $) 173)) (-1427 (((-769) $ $) 190)) (-3157 (((-3 $ "failed") $) 138)) (-3774 (($ |#2| (-769)) NIL) (($ $ (-1079) (-769)) 59) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-1398 (((-769) $) NIL) (((-769) $ (-1079)) 54) (((-642 (-769)) $ (-642 (-1079))) 55)) (-2099 (((-1169 |#2|) $) 72)) (-4184 (((-3 (-1079) "failed") $) 52)) (-4148 (((-2 (|:| -1420 $) (|:| -3045 $)) $ (-769)) 83)) (-4107 (($ $) 219)) (-3366 (($) 134)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 202)) (-1643 (((-418 (-1169 $)) (-1169 $)) 101)) (-2923 (((-418 (-1169 $)) (-1169 $)) 99)) (-3643 (((-418 $) $) 120)) (-3215 (($ $ (-642 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-642 $) (-642 $)) NIL) (($ $ (-1079) |#2|) 39) (($ $ (-642 (-1079)) (-642 |#2|)) 36) (($ $ (-1079) $) 32) (($ $ (-642 (-1079)) (-642 $)) 30)) (-2048 (((-769) $) 208)) (-4368 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 165) ((|#2| (-407 $) |#2|) 207) (((-407 $) $ (-407 $)) 189)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 212)) (-3175 (($ $ (-1079)) 158) (($ $ (-642 (-1079))) NIL) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL) (($ $ (-769)) NIL) (($ $) 156) (($ $ (-1173)) NIL) (($ $ (-642 (-1173))) NIL) (($ $ (-1173) (-769)) NIL) (($ $ (-642 (-1173)) (-642 (-769))) NIL) (($ $ (-1 |#2| |#2|) (-769)) NIL) (($ $ (-1 |#2| |#2|)) 155) (($ $ (-1 |#2| |#2|) $) 150)) (-2775 (((-769) $) NIL) (((-769) $ (-1079)) 17) (((-642 (-769)) $ (-642 (-1079))) 23)) (-4028 ((|#2| $) NIL) (($ $ (-1079)) 140)) (-2065 (((-3 $ "failed") $ $) 181) (((-3 (-407 $) "failed") (-407 $) $) 177)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1079)) 64) (($ (-407 (-564))) NIL) (($ $) NIL)))
+(((-1237 |#1| |#2|) (-10 -8 (-15 -2327 (|#1| |#1|)) (-15 -2351 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -1978 ((-418 |#1|) |#1|)) (-15 -4316 (|#1| |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -3366 (|#1|)) (-15 -3157 ((-3 |#1| "failed") |#1|)) (-15 -4368 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -2048 ((-769) |#1|)) (-15 -4376 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -4107 (|#1| |#1|)) (-15 -4368 (|#2| (-407 |#1|) |#2|)) (-15 -2486 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3437 ((-2 (|:| -4378 |#2|) (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -2065 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -2065 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1427 ((-769) |#1| |#1|)) (-15 -4368 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1537 (|#1| |#1| (-769))) (-15 -3047 (|#1| |#1| (-769))) (-15 -4148 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| (-769))) (-15 -3742 (|#1| (-1169 |#2|))) (-15 -2099 ((-1169 |#2|) |#1|)) (-15 -4159 ((-1262 |#2|) |#1| (-769))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -4368 (|#1| |#1| |#1|)) (-15 -4368 (|#2| |#1| |#2|)) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -2951 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -2923 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -1643 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -4094 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -4028 (|#1| |#1| (-1079))) (-15 -3802 ((-642 (-1079)) |#1|)) (-15 -4055 ((-769) |#1| (-642 (-1079)))) (-15 -4055 ((-769) |#1|)) (-15 -3774 (|#1| |#1| (-642 (-1079)) (-642 (-769)))) (-15 -3774 (|#1| |#1| (-1079) (-769))) (-15 -1398 ((-642 (-769)) |#1| (-642 (-1079)))) (-15 -1398 ((-769) |#1| (-1079))) (-15 -4184 ((-3 (-1079) "failed") |#1|)) (-15 -2775 ((-642 (-769)) |#1| (-642 (-1079)))) (-15 -2775 ((-769) |#1| (-1079))) (-15 -2327 (|#1| (-1079))) (-15 -4278 ((-3 (-1079) "failed") |#1|)) (-15 -3027 ((-1079) |#1|)) (-15 -3215 (|#1| |#1| (-642 (-1079)) (-642 |#1|))) (-15 -3215 (|#1| |#1| (-1079) |#1|)) (-15 -3215 (|#1| |#1| (-642 (-1079)) (-642 |#2|))) (-15 -3215 (|#1| |#1| (-1079) |#2|)) (-15 -3215 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| (-294 |#1|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -2775 ((-769) |#1|)) (-15 -3774 (|#1| |#2| (-769))) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -1398 ((-769) |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -3175 (|#1| |#1| (-642 (-1079)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1079) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1079)))) (-15 -3175 (|#1| |#1| (-1079))) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|))) (-1238 |#2|) (-1047)) (T -1237))
+NIL
+(-10 -8 (-15 -2327 (|#1| |#1|)) (-15 -2351 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -1978 ((-418 |#1|) |#1|)) (-15 -4316 (|#1| |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -3366 (|#1|)) (-15 -3157 ((-3 |#1| "failed") |#1|)) (-15 -4368 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -2048 ((-769) |#1|)) (-15 -4376 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -4107 (|#1| |#1|)) (-15 -4368 (|#2| (-407 |#1|) |#2|)) (-15 -2486 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3437 ((-2 (|:| -4378 |#2|) (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -2065 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -2065 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1427 ((-769) |#1| |#1|)) (-15 -4368 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1537 (|#1| |#1| (-769))) (-15 -3047 (|#1| |#1| (-769))) (-15 -4148 ((-2 (|:| -1420 |#1|) (|:| -3045 |#1|)) |#1| (-769))) (-15 -3742 (|#1| (-1169 |#2|))) (-15 -2099 ((-1169 |#2|) |#1|)) (-15 -4159 ((-1262 |#2|) |#1| (-769))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3175 (|#1| |#1| (-1 |#2| |#2|) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1173) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1173)))) (-15 -3175 (|#1| |#1| (-1173))) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-769))) (-15 -4368 (|#1| |#1| |#1|)) (-15 -4368 (|#2| |#1| |#2|)) (-15 -3643 ((-418 |#1|) |#1|)) (-15 -2951 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -2923 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -1643 ((-418 (-1169 |#1|)) (-1169 |#1|))) (-15 -4094 ((-3 (-642 (-1169 |#1|)) "failed") (-642 (-1169 |#1|)) (-1169 |#1|))) (-15 -4028 (|#1| |#1| (-1079))) (-15 -3802 ((-642 (-1079)) |#1|)) (-15 -4055 ((-769) |#1| (-642 (-1079)))) (-15 -4055 ((-769) |#1|)) (-15 -3774 (|#1| |#1| (-642 (-1079)) (-642 (-769)))) (-15 -3774 (|#1| |#1| (-1079) (-769))) (-15 -1398 ((-642 (-769)) |#1| (-642 (-1079)))) (-15 -1398 ((-769) |#1| (-1079))) (-15 -4184 ((-3 (-1079) "failed") |#1|)) (-15 -2775 ((-642 (-769)) |#1| (-642 (-1079)))) (-15 -2775 ((-769) |#1| (-1079))) (-15 -2327 (|#1| (-1079))) (-15 -4278 ((-3 (-1079) "failed") |#1|)) (-15 -3027 ((-1079) |#1|)) (-15 -3215 (|#1| |#1| (-642 (-1079)) (-642 |#1|))) (-15 -3215 (|#1| |#1| (-1079) |#1|)) (-15 -3215 (|#1| |#1| (-642 (-1079)) (-642 |#2|))) (-15 -3215 (|#1| |#1| (-1079) |#2|)) (-15 -3215 (|#1| |#1| (-642 |#1|) (-642 |#1|))) (-15 -3215 (|#1| |#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| (-294 |#1|))) (-15 -3215 (|#1| |#1| (-642 (-294 |#1|)))) (-15 -2775 ((-769) |#1|)) (-15 -3774 (|#1| |#2| (-769))) (-15 -4278 ((-3 (-564) "failed") |#1|)) (-15 -3027 ((-564) |#1|)) (-15 -4278 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3027 ((-407 (-564)) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -4278 ((-3 |#2| "failed") |#1|)) (-15 -2327 (|#1| |#2|)) (-15 -1398 ((-769) |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -3175 (|#1| |#1| (-642 (-1079)) (-642 (-769)))) (-15 -3175 (|#1| |#1| (-1079) (-769))) (-15 -3175 (|#1| |#1| (-642 (-1079)))) (-15 -3175 (|#1| |#1| (-1079))) (-15 -2327 (|#1| (-564))) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4159 (((-1262 |#1|) $ (-769)) 240)) (-3802 (((-642 (-1079)) $) 112)) (-3742 (($ (-1169 |#1|)) 238)) (-3615 (((-1169 $) $ (-1079)) 127) (((-1169 |#1|) $) 126)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 89 (|has| |#1| (-556)))) (-1387 (($ $) 90 (|has| |#1| (-556)))) (-2037 (((-112) $) 92 (|has| |#1| (-556)))) (-4055 (((-769) $) 114) (((-769) $ (-642 (-1079))) 113)) (-1532 (((-3 $ "failed") $ $) 20)) (-1804 (($ $ $) 225 (|has| |#1| (-556)))) (-2951 (((-418 (-1169 $)) (-1169 $)) 102 (|has| |#1| (-907)))) (-4316 (($ $) 100 (|has| |#1| (-452)))) (-1978 (((-418 $) $) 99 (|has| |#1| (-452)))) (-4094 (((-3 (-642 (-1169 $)) "failed") (-642 (-1169 $)) (-1169 $)) 105 (|has| |#1| (-907)))) (-4010 (((-112) $ $) 210 (|has| |#1| (-363)))) (-3047 (($ $ (-769)) 233)) (-1537 (($ $ (-769)) 232)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-452)))) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#1| "failed") $) 166) (((-3 (-407 (-564)) "failed") $) 163 (|has| |#1| (-1036 (-407 (-564))))) (((-3 (-564) "failed") $) 161 (|has| |#1| (-1036 (-564)))) (((-3 (-1079) "failed") $) 138)) (-3027 ((|#1| $) 165) (((-407 (-564)) $) 164 (|has| |#1| (-1036 (-407 (-564))))) (((-564) $) 162 (|has| |#1| (-1036 (-564)))) (((-1079) $) 139)) (-2022 (($ $ $ (-1079)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2845 (($ $ $) 214 (|has| |#1| (-363)))) (-1718 (($ $) 156)) (-4315 (((-687 (-564)) (-687 $)) 136 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 (-564))) (|:| |vec| (-1262 (-564)))) (-687 $) (-1262 $)) 135 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1780 (-687 |#1|)) (|:| |vec| (-1262 |#1|))) (-687 $) (-1262 $)) 134) (((-687 |#1|) (-687 $)) 133)) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 213 (|has| |#1| (-363)))) (-1307 (($ $ $) 231)) (-4036 (($ $ $) 222 (|has| |#1| (-556)))) (-3437 (((-2 (|:| -4378 |#1|) (|:| -1420 $) (|:| -3045 $)) $ $) 221 (|has| |#1| (-556)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 208 (|has| |#1| (-363)))) (-3246 (($ $) 178 (|has| |#1| (-452))) (($ $ (-1079)) 107 (|has| |#1| (-452)))) (-3974 (((-642 $) $) 111)) (-1469 (((-112) $) 98 (|has| |#1| (-907)))) (-2575 (($ $ |#1| (-769) $) 174)) (-2453 (((-887 (-379) $) $ (-890 (-379)) (-887 (-379) $)) 86 (-12 (|has| (-1079) (-884 (-379))) (|has| |#1| (-884 (-379))))) (((-887 (-564) $) $ (-890 (-564)) (-887 (-564) $)) 85 (-12 (|has| (-1079) (-884 (-564))) (|has| |#1| (-884 (-564)))))) (-1427 (((-769) $ $) 226 (|has| |#1| (-556)))) (-3953 (((-112) $) 35)) (-3934 (((-769) $) 171)) (-3157 (((-3 $ "failed") $) 206 (|has| |#1| (-1148)))) (-3790 (($ (-1169 |#1|) (-1079)) 119) (($ (-1169 $) (-1079)) 118)) (-3267 (($ $ (-769)) 237)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 217 (|has| |#1| (-363)))) (-1763 (((-642 $) $) 128)) (-2316 (((-112) $) 154)) (-3774 (($ |#1| (-769)) 155) (($ $ (-1079) (-769)) 121) (($ $ (-642 (-1079)) (-642 (-769))) 120)) (-3504 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $ (-1079)) 122) (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 235)) (-1398 (((-769) $) 172) (((-769) $ (-1079)) 124) (((-642 (-769)) $ (-642 (-1079))) 123)) (-2026 (($ (-1 (-769) (-769)) $) 173)) (-4358 (($ (-1 |#1| |#1|) $) 153)) (-2099 (((-1169 |#1|) $) 239)) (-4184 (((-3 (-1079) "failed") $) 125)) (-3950 (($ $) 151)) (-3962 ((|#1| $) 150)) (-2049 (($ (-642 $)) 96 (|has| |#1| (-452))) (($ $ $) 95 (|has| |#1| (-452)))) (-3315 (((-1155) $) 10)) (-4148 (((-2 (|:| -1420 $) (|:| -3045 $)) $ (-769)) 234)) (-1572 (((-3 (-642 $) "failed") $) 116)) (-1802 (((-3 (-642 $) "failed") $) 117)) (-3611 (((-3 (-2 (|:| |var| (-1079)) (|:| -2700 (-769))) "failed") $) 115)) (-4107 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-3366 (($) 205 (|has| |#1| (-1148)) CONST)) (-4033 (((-1117) $) 11)) (-3921 (((-112) $) 168)) (-3932 ((|#1| $) 169)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 97 (|has| |#1| (-452)))) (-2080 (($ (-642 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1643 (((-418 (-1169 $)) (-1169 $)) 104 (|has| |#1| (-907)))) (-2923 (((-418 (-1169 $)) (-1169 $)) 103 (|has| |#1| (-907)))) (-3643 (((-418 $) $) 101 (|has| |#1| (-907)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 215 (|has| |#1| (-363)))) (-2896 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 209 (|has| |#1| (-363)))) (-3215 (($ $ (-642 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-642 $) (-642 $)) 144) (($ $ (-1079) |#1|) 143) (($ $ (-642 (-1079)) (-642 |#1|)) 142) (($ $ (-1079) $) 141) (($ $ (-642 (-1079)) (-642 $)) 140)) (-2048 (((-769) $) 211 (|has| |#1| (-363)))) (-4368 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-407 $) (-407 $) (-407 $)) 227 (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) 219 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 207 (|has| |#1| (-556)))) (-2863 (((-3 $ "failed") $ (-769)) 236)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 212 (|has| |#1| (-363)))) (-1846 (($ $ (-1079)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-3175 (($ $ (-1079)) 46) (($ $ (-642 (-1079))) 45) (($ $ (-1079) (-769)) 44) (($ $ (-642 (-1079)) (-642 (-769))) 43) (($ $ (-769)) 255) (($ $) 253) (($ $ (-1173)) 252 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 251 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 250 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 249 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-2775 (((-769) $) 152) (((-769) $ (-1079)) 132) (((-642 (-769)) $ (-642 (-1079))) 131)) (-1314 (((-890 (-379)) $) 84 (-12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379)))))) (((-890 (-564)) $) 83 (-12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564)))))) (((-536) $) 82 (-12 (|has| (-1079) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4028 ((|#1| $) 177 (|has| |#1| (-452))) (($ $ (-1079)) 108 (|has| |#1| (-452)))) (-3637 (((-3 (-1262 $) "failed") (-687 $)) 106 (-2275 (|has| $ (-145)) (|has| |#1| (-907))))) (-2065 (((-3 $ "failed") $ $) 224 (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) 223 (|has| |#1| (-556)))) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 167) (($ (-1079)) 137) (($ (-407 (-564))) 80 (-2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 87 (|has| |#1| (-556)))) (-3849 (((-642 |#1|) $) 170)) (-2102 ((|#1| $ (-769)) 157) (($ $ (-1079) (-769)) 130) (($ $ (-642 (-1079)) (-642 (-769))) 129)) (-2439 (((-3 $ "failed") $) 81 (-2706 (-2275 (|has| $ (-145)) (|has| |#1| (-907))) (|has| |#1| (-145))))) (-2756 (((-769)) 32 T CONST)) (-1967 (($ $ $ (-769)) 175 (|has| |#1| (-172)))) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 91 (|has| |#1| (-556)))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-1079)) 42) (($ $ (-642 (-1079))) 41) (($ $ (-1079) (-769)) 40) (($ $ (-642 (-1079)) (-642 (-769))) 39) (($ $ (-769)) 256) (($ $) 254) (($ $ (-1173)) 248 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173))) 247 (|has| |#1| (-898 (-1173)))) (($ $ (-1173) (-769)) 246 (|has| |#1| (-898 (-1173)))) (($ $ (-642 (-1173)) (-642 (-769))) 245 (|has| |#1| (-898 (-1173)))) (($ $ (-1 |#1| |#1|) (-769)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 158 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 160 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 159 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-1238 |#1|) (-140) (-1047)) (T -1238))
+((-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-1238 *4)) (-4 *4 (-1047)) (-5 *2 (-1262 *4)))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-5 *2 (-1169 *3)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1047)) (-4 *1 (-1238 *3)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) (-2863 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) (-3504 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-1238 *3)))) (-4148 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *4 (-1047)) (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-1238 *4)))) (-3047 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) (-1537 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) (-1307 (*1 *1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)))) (-3175 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-172)))) (-2022 (*1 *2 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-172)))) (-4368 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-4 *3 (-556)))) (-1427 (*1 *2 *1 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-4 *3 (-556)) (-5 *2 (-769)))) (-1804 (*1 *1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))) (-2065 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))) (-2065 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-4 *3 (-556)))) (-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))) (-3437 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -4378 *3) (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-1238 *3)))) (-2486 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1238 *3)))) (-4368 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-4107 (*1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))))
+(-13 (-947 |t#1| (-769) (-1079)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4159 ((-1262 |t#1|) $ (-769))) (-15 -2099 ((-1169 |t#1|) $)) (-15 -3742 ($ (-1169 |t#1|))) (-15 -3267 ($ $ (-769))) (-15 -2863 ((-3 $ "failed") $ (-769))) (-15 -3504 ((-2 (|:| -1420 $) (|:| -3045 $)) $ $)) (-15 -4148 ((-2 (|:| -1420 $) (|:| -3045 $)) $ (-769))) (-15 -3047 ($ $ (-769))) (-15 -1537 ($ $ (-769))) (-15 -1307 ($ $ $)) (-15 -3175 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1148)) (-6 (-1148)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -1846 (|t#1| $)) (-15 -2022 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -4368 ((-407 $) (-407 $) (-407 $))) (-15 -1427 ((-769) $ $)) (-15 -1804 ($ $ $)) (-15 -2065 ((-3 $ "failed") $ $)) (-15 -2065 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -4036 ($ $ $)) (-15 -3437 ((-2 (|:| -4378 |t#1|) (|:| -1420 $) (|:| -3045 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -2486 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4406) (-15 -4368 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-15 -4107 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-769)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2706 (|has| |#1| (-1036 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1079)) . T) ((-614 |#1|) . T) ((-614 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| (-1079) (-612 (-536))) (|has| |#1| (-612 (-536)))) ((-612 (-890 (-379))) -12 (|has| (-1079) (-612 (-890 (-379)))) (|has| |#1| (-612 (-890 (-379))))) ((-612 (-890 (-564))) -12 (|has| (-1079) (-612 (-890 (-564)))) (|has| |#1| (-612 (-890 (-564))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-556)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2706 (|has| |#1| (-907)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-556) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-715 #1#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-724) . T) ((-898 #2#) . T) ((-898 (-1173)) |has| |#1| (-898 (-1173))) ((-884 (-379)) -12 (|has| (-1079) (-884 (-379))) (|has| |#1| (-884 (-379)))) ((-884 (-564)) -12 (|has| (-1079) (-884 (-564))) (|has| |#1| (-884 (-564)))) ((-947 |#1| #0# #2#) . T) ((-907) |has| |#1| (-907)) ((-918) |has| |#1| (-363)) ((-1036 (-407 (-564))) |has| |#1| (-1036 (-407 (-564)))) ((-1036 (-564)) |has| |#1| (-1036 (-564))) ((-1036 #2#) . T) ((-1036 |#1|) . T) ((-1049 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1054 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-907)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1148) |has| |#1| (-1148)) ((-1216) |has| |#1| (-907)))
+((-3802 (((-642 (-1079)) $) 34)) (-1718 (($ $) 31)) (-3774 (($ |#2| |#3|) NIL) (($ $ (-1079) |#3|) 28) (($ $ (-642 (-1079)) (-642 |#3|)) 27)) (-3950 (($ $) 14)) (-3962 ((|#2| $) 12)) (-2775 ((|#3| $) 10)))
+(((-1239 |#1| |#2| |#3|) (-10 -8 (-15 -3802 ((-642 (-1079)) |#1|)) (-15 -3774 (|#1| |#1| (-642 (-1079)) (-642 |#3|))) (-15 -3774 (|#1| |#1| (-1079) |#3|)) (-15 -1718 (|#1| |#1|)) (-15 -3774 (|#1| |#2| |#3|)) (-15 -2775 (|#3| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 -3962 (|#2| |#1|))) (-1240 |#2| |#3|) (-1047) (-790)) (T -1239))
+NIL
+(-10 -8 (-15 -3802 ((-642 (-1079)) |#1|)) (-15 -3774 (|#1| |#1| (-642 (-1079)) (-642 |#3|))) (-15 -3774 (|#1| |#1| (-1079) |#3|)) (-15 -1718 (|#1| |#1|)) (-15 -3774 (|#1| |#2| |#3|)) (-15 -2775 (|#3| |#1|)) (-15 -3950 (|#1| |#1|)) (-15 -3962 (|#2| |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3802 (((-642 (-1079)) $) 86)) (-3329 (((-1173) $) 115)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-1387 (($ $) 64 (|has| |#1| (-556)))) (-2037 (((-112) $) 66 (|has| |#1| (-556)))) (-1726 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-2674 (((-1153 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-1718 (($ $) 72)) (-3104 (((-3 $ "failed") $) 37)) (-1941 (((-112) $) 85)) (-1427 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-3953 (((-112) $) 35)) (-3267 (($ $ (-919)) 113)) (-2316 (((-112) $) 74)) (-3774 (($ |#1| |#2|) 73) (($ $ (-1079) |#2|) 88) (($ $ (-642 (-1079)) (-642 |#2|)) 87)) (-4358 (($ (-1 |#1| |#1|) $) 75)) (-3950 (($ $) 77)) (-3962 ((|#1| $) 78)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3804 (($ $ |#2|) 107)) (-2896 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-3215 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4368 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1109)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) 101 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1173) (-769)) 100 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-642 (-1173))) 99 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1173)) 98 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-769)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2775 ((|#2| $) 76)) (-4318 (($ $) 84)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2102 ((|#1| $ |#2|) 71)) (-2439 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-3594 ((|#1| $) 114)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3601 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) 105 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1173) (-769)) 104 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-642 (-1173))) 103 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1173)) 102 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-769)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 70 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564)))))))
+(((-1240 |#1| |#2|) (-140) (-1047) (-790)) (T -1240))
+((-2674 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-1153 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4368 (*1 *2 *1 *3) (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (-5 *2 (-1173)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-1427 (*1 *2 *1 *2) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-1726 (*1 *1 *1 *2) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-1726 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-3601 (*1 *2 *1 *3) (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2327 (*2 (-1173)))) (-4 *2 (-1047)))) (-3804 (*1 *1 *1 *2) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))) (-3215 (*1 *2 *1 *3) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1153 *3)))))
+(-13 (-971 |t#1| |t#2| (-1079)) (-10 -8 (-15 -2674 ((-1153 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4368 (|t#1| $ |t#2|)) (-15 -3329 ((-1173) $)) (-15 -3594 (|t#1| $)) (-15 -3267 ($ $ (-919))) (-15 -1427 (|t#2| $)) (-15 -1427 (|t#2| $ |t#2|)) (-15 -1726 ($ $ |t#2|)) (-15 -1726 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2327 (|t#1| (-1173)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3601 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3804 ($ $ |t#2|)) (IF (|has| |t#2| (-1109)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-898 (-1173))) (-6 (-898 (-1173))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3215 ((-1153 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1109)) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #0#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-898 (-1173)))) ((-971 |#1| |#2| (-1079)) . T) ((-1049 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-4316 ((|#2| |#2|) 12)) (-1978 (((-418 |#2|) |#2|) 14)) (-3120 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))) 30)))
+(((-1241 |#1| |#2|) (-10 -7 (-15 -1978 ((-418 |#2|) |#2|)) (-15 -4316 (|#2| |#2|)) (-15 -3120 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) (-556) (-13 (-1238 |#1|) (-556) (-10 -8 (-15 -2080 ($ $ $))))) (T -1241))
+((-3120 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-564)))) (-4 *4 (-13 (-1238 *3) (-556) (-10 -8 (-15 -2080 ($ $ $))))) (-4 *3 (-556)) (-5 *1 (-1241 *3 *4)))) (-4316 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-1238 *3) (-556) (-10 -8 (-15 -2080 ($ $ $))))))) (-1978 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1241 *4 *3)) (-4 *3 (-13 (-1238 *4) (-556) (-10 -8 (-15 -2080 ($ $ $))))))))
+(-10 -7 (-15 -1978 ((-418 |#2|) |#2|)) (-15 -4316 (|#2| |#2|)) (-15 -3120 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))))))
+((-4358 (((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)) 24)))
+(((-1242 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4358 ((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)))) (-1047) (-1047) (-1173) (-1173) |#1| |#2|) (T -1242))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5 *7 *9)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-14 *7 (-1173)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1247 *6 *8 *10)) (-5 *1 (-1242 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1173)))))
+(-10 -7 (-15 -4358 ((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3802 (((-642 (-1079)) $) 86)) (-3329 (((-1173) $) 115)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-1387 (($ $) 64 (|has| |#1| (-556)))) (-2037 (((-112) $) 66 (|has| |#1| (-556)))) (-1726 (($ $ (-407 (-564))) 110) (($ $ (-407 (-564)) (-407 (-564))) 109)) (-2674 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 117)) (-3851 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 174 (|has| |#1| (-363)))) (-1978 (((-418 $) $) 175 (|has| |#1| (-363)))) (-3655 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-4010 (((-112) $ $) 165 (|has| |#1| (-363)))) (-3827 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 183)) (-3875 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) 18 T CONST)) (-2845 (($ $ $) 169 (|has| |#1| (-363)))) (-1718 (($ $) 72)) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 168 (|has| |#1| (-363)))) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 163 (|has| |#1| (-363)))) (-1469 (((-112) $) 176 (|has| |#1| (-363)))) (-1941 (((-112) $) 85)) (-4265 (($) 157 (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-407 (-564)) $) 112) (((-407 (-564)) $ (-407 (-564))) 111)) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3267 (($ $ (-919)) 113) (($ $ (-407 (-564))) 182)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 172 (|has| |#1| (-363)))) (-2316 (((-112) $) 74)) (-3774 (($ |#1| (-407 (-564))) 73) (($ $ (-1079) (-407 (-564))) 88) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) 87)) (-4358 (($ (-1 |#1| |#1|) $) 75)) (-3612 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) 77)) (-3962 ((|#1| $) 78)) (-2049 (($ (-642 $)) 161 (|has| |#1| (-363))) (($ $ $) 160 (|has| |#1| (-363)))) (-3315 (((-1155) $) 10)) (-3911 (($ $) 177 (|has| |#1| (-363)))) (-4107 (($ $) 181 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 180 (-2706 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-957)) (|has| |#1| (-1197)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-38 (-407 (-564)))))))) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 162 (|has| |#1| (-363)))) (-2080 (($ (-642 $)) 159 (|has| |#1| (-363))) (($ $ $) 158 (|has| |#1| (-363)))) (-3643 (((-418 $) $) 173 (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 170 (|has| |#1| (-363)))) (-3804 (($ $ (-407 (-564))) 107)) (-2896 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 164 (|has| |#1| (-363)))) (-1723 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-2048 (((-769) $) 166 (|has| |#1| (-363)))) (-4368 ((|#1| $ (-407 (-564))) 116) (($ $ $) 93 (|has| (-407 (-564)) (-1109)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 167 (|has| |#1| (-363)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) 101 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173) (-769)) 100 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-642 (-1173))) 99 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173)) 98 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-769)) 96 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2775 (((-407 (-564)) $) 76)) (-3888 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) 84)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556)))) (-2102 ((|#1| $ (-407 (-564))) 71)) (-2439 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-3594 ((|#1| $) 114)) (-1648 (((-112) $ $) 9)) (-3926 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3900 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-407 (-564))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) 105 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173) (-769)) 104 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-642 (-1173))) 103 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173)) 102 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-769)) 97 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 70 (|has| |#1| (-363))) (($ $ $) 179 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 178 (|has| |#1| (-363))) (($ $ $) 156 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564)))))))
+(((-1243 |#1|) (-140) (-1047)) (T -1243))
+((-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *3 (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) (-4 *4 (-1047)) (-4 *1 (-1243 *4)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1243 *3)) (-4 *3 (-1047)))) (-4107 (*1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))) (-4107 (*1 *1 *1 *2) (-2706 (-12 (-5 *2 (-1173)) (-4 *1 (-1243 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1173)) (-4 *1 (-1243 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -3802 ((-642 *2) *3))) (|has| *3 (-15 -4107 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
+(-13 (-1240 |t#1| (-407 (-564))) (-10 -8 (-15 -2707 ($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |t#1|))))) (-15 -3267 ($ $ (-407 (-564)))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ($ $)) (IF (|has| |t#1| (-15 -4107 (|t#1| |t#1| (-1173)))) (IF (|has| |t#1| (-15 -3802 ((-642 (-1173)) |t#1|))) (-15 -4107 ($ $ (-1173))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1197)) (IF (|has| |t#1| (-957)) (IF (|has| |t#1| (-29 (-564))) (-15 -4107 ($ $ (-1173))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1000)) (-6 (-1197))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1109)) ((-290) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-715 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173)))) ((-971 |#1| #0# (-1079)) . T) ((-918) |has| |#1| (-363)) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1049 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1054 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))) ((-1216) |has| |#1| (-363)) ((-1240 |#1| #0#) . T))
+((-2952 (((-112) $) 12)) (-4278 (((-3 |#3| "failed") $) 17)) (-3027 ((|#3| $) 14)))
+(((-1244 |#1| |#2| |#3|) (-10 -8 (-15 -4278 ((-3 |#3| "failed") |#1|)) (-15 -3027 (|#3| |#1|)) (-15 -2952 ((-112) |#1|))) (-1245 |#2| |#3|) (-1047) (-1222 |#2|)) (T -1244))
+NIL
+(-10 -8 (-15 -4278 ((-3 |#3| "failed") |#1|)) (-15 -3027 (|#3| |#1|)) (-15 -2952 ((-112) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3802 (((-642 (-1079)) $) 86)) (-3329 (((-1173) $) 115)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-1387 (($ $) 64 (|has| |#1| (-556)))) (-2037 (((-112) $) 66 (|has| |#1| (-556)))) (-1726 (($ $ (-407 (-564))) 110) (($ $ (-407 (-564)) (-407 (-564))) 109)) (-2674 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 117)) (-3851 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 174 (|has| |#1| (-363)))) (-1978 (((-418 $) $) 175 (|has| |#1| (-363)))) (-3655 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-4010 (((-112) $ $) 165 (|has| |#1| (-363)))) (-3827 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 183)) (-3875 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#2| "failed") $) 194)) (-3027 ((|#2| $) 195)) (-2845 (($ $ $) 169 (|has| |#1| (-363)))) (-1718 (($ $) 72)) (-3104 (((-3 $ "failed") $) 37)) (-2169 (((-407 (-564)) $) 191)) (-2859 (($ $ $) 168 (|has| |#1| (-363)))) (-3889 (($ (-407 (-564)) |#2|) 192)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 163 (|has| |#1| (-363)))) (-1469 (((-112) $) 176 (|has| |#1| (-363)))) (-1941 (((-112) $) 85)) (-4265 (($) 157 (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-407 (-564)) $) 112) (((-407 (-564)) $ (-407 (-564))) 111)) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3267 (($ $ (-919)) 113) (($ $ (-407 (-564))) 182)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 172 (|has| |#1| (-363)))) (-2316 (((-112) $) 74)) (-3774 (($ |#1| (-407 (-564))) 73) (($ $ (-1079) (-407 (-564))) 88) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) 87)) (-4358 (($ (-1 |#1| |#1|) $) 75)) (-3612 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) 77)) (-3962 ((|#1| $) 78)) (-2049 (($ (-642 $)) 161 (|has| |#1| (-363))) (($ $ $) 160 (|has| |#1| (-363)))) (-2440 ((|#2| $) 190)) (-2228 (((-3 |#2| "failed") $) 188)) (-3876 ((|#2| $) 189)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 177 (|has| |#1| (-363)))) (-4107 (($ $) 181 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 180 (-2706 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-957)) (|has| |#1| (-1197)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-38 (-407 (-564)))))))) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 162 (|has| |#1| (-363)))) (-2080 (($ (-642 $)) 159 (|has| |#1| (-363))) (($ $ $) 158 (|has| |#1| (-363)))) (-3643 (((-418 $) $) 173 (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 170 (|has| |#1| (-363)))) (-3804 (($ $ (-407 (-564))) 107)) (-2896 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 164 (|has| |#1| (-363)))) (-1723 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-2048 (((-769) $) 166 (|has| |#1| (-363)))) (-4368 ((|#1| $ (-407 (-564))) 116) (($ $ $) 93 (|has| (-407 (-564)) (-1109)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 167 (|has| |#1| (-363)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) 101 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173) (-769)) 100 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-642 (-1173))) 99 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173)) 98 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-769)) 96 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2775 (((-407 (-564)) $) 76)) (-3888 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) 84)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556)))) (-2102 ((|#1| $ (-407 (-564))) 71)) (-2439 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-3594 ((|#1| $) 114)) (-1648 (((-112) $ $) 9)) (-3926 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3900 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-407 (-564))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) 105 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173) (-769)) 104 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-642 (-1173))) 103 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1173)) 102 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-769)) 97 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 70 (|has| |#1| (-363))) (($ $ $) 179 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 178 (|has| |#1| (-363))) (($ $ $) 156 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564)))))))
+(((-1245 |#1| |#2|) (-140) (-1047) (-1222 |t#1|)) (T -1245))
+((-2775 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1222 *3)) (-5 *2 (-407 (-564))))) (-3889 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1047)) (-4 *1 (-1245 *4 *3)) (-4 *3 (-1222 *4)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1222 *3)) (-5 *2 (-407 (-564))))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1222 *3)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1222 *3)))) (-2228 (*1 *2 *1) (|partial| -12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1222 *3)))))
+(-13 (-1243 |t#1|) (-1036 |t#2|) (-614 |t#2|) (-10 -8 (-15 -3889 ($ (-407 (-564)) |t#2|)) (-15 -2169 ((-407 (-564)) $)) (-15 -2440 (|t#2| $)) (-15 -2775 ((-407 (-564)) $)) (-15 -3876 (|t#2| $)) (-15 -2228 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1109)) ((-290) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-715 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173)))) ((-971 |#1| #0# (-1079)) . T) ((-918) |has| |#1| (-363)) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1036 |#2|) . T) ((-1049 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1054 #1#) -2706 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))) ((-1216) |has| |#1| (-363)) ((-1240 |#1| #0#) . T) ((-1243 |#1|) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) 104)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1726 (($ $ (-407 (-564))) 116) (($ $ (-407 (-564)) (-407 (-564))) 118)) (-2674 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 54)) (-3851 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL (|has| |#1| (-363)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3827 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 65)) (-3875 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) NIL)) (-3027 ((|#2| $) NIL)) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) 85)) (-2169 (((-407 (-564)) $) 13)) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-3889 (($ (-407 (-564)) |#2|) 11)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1469 (((-112) $) NIL (|has| |#1| (-363)))) (-1941 (((-112) $) 74)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-407 (-564)) $) 113) (((-407 (-564)) $ (-407 (-564))) 114)) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3267 (($ $ (-919)) 130) (($ $ (-407 (-564))) 128)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-407 (-564))) 33) (($ $ (-1079) (-407 (-564))) NIL) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) NIL)) (-4358 (($ (-1 |#1| |#1|) $) 125)) (-3612 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2440 ((|#2| $) 12)) (-2228 (((-3 |#2| "failed") $) 44)) (-3876 ((|#2| $) 45)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) 101 (|has| |#1| (-363)))) (-4107 (($ $) 146 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 151 (-2706 (-12 (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197)))))) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3804 (($ $ (-407 (-564))) 122)) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1723 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ (-407 (-564))) 108) (($ $ $) 94 (|has| (-407 (-564)) (-1109)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) 138 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2775 (((-407 (-564)) $) 16)) (-3888 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) 120)) (-2327 (((-860) $) NIL) (($ (-564)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-407 (-564))) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2102 ((|#1| $ (-407 (-564))) 107)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) 127 T CONST)) (-3594 ((|#1| $) 106)) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 21 T CONST)) (-2322 (($) 17 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2872 (((-112) $ $) 72)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-2987 (($ $) 142) (($ $ $) 78)) (-2974 (($ $ $) 76)) (** (($ $ (-919)) NIL) (($ $ (-769)) 82) (($ $ (-564)) 157 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1246 |#1| |#2|) (-1245 |#1| |#2|) (-1047) (-1222 |#1|)) (T -1246))
+NIL
+(-1245 |#1| |#2|)
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) 11)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) NIL (|has| |#1| (-556)))) (-1726 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-2674 (((-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3851 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-4316 (($ $) NIL (|has| |#1| (-363)))) (-1978 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4010 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-769) (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3875 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-1226 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1254 |#1| |#2| |#3|) "failed") $) 22)) (-3027 (((-1226 |#1| |#2| |#3|) $) NIL) (((-1254 |#1| |#2| |#3|) $) NIL)) (-2845 (($ $ $) NIL (|has| |#1| (-363)))) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2169 (((-407 (-564)) $) 69)) (-2859 (($ $ $) NIL (|has| |#1| (-363)))) (-3889 (($ (-407 (-564)) (-1226 |#1| |#2| |#3|)) NIL)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) NIL (|has| |#1| (-363)))) (-1469 (((-112) $) NIL (|has| |#1| (-363)))) (-1941 (((-112) $) NIL)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-3953 (((-112) $) NIL)) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3267 (($ $ (-919)) NIL) (($ $ (-407 (-564))) NIL)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-407 (-564))) 30) (($ $ (-1079) (-407 (-564))) NIL) (($ $ (-642 (-1079)) (-642 (-407 (-564)))) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-2049 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2440 (((-1226 |#1| |#2| |#3|) $) 72)) (-2228 (((-3 (-1226 |#1| |#2| |#3|) "failed") $) NIL)) (-3876 (((-1226 |#1| |#2| |#3|) $) NIL)) (-3315 (((-1155) $) NIL)) (-3911 (($ $) NIL (|has| |#1| (-363)))) (-4107 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) NIL (-2706 (-12 (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-4033 (((-1117) $) NIL)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) NIL (|has| |#1| (-363)))) (-2080 (($ (-642 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3643 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3883 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) NIL (|has| |#1| (-363)))) (-3804 (($ $ (-407 (-564))) NIL)) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1542 (((-3 (-642 $) "failed") (-642 $) $) NIL (|has| |#1| (-363)))) (-1723 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-2048 (((-769) $) NIL (|has| |#1| (-363)))) (-4368 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1109)))) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) NIL (|has| |#1| (-363)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1258 |#2|)) 38)) (-2775 (((-407 (-564)) $) NIL)) (-3888 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) NIL)) (-2327 (((-860) $) 109) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1226 |#1| |#2| |#3|)) 16) (($ (-1254 |#1| |#2| |#3|)) 17) (($ (-1258 |#2|)) 36) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2102 ((|#1| $ (-407 (-564))) NIL)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-3594 ((|#1| $) 12)) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-407 (-564))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 32 T CONST)) (-2322 (($) 26 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 34)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1247 |#1| |#2| |#3|) (-13 (-1245 |#1| (-1226 |#1| |#2| |#3|)) (-1036 (-1254 |#1| |#2| |#3|)) (-614 (-1258 |#2|)) (-10 -8 (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1247))
+((-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))))
+(-13 (-1245 |#1| (-1226 |#1| |#2| |#3|)) (-1036 (-1254 |#1| |#2| |#3|)) (-614 (-1258 |#2|)) (-10 -8 (-15 -3175 ($ $ (-1258 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 37)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL)) (-1387 (($ $) NIL)) (-2037 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 (-564) "failed") $) NIL (|has| (-1247 |#2| |#3| |#4|) (-1036 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1247 |#2| |#3| |#4|) (-1036 (-407 (-564))))) (((-3 (-1247 |#2| |#3| |#4|) "failed") $) 22)) (-3027 (((-564) $) NIL (|has| (-1247 |#2| |#3| |#4|) (-1036 (-564)))) (((-407 (-564)) $) NIL (|has| (-1247 |#2| |#3| |#4|) (-1036 (-407 (-564))))) (((-1247 |#2| |#3| |#4|) $) NIL)) (-1718 (($ $) 41)) (-3104 (((-3 $ "failed") $) 27)) (-3246 (($ $) NIL (|has| (-1247 |#2| |#3| |#4|) (-452)))) (-2575 (($ $ (-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) 11)) (-2316 (((-112) $) NIL)) (-3774 (($ (-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 25)) (-1398 (((-319 |#2| |#3| |#4|) $) NIL)) (-2026 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-4358 (($ (-1 (-1247 |#2| |#3| |#4|) (-1247 |#2| |#3| |#4|)) $) NIL)) (-2410 (((-3 (-841 |#2|) "failed") $) 91)) (-3950 (($ $) NIL)) (-3962 (((-1247 |#2| |#3| |#4|) $) 20)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-3921 (((-112) $) NIL)) (-3932 (((-1247 |#2| |#3| |#4|) $) NIL)) (-2896 (((-3 $ "failed") $ (-1247 |#2| |#3| |#4|)) NIL (|has| (-1247 |#2| |#3| |#4|) (-556))) (((-3 $ "failed") $ $) NIL)) (-2318 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1247 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-642 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1155))) "failed") $) 73)) (-2775 (((-319 |#2| |#3| |#4|) $) 17)) (-4028 (((-1247 |#2| |#3| |#4|) $) NIL (|has| (-1247 |#2| |#3| |#4|) (-452)))) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ (-1247 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL (-2706 (|has| (-1247 |#2| |#3| |#4|) (-38 (-407 (-564)))) (|has| (-1247 |#2| |#3| |#4|) (-1036 (-407 (-564))))))) (-3849 (((-642 (-1247 |#2| |#3| |#4|)) $) NIL)) (-2102 (((-1247 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-2439 (((-3 $ "failed") $) NIL (|has| (-1247 |#2| |#3| |#4|) (-145)))) (-2756 (((-769)) NIL T CONST)) (-1967 (($ $ $ (-769)) NIL (|has| (-1247 |#2| |#3| |#4|) (-172)))) (-1648 (((-112) $ $) NIL)) (-2103 (((-112) $ $) NIL)) (-2312 (($) 79 T CONST)) (-2322 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ (-1247 |#2| |#3| |#4|)) NIL (|has| (-1247 |#2| |#3| |#4|) (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-1247 |#2| |#3| |#4|)) NIL) (($ (-1247 |#2| |#3| |#4|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-1247 |#2| |#3| |#4|) (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| (-1247 |#2| |#3| |#4|) (-38 (-407 (-564)))))))
+(((-1248 |#1| |#2| |#3| |#4|) (-13 (-326 (-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -2410 ((-3 (-841 |#2|) "failed") $)) (-15 -2318 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1247 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-642 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1155))) "failed") $)))) (-13 (-1036 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1197) (-430 |#1|)) (-1173) |#2|) (T -1248))
+((-2410 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) (-5 *2 (-841 *4)) (-5 *1 (-1248 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173)) (-14 *6 *4))) (-2318 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1247 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-642 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) (|:| |%type| (-1155)))) (-5 *1 (-1248 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173)) (-14 *6 *4))))
+(-13 (-326 (-1247 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -2410 ((-3 (-841 |#2|) "failed") $)) (-15 -2318 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1247 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-642 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1155))) "failed") $))))
+((-2085 ((|#2| $) 34)) (-1807 ((|#2| $) 18)) (-1416 (($ $) 52)) (-3256 (($ $ (-564)) 84)) (-3697 (((-112) $ (-769)) 46)) (-3070 ((|#2| $ |#2|) 82)) (-2153 ((|#2| $ |#2|) 78)) (-3877 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3489 (($ $ (-642 $)) 81)) (-1799 ((|#2| $) 17)) (-2570 (($ $) NIL) (($ $ (-769)) 59)) (-2622 (((-642 $) $) 31)) (-1847 (((-112) $ $) 69)) (-3462 (((-112) $ (-769)) 45)) (-3576 (((-112) $ (-769)) 43)) (-2376 (((-112) $) 33)) (-2514 ((|#2| $) 25) (($ $ (-769)) 64)) (-4368 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1392 (((-112) $) 23)) (-1444 (($ $) 55)) (-2960 (($ $) 85)) (-3399 (((-769) $) 58)) (-3848 (($ $) 57)) (-3651 (($ $ $) 77) (($ |#2| $) NIL)) (-1512 (((-642 $) $) 32)) (-2872 (((-112) $ $) 67)) (-2127 (((-769) $) 51)))
+(((-1249 |#1| |#2|) (-10 -8 (-15 -3256 (|#1| |#1| (-564))) (-15 -3877 (|#2| |#1| "last" |#2|)) (-15 -2153 (|#2| |#1| |#2|)) (-15 -3877 (|#1| |#1| "rest" |#1|)) (-15 -3877 (|#2| |#1| "first" |#2|)) (-15 -2960 (|#1| |#1|)) (-15 -1444 (|#1| |#1|)) (-15 -3399 ((-769) |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -1807 (|#2| |#1|)) (-15 -1799 (|#2| |#1|)) (-15 -1416 (|#1| |#1|)) (-15 -2514 (|#1| |#1| (-769))) (-15 -4368 (|#2| |#1| "last")) (-15 -2514 (|#2| |#1|)) (-15 -2570 (|#1| |#1| (-769))) (-15 -4368 (|#1| |#1| "rest")) (-15 -2570 (|#1| |#1|)) (-15 -4368 (|#2| |#1| "first")) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3070 (|#2| |#1| |#2|)) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -3489 (|#1| |#1| (-642 |#1|))) (-15 -1847 ((-112) |#1| |#1|)) (-15 -1392 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -2085 (|#2| |#1|)) (-15 -2376 ((-112) |#1|)) (-15 -2622 ((-642 |#1|) |#1|)) (-15 -1512 ((-642 |#1|) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2127 ((-769) |#1|)) (-15 -3697 ((-112) |#1| (-769))) (-15 -3462 ((-112) |#1| (-769))) (-15 -3576 ((-112) |#1| (-769)))) (-1250 |#2|) (-1212)) (T -1249))
+NIL
+(-10 -8 (-15 -3256 (|#1| |#1| (-564))) (-15 -3877 (|#2| |#1| "last" |#2|)) (-15 -2153 (|#2| |#1| |#2|)) (-15 -3877 (|#1| |#1| "rest" |#1|)) (-15 -3877 (|#2| |#1| "first" |#2|)) (-15 -2960 (|#1| |#1|)) (-15 -1444 (|#1| |#1|)) (-15 -3399 ((-769) |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -1807 (|#2| |#1|)) (-15 -1799 (|#2| |#1|)) (-15 -1416 (|#1| |#1|)) (-15 -2514 (|#1| |#1| (-769))) (-15 -4368 (|#2| |#1| "last")) (-15 -2514 (|#2| |#1|)) (-15 -2570 (|#1| |#1| (-769))) (-15 -4368 (|#1| |#1| "rest")) (-15 -2570 (|#1| |#1|)) (-15 -4368 (|#2| |#1| "first")) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3070 (|#2| |#1| |#2|)) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -3489 (|#1| |#1| (-642 |#1|))) (-15 -1847 ((-112) |#1| |#1|)) (-15 -1392 ((-112) |#1|)) (-15 -4368 (|#2| |#1| "value")) (-15 -2085 (|#2| |#1|)) (-15 -2376 ((-112) |#1|)) (-15 -2622 ((-642 |#1|) |#1|)) (-15 -1512 ((-642 |#1|) |#1|)) (-15 -2872 ((-112) |#1| |#1|)) (-15 -2127 ((-769) |#1|)) (-15 -3697 ((-112) |#1| (-769))) (-15 -3462 ((-112) |#1| (-769))) (-15 -3576 ((-112) |#1| (-769))))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-2085 ((|#1| $) 49)) (-1807 ((|#1| $) 66)) (-1416 (($ $) 68)) (-3256 (($ $ (-564)) 53 (|has| $ (-6 -4411)))) (-3697 (((-112) $ (-769)) 8)) (-3070 ((|#1| $ |#1|) 40 (|has| $ (-6 -4411)))) (-1505 (($ $ $) 57 (|has| $ (-6 -4411)))) (-2153 ((|#1| $ |#1|) 55 (|has| $ (-6 -4411)))) (-4059 ((|#1| $ |#1|) 59 (|has| $ (-6 -4411)))) (-3877 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4411))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4411))) (($ $ "rest" $) 56 (|has| $ (-6 -4411))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4411)))) (-3489 (($ $ (-642 $)) 42 (|has| $ (-6 -4411)))) (-1799 ((|#1| $) 67)) (-1976 (($) 7 T CONST)) (-2570 (($ $) 74) (($ $ (-769)) 72)) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-2622 (((-642 $) $) 51)) (-1847 (((-112) $ $) 43 (|has| |#1| (-1097)))) (-3462 (((-112) $ (-769)) 9)) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36)) (-3576 (((-112) $ (-769)) 10)) (-2628 (((-642 |#1|) $) 46)) (-2376 (((-112) $) 50)) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-2514 ((|#1| $) 71) (($ $ (-769)) 69)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2557 ((|#1| $) 77) (($ $ (-769)) 75)) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2137 (((-564) $ $) 45)) (-1392 (((-112) $) 47)) (-1444 (($ $) 63)) (-2960 (($ $) 60 (|has| $ (-6 -4411)))) (-3399 (((-769) $) 64)) (-3848 (($ $) 65)) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3901 (($ $) 13)) (-2582 (($ $ $) 62 (|has| $ (-6 -4411))) (($ $ |#1|) 61 (|has| $ (-6 -4411)))) (-3651 (($ $ $) 79) (($ |#1| $) 78)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1512 (((-642 $) $) 52)) (-3820 (((-112) $ $) 44 (|has| |#1| (-1097)))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-1250 |#1|) (-140) (-1212)) (T -1250))
+((-3651 (*1 *1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3651 (*1 *1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-2557 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) (-2570 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) (-2570 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-2514 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) (-1416 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3848 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))) (-1444 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-2582 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-2582 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-2960 (*1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-4059 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3877 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-1505 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3877 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))) (-2153 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3877 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))) (-3256 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4411)) (-4 *1 (-1250 *3)) (-4 *3 (-1212)))))
+(-13 (-1008 |t#1|) (-10 -8 (-15 -3651 ($ $ $)) (-15 -3651 ($ |t#1| $)) (-15 -2557 (|t#1| $)) (-15 -4368 (|t#1| $ "first")) (-15 -2557 ($ $ (-769))) (-15 -2570 ($ $)) (-15 -4368 ($ $ "rest")) (-15 -2570 ($ $ (-769))) (-15 -2514 (|t#1| $)) (-15 -4368 (|t#1| $ "last")) (-15 -2514 ($ $ (-769))) (-15 -1416 ($ $)) (-15 -1799 (|t#1| $)) (-15 -1807 (|t#1| $)) (-15 -3848 ($ $)) (-15 -3399 ((-769) $)) (-15 -1444 ($ $)) (IF (|has| $ (-6 -4411)) (PROGN (-15 -2582 ($ $ $)) (-15 -2582 ($ $ |t#1|)) (-15 -2960 ($ $)) (-15 -4059 (|t#1| $ |t#1|)) (-15 -3877 (|t#1| $ "first" |t#1|)) (-15 -1505 ($ $ $)) (-15 -3877 ($ $ "rest" $)) (-15 -2153 (|t#1| $ |t#1|)) (-15 -3877 (|t#1| $ "last" |t#1|)) (-15 -3256 ($ $ (-564)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1097)) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-611 (-860)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-1008 |#1|) . T) ((-1097) |has| |#1| (-1097)) ((-1212) . T))
+((-4358 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1251 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 (|#4| (-1 |#2| |#1|) |#3|))) (-1047) (-1047) (-1253 |#1|) (-1253 |#2|)) (T -1251))
+((-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *2 (-1253 *6)) (-5 *1 (-1251 *5 *6 *4 *2)) (-4 *4 (-1253 *5)))))
+(-10 -7 (-15 -4358 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2952 (((-112) $) 17)) (-3851 (($ $) 106)) (-3704 (($ $) 82)) (-3827 (($ $) 102)) (-3679 (($ $) 78)) (-3875 (($ $) 110)) (-3727 (($ $) 86)) (-3612 (($ $) 76)) (-1723 (($ $) 74)) (-3888 (($ $) 112)) (-3739 (($ $) 88)) (-3863 (($ $) 108)) (-3716 (($ $) 84)) (-3839 (($ $) 104)) (-3693 (($ $) 80)) (-2327 (((-860) $) 62) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3926 (($ $) 118)) (-3776 (($ $) 94)) (-3900 (($ $) 114)) (-3750 (($ $) 90)) (-3951 (($ $) 122)) (-3803 (($ $) 98)) (-2683 (($ $) 124)) (-3816 (($ $) 100)) (-3938 (($ $) 120)) (-3791 (($ $) 96)) (-3913 (($ $) 116)) (-3763 (($ $) 92)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-407 (-564))) 72)))
+(((-1252 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3704 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3716 (|#1| |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -3750 (|#1| |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3875 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -2683 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -1723 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2327 (|#1| |#2|)) (-15 -2327 (|#1| |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919))) (-15 -2952 ((-112) |#1|)) (-15 -2327 ((-860) |#1|))) (-1253 |#2|) (-1047)) (T -1252))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3704 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3716 (|#1| |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -3750 (|#1| |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3875 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -2683 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -1723 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2327 (|#1| |#2|)) (-15 -2327 (|#1| |#1|)) (-15 -2327 (|#1| (-407 (-564)))) (-15 -2327 (|#1| (-564))) (-15 ** (|#1| |#1| (-769))) (-15 ** (|#1| |#1| (-919))) (-15 -2952 ((-112) |#1|)) (-15 -2327 ((-860) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-3802 (((-642 (-1079)) $) 86)) (-3329 (((-1173) $) 115)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 63 (|has| |#1| (-556)))) (-1387 (($ $) 64 (|has| |#1| (-556)))) (-2037 (((-112) $) 66 (|has| |#1| (-556)))) (-1726 (($ $ (-769)) 110) (($ $ (-769) (-769)) 109)) (-2674 (((-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|))) $) 117)) (-3851 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) 20)) (-3655 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|)))) 167) (($ (-1153 |#1|)) 165)) (-3875 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) 18 T CONST)) (-1718 (($ $) 72)) (-3104 (((-3 $ "failed") $) 37)) (-2208 (($ $) 164)) (-3359 (((-950 |#1|) $ (-769)) 162) (((-950 |#1|) $ (-769) (-769)) 161)) (-1941 (((-112) $) 85)) (-4265 (($) 157 (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-769) $) 112) (((-769) $ (-769)) 111)) (-3953 (((-112) $) 35)) (-1772 (($ $ (-564)) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3267 (($ $ (-919)) 113)) (-1502 (($ (-1 |#1| (-564)) $) 163)) (-2316 (((-112) $) 74)) (-3774 (($ |#1| (-769)) 73) (($ $ (-1079) (-769)) 88) (($ $ (-642 (-1079)) (-642 (-769))) 87)) (-4358 (($ (-1 |#1| |#1|) $) 75)) (-3612 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) 77)) (-3962 ((|#1| $) 78)) (-3315 (((-1155) $) 10)) (-4107 (($ $) 159 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 158 (-2706 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-957)) (|has| |#1| (-1197)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-38 (-407 (-564)))))))) (-4033 (((-1117) $) 11)) (-3804 (($ $ (-769)) 107)) (-2896 (((-3 $ "failed") $ $) 62 (|has| |#1| (-556)))) (-1723 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3215 (((-1153 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-769)))))) (-4368 ((|#1| $ (-769)) 116) (($ $ $) 93 (|has| (-769) (-1109)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) 101 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-1173) (-769)) 100 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-642 (-1173))) 99 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-1173)) 98 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-769)) 96 (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (-2775 (((-769) $) 76)) (-3888 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) 84)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ (-407 (-564))) 69 (|has| |#1| (-38 (-407 (-564))))) (($ $) 61 (|has| |#1| (-556))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3849 (((-1153 |#1|) $) 166)) (-2102 ((|#1| $ (-769)) 71)) (-2439 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2756 (((-769)) 32 T CONST)) (-3594 ((|#1| $) 114)) (-1648 (((-112) $ $) 9)) (-3926 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) 65 (|has| |#1| (-556)))) (-3900 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-769)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-769)))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) 105 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-1173) (-769)) 104 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-642 (-1173))) 103 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-1173)) 102 (-12 (|has| |#1| (-898 (-1173))) (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (($ $ (-769)) 97 (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 70 (|has| |#1| (-363)))) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ |#1|) 160 (|has| |#1| (-363))) (($ $ $) 156 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 127 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-407 (-564)) $) 68 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 67 (|has| |#1| (-38 (-407 (-564)))))))
+(((-1253 |#1|) (-140) (-1047)) (T -1253))
+((-2707 (*1 *1 *2) (-12 (-5 *2 (-1153 (-2 (|:| |k| (-769)) (|:| |c| *3)))) (-4 *3 (-1047)) (-4 *1 (-1253 *3)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-1047)) (-5 *2 (-1153 *3)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-4 *1 (-1253 *3)))) (-2208 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)))) (-1502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1253 *3)) (-4 *3 (-1047)))) (-3359 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-1253 *4)) (-4 *4 (-1047)) (-5 *2 (-950 *4)))) (-3359 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-4 *1 (-1253 *4)) (-4 *4 (-1047)) (-5 *2 (-950 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))) (-4107 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564)))))) (-4107 (*1 *1 *1 *2) (-2706 (-12 (-5 *2 (-1173)) (-4 *1 (-1253 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1173)) (-4 *1 (-1253 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -3802 ((-642 *2) *3))) (|has| *3 (-15 -4107 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
+(-13 (-1240 |t#1| (-769)) (-10 -8 (-15 -2707 ($ (-1153 (-2 (|:| |k| (-769)) (|:| |c| |t#1|))))) (-15 -3849 ((-1153 |t#1|) $)) (-15 -2707 ($ (-1153 |t#1|))) (-15 -2208 ($ $)) (-15 -1502 ($ (-1 |t#1| (-564)) $)) (-15 -3359 ((-950 |t#1|) $ (-769))) (-15 -3359 ((-950 |t#1|) $ (-769) (-769))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -4107 ($ $)) (IF (|has| |t#1| (-15 -4107 (|t#1| |t#1| (-1173)))) (IF (|has| |t#1| (-15 -3802 ((-642 (-1173)) |t#1|))) (-15 -4107 ($ $ (-1173))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1197)) (IF (|has| |t#1| (-957)) (IF (|has| |t#1| (-29 (-564))) (-15 -4107 ($ $ (-1173))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1000)) (-6 (-1197))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-769)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-860)) . T) ((-172) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-769) |#1|))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-769) (-1109)) ((-290) |has| |#1| (-556)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #1#) |has| |#1| (-38 (-407 (-564)))) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #1#) |has| |#1| (-38 (-407 (-564)))) ((-638 |#1|) |has| |#1| (-172)) ((-638 $) |has| |#1| (-556)) ((-715 #1#) |has| |#1| (-38 (-407 (-564)))) ((-715 |#1|) |has| |#1| (-172)) ((-715 $) |has| |#1| (-556)) ((-724) . T) ((-898 (-1173)) -12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173)))) ((-971 |#1| #0# (-1079)) . T) ((-1000) |has| |#1| (-38 (-407 (-564)))) ((-1049 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1049 |#1|) . T) ((-1049 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1054 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1054 |#1|) . T) ((-1054 $) -2706 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1200) |has| |#1| (-38 (-407 (-564)))) ((-1240 |#1| #0#) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-3802 (((-642 (-1079)) $) NIL)) (-3329 (((-1173) $) 93)) (-1762 (((-1235 |#2| |#1|) $ (-769)) 74)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1387 (($ $) NIL (|has| |#1| (-556)))) (-2037 (((-112) $) 144 (|has| |#1| (-556)))) (-1726 (($ $ (-769)) 130) (($ $ (-769) (-769)) 132)) (-2674 (((-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|))) $) 43)) (-3851 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1532 (((-3 $ "failed") $ $) NIL)) (-3655 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2707 (($ (-1153 (-2 (|:| |k| (-769)) (|:| |c| |#1|)))) 53) (($ (-1153 |#1|)) NIL)) (-3875 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1976 (($) NIL T CONST)) (-1391 (($ $) 136)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2208 (($ $) 142)) (-3359 (((-950 |#1|) $ (-769)) 64) (((-950 |#1|) $ (-769) (-769)) 66)) (-1941 (((-112) $) NIL)) (-4265 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-769) $) NIL) (((-769) $ (-769)) NIL)) (-3953 (((-112) $) NIL)) (-1478 (($ $) 120)) (-1772 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1761 (($ (-564) (-564) $) 138)) (-3267 (($ $ (-919)) 141)) (-1502 (($ (-1 |#1| (-564)) $) 114)) (-2316 (((-112) $) NIL)) (-3774 (($ |#1| (-769)) 16) (($ $ (-1079) (-769)) NIL) (($ $ (-642 (-1079)) (-642 (-769))) NIL)) (-4358 (($ (-1 |#1| |#1|) $) 101)) (-3612 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3950 (($ $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-3596 (($ $) 118)) (-2864 (($ $) 116)) (-2355 (($ (-564) (-564) $) 140)) (-4107 (($ $) 152 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1173)) 158 (-2706 (-12 (|has| |#1| (-15 -4107 (|#1| |#1| (-1173)))) (|has| |#1| (-15 -3802 ((-642 (-1173)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-957)) (|has| |#1| (-1197))))) (($ $ (-1258 |#2|)) 153 (|has| |#1| (-38 (-407 (-564)))))) (-4033 (((-1117) $) NIL)) (-3632 (($ $ (-564) (-564)) 124)) (-3804 (($ $ (-769)) 126)) (-2896 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-1723 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2893 (($ $) 122)) (-3215 (((-1153 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-769)))))) (-4368 ((|#1| $ (-769)) 98) (($ $ $) 134 (|has| (-769) (-1109)))) (-3175 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) 111 (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $ (-1258 |#2|)) 106)) (-2775 (((-769) $) NIL)) (-3888 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3693 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) 128)) (-2327 (((-860) $) NIL) (($ (-564)) 26) (($ (-407 (-564))) 150 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1235 |#2| |#1|)) 84) (($ (-1258 |#2|)) 22)) (-3849 (((-1153 |#1|) $) NIL)) (-2102 ((|#1| $ (-769)) 97)) (-2439 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2756 (((-769)) NIL T CONST)) (-3594 ((|#1| $) 94)) (-1648 (((-112) $ $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3776 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2103 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3900 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3750 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3951 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3803 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3601 ((|#1| $ (-769)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-769)))) (|has| |#1| (-15 -2327 (|#1| (-1173))))))) (-2683 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2312 (($) 18 T CONST)) (-2322 (($) 13 T CONST)) (-4044 (($ $ (-642 (-1173)) (-642 (-769))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173) (-769)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-642 (-1173))) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-1173)) NIL (-12 (|has| |#1| (-15 * (|#1| (-769) |#1|))) (|has| |#1| (-898 (-1173))))) (($ $ (-769)) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-769) |#1|))))) (-2872 (((-112) $ $) NIL)) (-2998 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) 110)) (-2974 (($ $ $) 20)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL) (($ $ |#1|) 147 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1254 |#1| |#2| |#3|) (-13 (-1253 |#1|) (-10 -8 (-15 -2327 ($ (-1235 |#2| |#1|))) (-15 -1762 ((-1235 |#2| |#1|) $ (-769))) (-15 -2327 ($ (-1258 |#2|))) (-15 -3175 ($ $ (-1258 |#2|))) (-15 -2864 ($ $)) (-15 -3596 ($ $)) (-15 -1478 ($ $)) (-15 -2893 ($ $)) (-15 -3632 ($ $ (-564) (-564))) (-15 -1391 ($ $)) (-15 -1761 ($ (-564) (-564) $)) (-15 -2355 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|))) (-1047) (-1173) |#1|) (T -1254))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-1235 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3) (-5 *1 (-1254 *3 *4 *5)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1235 *5 *4)) (-5 *1 (-1254 *4 *5 *6)) (-4 *4 (-1047)) (-14 *5 (-1173)) (-14 *6 *4))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-2864 (*1 *1 *1) (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) (-14 *4 *2))) (-3596 (*1 *1 *1) (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) (-14 *4 *2))) (-1478 (*1 *1 *1) (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) (-14 *4 *2))) (-2893 (*1 *1 *1) (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) (-14 *4 *2))) (-3632 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173)) (-14 *4 *2))) (-1761 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3))) (-2355 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1173)) (-14 *5 *3))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))))
+(-13 (-1253 |#1|) (-10 -8 (-15 -2327 ($ (-1235 |#2| |#1|))) (-15 -1762 ((-1235 |#2| |#1|) $ (-769))) (-15 -2327 ($ (-1258 |#2|))) (-15 -3175 ($ $ (-1258 |#2|))) (-15 -2864 ($ $)) (-15 -3596 ($ $)) (-15 -1478 ($ $)) (-15 -2893 ($ $)) (-15 -3632 ($ $ (-564) (-564))) (-15 -1391 ($ $)) (-15 -1761 ($ (-564) (-564) $)) (-15 -2355 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4107 ($ $ (-1258 |#2|))) |%noBranch|)))
+((-3311 (((-1 (-1153 |#1|) (-642 (-1153 |#1|))) (-1 |#2| (-642 |#2|))) 24)) (-1519 (((-1 (-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2418 (((-1 (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2|)) 13)) (-2189 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3061 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1908 ((|#2| (-1 |#2| (-642 |#2|)) (-642 |#1|)) 60)) (-3970 (((-642 |#2|) (-642 |#1|) (-642 (-1 |#2| (-642 |#2|)))) 66)) (-2852 ((|#2| |#2| |#2|) 43)))
+(((-1255 |#1| |#2|) (-10 -7 (-15 -2418 ((-1 (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2|))) (-15 -1519 ((-1 (-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3311 ((-1 (-1153 |#1|) (-642 (-1153 |#1|))) (-1 |#2| (-642 |#2|)))) (-15 -2852 (|#2| |#2| |#2|)) (-15 -3061 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2189 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1908 (|#2| (-1 |#2| (-642 |#2|)) (-642 |#1|))) (-15 -3970 ((-642 |#2|) (-642 |#1|) (-642 (-1 |#2| (-642 |#2|)))))) (-38 (-407 (-564))) (-1253 |#1|)) (T -1255))
+((-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 (-1 *6 (-642 *6)))) (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1253 *5)) (-5 *2 (-642 *6)) (-5 *1 (-1255 *5 *6)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-642 *2))) (-5 *4 (-642 *5)) (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1253 *5)) (-5 *1 (-1255 *5 *2)))) (-2189 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-1255 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-3061 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-1255 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-2852 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1253 *3)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-642 *5))) (-4 *5 (-1253 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1153 *4) (-642 (-1153 *4)))) (-5 *1 (-1255 *4 *5)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1153 *4) (-1153 *4) (-1153 *4))) (-5 *1 (-1255 *4 *5)))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1153 *4) (-1153 *4))) (-5 *1 (-1255 *4 *5)))))
+(-10 -7 (-15 -2418 ((-1 (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2|))) (-15 -1519 ((-1 (-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3311 ((-1 (-1153 |#1|) (-642 (-1153 |#1|))) (-1 |#2| (-642 |#2|)))) (-15 -2852 (|#2| |#2| |#2|)) (-15 -3061 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2189 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1908 (|#2| (-1 |#2| (-642 |#2|)) (-642 |#1|))) (-15 -3970 ((-642 |#2|) (-642 |#1|) (-642 (-1 |#2| (-642 |#2|))))))
+((-1540 ((|#2| |#4| (-769)) 34)) (-4225 ((|#4| |#2|) 29)) (-2816 ((|#4| (-407 |#2|)) 53 (|has| |#1| (-556)))) (-3960 (((-1 |#4| (-642 |#4|)) |#3|) 46)))
+(((-1256 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4225 (|#4| |#2|)) (-15 -1540 (|#2| |#4| (-769))) (-15 -3960 ((-1 |#4| (-642 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -2816 (|#4| (-407 |#2|))) |%noBranch|)) (-1047) (-1238 |#1|) (-654 |#2|) (-1253 |#1|)) (T -1256))
+((-2816 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-556)) (-4 *4 (-1047)) (-4 *2 (-1253 *4)) (-5 *1 (-1256 *4 *5 *6 *2)) (-4 *6 (-654 *5)))) (-3960 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-1238 *4)) (-5 *2 (-1 *6 (-642 *6))) (-5 *1 (-1256 *4 *5 *3 *6)) (-4 *3 (-654 *5)) (-4 *6 (-1253 *4)))) (-1540 (*1 *2 *3 *4) (-12 (-5 *4 (-769)) (-4 *5 (-1047)) (-4 *2 (-1238 *5)) (-5 *1 (-1256 *5 *2 *6 *3)) (-4 *6 (-654 *2)) (-4 *3 (-1253 *5)))) (-4225 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *3 (-1238 *4)) (-4 *2 (-1253 *4)) (-5 *1 (-1256 *4 *3 *5 *2)) (-4 *5 (-654 *3)))))
+(-10 -7 (-15 -4225 (|#4| |#2|)) (-15 -1540 (|#2| |#4| (-769))) (-15 -3960 ((-1 |#4| (-642 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -2816 (|#4| (-407 |#2|))) |%noBranch|))
+NIL
+(((-1257) (-140)) (T -1257))
+NIL
+(-13 (-10 -7 (-6 -3570)))
+((-2907 (((-112) $ $) NIL)) (-3329 (((-1173)) 12)) (-3315 (((-1155) $) 18)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 11) (((-1173) $) 8)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) 15)))
+(((-1258 |#1|) (-13 (-1097) (-611 (-1173)) (-10 -8 (-15 -2327 ((-1173) $)) (-15 -3329 ((-1173))))) (-1173)) (T -1258))
+((-2327 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1258 *3)) (-14 *3 *2))) (-3329 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1258 *3)) (-14 *3 *2))))
+(-13 (-1097) (-611 (-1173)) (-10 -8 (-15 -2327 ((-1173) $)) (-15 -3329 ((-1173)))))
+((-4103 (($ (-769)) 19)) (-1745 (((-687 |#2|) $ $) 41)) (-4372 ((|#2| $) 51)) (-2480 ((|#2| $) 50)) (-2619 ((|#2| $ $) 36)) (-2909 (($ $ $) 47)) (-2987 (($ $) 23) (($ $ $) 29)) (-2974 (($ $ $) 15)) (* (($ (-564) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
+(((-1259 |#1| |#2|) (-10 -8 (-15 -4372 (|#2| |#1|)) (-15 -2480 (|#2| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -1745 ((-687 |#2|) |#1| |#1|)) (-15 -2619 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -4103 (|#1| (-769))) (-15 -2974 (|#1| |#1| |#1|))) (-1260 |#2|) (-1212)) (T -1259))
+NIL
+(-10 -8 (-15 -4372 (|#2| |#1|)) (-15 -2480 (|#2| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -1745 ((-687 |#2|) |#1| |#1|)) (-15 -2619 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -4103 (|#1| (-769))) (-15 -2974 (|#1| |#1| |#1|)))
+((-2907 (((-112) $ $) 19 (|has| |#1| (-1097)))) (-4103 (($ (-769)) 113 (|has| |#1| (-23)))) (-1765 (((-1267) $ (-564) (-564)) 41 (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4411))) (($ $) 89 (-12 (|has| |#1| (-848)) (|has| $ (-6 -4411))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) 8)) (-3877 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) 59 (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4410)))) (-1976 (($) 7 T CONST)) (-2087 (($ $) 91 (|has| $ (-6 -4411)))) (-3115 (($ $) 101)) (-2595 (($ $) 79 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2490 (($ |#1| $) 78 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) 54 (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) 52)) (-3979 (((-564) (-1 (-112) |#1|) $) 98) (((-564) |#1| $) 97 (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) 96 (|has| |#1| (-1097)))) (-2936 (((-642 |#1|) $) 31 (|has| $ (-6 -4410)))) (-1745 (((-687 |#1|) $ $) 106 (|has| |#1| (-1047)))) (-4227 (($ (-769) |#1|) 70)) (-3462 (((-112) $ (-769)) 9)) (-2040 (((-564) $) 44 (|has| (-564) (-848)))) (-2755 (($ $ $) 88 (|has| |#1| (-848)))) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) 30 (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-3421 (((-564) $) 45 (|has| (-564) (-848)))) (-1520 (($ $ $) 87 (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4372 ((|#1| $) 103 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1000))))) (-3576 (((-112) $ (-769)) 10)) (-2480 ((|#1| $) 104 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1000))))) (-3315 (((-1155) $) 22 (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) 61) (($ $ $ (-564)) 60)) (-3997 (((-642 (-564)) $) 47)) (-4145 (((-112) (-564) $) 48)) (-4033 (((-1117) $) 21 (|has| |#1| (-1097)))) (-2557 ((|#1| $) 43 (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2696 (($ $ |#1|) 42 (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) 27 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) 14)) (-3441 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) 49)) (-3719 (((-112) $) 11)) (-2972 (($) 12)) (-4368 ((|#1| $ (-564) |#1|) 51) ((|#1| $ (-564)) 50) (($ $ (-1229 (-564))) 64)) (-2619 ((|#1| $ $) 107 (|has| |#1| (-1047)))) (-2073 (($ $ (-564)) 63) (($ $ (-1229 (-564))) 62)) (-2909 (($ $ $) 105 (|has| |#1| (-1047)))) (-4043 (((-769) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4410))) (((-769) |#1| $) 29 (-12 (|has| |#1| (-1097)) (|has| $ (-6 -4410))))) (-2568 (($ $ $ (-564)) 92 (|has| $ (-6 -4411)))) (-3901 (($ $) 13)) (-1314 (((-536) $) 80 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 71)) (-3651 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-642 $)) 66)) (-2327 (((-860) $) 18 (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) 23 (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) 85 (|has| |#1| (-848)))) (-2908 (((-112) $ $) 84 (|has| |#1| (-848)))) (-2872 (((-112) $ $) 20 (|has| |#1| (-1097)))) (-2922 (((-112) $ $) 86 (|has| |#1| (-848)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-848)))) (-2987 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-2974 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-564) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-724))) (($ $ |#1|) 108 (|has| |#1| (-724)))) (-2127 (((-769) $) 6 (|has| $ (-6 -4410)))))
+(((-1260 |#1|) (-140) (-1212)) (T -1260))
+((-2974 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-25)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1260 *3)) (-4 *3 (-23)) (-4 *3 (-1212)))) (-2987 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-21)))) (-2987 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1260 *3)) (-4 *3 (-1212)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-724)))) (-2619 (*1 *2 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1047)))) (-1745 (*1 *2 *1 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1212)) (-4 *3 (-1047)) (-5 *2 (-687 *3)))) (-2909 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1047)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1000)) (-4 *2 (-1047)))) (-4372 (*1 *2 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1000)) (-4 *2 (-1047)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2974 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4103 ($ (-769))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2987 ($ $)) (-15 -2987 ($ $ $)) (-15 * ($ (-564) $))) |%noBranch|) (IF (|has| |t#1| (-724)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1047)) (PROGN (-15 -2619 (|t#1| $ $)) (-15 -1745 ((-687 |t#1|) $ $)) (-15 -2909 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1000)) (IF (|has| |t#1| (-1047)) (PROGN (-15 -2480 (|t#1| $)) (-15 -4372 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-611 (-860)) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848)) (|has| |#1| (-611 (-860)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))) ((-649 |#1|) . T) ((-19 |#1|) . T) ((-848) |has| |#1| (-848)) ((-1097) -2706 (|has| |#1| (-1097)) (|has| |#1| (-848))) ((-1212) . T))
+((-1910 (((-1262 |#2|) (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|) 13)) (-1320 ((|#2| (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|) 15)) (-4358 (((-3 (-1262 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1262 |#1|)) 30) (((-1262 |#2|) (-1 |#2| |#1|) (-1262 |#1|)) 18)))
+(((-1261 |#1| |#2|) (-10 -7 (-15 -1910 ((-1262 |#2|) (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|)) (-15 -1320 (|#2| (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|)) (-15 -4358 ((-1262 |#2|) (-1 |#2| |#1|) (-1262 |#1|))) (-15 -4358 ((-3 (-1262 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1262 |#1|)))) (-1212) (-1212)) (T -1261))
+((-4358 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1262 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1262 *6)) (-5 *1 (-1261 *5 *6)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1262 *6)) (-5 *1 (-1261 *5 *6)))) (-1320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1262 *5)) (-4 *5 (-1212)) (-4 *2 (-1212)) (-5 *1 (-1261 *5 *2)))) (-1910 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1262 *6)) (-4 *6 (-1212)) (-4 *5 (-1212)) (-5 *2 (-1262 *5)) (-5 *1 (-1261 *6 *5)))))
+(-10 -7 (-15 -1910 ((-1262 |#2|) (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|)) (-15 -1320 (|#2| (-1 |#2| |#1| |#2|) (-1262 |#1|) |#2|)) (-15 -4358 ((-1262 |#2|) (-1 |#2| |#1|) (-1262 |#1|))) (-15 -4358 ((-3 (-1262 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1262 |#1|))))
+((-2907 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-4103 (($ (-769)) NIL (|has| |#1| (-23)))) (-3160 (($ (-642 |#1|)) 11)) (-1765 (((-1267) $ (-564) (-564)) NIL (|has| $ (-6 -4411)))) (-1757 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-848)))) (-2239 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4411))) (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-848))))) (-2383 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-848)))) (-3697 (((-112) $ (-769)) NIL)) (-3877 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411))) ((|#1| $ (-1229 (-564)) |#1|) NIL (|has| $ (-6 -4411)))) (-1700 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1976 (($) NIL T CONST)) (-2087 (($ $) NIL (|has| $ (-6 -4411)))) (-3115 (($ $) NIL)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2490 (($ |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-1320 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4410))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4410)))) (-2625 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4411)))) (-2551 ((|#1| $ (-564)) NIL)) (-3979 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1097))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1097)))) (-2936 (((-642 |#1|) $) 15 (|has| $ (-6 -4410)))) (-1745 (((-687 |#1|) $ $) NIL (|has| |#1| (-1047)))) (-4227 (($ (-769) |#1|) NIL)) (-3462 (((-112) $ (-769)) NIL)) (-2040 (((-564) $) NIL (|has| (-564) (-848)))) (-2755 (($ $ $) NIL (|has| |#1| (-848)))) (-2740 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-848)))) (-3234 (((-642 |#1|) $) NIL (|has| $ (-6 -4410)))) (-2776 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-3421 (((-564) $) NIL (|has| (-564) (-848)))) (-1520 (($ $ $) NIL (|has| |#1| (-848)))) (-2613 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4372 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-3576 (((-112) $ (-769)) NIL)) (-2480 ((|#1| $) NIL (-12 (|has| |#1| (-1000)) (|has| |#1| (-1047))))) (-3315 (((-1155) $) NIL (|has| |#1| (-1097)))) (-4238 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3997 (((-642 (-564)) $) NIL)) (-4145 (((-112) (-564) $) NIL)) (-4033 (((-1117) $) NIL (|has| |#1| (-1097)))) (-2557 ((|#1| $) NIL (|has| (-564) (-848)))) (-3254 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2696 (($ $ |#1|) NIL (|has| $ (-6 -4411)))) (-2121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097)))) (($ $ (-642 |#1|) (-642 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3441 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2724 (((-642 |#1|) $) NIL)) (-3719 (((-112) $) NIL)) (-2972 (($) NIL)) (-4368 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-2619 ((|#1| $ $) NIL (|has| |#1| (-1047)))) (-2073 (($ $ (-564)) NIL) (($ $ (-1229 (-564))) NIL)) (-2909 (($ $ $) NIL (|has| |#1| (-1047)))) (-4043 (((-769) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410))) (((-769) |#1| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#1| (-1097))))) (-2568 (($ $ $ (-564)) NIL (|has| $ (-6 -4411)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) 19 (|has| |#1| (-612 (-536))))) (-2337 (($ (-642 |#1|)) 10)) (-3651 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-642 $)) NIL)) (-2327 (((-860) $) NIL (|has| |#1| (-611 (-860))))) (-1648 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2710 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4410)))) (-2934 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2908 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2872 (((-112) $ $) NIL (|has| |#1| (-1097)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2987 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2974 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-724))) (($ $ |#1|) NIL (|has| |#1| (-724)))) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1262 |#1|) (-13 (-1260 |#1|) (-10 -8 (-15 -3160 ($ (-642 |#1|))))) (-1212)) (T -1262))
+((-3160 (*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1262 *3)))))
+(-13 (-1260 |#1|) (-10 -8 (-15 -3160 ($ (-642 |#1|)))))
+((-2907 (((-112) $ $) NIL)) (-2122 (((-1155) $ (-1155)) 109) (((-1155) $ (-1155) (-1155)) 107) (((-1155) $ (-1155) (-642 (-1155))) 106)) (-2303 (($) 69)) (-3920 (((-1267) $ (-468) (-919)) 54)) (-3083 (((-1267) $ (-919) (-1155)) 91) (((-1267) $ (-919) (-872)) 92)) (-3418 (((-1267) $ (-919) (-379) (-379)) 57)) (-3277 (((-1267) $ (-1155)) 86)) (-3787 (((-1267) $ (-919) (-1155)) 96)) (-4352 (((-1267) $ (-919) (-379) (-379)) 58)) (-1868 (((-1267) $ (-919) (-919)) 55)) (-2106 (((-1267) $) 87)) (-3505 (((-1267) $ (-919) (-1155)) 95)) (-3602 (((-1267) $ (-468) (-919)) 40)) (-2747 (((-1267) $ (-919) (-1155)) 94)) (-4255 (((-642 (-263)) $) 29) (($ $ (-642 (-263))) 30)) (-1330 (((-1267) $ (-769) (-769)) 52)) (-2119 (($ $) 71) (($ (-468) (-642 (-263))) 72)) (-3315 (((-1155) $) NIL)) (-1907 (((-564) $) 47)) (-4033 (((-1117) $) NIL)) (-1981 (((-1262 (-3 (-468) "undefined")) $) 46)) (-4052 (((-1262 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2747 (-564)) (|:| -1333 (-564)) (|:| |spline| (-564)) (|:| -2997 (-564)) (|:| |axesColor| (-872)) (|:| -3083 (-564)) (|:| |unitsColor| (-872)) (|:| |showing| (-564)))) $) 45)) (-3572 (((-1267) $ (-919) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-872) (-564) (-872) (-564)) 85)) (-2798 (((-642 (-941 (-225))) $) NIL)) (-1662 (((-468) $ (-919)) 42)) (-1670 (((-1267) $ (-769) (-769) (-919) (-919)) 50)) (-3684 (((-1267) $ (-1155)) 97)) (-1333 (((-1267) $ (-919) (-1155)) 93)) (-2327 (((-860) $) 104)) (-1639 (((-1267) $) 98)) (-1648 (((-112) $ $) NIL)) (-2997 (((-1267) $ (-919) (-1155)) 89) (((-1267) $ (-919) (-872)) 90)) (-2872 (((-112) $ $) NIL)))
+(((-1263) (-13 (-1097) (-10 -8 (-15 -2798 ((-642 (-941 (-225))) $)) (-15 -2303 ($)) (-15 -2119 ($ $)) (-15 -4255 ((-642 (-263)) $)) (-15 -4255 ($ $ (-642 (-263)))) (-15 -2119 ($ (-468) (-642 (-263)))) (-15 -3572 ((-1267) $ (-919) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-872) (-564) (-872) (-564))) (-15 -4052 ((-1262 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2747 (-564)) (|:| -1333 (-564)) (|:| |spline| (-564)) (|:| -2997 (-564)) (|:| |axesColor| (-872)) (|:| -3083 (-564)) (|:| |unitsColor| (-872)) (|:| |showing| (-564)))) $)) (-15 -1981 ((-1262 (-3 (-468) "undefined")) $)) (-15 -3277 ((-1267) $ (-1155))) (-15 -3602 ((-1267) $ (-468) (-919))) (-15 -1662 ((-468) $ (-919))) (-15 -2997 ((-1267) $ (-919) (-1155))) (-15 -2997 ((-1267) $ (-919) (-872))) (-15 -3083 ((-1267) $ (-919) (-1155))) (-15 -3083 ((-1267) $ (-919) (-872))) (-15 -2747 ((-1267) $ (-919) (-1155))) (-15 -3505 ((-1267) $ (-919) (-1155))) (-15 -1333 ((-1267) $ (-919) (-1155))) (-15 -3684 ((-1267) $ (-1155))) (-15 -1639 ((-1267) $)) (-15 -1670 ((-1267) $ (-769) (-769) (-919) (-919))) (-15 -4352 ((-1267) $ (-919) (-379) (-379))) (-15 -3418 ((-1267) $ (-919) (-379) (-379))) (-15 -3787 ((-1267) $ (-919) (-1155))) (-15 -1330 ((-1267) $ (-769) (-769))) (-15 -3920 ((-1267) $ (-468) (-919))) (-15 -1868 ((-1267) $ (-919) (-919))) (-15 -2122 ((-1155) $ (-1155))) (-15 -2122 ((-1155) $ (-1155) (-1155))) (-15 -2122 ((-1155) $ (-1155) (-642 (-1155)))) (-15 -2106 ((-1267) $)) (-15 -1907 ((-564) $)) (-15 -2327 ((-860) $))))) (T -1263))
+((-2327 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-1263)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-642 (-941 (-225)))) (-5 *1 (-1263)))) (-2303 (*1 *1) (-5 *1 (-1263))) (-2119 (*1 *1 *1) (-5 *1 (-1263))) (-4255 (*1 *2 *1) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1263)))) (-4255 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1263)))) (-2119 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-642 (-263))) (-5 *1 (-1263)))) (-3572 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-919)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-872)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-1262 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2747 (-564)) (|:| -1333 (-564)) (|:| |spline| (-564)) (|:| -2997 (-564)) (|:| |axesColor| (-872)) (|:| -3083 (-564)) (|:| |unitsColor| (-872)) (|:| |showing| (-564))))) (-5 *1 (-1263)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-1262 (-3 (-468) "undefined"))) (-5 *1 (-1263)))) (-3277 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3602 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1662 (*1 *2 *1 *3) (-12 (-5 *3 (-919)) (-5 *2 (-468)) (-5 *1 (-1263)))) (-2997 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-2997 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-872)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3083 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3083 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-872)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-2747 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3505 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1333 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3684 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1670 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-769)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-4352 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-919)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3418 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-919)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3787 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1330 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-3920 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1868 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))) (-2122 (*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1263)))) (-2122 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1263)))) (-2122 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-1263)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1263)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1263)))))
+(-13 (-1097) (-10 -8 (-15 -2798 ((-642 (-941 (-225))) $)) (-15 -2303 ($)) (-15 -2119 ($ $)) (-15 -4255 ((-642 (-263)) $)) (-15 -4255 ($ $ (-642 (-263)))) (-15 -2119 ($ (-468) (-642 (-263)))) (-15 -3572 ((-1267) $ (-919) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-872) (-564) (-872) (-564))) (-15 -4052 ((-1262 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2747 (-564)) (|:| -1333 (-564)) (|:| |spline| (-564)) (|:| -2997 (-564)) (|:| |axesColor| (-872)) (|:| -3083 (-564)) (|:| |unitsColor| (-872)) (|:| |showing| (-564)))) $)) (-15 -1981 ((-1262 (-3 (-468) "undefined")) $)) (-15 -3277 ((-1267) $ (-1155))) (-15 -3602 ((-1267) $ (-468) (-919))) (-15 -1662 ((-468) $ (-919))) (-15 -2997 ((-1267) $ (-919) (-1155))) (-15 -2997 ((-1267) $ (-919) (-872))) (-15 -3083 ((-1267) $ (-919) (-1155))) (-15 -3083 ((-1267) $ (-919) (-872))) (-15 -2747 ((-1267) $ (-919) (-1155))) (-15 -3505 ((-1267) $ (-919) (-1155))) (-15 -1333 ((-1267) $ (-919) (-1155))) (-15 -3684 ((-1267) $ (-1155))) (-15 -1639 ((-1267) $)) (-15 -1670 ((-1267) $ (-769) (-769) (-919) (-919))) (-15 -4352 ((-1267) $ (-919) (-379) (-379))) (-15 -3418 ((-1267) $ (-919) (-379) (-379))) (-15 -3787 ((-1267) $ (-919) (-1155))) (-15 -1330 ((-1267) $ (-769) (-769))) (-15 -3920 ((-1267) $ (-468) (-919))) (-15 -1868 ((-1267) $ (-919) (-919))) (-15 -2122 ((-1155) $ (-1155))) (-15 -2122 ((-1155) $ (-1155) (-1155))) (-15 -2122 ((-1155) $ (-1155) (-642 (-1155)))) (-15 -2106 ((-1267) $)) (-15 -1907 ((-564) $)) (-15 -2327 ((-860) $))))
+((-2907 (((-112) $ $) NIL)) (-3132 (((-1267) $ (-379)) 172) (((-1267) $ (-379) (-379) (-379)) 173)) (-2122 (((-1155) $ (-1155)) 180) (((-1155) $ (-1155) (-1155)) 178) (((-1155) $ (-1155) (-642 (-1155))) 177)) (-2277 (($) 67)) (-1360 (((-1267) $ (-379) (-379) (-379) (-379) (-379)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1267) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1267) $ (-564) (-564) (-379) (-379) (-379)) 147) (((-1267) $ (-379) (-379)) 148) (((-1267) $ (-379) (-379) (-379)) 155)) (-1878 (((-379)) 125) (((-379) (-379)) 126)) (-3664 (((-379)) 120) (((-379) (-379)) 122)) (-1510 (((-379)) 123) (((-379) (-379)) 124)) (-1888 (((-379)) 129) (((-379) (-379)) 130)) (-2716 (((-379)) 127) (((-379) (-379)) 128)) (-3418 (((-1267) $ (-379) (-379)) 174)) (-3277 (((-1267) $ (-1155)) 156)) (-3682 (((-1130 (-225)) $) 68) (($ $ (-1130 (-225))) 69)) (-2501 (((-1267) $ (-1155)) 188)) (-2623 (((-1267) $ (-1155)) 189)) (-1464 (((-1267) $ (-379) (-379)) 154) (((-1267) $ (-564) (-564)) 171)) (-1868 (((-1267) $ (-919) (-919)) 163)) (-2106 (((-1267) $) 140)) (-1980 (((-1267) $ (-1155)) 187)) (-1702 (((-1267) $ (-1155)) 137)) (-4255 (((-642 (-263)) $) 70) (($ $ (-642 (-263))) 71)) (-1330 (((-1267) $ (-769) (-769)) 162)) (-2506 (((-1267) $ (-769) (-941 (-225))) 194)) (-3198 (($ $) 73) (($ (-1130 (-225)) (-1155)) 74) (($ (-1130 (-225)) (-642 (-263))) 75)) (-2148 (((-1267) $ (-379) (-379) (-379)) 134)) (-3315 (((-1155) $) NIL)) (-1907 (((-564) $) 131)) (-1701 (((-1267) $ (-379)) 175)) (-2648 (((-1267) $ (-379)) 192)) (-4033 (((-1117) $) NIL)) (-2292 (((-1267) $ (-379)) 191)) (-1770 (((-1267) $ (-1155)) 139)) (-1670 (((-1267) $ (-769) (-769) (-919) (-919)) 161)) (-1649 (((-1267) $ (-1155)) 136)) (-3684 (((-1267) $ (-1155)) 138)) (-2162 (((-1267) $ (-157) (-157)) 160)) (-2327 (((-860) $) 169)) (-1639 (((-1267) $) 141)) (-2187 (((-1267) $ (-1155)) 190)) (-1648 (((-112) $ $) NIL)) (-2997 (((-1267) $ (-1155)) 135)) (-2872 (((-112) $ $) NIL)))
+(((-1264) (-13 (-1097) (-10 -8 (-15 -3664 ((-379))) (-15 -3664 ((-379) (-379))) (-15 -1510 ((-379))) (-15 -1510 ((-379) (-379))) (-15 -1878 ((-379))) (-15 -1878 ((-379) (-379))) (-15 -2716 ((-379))) (-15 -2716 ((-379) (-379))) (-15 -1888 ((-379))) (-15 -1888 ((-379) (-379))) (-15 -2277 ($)) (-15 -3198 ($ $)) (-15 -3198 ($ (-1130 (-225)) (-1155))) (-15 -3198 ($ (-1130 (-225)) (-642 (-263)))) (-15 -3682 ((-1130 (-225)) $)) (-15 -3682 ($ $ (-1130 (-225)))) (-15 -2506 ((-1267) $ (-769) (-941 (-225)))) (-15 -4255 ((-642 (-263)) $)) (-15 -4255 ($ $ (-642 (-263)))) (-15 -1330 ((-1267) $ (-769) (-769))) (-15 -1868 ((-1267) $ (-919) (-919))) (-15 -3277 ((-1267) $ (-1155))) (-15 -1670 ((-1267) $ (-769) (-769) (-919) (-919))) (-15 -1360 ((-1267) $ (-379) (-379) (-379) (-379) (-379))) (-15 -1360 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1360 ((-1267) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1360 ((-1267) $ (-564) (-564) (-379) (-379) (-379))) (-15 -1360 ((-1267) $ (-379) (-379))) (-15 -1360 ((-1267) $ (-379) (-379) (-379))) (-15 -3684 ((-1267) $ (-1155))) (-15 -2997 ((-1267) $ (-1155))) (-15 -1649 ((-1267) $ (-1155))) (-15 -1702 ((-1267) $ (-1155))) (-15 -1770 ((-1267) $ (-1155))) (-15 -1464 ((-1267) $ (-379) (-379))) (-15 -1464 ((-1267) $ (-564) (-564))) (-15 -3132 ((-1267) $ (-379))) (-15 -3132 ((-1267) $ (-379) (-379) (-379))) (-15 -3418 ((-1267) $ (-379) (-379))) (-15 -1980 ((-1267) $ (-1155))) (-15 -2292 ((-1267) $ (-379))) (-15 -2648 ((-1267) $ (-379))) (-15 -2501 ((-1267) $ (-1155))) (-15 -2623 ((-1267) $ (-1155))) (-15 -2187 ((-1267) $ (-1155))) (-15 -2148 ((-1267) $ (-379) (-379) (-379))) (-15 -1701 ((-1267) $ (-379))) (-15 -2106 ((-1267) $)) (-15 -2162 ((-1267) $ (-157) (-157))) (-15 -2122 ((-1155) $ (-1155))) (-15 -2122 ((-1155) $ (-1155) (-1155))) (-15 -2122 ((-1155) $ (-1155) (-642 (-1155)))) (-15 -1639 ((-1267) $)) (-15 -1907 ((-564) $))))) (T -1264))
+((-3664 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-3664 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-1510 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-1878 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-2716 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-2716 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-1888 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-1888 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))) (-2277 (*1 *1) (-5 *1 (-1264))) (-3198 (*1 *1 *1) (-5 *1 (-1264))) (-3198 (*1 *1 *2 *3) (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-1155)) (-5 *1 (-1264)))) (-3198 (*1 *1 *2 *3) (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-642 (-263))) (-5 *1 (-1264)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1264)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1264)))) (-2506 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-941 (-225))) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-4255 (*1 *2 *1) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1264)))) (-4255 (*1 *1 *1 *2) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1264)))) (-1330 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1868 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3277 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1670 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-769)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1360 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1360 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1264)))) (-1360 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1360 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1360 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1360 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3684 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2997 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1649 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1464 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1464 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3132 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3132 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-3418 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1980 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2292 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2648 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2501 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2623 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2187 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2148 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1701 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2162 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1267)) (-5 *1 (-1264)))) (-2122 (*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1264)))) (-2122 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1264)))) (-2122 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-1264)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1264)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1264)))))
+(-13 (-1097) (-10 -8 (-15 -3664 ((-379))) (-15 -3664 ((-379) (-379))) (-15 -1510 ((-379))) (-15 -1510 ((-379) (-379))) (-15 -1878 ((-379))) (-15 -1878 ((-379) (-379))) (-15 -2716 ((-379))) (-15 -2716 ((-379) (-379))) (-15 -1888 ((-379))) (-15 -1888 ((-379) (-379))) (-15 -2277 ($)) (-15 -3198 ($ $)) (-15 -3198 ($ (-1130 (-225)) (-1155))) (-15 -3198 ($ (-1130 (-225)) (-642 (-263)))) (-15 -3682 ((-1130 (-225)) $)) (-15 -3682 ($ $ (-1130 (-225)))) (-15 -2506 ((-1267) $ (-769) (-941 (-225)))) (-15 -4255 ((-642 (-263)) $)) (-15 -4255 ($ $ (-642 (-263)))) (-15 -1330 ((-1267) $ (-769) (-769))) (-15 -1868 ((-1267) $ (-919) (-919))) (-15 -3277 ((-1267) $ (-1155))) (-15 -1670 ((-1267) $ (-769) (-769) (-919) (-919))) (-15 -1360 ((-1267) $ (-379) (-379) (-379) (-379) (-379))) (-15 -1360 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1360 ((-1267) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1360 ((-1267) $ (-564) (-564) (-379) (-379) (-379))) (-15 -1360 ((-1267) $ (-379) (-379))) (-15 -1360 ((-1267) $ (-379) (-379) (-379))) (-15 -3684 ((-1267) $ (-1155))) (-15 -2997 ((-1267) $ (-1155))) (-15 -1649 ((-1267) $ (-1155))) (-15 -1702 ((-1267) $ (-1155))) (-15 -1770 ((-1267) $ (-1155))) (-15 -1464 ((-1267) $ (-379) (-379))) (-15 -1464 ((-1267) $ (-564) (-564))) (-15 -3132 ((-1267) $ (-379))) (-15 -3132 ((-1267) $ (-379) (-379) (-379))) (-15 -3418 ((-1267) $ (-379) (-379))) (-15 -1980 ((-1267) $ (-1155))) (-15 -2292 ((-1267) $ (-379))) (-15 -2648 ((-1267) $ (-379))) (-15 -2501 ((-1267) $ (-1155))) (-15 -2623 ((-1267) $ (-1155))) (-15 -2187 ((-1267) $ (-1155))) (-15 -2148 ((-1267) $ (-379) (-379) (-379))) (-15 -1701 ((-1267) $ (-379))) (-15 -2106 ((-1267) $)) (-15 -2162 ((-1267) $ (-157) (-157))) (-15 -2122 ((-1155) $ (-1155))) (-15 -2122 ((-1155) $ (-1155) (-1155))) (-15 -2122 ((-1155) $ (-1155) (-642 (-1155)))) (-15 -1639 ((-1267) $)) (-15 -1907 ((-564) $))))
+((-2585 (((-642 (-1155)) (-642 (-1155))) 104) (((-642 (-1155))) 96)) (-1882 (((-642 (-1155))) 94)) (-1808 (((-642 (-919)) (-642 (-919))) 69) (((-642 (-919))) 64)) (-2120 (((-642 (-769)) (-642 (-769))) 61) (((-642 (-769))) 55)) (-3586 (((-1267)) 71)) (-4289 (((-919) (-919)) 87) (((-919)) 86)) (-1686 (((-919) (-919)) 85) (((-919)) 84)) (-2199 (((-872) (-872)) 81) (((-872)) 80)) (-2865 (((-225)) 91) (((-225) (-379)) 93)) (-2263 (((-919)) 88) (((-919) (-919)) 89)) (-4176 (((-919) (-919)) 83) (((-919)) 82)) (-1955 (((-872) (-872)) 75) (((-872)) 73)) (-3379 (((-872) (-872)) 77) (((-872)) 76)) (-2770 (((-872) (-872)) 79) (((-872)) 78)))
+(((-1265) (-10 -7 (-15 -1955 ((-872))) (-15 -1955 ((-872) (-872))) (-15 -3379 ((-872))) (-15 -3379 ((-872) (-872))) (-15 -2770 ((-872))) (-15 -2770 ((-872) (-872))) (-15 -2199 ((-872))) (-15 -2199 ((-872) (-872))) (-15 -4176 ((-919))) (-15 -4176 ((-919) (-919))) (-15 -2120 ((-642 (-769)))) (-15 -2120 ((-642 (-769)) (-642 (-769)))) (-15 -1808 ((-642 (-919)))) (-15 -1808 ((-642 (-919)) (-642 (-919)))) (-15 -3586 ((-1267))) (-15 -2585 ((-642 (-1155)))) (-15 -2585 ((-642 (-1155)) (-642 (-1155)))) (-15 -1882 ((-642 (-1155)))) (-15 -1686 ((-919))) (-15 -4289 ((-919))) (-15 -1686 ((-919) (-919))) (-15 -4289 ((-919) (-919))) (-15 -2263 ((-919) (-919))) (-15 -2263 ((-919))) (-15 -2865 ((-225) (-379))) (-15 -2865 ((-225))))) (T -1265))
+((-2865 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1265)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1265)))) (-2263 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-4289 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-1686 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-4289 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-1686 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-1882 (*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265)))) (-2585 (*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265)))) (-2585 (*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265)))) (-3586 (*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1265)))) (-1808 (*1 *2 *2) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1265)))) (-1808 (*1 *2) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1265)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1265)))) (-2120 (*1 *2) (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1265)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-4176 (*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-2199 (*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-2770 (*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-3379 (*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-1955 (*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))) (-1955 (*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))))
+(-10 -7 (-15 -1955 ((-872))) (-15 -1955 ((-872) (-872))) (-15 -3379 ((-872))) (-15 -3379 ((-872) (-872))) (-15 -2770 ((-872))) (-15 -2770 ((-872) (-872))) (-15 -2199 ((-872))) (-15 -2199 ((-872) (-872))) (-15 -4176 ((-919))) (-15 -4176 ((-919) (-919))) (-15 -2120 ((-642 (-769)))) (-15 -2120 ((-642 (-769)) (-642 (-769)))) (-15 -1808 ((-642 (-919)))) (-15 -1808 ((-642 (-919)) (-642 (-919)))) (-15 -3586 ((-1267))) (-15 -2585 ((-642 (-1155)))) (-15 -2585 ((-642 (-1155)) (-642 (-1155)))) (-15 -1882 ((-642 (-1155)))) (-15 -1686 ((-919))) (-15 -4289 ((-919))) (-15 -1686 ((-919) (-919))) (-15 -4289 ((-919) (-919))) (-15 -2263 ((-919) (-919))) (-15 -2263 ((-919))) (-15 -2865 ((-225) (-379))) (-15 -2865 ((-225))))
+((-1538 (((-468) (-642 (-642 (-941 (-225)))) (-642 (-263))) 22) (((-468) (-642 (-642 (-941 (-225))))) 21) (((-468) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263))) 20)) (-2599 (((-1263) (-642 (-642 (-941 (-225)))) (-642 (-263))) 33) (((-1263) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263))) 32)) (-2327 (((-1263) (-468)) 48)))
+(((-1266) (-10 -7 (-15 -1538 ((-468) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263)))) (-15 -1538 ((-468) (-642 (-642 (-941 (-225)))))) (-15 -1538 ((-468) (-642 (-642 (-941 (-225)))) (-642 (-263)))) (-15 -2599 ((-1263) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263)))) (-15 -2599 ((-1263) (-642 (-642 (-941 (-225)))) (-642 (-263)))) (-15 -2327 ((-1263) (-468))))) (T -1266))
+((-2327 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1263)) (-5 *1 (-1266)))) (-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-1266)))) (-2599 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-872)) (-5 *5 (-919)) (-5 *6 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-1266)))) (-1538 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-642 (-263))) (-5 *2 (-468)) (-5 *1 (-1266)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *2 (-468)) (-5 *1 (-1266)))) (-1538 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-872)) (-5 *5 (-919)) (-5 *6 (-642 (-263))) (-5 *2 (-468)) (-5 *1 (-1266)))))
+(-10 -7 (-15 -1538 ((-468) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263)))) (-15 -1538 ((-468) (-642 (-642 (-941 (-225)))))) (-15 -1538 ((-468) (-642 (-642 (-941 (-225)))) (-642 (-263)))) (-15 -2599 ((-1263) (-642 (-642 (-941 (-225)))) (-872) (-872) (-919) (-642 (-263)))) (-15 -2599 ((-1263) (-642 (-642 (-941 (-225)))) (-642 (-263)))) (-15 -2327 ((-1263) (-468))))
+((-1852 (($) 7)) (-2327 (((-860) $) 10)))
+(((-1267) (-13 (-611 (-860)) (-10 -8 (-15 -1852 ($))))) (T -1267))
+((-1852 (*1 *1) (-5 *1 (-1267))))
+(-13 (-611 (-860)) (-10 -8 (-15 -1852 ($))))
+((-2998 (($ $ |#2|) 10)))
+(((-1268 |#1| |#2|) (-10 -8 (-15 -2998 (|#1| |#1| |#2|))) (-1269 |#2|) (-363)) (T -1268))
+NIL
+(-10 -8 (-15 -2998 (|#1| |#1| |#2|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-3474 (((-134)) 33)) (-2327 (((-860) $) 12)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2872 (((-112) $ $) 6)) (-2998 (($ $ |#1|) 34)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-1269 |#1|) (-140) (-363)) (T -1269))
+((-2998 (*1 *1 *1 *2) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-363)))) (-3474 (*1 *2) (-12 (-4 *1 (-1269 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
+(-13 (-715 |t#1|) (-10 -8 (-15 -2998 ($ $ |t#1|)) (-15 -3474 ((-134)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-646 |#1|) . T) ((-638 |#1|) . T) ((-715 |#1|) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1097) . T))
+((-3783 (((-642 (-1206 |#1|)) (-1173) (-1206 |#1|)) 83)) (-2800 (((-1153 (-1153 (-950 |#1|))) (-1173) (-1153 (-950 |#1|))) 63)) (-2508 (((-1 (-1153 (-1206 |#1|)) (-1153 (-1206 |#1|))) (-769) (-1206 |#1|) (-1153 (-1206 |#1|))) 74)) (-1673 (((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769)) 65)) (-4217 (((-1 (-1169 (-950 |#1|)) (-950 |#1|)) (-1173)) 32)) (-2077 (((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769)) 64)))
+(((-1270 |#1|) (-10 -7 (-15 -1673 ((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769))) (-15 -2077 ((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769))) (-15 -2800 ((-1153 (-1153 (-950 |#1|))) (-1173) (-1153 (-950 |#1|)))) (-15 -4217 ((-1 (-1169 (-950 |#1|)) (-950 |#1|)) (-1173))) (-15 -3783 ((-642 (-1206 |#1|)) (-1173) (-1206 |#1|))) (-15 -2508 ((-1 (-1153 (-1206 |#1|)) (-1153 (-1206 |#1|))) (-769) (-1206 |#1|) (-1153 (-1206 |#1|))))) (-363)) (T -1270))
+((-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-769)) (-4 *6 (-363)) (-5 *4 (-1206 *6)) (-5 *2 (-1 (-1153 *4) (-1153 *4))) (-5 *1 (-1270 *6)) (-5 *5 (-1153 *4)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-4 *5 (-363)) (-5 *2 (-642 (-1206 *5))) (-5 *1 (-1270 *5)) (-5 *4 (-1206 *5)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1 (-1169 (-950 *4)) (-950 *4))) (-5 *1 (-1270 *4)) (-4 *4 (-363)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-1173)) (-4 *5 (-363)) (-5 *2 (-1153 (-1153 (-950 *5)))) (-5 *1 (-1270 *5)) (-5 *4 (-1153 (-950 *5))))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-1153 (-950 *4)) (-1153 (-950 *4)))) (-5 *1 (-1270 *4)) (-4 *4 (-363)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-1153 (-950 *4)) (-1153 (-950 *4)))) (-5 *1 (-1270 *4)) (-4 *4 (-363)))))
+(-10 -7 (-15 -1673 ((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769))) (-15 -2077 ((-1 (-1153 (-950 |#1|)) (-1153 (-950 |#1|))) (-769))) (-15 -2800 ((-1153 (-1153 (-950 |#1|))) (-1173) (-1153 (-950 |#1|)))) (-15 -4217 ((-1 (-1169 (-950 |#1|)) (-950 |#1|)) (-1173))) (-15 -3783 ((-642 (-1206 |#1|)) (-1173) (-1206 |#1|))) (-15 -2508 ((-1 (-1153 (-1206 |#1|)) (-1153 (-1206 |#1|))) (-769) (-1206 |#1|) (-1153 (-1206 |#1|)))))
+((-3814 (((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|) 85)) (-3620 (((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|)))) 84)))
+(((-1271 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3620 ((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))))) (-15 -3814 ((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|))) (-349) (-1238 |#1|) (-1238 |#2|) (-409 |#2| |#3|)) (T -1271))
+((-3814 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 *3)) (-5 *2 (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-687 *3)))) (-5 *1 (-1271 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-3620 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 *4)) (-5 *2 (-2 (|:| -4263 (-687 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-687 *4)))) (-5 *1 (-1271 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
+(-10 -7 (-15 -3620 ((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))))) (-15 -3814 ((-2 (|:| -4263 (-687 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-687 |#2|))) |#2|)))
+((-2907 (((-112) $ $) NIL)) (-1764 (((-1132) $) 11)) (-3272 (((-1132) $) 9)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 17) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1272) (-13 (-1080) (-10 -8 (-15 -3272 ((-1132) $)) (-15 -1764 ((-1132) $))))) (T -1272))
+((-3272 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1272)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1272)))))
+(-13 (-1080) (-10 -8 (-15 -3272 ((-1132) $)) (-15 -1764 ((-1132) $))))
+((-2907 (((-112) $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2839 (((-1132) $) 9)) (-2327 (((-860) $) 15) (($ (-1178)) NIL) (((-1178) $) NIL)) (-1648 (((-112) $ $) NIL)) (-2872 (((-112) $ $) NIL)))
+(((-1273) (-13 (-1080) (-10 -8 (-15 -2839 ((-1132) $))))) (T -1273))
+((-2839 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1273)))))
+(-13 (-1080) (-10 -8 (-15 -2839 ((-1132) $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 57)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) NIL)) (-3953 (((-112) $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2327 (((-860) $) 80) (($ (-564)) NIL) (($ |#4|) 64) ((|#4| $) 69) (($ |#1|) NIL (|has| |#1| (-172)))) (-2756 (((-769)) NIL T CONST)) (-3207 (((-1267) (-769)) 16)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 37 T CONST)) (-2322 (($) 83 T CONST)) (-2872 (((-112) $ $) 86)) (-2998 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2987 (($ $) 88) (($ $ $) NIL)) (-2974 (($ $ $) 62)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 90) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-1274 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1047) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2998 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3207 ((-1267) (-769))))) (-1047) (-848) (-791) (-947 |#1| |#3| |#2|) (-642 |#2|) (-642 (-769)) (-769)) (T -1274))
+((-2998 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1047)) (-4 *3 (-848)) (-4 *4 (-791)) (-14 *6 (-642 *3)) (-5 *1 (-1274 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-947 *2 *4 *3)) (-14 *7 (-642 (-769))) (-14 *8 (-769)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-1047)) (-4 *5 (-848)) (-4 *6 (-791)) (-14 *8 (-642 *5)) (-5 *2 (-1267)) (-5 *1 (-1274 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-947 *4 *6 *5)) (-14 *9 (-642 *3)) (-14 *10 *3))))
+(-13 (-1047) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2998 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3207 ((-1267) (-769)))))
+((-2907 (((-112) $ $) NIL)) (-3126 (((-642 (-2 (|:| -1639 $) (|:| -2241 (-642 |#4|)))) (-642 |#4|)) NIL)) (-4208 (((-642 $) (-642 |#4|)) 96)) (-3802 (((-642 |#3|) $) NIL)) (-3317 (((-112) $) NIL)) (-4293 (((-112) $) NIL (|has| |#1| (-556)))) (-3831 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3923 ((|#4| |#4| $) NIL)) (-2383 (((-2 (|:| |under| $) (|:| -2759 $) (|:| |upper| $)) $ |#3|) NIL)) (-3697 (((-112) $ (-769)) NIL)) (-1700 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1976 (($) NIL T CONST)) (-1496 (((-112) $) NIL (|has| |#1| (-556)))) (-4375 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2888 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2850 (((-112) $) NIL (|has| |#1| (-556)))) (-1975 (((-642 |#4|) (-642 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2627 (((-642 |#4|) (-642 |#4|) $) 28 (|has| |#1| (-556)))) (-3446 (((-642 |#4|) (-642 |#4|) $) NIL (|has| |#1| (-556)))) (-4278 (((-3 $ "failed") (-642 |#4|)) NIL)) (-3027 (($ (-642 |#4|)) NIL)) (-2570 (((-3 $ "failed") $) 78)) (-1493 ((|#4| |#4| $) 83)) (-2595 (($ $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-2490 (($ |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3045 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1597 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1821 ((|#4| |#4| $) NIL)) (-1320 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4410))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4410))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1738 (((-2 (|:| -1639 (-642 |#4|)) (|:| -2241 (-642 |#4|))) $) NIL)) (-2936 (((-642 |#4|) $) NIL (|has| $ (-6 -4410)))) (-2846 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3290 ((|#3| $) 84)) (-3462 (((-112) $ (-769)) NIL)) (-3234 (((-642 |#4|) $) 32 (|has| $ (-6 -4410)))) (-2776 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097))))) (-1677 (((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-642 |#4|)) 38)) (-2613 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4411)))) (-4358 (($ (-1 |#4| |#4|) $) NIL)) (-3370 (((-642 |#3|) $) NIL)) (-4120 (((-112) |#3| $) NIL)) (-3576 (((-112) $ (-769)) NIL)) (-3315 (((-1155) $) NIL)) (-2514 (((-3 |#4| "failed") $) NIL)) (-2743 (((-642 |#4|) $) 54)) (-3350 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1415 ((|#4| |#4| $) 82)) (-3819 (((-112) $ $) 93)) (-2520 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-2262 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1372 ((|#4| |#4| $) NIL)) (-4033 (((-1117) $) NIL)) (-2557 (((-3 |#4| "failed") $) 77)) (-3254 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3724 (((-3 $ "failed") $ |#4|) NIL)) (-3804 (($ $ |#4|) NIL)) (-2121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3215 (($ $ (-642 |#4|) (-642 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097)))) (($ $ (-642 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1097))))) (-4245 (((-112) $ $) NIL)) (-3719 (((-112) $) 75)) (-2972 (($) 46)) (-2775 (((-769) $) NIL)) (-4043 (((-769) |#4| $) NIL (-12 (|has| $ (-6 -4410)) (|has| |#4| (-1097)))) (((-769) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-3901 (($ $) NIL)) (-1314 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-2337 (($ (-642 |#4|)) NIL)) (-3153 (($ $ |#3|) NIL)) (-3696 (($ $ |#3|) NIL)) (-3114 (($ $) NIL)) (-1749 (($ $ |#3|) NIL)) (-2327 (((-860) $) NIL) (((-642 |#4|) $) 63)) (-4195 (((-769) $) NIL (|has| |#3| (-368)))) (-3767 (((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-642 |#4|)) 45)) (-4348 (((-642 $) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-642 $) (-642 |#4|)) 74)) (-1648 (((-112) $ $) NIL)) (-2232 (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2362 (-642 |#4|))) "failed") (-642 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3497 (((-112) $ (-1 (-112) |#4| (-642 |#4|))) NIL)) (-2710 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4410)))) (-2240 (((-642 |#3|) $) NIL)) (-1362 (((-112) |#3| $) NIL)) (-2872 (((-112) $ $) NIL)) (-2127 (((-769) $) NIL (|has| $ (-6 -4410)))))
+(((-1275 |#1| |#2| |#3| |#4|) (-13 (-1205 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1677 ((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1677 ((-3 $ "failed") (-642 |#4|))) (-15 -3767 ((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3767 ((-3 $ "failed") (-642 |#4|))) (-15 -4348 ((-642 $) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4348 ((-642 $) (-642 |#4|))))) (-556) (-791) (-848) (-1062 |#1| |#2| |#3|)) (T -1275))
+((-1677 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1275 *5 *6 *7 *8)))) (-1677 (*1 *1 *2) (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1275 *3 *4 *5 *6)))) (-3767 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1275 *5 *6 *7 *8)))) (-3767 (*1 *1 *2) (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1275 *3 *4 *5 *6)))) (-4348 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-642 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-791)) (-4 *8 (-848)) (-5 *2 (-642 (-1275 *6 *7 *8 *9))) (-5 *1 (-1275 *6 *7 *8 *9)))) (-4348 (*1 *2 *3) (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-1275 *4 *5 *6 *7))) (-5 *1 (-1275 *4 *5 *6 *7)))))
+(-13 (-1205 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1677 ((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1677 ((-3 $ "failed") (-642 |#4|))) (-15 -3767 ((-3 $ "failed") (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3767 ((-3 $ "failed") (-642 |#4|))) (-15 -4348 ((-642 $) (-642 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4348 ((-642 $) (-642 |#4|)))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-1532 (((-3 $ "failed") $ $) 20)) (-1976 (($) 18 T CONST)) (-3104 (((-3 $ "failed") $) 37)) (-3953 (((-112) $) 35)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#1|) 45)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
+(((-1276 |#1|) (-140) (-1047)) (T -1276))
+NIL
+(-13 (-1047) (-111 |t#1| |t#1|) (-614 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 |#1|) |has| |#1| (-172)) ((-715 |#1|) |has| |#1| (-172)) ((-724) . T) ((-1049 |#1|) . T) ((-1054 |#1|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T))
+((-2907 (((-112) $ $) 67)) (-2952 (((-112) $) NIL)) (-2961 (((-642 |#1|) $) 52)) (-2526 (($ $ (-769)) 46)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1544 (($ $ (-769)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-1976 (($) NIL T CONST)) (-3842 (($ $ $) 70) (($ $ (-817 |#1|)) 56) (($ $ |#1|) 60)) (-4278 (((-3 (-817 |#1|) "failed") $) NIL)) (-3027 (((-817 |#1|) $) NIL)) (-1718 (($ $) 39)) (-3104 (((-3 $ "failed") $) NIL)) (-2741 (((-112) $) NIL)) (-3965 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3214 (($ (-817 |#1|) |#2|) 38)) (-3298 (($ $) 40)) (-3078 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) 12)) (-2146 (((-817 |#1|) $) NIL)) (-3397 (((-817 |#1|) $) 41)) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-4093 (($ $ $) 69) (($ $ (-817 |#1|)) 58) (($ $ |#1|) 62)) (-4234 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3950 (((-817 |#1|) $) 35)) (-3962 ((|#2| $) 37)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-2775 (((-769) $) 43)) (-1563 (((-112) $) 47)) (-2858 ((|#2| $) NIL)) (-2327 (((-860) $) NIL) (($ (-817 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-564)) NIL)) (-3849 (((-642 |#2|) $) NIL)) (-2102 ((|#2| $ (-817 |#1|)) NIL)) (-4378 ((|#2| $ $) 76) ((|#2| $ (-817 |#1|)) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 13 T CONST)) (-2322 (($) 19 T CONST)) (-3692 (((-642 (-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2872 (((-112) $ $) 44)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 28)) (** (($ $ (-769)) NIL) (($ $ (-919)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-817 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
+(((-1277 |#1| |#2|) (-13 (-382 |#2| (-817 |#1|)) (-1283 |#1| |#2|)) (-848) (-1047)) (T -1277))
+NIL
+(-13 (-382 |#2| (-817 |#1|)) (-1283 |#1| |#2|))
+((-3612 ((|#3| |#3| (-769)) 30)) (-1723 ((|#3| |#3| (-769)) 36)) (-3605 ((|#3| |#3| |#3| (-769)) 37)))
+(((-1278 |#1| |#2| |#3|) (-10 -7 (-15 -1723 (|#3| |#3| (-769))) (-15 -3612 (|#3| |#3| (-769))) (-15 -3605 (|#3| |#3| |#3| (-769)))) (-13 (-1047) (-715 (-407 (-564)))) (-848) (-1283 |#2| |#1|)) (T -1278))
+((-3605 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564))))) (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4)))) (-3612 (*1 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564))))) (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4)))) (-1723 (*1 *2 *2 *3) (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564))))) (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4)))))
+(-10 -7 (-15 -1723 (|#3| |#3| (-769))) (-15 -3612 (|#3| |#3| (-769))) (-15 -3605 (|#3| |#3| |#3| (-769))))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-2961 (((-642 |#1|) $) 47)) (-1532 (((-3 $ "failed") $ $) 20)) (-1544 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-769)) 49 (|has| |#2| (-172)))) (-1976 (($) 18 T CONST)) (-3842 (($ $ |#1|) 61) (($ $ (-817 |#1|)) 60) (($ $ $) 59)) (-4278 (((-3 (-817 |#1|) "failed") $) 71)) (-3027 (((-817 |#1|) $) 72)) (-3104 (((-3 $ "failed") $) 37)) (-2741 (((-112) $) 52)) (-3965 (($ $) 51)) (-3953 (((-112) $) 35)) (-2316 (((-112) $) 57)) (-3214 (($ (-817 |#1|) |#2|) 58)) (-3298 (($ $) 56)) (-3078 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) 67)) (-2146 (((-817 |#1|) $) 68)) (-4358 (($ (-1 |#2| |#2|) $) 48)) (-4093 (($ $ |#1|) 64) (($ $ (-817 |#1|)) 63) (($ $ $) 62)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-1563 (((-112) $) 54)) (-2858 ((|#2| $) 53)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#2|) 75) (($ (-817 |#1|)) 70) (($ |#1|) 55)) (-4378 ((|#2| $ (-817 |#1|)) 66) ((|#2| $ $) 65)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1279 |#1| |#2|) (-140) (-848) (-1047)) (T -1279))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-817 *3)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-2 (|:| |k| (-817 *3)) (|:| |c| *4))))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (-817 *4)) (-4 *1 (-1279 *4 *2)) (-4 *4 (-848)) (-4 *2 (-1047)))) (-4378 (*1 *2 *1 *1) (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047)))) (-4093 (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-4093 (*1 *1 *1 *2) (-12 (-5 *2 (-817 *3)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))) (-4093 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-3842 (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-3842 (*1 *1 *1 *2) (-12 (-5 *2 (-817 *3)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *2 (-817 *4)) (-4 *4 (-848)) (-4 *1 (-1279 *4 *3)) (-4 *3 (-1047)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-112)))) (-3298 (*1 *1 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-2327 (*1 *1 *2) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-1563 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-112)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-112)))) (-3965 (*1 *1 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))) (-1544 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)) (-4 *3 (-172)))) (-1544 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-4 *4 (-172)))) (-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-642 *3)))))
+(-13 (-1047) (-1276 |t#2|) (-1036 (-817 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2146 ((-817 |t#1|) $)) (-15 -3078 ((-2 (|:| |k| (-817 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4378 (|t#2| $ (-817 |t#1|))) (-15 -4378 (|t#2| $ $)) (-15 -4093 ($ $ |t#1|)) (-15 -4093 ($ $ (-817 |t#1|))) (-15 -4093 ($ $ $)) (-15 -3842 ($ $ |t#1|)) (-15 -3842 ($ $ (-817 |t#1|))) (-15 -3842 ($ $ $)) (-15 -3214 ($ (-817 |t#1|) |t#2|)) (-15 -2316 ((-112) $)) (-15 -3298 ($ $)) (-15 -2327 ($ |t#1|)) (-15 -1563 ((-112) $)) (-15 -2858 (|t#2| $)) (-15 -2741 ((-112) $)) (-15 -3965 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -1544 ($ $ $)) (-15 -1544 ($ $ (-769)))) |%noBranch|) (-15 -4358 ($ (-1 |t#2| |t#2|) $)) (-15 -2961 ((-642 |t#1|) $)) (IF (|has| |t#2| (-6 -4403)) (-6 -4403) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-817 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-638 |#2|) |has| |#2| (-172)) ((-715 |#2|) |has| |#2| (-172)) ((-724) . T) ((-1036 #0#) . T) ((-1049 |#2|) . T) ((-1054 |#2|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1276 |#2|) . T))
+((-2988 (((-112) $) 15)) (-1362 (((-112) $) 14)) (-3623 (($ $) 19) (($ $ (-769)) 21)))
+(((-1280 |#1| |#2|) (-10 -8 (-15 -3623 (|#1| |#1| (-769))) (-15 -3623 (|#1| |#1|)) (-15 -2988 ((-112) |#1|)) (-15 -1362 ((-112) |#1|))) (-1281 |#2|) (-363)) (T -1280))
+NIL
+(-10 -8 (-15 -3623 (|#1| |#1| (-769))) (-15 -3623 (|#1| |#1|)) (-15 -2988 ((-112) |#1|)) (-15 -1362 ((-112) |#1|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-4039 (((-2 (|:| -3587 $) (|:| -4397 $) (|:| |associate| $)) $) 47)) (-1387 (($ $) 46)) (-2037 (((-112) $) 44)) (-2988 (((-112) $) 104)) (-3237 (((-769)) 100)) (-1532 (((-3 $ "failed") $ $) 20)) (-4316 (($ $) 81)) (-1978 (((-418 $) $) 80)) (-4010 (((-112) $ $) 65)) (-1976 (($) 18 T CONST)) (-4278 (((-3 |#1| "failed") $) 111)) (-3027 ((|#1| $) 112)) (-2845 (($ $ $) 61)) (-3104 (((-3 $ "failed") $) 37)) (-2859 (($ $ $) 62)) (-1315 (((-2 (|:| -4378 (-642 $)) (|:| -2185 $)) (-642 $)) 57)) (-3607 (($ $ (-769)) 97 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 96 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1469 (((-112) $) 79)) (-1427 (((-831 (-919)) $) 94 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3953 (((-112) $) 35)) (-1854 (((-3 (-642 $) "failed") (-642 $) $) 58)) (-2049 (($ $ $) 52) (($ (-642 $)) 51)) (-3315 (((-1155) $) 10)) (-3911 (($ $) 78)) (-2843 (((-112) $) 103)) (-4033 (((-1117) $) 11)) (-2351 (((-1169 $) (-1169 $) (-1169 $)) 50)) (-2080 (($ $ $) 54) (($ (-642 $)) 53)) (-3643 (((-418 $) $) 82)) (-1524 (((-831 (-919))) 101)) (-3883 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2185 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2896 (((-3 $ "failed") $ $) 48)) (-1542 (((-3 (-642 $) "failed") (-642 $) $) 56)) (-2048 (((-769) $) 64)) (-4376 (((-2 (|:| -1420 $) (|:| -3045 $)) $ $) 63)) (-2136 (((-3 (-769) "failed") $ $) 95 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3474 (((-134)) 109)) (-2775 (((-831 (-919)) $) 102)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ $) 49) (($ (-407 (-564))) 74) (($ |#1|) 110)) (-2439 (((-3 $ "failed") $) 93 (-2706 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2103 (((-112) $ $) 45)) (-1362 (((-112) $) 105)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-3623 (($ $) 99 (|has| |#1| (-368))) (($ $ (-769)) 98 (|has| |#1| (-368)))) (-2872 (((-112) $ $) 6)) (-2998 (($ $ $) 73) (($ $ |#1|) 108)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36) (($ $ (-564)) 77)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ $ (-407 (-564))) 76) (($ (-407 (-564)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-1281 |#1|) (-140) (-363)) (T -1281))
+((-1362 (*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-831 (-919))))) (-1524 (*1 *2) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-831 (-919))))) (-3237 (*1 *2) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-769)))) (-3623 (*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-3623 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-4 *3 (-368)))))
+(-13 (-363) (-1036 |t#1|) (-1269 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -1362 ((-112) $)) (-15 -2988 ((-112) $)) (-15 -2843 ((-112) $)) (-15 -2775 ((-831 (-919)) $)) (-15 -1524 ((-831 (-919)))) (-15 -3237 ((-769))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -3623 ($ $)) (-15 -3623 ($ $ (-769)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2706 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-860)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -2706 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 (-564)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-715 #0#) . T) ((-715 |#1|) . T) ((-715 $) . T) ((-724) . T) ((-918) . T) ((-1036 |#1|) . T) ((-1049 #0#) . T) ((-1049 |#1|) . T) ((-1049 $) . T) ((-1054 #0#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1216) . T) ((-1269 |#1|) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2961 (((-642 |#1|) $) 99)) (-2526 (($ $ (-769)) 103)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1544 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-769)) NIL (|has| |#2| (-172)))) (-1976 (($) NIL T CONST)) (-3842 (($ $ |#1|) NIL) (($ $ (-817 |#1|)) NIL) (($ $ $) NIL)) (-4278 (((-3 (-817 |#1|) "failed") $) NIL) (((-3 (-891 |#1|) "failed") $) NIL)) (-3027 (((-817 |#1|) $) NIL) (((-891 |#1|) $) NIL)) (-1718 (($ $) 102)) (-3104 (((-3 $ "failed") $) NIL)) (-2741 (((-112) $) 91)) (-3965 (($ $) 94)) (-1739 (($ $ $ (-769)) 104)) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3214 (($ (-817 |#1|) |#2|) NIL) (($ (-891 |#1|) |#2|) 29)) (-3298 (($ $) 121)) (-3078 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2146 (((-817 |#1|) $) NIL)) (-3397 (((-817 |#1|) $) NIL)) (-4358 (($ (-1 |#2| |#2|) $) NIL)) (-4093 (($ $ |#1|) NIL) (($ $ (-817 |#1|)) NIL) (($ $ $) NIL)) (-3612 (($ $ (-769)) 114 (|has| |#2| (-715 (-407 (-564)))))) (-4234 (((-2 (|:| |k| (-891 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3950 (((-891 |#1|) $) 84)) (-3962 ((|#2| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1723 (($ $ (-769)) 111 (|has| |#2| (-715 (-407 (-564)))))) (-2775 (((-769) $) 100)) (-1563 (((-112) $) 85)) (-2858 ((|#2| $) 89)) (-2327 (((-860) $) 70) (($ (-564)) NIL) (($ |#2|) 60) (($ (-817 |#1|)) NIL) (($ |#1|) 72) (($ (-891 |#1|)) NIL) (($ (-662 |#1| |#2|)) 48) (((-1277 |#1| |#2|) $) 77) (((-1286 |#1| |#2|) $) 82)) (-3849 (((-642 |#2|) $) NIL)) (-2102 ((|#2| $ (-891 |#1|)) NIL)) (-4378 ((|#2| $ (-817 |#1|)) NIL) ((|#2| $ $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 21 T CONST)) (-2322 (($) 28 T CONST)) (-3692 (((-642 (-2 (|:| |k| (-891 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3321 (((-3 (-662 |#1| |#2|) "failed") $) 120)) (-2872 (((-112) $ $) 78)) (-2987 (($ $) 113) (($ $ $) 112)) (-2974 (($ $ $) 20)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-891 |#1|)) NIL)))
+(((-1282 |#1| |#2|) (-13 (-1283 |#1| |#2|) (-382 |#2| (-891 |#1|)) (-10 -8 (-15 -2327 ($ (-662 |#1| |#2|))) (-15 -2327 ((-1277 |#1| |#2|) $)) (-15 -2327 ((-1286 |#1| |#2|) $)) (-15 -3321 ((-3 (-662 |#1| |#2|) "failed") $)) (-15 -1739 ($ $ $ (-769))) (IF (|has| |#2| (-715 (-407 (-564)))) (PROGN (-15 -1723 ($ $ (-769))) (-15 -3612 ($ $ (-769)))) |%noBranch|))) (-848) (-172)) (T -1282))
+((-2327 (*1 *1 *2) (-12 (-5 *2 (-662 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)) (-5 *1 (-1282 *3 *4)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-3321 (*1 *2 *1) (|partial| -12 (-5 *2 (-662 *3 *4)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-1739 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4)) (-4 *4 (-715 (-407 (-564)))) (-4 *3 (-848)) (-4 *4 (-172)))) (-3612 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4)) (-4 *4 (-715 (-407 (-564)))) (-4 *3 (-848)) (-4 *4 (-172)))))
+(-13 (-1283 |#1| |#2|) (-382 |#2| (-891 |#1|)) (-10 -8 (-15 -2327 ($ (-662 |#1| |#2|))) (-15 -2327 ((-1277 |#1| |#2|) $)) (-15 -2327 ((-1286 |#1| |#2|) $)) (-15 -3321 ((-3 (-662 |#1| |#2|) "failed") $)) (-15 -1739 ($ $ $ (-769))) (IF (|has| |#2| (-715 (-407 (-564)))) (PROGN (-15 -1723 ($ $ (-769))) (-15 -3612 ($ $ (-769)))) |%noBranch|)))
+((-2907 (((-112) $ $) 7)) (-2952 (((-112) $) 17)) (-2961 (((-642 |#1|) $) 47)) (-2526 (($ $ (-769)) 80)) (-1532 (((-3 $ "failed") $ $) 20)) (-1544 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-769)) 49 (|has| |#2| (-172)))) (-1976 (($) 18 T CONST)) (-3842 (($ $ |#1|) 61) (($ $ (-817 |#1|)) 60) (($ $ $) 59)) (-4278 (((-3 (-817 |#1|) "failed") $) 71)) (-3027 (((-817 |#1|) $) 72)) (-3104 (((-3 $ "failed") $) 37)) (-2741 (((-112) $) 52)) (-3965 (($ $) 51)) (-3953 (((-112) $) 35)) (-2316 (((-112) $) 57)) (-3214 (($ (-817 |#1|) |#2|) 58)) (-3298 (($ $) 56)) (-3078 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) 67)) (-2146 (((-817 |#1|) $) 68)) (-3397 (((-817 |#1|) $) 82)) (-4358 (($ (-1 |#2| |#2|) $) 48)) (-4093 (($ $ |#1|) 64) (($ $ (-817 |#1|)) 63) (($ $ $) 62)) (-3315 (((-1155) $) 10)) (-4033 (((-1117) $) 11)) (-2775 (((-769) $) 81)) (-1563 (((-112) $) 54)) (-2858 ((|#2| $) 53)) (-2327 (((-860) $) 12) (($ (-564)) 33) (($ |#2|) 75) (($ (-817 |#1|)) 70) (($ |#1|) 55)) (-4378 ((|#2| $ (-817 |#1|)) 66) ((|#2| $ $) 65)) (-2756 (((-769)) 32 T CONST)) (-1648 (((-112) $ $) 9)) (-2312 (($) 19 T CONST)) (-2322 (($) 34 T CONST)) (-2872 (((-112) $ $) 6)) (-2987 (($ $) 23) (($ $ $) 22)) (-2974 (($ $ $) 15)) (** (($ $ (-919)) 28) (($ $ (-769)) 36)) (* (($ (-919) $) 14) (($ (-769) $) 16) (($ (-564) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1283 |#1| |#2|) (-140) (-848) (-1047)) (T -1283))
+((-3397 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-817 *3)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *2 (-769)))) (-2526 (*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))))
+(-13 (-1279 |t#1| |t#2|) (-10 -8 (-15 -3397 ((-817 |t#1|) $)) (-15 -2775 ((-769) $)) (-15 -2526 ($ $ (-769)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-817 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-860)) . T) ((-644 (-564)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-638 |#2|) |has| |#2| (-172)) ((-715 |#2|) |has| |#2| (-172)) ((-724) . T) ((-1036 #0#) . T) ((-1049 |#2|) . T) ((-1054 |#2|) . T) ((-1047) . T) ((-1055) . T) ((-1109) . T) ((-1097) . T) ((-1276 |#2|) . T) ((-1279 |#1| |#2|) . T))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-2961 (((-642 (-1173)) $) NIL)) (-1683 (($ (-1277 (-1173) |#1|)) NIL)) (-2526 (($ $ (-769)) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1544 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-769)) NIL (|has| |#1| (-172)))) (-1976 (($) NIL T CONST)) (-3842 (($ $ (-1173)) NIL) (($ $ (-817 (-1173))) NIL) (($ $ $) NIL)) (-4278 (((-3 (-817 (-1173)) "failed") $) NIL)) (-3027 (((-817 (-1173)) $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2741 (((-112) $) NIL)) (-3965 (($ $) NIL)) (-3953 (((-112) $) NIL)) (-2316 (((-112) $) NIL)) (-3214 (($ (-817 (-1173)) |#1|) NIL)) (-3298 (($ $) NIL)) (-3078 (((-2 (|:| |k| (-817 (-1173))) (|:| |c| |#1|)) $) NIL)) (-2146 (((-817 (-1173)) $) NIL)) (-3397 (((-817 (-1173)) $) NIL)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-4093 (($ $ (-1173)) NIL) (($ $ (-817 (-1173))) NIL) (($ $ $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1675 (((-1277 (-1173) |#1|) $) NIL)) (-2775 (((-769) $) NIL)) (-1563 (((-112) $) NIL)) (-2858 ((|#1| $) NIL)) (-2327 (((-860) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-817 (-1173))) NIL) (($ (-1173)) NIL)) (-4378 ((|#1| $ (-817 (-1173))) NIL) ((|#1| $ $) NIL)) (-2756 (((-769)) NIL T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) NIL T CONST)) (-2604 (((-642 (-2 (|:| |k| (-1173)) (|:| |c| $))) $) NIL)) (-2322 (($) NIL T CONST)) (-2872 (((-112) $ $) NIL)) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) NIL)) (** (($ $ (-919)) NIL) (($ $ (-769)) NIL)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1173) $) NIL)))
+(((-1284 |#1|) (-13 (-1283 (-1173) |#1|) (-10 -8 (-15 -1675 ((-1277 (-1173) |#1|) $)) (-15 -1683 ($ (-1277 (-1173) |#1|))) (-15 -2604 ((-642 (-2 (|:| |k| (-1173)) (|:| |c| $))) $)))) (-1047)) (T -1284))
+((-1675 (*1 *2 *1) (-12 (-5 *2 (-1277 (-1173) *3)) (-5 *1 (-1284 *3)) (-4 *3 (-1047)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1277 (-1173) *3)) (-4 *3 (-1047)) (-5 *1 (-1284 *3)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |k| (-1173)) (|:| |c| (-1284 *3))))) (-5 *1 (-1284 *3)) (-4 *3 (-1047)))))
+(-13 (-1283 (-1173) |#1|) (-10 -8 (-15 -1675 ((-1277 (-1173) |#1|) $)) (-15 -1683 ($ (-1277 (-1173) |#1|))) (-15 -2604 ((-642 (-2 (|:| |k| (-1173)) (|:| |c| $))) $))))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) NIL)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1976 (($) NIL T CONST)) (-4278 (((-3 |#2| "failed") $) NIL)) (-3027 ((|#2| $) NIL)) (-1718 (($ $) NIL)) (-3104 (((-3 $ "failed") $) 41)) (-2741 (((-112) $) 35)) (-3965 (($ $) 37)) (-3953 (((-112) $) NIL)) (-3934 (((-769) $) NIL)) (-1763 (((-642 $) $) NIL)) (-2316 (((-112) $) NIL)) (-3214 (($ |#2| |#1|) NIL)) (-2146 ((|#2| $) 24)) (-3397 ((|#2| $) 22)) (-4358 (($ (-1 |#1| |#1|) $) NIL)) (-4234 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3950 ((|#2| $) NIL)) (-3962 ((|#1| $) NIL)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1563 (((-112) $) 32)) (-2858 ((|#1| $) 33)) (-2327 (((-860) $) 64) (($ (-564)) 45) (($ |#1|) 40) (($ |#2|) NIL)) (-3849 (((-642 |#1|) $) NIL)) (-2102 ((|#1| $ |#2|) NIL)) (-4378 ((|#1| $ |#2|) 28)) (-2756 (((-769)) 14 T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 29 T CONST)) (-2322 (($) 11 T CONST)) (-3692 (((-642 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2872 (((-112) $ $) 30)) (-2998 (($ $ |#1|) 66 (|has| |#1| (-363)))) (-2987 (($ $) NIL) (($ $ $) NIL)) (-2974 (($ $ $) 49)) (** (($ $ (-919)) NIL) (($ $ (-769)) 51)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) NIL) (($ $ $) 50) (($ |#1| $) 46) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2127 (((-769) $) 16)))
+(((-1285 |#1| |#2|) (-13 (-1047) (-1276 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2127 ((-769) $)) (-15 -3397 (|#2| $)) (-15 -2146 (|#2| $)) (-15 -1718 ($ $)) (-15 -4378 (|#1| $ |#2|)) (-15 -1563 ((-112) $)) (-15 -2858 (|#1| $)) (-15 -2741 ((-112) $)) (-15 -3965 ($ $)) (-15 -4358 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -2998 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|))) (-1047) (-844)) (T -1285))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844)))) (-1718 (*1 *1 *1) (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844)))) (-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-1285 *3 *4)) (-4 *4 (-844)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-844)))) (-3397 (*1 *2 *1) (-12 (-4 *2 (-844)) (-5 *1 (-1285 *3 *2)) (-4 *3 (-1047)))) (-2146 (*1 *2 *1) (-12 (-4 *2 (-844)) (-5 *1 (-1285 *3 *2)) (-4 *3 (-1047)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *2 (-1047)) (-5 *1 (-1285 *2 *3)) (-4 *3 (-844)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-844)))) (-2858 (*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-1285 *2 *3)) (-4 *3 (-844)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-844)))) (-3965 (*1 *1 *1) (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844)))) (-2998 (*1 *1 *1 *2) (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1047)) (-4 *3 (-844)))))
+(-13 (-1047) (-1276 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2127 ((-769) $)) (-15 -3397 (|#2| $)) (-15 -2146 (|#2| $)) (-15 -1718 ($ $)) (-15 -4378 (|#1| $ |#2|)) (-15 -1563 ((-112) $)) (-15 -2858 (|#1| $)) (-15 -2741 ((-112) $)) (-15 -3965 ($ $)) (-15 -4358 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -2998 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|)))
+((-2907 (((-112) $ $) 27)) (-2952 (((-112) $) NIL)) (-2961 (((-642 |#1|) $) 131)) (-1683 (($ (-1277 |#1| |#2|)) 50)) (-2526 (($ $ (-769)) 38)) (-1532 (((-3 $ "failed") $ $) NIL)) (-1544 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-769)) 52 (|has| |#2| (-172)))) (-1976 (($) NIL T CONST)) (-3842 (($ $ |#1|) 113) (($ $ (-817 |#1|)) 114) (($ $ $) 26)) (-4278 (((-3 (-817 |#1|) "failed") $) NIL)) (-3027 (((-817 |#1|) $) NIL)) (-3104 (((-3 $ "failed") $) 121)) (-2741 (((-112) $) 116)) (-3965 (($ $) 117)) (-3953 (((-112) $) NIL)) (-2316 (((-112) $) NIL)) (-3214 (($ (-817 |#1|) |#2|) 20)) (-3298 (($ $) NIL)) (-3078 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2146 (((-817 |#1|) $) 122)) (-3397 (((-817 |#1|) $) 125)) (-4358 (($ (-1 |#2| |#2|) $) 130)) (-4093 (($ $ |#1|) 111) (($ $ (-817 |#1|)) 112) (($ $ $) 62)) (-3315 (((-1155) $) NIL)) (-4033 (((-1117) $) NIL)) (-1675 (((-1277 |#1| |#2|) $) 93)) (-2775 (((-769) $) 128)) (-1563 (((-112) $) 80)) (-2858 ((|#2| $) 32)) (-2327 (((-860) $) 72) (($ (-564)) 86) (($ |#2|) 84) (($ (-817 |#1|)) 18) (($ |#1|) 83)) (-4378 ((|#2| $ (-817 |#1|)) 115) ((|#2| $ $) 28)) (-2756 (((-769)) 119 T CONST)) (-1648 (((-112) $ $) NIL)) (-2312 (($) 15 T CONST)) (-2604 (((-642 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2322 (($) 33 T CONST)) (-2872 (((-112) $ $) 14)) (-2987 (($ $) 97) (($ $ $) 100)) (-2974 (($ $ $) 61)) (** (($ $ (-919)) NIL) (($ $ (-769)) 55)) (* (($ (-919) $) NIL) (($ (-769) $) 53) (($ (-564) $) 105) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 91)))
+(((-1286 |#1| |#2|) (-13 (-1283 |#1| |#2|) (-10 -8 (-15 -1675 ((-1277 |#1| |#2|) $)) (-15 -1683 ($ (-1277 |#1| |#2|))) (-15 -2604 ((-642 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-848) (-1047)) (T -1286))
+((-1675 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1277 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)) (-5 *1 (-1286 *3 *4)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-642 (-2 (|:| |k| *3) (|:| |c| (-1286 *3 *4))))) (-5 *1 (-1286 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))))
+(-13 (-1283 |#1| |#2|) (-10 -8 (-15 -1675 ((-1277 |#1| |#2|) $)) (-15 -1683 ($ (-1277 |#1| |#2|))) (-15 -2604 ((-642 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-2329 (((-642 (-1153 |#1|)) (-1 (-642 (-1153 |#1|)) (-642 (-1153 |#1|))) (-564)) 20) (((-1153 |#1|) (-1 (-1153 |#1|) (-1153 |#1|))) 13)))
+(((-1287 |#1|) (-10 -7 (-15 -2329 ((-1153 |#1|) (-1 (-1153 |#1|) (-1153 |#1|)))) (-15 -2329 ((-642 (-1153 |#1|)) (-1 (-642 (-1153 |#1|)) (-642 (-1153 |#1|))) (-564)))) (-1212)) (T -1287))
+((-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-642 (-1153 *5)) (-642 (-1153 *5)))) (-5 *4 (-564)) (-5 *2 (-642 (-1153 *5))) (-5 *1 (-1287 *5)) (-4 *5 (-1212)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-1 (-1153 *4) (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1287 *4)) (-4 *4 (-1212)))))
+(-10 -7 (-15 -2329 ((-1153 |#1|) (-1 (-1153 |#1|) (-1153 |#1|)))) (-15 -2329 ((-642 (-1153 |#1|)) (-1 (-642 (-1153 |#1|)) (-642 (-1153 |#1|))) (-564))))
+((-3890 (((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|))) 174) (((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112)) 173) (((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112)) 172) (((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112) (-112)) 171) (((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-1044 |#1| |#2|)) 156)) (-4276 (((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|))) 85) (((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112)) 84) (((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112) (-112)) 83)) (-1978 (((-642 (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))) (-1044 |#1| |#2|)) 73)) (-1573 (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|))) 140) (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112)) 139) (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112)) 138) (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112) (-112)) 137) (((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|)) 132)) (-3242 (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|))) 145) (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112)) 144) (((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112)) 143) (((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|)) 142)) (-1314 (((-642 (-778 |#1| (-862 |#3|))) (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))) 111) (((-1169 (-1022 (-407 |#1|))) (-1169 |#1|)) 102) (((-950 (-1022 (-407 |#1|))) (-778 |#1| (-862 |#3|))) 109) (((-950 (-1022 (-407 |#1|))) (-950 |#1|)) 107) (((-778 |#1| (-862 |#3|)) (-778 |#1| (-862 |#2|))) 33)))
+(((-1288 |#1| |#2| |#3|) (-10 -7 (-15 -4276 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112) (-112))) (-15 -4276 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112))) (-15 -4276 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)))) (-15 -3890 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-1044 |#1| |#2|))) (-15 -3890 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112) (-112))) (-15 -3890 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -3890 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112))) (-15 -3890 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -1573 ((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|))) (-15 -1573 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112) (-112))) (-15 -1573 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -1573 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112))) (-15 -1573 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)))) (-15 -3242 ((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|))) (-15 -3242 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -3242 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112))) (-15 -3242 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)))) (-15 -1978 ((-642 (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))) (-1044 |#1| |#2|))) (-15 -1314 ((-778 |#1| (-862 |#3|)) (-778 |#1| (-862 |#2|)))) (-15 -1314 ((-950 (-1022 (-407 |#1|))) (-950 |#1|))) (-15 -1314 ((-950 (-1022 (-407 |#1|))) (-778 |#1| (-862 |#3|)))) (-15 -1314 ((-1169 (-1022 (-407 |#1|))) (-1169 |#1|))) (-15 -1314 ((-642 (-778 |#1| (-862 |#3|))) (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))))) (-13 (-846) (-307) (-147) (-1020)) (-642 (-1173)) (-642 (-1173))) (T -1288))
+((-1314 (*1 *2 *3) (-12 (-5 *3 (-1143 *4 (-531 (-862 *6)) (-862 *6) (-778 *4 (-862 *6)))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-778 *4 (-862 *6)))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-1169 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-778 *4 (-862 *6))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *6 (-642 (-1173))) (-5 *2 (-950 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-950 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-778 *4 (-862 *5))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) (-5 *2 (-778 *4 (-862 *6))) (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-1143 *4 (-531 (-862 *6)) (-862 *6) (-778 *4 (-862 *6))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-3242 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-3242 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-1573 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-1573 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-1573 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) (-3890 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-2 (|:| -1386 (-1169 *4)) (|:| -2067 (-642 (-950 *4)))))) (-5 *1 (-1288 *4 *5 *6)) (-5 *3 (-642 (-950 *4))) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-3890 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-2 (|:| -1386 (-1169 *5)) (|:| -2067 (-642 (-950 *5)))))) (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5))) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-3890 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-2 (|:| -1386 (-1169 *5)) (|:| -2067 (-642 (-950 *5)))))) (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5))) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-3890 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-2 (|:| -1386 (-1169 *5)) (|:| -2067 (-642 (-950 *5)))))) (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5))) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-2 (|:| -1386 (-1169 *4)) (|:| -2067 (-642 (-950 *4)))))) (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))) (-4276 (*1 *2 *3) (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-1044 *4 *5))) (-5 *1 (-1288 *4 *5 *6)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))) (-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))) (-4276 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020))) (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-1288 *5 *6 *7)) (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173))))))
+(-10 -7 (-15 -4276 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112) (-112))) (-15 -4276 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)) (-112))) (-15 -4276 ((-642 (-1044 |#1| |#2|)) (-642 (-950 |#1|)))) (-15 -3890 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-1044 |#1| |#2|))) (-15 -3890 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112) (-112))) (-15 -3890 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -3890 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)) (-112))) (-15 -3890 ((-642 (-2 (|:| -1386 (-1169 |#1|)) (|:| -2067 (-642 (-950 |#1|))))) (-642 (-950 |#1|)))) (-15 -1573 ((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|))) (-15 -1573 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112) (-112))) (-15 -1573 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -1573 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112))) (-15 -1573 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)))) (-15 -3242 ((-642 (-642 (-1022 (-407 |#1|)))) (-1044 |#1| |#2|))) (-15 -3242 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112) (-112))) (-15 -3242 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)) (-112))) (-15 -3242 ((-642 (-642 (-1022 (-407 |#1|)))) (-642 (-950 |#1|)))) (-15 -1978 ((-642 (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|)))) (-1044 |#1| |#2|))) (-15 -1314 ((-778 |#1| (-862 |#3|)) (-778 |#1| (-862 |#2|)))) (-15 -1314 ((-950 (-1022 (-407 |#1|))) (-950 |#1|))) (-15 -1314 ((-950 (-1022 (-407 |#1|))) (-778 |#1| (-862 |#3|)))) (-15 -1314 ((-1169 (-1022 (-407 |#1|))) (-1169 |#1|))) (-15 -1314 ((-642 (-778 |#1| (-862 |#3|))) (-1143 |#1| (-531 (-862 |#3|)) (-862 |#3|) (-778 |#1| (-862 |#3|))))))
+((-3445 (((-3 (-1262 (-407 (-564))) "failed") (-1262 |#1|) |#1|) 21)) (-3274 (((-112) (-1262 |#1|)) 12)) (-2476 (((-3 (-1262 (-564)) "failed") (-1262 |#1|)) 16)))
+(((-1289 |#1|) (-10 -7 (-15 -3274 ((-112) (-1262 |#1|))) (-15 -2476 ((-3 (-1262 (-564)) "failed") (-1262 |#1|))) (-15 -3445 ((-3 (-1262 (-407 (-564))) "failed") (-1262 |#1|) |#1|))) (-637 (-564))) (T -1289))
+((-3445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1262 (-407 (-564)))) (-5 *1 (-1289 *4)))) (-2476 (*1 *2 *3) (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1262 (-564))) (-5 *1 (-1289 *4)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) (-5 *1 (-1289 *4)))))
+(-10 -7 (-15 -3274 ((-112) (-1262 |#1|))) (-15 -2476 ((-3 (-1262 (-564)) "failed") (-1262 |#1|))) (-15 -3445 ((-3 (-1262 (-407 (-564))) "failed") (-1262 |#1|) |#1|)))
+((-2907 (((-112) $ $) NIL)) (-2952 (((-112) $) 11)) (-1532 (((-3 $ "failed") $ $) NIL)) (-2521 (((-769)) 8)) (-1976 (($) NIL T CONST)) (-3104 (((-3 $ "failed") $) 58)) (-2433 (($) 49)) (-3953 (((-112) $) 57)) (-3157 (((-3 $ "failed") $) 40)) (-1945 (((-919) $) 15)) (-3315 (((-1155) $) NIL)) (-3366 (($) 32 T CONST)) (-2047 (($ (-919)) 50)) (-4033 (((-1117) $) NIL)) (-1314 (((-564) $) 13)) (-2327 (((-860) $) 27) (($ (-564)) 24)) (-2756 (((-769)) 9 T CONST)) (-1648 (((-112) $ $) 60)) (-2312 (($) 29 T CONST)) (-2322 (($) 31 T CONST)) (-2872 (((-112) $ $) 38)) (-2987 (($ $) 52) (($ $ $) 47)) (-2974 (($ $ $) 35)) (** (($ $ (-919)) NIL) (($ $ (-769)) 54)) (* (($ (-919) $) NIL) (($ (-769) $) NIL) (($ (-564) $) 44) (($ $ $) 43)))
+(((-1290 |#1|) (-13 (-172) (-368) (-612 (-564)) (-1148)) (-919)) (T -1290))
+NIL
+(-13 (-172) (-368) (-612 (-564)) (-1148))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3219899 3219904 3219909 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3219884 3219889 3219894 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3219869 3219874 3219879 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3219854 3219859 3219864 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1290 3218997 3219729 3219806 "ZMOD" 3219811 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1289 3218107 3218271 3218480 "ZLINDEP" 3218829 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1288 3207407 3209175 3211147 "ZDSOLVE" 3216237 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1287 3206653 3206794 3206983 "YSTREAM" 3207253 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1286 3204427 3205954 3206158 "XRPOLY" 3206496 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1285 3200980 3202298 3202873 "XPR" 3203899 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1284 3198701 3200311 3200515 "XPOLY" 3200811 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1283 3196354 3197722 3197777 "XPOLYC" 3198065 NIL XPOLYC (NIL T T) -9 NIL 3198178 NIL) (-1282 3192729 3194871 3195259 "XPBWPOLY" 3196012 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1281 3188424 3190719 3190761 "XF" 3191382 NIL XF (NIL T) -9 NIL 3191782 NIL) (-1280 3188045 3188133 3188302 "XF-" 3188307 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1279 3183241 3184530 3184585 "XFALG" 3186757 NIL XFALG (NIL T T) -9 NIL 3187546 NIL) (-1278 3182374 3182478 3182683 "XEXPPKG" 3183133 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1277 3180483 3182224 3182320 "XDPOLY" 3182325 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1276 3179290 3179890 3179933 "XALG" 3179938 NIL XALG (NIL T) -9 NIL 3180049 NIL) (-1275 3172732 3177267 3177761 "WUTSET" 3178882 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1274 3170988 3171784 3172107 "WP" 3172543 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1273 3170590 3170810 3170880 "WHILEAST" 3170940 T WHILEAST (NIL) -8 NIL NIL NIL) (-1272 3170062 3170307 3170401 "WHEREAST" 3170518 T WHEREAST (NIL) -8 NIL NIL NIL) (-1271 3168948 3169146 3169441 "WFFINTBS" 3169859 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1270 3166852 3167279 3167741 "WEIER" 3168520 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1269 3165898 3166348 3166390 "VSPACE" 3166526 NIL VSPACE (NIL T) -9 NIL 3166600 NIL) (-1268 3165736 3165763 3165854 "VSPACE-" 3165859 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1267 3165544 3165587 3165655 "VOID" 3165690 T VOID (NIL) -8 NIL NIL NIL) (-1266 3163680 3164039 3164445 "VIEW" 3165160 T VIEW (NIL) -7 NIL NIL NIL) (-1265 3160104 3160743 3161480 "VIEWDEF" 3162965 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1264 3149408 3151652 3153825 "VIEW3D" 3157953 T VIEW3D (NIL) -8 NIL NIL NIL) (-1263 3141659 3143319 3144898 "VIEW2D" 3147851 T VIEW2D (NIL) -8 NIL NIL NIL) (-1262 3137011 3141429 3141521 "VECTOR" 3141602 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1261 3135588 3135847 3136165 "VECTOR2" 3136741 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1260 3129062 3133369 3133412 "VECTCAT" 3134407 NIL VECTCAT (NIL T) -9 NIL 3134994 NIL) (-1259 3128076 3128330 3128720 "VECTCAT-" 3128725 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1258 3127530 3127727 3127847 "VARIABLE" 3127991 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1257 3127463 3127468 3127498 "UTYPE" 3127503 T UTYPE (NIL) -9 NIL NIL NIL) (-1256 3126293 3126447 3126709 "UTSODETL" 3127289 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1255 3123733 3124193 3124717 "UTSODE" 3125834 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1254 3115570 3121359 3121848 "UTS" 3123302 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1253 3106444 3111811 3111854 "UTSCAT" 3112966 NIL UTSCAT (NIL T) -9 NIL 3113724 NIL) (-1252 3103791 3104514 3105503 "UTSCAT-" 3105508 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1251 3103418 3103461 3103594 "UTS2" 3103742 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1250 3097644 3100256 3100299 "URAGG" 3102369 NIL URAGG (NIL T) -9 NIL 3103092 NIL) (-1249 3094583 3095446 3096569 "URAGG-" 3096574 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1248 3090293 3093218 3093683 "UPXSSING" 3094247 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1247 3082359 3089540 3089813 "UPXS" 3090078 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1246 3075432 3082263 3082335 "UPXSCONS" 3082340 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1245 3065177 3071970 3072032 "UPXSCCA" 3072606 NIL UPXSCCA (NIL T T) -9 NIL 3072839 NIL) (-1244 3064815 3064900 3065074 "UPXSCCA-" 3065079 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1243 3054412 3060978 3061021 "UPXSCAT" 3061669 NIL UPXSCAT (NIL T) -9 NIL 3062278 NIL) (-1242 3053842 3053921 3054100 "UPXS2" 3054327 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1241 3052496 3052749 3053100 "UPSQFREE" 3053585 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1240 3045917 3048974 3049029 "UPSCAT" 3050190 NIL UPSCAT (NIL T T) -9 NIL 3050964 NIL) (-1239 3045121 3045328 3045655 "UPSCAT-" 3045660 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1238 3030776 3038544 3038587 "UPOLYC" 3040688 NIL UPOLYC (NIL T) -9 NIL 3041909 NIL) (-1237 3022104 3024530 3027677 "UPOLYC-" 3027682 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1236 3021731 3021774 3021907 "UPOLYC2" 3022055 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1235 3013542 3021414 3021543 "UP" 3021650 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1234 3012881 3012988 3013152 "UPMP" 3013431 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1233 3012434 3012515 3012654 "UPDIVP" 3012794 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1232 3011002 3011251 3011567 "UPDECOMP" 3012183 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1231 3010237 3010349 3010534 "UPCDEN" 3010886 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1230 3009756 3009825 3009974 "UP2" 3010162 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1229 3008223 3008960 3009237 "UNISEG" 3009514 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1228 3007438 3007565 3007770 "UNISEG2" 3008066 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1227 3006498 3006678 3006904 "UNIFACT" 3007254 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1226 2990430 3005675 3005926 "ULS" 3006305 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1225 2978429 2990334 2990406 "ULSCONS" 2990411 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1224 2960448 2972433 2972495 "ULSCCAT" 2973133 NIL ULSCCAT (NIL T T) -9 NIL 2973421 NIL) (-1223 2959498 2959743 2960131 "ULSCCAT-" 2960136 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1222 2948872 2955352 2955395 "ULSCAT" 2956258 NIL ULSCAT (NIL T) -9 NIL 2956989 NIL) (-1221 2948302 2948381 2948560 "ULS2" 2948787 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1220 2947429 2947939 2948046 "UINT8" 2948157 T UINT8 (NIL) -8 NIL NIL 2948242) (-1219 2946555 2947065 2947172 "UINT64" 2947283 T UINT64 (NIL) -8 NIL NIL 2947368) (-1218 2945681 2946191 2946298 "UINT32" 2946409 T UINT32 (NIL) -8 NIL NIL 2946494) (-1217 2944807 2945317 2945424 "UINT16" 2945535 T UINT16 (NIL) -8 NIL NIL 2945620) (-1216 2943110 2944067 2944097 "UFD" 2944309 T UFD (NIL) -9 NIL 2944423 NIL) (-1215 2942904 2942950 2943045 "UFD-" 2943050 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1214 2941986 2942169 2942385 "UDVO" 2942710 T UDVO (NIL) -7 NIL NIL NIL) (-1213 2939802 2940211 2940682 "UDPO" 2941550 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1212 2939735 2939740 2939770 "TYPE" 2939775 T TYPE (NIL) -9 NIL NIL NIL) (-1211 2939495 2939690 2939721 "TYPEAST" 2939726 T TYPEAST (NIL) -8 NIL NIL NIL) (-1210 2938466 2938668 2938908 "TWOFACT" 2939289 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1209 2937489 2937875 2938110 "TUPLE" 2938266 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1208 2935180 2935699 2936238 "TUBETOOL" 2936972 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1207 2934029 2934234 2934475 "TUBE" 2934973 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1206 2928758 2933001 2933284 "TS" 2933781 NIL TS (NIL T) -8 NIL NIL NIL) (-1205 2917398 2921517 2921614 "TSETCAT" 2926883 NIL TSETCAT (NIL T T T T) -9 NIL 2928414 NIL) (-1204 2912130 2913730 2915621 "TSETCAT-" 2915626 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1203 2906769 2907616 2908545 "TRMANIP" 2911266 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1202 2906210 2906273 2906436 "TRIMAT" 2906701 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1201 2904076 2904313 2904670 "TRIGMNIP" 2905959 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1200 2903596 2903709 2903739 "TRIGCAT" 2903952 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1199 2903265 2903344 2903485 "TRIGCAT-" 2903490 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1198 2900110 2902123 2902404 "TREE" 2903019 NIL TREE (NIL T) -8 NIL NIL NIL) (-1197 2899384 2899912 2899942 "TRANFUN" 2899977 T TRANFUN (NIL) -9 NIL 2900043 NIL) (-1196 2898663 2898854 2899134 "TRANFUN-" 2899139 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1195 2898467 2898499 2898560 "TOPSP" 2898624 T TOPSP (NIL) -7 NIL NIL NIL) (-1194 2897815 2897930 2898084 "TOOLSIGN" 2898348 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1193 2896449 2896992 2897231 "TEXTFILE" 2897598 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1192 2894361 2894902 2895331 "TEX" 2896042 T TEX (NIL) -8 NIL NIL NIL) (-1191 2894142 2894173 2894245 "TEX1" 2894324 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1190 2893790 2893853 2893943 "TEMUTL" 2894074 T TEMUTL (NIL) -7 NIL NIL NIL) (-1189 2891944 2892224 2892549 "TBCMPPK" 2893513 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1188 2883721 2890104 2890160 "TBAGG" 2890560 NIL TBAGG (NIL T T) -9 NIL 2890771 NIL) (-1187 2878791 2880279 2882033 "TBAGG-" 2882038 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1186 2878175 2878282 2878427 "TANEXP" 2878680 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1185 2871565 2878032 2878125 "TABLE" 2878130 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1184 2870977 2871076 2871214 "TABLEAU" 2871462 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1183 2865585 2866805 2868053 "TABLBUMP" 2869763 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1182 2864807 2864954 2865135 "SYSTEM" 2865426 T SYSTEM (NIL) -8 NIL NIL NIL) (-1181 2861266 2861965 2862748 "SYSSOLP" 2864058 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1180 2860310 2860815 2860934 "SYSNNI" 2861120 NIL SYSNNI (NIL NIL) -8 NIL NIL 2861205) (-1179 2859617 2860076 2860155 "SYSINT" 2860215 NIL SYSINT (NIL NIL) -8 NIL NIL 2860260) (-1178 2855949 2856895 2857605 "SYNTAX" 2858929 T SYNTAX (NIL) -8 NIL NIL NIL) (-1177 2853107 2853709 2854341 "SYMTAB" 2855339 T SYMTAB (NIL) -8 NIL NIL NIL) (-1176 2848356 2849258 2850241 "SYMS" 2852146 T SYMS (NIL) -8 NIL NIL NIL) (-1175 2845591 2847814 2848044 "SYMPOLY" 2848161 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1174 2845108 2845183 2845306 "SYMFUNC" 2845503 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1173 2841127 2842420 2843233 "SYMBOL" 2844317 T SYMBOL (NIL) -8 NIL NIL NIL) (-1172 2834666 2836355 2838075 "SWITCH" 2839429 T SWITCH (NIL) -8 NIL NIL NIL) (-1171 2827900 2833487 2833790 "SUTS" 2834421 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1170 2819966 2827147 2827420 "SUPXS" 2827685 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2811726 2819584 2819710 "SUP" 2819875 NIL SUP (NIL T) -8 NIL NIL NIL) (-1168 2810885 2811012 2811229 "SUPFRACF" 2811594 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1167 2810506 2810565 2810678 "SUP2" 2810820 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1166 2808954 2809228 2809584 "SUMRF" 2810205 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1165 2808289 2808355 2808547 "SUMFS" 2808875 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1164 2792256 2807466 2807717 "SULS" 2808096 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1163 2791858 2792078 2792148 "SUCHTAST" 2792208 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1162 2791153 2791383 2791523 "SUCH" 2791766 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1161 2785019 2786059 2787018 "SUBSPACE" 2790241 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1160 2784449 2784539 2784703 "SUBRESP" 2784907 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1159 2777814 2779114 2780425 "STTF" 2783185 NIL STTF (NIL T) -7 NIL NIL NIL) (-1158 2771987 2773107 2774254 "STTFNC" 2776714 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1157 2763298 2765169 2766963 "STTAYLOR" 2770228 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1156 2756428 2763162 2763245 "STRTBL" 2763250 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1155 2751792 2756383 2756414 "STRING" 2756419 T STRING (NIL) -8 NIL NIL NIL) (-1154 2746653 2751165 2751195 "STRICAT" 2751254 T STRICAT (NIL) -9 NIL 2751316 NIL) (-1153 2739407 2744272 2744883 "STREAM" 2746077 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1152 2738917 2738994 2739138 "STREAM3" 2739324 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1151 2737899 2738082 2738317 "STREAM2" 2738730 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1150 2737587 2737639 2737732 "STREAM1" 2737841 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1149 2736603 2736784 2737015 "STINPROD" 2737403 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1148 2736155 2736365 2736395 "STEP" 2736475 T STEP (NIL) -9 NIL 2736553 NIL) (-1147 2729587 2736054 2736131 "STBL" 2736136 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1146 2724713 2728808 2728851 "STAGG" 2729004 NIL STAGG (NIL T) -9 NIL 2729093 NIL) (-1145 2722415 2723017 2723889 "STAGG-" 2723894 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1144 2720562 2722185 2722277 "STACK" 2722358 NIL STACK (NIL T) -8 NIL NIL NIL) (-1143 2713257 2718703 2719159 "SREGSET" 2720192 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1142 2705682 2707051 2708564 "SRDCMPK" 2711863 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1141 2698599 2703122 2703152 "SRAGG" 2704455 T SRAGG (NIL) -9 NIL 2705063 NIL) (-1140 2697616 2697871 2698250 "SRAGG-" 2698255 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1139 2692076 2696563 2696984 "SQMATRIX" 2697242 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1138 2685761 2688794 2689521 "SPLTREE" 2691421 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1137 2681724 2682417 2683063 "SPLNODE" 2685187 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1136 2680771 2681004 2681034 "SPFCAT" 2681478 T SPFCAT (NIL) -9 NIL NIL NIL) (-1135 2679508 2679718 2679982 "SPECOUT" 2680529 T SPECOUT (NIL) -7 NIL NIL NIL) (-1134 2671134 2672904 2672934 "SPADXPT" 2677326 T SPADXPT (NIL) -9 NIL 2679360 NIL) (-1133 2670895 2670935 2671004 "SPADPRSR" 2671087 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1132 2669050 2670850 2670881 "SPADAST" 2670886 T SPADAST (NIL) -8 NIL NIL NIL) (-1131 2660995 2662768 2662811 "SPACEC" 2667184 NIL SPACEC (NIL T) -9 NIL 2669000 NIL) (-1130 2659125 2660927 2660976 "SPACE3" 2660981 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1129 2657877 2658048 2658339 "SORTPAK" 2658930 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1128 2655969 2656272 2656684 "SOLVETRA" 2657541 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1127 2655019 2655241 2655502 "SOLVESER" 2655742 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1126 2650321 2651211 2652206 "SOLVERAD" 2654071 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1125 2646136 2646745 2647474 "SOLVEFOR" 2649688 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1124 2640406 2645485 2645582 "SNTSCAT" 2645587 NIL SNTSCAT (NIL T T T T) -9 NIL 2645657 NIL) (-1123 2634512 2638729 2639120 "SMTS" 2640096 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1122 2629196 2634400 2634477 "SMP" 2634482 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1121 2627355 2627656 2628054 "SMITH" 2628893 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1120 2620068 2624264 2624367 "SMATCAT" 2625718 NIL SMATCAT (NIL NIL T T T) -9 NIL 2626268 NIL) (-1119 2617008 2617831 2619009 "SMATCAT-" 2619014 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1118 2614674 2616244 2616287 "SKAGG" 2616548 NIL SKAGG (NIL T) -9 NIL 2616683 NIL) (-1117 2610982 2614090 2614285 "SINT" 2614472 T SINT (NIL) -8 NIL NIL 2614645) (-1116 2610754 2610792 2610858 "SIMPAN" 2610938 T SIMPAN (NIL) -7 NIL NIL NIL) (-1115 2610033 2610289 2610429 "SIG" 2610636 T SIG (NIL) -8 NIL NIL NIL) (-1114 2608871 2609092 2609367 "SIGNRF" 2609792 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1113 2607704 2607855 2608139 "SIGNEF" 2608700 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1112 2607010 2607287 2607411 "SIGAST" 2607602 T SIGAST (NIL) -8 NIL NIL NIL) (-1111 2604699 2605154 2605660 "SHP" 2606551 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1110 2598551 2604600 2604676 "SHDP" 2604681 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1109 2598124 2598316 2598346 "SGROUP" 2598439 T SGROUP (NIL) -9 NIL 2598501 NIL) (-1108 2597982 2598008 2598081 "SGROUP-" 2598086 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1107 2594817 2595515 2596238 "SGCF" 2597281 T SGCF (NIL) -7 NIL NIL NIL) (-1106 2589185 2594264 2594361 "SFRTCAT" 2594366 NIL SFRTCAT (NIL T T T T) -9 NIL 2594405 NIL) (-1105 2582606 2583624 2584760 "SFRGCD" 2588168 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1104 2575732 2576805 2577991 "SFQCMPK" 2581539 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1103 2575352 2575441 2575552 "SFORT" 2575673 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1102 2574470 2575192 2575313 "SEXOF" 2575318 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1101 2573577 2574351 2574419 "SEX" 2574424 T SEX (NIL) -8 NIL NIL NIL) (-1100 2569090 2569805 2569900 "SEXCAT" 2572837 NIL SEXCAT (NIL T T T T T) -9 NIL 2573415 NIL) (-1099 2566243 2569024 2569072 "SET" 2569077 NIL SET (NIL T) -8 NIL NIL NIL) (-1098 2564467 2564956 2565261 "SETMN" 2565984 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1097 2563963 2564115 2564145 "SETCAT" 2564321 T SETCAT (NIL) -9 NIL 2564431 NIL) (-1096 2563655 2563733 2563863 "SETCAT-" 2563868 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1095 2560016 2562116 2562159 "SETAGG" 2563029 NIL SETAGG (NIL T) -9 NIL 2563369 NIL) (-1094 2559474 2559590 2559827 "SETAGG-" 2559832 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1093 2558917 2559170 2559271 "SEQAST" 2559395 T SEQAST (NIL) -8 NIL NIL NIL) (-1092 2558116 2558410 2558471 "SEGXCAT" 2558757 NIL SEGXCAT (NIL T T) -9 NIL 2558877 NIL) (-1091 2557122 2557782 2557964 "SEG" 2557969 NIL SEG (NIL T) -8 NIL NIL NIL) (-1090 2556101 2556315 2556358 "SEGCAT" 2556880 NIL SEGCAT (NIL T) -9 NIL 2557101 NIL) (-1089 2555102 2555480 2555680 "SEGBIND" 2555936 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1088 2554723 2554782 2554895 "SEGBIND2" 2555037 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1087 2554296 2554524 2554601 "SEGAST" 2554668 T SEGAST (NIL) -8 NIL NIL NIL) (-1086 2553515 2553641 2553845 "SEG2" 2554140 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1085 2552925 2553450 2553497 "SDVAR" 2553502 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1084 2545452 2552695 2552825 "SDPOL" 2552830 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1083 2544045 2544311 2544630 "SCPKG" 2545167 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1082 2543209 2543381 2543573 "SCOPE" 2543875 T SCOPE (NIL) -8 NIL NIL NIL) (-1081 2542429 2542563 2542742 "SCACHE" 2543064 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1080 2542075 2542261 2542291 "SASTCAT" 2542296 T SASTCAT (NIL) -9 NIL 2542309 NIL) (-1079 2541562 2541910 2541986 "SAOS" 2542021 T SAOS (NIL) -8 NIL NIL NIL) (-1078 2541127 2541162 2541335 "SAERFFC" 2541521 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1077 2535066 2541024 2541104 "SAE" 2541109 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1076 2534659 2534694 2534853 "SAEFACT" 2535025 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1075 2532980 2533294 2533695 "RURPK" 2534325 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1074 2531617 2531923 2532228 "RULESET" 2532814 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1073 2528840 2529370 2529828 "RULE" 2531298 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1072 2528452 2528634 2528717 "RULECOLD" 2528792 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1071 2528242 2528270 2528341 "RTVALUE" 2528403 T RTVALUE (NIL) -8 NIL NIL NIL) (-1070 2527713 2527959 2528053 "RSTRCAST" 2528170 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1069 2522561 2523356 2524276 "RSETGCD" 2526912 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1068 2511791 2516870 2516967 "RSETCAT" 2521086 NIL RSETCAT (NIL T T T T) -9 NIL 2522183 NIL) (-1067 2509718 2510257 2511081 "RSETCAT-" 2511086 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1066 2502103 2503480 2505000 "RSDCMPK" 2508317 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1065 2500082 2500549 2500623 "RRCC" 2501709 NIL RRCC (NIL T T) -9 NIL 2502053 NIL) (-1064 2499433 2499607 2499886 "RRCC-" 2499891 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1063 2498876 2499129 2499230 "RPTAST" 2499354 T RPTAST (NIL) -8 NIL NIL NIL) (-1062 2472727 2482084 2482151 "RPOLCAT" 2492815 NIL RPOLCAT (NIL T T T) -9 NIL 2495974 NIL) (-1061 2464225 2466565 2469687 "RPOLCAT-" 2469692 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1060 2455156 2462436 2462918 "ROUTINE" 2463765 T ROUTINE (NIL) -8 NIL NIL NIL) (-1059 2451954 2454782 2454922 "ROMAN" 2455038 T ROMAN (NIL) -8 NIL NIL NIL) (-1058 2450198 2450814 2451074 "ROIRC" 2451759 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1057 2446430 2448714 2448744 "RNS" 2449048 T RNS (NIL) -9 NIL 2449322 NIL) (-1056 2444939 2445322 2445856 "RNS-" 2445931 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1055 2444342 2444750 2444780 "RNG" 2444785 T RNG (NIL) -9 NIL 2444806 NIL) (-1054 2443741 2444129 2444172 "RMODULE" 2444177 NIL RMODULE (NIL T) -9 NIL 2444204 NIL) (-1053 2442577 2442671 2443007 "RMCAT2" 2443642 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1052 2439427 2441923 2442220 "RMATRIX" 2442339 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1051 2432254 2434514 2434629 "RMATCAT" 2437988 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2438970 NIL) (-1050 2431629 2431776 2432083 "RMATCAT-" 2432088 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1049 2431030 2431251 2431294 "RLINSET" 2431488 NIL RLINSET (NIL T) -9 NIL 2431579 NIL) (-1048 2430597 2430672 2430800 "RINTERP" 2430949 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1047 2429655 2430209 2430239 "RING" 2430295 T RING (NIL) -9 NIL 2430387 NIL) (-1046 2429447 2429491 2429588 "RING-" 2429593 NIL RING- (NIL T) -8 NIL NIL NIL) (-1045 2428288 2428525 2428783 "RIDIST" 2429211 T RIDIST (NIL) -7 NIL NIL NIL) (-1044 2419577 2427756 2427962 "RGCHAIN" 2428136 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1043 2418927 2419333 2419374 "RGBCSPC" 2419432 NIL RGBCSPC (NIL T) -9 NIL 2419484 NIL) (-1042 2418085 2418466 2418507 "RGBCMDL" 2418739 NIL RGBCMDL (NIL T) -9 NIL 2418853 NIL) (-1041 2415079 2415693 2416363 "RF" 2417449 NIL RF (NIL T) -7 NIL NIL NIL) (-1040 2414725 2414788 2414891 "RFFACTOR" 2415010 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1039 2414450 2414485 2414582 "RFFACT" 2414684 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1038 2412567 2412931 2413313 "RFDIST" 2414090 T RFDIST (NIL) -7 NIL NIL NIL) (-1037 2412020 2412112 2412275 "RETSOL" 2412469 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1036 2411656 2411736 2411779 "RETRACT" 2411912 NIL RETRACT (NIL T) -9 NIL 2411999 NIL) (-1035 2411505 2411530 2411617 "RETRACT-" 2411622 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1034 2411107 2411327 2411397 "RETAST" 2411457 T RETAST (NIL) -8 NIL NIL NIL) (-1033 2403845 2410760 2410887 "RESULT" 2411002 T RESULT (NIL) -8 NIL NIL NIL) (-1032 2402436 2403114 2403313 "RESRING" 2403748 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1031 2402072 2402121 2402219 "RESLATC" 2402373 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1030 2401777 2401812 2401919 "REPSQ" 2402031 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1029 2399199 2399779 2400381 "REP" 2401197 T REP (NIL) -7 NIL NIL NIL) (-1028 2398896 2398931 2399042 "REPDB" 2399158 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1027 2392796 2394185 2395408 "REP2" 2397708 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1026 2389173 2389854 2390662 "REP1" 2392023 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1025 2381869 2387314 2387770 "REGSET" 2388803 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1024 2380634 2381017 2381267 "REF" 2381654 NIL REF (NIL T) -8 NIL NIL NIL) (-1023 2380011 2380114 2380281 "REDORDER" 2380518 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1022 2375979 2379224 2379451 "RECLOS" 2379839 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1021 2375031 2375212 2375427 "REALSOLV" 2375786 T REALSOLV (NIL) -7 NIL NIL NIL) (-1020 2374877 2374918 2374948 "REAL" 2374953 T REAL (NIL) -9 NIL 2374988 NIL) (-1019 2371360 2372162 2373046 "REAL0Q" 2374042 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1018 2366961 2367949 2369010 "REAL0" 2370341 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1017 2366432 2366678 2366772 "RDUCEAST" 2366889 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1016 2365837 2365909 2366116 "RDIV" 2366354 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1015 2364905 2365079 2365292 "RDIST" 2365659 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1014 2363502 2363789 2364161 "RDETRS" 2364613 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1013 2361314 2361768 2362306 "RDETR" 2363044 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1012 2359939 2360217 2360614 "RDEEFS" 2361030 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1011 2358448 2358754 2359179 "RDEEF" 2359627 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1010 2352509 2355429 2355459 "RCFIELD" 2356754 T RCFIELD (NIL) -9 NIL 2357485 NIL) (-1009 2350573 2351077 2351773 "RCFIELD-" 2351848 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1008 2346842 2348674 2348717 "RCAGG" 2349801 NIL RCAGG (NIL T) -9 NIL 2350266 NIL) (-1007 2346470 2346564 2346727 "RCAGG-" 2346732 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1006 2345805 2345917 2346082 "RATRET" 2346354 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1005 2345358 2345425 2345546 "RATFACT" 2345733 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1004 2344666 2344786 2344938 "RANDSRC" 2345228 T RANDSRC (NIL) -7 NIL NIL NIL) (-1003 2344400 2344444 2344517 "RADUTIL" 2344615 T RADUTIL (NIL) -7 NIL NIL NIL) (-1002 2337516 2343233 2343543 "RADIX" 2344124 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1001 2329135 2337358 2337488 "RADFF" 2337493 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1000 2328782 2328857 2328887 "RADCAT" 2329047 T RADCAT (NIL) -9 NIL NIL NIL) (-999 2328566 2328614 2328712 "RADCAT-" 2328717 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-998 2326669 2328341 2328430 "QUEUE" 2328510 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-997 2323210 2326606 2326651 "QUAT" 2326656 NIL QUAT (NIL T) -8 NIL NIL NIL) (-996 2322848 2322891 2323018 "QUATCT2" 2323161 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-995 2316310 2319655 2319695 "QUATCAT" 2320475 NIL QUATCAT (NIL T) -9 NIL 2321241 NIL) (-994 2312454 2313491 2314878 "QUATCAT-" 2314972 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-993 2309927 2311538 2311579 "QUAGG" 2311954 NIL QUAGG (NIL T) -9 NIL 2312129 NIL) (-992 2309532 2309752 2309820 "QQUTAST" 2309879 T QQUTAST (NIL) -8 NIL NIL NIL) (-991 2308430 2308930 2309102 "QFORM" 2309404 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-990 2299435 2304674 2304714 "QFCAT" 2305372 NIL QFCAT (NIL T) -9 NIL 2306373 NIL) (-989 2295007 2296208 2297799 "QFCAT-" 2297893 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-988 2294645 2294688 2294815 "QFCAT2" 2294958 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-987 2294105 2294215 2294345 "QEQUAT" 2294535 T QEQUAT (NIL) -8 NIL NIL NIL) (-986 2287252 2288324 2289508 "QCMPACK" 2293038 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-985 2284801 2285249 2285677 "QALGSET" 2286907 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-984 2284046 2284220 2284452 "QALGSET2" 2284621 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-983 2282736 2282960 2283277 "PWFFINTB" 2283819 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-982 2280918 2281086 2281440 "PUSHVAR" 2282550 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-981 2276836 2277890 2277931 "PTRANFN" 2279815 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-980 2275238 2275529 2275851 "PTPACK" 2276547 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-979 2274870 2274927 2275036 "PTFUNC2" 2275175 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-978 2269347 2273742 2273783 "PTCAT" 2274079 NIL PTCAT (NIL T) -9 NIL 2274232 NIL) (-977 2269005 2269040 2269164 "PSQFR" 2269306 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-976 2267600 2267898 2268232 "PSEUDLIN" 2268703 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-975 2254363 2256734 2259058 "PSETPK" 2265360 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-974 2247381 2250121 2250217 "PSETCAT" 2253238 NIL PSETCAT (NIL T T T T) -9 NIL 2254052 NIL) (-973 2245217 2245851 2246672 "PSETCAT-" 2246677 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-972 2244566 2244731 2244759 "PSCURVE" 2245027 T PSCURVE (NIL) -9 NIL 2245194 NIL) (-971 2240564 2242080 2242145 "PSCAT" 2242989 NIL PSCAT (NIL T T T) -9 NIL 2243229 NIL) (-970 2239627 2239843 2240243 "PSCAT-" 2240248 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-969 2238332 2238992 2239197 "PRTITION" 2239442 T PRTITION (NIL) -8 NIL NIL NIL) (-968 2237807 2238053 2238145 "PRTDAST" 2238260 T PRTDAST (NIL) -8 NIL NIL NIL) (-967 2226897 2229111 2231299 "PRS" 2235669 NIL PRS (NIL T T) -7 NIL NIL NIL) (-966 2224708 2226247 2226287 "PRQAGG" 2226470 NIL PRQAGG (NIL T) -9 NIL 2226572 NIL) (-965 2223912 2224217 2224245 "PROPLOG" 2224492 T PROPLOG (NIL) -9 NIL 2224658 NIL) (-964 2222342 2222863 2223120 "PROPFRML" 2223688 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-963 2221811 2221918 2222046 "PROPERTY" 2222234 T PROPERTY (NIL) -8 NIL NIL NIL) (-962 2215869 2219977 2220797 "PRODUCT" 2221037 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-961 2213147 2215327 2215561 "PR" 2215680 NIL PR (NIL T T) -8 NIL NIL NIL) (-960 2212943 2212975 2213034 "PRINT" 2213108 T PRINT (NIL) -7 NIL NIL NIL) (-959 2212283 2212400 2212552 "PRIMES" 2212823 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-958 2210348 2210749 2211215 "PRIMELT" 2211862 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-957 2210077 2210126 2210154 "PRIMCAT" 2210278 T PRIMCAT (NIL) -9 NIL NIL NIL) (-956 2206192 2210015 2210060 "PRIMARR" 2210065 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-955 2205199 2205377 2205605 "PRIMARR2" 2206010 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-954 2204842 2204898 2205009 "PREASSOC" 2205137 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-953 2204317 2204450 2204478 "PPCURVE" 2204683 T PPCURVE (NIL) -9 NIL 2204819 NIL) (-952 2203912 2204112 2204195 "PORTNUM" 2204254 T PORTNUM (NIL) -8 NIL NIL NIL) (-951 2201271 2201670 2202262 "POLYROOT" 2203493 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-950 2195453 2200875 2201035 "POLY" 2201144 NIL POLY (NIL T) -8 NIL NIL NIL) (-949 2194836 2194894 2195128 "POLYLIFT" 2195389 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-948 2191111 2191560 2192189 "POLYCATQ" 2194381 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-947 2177823 2182951 2183016 "POLYCAT" 2186530 NIL POLYCAT (NIL T T T) -9 NIL 2188408 NIL) (-946 2171272 2173134 2175518 "POLYCAT-" 2175523 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-945 2170859 2170927 2171047 "POLY2UP" 2171198 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-944 2170491 2170548 2170657 "POLY2" 2170796 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-943 2169176 2169415 2169691 "POLUTIL" 2170265 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-942 2167531 2167808 2168139 "POLTOPOL" 2168898 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-941 2162996 2167467 2167513 "POINT" 2167518 NIL POINT (NIL T) -8 NIL NIL NIL) (-940 2161183 2161540 2161915 "PNTHEORY" 2162641 T PNTHEORY (NIL) -7 NIL NIL NIL) (-939 2159641 2159938 2160337 "PMTOOLS" 2160881 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-938 2159234 2159312 2159429 "PMSYM" 2159557 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-937 2158744 2158813 2158987 "PMQFCAT" 2159159 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-936 2158099 2158209 2158365 "PMPRED" 2158621 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-935 2157492 2157578 2157740 "PMPREDFS" 2158000 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-934 2156156 2156364 2156742 "PMPLCAT" 2157254 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-933 2155688 2155767 2155919 "PMLSAGG" 2156071 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-932 2155161 2155237 2155419 "PMKERNEL" 2155606 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-931 2154778 2154853 2154966 "PMINS" 2155080 NIL PMINS (NIL T) -7 NIL NIL NIL) (-930 2154220 2154289 2154498 "PMFS" 2154703 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-929 2153448 2153566 2153771 "PMDOWN" 2154097 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-928 2152615 2152773 2152954 "PMASS" 2153287 T PMASS (NIL) -7 NIL NIL NIL) (-927 2151888 2151998 2152161 "PMASSFS" 2152502 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-926 2151543 2151611 2151705 "PLOTTOOL" 2151814 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-925 2146150 2147354 2148502 "PLOT" 2150415 T PLOT (NIL) -8 NIL NIL NIL) (-924 2141954 2142998 2143919 "PLOT3D" 2145249 T PLOT3D (NIL) -8 NIL NIL NIL) (-923 2140866 2141043 2141278 "PLOT1" 2141758 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-922 2116255 2120932 2125783 "PLEQN" 2136132 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-921 2115573 2115695 2115875 "PINTERP" 2116120 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-920 2115266 2115313 2115416 "PINTERPA" 2115520 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-919 2114487 2115035 2115122 "PI" 2115162 T PI (NIL) -8 NIL NIL 2115229) (-918 2112784 2113759 2113787 "PID" 2113969 T PID (NIL) -9 NIL 2114103 NIL) (-917 2112535 2112572 2112647 "PICOERCE" 2112741 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-916 2111855 2111994 2112170 "PGROEB" 2112391 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-915 2107442 2108256 2109161 "PGE" 2110970 T PGE (NIL) -7 NIL NIL NIL) (-914 2105565 2105812 2106178 "PGCD" 2107159 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-913 2104903 2105006 2105167 "PFRPAC" 2105449 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-912 2101544 2103451 2103804 "PFR" 2104582 NIL PFR (NIL T) -8 NIL NIL NIL) (-911 2099933 2100177 2100502 "PFOTOOLS" 2101291 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-910 2098466 2098705 2099056 "PFOQ" 2099690 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-909 2096967 2097179 2097535 "PFO" 2098250 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-908 2093520 2096856 2096925 "PF" 2096930 NIL PF (NIL NIL) -8 NIL NIL NIL) (-907 2090854 2092125 2092153 "PFECAT" 2092738 T PFECAT (NIL) -9 NIL 2093122 NIL) (-906 2090299 2090453 2090667 "PFECAT-" 2090672 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-905 2088902 2089154 2089455 "PFBRU" 2090048 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-904 2086767 2087120 2087552 "PFBR" 2088553 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-903 2082649 2084143 2084819 "PERM" 2086124 NIL PERM (NIL T) -8 NIL NIL NIL) (-902 2077883 2078856 2079726 "PERMGRP" 2081812 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-901 2075989 2076946 2076987 "PERMCAT" 2077433 NIL PERMCAT (NIL T) -9 NIL 2077738 NIL) (-900 2075642 2075683 2075807 "PERMAN" 2075942 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-899 2073130 2075307 2075429 "PENDTREE" 2075553 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-898 2071154 2071922 2071963 "PDRING" 2072620 NIL PDRING (NIL T) -9 NIL 2072906 NIL) (-897 2070257 2070475 2070837 "PDRING-" 2070842 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-896 2067472 2068250 2068918 "PDEPROB" 2069609 T PDEPROB (NIL) -8 NIL NIL NIL) (-895 2065017 2065521 2066076 "PDEPACK" 2066937 T PDEPACK (NIL) -7 NIL NIL NIL) (-894 2063929 2064119 2064370 "PDECOMP" 2064816 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-893 2061508 2062351 2062379 "PDECAT" 2063166 T PDECAT (NIL) -9 NIL 2063879 NIL) (-892 2061259 2061292 2061382 "PCOMP" 2061469 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-891 2059437 2060060 2060357 "PBWLB" 2060988 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-890 2051910 2053510 2054848 "PATTERN" 2058120 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-889 2051542 2051599 2051708 "PATTERN2" 2051847 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-888 2049299 2049687 2050144 "PATTERN1" 2051131 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-887 2046667 2047248 2047729 "PATRES" 2048864 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-886 2046231 2046298 2046430 "PATRES2" 2046594 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-885 2044114 2044519 2044926 "PATMATCH" 2045898 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-884 2043624 2043833 2043874 "PATMAB" 2043981 NIL PATMAB (NIL T) -9 NIL 2044064 NIL) (-883 2042142 2042478 2042736 "PATLRES" 2043429 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-882 2041688 2041811 2041852 "PATAB" 2041857 NIL PATAB (NIL T) -9 NIL 2042029 NIL) (-881 2039169 2039701 2040274 "PARTPERM" 2041135 T PARTPERM (NIL) -7 NIL NIL NIL) (-880 2038790 2038853 2038955 "PARSURF" 2039100 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-879 2038422 2038479 2038588 "PARSU2" 2038727 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-878 2038186 2038226 2038293 "PARSER" 2038375 T PARSER (NIL) -7 NIL NIL NIL) (-877 2037807 2037870 2037972 "PARSCURV" 2038117 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-876 2037439 2037496 2037605 "PARSC2" 2037744 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-875 2037078 2037136 2037233 "PARPCURV" 2037375 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-874 2036710 2036767 2036876 "PARPC2" 2037015 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-873 2036230 2036316 2036435 "PAN2EXPR" 2036611 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-872 2035007 2035351 2035579 "PALETTE" 2036022 T PALETTE (NIL) -8 NIL NIL NIL) (-871 2033400 2034012 2034372 "PAIR" 2034693 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-870 2027270 2032659 2032853 "PADICRC" 2033255 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-869 2020499 2026616 2026800 "PADICRAT" 2027118 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-868 2018814 2020436 2020481 "PADIC" 2020486 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-867 2015924 2017488 2017528 "PADICCT" 2018109 NIL PADICCT (NIL NIL) -9 NIL 2018391 NIL) (-866 2014881 2015081 2015349 "PADEPAC" 2015711 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-865 2014093 2014226 2014432 "PADE" 2014743 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-864 2012480 2013301 2013581 "OWP" 2013897 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-863 2011973 2012186 2012283 "OVERSET" 2012403 T OVERSET (NIL) -8 NIL NIL NIL) (-862 2011019 2011578 2011750 "OVAR" 2011841 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-861 2010283 2010404 2010565 "OUT" 2010878 T OUT (NIL) -7 NIL NIL NIL) (-860 1999154 2001392 2003592 "OUTFORM" 2008103 T OUTFORM (NIL) -8 NIL NIL NIL) (-859 1998490 1998751 1998878 "OUTBFILE" 1999047 T OUTBFILE (NIL) -8 NIL NIL NIL) (-858 1997797 1997962 1997990 "OUTBCON" 1998308 T OUTBCON (NIL) -9 NIL 1998474 NIL) (-857 1997398 1997510 1997667 "OUTBCON-" 1997672 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-856 1996778 1997127 1997216 "OSI" 1997329 T OSI (NIL) -8 NIL NIL NIL) (-855 1996308 1996646 1996674 "OSGROUP" 1996679 T OSGROUP (NIL) -9 NIL 1996701 NIL) (-854 1995053 1995280 1995565 "ORTHPOL" 1996055 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-853 1992604 1994888 1995009 "OREUP" 1995014 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-852 1990007 1992295 1992422 "ORESUP" 1992546 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-851 1987535 1988035 1988596 "OREPCTO" 1989496 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-850 1981221 1983422 1983463 "OREPCAT" 1985811 NIL OREPCAT (NIL T) -9 NIL 1986915 NIL) (-849 1978368 1979150 1980208 "OREPCAT-" 1980213 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-848 1977519 1977817 1977845 "ORDSET" 1978154 T ORDSET (NIL) -9 NIL 1978318 NIL) (-847 1976950 1977098 1977322 "ORDSET-" 1977327 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-846 1975515 1976306 1976334 "ORDRING" 1976536 T ORDRING (NIL) -9 NIL 1976661 NIL) (-845 1975160 1975254 1975398 "ORDRING-" 1975403 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-844 1974540 1975003 1975031 "ORDMON" 1975036 T ORDMON (NIL) -9 NIL 1975057 NIL) (-843 1973702 1973849 1974044 "ORDFUNS" 1974389 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-842 1973040 1973459 1973487 "ORDFIN" 1973552 T ORDFIN (NIL) -9 NIL 1973626 NIL) (-841 1969599 1971626 1972035 "ORDCOMP" 1972664 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-840 1968865 1968992 1969178 "ORDCOMP2" 1969459 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-839 1965446 1966356 1967170 "OPTPROB" 1968071 T OPTPROB (NIL) -8 NIL NIL NIL) (-838 1962248 1962887 1963591 "OPTPACK" 1964762 T OPTPACK (NIL) -7 NIL NIL NIL) (-837 1959935 1960701 1960729 "OPTCAT" 1961548 T OPTCAT (NIL) -9 NIL 1962198 NIL) (-836 1959319 1959612 1959717 "OPSIG" 1959850 T OPSIG (NIL) -8 NIL NIL NIL) (-835 1959087 1959126 1959192 "OPQUERY" 1959273 T OPQUERY (NIL) -7 NIL NIL NIL) (-834 1956218 1957398 1957902 "OP" 1958616 NIL OP (NIL T) -8 NIL NIL NIL) (-833 1955592 1955818 1955859 "OPERCAT" 1956071 NIL OPERCAT (NIL T) -9 NIL 1956168 NIL) (-832 1955347 1955403 1955520 "OPERCAT-" 1955525 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-831 1952160 1954144 1954513 "ONECOMP" 1955011 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-830 1951465 1951580 1951754 "ONECOMP2" 1952032 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-829 1950884 1950990 1951120 "OMSERVER" 1951355 T OMSERVER (NIL) -7 NIL NIL NIL) (-828 1947746 1950324 1950364 "OMSAGG" 1950425 NIL OMSAGG (NIL T) -9 NIL 1950489 NIL) (-827 1946369 1946632 1946914 "OMPKG" 1947484 T OMPKG (NIL) -7 NIL NIL NIL) (-826 1945799 1945902 1945930 "OM" 1946229 T OM (NIL) -9 NIL NIL NIL) (-825 1944346 1945348 1945517 "OMLO" 1945680 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-824 1943306 1943453 1943673 "OMEXPR" 1944172 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-823 1942597 1942852 1942988 "OMERR" 1943190 T OMERR (NIL) -8 NIL NIL NIL) (-822 1941748 1942018 1942178 "OMERRK" 1942457 T OMERRK (NIL) -8 NIL NIL NIL) (-821 1941199 1941425 1941533 "OMENC" 1941660 T OMENC (NIL) -8 NIL NIL NIL) (-820 1935094 1936279 1937450 "OMDEV" 1940048 T OMDEV (NIL) -8 NIL NIL NIL) (-819 1934163 1934334 1934528 "OMCONN" 1934920 T OMCONN (NIL) -8 NIL NIL NIL) (-818 1932684 1933660 1933688 "OINTDOM" 1933693 T OINTDOM (NIL) -9 NIL 1933714 NIL) (-817 1928463 1929674 1930390 "OFMONOID" 1932000 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-816 1927874 1928400 1928445 "ODVAR" 1928450 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-815 1925297 1927619 1927774 "ODR" 1927779 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-814 1917878 1925073 1925199 "ODPOL" 1925204 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-813 1911700 1917750 1917855 "ODP" 1917860 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-812 1910466 1910681 1910956 "ODETOOLS" 1911474 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-811 1907433 1908091 1908807 "ODESYS" 1909799 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-810 1902315 1903223 1904248 "ODERTRIC" 1906508 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-809 1901741 1901823 1902017 "ODERED" 1902227 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-808 1898629 1899177 1899854 "ODERAT" 1901164 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-807 1895586 1896053 1896650 "ODEPRRIC" 1898158 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-806 1893529 1894125 1894611 "ODEPROB" 1895120 T ODEPROB (NIL) -8 NIL NIL NIL) (-805 1890049 1890534 1891181 "ODEPRIM" 1893008 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-804 1889298 1889400 1889660 "ODEPAL" 1889941 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-803 1885460 1886251 1887115 "ODEPACK" 1888454 T ODEPACK (NIL) -7 NIL NIL NIL) (-802 1884521 1884628 1884850 "ODEINT" 1885349 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-801 1878622 1880047 1881494 "ODEIFTBL" 1883094 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-800 1874020 1874806 1875758 "ODEEF" 1877781 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-799 1873369 1873458 1873681 "ODECONST" 1873925 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-798 1871494 1872155 1872183 "ODECAT" 1872788 T ODECAT (NIL) -9 NIL 1873319 NIL) (-797 1868366 1871206 1871325 "OCT" 1871407 NIL OCT (NIL T) -8 NIL NIL NIL) (-796 1868004 1868047 1868174 "OCTCT2" 1868317 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-795 1862653 1865088 1865128 "OC" 1866225 NIL OC (NIL T) -9 NIL 1867083 NIL) (-794 1859880 1860628 1861618 "OC-" 1861712 NIL OC- (NIL T T) -8 NIL NIL NIL) (-793 1859232 1859700 1859728 "OCAMON" 1859733 T OCAMON (NIL) -9 NIL 1859754 NIL) (-792 1858763 1859104 1859132 "OASGP" 1859137 T OASGP (NIL) -9 NIL 1859157 NIL) (-791 1858024 1858513 1858541 "OAMONS" 1858581 T OAMONS (NIL) -9 NIL 1858624 NIL) (-790 1857438 1857871 1857899 "OAMON" 1857904 T OAMON (NIL) -9 NIL 1857924 NIL) (-789 1856696 1857214 1857242 "OAGROUP" 1857247 T OAGROUP (NIL) -9 NIL 1857267 NIL) (-788 1856386 1856436 1856524 "NUMTUBE" 1856640 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-787 1849959 1851477 1853013 "NUMQUAD" 1854870 T NUMQUAD (NIL) -7 NIL NIL NIL) (-786 1845715 1846703 1847728 "NUMODE" 1848954 T NUMODE (NIL) -7 NIL NIL NIL) (-785 1843070 1843950 1843978 "NUMINT" 1844901 T NUMINT (NIL) -9 NIL 1845665 NIL) (-784 1842018 1842215 1842433 "NUMFMT" 1842872 T NUMFMT (NIL) -7 NIL NIL NIL) (-783 1828377 1831322 1833854 "NUMERIC" 1839525 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-782 1822747 1827826 1827921 "NTSCAT" 1827926 NIL NTSCAT (NIL T T T T) -9 NIL 1827965 NIL) (-781 1821941 1822106 1822299 "NTPOLFN" 1822586 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-780 1810018 1818766 1819578 "NSUP" 1821162 NIL NSUP (NIL T) -8 NIL NIL NIL) (-779 1809650 1809707 1809816 "NSUP2" 1809955 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-778 1799878 1809424 1809557 "NSMP" 1809562 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-777 1798310 1798611 1798968 "NREP" 1799566 NIL NREP (NIL T) -7 NIL NIL NIL) (-776 1796901 1797153 1797511 "NPCOEF" 1798053 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-775 1795967 1796082 1796298 "NORMRETR" 1796782 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-774 1794008 1794298 1794707 "NORMPK" 1795675 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-773 1793693 1793721 1793845 "NORMMA" 1793974 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-772 1793493 1793650 1793679 "NONE" 1793684 T NONE (NIL) -8 NIL NIL NIL) (-771 1793282 1793311 1793380 "NONE1" 1793457 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-770 1792779 1792841 1793020 "NODE1" 1793214 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-769 1791059 1791910 1792165 "NNI" 1792512 T NNI (NIL) -8 NIL NIL 1792747) (-768 1789479 1789792 1790156 "NLINSOL" 1790727 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-767 1785720 1786715 1787614 "NIPROB" 1788600 T NIPROB (NIL) -8 NIL NIL NIL) (-766 1784477 1784711 1785013 "NFINTBAS" 1785482 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-765 1783651 1784127 1784168 "NETCLT" 1784340 NIL NETCLT (NIL T) -9 NIL 1784422 NIL) (-764 1782359 1782590 1782871 "NCODIV" 1783419 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-763 1782121 1782158 1782233 "NCNTFRAC" 1782316 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-762 1780301 1780665 1781085 "NCEP" 1781746 NIL NCEP (NIL T) -7 NIL NIL NIL) (-761 1779152 1779925 1779953 "NASRING" 1780063 T NASRING (NIL) -9 NIL 1780143 NIL) (-760 1778947 1778991 1779085 "NASRING-" 1779090 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-759 1778054 1778579 1778607 "NARNG" 1778724 T NARNG (NIL) -9 NIL 1778815 NIL) (-758 1777746 1777813 1777947 "NARNG-" 1777952 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-757 1776625 1776832 1777067 "NAGSP" 1777531 T NAGSP (NIL) -7 NIL NIL NIL) (-756 1767897 1769581 1771254 "NAGS" 1774972 T NAGS (NIL) -7 NIL NIL NIL) (-755 1766445 1766753 1767084 "NAGF07" 1767586 T NAGF07 (NIL) -7 NIL NIL NIL) (-754 1760983 1762274 1763581 "NAGF04" 1765158 T NAGF04 (NIL) -7 NIL NIL NIL) (-753 1753951 1755565 1757198 "NAGF02" 1759370 T NAGF02 (NIL) -7 NIL NIL NIL) (-752 1749175 1750275 1751392 "NAGF01" 1752854 T NAGF01 (NIL) -7 NIL NIL NIL) (-751 1742803 1744369 1745954 "NAGE04" 1747610 T NAGE04 (NIL) -7 NIL NIL NIL) (-750 1733972 1736093 1738223 "NAGE02" 1740693 T NAGE02 (NIL) -7 NIL NIL NIL) (-749 1729925 1730872 1731836 "NAGE01" 1733028 T NAGE01 (NIL) -7 NIL NIL NIL) (-748 1727720 1728254 1728812 "NAGD03" 1729387 T NAGD03 (NIL) -7 NIL NIL NIL) (-747 1719470 1721398 1723352 "NAGD02" 1725786 T NAGD02 (NIL) -7 NIL NIL NIL) (-746 1713281 1714706 1716146 "NAGD01" 1718050 T NAGD01 (NIL) -7 NIL NIL NIL) (-745 1709490 1710312 1711149 "NAGC06" 1712464 T NAGC06 (NIL) -7 NIL NIL NIL) (-744 1707955 1708287 1708643 "NAGC05" 1709154 T NAGC05 (NIL) -7 NIL NIL NIL) (-743 1707331 1707450 1707594 "NAGC02" 1707831 T NAGC02 (NIL) -7 NIL NIL NIL) (-742 1706290 1706873 1706913 "NAALG" 1706992 NIL NAALG (NIL T) -9 NIL 1707053 NIL) (-741 1706125 1706154 1706244 "NAALG-" 1706249 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-740 1700075 1701183 1702370 "MULTSQFR" 1705021 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-739 1699394 1699469 1699653 "MULTFACT" 1699987 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-738 1692118 1696031 1696084 "MTSCAT" 1697154 NIL MTSCAT (NIL T T) -9 NIL 1697669 NIL) (-737 1691830 1691884 1691976 "MTHING" 1692058 NIL MTHING (NIL T) -7 NIL NIL NIL) (-736 1691622 1691655 1691715 "MSYSCMD" 1691790 T MSYSCMD (NIL) -7 NIL NIL NIL) (-735 1687704 1690377 1690697 "MSET" 1691335 NIL MSET (NIL T) -8 NIL NIL NIL) (-734 1684773 1687265 1687306 "MSETAGG" 1687311 NIL MSETAGG (NIL T) -9 NIL 1687345 NIL) (-733 1680614 1682152 1682897 "MRING" 1684073 NIL MRING (NIL T T) -8 NIL NIL NIL) (-732 1680180 1680247 1680378 "MRF2" 1680541 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-731 1679798 1679833 1679977 "MRATFAC" 1680139 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-730 1677410 1677705 1678136 "MPRFF" 1679503 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-729 1671707 1677264 1677361 "MPOLY" 1677366 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-728 1671197 1671232 1671440 "MPCPF" 1671666 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-727 1670711 1670754 1670938 "MPC3" 1671148 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-726 1669906 1669987 1670208 "MPC2" 1670626 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-725 1668207 1668544 1668934 "MONOTOOL" 1669566 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-724 1667432 1667749 1667777 "MONOID" 1667996 T MONOID (NIL) -9 NIL 1668143 NIL) (-723 1666978 1667097 1667278 "MONOID-" 1667283 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-722 1657453 1663404 1663463 "MONOGEN" 1664137 NIL MONOGEN (NIL T T) -9 NIL 1664593 NIL) (-721 1654671 1655406 1656406 "MONOGEN-" 1656525 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-720 1653504 1653950 1653978 "MONADWU" 1654370 T MONADWU (NIL) -9 NIL 1654608 NIL) (-719 1652876 1653035 1653283 "MONADWU-" 1653288 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-718 1652235 1652479 1652507 "MONAD" 1652714 T MONAD (NIL) -9 NIL 1652826 NIL) (-717 1651920 1651998 1652130 "MONAD-" 1652135 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-716 1650209 1650833 1651112 "MOEBIUS" 1651673 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-715 1649487 1649891 1649931 "MODULE" 1649936 NIL MODULE (NIL T) -9 NIL 1649975 NIL) (-714 1649055 1649151 1649341 "MODULE-" 1649346 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-713 1646735 1647419 1647746 "MODRING" 1648879 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-712 1643679 1644840 1645361 "MODOP" 1646264 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-711 1642267 1642746 1643023 "MODMONOM" 1643542 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-710 1632308 1640558 1640972 "MODMON" 1641904 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-709 1629464 1631152 1631428 "MODFIELD" 1632183 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-708 1628441 1628745 1628935 "MMLFORM" 1629294 T MMLFORM (NIL) -8 NIL NIL NIL) (-707 1627967 1628010 1628189 "MMAP" 1628392 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-706 1626046 1626813 1626854 "MLO" 1627277 NIL MLO (NIL T) -9 NIL 1627519 NIL) (-705 1623412 1623928 1624530 "MLIFT" 1625527 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-704 1622803 1622887 1623041 "MKUCFUNC" 1623323 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-703 1622402 1622472 1622595 "MKRECORD" 1622726 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-702 1621449 1621611 1621839 "MKFUNC" 1622213 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-701 1620837 1620941 1621097 "MKFLCFN" 1621332 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-700 1620114 1620216 1620401 "MKBCFUNC" 1620730 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-699 1616821 1619668 1619804 "MINT" 1619998 T MINT (NIL) -8 NIL NIL NIL) (-698 1615633 1615876 1616153 "MHROWRED" 1616576 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-697 1611013 1614168 1614573 "MFLOAT" 1615248 T MFLOAT (NIL) -8 NIL NIL NIL) (-696 1610370 1610446 1610617 "MFINFACT" 1610925 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-695 1606685 1607533 1608417 "MESH" 1609506 T MESH (NIL) -7 NIL NIL NIL) (-694 1605075 1605387 1605740 "MDDFACT" 1606372 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-693 1601870 1604234 1604275 "MDAGG" 1604530 NIL MDAGG (NIL T) -9 NIL 1604673 NIL) (-692 1591610 1601163 1601370 "MCMPLX" 1601683 T MCMPLX (NIL) -8 NIL NIL NIL) (-691 1590751 1590897 1591097 "MCDEN" 1591459 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-690 1588641 1588911 1589291 "MCALCFN" 1590481 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-689 1587566 1587806 1588039 "MAYBE" 1588447 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-688 1585178 1585701 1586263 "MATSTOR" 1587037 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-687 1581135 1584550 1584798 "MATRIX" 1584963 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-686 1576899 1577608 1578344 "MATLIN" 1580492 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-685 1567005 1570191 1570268 "MATCAT" 1575148 NIL MATCAT (NIL T T T) -9 NIL 1576565 NIL) (-684 1563361 1564382 1565738 "MATCAT-" 1565743 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-683 1561955 1562108 1562441 "MATCAT2" 1563196 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-682 1560067 1560391 1560775 "MAPPKG3" 1561630 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-681 1559048 1559221 1559443 "MAPPKG2" 1559891 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-680 1557547 1557831 1558158 "MAPPKG1" 1558754 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-679 1556626 1556953 1557130 "MAPPAST" 1557390 T MAPPAST (NIL) -8 NIL NIL NIL) (-678 1556237 1556295 1556418 "MAPHACK3" 1556562 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-677 1555829 1555890 1556004 "MAPHACK2" 1556169 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-676 1555266 1555370 1555512 "MAPHACK1" 1555720 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-675 1553345 1553966 1554270 "MAGMA" 1554994 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-674 1552824 1553069 1553160 "MACROAST" 1553274 T MACROAST (NIL) -8 NIL NIL NIL) (-673 1549242 1551063 1551524 "M3D" 1552396 NIL M3D (NIL T) -8 NIL NIL NIL) (-672 1543348 1547611 1547652 "LZSTAGG" 1548434 NIL LZSTAGG (NIL T) -9 NIL 1548729 NIL) (-671 1539305 1540479 1541936 "LZSTAGG-" 1541941 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-670 1536392 1537196 1537683 "LWORD" 1538850 NIL LWORD (NIL T) -8 NIL NIL NIL) (-669 1535968 1536196 1536271 "LSTAST" 1536337 T LSTAST (NIL) -8 NIL NIL NIL) (-668 1529134 1535739 1535873 "LSQM" 1535878 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-667 1528358 1528497 1528725 "LSPP" 1528989 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-666 1526170 1526471 1526927 "LSMP" 1528047 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-665 1522949 1523623 1524353 "LSMP1" 1525472 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-664 1516826 1522116 1522157 "LSAGG" 1522219 NIL LSAGG (NIL T) -9 NIL 1522297 NIL) (-663 1513521 1514445 1515658 "LSAGG-" 1515663 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-662 1511120 1512665 1512914 "LPOLY" 1513316 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-661 1510702 1510787 1510910 "LPEFRAC" 1511029 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-660 1509023 1509796 1510049 "LO" 1510534 NIL LO (NIL T T T) -8 NIL NIL NIL) (-659 1508675 1508787 1508815 "LOGIC" 1508926 T LOGIC (NIL) -9 NIL 1509007 NIL) (-658 1508537 1508560 1508631 "LOGIC-" 1508636 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-657 1507730 1507870 1508063 "LODOOPS" 1508393 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-656 1505153 1507646 1507712 "LODO" 1507717 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-655 1503691 1503926 1504279 "LODOF" 1504900 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-654 1499909 1502340 1502381 "LODOCAT" 1502819 NIL LODOCAT (NIL T) -9 NIL 1503030 NIL) (-653 1499642 1499700 1499827 "LODOCAT-" 1499832 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-652 1496962 1499483 1499601 "LODO2" 1499606 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-651 1494397 1496899 1496944 "LODO1" 1496949 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-650 1493278 1493443 1493748 "LODEEF" 1494220 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-649 1488517 1491408 1491449 "LNAGG" 1492396 NIL LNAGG (NIL T) -9 NIL 1492840 NIL) (-648 1487664 1487878 1488220 "LNAGG-" 1488225 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-647 1483800 1484589 1485228 "LMOPS" 1487079 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-646 1483203 1483591 1483632 "LMODULE" 1483637 NIL LMODULE (NIL T) -9 NIL 1483663 NIL) (-645 1480401 1482848 1482971 "LMDICT" 1483113 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-644 1479807 1480028 1480069 "LLINSET" 1480260 NIL LLINSET (NIL T) -9 NIL 1480351 NIL) (-643 1479506 1479715 1479775 "LITERAL" 1479780 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-642 1472689 1478452 1478750 "LIST" 1479241 NIL LIST (NIL T) -8 NIL NIL NIL) (-641 1472214 1472288 1472427 "LIST3" 1472609 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-640 1471221 1471399 1471627 "LIST2" 1472032 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-639 1469355 1469667 1470066 "LIST2MAP" 1470868 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-638 1468951 1469188 1469229 "LINSET" 1469234 NIL LINSET (NIL T) -9 NIL 1469268 NIL) (-637 1467612 1468282 1468323 "LINEXP" 1468578 NIL LINEXP (NIL T) -9 NIL 1468727 NIL) (-636 1466259 1466519 1466816 "LINDEP" 1467364 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-635 1463026 1463745 1464522 "LIMITRF" 1465514 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-634 1461329 1461625 1462034 "LIMITPS" 1462721 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-633 1455757 1460840 1461068 "LIE" 1461150 NIL LIE (NIL T T) -8 NIL NIL NIL) (-632 1454705 1455174 1455214 "LIECAT" 1455354 NIL LIECAT (NIL T) -9 NIL 1455505 NIL) (-631 1454546 1454573 1454661 "LIECAT-" 1454666 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-630 1447042 1453995 1454160 "LIB" 1454401 T LIB (NIL) -8 NIL NIL NIL) (-629 1442677 1443560 1444495 "LGROBP" 1446159 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-628 1440675 1440949 1441299 "LF" 1442398 NIL LF (NIL T T) -7 NIL NIL NIL) (-627 1439515 1440207 1440235 "LFCAT" 1440442 T LFCAT (NIL) -9 NIL 1440581 NIL) (-626 1436417 1437047 1437735 "LEXTRIPK" 1438879 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-625 1433161 1433987 1434490 "LEXP" 1435997 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-624 1432637 1432882 1432974 "LETAST" 1433089 T LETAST (NIL) -8 NIL NIL NIL) (-623 1431035 1431348 1431749 "LEADCDET" 1432319 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-622 1430225 1430299 1430528 "LAZM3PK" 1430956 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-621 1425142 1428302 1428840 "LAUPOL" 1429737 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-620 1424721 1424765 1424926 "LAPLACE" 1425092 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-619 1422660 1423822 1424073 "LA" 1424554 NIL LA (NIL T T T) -8 NIL NIL NIL) (-618 1421654 1422238 1422279 "LALG" 1422341 NIL LALG (NIL T) -9 NIL 1422400 NIL) (-617 1421368 1421427 1421563 "LALG-" 1421568 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-616 1421203 1421227 1421268 "KVTFROM" 1421330 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-615 1420126 1420570 1420755 "KTVLOGIC" 1421038 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-614 1419961 1419985 1420026 "KRCFROM" 1420088 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-613 1418865 1419052 1419351 "KOVACIC" 1419761 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-612 1418700 1418724 1418765 "KONVERT" 1418827 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-611 1418535 1418559 1418600 "KOERCE" 1418662 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-610 1416217 1417005 1417406 "KERNEL" 1418167 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-609 1415713 1415794 1415926 "KERNEL2" 1416131 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-608 1409483 1414252 1414306 "KDAGG" 1414683 NIL KDAGG (NIL T T) -9 NIL 1414889 NIL) (-607 1409012 1409136 1409341 "KDAGG-" 1409346 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-606 1402160 1408673 1408828 "KAFILE" 1408890 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-605 1396588 1401671 1401899 "JORDAN" 1401981 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-604 1395967 1396237 1396358 "JOINAST" 1396487 T JOINAST (NIL) -8 NIL NIL NIL) (-603 1395813 1395872 1395927 "JAVACODE" 1395932 T JAVACODE (NIL) -8 NIL NIL NIL) (-602 1392065 1394018 1394072 "IXAGG" 1395001 NIL IXAGG (NIL T T) -9 NIL 1395460 NIL) (-601 1390984 1391290 1391709 "IXAGG-" 1391714 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-600 1386514 1390906 1390965 "IVECTOR" 1390970 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-599 1385280 1385517 1385783 "ITUPLE" 1386281 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-598 1383782 1383959 1384254 "ITRIGMNP" 1385102 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-597 1382527 1382731 1383014 "ITFUN3" 1383558 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-596 1382159 1382216 1382325 "ITFUN2" 1382464 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-595 1379961 1381021 1381320 "ITAYLOR" 1381893 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-594 1368906 1374098 1375261 "ISUPS" 1378831 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-593 1368010 1368150 1368386 "ISUMP" 1368753 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-592 1363224 1367811 1367890 "ISTRING" 1367963 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-591 1362700 1362945 1363037 "ISAST" 1363152 T ISAST (NIL) -8 NIL NIL NIL) (-590 1361909 1361991 1362207 "IRURPK" 1362614 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-589 1360845 1361046 1361286 "IRSN" 1361689 T IRSN (NIL) -7 NIL NIL NIL) (-588 1358916 1359271 1359700 "IRRF2F" 1360483 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-587 1358663 1358701 1358777 "IRREDFFX" 1358872 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-586 1357278 1357537 1357836 "IROOT" 1358396 NIL IROOT (NIL T) -7 NIL NIL NIL) (-585 1353882 1354962 1355654 "IR" 1356618 NIL IR (NIL T) -8 NIL NIL NIL) (-584 1351495 1351990 1352556 "IR2" 1353360 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-583 1350595 1350708 1350922 "IR2F" 1351378 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-582 1350386 1350420 1350480 "IPRNTPK" 1350555 T IPRNTPK (NIL) -7 NIL NIL NIL) (-581 1346966 1350275 1350344 "IPF" 1350349 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-580 1345293 1346891 1346948 "IPADIC" 1346953 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-579 1344605 1344853 1344983 "IP4ADDR" 1345183 T IP4ADDR (NIL) -8 NIL NIL NIL) (-578 1344078 1344309 1344419 "IOMODE" 1344515 T IOMODE (NIL) -8 NIL NIL NIL) (-577 1343151 1343675 1343802 "IOBFILE" 1343971 T IOBFILE (NIL) -8 NIL NIL NIL) (-576 1342639 1343055 1343083 "IOBCON" 1343088 T IOBCON (NIL) -9 NIL 1343109 NIL) (-575 1342150 1342208 1342391 "INVLAPLA" 1342575 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-574 1331798 1334152 1336538 "INTTR" 1339814 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-573 1328133 1328875 1329740 "INTTOOLS" 1330983 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-572 1327719 1327810 1327927 "INTSLPE" 1328036 T INTSLPE (NIL) -7 NIL NIL NIL) (-571 1325673 1327642 1327701 "INTRVL" 1327706 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-570 1323275 1323787 1324362 "INTRF" 1325158 NIL INTRF (NIL T) -7 NIL NIL NIL) (-569 1322686 1322783 1322925 "INTRET" 1323173 NIL INTRET (NIL T) -7 NIL NIL NIL) (-568 1320683 1321072 1321542 "INTRAT" 1322294 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-567 1317946 1318529 1319148 "INTPM" 1320168 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-566 1314690 1315290 1316028 "INTPAF" 1317332 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-565 1309869 1310831 1311882 "INTPACK" 1313659 T INTPACK (NIL) -7 NIL NIL NIL) (-564 1306746 1309598 1309725 "INT" 1309762 T INT (NIL) -8 NIL NIL NIL) (-563 1305998 1306150 1306358 "INTHERTR" 1306588 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-562 1305437 1305517 1305705 "INTHERAL" 1305912 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-561 1303283 1303726 1304183 "INTHEORY" 1305000 T INTHEORY (NIL) -7 NIL NIL NIL) (-560 1294689 1296310 1298082 "INTG0" 1301635 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-559 1275262 1280052 1284862 "INTFTBL" 1289899 T INTFTBL (NIL) -8 NIL NIL NIL) (-558 1274511 1274649 1274822 "INTFACT" 1275121 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-557 1271938 1272384 1272941 "INTEF" 1274065 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-556 1270305 1271044 1271072 "INTDOM" 1271373 T INTDOM (NIL) -9 NIL 1271580 NIL) (-555 1269674 1269848 1270090 "INTDOM-" 1270095 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-554 1266062 1267990 1268044 "INTCAT" 1268843 NIL INTCAT (NIL T) -9 NIL 1269164 NIL) (-553 1265534 1265637 1265765 "INTBIT" 1265954 T INTBIT (NIL) -7 NIL NIL NIL) (-552 1264233 1264387 1264694 "INTALG" 1265379 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-551 1263716 1263806 1263963 "INTAF" 1264137 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-550 1257059 1263526 1263666 "INTABL" 1263671 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-549 1256400 1256866 1256931 "INT8" 1256965 T INT8 (NIL) -8 NIL NIL 1257010) (-548 1255740 1256206 1256271 "INT64" 1256305 T INT64 (NIL) -8 NIL NIL 1256350) (-547 1255080 1255546 1255611 "INT32" 1255645 T INT32 (NIL) -8 NIL NIL 1255690) (-546 1254420 1254886 1254951 "INT16" 1254985 T INT16 (NIL) -8 NIL NIL 1255030) (-545 1249330 1252043 1252071 "INS" 1253005 T INS (NIL) -9 NIL 1253670 NIL) (-544 1246570 1247341 1248315 "INS-" 1248388 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1245345 1245572 1245870 "INPSIGN" 1246323 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1244463 1244580 1244777 "INPRODPF" 1245225 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1243357 1243474 1243711 "INPRODFF" 1244343 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1242357 1242509 1242769 "INNMFACT" 1243193 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1241554 1241651 1241839 "INMODGCD" 1242256 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1240062 1240307 1240631 "INFSP" 1241299 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1239246 1239363 1239546 "INFPROD0" 1239942 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1236101 1237311 1237826 "INFORM" 1238739 T INFORM (NIL) -8 NIL NIL NIL) (-535 1235711 1235771 1235869 "INFORM1" 1236036 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1235234 1235323 1235437 "INFINITY" 1235617 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1234410 1234954 1235055 "INETCLTS" 1235153 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1233026 1233276 1233597 "INEP" 1234158 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1232275 1232923 1232988 "INDE" 1232993 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1231839 1231907 1232024 "INCRMAPS" 1232202 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1230657 1231108 1231314 "INBFILE" 1231653 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1225957 1226893 1227837 "INBFF" 1229745 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1224865 1225134 1225162 "INBCON" 1225675 T INBCON (NIL) -9 NIL 1225941 NIL) (-526 1224117 1224340 1224616 "INBCON-" 1224621 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1223596 1223841 1223932 "INAST" 1224046 T INAST (NIL) -8 NIL NIL NIL) (-524 1223023 1223275 1223381 "IMPTAST" 1223510 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1219469 1222867 1222971 "IMATRIX" 1222976 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1218181 1218304 1218619 "IMATQF" 1219325 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1216401 1216628 1216965 "IMATLIN" 1217937 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1210979 1216325 1216383 "ILIST" 1216388 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1208884 1210839 1210952 "IIARRAY2" 1210957 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1204282 1208795 1208859 "IFF" 1208864 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1203629 1203899 1204015 "IFAST" 1204186 T IFAST (NIL) -8 NIL NIL NIL) (-516 1198624 1202921 1203109 "IFARRAY" 1203486 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1197804 1198528 1198601 "IFAMON" 1198606 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1197388 1197453 1197507 "IEVALAB" 1197714 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1197063 1197131 1197291 "IEVALAB-" 1197296 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1196694 1196977 1197040 "IDPO" 1197045 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1195944 1196583 1196658 "IDPOAMS" 1196663 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1195251 1195833 1195908 "IDPOAM" 1195913 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1194310 1194586 1194639 "IDPC" 1195052 NIL IDPC (NIL T T) -9 NIL 1195201 NIL) (-508 1193779 1194202 1194275 "IDPAM" 1194280 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1193155 1193671 1193744 "IDPAG" 1193749 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1192800 1192991 1193066 "IDENT" 1193100 T IDENT (NIL) -8 NIL NIL NIL) (-505 1189055 1189903 1190798 "IDECOMP" 1191957 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1181891 1182978 1184025 "IDEAL" 1188091 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1181055 1181167 1181366 "ICDEN" 1181775 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1180126 1180535 1180682 "ICARD" 1180928 T ICARD (NIL) -8 NIL NIL NIL) (-501 1178186 1178499 1178904 "IBPTOOLS" 1179803 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1173793 1177806 1177919 "IBITS" 1178105 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1170516 1171092 1171787 "IBATOOL" 1173210 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1168295 1168757 1169290 "IBACHIN" 1170051 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1166124 1168141 1168244 "IARRAY2" 1168249 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1162230 1166050 1166107 "IARRAY1" 1166112 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1156339 1160642 1161123 "IAN" 1161769 T IAN (NIL) -8 NIL NIL NIL) (-494 1155850 1155907 1156080 "IALGFACT" 1156276 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1155378 1155491 1155519 "HYPCAT" 1155726 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1154916 1155033 1155219 "HYPCAT-" 1155224 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1154511 1154711 1154794 "HOSTNAME" 1154853 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1154356 1154393 1154434 "HOMOTOP" 1154439 NIL HOMOTOP (NIL T) -9 NIL 1154472 NIL) (-489 1150988 1152366 1152407 "HOAGG" 1153388 NIL HOAGG (NIL T) -9 NIL 1154067 NIL) (-488 1149582 1149981 1150507 "HOAGG-" 1150512 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1143586 1149177 1149326 "HEXADEC" 1149453 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1142334 1142556 1142819 "HEUGCD" 1143363 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1141410 1142171 1142301 "HELLFDIV" 1142306 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1139589 1141187 1141275 "HEAP" 1141354 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1138852 1139141 1139275 "HEADAST" 1139475 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1132718 1138767 1138829 "HDP" 1138834 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1126706 1132353 1132505 "HDMP" 1132619 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1126030 1126170 1126334 "HB" 1126562 T HB (NIL) -7 NIL NIL NIL) (-479 1119416 1125876 1125980 "HASHTBL" 1125985 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1118892 1119137 1119229 "HASAST" 1119344 T HASAST (NIL) -8 NIL NIL NIL) (-477 1116670 1118514 1118696 "HACKPI" 1118730 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1112338 1116523 1116636 "GTSET" 1116641 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1105753 1112216 1112314 "GSTBL" 1112319 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1098031 1104784 1105049 "GSERIES" 1105544 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1097172 1097589 1097617 "GROUP" 1097820 T GROUP (NIL) -9 NIL 1097954 NIL) (-472 1096538 1096697 1096948 "GROUP-" 1096953 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1094905 1095226 1095613 "GROEBSOL" 1096215 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1093819 1094107 1094158 "GRMOD" 1094687 NIL GRMOD (NIL T T) -9 NIL 1094855 NIL) (-469 1093587 1093623 1093751 "GRMOD-" 1093756 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1088877 1089941 1090941 "GRIMAGE" 1092607 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1087343 1087604 1087928 "GRDEF" 1088573 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1086787 1086903 1087044 "GRAY" 1087222 T GRAY (NIL) -7 NIL NIL NIL) (-465 1085974 1086380 1086431 "GRALG" 1086584 NIL GRALG (NIL T T) -9 NIL 1086677 NIL) (-464 1085635 1085708 1085871 "GRALG-" 1085876 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1082412 1085220 1085398 "GPOLSET" 1085542 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1081766 1081823 1082081 "GOSPER" 1082349 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1077498 1078204 1078730 "GMODPOL" 1081465 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1076503 1076687 1076925 "GHENSEL" 1077310 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1070659 1071502 1072522 "GENUPS" 1075587 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1070356 1070407 1070496 "GENUFACT" 1070602 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1069768 1069845 1070010 "GENPGCD" 1070274 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1069242 1069277 1069490 "GENMFACT" 1069727 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1067808 1068065 1068372 "GENEEZ" 1068985 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1061953 1067419 1067581 "GDMP" 1067731 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1051295 1055724 1056830 "GCNAALG" 1060936 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1049622 1050484 1050512 "GCDDOM" 1050767 T GCDDOM (NIL) -9 NIL 1050924 NIL) (-451 1049092 1049219 1049434 "GCDDOM-" 1049439 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1047764 1047949 1048253 "GB" 1048871 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1036380 1038710 1041102 "GBINTERN" 1045455 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1034217 1034509 1034930 "GBF" 1036055 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1032998 1033163 1033430 "GBEUCLID" 1034033 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1032347 1032472 1032621 "GAUSSFAC" 1032869 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1030714 1031016 1031330 "GALUTIL" 1032066 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1029022 1029296 1029620 "GALPOLYU" 1030441 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1026387 1026677 1027084 "GALFACTU" 1028719 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1018192 1019692 1021300 "GALFACT" 1024819 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1015580 1016238 1016266 "FVFUN" 1017422 T FVFUN (NIL) -9 NIL 1018142 NIL) (-440 1014846 1015028 1015056 "FVC" 1015347 T FVC (NIL) -9 NIL 1015530 NIL) (-439 1014489 1014671 1014739 "FUNDESC" 1014798 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1014104 1014286 1014367 "FUNCTION" 1014441 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1011848 1012426 1012892 "FT" 1013658 T FT (NIL) -8 NIL NIL NIL) (-436 1010639 1011149 1011352 "FTEM" 1011665 T FTEM (NIL) -8 NIL NIL NIL) (-435 1008930 1009219 1009616 "FSUPFACT" 1010330 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1007327 1007616 1007948 "FST" 1008618 T FST (NIL) -8 NIL NIL NIL) (-433 1006526 1006632 1006820 "FSRED" 1007209 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 1005225 1005481 1005828 "FSPRMELT" 1006241 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 1002531 1002969 1003455 "FSPECF" 1004788 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 984169 992500 992541 "FS" 996425 NIL FS (NIL T) -9 NIL 998714 NIL) (-429 972812 975805 979862 "FS-" 980162 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 972340 972394 972564 "FSINT" 972753 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 970632 971333 971636 "FSERIES" 972119 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 969674 969790 970014 "FSCINT" 970512 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 965882 968618 968659 "FSAGG" 969029 NIL FSAGG (NIL T) -9 NIL 969288 NIL) (-424 963644 964245 965041 "FSAGG-" 965136 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 962686 962829 963056 "FSAGG2" 963497 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 960368 960648 961195 "FS2UPS" 962404 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 960002 960045 960174 "FS2" 960319 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 958880 959051 959353 "FS2EXPXP" 959827 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 958306 958421 958573 "FRUTIL" 958760 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 949719 953801 955159 "FR" 956980 NIL FR (NIL T) -8 NIL NIL NIL) (-417 944688 947362 947402 "FRNAALG" 948798 NIL FRNAALG (NIL T) -9 NIL 949405 NIL) (-416 940361 941437 942712 "FRNAALG-" 943462 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 939999 940042 940169 "FRNAAF2" 940312 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 938379 938853 939148 "FRMOD" 939811 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 936130 936762 937079 "FRIDEAL" 938170 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 935325 935412 935701 "FRIDEAL2" 936037 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 934458 934872 934913 "FRETRCT" 934918 NIL FRETRCT (NIL T) -9 NIL 935094 NIL) (-410 933570 933801 934152 "FRETRCT-" 934157 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 930658 931868 931927 "FRAMALG" 932809 NIL FRAMALG (NIL T T) -9 NIL 933101 NIL) (-408 928792 929247 929877 "FRAMALG-" 930100 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 922713 928267 928543 "FRAC" 928548 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 922349 922406 922513 "FRAC2" 922650 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 921985 922042 922149 "FR2" 922286 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 916498 919391 919419 "FPS" 920538 T FPS (NIL) -9 NIL 921095 NIL) (-403 915947 916056 916220 "FPS-" 916366 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 913249 914918 914946 "FPC" 915171 T FPC (NIL) -9 NIL 915313 NIL) (-401 913042 913082 913179 "FPC-" 913184 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 911832 912530 912571 "FPATMAB" 912576 NIL FPATMAB (NIL T) -9 NIL 912728 NIL) (-399 909505 910008 910434 "FPARFRAC" 911469 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 904898 905397 906079 "FORTRAN" 908937 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 902614 903114 903653 "FORT" 904379 T FORT (NIL) -7 NIL NIL NIL) (-396 900290 900852 900880 "FORTFN" 901940 T FORTFN (NIL) -9 NIL 902564 NIL) (-395 900054 900104 900132 "FORTCAT" 900191 T FORTCAT (NIL) -9 NIL 900253 NIL) (-394 898160 898670 899060 "FORMULA" 899684 T FORMULA (NIL) -8 NIL NIL NIL) (-393 897948 897978 898047 "FORMULA1" 898124 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 897471 897523 897696 "FORDER" 897890 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 896567 896731 896924 "FOP" 897298 T FOP (NIL) -7 NIL NIL NIL) (-390 895148 895847 896021 "FNLA" 896449 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 893877 894292 894320 "FNCAT" 894780 T FNCAT (NIL) -9 NIL 895040 NIL) (-388 893416 893836 893864 "FNAME" 893869 T FNAME (NIL) -8 NIL NIL NIL) (-387 891979 892942 892970 "FMTC" 892975 T FMTC (NIL) -9 NIL 893011 NIL) (-386 888312 889502 890131 "FMONOID" 891383 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 887504 888054 888203 "FM" 888208 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 884928 885574 885602 "FMFUN" 886746 T FMFUN (NIL) -9 NIL 887454 NIL) (-383 884197 884378 884406 "FMC" 884696 T FMC (NIL) -9 NIL 884878 NIL) (-382 881276 882136 882190 "FMCAT" 883385 NIL FMCAT (NIL T T) -9 NIL 883880 NIL) (-381 880142 881042 881142 "FM1" 881221 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 877916 878332 878826 "FLOATRP" 879693 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 871490 875645 876266 "FLOAT" 877315 T FLOAT (NIL) -8 NIL NIL NIL) (-378 868928 869428 870006 "FLOATCP" 870957 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 867668 868506 868547 "FLINEXP" 868552 NIL FLINEXP (NIL T) -9 NIL 868645 NIL) (-376 866822 867057 867385 "FLINEXP-" 867390 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 865898 866042 866266 "FLASORT" 866674 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 863014 863882 863934 "FLALG" 865161 NIL FLALG (NIL T T) -9 NIL 865628 NIL) (-373 856750 860500 860541 "FLAGG" 861803 NIL FLAGG (NIL T) -9 NIL 862455 NIL) (-372 855476 855815 856305 "FLAGG-" 856310 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 854518 854661 854888 "FLAGG2" 855329 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 851369 852377 852436 "FINRALG" 853564 NIL FINRALG (NIL T T) -9 NIL 854072 NIL) (-369 850529 850758 851097 "FINRALG-" 851102 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 849909 850148 850176 "FINITE" 850372 T FINITE (NIL) -9 NIL 850479 NIL) (-367 842266 844453 844493 "FINAALG" 848160 NIL FINAALG (NIL T) -9 NIL 849613 NIL) (-366 837598 838648 839792 "FINAALG-" 841171 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 836966 837353 837456 "FILE" 837528 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 835624 835962 836016 "FILECAT" 836700 NIL FILECAT (NIL T T) -9 NIL 836916 NIL) (-363 833340 834868 834896 "FIELD" 834936 T FIELD (NIL) -9 NIL 835016 NIL) (-362 831960 832345 832856 "FIELD-" 832861 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 829810 830595 830942 "FGROUP" 831646 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 828900 829064 829284 "FGLMICPK" 829642 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 824732 828825 828882 "FFX" 828887 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 824333 824394 824529 "FFSLPE" 824665 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 820322 821105 821901 "FFPOLY" 823569 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 819826 819862 820071 "FFPOLY2" 820280 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 815669 819745 819808 "FFP" 819813 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 811067 815580 815644 "FF" 815649 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 806193 810410 810600 "FFNBX" 810921 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 801122 805328 805586 "FFNBP" 806047 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 795755 800406 800617 "FFNB" 800955 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 794587 794785 795100 "FFINTBAS" 795552 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 790656 792876 792904 "FFIELDC" 793524 T FFIELDC (NIL) -9 NIL 793900 NIL) (-348 789318 789689 790186 "FFIELDC-" 790191 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 788887 788933 789057 "FFHOM" 789260 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 786582 787069 787586 "FFF" 788402 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 782200 786324 786425 "FFCGX" 786525 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 777821 781932 782039 "FFCGP" 782143 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 773004 777548 777656 "FFCG" 777757 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 754400 763481 763567 "FFCAT" 768732 NIL FFCAT (NIL T T T) -9 NIL 770183 NIL) (-341 749598 750645 751959 "FFCAT-" 753189 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 749009 749052 749287 "FFCAT2" 749549 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 738330 741981 743201 "FEXPR" 747861 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 737330 737765 737806 "FEVALAB" 737890 NIL FEVALAB (NIL T) -9 NIL 738151 NIL) (-337 736489 736699 737037 "FEVALAB-" 737042 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 735055 735872 736075 "FDIV" 736388 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 732075 732816 732931 "FDIVCAT" 734499 NIL FDIVCAT (NIL T T T T) -9 NIL 734936 NIL) (-334 731837 731864 732034 "FDIVCAT-" 732039 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 731057 731144 731421 "FDIV2" 731744 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 729743 730002 730291 "FCPAK1" 730788 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 728842 729243 729384 "FCOMP" 729634 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 712544 715992 719530 "FC" 725324 T FC (NIL) -8 NIL NIL NIL) (-329 704907 708935 708975 "FAXF" 710777 NIL FAXF (NIL T) -9 NIL 711469 NIL) (-328 702183 702841 703666 "FAXF-" 704131 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 697235 701559 701735 "FARRAY" 702040 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 692129 694196 694249 "FAMR" 695272 NIL FAMR (NIL T T) -9 NIL 695732 NIL) (-325 691019 691321 691756 "FAMR-" 691761 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 690188 690941 690994 "FAMONOID" 690999 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 687974 688684 688737 "FAMONC" 689678 NIL FAMONC (NIL T T) -9 NIL 690064 NIL) (-322 686639 687728 687865 "FAGROUP" 687870 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 684434 684753 685156 "FACUTIL" 686320 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 683533 683718 683940 "FACTFUNC" 684244 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 675955 682836 683035 "EXPUPXS" 683389 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 673438 673978 674564 "EXPRTUBE" 675389 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 669709 670301 671031 "EXPRODE" 672777 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 655194 668358 668787 "EXPR" 669313 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 649748 650335 651141 "EXPR2UPS" 654492 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 649380 649437 649546 "EXPR2" 649685 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 640771 648533 648823 "EXPEXPAN" 649217 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 640571 640728 640757 "EXIT" 640762 T EXIT (NIL) -8 NIL NIL NIL) (-311 640051 640295 640386 "EXITAST" 640500 T EXITAST (NIL) -8 NIL NIL NIL) (-310 639678 639740 639853 "EVALCYC" 639983 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 639219 639337 639378 "EVALAB" 639548 NIL EVALAB (NIL T) -9 NIL 639652 NIL) (-308 638700 638822 639043 "EVALAB-" 639048 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 636068 637370 637398 "EUCDOM" 637953 T EUCDOM (NIL) -9 NIL 638303 NIL) (-306 634473 634915 635505 "EUCDOM-" 635510 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 622011 624771 627521 "ESTOOLS" 631743 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 621643 621700 621809 "ESTOOLS2" 621948 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 621394 621436 621516 "ESTOOLS1" 621595 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 615431 617039 617067 "ES" 619835 T ES (NIL) -9 NIL 621245 NIL) (-301 610378 611665 613482 "ES-" 613646 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 606752 607513 608293 "ESCONT" 609618 T ESCONT (NIL) -7 NIL NIL NIL) (-299 606497 606529 606611 "ESCONT1" 606714 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 606172 606222 606322 "ES2" 606441 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 605802 605860 605969 "ES1" 606108 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 605018 605147 605323 "ERROR" 605646 T ERROR (NIL) -7 NIL NIL NIL) (-295 598410 604877 604968 "EQTBL" 604973 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 590913 593724 595173 "EQ" 596994 NIL -2010 (NIL T) -8 NIL NIL NIL) (-293 590545 590602 590711 "EQ2" 590850 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 585834 586883 587976 "EP" 589484 NIL EP (NIL T) -7 NIL NIL NIL) (-291 584434 584725 585031 "ENV" 585548 T ENV (NIL) -8 NIL NIL NIL) (-290 583528 584082 584110 "ENTIRER" 584115 T ENTIRER (NIL) -9 NIL 584161 NIL) (-289 579995 581483 581853 "EMR" 583327 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 579139 579324 579378 "ELTAGG" 579758 NIL ELTAGG (NIL T T) -9 NIL 579969 NIL) (-287 578858 578920 579061 "ELTAGG-" 579066 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 578647 578676 578730 "ELTAB" 578814 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 577773 577919 578118 "ELFUTS" 578498 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 577515 577571 577599 "ELEMFUN" 577704 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 577385 577406 577474 "ELEMFUN-" 577479 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 572229 575485 575526 "ELAGG" 576466 NIL ELAGG (NIL T) -9 NIL 576929 NIL) (-281 570514 570948 571611 "ELAGG-" 571616 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 569179 569457 569750 "ELABEXPR" 570241 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 562043 563846 564673 "EFUPXS" 568455 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 555493 557294 558104 "EFULS" 561319 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 552978 553336 553808 "EFSTRUC" 555125 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 542769 544335 545883 "EF" 551493 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 541843 542254 542403 "EAB" 542640 T EAB (NIL) -8 NIL NIL NIL) (-274 541025 541802 541830 "E04UCFA" 541835 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 540207 540984 541012 "E04NAFA" 541017 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 539389 540166 540194 "E04MBFA" 540199 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 538571 539348 539376 "E04JAFA" 539381 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 537755 538530 538558 "E04GCFA" 538563 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 536939 537714 537742 "E04FDFA" 537747 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 536121 536898 536926 "E04DGFA" 536931 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 530294 531646 533010 "E04AGNT" 534777 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 528974 529480 529520 "DVARCAT" 529995 NIL DVARCAT (NIL T) -9 NIL 530194 NIL) (-265 528178 528390 528704 "DVARCAT-" 528709 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 521315 527977 528106 "DSMP" 528111 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 516097 517260 518328 "DROPT" 520267 T DROPT (NIL) -8 NIL NIL NIL) (-262 515762 515821 515919 "DROPT1" 516032 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 510877 512003 513140 "DROPT0" 514645 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 509222 509547 509933 "DRAWPT" 510511 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 503809 504732 505811 "DRAW" 508196 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 503442 503495 503613 "DRAWHACK" 503750 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 502173 502442 502733 "DRAWCX" 503171 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 501688 501757 501908 "DRAWCURV" 502099 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 492156 494118 496233 "DRAWCFUN" 499593 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 488922 490851 490892 "DQAGG" 491521 NIL DQAGG (NIL T) -9 NIL 491794 NIL) (-253 477046 483515 483598 "DPOLCAT" 485450 NIL DPOLCAT (NIL T T T T) -9 NIL 485995 NIL) (-252 471882 473231 475189 "DPOLCAT-" 475194 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 465004 471743 471841 "DPMO" 471846 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 458029 464784 464951 "DPMM" 464956 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 457602 457948 457996 "DOMCTOR" 458001 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456870 457124 457261 "DOMAIN" 457485 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450858 456505 456657 "DMP" 456771 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450458 450514 450658 "DLP" 450796 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 444280 449785 449975 "DLIST" 450300 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 441077 443133 443174 "DLAGG" 443724 NIL DLAGG (NIL T) -9 NIL 443954 NIL) (-243 439753 440417 440445 "DIVRING" 440537 T DIVRING (NIL) -9 NIL 440620 NIL) (-242 438990 439180 439480 "DIVRING-" 439485 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 437092 437449 437855 "DISPLAY" 438604 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430980 437006 437069 "DIRPROD" 437074 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429828 430031 430296 "DIRPROD2" 430773 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418603 424609 424662 "DIRPCAT" 425072 NIL DIRPCAT (NIL NIL T) -9 NIL 425912 NIL) (-237 415929 416571 417452 "DIRPCAT-" 417789 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 415216 415376 415562 "DIOSP" 415763 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411871 414128 414169 "DIOPS" 414603 NIL DIOPS (NIL T) -9 NIL 414832 NIL) (-234 411420 411534 411725 "DIOPS-" 411730 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 410243 410871 410899 "DIFRING" 411086 T DIFRING (NIL) -9 NIL 411196 NIL) (-232 409889 409966 410118 "DIFRING-" 410123 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407625 408897 408938 "DIFEXT" 409301 NIL DIFEXT (NIL T) -9 NIL 409595 NIL) (-230 405910 406338 407004 "DIFEXT-" 407009 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 403185 405442 405483 "DIAGG" 405488 NIL DIAGG (NIL T) -9 NIL 405508 NIL) (-228 402569 402726 402978 "DIAGG-" 402983 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397986 401528 401805 "DHMATRIX" 402338 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393598 394507 395517 "DFSFUN" 396996 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388676 392529 392841 "DFLOAT" 393306 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386939 387220 387609 "DFINTTLS" 388384 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383968 384960 385360 "DERHAM" 386605 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381769 383743 383832 "DEQUEUE" 383912 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 381023 381156 381339 "DEGRED" 381631 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377453 378198 379044 "DEFINTRF" 380251 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 375008 375477 376069 "DEFINTEF" 376972 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 374358 374628 374743 "DEFAST" 374913 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368362 373953 374102 "DECIMAL" 374229 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365873 366332 366838 "DDFACT" 367906 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365469 365512 365663 "DBLRESP" 365824 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 363341 363702 364062 "DBASE" 365236 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362583 362821 362967 "DATAARY" 363240 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361689 362542 362570 "D03FAFA" 362575 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360796 361648 361676 "D03EEFA" 361681 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358746 359212 359701 "D03AGNT" 360327 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 358035 358705 358733 "D02EJFA" 358738 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 357324 357994 358022 "D02CJFA" 358027 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356613 357283 357311 "D02BHFA" 357316 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355902 356572 356600 "D02BBFA" 356605 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 349099 350688 352294 "D02AGNT" 354316 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346867 347390 347936 "D01WGTS" 348573 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345934 346826 346854 "D01TRNS" 346859 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 345002 345893 345921 "D01GBFA" 345926 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 344070 344961 344989 "D01FCFA" 344994 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 343138 344029 344057 "D01ASFA" 344062 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 342206 343097 343125 "D01AQFA" 343130 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 341274 342165 342193 "D01APFA" 342198 T D01APFA (NIL) -8 NIL NIL NIL) (-197 340342 341233 341261 "D01ANFA" 341266 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339410 340301 340329 "D01AMFA" 340334 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338478 339369 339397 "D01ALFA" 339402 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337546 338437 338465 "D01AKFA" 338470 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336614 337505 337533 "D01AJFA" 337538 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329909 331462 333023 "D01AGNT" 335073 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 329246 329374 329526 "CYCLOTOM" 329777 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325981 326694 327421 "CYCLES" 328539 T CYCLES (NIL) -7 NIL NIL NIL) (-189 325293 325427 325598 "CVMP" 325842 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 323134 323392 323761 "CTRIGMNP" 325021 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322570 322928 323001 "CTOR" 323081 T CTOR (NIL) -8 NIL NIL NIL) (-186 322079 322301 322402 "CTORKIND" 322489 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321370 321686 321714 "CTORCAT" 321896 T CTORCAT (NIL) -9 NIL 322009 NIL) (-184 320968 321079 321238 "CTORCAT-" 321243 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320457 320671 320769 "CTORCALL" 320890 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 319831 319930 320083 "CSTTOOLS" 320354 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315630 316287 317045 "CRFP" 319143 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 315105 315351 315443 "CRCEAST" 315558 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 314152 314337 314565 "CRAPACK" 314909 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313536 313637 313841 "CPMATCH" 314028 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 313261 313289 313395 "CPIMA" 313502 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309609 310281 311000 "COORDSYS" 312596 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 309021 309142 309284 "CONTOUR" 309487 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304912 307024 307516 "CONTFRAC" 308561 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304792 304813 304841 "CONDUIT" 304878 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303880 304434 304462 "COMRING" 304467 T COMRING (NIL) -9 NIL 304519 NIL) (-171 302934 303238 303422 "COMPPROP" 303716 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302595 302630 302758 "COMPLPAT" 302893 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292886 302404 302513 "COMPLEX" 302518 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292522 292579 292686 "COMPLEX2" 292823 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 292240 292275 292373 "COMPFACT" 292481 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 276320 286314 286354 "COMPCAT" 287358 NIL COMPCAT (NIL T) -9 NIL 288706 NIL) (-165 265830 268759 272386 "COMPCAT-" 272742 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265559 265587 265690 "COMMUPC" 265796 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 265353 265387 265446 "COMMONOP" 265520 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264909 265104 265191 "COMM" 265286 T COMM (NIL) -8 NIL NIL NIL) (-161 264485 264713 264788 "COMMAAST" 264854 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263734 263928 263956 "COMBOPC" 264294 T COMBOPC (NIL) -9 NIL 264469 NIL) (-159 262630 262840 263082 "COMBINAT" 263524 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 259087 259661 260288 "COMBF" 262052 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257845 258203 258438 "COLOR" 258872 T COLOR (NIL) -8 NIL NIL NIL) (-156 257321 257566 257658 "COLONAST" 257773 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256961 257008 257133 "CMPLXRT" 257268 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256409 256661 256760 "CLLCTAST" 256882 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251909 252939 254019 "CLIP" 255349 T CLIP (NIL) -7 NIL NIL NIL) (-152 250255 251015 251254 "CLIF" 251736 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246430 248401 248442 "CLAGG" 249371 NIL CLAGG (NIL T) -9 NIL 249907 NIL) (-150 244852 245309 245892 "CLAGG-" 245897 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244396 244481 244621 "CINTSLPE" 244761 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241897 242368 242916 "CHVAR" 243924 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 241071 241625 241653 "CHARZ" 241658 T CHARZ (NIL) -9 NIL 241673 NIL) (-146 240825 240865 240943 "CHARPOL" 241025 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239883 240470 240498 "CHARNZ" 240545 T CHARNZ (NIL) -9 NIL 240601 NIL) (-144 237845 238573 238908 "CHAR" 239568 T CHAR (NIL) -8 NIL NIL NIL) (-143 237571 237632 237660 "CFCAT" 237771 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236816 236927 237109 "CDEN" 237455 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232781 235969 236249 "CCLASS" 236556 T CCLASS (NIL) -8 NIL NIL NIL) (-140 232088 232231 232394 "CATEGORY" 232638 T -10 (NIL) -8 NIL NIL NIL) (-139 231661 232007 232055 "CATCTOR" 232060 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 231112 231364 231462 "CATAST" 231583 T CATAST (NIL) -8 NIL NIL NIL) (-137 230588 230833 230925 "CASEAST" 231040 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225597 226617 227370 "CARTEN" 229891 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224705 224853 225074 "CARTEN2" 225444 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 223020 223855 224112 "CARD" 224468 T CARD (NIL) -8 NIL NIL NIL) (-133 222596 222824 222899 "CAPSLAST" 222965 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 222100 222308 222336 "CACHSET" 222468 T CACHSET (NIL) -9 NIL 222546 NIL) (-131 221570 221892 221920 "CABMON" 221970 T CABMON (NIL) -9 NIL 222026 NIL) (-130 221043 221274 221384 "BYTEORD" 221480 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 220019 220577 220719 "BYTE" 220882 T BYTE (NIL) -8 NIL NIL 221004) (-128 215369 219524 219696 "BYTEBUF" 219867 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212878 215061 215168 "BTREE" 215295 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 210327 212526 212648 "BTOURN" 212788 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207697 209797 209838 "BTCAT" 209906 NIL BTCAT (NIL T) -9 NIL 209983 NIL) (-124 207364 207444 207593 "BTCAT-" 207598 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202629 206507 206535 "BTAGG" 206757 T BTAGG (NIL) -9 NIL 206918 NIL) (-122 202119 202244 202450 "BTAGG-" 202455 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 199114 201397 201612 "BSTREE" 201936 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 198252 198378 198562 "BRILL" 198970 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194904 196978 197019 "BRAGG" 197668 NIL BRAGG (NIL T) -9 NIL 197926 NIL) (-118 193433 193839 194394 "BRAGG-" 194399 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186662 192779 192963 "BPADICRT" 193281 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184977 186599 186644 "BPADIC" 186649 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184675 184705 184819 "BOUNDZRO" 184941 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179903 181101 182013 "BOP" 183783 T BOP (NIL) -8 NIL NIL NIL) (-113 177684 178088 178563 "BOP1" 179461 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176509 177258 177407 "BOOLEAN" 177555 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175788 176192 176246 "BMODULE" 176251 NIL BMODULE (NIL T T) -9 NIL 176316 NIL) (-110 171589 175586 175659 "BITS" 175735 T BITS (NIL) -8 NIL NIL NIL) (-109 171010 171129 171269 "BINDING" 171469 T BINDING (NIL) -8 NIL NIL NIL) (-108 165017 170607 170755 "BINARY" 170882 T BINARY (NIL) -8 NIL NIL NIL) (-107 162797 164272 164313 "BGAGG" 164573 NIL BGAGG (NIL T) -9 NIL 164710 NIL) (-106 162628 162660 162751 "BGAGG-" 162756 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161699 162012 162217 "BFUNCT" 162443 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160389 160567 160855 "BEZOUT" 161523 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156858 159241 159571 "BBTREE" 160092 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156592 156645 156673 "BASTYPE" 156792 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156444 156473 156546 "BASTYPE-" 156551 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155878 155954 156106 "BALFACT" 156355 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154734 155293 155479 "AUTOMOR" 155723 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154460 154465 154491 "ATTREG" 154496 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152712 153157 153509 "ATTRBUT" 154126 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152320 152540 152606 "ATTRAST" 152664 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151856 151969 151995 "ATRIG" 152196 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151665 151706 151793 "ATRIG-" 151798 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151310 151496 151522 "ASTCAT" 151527 T ASTCAT (NIL) -9 NIL 151557 NIL) (-92 151037 151096 151215 "ASTCAT-" 151220 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149186 150813 150901 "ASTACK" 150980 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147691 147988 148353 "ASSOCEQ" 148868 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146723 147350 147474 "ASP9" 147598 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146486 146671 146710 "ASP8" 146715 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145354 146091 146233 "ASP80" 146375 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144252 144989 145121 "ASP7" 145253 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143206 143929 144047 "ASP78" 144165 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142175 142886 143003 "ASP77" 143120 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141087 141813 141944 "ASP74" 142075 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139987 140722 140854 "ASP73" 140986 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139091 139813 139913 "ASP6" 139918 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138035 138768 138886 "ASP55" 139004 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136984 137709 137828 "ASP50" 137947 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136072 136685 136795 "ASP4" 136905 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135160 135773 135883 "ASP49" 135993 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133944 134699 134867 "ASP42" 135049 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132720 133477 133647 "ASP41" 133831 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131670 132397 132515 "ASP35" 132633 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131435 131618 131657 "ASP34" 131662 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131172 131239 131315 "ASP33" 131390 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130065 130807 130939 "ASP31" 131071 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129830 130013 130052 "ASP30" 130057 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129565 129634 129710 "ASP29" 129785 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129330 129513 129552 "ASP28" 129557 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129095 129278 129317 "ASP27" 129322 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128179 128793 128904 "ASP24" 129015 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127255 127981 128093 "ASP20" 128098 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126343 126956 127066 "ASP1" 127176 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125285 126017 126136 "ASP19" 126255 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125022 125089 125165 "ASP12" 125240 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123874 124621 124765 "ASP10" 124909 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121725 123718 123809 "ARRAY2" 123814 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117490 121373 121487 "ARRAY1" 121642 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116522 116695 116916 "ARRAY12" 117313 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110834 112752 112827 "ARR2CAT" 115457 NIL ARR2CAT (NIL T T T) -9 NIL 116215 NIL) (-56 108268 109012 109966 "ARR2CAT-" 109971 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107585 107895 108020 "ARITY" 108161 T ARITY (NIL) -8 NIL NIL NIL) (-54 106361 106513 106812 "APPRULE" 107421 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106012 106060 106179 "APPLYORE" 106307 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104959 105277 105472 "ANY" 105835 T ANY (NIL) -8 NIL NIL NIL) (-51 104237 104360 104517 "ANY1" 104833 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101767 102674 103001 "ANTISYM" 103961 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101259 101474 101570 "ANON" 101689 T ANON (NIL) -8 NIL NIL NIL) (-48 95508 99798 100252 "AN" 100823 T AN (NIL) -8 NIL NIL NIL) (-47 91406 92794 92845 "AMR" 93593 NIL AMR (NIL T T) -9 NIL 94193 NIL) (-46 90518 90739 91102 "AMR-" 91107 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74957 90435 90496 "ALIST" 90501 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71759 74551 74720 "ALGSC" 74875 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68314 68869 69476 "ALGPKG" 71199 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67591 67692 67876 "ALGMFACT" 68200 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63542 64149 64767 "ALGMANIP" 67151 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54912 63168 63318 "ALGFF" 63475 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54108 54239 54418 "ALGFACT" 54770 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53049 53649 53687 "ALGEBRA" 53692 NIL ALGEBRA (NIL T) -9 NIL 53733 NIL) (-37 52767 52826 52958 "ALGEBRA-" 52963 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34860 50769 50821 "ALAGG" 50957 NIL ALAGG (NIL T T) -9 NIL 51118 NIL) (-35 34396 34509 34535 "AHYP" 34736 T AHYP (NIL) -9 NIL NIL NIL) (-34 33327 33575 33601 "AGG" 34100 T AGG (NIL) -9 NIL 34379 NIL) (-33 32761 32923 33137 "AGG-" 33142 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30567 30990 31395 "AF" 32403 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30047 30292 30382 "ADDAST" 30495 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29315 29574 29730 "ACPLOT" 29909 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18638 26442 26480 "ACFS" 27087 NIL ACFS (NIL T) -9 NIL 27326 NIL) (-28 16665 17155 17917 "ACFS-" 17922 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12783 14712 14738 "ACF" 15617 T ACF (NIL) -9 NIL 16030 NIL) (-26 11487 11821 12314 "ACF-" 12319 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11059 11254 11280 "ABELSG" 11372 T ABELSG (NIL) -9 NIL 11437 NIL) (-24 10926 10951 11017 "ABELSG-" 11022 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10269 10556 10582 "ABELMON" 10752 T ABELMON (NIL) -9 NIL 10864 NIL) (-22 9933 10017 10155 "ABELMON-" 10160 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9281 9653 9679 "ABELGRP" 9751 T ABELGRP (NIL) -9 NIL 9826 NIL) (-20 8744 8873 9089 "ABELGRP-" 9094 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8083 8122 "A1AGG" 8127 NIL A1AGG (NIL T) -9 NIL 8167 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 4aeae036..1ce621af 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,302 +1,329 @@
-(731707 . 3452645034)
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846)))
- (-14 *3 (-641 (-1170))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
+(731999 . 3452782370)
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-819)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-436)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2))
+ (-4 *3 (-556)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-192))))
+ ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-300))))
+ ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1155)) (-5 *1 (-305)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-107 *3)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2080 (-780 *3)) (|:| |coef1| (-780 *3))
+ (|:| |coef2| (-780 *3))))
+ (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-2 (|:| -2080 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1062 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1238 (-564))) (-5 *1 (-486 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 (-767))) (-5 *1 (-965 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031))
- (-5 *1 (-744)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4))
- (-4 *4 (-1209)) (-5 *2 (-112)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-791)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848))
+ (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1155) (-1178)))
+ (-5 *1 (-1178)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-693 *3)) (-4 *3 (-1097))
+ (-5 *2 (-642 (-2 (|:| -3778 *3) (|:| -4043 (-769))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-5 *1 (-330)))))
+(((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846))
+ (-12 (-5 *3 (-1286 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-848))
(-4 *2 (-172))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045))))
+ (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-815 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-846))
- (-4 *2 (-1045))))
+ (-12 (-5 *3 (-817 *4)) (-4 *1 (-1279 *4 *2)) (-4 *4 (-848))
+ (-4 *2 (-1047))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-1045)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-842)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131))
- (-4 *2 (-1094))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-815 *2)) (-4 *2 (-846)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-743)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-917) (-767))))))
+ (-12 (-4 *2 (-1047)) (-5 *1 (-1285 *2 *3)) (-4 *3 (-844)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
- (-5 *2 (-1166 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
- (-5 *2 (-1166 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3))
- (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147)))
- (-5 *1 (-1146 *3)))))
-(((*1 *1) (-5 *1 (-819))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *1 (-1028 *2))
- (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))))
+ (-12 (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-307))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3))))
+ (-5 *1 (-386 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1420 (-769)) (|:| -3045 (-769))))
+ (-5 *1 (-769))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267))
+ (-5 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267))
+ (-5 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))))
(((*1 *1) (-5 *1 (-291))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1000))
+ (-4 *2 (-1047)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-642 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-791))
+ (-4 *8 (-848)) (-5 *1 (-975 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1047)) (-5 *2 (-1262 *3)) (-5 *1 (-710 *3 *4))
+ (-4 *4 (-1238 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-91 *3)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209))
+ (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212))
(-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2))
- (-4 *5 (-373 *2)) (-4 *2 (-1209))))
+ (-4 *5 (-373 *2)) (-4 *2 (-1212))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1212))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 (-564)) (-14 *5 (-767))))
+ (-12 (-5 *3 (-642 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 (-564)) (-14 *5 (-769))))
((*1 *2 *1 *3 *3 *3 *3)
(-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-767))))
+ (-14 *4 *3) (-14 *5 (-769))))
((*1 *2 *1 *3 *3 *3)
(-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-767))))
+ (-14 *4 *3) (-14 *5 (-769))))
((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-767))))
+ (-14 *4 *3) (-14 *5 (-769))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-767))))
+ (-14 *4 *3) (-14 *5 (-769))))
((*1 *2 *1)
(-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564))
- (-14 *4 (-767))))
+ (-14 *4 (-769))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4))
+ (-12 (-5 *3 (-1173)) (-5 *2 (-245 (-1155))) (-5 *1 (-214 *4))
(-4 *4
- (-13 (-846)
- (-10 -8 (-15 -4366 ((-1152) $ *3)) (-15 -1630 ((-1264) $))
- (-15 -1757 ((-1264) $)))))))
+ (-13 (-848)
+ (-10 -8 (-15 -4368 ((-1155) $ *3)) (-15 -1664 ((-1267) $))
+ (-15 -1937 ((-1267) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-985)) (-5 *1 (-214 *3))
+ (-12 (-5 *2 (-987)) (-5 *1 (-214 *3))
(-4 *3
- (-13 (-846)
- (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 ((-1264) $))
- (-15 -1757 ((-1264) $)))))))
+ (-13 (-848)
+ (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 ((-1267) $))
+ (-15 -1937 ((-1267) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846))))
+ (-12 (-5 *3 "count") (-5 *2 (-769)) (-5 *1 (-245 *4)) (-4 *4 (-848))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-848))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846))))
+ (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-848))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))
+ (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))
+ (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212))))
((*1 *2 *1 *2)
(-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1235 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-4 *2 (-1238 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 *1)) (-4 *1 (-302))))
((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
((*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2))
- (-4 *4 (-1235 (-407 *3)))))
+ (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1216)) (-4 *3 (-1238 *2))
+ (-4 *4 (-1238 (-407 *3)))))
((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1152)) (-5 *1 (-502))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-630))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1155)) (-5 *1 (-502))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-52)) (-5 *1 (-630))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-649 *3)) (-4 *3 (-1212))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *1 (-671 *2)) (-4 *2 (-1094))))
+ (-12 (-5 *3 (-769)) (-5 *1 (-673 *2)) (-4 *2 (-1097))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045))
+ (-12 (-5 *2 (-642 (-564))) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-641 (-888 *4))) (-5 *1 (-888 *4))
- (-4 *4 (-1094))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1094))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-642 (-890 *4))) (-5 *1 (-890 *4))
+ (-4 *4 (-1097))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1097))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4))
- (-4 *4 (-1094))))
+ (-12 (-5 *3 (-769)) (-5 *2 (-903 *4)) (-5 *1 (-902 *4))
+ (-4 *4 (-1097))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-917)) (-4 *2 (-363))
- (-5 *1 (-989 *4 *2))))
+ (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-919)) (-4 *2 (-363))
+ (-5 *1 (-991 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209))))
+ (-12 (-5 *3 "value") (-4 *1 (-1008 *2)) (-4 *2 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045))
+ (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7)) (-4 *2 (-1047))
(-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7))
- (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045))))
+ (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7))
+ (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1047))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-917)) (-4 *4 (-1094))
- (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4))))
- (-5 *1 (-1070 *4 *5 *2))
- (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4))))))
+ (-12 (-5 *3 (-919)) (-4 *4 (-1097))
+ (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4))))
+ (-5 *1 (-1073 *4 *5 *2))
+ (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-917)) (-4 *4 (-1094))
- (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4))))
- (-5 *1 (-1071 *4 *5 *2))
- (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4))))))
+ (-12 (-5 *3 (-919)) (-4 *4 (-1097))
+ (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4))))
+ (-5 *1 (-1074 *4 *5 *2))
+ (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-4 *1 (-1097 *3 *4 *5 *6 *7))
- (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))
- (-4 *7 (-1094))))
+ (-12 (-5 *2 (-642 (-564))) (-4 *1 (-1100 *3 *4 *5 *6 *7))
+ (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097))
+ (-4 *7 (-1097))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094))
- (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094))))
- ((*1 *1 *1 *1) (-4 *1 (-1138)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170))))
+ (-12 (-5 *2 (-564)) (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097))
+ (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097))))
+ ((*1 *1 *1 *1) (-4 *1 (-1141)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-407 *1)) (-4 *1 (-1235 *2)) (-4 *2 (-1045))
+ (-12 (-5 *3 (-407 *1)) (-4 *1 (-1238 *2)) (-4 *2 (-1047))
(-4 *2 (-363))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1045))
+ (-12 (-5 *2 (-407 *1)) (-4 *1 (-1238 *3)) (-4 *3 (-1047))
(-4 *3 (-556))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
+ (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1247 *2)) (-4 *2 (-1209))))
+ (-12 (-5 *3 "last") (-4 *1 (-1250 *2)) (-4 *2 (-1212))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1250 *3)) (-4 *3 (-1212))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170))
- (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-846))
- (-4 *7 (-945 *5 (-531 *6) *6)) (-4 *5 (-1045))
- (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031))
- (-5 *1 (-744)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))))
-(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-157)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *1 *1) (-5 *1 (-1060))))
+(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791))
+ (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -1640 (-642 *9)) (|:| -3530 *4) (|:| |ineq| (-642 *9))))
+ (-5 *1 (-986 *6 *7 *8 *9 *4)) (-5 *3 (-642 *9))
+ (-4 *4 (-1068 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791))
+ (-4 *8 (-848)) (-4 *9 (-1062 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -1640 (-642 *9)) (|:| -3530 *4) (|:| |ineq| (-642 *9))))
+ (-5 *1 (-1104 *6 *7 *8 *9 *4)) (-5 *3 (-642 *9))
+ (-4 *4 (-1068 *6 *7 *8 *9)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1153 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1047))
+ (-5 *3 (-407 (-564))) (-5 *1 (-1157 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-948 (-564)))))
- (-5 *2
- (-641
- (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564))
- (|:| |radvect| (-641 (-685 (-316 (-564))))))))
- (-5 *1 (-1027)))))
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-1262 (-687 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1262 (-687 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 (-687 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-1173))) (-4 *5 (-363))
+ (-5 *2 (-1262 (-687 (-407 (-950 *5))))) (-5 *1 (-1083 *5))
+ (-5 *4 (-687 (-407 (-950 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-1173))) (-4 *5 (-363))
+ (-5 *2 (-1262 (-687 (-950 *5)))) (-5 *1 (-1083 *5))
+ (-5 *4 (-687 (-950 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-687 *4))) (-4 *4 (-363))
+ (-5 *2 (-1262 (-687 *4))) (-5 *1 (-1083 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *1 *1) (-5 *1 (-1060))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-788))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-790))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-641 (-1170)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-642 (-1173)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564))
- (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172))
+ (-14 *6 (-769)) (-4 *7 (-172)) (-4 *8 (-172))
(-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172))
(-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1045) (-846)))
- (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170)))))
+ (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1047) (-848)))
+ (-5 *1 (-223 *3 *4)) (-14 *4 (-642 (-1173)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767))
- (-4 *6 (-1209)) (-4 *7 (-1209)) (-5 *2 (-240 *5 *7))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-769))
+ (-4 *6 (-1212)) (-4 *7 (-1212)) (-5 *2 (-240 *5 *7))
(-5 *1 (-239 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-294 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-294 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1152)) (-5 *5 (-610 *6))
- (-4 *6 (-302)) (-4 *2 (-1209)) (-5 *1 (-297 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1155)) (-5 *5 (-610 *6))
+ (-4 *6 (-302)) (-4 *2 (-1212)) (-5 *1 (-297 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302))
(-4 *2 (-302)) (-5 *1 (-298 *5 *2))))
((*1 *1 *2 *3)
(-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-685 *5)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-5 *2 (-685 *6)) (-5 *1 (-304 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-687 *5)) (-4 *5 (-1047))
+ (-4 *6 (-1047)) (-5 *2 (-687 *6)) (-5 *1 (-304 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-1097))
+ (-4 *6 (-1097)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363))
- (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
- (-4 *9 (-363)) (-4 *10 (-1235 *9)) (-4 *11 (-1235 (-407 *10)))
+ (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
+ (-4 *9 (-363)) (-4 *10 (-1238 *9)) (-4 *11 (-1238 (-407 *10)))
(-5 *2 (-336 *9 *10 *11 *12))
(-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-342 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1097))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1213)) (-4 *8 (-1213))
- (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *9 (-1235 *8))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1216)) (-4 *8 (-1216))
+ (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6))) (-4 *9 (-1238 *8))
(-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1235 (-407 *9)))))
+ (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1238 (-407 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1209)) (-4 *6 (-1209))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1212)) (-4 *6 (-1212))
(-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-1094))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-1097))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556))
(-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6))))
@@ -305,36 +332,36 @@
(-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307))
- (-4 *6 (-988 *5)) (-4 *7 (-1235 *6))
- (-4 *8 (-13 (-409 *6 *7) (-1034 *6))) (-4 *9 (-307))
- (-4 *10 (-988 *9)) (-4 *11 (-1235 *10))
+ (-4 *6 (-990 *5)) (-4 *7 (-1238 *6))
+ (-4 *8 (-13 (-409 *6 *7) (-1036 *6))) (-4 *9 (-307))
+ (-4 *10 (-990 *9)) (-4 *11 (-1238 *10))
(-5 *2 (-413 *9 *10 *11 *12))
(-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-409 *10 *11) (-1034 *10)))))
+ (-4 *12 (-13 (-409 *10 *11) (-1036 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172))
(-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047))
(-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097))
(-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1212))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-846))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-848))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363))
(-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2177 *5) (|:| |coeff| *5)) "failed"))
+ (-5 *4 (-3 (-2 (|:| -2116 *5) (|:| |coeff| *5)) "failed"))
(-4 *5 (-363)) (-4 *6 (-363))
- (-5 *2 (-2 (|:| -2177 *6) (|:| |coeff| *6)))
+ (-5 *2 (-2 (|:| -2116 *6) (|:| |coeff| *6)))
(-5 *1 (-584 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
@@ -345,3645 +372,3877 @@
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-642 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
(-4 *5 (-363)) (-4 *6 (-363))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-642 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
(-5 *1 (-584 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7))
- (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-599 *8))
+ (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-599 *8))
(-5 *1 (-597 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-599 *7))
- (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1153 *6)) (-5 *5 (-599 *7))
+ (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8))
(-5 *1 (-597 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1150 *7))
- (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1153 *7))
+ (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8))
(-5 *1 (-597 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-641 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-639 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-642 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-642 *6)) (-5 *1 (-640 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-641 *6)) (-5 *5 (-641 *7))
- (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-641 *8))
- (-5 *1 (-640 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-642 *6)) (-5 *5 (-642 *7))
+ (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-642 *8))
+ (-5 *1 (-641 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-649 *3)) (-4 *3 (-1212))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045))
- (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10))
- (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1047)) (-4 *8 (-1047))
+ (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-685 *8 *9 *10))
+ (-5 *1 (-683 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-685 *5 *6 *7))
(-4 *9 (-373 *8)) (-4 *10 (-373 *8))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045))
- (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5))
- (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8))))
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1047))
+ (-4 *8 (-1047)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5))
+ (-4 *2 (-685 *8 *9 *10)) (-5 *1 (-683 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-685 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556))
- (-4 *6 (-1235 *5)) (-4 *2 (-1235 (-407 *8)))
- (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1235 (-407 *6)))
- (-4 *8 (-1235 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045))
- (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-945 *9 *7 *5))
- (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789))
- (-4 *4 (-945 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789))
- (-4 *9 (-1045)) (-4 *2 (-945 *9 *8 *6))
- (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789))
- (-4 *4 (-945 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7))
- (-5 *1 (-730 *5 *6 *7))))
+ (-4 *6 (-1238 *5)) (-4 *2 (-1238 (-407 *8)))
+ (-5 *1 (-707 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1238 (-407 *6)))
+ (-4 *8 (-1238 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1047)) (-4 *9 (-1047))
+ (-4 *5 (-848)) (-4 *6 (-791)) (-4 *2 (-947 *9 *7 *5))
+ (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-791))
+ (-4 *4 (-947 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-848)) (-4 *6 (-848)) (-4 *7 (-791))
+ (-4 *9 (-1047)) (-4 *2 (-947 *9 *8 *6))
+ (-5 *1 (-727 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-791))
+ (-4 *4 (-947 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-733 *5 *7)) (-4 *5 (-1047))
+ (-4 *6 (-1047)) (-4 *7 (-724)) (-5 *2 (-733 *6 *7))
+ (-5 *1 (-732 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4))
- (-4 *4 (-722))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-733 *3 *4))
+ (-4 *4 (-724))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-778 *5)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-5 *2 (-778 *6)) (-5 *1 (-777 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1047))
+ (-4 *6 (-1047)) (-5 *2 (-780 *6)) (-5 *1 (-779 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172))
- (-4 *2 (-793 *6)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *4 (-793 *5))))
+ (-4 *2 (-795 *6)) (-5 *1 (-796 *4 *5 *2 *6)) (-4 *4 (-795 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) (-4 *5 (-1097))
+ (-4 *6 (-1097)) (-5 *2 (-831 *6)) (-5 *1 (-830 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-828 *5 *6))))
+ (-12 (-5 *2 (-831 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *1 (-830 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1097))
+ (-4 *6 (-1097)) (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-838 *5 *6))))
+ (-12 (-5 *2 (-841 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-5 *1 (-840 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-885 *5 *6)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-885 *5 *7))
- (-5 *1 (-884 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-887 *5 *6)) (-4 *5 (-1097))
+ (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-887 *5 *7))
+ (-5 *1 (-886 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1097))
+ (-4 *6 (-1097)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-5 *2 (-948 *6)) (-5 *1 (-942 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1047))
+ (-4 *6 (-1047)) (-5 *2 (-950 *6)) (-5 *1 (-944 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846))
- (-4 *8 (-1045)) (-4 *6 (-789))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-848))
+ (-4 *8 (-1047)) (-4 *6 (-791))
(-4 *2
- (-13 (-1094)
- (-10 -8 (-15 -3070 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))))))
- (-5 *1 (-947 *6 *7 *8 *5 *2)) (-4 *5 (-945 *8 *6 *7))))
+ (-13 (-1097)
+ (-10 -8 (-15 -2974 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-769))))))
+ (-5 *1 (-949 *6 *7 *8 *5 *2)) (-4 *5 (-947 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-954 *6)) (-5 *1 (-953 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-956 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-956 *6)) (-5 *1 (-955 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-941 *5)) (-4 *5 (-1047))
+ (-4 *6 (-1047)) (-5 *2 (-941 *6)) (-5 *1 (-979 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-948 *4))) (-4 *4 (-1045))
- (-4 *2 (-945 (-948 *4) *5 *6)) (-4 *5 (-789))
+ (-12 (-5 *3 (-1 *2 (-950 *4))) (-4 *4 (-1047))
+ (-4 *2 (-947 (-950 *4) *5 *6)) (-4 *5 (-791))
(-4 *6
- (-13 (-846)
- (-10 -8 (-15 -1311 ((-1170) $))
- (-15 -3395 ((-3 $ "failed") (-1170))))))
- (-5 *1 (-980 *4 *5 *6 *2))))
+ (-13 (-848)
+ (-10 -8 (-15 -1314 ((-1173) $))
+ (-15 -3329 ((-3 $ "failed") (-1173))))))
+ (-5 *1 (-982 *4 *5 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556))
- (-4 *2 (-988 *6)) (-5 *1 (-986 *5 *6 *4 *2)) (-4 *4 (-988 *5))))
+ (-4 *2 (-990 *6)) (-5 *1 (-988 *5 *6 *4 *2)) (-4 *4 (-990 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172))
- (-4 *2 (-993 *6)) (-5 *1 (-994 *4 *5 *2 *6)) (-4 *4 (-993 *5))))
+ (-4 *2 (-995 *6)) (-5 *1 (-996 *4 *5 *2 *6)) (-4 *4 (-995 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7))
- (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1051 *3 *4 *5 *6 *7))
+ (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7))
- (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045))
- (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7))
- (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12))
- (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1051 *3 *4 *5 *6 *7))
+ (-4 *5 (-1047)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1047)) (-4 *10 (-1047))
+ (-14 *5 (-769)) (-14 *6 (-769)) (-4 *8 (-238 *6 *7))
+ (-4 *9 (-238 *5 *7)) (-4 *2 (-1051 *5 *6 *10 *11 *12))
+ (-5 *1 (-1053 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1051 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10))
(-4 *12 (-238 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-1088 *6)) (-5 *1 (-1083 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-1091 *6)) (-5 *1 (-1086 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-844))
- (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6))
- (-5 *1 (-1083 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-846))
+ (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-642 *6))
+ (-5 *1 (-1086 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-1086 *6)) (-5 *1 (-1085 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1089 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-1089 *6)) (-5 *1 (-1088 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-844))
- (-4 *2 (-1143 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1092 *4 *2)) (-4 *4 (-846))
+ (-4 *2 (-1146 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1148 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-1153 *6)) (-5 *1 (-1151 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-1150 *7))
- (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8))
- (-5 *1 (-1149 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1153 *6)) (-5 *5 (-1153 *7))
+ (-4 *6 (-1212)) (-4 *7 (-1212)) (-4 *8 (-1212)) (-5 *2 (-1153 *8))
+ (-5 *1 (-1152 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1047))
+ (-4 *6 (-1047)) (-5 *2 (-1169 *6)) (-5 *1 (-1167 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1170))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5 *7 *9)) (-4 *5 (-1047))
+ (-4 *6 (-1047)) (-14 *7 (-1173)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1226 *6 *8 *10)) (-5 *1 (-1221 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1173))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-1229 *6)) (-5 *1 (-1228 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-844))
- (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6))
- (-5 *1 (-1225 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-846))
+ (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1153 *6))
+ (-5 *1 (-1228 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1232 *5 *6)) (-14 *5 (-1170))
- (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1232 *7 *8))
- (-5 *1 (-1227 *5 *6 *7 *8)) (-14 *7 (-1170))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1235 *5 *6)) (-14 *5 (-1173))
+ (-4 *6 (-1047)) (-4 *8 (-1047)) (-5 *2 (-1235 *7 *8))
+ (-5 *1 (-1230 *5 *6 *7 *8)) (-14 *7 (-1173))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045))
- (-4 *2 (-1235 *6)) (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1235 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047))
+ (-4 *2 (-1238 *6)) (-5 *1 (-1236 *5 *4 *6 *2)) (-4 *4 (-1238 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1045))
- (-4 *6 (-1045)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1170))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5 *7 *9)) (-4 *5 (-1047))
+ (-4 *6 (-1047)) (-14 *7 (-1173)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1247 *6 *8 *10)) (-5 *1 (-1242 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1173))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045))
- (-4 *2 (-1250 *6)) (-5 *1 (-1248 *5 *6 *4 *2)) (-4 *4 (-1250 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047))
+ (-4 *2 (-1253 *6)) (-5 *1 (-1251 *5 *6 *4 *2)) (-4 *4 (-1253 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209))
- (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-1212))
+ (-4 *6 (-1212)) (-5 *2 (-1262 *6)) (-5 *1 (-1261 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1259 *5))
- (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6))
- (-5 *1 (-1258 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1262 *5))
+ (-4 *5 (-1212)) (-4 *6 (-1212)) (-5 *2 (-1262 *6))
+ (-5 *1 (-1261 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848))
+ (-4 *4 (-1047))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1282 *3 *4))
- (-4 *4 (-842)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-1285 *3 *4))
+ (-4 *4 (-844)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3))
+ (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-947 *6 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1045))
- (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1045))
- (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1045))
- (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))))
+ (-12 (-5 *3 (-642 (-1 (-112) *8))) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8))))
+ (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8)))))
+(((*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1099 (-1099 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
+ (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
+ (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1130 (-225))) (-5 *1 (-255))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1130 (-225))) (-5 *1 (-255))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1130 (-225))) (-5 *1 (-255))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1130 (-225))) (-5 *1 (-255))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
+ (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-255))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
+ (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1130 (-225))) (-5 *1 (-255))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-875 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263)))
- (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225)))
+ (-12 (-5 *3 (-877 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263)))
+ (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225)))
(-5 *1 (-259 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 *5)) (-5 *4 (-1086 (-379)))
- (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225)))
+ (-12 (-5 *3 (-877 *5)) (-5 *4 (-1089 (-379)))
+ (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225)))
(-5 *1 (-259 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263)))
- (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3))
- (-4 *3 (-13 (-612 (-536)) (-1094)))))
+ (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263)))
+ (-5 *2 (-1130 (-225))) (-5 *1 (-259 *3))
+ (-4 *3 (-13 (-612 (-536)) (-1097)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3))
- (-4 *3 (-13 (-612 (-536)) (-1094)))))
+ (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1130 (-225))) (-5 *1 (-259 *3))
+ (-4 *3 (-13 (-612 (-536)) (-1097)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-878 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263)))
- (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225)))
+ (-12 (-5 *3 (-880 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263)))
+ (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225)))
(-5 *1 (-259 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-878 *5)) (-5 *4 (-1086 (-379)))
- (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225)))
+ (-12 (-5 *3 (-880 *5)) (-5 *4 (-1089 (-379)))
+ (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1130 (-225)))
(-5 *1 (-259 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363))))
+ ((*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-919)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1263)))))
(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2600 (-641 *3)) (|:| -3479 (-641 *3))))
- (-5 *1 (-1210 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-564))))
- (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2123 ($ $ $)))))
- (-4 *3 (-556)) (-5 *1 (-1238 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564))))
+ (-5 *1 (-305)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-1275 *4 *5 *6 *7)))
+ (-5 *1 (-1275 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-642 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556))
+ (-4 *7 (-791)) (-4 *8 (-848)) (-5 *2 (-642 (-1275 *6 *7 *8 *9)))
+ (-5 *1 (-1275 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3))))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-506)) (-5 *3 (-1098)) (-5 *1 (-291)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-585 *3) *3 (-1170)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1170)))
- (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1034 *4)) (-4 *3 (-430 *7))
- (-5 *4 (-1170)) (-4 *7 (-612 (-888 (-564)))) (-4 *7 (-452))
- (-4 *7 (-882 (-564))) (-4 *7 (-1094)) (-5 *2 (-585 *3))
- (-5 *1 (-573 *7 *3)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-917)) (-5 *1 (-442 *2))
- (-4 *2 (-1235 (-564)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-917)) (-5 *4 (-767)) (-5 *1 (-442 *2))
- (-4 *2 (-1235 (-564)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *1 (-442 *2))
- (-4 *2 (-1235 (-564)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *5 (-767))
- (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-917)) (-5 *4 (-641 (-767))) (-5 *5 (-767))
- (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5))
- (-5 *1 (-444 *5 *2)) (-4 *5 (-1045)))))
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))
+ ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5))
- (-5 *1 (-940 *4 *5)) (-14 *4 (-641 (-1170))))))
+ (-12 (-5 *3 (-1173))
+ (-5 *2
+ (-2 (|:| |zeros| (-1153 (-225))) (|:| |ones| (-1153 (-225)))
+ (|:| |singularities| (-1153 (-225)))))
+ (-5 *1 (-105)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-687 *4)) (-5 *3 (-919)) (-4 *4 (-1047))
+ (-5 *1 (-1026 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 (-687 *4))) (-5 *3 (-919)) (-4 *4 (-1047))
+ (-5 *1 (-1026 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045))
- (-4 *2 (-1219 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564))))
- (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1120 *4 *3 *5))
- (-4 *5 (-945 *4 (-531 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4))
- (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-147)))
- (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5)))))
- (-5 *1 (-1123 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-147)))
- (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5)))))
- (-5 *1 (-1123 *5)))))
+ (-12 (-5 *2 (-2 (|:| |preimage| (-642 *3)) (|:| |image| (-642 *3))))
+ (-5 *1 (-903 *3)) (-4 *3 (-1097)))))
(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305))))
((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| |num| (-888 *3)) (|:| |den| (-888 *3))))
- (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-775 *4))
- (-4 *4 (-13 (-363) (-844))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363))
- (-5 *2
- (-2 (|:| A (-685 *5))
- (|:| |eqs|
- (-641
- (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -1606 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-809 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5))
- (-4 *6 (-652 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-652 *5))
- (-5 *2 (-2 (|:| -2511 (-685 *6)) (|:| |vec| (-1259 *5))))
- (-5 *1 (-809 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5)))))
-(((*1 *2)
- (-12 (-4 *1 (-349))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *2
- (-3 (|:| |%expansion| (-313 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))))
- (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-14 *6 (-1170)) (-14 *7 *3))))
-(((*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *2)
- (-12 (-14 *4 (-767)) (-4 *5 (-1209)) (-5 *2 (-134))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-172))))
+ (-5 *2 (-2 (|:| |num| (-890 *3)) (|:| |den| (-890 *3))))
+ (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1081 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1081 *2)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-114)) (-5 *4 (-769)) (-4 *5 (-452))
+ (-4 *5 (-1036 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2))
+ (-4 *2 (-430 *5))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -2245 ((-1122 *5 (-610 $)) $))
+ (-15 -2255 ((-1122 *5 (-610 $)) $))
+ (-15 -2327 ($ (-1122 *5 (-610 $))))))))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860))))
((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-564))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
- (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-917))))
- ((*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2))
- (-4 *3 (-13 (-363) (-147))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-885 *4 *5)) (-5 *3 (-885 *4 *6)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-881 *4 *5 *6)))))
+ (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3))
+ (-4 *3 (-1238 *2)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170))
- (-14 *4 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112))
- (-5 *1 (-263)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-888 *4))
- (-4 *4 (-1094)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-685 *4)) (-5 *3 (-767)) (-4 *4 (-1045))
- (-5 *1 (-686 *4)))))
+ (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216))
+ (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363))
+ (-14 *4 (-1173)) (-14 *5 *3))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155))
+ (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-1158 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261))))
- ((*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))))
+ (|partial| -12 (-5 *2 (-1058 (-1022 *3) (-1169 (-1022 *3))))
+ (-5 *1 (-1022 *3)) (-4 *3 (-13 (-846) (-363) (-1020))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-391)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3))
+ (-4 *3 (-1238 *2)))))
(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363))
- (-5 *1 (-663 *4))))
+ (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7))
+ (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1))
+ (-4 *1 (-1068 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-363))
- (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4408))))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408))))
- (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363))
- (-5 *1 (-810 *2 *3)) (-4 *3 (-652 *2))))
+ (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1))
+ (-4 *1 (-1068 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1197) (-1000))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -4336 *6) (|:| |sol?| (-112))) (-564)
+ *6))
+ (-4 *6 (-363)) (-4 *7 (-1238 *6))
+ (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
+ (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *3 (-642 (-263)))
+ (-5 *1 (-261))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *1 (-263))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 (-481 *5 *6))) (-5 *3 (-481 *5 *6))
+ (-14 *5 (-642 (-1173))) (-4 *6 (-452)) (-5 *2 (-1262 *6))
+ (-5 *1 (-629 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212)) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $))
+ (-15 -2255 ((-1122 *3 (-610 $)) $))
+ (-15 -2327 ($ (-1122 *3 (-610 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $))
+ (-15 -2255 ((-1122 *3 (-610 $)) $))
+ (-15 -2327 ($ (-1122 *3 (-610 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-642 *2))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -2245 ((-1122 *4 (-610 $)) $))
+ (-15 -2255 ((-1122 *4 (-610 $)) $))
+ (-15 -2327 ($ (-1122 *4 (-610 $)))))))
+ (-4 *4 (-556)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-642 (-610 *2)))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -2245 ((-1122 *4 (-610 $)) $))
+ (-15 -2255 ((-1122 *4 (-610 $)) $))
+ (-15 -2327 ($ (-1122 *4 (-610 $)))))))
+ (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1031)) (-5 *1 (-745))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-948 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363))
- (-5 *2 (-1166 (-948 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+ (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))
+ ((*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1) (-4 *1 (-867 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-790))
+ (-4 *4 (-848)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-131))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-361 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-386 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-647 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-452))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *3 (-1062 *4 *5 *6))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *1))))
+ (-4 *1 (-1068 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1216)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-1241 *3 *2))
+ (-4 *2 (-13 (-1238 *3) (-556) (-10 -8 (-15 -2080 ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 *1)) (-5 *4 (-1262 *1)) (-4 *1 (-637 *5))
+ (-4 *5 (-1047))
+ (-5 *2 (-2 (|:| -1780 (-687 *5)) (|:| |vec| (-1262 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-687 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1047))
+ (-5 *2 (-687 *4)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-255))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1260)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1263)) (-5 *1 (-255))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1263)) (-5 *1 (-255))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1260)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1263)) (-5 *1 (-255))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1261)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1264)) (-5 *1 (-255))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1261)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-941 (-225)) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1264)) (-5 *1 (-255))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1261)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1264)) (-5 *1 (-255))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1261)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1264)) (-5 *1 (-255))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1264)) (-5 *1 (-255))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379)))
- (-5 *2 (-1261)) (-5 *1 (-255))))
+ (-12 (-5 *3 (-880 (-1 (-225) (-225) (-225)))) (-5 *4 (-1091 (-379)))
+ (-5 *2 (-1264)) (-5 *1 (-255))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-294 *7)) (-5 *4 (-1170)) (-5 *5 (-641 (-263)))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-846) (-1034 (-564))))
- (-5 *2 (-1260)) (-5 *1 (-256 *6 *7))))
+ (-12 (-5 *3 (-294 *7)) (-5 *4 (-1173)) (-5 *5 (-642 (-263)))
+ (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-848) (-1036 (-564))))
+ (-5 *2 (-1263)) (-5 *1 (-256 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260))
- (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094)))))
+ (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1263))
+ (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1260)) (-5 *1 (-259 *3))
- (-4 *3 (-13 (-612 (-536)) (-1094)))))
+ (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1263)) (-5 *1 (-259 *3))
+ (-4 *3 (-13 (-612 (-536)) (-1097)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-873 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263)))
- (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260))
+ (-12 (-5 *3 (-875 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263)))
+ (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1263))
(-5 *1 (-259 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-873 *5)) (-5 *4 (-1086 (-379)))
- (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260))
+ (-12 (-5 *3 (-875 *5)) (-5 *4 (-1089 (-379)))
+ (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1263))
(-5 *1 (-259 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-875 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263)))
- (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261))
+ (-12 (-5 *3 (-877 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263)))
+ (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264))
(-5 *1 (-259 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-875 *5)) (-5 *4 (-1086 (-379)))
- (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261))
+ (-12 (-5 *3 (-877 *5)) (-5 *4 (-1089 (-379)))
+ (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264))
(-5 *1 (-259 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261))
- (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094)))))
+ (-12 (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263))) (-5 *2 (-1264))
+ (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1097)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1261)) (-5 *1 (-259 *3))
- (-4 *3 (-13 (-612 (-536)) (-1094)))))
+ (-12 (-5 *4 (-1089 (-379))) (-5 *2 (-1264)) (-5 *1 (-259 *3))
+ (-4 *3 (-13 (-612 (-536)) (-1097)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-878 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263)))
- (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261))
+ (-12 (-5 *3 (-880 *6)) (-5 *4 (-1089 (-379))) (-5 *5 (-642 (-263)))
+ (-4 *6 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264))
(-5 *1 (-259 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-878 *5)) (-5 *4 (-1086 (-379)))
- (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261))
+ (-12 (-5 *3 (-880 *5)) (-5 *4 (-1089 (-379)))
+ (-4 *5 (-13 (-612 (-536)) (-1097))) (-5 *2 (-1264))
(-5 *1 (-259 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1260)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1263)) (-5 *1 (-260))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1260))
+ (-12 (-5 *3 (-642 (-225))) (-5 *4 (-642 (-263))) (-5 *2 (-1263))
(-5 *1 (-260))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *2 (-1260)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *2 (-1263)) (-5 *1 (-260))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *4 (-641 (-263)))
- (-5 *2 (-1260)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *4 (-642 (-263)))
+ (-5 *2 (-1263)) (-5 *1 (-260))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1261)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1264)) (-5 *1 (-260))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261))
+ (-12 (-5 *3 (-642 (-225))) (-5 *4 (-642 (-263))) (-5 *2 (-1264))
(-5 *1 (-260)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2))
- (-4 *2 (-683 *4 *5 *6)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-945 *3 *5 *4))
- (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-612 (-1170))))
- (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4))))
- (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -2116 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1238 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1169 *7))
+ (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *2 (-1238 *5))
+ (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1238 *2)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1047)) (-4 *3 (-1097))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2700 (-564)))) (-4 *1 (-430 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-890 *3)) (|:| -2700 (-890 *3))))
+ (-5 *1 (-890 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047))
+ (-4 *7 (-947 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -2700 (-564))))
+ (-5 *1 (-948 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $))
+ (-15 -2255 (*7 $))))))))
+(((*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881))
+ (-5 *3 (-642 (-564)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881))
+ (-5 *3 (-642 (-564))))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-642 *1)) (-4 *1 (-302))))
((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-767)) (-4 *5 (-1094))
+ (-12 (-5 *2 (-114)) (-5 *3 (-642 *5)) (-5 *4 (-769)) (-4 *5 (-1097))
(-5 *1 (-610 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379))))
- (-5 *2 (-1031)) (-5 *1 (-305)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1094)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1173)))))
+(((*1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1097)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1088 *3)) (-4 *3 (-945 *7 *6 *4)) (-4 *6 (-789))
- (-4 *4 (-846)) (-4 *7 (-556))
+ (-12 (-5 *5 (-1091 *3)) (-4 *3 (-947 *7 *6 *4)) (-4 *6 (-791))
+ (-4 *4 (-848)) (-4 *7 (-556))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564))))
(-5 *1 (-593 *6 *4 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-556))
+ (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-556))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564))))
- (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1) (-5 *1 (-858)))
+ (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-947 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1) (-5 *1 (-860)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194)))))
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-1165 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1197)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194)))
- (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-1162 *4 *2))))
+ (-12 (-5 *3 (-1089 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1197)))
+ (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-1165 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564))))
- (-5 *2 (-407 (-948 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-948 *5))))
+ (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564))))
+ (-5 *2 (-407 (-950 *5))) (-5 *1 (-1166 *5)) (-5 *3 (-950 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564))))
- (-5 *2 (-3 (-407 (-948 *5)) (-316 *5))) (-5 *1 (-1163 *5))
- (-5 *3 (-407 (-948 *5)))))
+ (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564))))
+ (-5 *2 (-3 (-407 (-950 *5)) (-316 *5))) (-5 *1 (-1166 *5))
+ (-5 *3 (-407 (-950 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1086 (-948 *5))) (-5 *3 (-948 *5))
- (-4 *5 (-13 (-556) (-1034 (-564)))) (-5 *2 (-407 *3))
- (-5 *1 (-1163 *5))))
+ (-12 (-5 *4 (-1089 (-950 *5))) (-5 *3 (-950 *5))
+ (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-407 *3))
+ (-5 *1 (-1166 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1086 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5)))
- (-4 *5 (-13 (-556) (-1034 (-564)))) (-5 *2 (-3 *3 (-316 *5)))
- (-5 *1 (-1163 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
+ (-12 (-5 *4 (-1089 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5)))
+ (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-3 *3 (-316 *5)))
+ (-5 *1 (-1166 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| -4376 *4) (|:| -3979 *3) (|:| -4071 *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-1059 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| -4376 *3) (|:| -3979 *1) (|:| -4071 *1)))
- (-4 *1 (-1235 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-842)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
+ (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349))
+ (-4 *2
+ (-13 (-402)
+ (-10 -7 (-15 -2327 (*2 *4)) (-15 -1945 ((-919) *2))
+ (-15 -4263 ((-1262 *2) (-919))) (-15 -3623 (*2 *2)))))
+ (-5 *1 (-356 *2 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-379)) (-5 *1 (-205)))))
+(((*1 *1 *1 *1) (-4 *1 (-965))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1045)))))
+ (-12 (-4 *4 (-791))
+ (-4 *5 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))) (-4 *6 (-556))
+ (-5 *2 (-2 (|:| -3532 (-950 *6)) (|:| -3305 (-950 *6))))
+ (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-947 (-407 (-950 *6)) *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194)))
- (-5 *1 (-583 *4 *2))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-585 (-407 (-948 *4))))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-316 *4))
- (-5 *1 (-588 *4)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6))
- (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-564))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-568 *5 *6)))))
+ (-12 (-4 *4 (-848)) (-5 *2 (-642 (-642 (-642 *4))))
+ (-5 *1 (-1183 *4)) (-5 *3 (-642 (-642 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-939 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *1 *1) (-5 *1 (-858)))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-950 *5)) (-4 *5 (-1047)) (-5 *2 (-247 *4 *5))
+ (-5 *1 (-942 *4 *5)) (-14 *4 (-642 (-1173))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872)))
+ (-5 *4 (-642 (-919))) (-5 *5 (-642 (-263))) (-5 *1 (-468))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872)))
+ (-5 *4 (-642 (-919))) (-5 *1 (-468))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468))))
+ ((*1 *1 *1) (-5 *1 (-468))))
+(((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265))))
+ ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1169 *3) (-1169 *3)))
+ (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-556)) (-5 *2 (-585 *3))
+ (-5 *1 (-551 *6 *3)))))
+(((*1 *1 *1) (-5 *1 (-860)))
((*1 *2 *1)
- (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 (-948 *6))) (-4 *6 (-556))
- (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2))
- (-4 *5 (-789))
- (-4 *4 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131))
- (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 *4))))))
+ (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097))))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1173)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4411)) (-4 *4 (-363)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *2 (-642 *6)) (-5 *1 (-521 *4 *5 *6 *3))
+ (-4 *3 (-685 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4411)) (-4 *4 (-556)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-4 *7 (-990 *4)) (-4 *8 (-373 *7))
+ (-4 *9 (-373 *7)) (-5 *2 (-642 *6))
+ (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-685 *4 *5 *6))
+ (-4 *10 (-685 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| -4376 *3) (|:| -3290 *4))))
- (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722))))
+ (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-642 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *2 (-642 *6)) (-5 *1 (-686 *4 *5 *6 *3))
+ (-4 *3 (-685 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564))))
- (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564))))
- (-5 *4 (-316 (-379))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564))))
- (-5 *4 (-316 (-564))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379)))))
- (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379)))))
- (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564))))
- (-5 *4 (-316 (-690))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564))))
- (-5 *4 (-316 (-695))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-948 (-564))))
- (-5 *4 (-316 (-697))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922))))
- ((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031))
- (-5 *1 (-742)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
+ (-5 *2 (-642 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))))
+(((*1 *1) (-5 *1 (-1060))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1846 *4)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -4136 (-564)) (|:| -2649 (-642 *3))))
+ (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-112))
+ (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1033)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209))))
+ (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4))
+ (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6)))
+ (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1036 (-564))))
+ (-5 *2 (-2 (|:| -1427 (-769)) (|:| -3192 *8)))
+ (-5 *1 (-909 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
+ (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4)))
+ (-4 *6 (-342 (-407 (-564)) *4 *5))
+ (-5 *2 (-2 (|:| -1427 (-769)) (|:| -3192 *6)))
+ (-5 *1 (-910 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1212))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (|partial| -12 (-5 *2 (-950 (-379))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (|partial| -12 (-5 *2 (-407 (-950 (-379)))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-948 (-564))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (|partial| -12 (-5 *2 (-950 (-564))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 (-948 (-564)))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (|partial| -12 (-5 *2 (-407 (-950 (-564)))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5))
- (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387))))
+ (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-339 *3 *4 *5))
+ (-14 *3 (-642 *2)) (-14 *4 (-642 *2)) (-4 *5 (-387))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387))
- (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170)))))
+ (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-685 (-407 (-948 (-564))))) (-4 *1 (-384))))
+ (|partial| -12 (-5 *2 (-687 (-407 (-950 (-564))))) (-4 *1 (-384))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-685 (-407 (-948 (-379))))) (-4 *1 (-384))))
+ (|partial| -12 (-5 *2 (-687 (-407 (-950 (-379))))) (-4 *1 (-384))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-685 (-948 (-564)))) (-4 *1 (-384))))
+ (|partial| -12 (-5 *2 (-687 (-950 (-564)))) (-4 *1 (-384))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-685 (-948 (-379)))) (-4 *1 (-384))))
+ (|partial| -12 (-5 *2 (-687 (-950 (-379)))) (-4 *1 (-384))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384))))
+ (|partial| -12 (-5 *2 (-687 (-316 (-564)))) (-4 *1 (-384))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384))))
+ (|partial| -12 (-5 *2 (-687 (-316 (-379)))) (-4 *1 (-384))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 (-948 (-564)))) (-4 *1 (-396))))
+ (|partial| -12 (-5 *2 (-407 (-950 (-564)))) (-4 *1 (-396))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-564))) (-4 *1 (-396))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-4 *1 (-396))))
+ (|partial| -12 (-5 *2 (-407 (-950 (-379)))) (-4 *1 (-396))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-564))) (-4 *1 (-396))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-950 (-379))) (-4 *1 (-396))))
((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396))))
((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1259 (-407 (-948 (-564))))) (-4 *1 (-441))))
+ (|partial| -12 (-5 *2 (-1262 (-407 (-950 (-564))))) (-4 *1 (-441))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1259 (-407 (-948 (-379))))) (-4 *1 (-441))))
+ (|partial| -12 (-5 *2 (-1262 (-407 (-950 (-379))))) (-4 *1 (-441))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1259 (-948 (-564)))) (-4 *1 (-441))))
+ (|partial| -12 (-5 *2 (-1262 (-950 (-564)))) (-4 *1 (-441))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1259 (-948 (-379)))) (-4 *1 (-441))))
+ (|partial| -12 (-5 *2 (-1262 (-950 (-379)))) (-4 *1 (-441))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441))))
+ (|partial| -12 (-5 *2 (-1262 (-316 (-564)))) (-4 *1 (-441))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441))))
+ (|partial| -12 (-5 *2 (-1262 (-316 (-379)))) (-4 *1 (-441))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5))
- (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7))
- (-4 *3 (-1235 *6)) (-14 *7 (-917))))
+ (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1238 *5))
+ (-5 *2 (-1169 (-1169 *4))) (-5 *1 (-775 *4 *5 *6 *3 *7))
+ (-4 *3 (-1238 *6)) (-14 *7 (-919))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *1 (-972 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1209))))
+ (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5))
+ (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-4 *1 (-974 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1036 *2)) (-4 *2 (-1212))))
((*1 *1 *2)
- (|partial| -2807
- (-12 (-5 *2 (-948 *3))
- (-12 (-2351 (-4 *3 (-38 (-407 (-564)))))
- (-2351 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))
- (-12 (-5 *2 (-948 *3))
- (-12 (-2351 (-4 *3 (-545))) (-2351 (-4 *3 (-38 (-407 (-564)))))
- (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))
- (-12 (-5 *2 (-948 *3))
- (-12 (-2351 (-4 *3 (-988 (-564)))) (-4 *3 (-38 (-407 (-564))))
- (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))))
+ (|partial| -2706
+ (-12 (-5 *2 (-950 *3))
+ (-12 (-2268 (-4 *3 (-38 (-407 (-564)))))
+ (-2268 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791))
+ (-4 *5 (-848)))
+ (-12 (-5 *2 (-950 *3))
+ (-12 (-2268 (-4 *3 (-545))) (-2268 (-4 *3 (-38 (-407 (-564)))))
+ (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791))
+ (-4 *5 (-848)))
+ (-12 (-5 *2 (-950 *3))
+ (-12 (-2268 (-4 *3 (-990 (-564)))) (-4 *3 (-38 (-407 (-564))))
+ (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791))
+ (-4 *5 (-848)))))
((*1 *1 *2)
- (|partial| -2807
- (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-2351 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
- (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))
- (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))))
+ (|partial| -2706
+ (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5))
+ (-12 (-2268 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
+ (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))
+ (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170))
- (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-829 (-564))) (-5 *1 (-534))))
- ((*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
- (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
- (-5 *1 (-784)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045)) (-4 *4 (-172))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))
- (-4 *3 (-172)))))
+ (|partial| -12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173)))
+ (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-1288 *5 *6 *7))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-642 (-1044 *5 *6))) (-5 *1 (-1288 *5 *6 *7))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-950 *4)))
+ (-4 *4 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-642 (-1044 *4 *5))) (-5 *1 (-1288 *4 *5 *6))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))))
+(((*1 *2) (-12 (-5 *2 (-831 (-564))) (-5 *1 (-534))))
+ ((*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3))
+ (-4 *3 (-13 (-430 *6) (-27) (-1197)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1097)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-789)) (-4 *2 (-945 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2))
- (-4 *4 (-452)) (-4 *6 (-846)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5))
- (-4 *5 (-1045))
- (-5 *2 (-2 (|:| -2511 (-685 *5)) (|:| |vec| (-1259 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1045))
- (-5 *2 (-685 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225)))
- (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))))
-(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-846))
- (-4 *3 (-13 (-172) (-713 (-407 (-564))))) (-14 *4 (-917))))
- ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-556)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-97)))))
+(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))))
+(((*1 *1) (-5 *1 (-157))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556))
+ (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-975 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-1207 *3))
+ (-4 *3 (-972)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2))
+ (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2))
(-4 *3 (-556))))
((*1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-1194))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031))
- (-5 *1 (-744)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
+ ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-1197))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2
- (-2 (|:| |solns| (-641 *5))
- (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1170))
- (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *1))))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
+ (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173)))
+ (-4 *6 (-13 (-556) (-1036 *5))) (-4 *5 (-556))
+ (-5 *2 (-642 (-642 (-294 (-407 (-950 *6)))))) (-5 *1 (-1037 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1262 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307))
+ (-4 *3 (-556)) (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-919)) (-4 *4 (-363)) (-5 *2 (-1262 *1))
+ (-4 *1 (-329 *4))))
+ ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1262 *1)) (-4 *1 (-329 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-172)) (-4 *4 (-1238 *3)) (-5 *2 (-1262 *1))
+ (-4 *1 (-409 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4))
+ (-5 *2 (-1262 *6)) (-5 *1 (-413 *3 *4 *5 *6))
+ (-4 *6 (-13 (-409 *4 *5) (-1036 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4))
+ (-5 *2 (-1262 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))
+ (-4 *6 (-409 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1262 *1)) (-4 *1 (-417 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-919)) (-5 *2 (-1262 (-1262 *4))) (-5 *1 (-528 *4))
+ (-4 *4 (-349)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-38 (-407 (-564))))
+ (-4 *2 (-172)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1238 (-564))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-948 (-564)))))
- (-5 *2 (-641 (-641 (-294 (-948 *4))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-844) (-363)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-294 (-407 (-948 (-564))))))
- (-5 *2 (-641 (-641 (-294 (-948 *4))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-844) (-363)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 (-564)))) (-5 *2 (-641 (-294 (-948 *4))))
- (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-948 (-564)))))
- (-5 *2 (-641 (-294 (-948 *4)))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-844) (-363)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1170))
- (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1194) (-955)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2047 (-641 *4))))
- (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2))
- (-4 *2 (-13 (-29 *6) (-1194) (-955)))
- (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *5)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
- (|:| -2047 (-641 (-1259 *5)))))
- (-5 *1 (-663 *5)) (-5 *4 (-1259 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
- (|:| -2047 (-641 (-1259 *5)))))
- (-5 *1 (-663 *5)) (-5 *4 (-1259 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *5)) (-4 *5 (-363))
- (-5 *2
- (-641
- (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
- (|:| -2047 (-641 (-1259 *5))))))
- (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363))
+ (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1238 *5))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
(-5 *2
- (-641
- (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
- (|:| -2047 (-641 (-1259 *5))))))
- (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4))))
+ (-5 *1 (-808 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408))))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4))))
- (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))
+ (-12 (-5 *3 (-651 (-407 *6))) (-4 *6 (-1238 *5))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-5 *2 (-2 (|:| -4263 (-642 (-407 *6))) (|:| -1780 (-687 *5))))
+ (-5 *1 (-808 *5 *6)) (-5 *4 (-642 (-407 *6)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408))))
- (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4408))))
+ (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1238 *5))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
(-5 *2
- (-641
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2047 (-641 *7)))))
- (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7))
- (-4 *3 (-683 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-955)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170))
- (-4 *7 (-13 (-29 *6) (-1194) (-955)))
- (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1259 *7)) (|:| -2047 (-641 (-1259 *7)))))
- (-5 *1 (-798 *6 *7)) (-5 *4 (-1259 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170))
- (-4 *6 (-13 (-29 *5) (-1194) (-955)))
- (-4 *5 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-1259 *6))) (-5 *1 (-798 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114)))
- (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955)))
- (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1259 *7)) (|:| -2047 (-641 (-1259 *7)))))
- (-5 *1 (-798 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114)))
- (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-955)))
- (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1259 *7)) (|:| -2047 (-641 (-1259 *7)))))
- (-5 *1 (-798 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170))
- (-4 *7 (-13 (-29 *6) (-1194) (-955)))
- (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -2047 (-641 *7))) *7 "failed"))
- (-5 *1 (-798 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1170))
- (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -2047 (-641 *3))) *3 "failed"))
- (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-955)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2))
- (-4 *2 (-13 (-29 *6) (-1194) (-955))) (-5 *1 (-798 *6 *2))
- (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2))
- (-4 *2 (-13 (-29 *6) (-1194) (-955)))
- (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *1 (-798 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4))
- (-5 *2 (-1031)) (-5 *1 (-801))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4))
- (-5 *2 (-1031)) (-5 *1 (-801))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379)))
- (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4))
- (-5 *2 (-1031)) (-5 *1 (-801))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379)))
- (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379)))
- (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -2047 (-641 *6))) "failed")
- *7 *6))
- (-4 *6 (-363)) (-4 *7 (-652 *6))
- (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -2047 (-685 *6))))
- (-5 *1 (-809 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-767)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152))
- (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379))
- (-5 *2 (-1031)) (-5 *1 (-893))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-767)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152))
- (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031))
- (-5 *1 (-893))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *2 (-641 (-379)))
- (-5 *1 (-1019)) (-5 *4 (-379))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1019))
- (-5 *4 (-379))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4))
- (-5 *3 (-316 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4))
- (-5 *3 (-294 (-316 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5))
- (-5 *3 (-294 (-316 *5)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4))))
+ (-5 *1 (-808 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5))
- (-5 *3 (-316 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1170)))
- (-4 *5 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5))
- (-5 *3 (-641 (-294 (-316 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *5))))))
- (-5 *1 (-1178 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-1178 *5))
- (-5 *3 (-641 (-294 (-407 (-948 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-407 (-948 *4)))) (-4 *4 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-1178 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-948 *4))))))
- (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-948 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-556))
- (-5 *2 (-641 (-294 (-407 (-948 *5))))) (-5 *1 (-1178 *5))
- (-5 *3 (-407 (-948 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-556))
- (-5 *2 (-641 (-294 (-407 (-948 *5))))) (-5 *1 (-1178 *5))
- (-5 *3 (-294 (-407 (-948 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *4)))))
- (-5 *1 (-1178 *4)) (-5 *3 (-407 (-948 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-948 *4)))))
- (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-948 *4)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-767))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))))
+ (-12 (-5 *3 (-652 *6 (-407 *6))) (-4 *6 (-1238 *5))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-5 *2 (-2 (|:| -4263 (-642 (-407 *6))) (|:| -1780 (-687 *5))))
+ (-5 *1 (-808 *5 *6)) (-5 *4 (-642 (-407 *6))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-687 (-407 (-950 (-564)))))
+ (-5 *2 (-687 (-316 (-564)))) (-5 *1 (-1029)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-687 (-225))) (-5 *6 (-112)) (-5 *7 (-687 (-564)))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-751)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1263))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1263))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1264))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-263))) (-5 *1 (-1264)))))
+(((*1 *2)
+ (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
- (-5 *1 (-984 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
- (-5 *1 (-1101 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-975 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047))
+ (-5 *2 (-950 *5)) (-5 *1 (-942 *4 *5)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1123 *4 *3 *5))) (-4 *4 (-38 (-407 (-564))))
+ (-4 *4 (-1047)) (-4 *3 (-848)) (-5 *1 (-1123 *4 *3 *5))
+ (-4 *5 (-947 *4 (-531 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1206 *4))) (-5 *3 (-1173)) (-5 *1 (-1206 *4))
+ (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1047)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5))
- (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5))
- (-5 *1 (-1252 *5 *2)))))
+ (-12 (-5 *2 (-171)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-651 (-407 *2))) (-4 *2 (-1238 *4)) (-5 *1 (-808 *4 *2))
+ (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2 (-407 *2))) (-4 *2 (-1238 *4))
+ (-5 *1 (-808 *4 *2))
+ (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1169 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1097)) (-4 *5 (-1097))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-681 *4 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-848)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848))
+ (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-4 *7 (-990 *4)) (-4 *2 (-685 *7 *8 *9))
+ (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-685 *4 *5 *6))
+ (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2)) (-4 *2 (-307))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2))
+ (-4 *2 (-685 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1051 *2 *3 *4 *5 *6)) (-4 *4 (-1047))
+ (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 (-564)) (-4 *1 (-649 *3)) (-4 *3 (-1212))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225))
- (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1045))
- (-4 *3 (-556))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-4 *5 (-846)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5))
- (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -1606 *3))))
- (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-652 *6))
- (-4 *7 (-652 (-407 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-4 *6 (-1235 *5))
- (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -1606 (-650 *6 (-407 *6))))))
- (-5 *1 (-808 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
+ (-12 (-5 *3 (-564)) (-4 *1 (-649 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4))
+ (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1182)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)))))
+ (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-452)) (-5 *2 (-112))
+ (-5 *1 (-360 *4 *5)) (-14 *5 (-642 (-1173)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-778 *4 (-862 *5)))) (-4 *4 (-452))
+ (-14 *5 (-642 (-1173))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-848)) (-5 *3 (-642 *6)) (-5 *5 (-642 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-642 *5)) (|:| |f3| *5)
+ (|:| |f4| (-642 *5))))
+ (-5 *1 (-1183 *6)) (-5 *4 (-642 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-642 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848))
+ (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-642 *3))
+ (-5 *1 (-1232 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-1169 *4))
+ (-5 *1 (-528 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-767)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5))
+ (-12 (-5 *2 (-769)) (-4 *3 (-1212)) (-4 *1 (-57 *3 *4 *5))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *1) (-5 *1 (-171)))
- ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1094))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389))))
+ ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1097))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-389))))
((*1 *1) (-5 *1 (-394)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-4 *1 (-649 *3)) (-4 *3 (-1212))))
((*1 *1)
- (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094))
- (-4 *4 (-662 *3))))
- ((*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))
+ (-12 (-4 *3 (-1097)) (-5 *1 (-883 *2 *3 *4)) (-4 *2 (-1097))
+ (-4 *4 (-664 *3))))
+ ((*1 *1) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097))))
((*1 *1 *2)
- (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045))))
- ((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))
- ((*1 *1 *1) (-5 *1 (-1170))) ((*1 *1) (-5 *1 (-1170)))
- ((*1 *1) (-5 *1 (-1189))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-5 *2
- (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225)))
- (|:| |singularities| (-1150 (-225)))))
- (-5 *1 (-105)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1194) (-955))))))
+ (-12 (-5 *1 (-1139 *3 *2)) (-14 *3 (-769)) (-4 *2 (-1047))))
+ ((*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047))))
+ ((*1 *1 *1) (-5 *1 (-1173))) ((*1 *1) (-5 *1 (-1173)))
+ ((*1 *1) (-5 *1 (-1192))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330))
+ (-5 *1 (-332)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-32 *3 *4))
- (-4 *4 (-430 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-55)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-158 *3 *4))
- (-4 *4 (-430 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-276 *3 *4))
- (-4 *4 (-13 (-430 *3) (-998)))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302))))
- ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *4 (-1094)) (-5 *1 (-429 *3 *4))
- (-4 *3 (-430 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-431 *3 *4))
- (-4 *4 (-430 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1094))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-628 *3 *4))
- (-4 *4 (-13 (-430 *3) (-998) (-1194)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1015)))))
+ (-12 (-4 *4 (-1047)) (-4 *3 (-1238 *4)) (-4 *2 (-1253 *4))
+ (-5 *1 (-1256 *4 *3 *5 *2)) (-4 *5 (-654 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1173)) (-5 *1 (-585 *2)) (-4 *2 (-1036 *3))
+ (-4 *2 (-363))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-628 *4 *2))
+ (-4 *2 (-13 (-430 *4) (-1000) (-1197)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1089 *2)) (-4 *2 (-13 (-430 *4) (-1000) (-1197)))
+ (-4 *4 (-556)) (-5 *1 (-628 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-957)) (-5 *2 (-1173))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-957)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1238 *4)) (-4 *4 (-1216))
+ (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1238 (-407 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1262 *1)) (-4 *4 (-172))
+ (-4 *1 (-367 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1262 *1)) (-4 *4 (-172))
+ (-4 *1 (-370 *4 *5)) (-4 *5 (-1238 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4))
+ (-4 *4 (-1238 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-642 (-1169 *7))) (-5 *3 (-1169 *7))
+ (-4 *7 (-947 *5 *6 *4)) (-4 *5 (-907)) (-4 *6 (-791))
+ (-4 *4 (-848)) (-5 *1 (-904 *5 *6 *4 *7)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-2 (|:| -1901 *3) (|:| -3813 *4))))
- (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564))
- (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564)))
- (-5 *1 (-879)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-1272 *4 *5 *6 *7)))
- (-5 *1 (-1272 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556))
- (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-641 (-1272 *6 *7 *8 *9)))
- (-5 *1 (-1272 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *2 (-1139 *3 *4)) (-14 *3 (-919)) (-4 *4 (-363))
+ (-5 *1 (-991 *3 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363))
- (-5 *2 (-685 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-1259 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
- (-5 *2 (-1259 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363))
- (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5)))))
+ (-12 (-5 *2 (-642 (-2 (|:| -1907 *3) (|:| -3778 *4))))
+ (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *1 (-1188 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))))
-(((*1 *1) (-5 *1 (-1079))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))))
+ (-12 (-5 *3 (-1173)) (-5 *2 (-1 (-1169 (-950 *4)) (-950 *4)))
+ (-5 *1 (-1270 *4)) (-4 *4 (-363)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1097))
+ (-5 *2 (-2 (|:| -4378 (-564)) (|:| |var| (-610 *1))))
+ (-4 *1 (-430 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-687 *7)) (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791)) (-5 *1 (-922 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-642 (-769)))
+ (-5 *1 (-902 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-923))
+ (-12 (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *3))
+ (-4 *3 (-1238 (-407 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| |brans| (-641 (-641 (-939 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153))))
+ (-642
+ (-642
+ (-3 (|:| -2461 (-1173))
+ (|:| -2673 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564))))))))))
+ (-5 *1 (-1177)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
+ ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 *10))
+ (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1068 *5 *6 *7 *8))
+ (-4 *10 (-1106 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6)))
+ (-5 *1 (-626 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-642 (-1173)))
+ (-5 *2
+ (-642 (-1143 *5 (-531 (-862 *6)) (-862 *6) (-778 *5 (-862 *6)))))
+ (-5 *1 (-626 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-407 (-564)))
+ (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6)))
+ (-5 *1 (-1044 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-642 *1))
+ (-4 *1 (-1068 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1))
+ (-4 *1 (-1205 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-327 *3)) (-4 *3 (-1212))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-769)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212))
+ (-14 *4 (-564)))))
+(((*1 *1 *1) (-5 *1 (-1060))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $))
+ (-15 -2255 ((-1122 *3 (-610 $)) $))
+ (-15 -2327 ($ (-1122 *3 (-610 $))))))))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1238 *9)) (-4 *7 (-791)) (-4 *8 (-848)) (-4 *9 (-307))
+ (-4 *10 (-947 *9 *7 *8))
(-5 *2
- (-2 (|:| |brans| (-641 (-641 (-939 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153)))))
+ (-2 (|:| |deter| (-642 (-1169 *10)))
+ (|:| |dterm|
+ (-642 (-642 (-2 (|:| -1831 (-769)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-642 *6)) (|:| |nlead| (-642 *10))))
+ (-5 *1 (-776 *6 *7 *8 *9 *10)) (-5 *3 (-1169 *10)) (-5 *4 (-642 *6))
+ (-5 *5 (-642 *10)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-642 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-430 *4) (-1000))) (-4 *4 (-556))
+ (-5 *1 (-276 *4 *2)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *4))))
+ (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1097)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4))
- (-5 *1 (-810 *4 *3)) (-4 *3 (-652 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564))))
- (-5 *1 (-1104)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1094))
- (-5 *1 (-674 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
-(((*1 *1) (-5 *1 (-506))))
+ (-12 (-5 *4 (-642 *7)) (-5 *5 (-642 (-642 *8))) (-4 *7 (-848))
+ (-4 *8 (-307)) (-4 *6 (-791)) (-4 *9 (-947 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-642 (-2 (|:| -3643 (-1169 *9)) (|:| -2700 (-564)))))))
+ (-5 *1 (-740 *6 *7 *8 *9)) (-5 *3 (-1169 *9)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-872)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4))
- (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789))
- (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8))
- (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147)))
- (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-112))
- (-5 *1 (-920 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2746 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-917))
- (-14 *4 (-917)))))
-(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))))
+ (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *5 (-368))
+ (-5 *2 (-769)))))
+(((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-699))))
+ ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-699)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-642 (-1025 *5 *6 *7 *3))) (-5 *1 (-1025 *5 *6 *7 *3))
+ (-4 *3 (-1062 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-642 *6)) (-4 *1 (-1068 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1068 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-642 (-1143 *5 *6 *7 *3))) (-5 *1 (-1143 *5 *6 *7 *3))
+ (-4 *3 (-1062 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-506))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-506))) (-5 *1 (-483)))))
+(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-692))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-699))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330))))
+ ((*1 *1) (-5 *1 (-330))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2022 *3) (|:| |coef1| (-780 *3)) (|:| |coef2| (-780 *3))))
+ (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -3577 *7))))
- (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -3577 *7))))
- (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1))
- (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1094))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))))
-(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
- ((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))
- ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-307))))
- ((*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-564)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170)))
- (-4 *2 (-13 (-430 (-169 *5)) (-998) (-1194))) (-4 *5 (-556))
- (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-998) (-1194))))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1047) (-848)))
+ (-5 *1 (-223 *3 *4)) (-14 *4 (-642 (-1173))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045))
- (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))))
+ (-12 (-14 *4 (-642 (-1173))) (-14 *5 (-769))
+ (-5 *2
+ (-642
+ (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4)
+ (-247 *4 (-407 (-564))))))
+ (-5 *1 (-505 *4 *5))
+ (-5 *3
+ (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4)
+ (-247 *4 (-407 (-564))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-1094))
- (-5 *2 (-2 (|:| |val| *1) (|:| -1838 (-564)))) (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -1838 (-888 *3))))
- (-5 *1 (-888 *3)) (-4 *3 (-1094))))
+ (|partial| -12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -1838 (-564))))
- (-5 *1 (-946 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-791)) (-4 *5 (-1047)) (-4 *6 (-947 *5 *4 *2))
+ (-4 *2 (-848)) (-5 *1 (-948 *4 *2 *5 *6 *3))
(-4 *3
(-13 (-363)
- (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $))
- (-15 -2336 (*7 $))))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5))
- (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5))
- (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564)))
- (-5 *1 (-572))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1))
- (-4 *1 (-905)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-4 *2 (-896 *5)) (-5 *1 (-688 *5 *2 *3 *4))
- (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-825)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
- (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
+ (-10 -8 (-15 -2327 ($ *6)) (-15 -2245 (*6 $))
+ (-15 -2255 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556))
+ (-5 *2 (-1173)) (-5 *1 (-1041 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157))))
+ ((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-899 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-641 (-263)))
- (-5 *1 (-261))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6))
- (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6))
- (-5 *1 (-629 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-769)) (-5 *1 (-561)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2022 *3) (|:| |coef2| (-780 *3))))
+ (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-750)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1091 *3)) (-5 *1 (-1089 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-1212)))))
+(((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265))))
+ ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-59 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-59 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000)))
+ (-5 *1 (-176 *3)))))
+(((*1 *1) (-5 *1 (-1082))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5)))
+ (-5 *2 (-642 (-642 *4))) (-5 *1 (-341 *3 *4 *5 *6))
+ (-4 *3 (-342 *4 *5 *6))))
((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094))
- (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5)))))
-(((*1 *1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-642 (-642 *3))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-131))
+ (-4 *3 (-790)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-4 *7 (-990 *4)) (-4 *2 (-685 *7 *8 *9))
+ (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-685 *4 *5 *6))
+ (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047))
+ (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2))
+ (-4 *2 (-685 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-687 *2)) (-4 *2 (-363)) (-4 *2 (-1047))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *3 (-1047))
+ (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363))))
+ ((*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-1183 *3)))))
+(((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3))
- (|:| |genIdeal| (-504 *3 *4 *5 *6))))
- (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-685 (-407 (-948 (-564)))))
- (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027))
- (-5 *3 (-316 (-564))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-818)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *3 *4)
+ (-12
(-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-839 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4))
- (-5 *1 (-267)))))
-(((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-4 *2 (-1094))
- (-5 *1 (-885 *4 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6))
- (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-973 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3))
- (-4 *3 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3)))
- (-4 *3 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1235 *4)) (-5 *1 (-803 *4 *2 *3 *5))
- (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2))
- (-4 *5 (-652 (-407 *2)))))
+ (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564)))
+ (-5 *4 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))))
((*1 *2 *3 *4)
- (-12 (-4 *2 (-1235 *4)) (-5 *1 (-803 *4 *2 *5 *3))
- (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-652 *2))
- (-4 *3 (-652 (-407 *2))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7))
- (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))
- (-4 *7 (-1209)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))))
-(((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
- ((*1 *1 *1) (-5 *1 (-1114))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-564))))
- (-4 *5 (-1235 *4))
- (-5 *2 (-2 (|:| -2177 (-407 *5)) (|:| |coeff| (-407 *5))))
- (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-12
(-5 *2
- (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-564)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3))
- (-4 *3 (-13 (-1194) (-29 *5))))))
+ (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564))) (-5 *4 (-407 (-564)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-407 (-564)))
+ (-5 *2 (-642 (-2 (|:| -4326 *5) (|:| -4336 *5)))) (-5 *1 (-1018 *3))
+ (-4 *3 (-1238 (-564))) (-5 *4 (-2 (|:| -4326 *5) (|:| -4336 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))
+ (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))
+ (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564))))
+ (-5 *4 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-407 (-564)))
+ (-5 *2 (-642 (-2 (|:| -4326 *4) (|:| -4336 *4)))) (-5 *1 (-1019 *3))
+ (-4 *3 (-1238 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-407 (-564)))
+ (-5 *2 (-642 (-2 (|:| -4326 *5) (|:| -4336 *5)))) (-5 *1 (-1019 *3))
+ (-4 *3 (-1238 *5)) (-5 *4 (-2 (|:| -4326 *5) (|:| -4336 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-954 *3)) (-5 *1 (-1157 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-430 *4) (-998))) (-4 *4 (-556))
- (-5 *1 (-276 *4 *2)))))
+ (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *3))
+ (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-821)) (-5 *1 (-820)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
+ (-12 (-5 *3 (-564)) (|has| *1 (-6 -4401)) (-4 *1 (-404))
+ (-5 *2 (-919)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-3 *3 (-642 *1)))
+ (-4 *1 (-1068 *4 *5 *6 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789))
- (-5 *2 (-641 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7))
- (-4 *7 (-945 *4 *6 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
- ((*1 *1 *1 *1) (-5 *1 (-1114))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-556)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3))
- (-4 *3 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094)))))
-(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3)))
- (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-452) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-2 (|:| -2177 *3) (|:| |coeff| *3)))
- (-5 *1 (-557 *7 *3)))))
+ (-12 (-5 *3 (-1184 (-642 *4))) (-4 *4 (-848))
+ (-5 *2 (-642 (-642 *4))) (-5 *1 (-1183 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-950 (-564))) (-5 *2 (-642 *1)) (-4 *1 (-1010))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *2 (-642 *1)) (-4 *1 (-1010))))
+ ((*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-1010)) (-5 *2 (-642 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1169 (-564))) (-5 *2 (-642 *1)) (-4 *1 (-1010))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1169 (-407 (-564)))) (-5 *2 (-642 *1)) (-4 *1 (-1010))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1169 *1)) (-4 *1 (-1010)) (-5 *2 (-642 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-846) (-363))) (-4 *3 (-1238 *4)) (-5 *2 (-642 *1))
+ (-4 *1 (-1065 *4 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-769)) (-4 *1 (-1238 *4)) (-4 *4 (-1047))
+ (-5 *2 (-1262 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-294 (-831 *3)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-831 *3)) (-5 *1 (-634 *5 *3))
+ (-4 *3 (-13 (-27) (-1197) (-430 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-294 (-831 (-950 *5)))) (-4 *5 (-452))
+ (-5 *2 (-831 (-407 (-950 *5)))) (-5 *1 (-635 *5))
+ (-5 *3 (-407 (-950 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-294 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5)))
+ (-4 *5 (-452)) (-5 *2 (-831 *3)) (-5 *1 (-635 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
+ (-5 *2 (-1169 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-817)))))
+ (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5)))
+ (-5 *2 (-769)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1034 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-668 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-556)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-975 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564)))))
+ (-4 *5 (-1238 *4))
+ (-5 *2 (-642 (-2 (|:| |deg| (-769)) (|:| -1640 *5))))
+ (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-654 *5))
+ (-4 *6 (-654 (-407 *5))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-769)) (-4 *4 (-1047))
+ (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-1238 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1176)) (-5 *3 (-1173)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212))
+ (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
+ ((*1 *1 *1) (-5 *1 (-1117))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2))
+ (-4 *2 (-685 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-171))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860))))
+ ((*1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1137 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1097) (-34))) (-4 *6 (-13 (-1097) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1138 *5 *6)))))
(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
- ((*1 *1 *1 *1) (-5 *1 (-1114))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3221 (-564)) (|:| -1572 (-641 *3))))
- (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+ ((*1 *1 *1 *1) (-5 *1 (-1117))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216))
+ (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))))
+(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1176)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-556)))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-2 (|:| |pde| (-641 (-316 (-225))))
- (|:| |constraints|
- (-641
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-767)) (|:| |boundaryType| (-564))
- (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
- (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
- (|:| |tol| (-225))))
- (-5 *2 (-112)) (-5 *1 (-210)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-5 *2 (-641 (-641 (-641 *4))))
- (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-886 *4 *5)) (-4 *5 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217))))))
+ (-5 *2
+ (-2 (|:| |polnum| (-780 *3)) (|:| |polden| *3) (|:| -3752 (-769))))
+ (-5 *1 (-780 *3)) (-4 *3 (-1047))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3752 (-769))))
+ (-4 *1 (-1062 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-316 (-225))))
+ (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12
(-5 *2
- (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))))
- (-5 *1 (-205)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1045)))))
-(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *4))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *4)))))))
+ (-5 *3 (-642 *7)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *7 (-947 *4 *6 *5)) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791)) (-5 *1 (-922 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-112))
+ (-5 *2 (-1033)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2080 *3)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
+ ((*1 *1 *1) (|partial| -4 *1 (-720))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
+ ((*1 *1 *1 *1) (-5 *1 (-1117))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-787)) (-5 *5 (-564)))))
+(((*1 *2 *1) (-12 (-5 *2 (-969)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-974 *4 *5 *3 *6)) (-4 *4 (-1047)) (-4 *5 (-791))
+ (-4 *3 (-848)) (-4 *6 (-1062 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-888 *4 *5)) (-4 *5 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1163)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *2 (-1033)) (-5 *1 (-755)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 *3)) (-4 *3 (-1068 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-986 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 *3)) (-4 *3 (-1068 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1104 *5 *6 *7 *8 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-128)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-975 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-547))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-769))
+ (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-529))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))))
(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173))))
+ (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170))
- (-5 *1 (-1173))))
+ (-12 (-5 *2 (-437)) (-5 *3 (-642 (-1173))) (-5 *4 (-1173))
+ (-5 *1 (-1176))))
((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173))))
+ (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1176))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174))))
+ (-12 (-5 *2 (-437)) (-5 *3 (-1173)) (-5 *1 (-1177))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4))
- (-5 *1 (-419 *4))))
- ((*1 *1 *1) (-5 *1 (-922)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922))))
- ((*1 *1 *1) (-5 *1 (-923)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))
- (-5 *4 (-407 (-564))) (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))
- (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))
- (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-437)) (-5 *3 (-642 (-1173))) (-5 *1 (-1177)))))
+(((*1 *2 *3)
(|partial| -12
- (-5 *2 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))
- (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564))))))
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
+ (|:| |expense| (-379)) (|:| |accuracy| (-379))
+ (|:| |intermediateResults| (-379))))
+ (-5 *1 (-801)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155))
+ (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1089 (-841 *3))) (-4 *3 (-13 (-1197) (-957) (-29 *5)))
+ (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2
+ (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1089 (-841 *3))) (-5 *5 (-1155))
+ (-4 *3 (-13 (-1197) (-957) (-29 *6)))
+ (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2
+ (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1089 (-841 (-316 *5))))
+ (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2
+ (-3 (|:| |f1| (-841 (-316 *5))) (|:| |f2| (-642 (-841 (-316 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-407 (-950 *6))) (-5 *4 (-1089 (-841 (-316 *6))))
+ (-5 *5 (-1155))
+ (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2
+ (-3 (|:| |f1| (-841 (-316 *6))) (|:| |f2| (-642 (-841 (-316 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1089 (-841 (-407 (-950 *5))))) (-5 *3 (-407 (-950 *5)))
+ (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2
+ (-3 (|:| |f1| (-841 (-316 *5))) (|:| |f2| (-642 (-841 (-316 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1089 (-841 (-407 (-950 *6))))) (-5 *5 (-1155))
+ (-5 *3 (-407 (-950 *6)))
+ (-4 *6 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2
+ (-3 (|:| |f1| (-841 (-316 *6))) (|:| |f2| (-642 (-841 (-316 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-3 *3 (-642 *3))) (-5 *1 (-428 *5 *3))
+ (-4 *3 (-13 (-1197) (-957) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379))))
+ (-5 *5 (-379)) (-5 *6 (-1060)) (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379))))
+ (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379))))
+ (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1091 (-841 (-379))))
+ (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379)))))
+ (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379)))))
+ (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379)))))
+ (-5 *5 (-379)) (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-1091 (-841 (-379)))))
+ (-5 *5 (-379)) (-5 *6 (-1060)) (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1089 (-841 (-379))))
+ (-5 *5 (-1155)) (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1089 (-841 (-379))))
+ (-5 *5 (-1173)) (-5 *2 (-1033)) (-5 *1 (-565))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4))
+ (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-147))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-3 (-316 *5) (-642 (-316 *5)))) (-5 *1 (-588 *5))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1045))
- (-5 *3 (-564)))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-738 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-848))
+ (-4 *3 (-38 (-407 (-564))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1173)) (-5 *1 (-950 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-4 *3 (-1047))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-4 *2 (-848))
+ (-5 *1 (-1123 *3 *2 *4)) (-4 *4 (-947 *3 (-531 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047))
+ (-5 *1 (-1157 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1170 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *1 (-1206 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-4 *3 (-1047))))
+ ((*1 *1 *1 *2)
+ (-2706
+ (-12 (-5 *2 (-1173)) (-4 *1 (-1222 *3)) (-4 *3 (-1047))
+ (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197))
+ (-4 *3 (-38 (-407 (-564))))))
+ (-12 (-5 *2 (-1173)) (-4 *1 (-1222 *3)) (-4 *3 (-1047))
+ (-12 (|has| *3 (-15 -3802 ((-642 *2) *3)))
+ (|has| *3 (-15 -4107 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564))))))
+ ((*1 *1 *1 *2)
+ (-2706
+ (-12 (-5 *2 (-1173)) (-4 *1 (-1243 *3)) (-4 *3 (-1047))
+ (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197))
+ (-4 *3 (-38 (-407 (-564))))))
+ (-12 (-5 *2 (-1173)) (-4 *1 (-1243 *3)) (-4 *3 (-1047))
+ (-12 (|has| *3 (-15 -3802 ((-642 *2) *3)))
+ (|has| *3 (-15 -4107 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1247 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-2706
+ (-12 (-5 *2 (-1173)) (-4 *1 (-1253 *3)) (-4 *3 (-1047))
+ (-12 (-4 *3 (-29 (-564))) (-4 *3 (-957)) (-4 *3 (-1197))
+ (-4 *3 (-38 (-407 (-564))))))
+ (-12 (-5 *2 (-1173)) (-4 *1 (-1253 *3)) (-4 *3 (-1047))
+ (-12 (|has| *3 (-15 -3802 ((-642 *2) *3)))
+ (|has| *3 (-15 -4107 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)) (-4 *2 (-38 (-407 (-564))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)) (-14 *5 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
+ (-12 (-5 *2 (-860)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-769))
+ (-14 *4 (-769)) (-4 *5 (-172)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -1895 (-418 *3)) (|:| |special| (-418 *3))))
+ (-5 *1 (-725 *5 *3)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5))
+ (-12 (-5 *2 (-769)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1034 (-564)) (-637 (-564)) (-452)))
- (-5 *2 (-839 *4)) (-5 *1 (-313 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1034 (-564)) (-637 (-564)) (-452)))
- (-5 *2 (-839 *4)) (-5 *1 (-1245 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170))
- (-14 *6 *4))))
+ (-12 (-5 *2 (-769)) (-4 *1 (-1260 *3)) (-4 *3 (-23)) (-4 *3 (-1212)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))
+ (-5 *2 (-1033)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-642 (-407 (-950 (-564))))) (-5 *4 (-642 (-1173)))
+ (-5 *2 (-642 (-642 *5))) (-5 *1 (-380 *5))
+ (-4 *5 (-13 (-846) (-363)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-950 (-564)))) (-5 *2 (-642 *4)) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-846) (-363))))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| -1660 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-556)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27))
- (-5 *2 (-641 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
+ (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1173)) (-4 *1 (-27))
+ (-5 *2 (-642 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *2 (-641 *1))
+ (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *2 (-642 *1))
(-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-641 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170)))
- (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *1) (-5 *1 (-157))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-917)) (-5 *1 (-695))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-363)) (-5 *1 (-974 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-948 (-564)))) (-5 *1 (-437))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098))
- (-5 *1 (-755))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098))
- (-5 *1 (-755)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1259
- (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2762 (-564))
- (|:| -3513 (-564)) (|:| |spline| (-564)) (|:| -1411 (-564))
- (|:| |axesColor| (-870)) (|:| -3170 (-564))
- (|:| |unitsColor| (-870)) (|:| |showing| (-564)))))
- (-5 *1 (-1260)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4))
- (-5 *2 (-2 (|:| -4376 (-407 *5)) (|:| |poly| *3)))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-557 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-556)) (-4 *2 (-945 *3 *5 *4))
- (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-948 *6))) (-4 *5 (-789))
- (-4 *4 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-556)))))
+ (-12 (-5 *3 (-316 (-225))) (-5 *4 (-642 (-1173)))
+ (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-642 (-1169 *5))) (-5 *3 (-1169 *5))
+ (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-642 *3)) (-4 *3 (-1238 *5))
+ (-4 *5 (-1238 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-642 (-1169 (-564)))) (-5 *3 (-1169 (-564)))
+ (-5 *1 (-572))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-642 (-1169 *1))) (-5 *3 (-1169 *1))
+ (-4 *1 (-907)))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846))
+ (-12 (-5 *2 (-1286 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848))
(-4 *4 (-172))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
+ (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045))))
+ (-12 (-5 *2 (-817 *3)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848))
+ (-4 *4 (-1047))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1031))
- (-5 *1 (-754)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5))
- (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-363))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-450 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363))
+ (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1155) (-772))) (-5 *1 (-114)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3))
+ (-4 *5 (-13 (-430 *4) (-1000) (-1197)))
+ (-4 *3 (-13 (-430 (-169 *4)) (-1000) (-1197))))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-724)) (-4 *2 (-1212)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-642 (-112))) (-5 *5 (-687 (-225)))
+ (-5 *6 (-687 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1033))
+ (-5 *1 (-752)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4))
(-5 *2
- (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6))))
- (-5 *1 (-974 *6)) (-5 *3 (-685 *6)))))
+ (-3 (|:| |overq| (-1169 (-407 (-564))))
+ (|:| |overan| (-1169 (-48))) (|:| -3209 (-112))))
+ (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-610 *6))) (-5 *4 (-1173)) (-5 *2 (-610 *6))
+ (-4 *6 (-430 *5)) (-4 *5 (-1097)) (-5 *1 (-573 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564)))))
- (-4 *3 (-1235 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-652 *3))
- (-4 *5 (-652 (-407 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-407 *5))
- (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *5 (-1235 *4))
- (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147)))
- (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))))
-(((*1 *2 *2 *2)
(-12
- (-5 *2
- (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))))
- (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))))
+ (-5 *2 (-2 (|:| -4233 (-642 (-1173))) (|:| -2827 (-642 (-1173)))))
+ (-5 *1 (-1214)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-642 (-769)))
+ (-5 *1 (-902 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-192)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3))
- (-4 *3 (-644 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047))
+ (-4 *6 (-1238 *5)) (-5 *2 (-1169 (-1169 *7)))
+ (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1238 *6)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-753)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-564)))))
- (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112))
- (-5 *1 (-505 *4 *5)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))
- (-4 *2 (-452))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564)))
- (-5 *1 (-486 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *3 (-452)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170))
- (-14 *4 *2))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3))
- (-4 *3 (-1209))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
+ (-12 (-5 *3 (-642 (-2 (|:| |deg| (-769)) (|:| -2118 *5))))
+ (-4 *5 (-1238 *4)) (-4 *4 (-349)) (-5 *2 (-642 *5))
+ (-5 *1 (-216 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-2 (|:| -3643 *5) (|:| -2775 (-564)))))
+ (-5 *4 (-564)) (-4 *5 (-1238 *4)) (-5 *2 (-642 *5))
+ (-5 *1 (-694 *5)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-769)) (-4 *5 (-363)) (-5 *2 (-407 *6))
+ (-5 *1 (-865 *5 *4 *6)) (-4 *4 (-1253 *5)) (-4 *6 (-1238 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-769)) (-5 *4 (-1254 *5 *6 *7)) (-4 *5 (-363))
+ (-14 *6 (-1173)) (-14 *7 *5) (-5 *2 (-407 (-1235 *6 *5)))
+ (-5 *1 (-866 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-769)) (-5 *4 (-1254 *5 *6 *7)) (-4 *5 (-363))
+ (-14 *6 (-1173)) (-14 *7 *5) (-5 *2 (-407 (-1235 *6 *5)))
+ (-5 *1 (-866 *5 *6 *7)))))
+(((*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-745)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209))
- (-4 *5 (-373 *4)) (-4 *2 (-373 *4))))
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4))
+ (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045))
- (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-687 (-407 (-950 (-564)))))
(-5 *2
- (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-564)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1235 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307))
- (-4 *10 (-945 *9 *7 *8))
+ (-642
+ (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564))
+ (|:| |radvect| (-642 (-687 (-316 (-564))))))))
+ (-5 *1 (-1029)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-687 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1153 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *4))))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791)) (-4 *7 (-947 *4 *6 *5))
(-5 *2
- (-2 (|:| |deter| (-641 (-1166 *10)))
- (|:| |dterm|
- (-641 (-641 (-2 (|:| -4369 (-767)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10))))
- (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6))
- (-5 *5 (-641 *10)))))
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-642 *7)) (|:| |n0| (-642 *7))))
+ (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-642 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1099 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1099 *3)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1197)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1097)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-917))
- (-5 *2 (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114))))))
- (-5 *1 (-346 *4)) (-4 *4 (-349)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4408)) (-4 *1 (-1006 *3))
- (-4 *3 (-1209)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-129)))
- ((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767))
- (-4 *4 (-172))))
- ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))
- ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549)))
- ((*1 *1) (-4 *1 (-722))) ((*1 *1) (-5 *1 (-1170)))
- ((*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917))))
- ((*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917))))
- ((*1 *1) (-5 *1 (-1214))) ((*1 *1) (-5 *1 (-1215)))
- ((*1 *1) (-5 *1 (-1216))) ((*1 *1) (-5 *1 (-1217))))
+ (-12 (-5 *3 (-1173)) (-5 *2 (-536)) (-5 *1 (-535 *4))
+ (-4 *4 (-1212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1177)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5))
+ (-5 *1 (-986 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5))
+ (-5 *1 (-1104 *3 *4 *5 *6 *7)))))
(((*1 *2 *1 *2)
- (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-839 (-379))) (-5 *2 (-839 (-225))) (-5 *1 (-305)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225)))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1045)) (-4 *2 (-683 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-506)) (-5 *3 (-641 (-961))) (-5 *1 (-109)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1166 *6))
- (-5 *1 (-321 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-821)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4))))
- (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4))
- (-4 *4 (-1094)) (-5 *1 (-573 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
+ (-14 *4 (-769)) (-4 *5 (-172)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-860) (-860) (-860))) (-5 *4 (-564)) (-5 *2 (-860))
+ (-5 *1 (-647 *5 *6 *7)) (-4 *5 (-1097)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-860)) (-5 *1 (-852 *3 *4 *5)) (-4 *3 (-1047))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-860))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-860))))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-860)) (-5 *1 (-1169 *3)) (-4 *3 (-1047)))))
+(((*1 *1) (-5 *1 (-578))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-769))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-769)))))
+(((*1 *2 *3) (-12 (-5 *3 (-642 *2)) (-5 *1 (-1186 *2)) (-4 *2 (-363)))))
+(((*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-275)))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))))
+ (-1262
+ (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2747 (-564))
+ (|:| -1333 (-564)) (|:| |spline| (-564)) (|:| -2997 (-564))
+ (|:| |axesColor| (-872)) (|:| -3083 (-564))
+ (|:| |unitsColor| (-872)) (|:| |showing| (-564)))))
+ (-5 *1 (-1263)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))
+ ((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $))
+ (-15 -2255 ((-1122 *3 (-610 $)) $))
+ (-15 -2327 ($ (-1122 *3 (-610 $))))))))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172))
+ (-4 *5 (-238 (-2127 *3) (-769)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2047 *2) (|:| -2700 *5))
+ (-2 (|:| -2047 *2) (|:| -2700 *5))))
+ (-4 *2 (-848)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-947 *4 *5 (-862 *3))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-769)) (-4 *2 (-556)) (-5 *1 (-967 *2 *4))
+ (-4 *4 (-1238 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1238 *3)) (-5 *1 (-399 *3 *2))
+ (-4 *3 (-13 (-363) (-147))))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-941 (-225))) (-5 *4 (-872)) (-5 *5 (-919))
+ (-5 *2 (-1267)) (-5 *1 (-468))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-941 (-225))) (-5 *2 (-1267)) (-5 *1 (-468))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-642 (-941 (-225)))) (-5 *4 (-872)) (-5 *5 (-919))
+ (-5 *2 (-1267)) (-5 *1 (-468)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-917)) (-5 *1 (-1026 *2))
- (-4 *2 (-13 (-1094) (-10 -8 (-15 -3070 ($ $ $))))))))
+ (-12 (-5 *3 (-919)) (-5 *1 (-1028 *2))
+ (-4 *2 (-13 (-1097) (-10 -8 (-15 -2974 ($ $ $))))))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4))
- (-4 *4 (-1045))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *1 (-231 *4))
+ (-4 *4 (-1047))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1047))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-769))))
((*1 *1 *1) (-4 *1 (-233)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
- (-4 *4 (-1235 *3))))
+ (-12 (-5 *2 (-769)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
+ (-4 *4 (-1238 *3))))
((*1 *1 *1)
(-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3))
- (-4 *3 (-1235 *2))))
- ((*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045))))
+ (-4 *3 (-1238 *2))))
+ ((*1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-767))) (-4 *1 (-896 *4))
- (-4 *4 (-1094))))
+ (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 (-769))) (-4 *1 (-898 *4))
+ (-4 *4 (-1097))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094))))
+ (-12 (-5 *3 (-769)) (-4 *1 (-898 *2)) (-4 *2 (-1097))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094)))))
+ (-12 (-5 *2 (-642 *3)) (-4 *1 (-898 *3)) (-4 *3 (-1097))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1097)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
- (-4 *3 (-1094)) (-5 *2 (-767))))
+ (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212))
+ (-4 *3 (-1097)) (-5 *2 (-769))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4))
- (-4 *4 (-1209)) (-5 *2 (-767)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-817)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-4 *3 (-1094))
- (-5 *2 (-112)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4))
+ (-4 *4 (-1212)) (-5 *2 (-769)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))
+ (-5 *2 (-407 (-564))) (-5 *1 (-1018 *4)) (-4 *4 (-1238 (-564))))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-627)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000) (-1197))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -3587 *1) (|:| -4397 *1) (|:| |associate| *1)))
+ (-4 *1 (-556)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-846)))
+ (-5 *2 (-642 (-2 (|:| -2649 (-642 *3)) (|:| -1449 *5))))
+ (-5 *1 (-181 *5 *3)) (-4 *3 (-1238 (-169 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-363) (-846)))
+ (-5 *2 (-642 (-2 (|:| -2649 (-642 *3)) (|:| -1449 *4))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))))
+(((*1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *1 *1) (-4 *1 (-1136))) ((*1 *1 *1 *1) (-4 *1 (-1136))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545))
+ (-4 *3 (-556))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-831 *3)) (-4 *3 (-545))
+ (-4 *3 (-1097))))
((*1 *2 *1)
- (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
- (-5 *2 (-685 *3)))))
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-841 *3)) (-4 *3 (-545))
+ (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1006 *3)) (-4 *3 (-1036 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-1117)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925)))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5))
- (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-857))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-857)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
+ (-12 (-4 *2 (-1238 *4)) (-5 *1 (-805 *4 *2 *3 *5))
+ (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2))
+ (-4 *5 (-654 (-407 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1238 *4)) (-5 *1 (-805 *4 *2 *5 *3))
+ (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-654 *2))
+ (-4 *3 (-654 (-407 *2))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-657 *4 *2))
+ (-4 *2 (-654 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-641 *6))
- (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))))
-(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))))
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047))
+ (-4 *2 (-452))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 *4)) (-4 *4 (-1238 (-564))) (-5 *2 (-642 (-564)))
+ (-5 *1 (-486 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-452))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848)) (-4 *3 (-452)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1107)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-947 *4 *6 *5)) (-4 *4 (-452))
+ (-4 *5 (-848)) (-4 *6 (-791)) (-5 *1 (-985 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-525)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1097)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-919)) (-5 *1 (-784)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-556))
+ (-4 *8 (-947 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2700 (-769)) (|:| -4378 *3) (|:| |radicand| *3)))
+ (-5 *1 (-951 *5 *6 *7 *8 *3)) (-5 *4 (-769))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -2327 ($ *8)) (-15 -2245 (*8 $)) (-15 -2255 (*8 $))))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-860)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-769))
+ (-14 *4 (-769)) (-4 *5 (-172)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3))
+ (-4 *3 (-13 (-1197) (-29 *5))))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-749)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-14 *5 (-641 (-1170)))
+ (-12 (-4 *4 (-452))
(-5 *2
- (-641 (-2 (|:| -3560 (-1166 *4)) (|:| -4225 (-641 (-948 *4))))))
- (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
+ (-642
+ (-2 (|:| |eigval| (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4))))
+ (|:| |geneigvec| (-642 (-687 (-407 (-950 *4))))))))
+ (-5 *1 (-292 *4)) (-5 *3 (-687 (-407 (-950 *4)))))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-407 (-1169 (-316 *3)))) (-4 *3 (-556))
+ (-5 *1 (-1127 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-430 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1089 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 *8)) (-4 *8 (-947 *5 *7 *6))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173))))
+ (-4 *7 (-791))
(-5 *2
- (-641 (-2 (|:| -3560 (-1166 *5)) (|:| -4225 (-641 (-948 *5))))))
- (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5)))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
+ (-642
+ (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8))
+ (|:| |wcond| (-642 (-950 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *5))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *5))))))))))
+ (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-642 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 *8)) (-5 *4 (-642 (-1173))) (-4 *8 (-947 *5 *7 *6))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173))))
+ (-4 *7 (-791))
(-5 *2
- (-641 (-2 (|:| -3560 (-1166 *5)) (|:| -4225 (-641 (-948 *5))))))
- (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5)))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
+ (-642
+ (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8))
+ (|:| |wcond| (-642 (-950 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *5))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *5))))))))))
+ (-5 *1 (-922 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-687 *7)) (-4 *7 (-947 *4 *6 *5))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791))
+ (-5 *2
+ (-642
+ (-2 (|:| |eqzro| (-642 *7)) (|:| |neqzro| (-642 *7))
+ (|:| |wcond| (-642 (-950 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *4))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *4))))))))))
+ (-5 *1 (-922 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-687 *9)) (-5 *5 (-919)) (-4 *9 (-947 *6 *8 *7))
+ (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-848) (-612 (-1173))))
+ (-4 *8 (-791))
+ (-5 *2
+ (-642
+ (-2 (|:| |eqzro| (-642 *9)) (|:| |neqzro| (-642 *9))
+ (|:| |wcond| (-642 (-950 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *6))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *6))))))))))
+ (-5 *1 (-922 *6 *7 *8 *9)) (-5 *4 (-642 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 (-1173))) (-5 *5 (-919))
+ (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
+ (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791))
+ (-5 *2
+ (-642
+ (-2 (|:| |eqzro| (-642 *9)) (|:| |neqzro| (-642 *9))
+ (|:| |wcond| (-642 (-950 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *6))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *6))))))))))
+ (-5 *1 (-922 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
+ (-12 (-5 *3 (-687 *8)) (-5 *4 (-919)) (-4 *8 (-947 *5 *7 *6))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173))))
+ (-4 *7 (-791))
(-5 *2
- (-641 (-2 (|:| -3560 (-1166 *5)) (|:| -4225 (-641 (-948 *5))))))
- (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-948 *5)))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
+ (-642
+ (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8))
+ (|:| |wcond| (-642 (-950 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *5))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *5))))))))))
+ (-5 *1 (-922 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 *9)) (-5 *5 (-1155))
+ (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
+ (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564))
+ (-5 *1 (-922 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-687 *9)) (-5 *4 (-642 (-1173))) (-5 *5 (-1155))
+ (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
+ (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564))
+ (-5 *1 (-922 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 *8)) (-5 *4 (-1155)) (-4 *8 (-947 *5 *7 *6))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173))))
+ (-4 *7 (-791)) (-5 *2 (-564)) (-5 *1 (-922 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-687 *10)) (-5 *4 (-642 *10)) (-5 *5 (-919))
+ (-5 *6 (-1155)) (-4 *10 (-947 *7 *9 *8)) (-4 *7 (-13 (-307) (-147)))
+ (-4 *8 (-13 (-848) (-612 (-1173)))) (-4 *9 (-791)) (-5 *2 (-564))
+ (-5 *1 (-922 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-687 *10)) (-5 *4 (-642 (-1173))) (-5 *5 (-919))
+ (-5 *6 (-1155)) (-4 *10 (-947 *7 *9 *8)) (-4 *7 (-13 (-307) (-147)))
+ (-4 *8 (-13 (-848) (-612 (-1173)))) (-4 *9 (-791)) (-5 *2 (-564))
+ (-5 *1 (-922 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-687 *9)) (-5 *4 (-919)) (-5 *5 (-1155))
+ (-4 *9 (-947 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
+ (-4 *7 (-13 (-848) (-612 (-1173)))) (-4 *8 (-791)) (-5 *2 (-564))
+ (-5 *1 (-922 *6 *7 *8 *9)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
+ (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004)))))
+(((*1 *2) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-997 *3)) (-4 *3 (-172)) (-5 *1 (-797 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-769)) (|:| -4229 *4))) (-5 *5 (-769))
+ (-4 *4 (-947 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
(-5 *2
- (-641 (-2 (|:| -3560 (-1166 *4)) (|:| -4225 (-641 (-948 *4))))))
- (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-948 *4)))
- (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-349)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4))
- (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1045)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4))))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *1 (-1154 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363))
- (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)))))
- (-5 *1 (-974 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *1 *1) (-4 *1 (-865 *2))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-449 *6 *7 *8 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-835))
- (-5 *3
- (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225)))
- (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-839 (-225))))))
- (-5 *2 (-1031))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-835))
- (-5 *3
- (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))
- (-5 *2 (-1031)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-743)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-556))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556)))))
+ (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091 (-841 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
+ (-5 *1 (-305))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6)))
- (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
- (-5 *2 (-413 *4 (-407 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4)))
- (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307))
- (-5 *1 (-413 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *3 (-791)) (-4 *5 (-848)) (-5 *2 (-112))
+ (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-947 *4 *3 *5)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1158 *3 *4))
- (-14 *3 (-917)))))
-(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-144)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3)))))
- (-5 *1 (-1281 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4)))))
- (-5 *1 (-1283 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
- (-5 *2 (-2 (|:| -1604 (-641 *6)) (|:| -2319 (-641 *6)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))))
-(((*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-846))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1))
- (-4 *1 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1))
- (-4 *1 (-1065 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
- ((*1 *1 *1) (|partial| -4 *1 (-718))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1170))
- (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-5 *1 (-1173)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241))))
+ (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212))
+ (-5 *2 (-642 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-642 (-481 *4 *5))) (-5 *3 (-642 (-862 *4)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6))
+ (-4 *6 (-452)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-307))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-769)) (-4 *5 (-363)) (-5 *2 (-174 *6))
+ (-5 *1 (-865 *5 *4 *6)) (-4 *4 (-1253 *5)) (-4 *6 (-1238 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-418 *3)) (-4 *3 (-556))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-642 (-2 (|:| -3643 *4) (|:| -2775 (-564)))))
+ (-4 *4 (-1238 (-564))) (-5 *2 (-769)) (-5 *1 (-442 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1190)))))
+(((*1 *1) (-5 *1 (-801))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-241))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1267)) (-5 *1 (-241)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4))
- (-4 *4 (-1235 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-722))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *1)
- (-12
+ (-12 (-4 *3 (-1047)) (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-1060)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-1190)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-642 (-112))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-363))
+ (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *1 (-450 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363))
(-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -1619 (-767)) (|:| |period| (-767))))
- (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-767)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1057)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767))))
+ (-2 (|:| R (-687 *6)) (|:| A (-687 *6)) (|:| |Ainv| (-687 *6))))
+ (-5 *1 (-976 *6)) (-5 *3 (-687 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-481 *4 *5))) (-14 *4 (-642 (-1173)))
+ (-4 *5 (-452)) (-5 *2 (-642 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -1725 *4))) (-5 *1 (-967 *4 *3))
+ (-4 *3 (-1238 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-769))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209))
- (-4 *3 (-1094))))
+ (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1212))
+ (-4 *3 (-1097))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094))
+ (-12 (-4 *1 (-373 *3)) (-4 *3 (-1212)) (-4 *3 (-1097))
(-5 *2 (-564))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209))
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1212))
(-5 *2 (-564))))
- ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-529))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-564)) (-5 *3 (-141))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-564)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-307) (-147)))
- (-4 *2 (-945 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2))
- (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-917)) (-4 *5 (-556)) (-5 *2 (-685 *5))
- (-5 *1 (-952 *5 *3)) (-4 *3 (-652 *5)))))
-(((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-767))
+ (-5 *2
+ (-2 (|:| -3978 (-379)) (|:| -2461 (-1155))
+ (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))))
+ (-5 *1 (-565))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-767)) (-5 *4 (-1060))
+ (-5 *2
+ (-2 (|:| -3978 (-379)) (|:| -2461 (-1155))
+ (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))))
+ (-5 *1 (-565))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-785)) (-5 *3 (-1060))
+ (-5 *4
+ (-2 (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))
+ (|:| |extra| (-1033))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-785)) (-5 *3 (-1060))
+ (-5 *4
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))
+ (|:| |extra| (-1033))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-798)) (-5 *3 (-1060))
+ (-5 *4
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-806))
+ (-5 *2
+ (-2 (|:| -3978 (-379)) (|:| -2461 (-1155))
+ (|:| |explanations| (-642 (-1155)))))
+ (-5 *1 (-803))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-806)) (-5 *4 (-1060))
+ (-5 *2
+ (-2 (|:| -3978 (-379)) (|:| -2461 (-1155))
+ (|:| |explanations| (-642 (-1155)))))
+ (-5 *1 (-803))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-837)) (-5 *3 (-1060))
+ (-5 *4
+ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))
+ (-5 *2 (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-837)) (-5 *3 (-1060))
+ (-5 *4
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225)))
+ (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225))))
+ (|:| |ub| (-642 (-841 (-225))))))
+ (-5 *2 (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-839))
+ (-5 *2
+ (-2 (|:| -3978 (-379)) (|:| -2461 (-1155))
+ (|:| |explanations| (-642 (-1155)))))
+ (-5 *1 (-838))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-839)) (-5 *4 (-1060))
+ (-5 *2
+ (-2 (|:| -3978 (-379)) (|:| -2461 (-1155))
+ (|:| |explanations| (-642 (-1155)))))
+ (-5 *1 (-838))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-893)) (-5 *3 (-1060))
+ (-5 *4
+ (-2 (|:| |pde| (-642 (-316 (-225))))
+ (|:| |constraints|
+ (-642
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-769)) (|:| |boundaryType| (-564))
+ (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225))))))
+ (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155))
+ (|:| |tol| (-225))))
+ (-5 *2 (-2 (|:| -3978 (-379)) (|:| |explanations| (-1155))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-896))
+ (-5 *2
+ (-2 (|:| -3978 (-379)) (|:| -2461 (-1155))
+ (|:| |explanations| (-642 (-1155)))))
+ (-5 *1 (-895))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-896)) (-5 *4 (-1060))
+ (-5 *2
+ (-2 (|:| -3978 (-379)) (|:| -2461 (-1155))
+ (|:| |explanations| (-642 (-1155)))))
+ (-5 *1 (-895)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-700 *4 *5 *6 *7))
+ (-4 *4 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212))
+ (-4 *7 (-1212)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-846))) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-1238 (-169 *3))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1))
- (-4 *1 (-945 *3 *4 *5)))))
+ (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1))
+ (-4 *1 (-947 *3 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1094)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3))))
+ (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-900 *4))
- (-4 *4 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
+ (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
- (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844)))
- (-5 *2 (-641 (-2 (|:| -1572 (-641 *3)) (|:| -1433 *5))))
- (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-363) (-844)))
- (-5 *2 (-641 (-2 (|:| -1572 (-641 *3)) (|:| -1433 *4))))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-817)))))
+ (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-587 *4))
+ (-4 *4 (-349)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 (-1 *6 (-642 *6))))
+ (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1253 *5)) (-5 *2 (-642 *6))
+ (-5 *1 (-1255 *5 *6)))))
+(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1097)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-128)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-307)) (-4 *3 (-988 *2)) (-4 *4 (-1235 *3))
- (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))))
-(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
+ (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-769)) (-4 *4 (-13 (-556) (-147)))
+ (-5 *1 (-1232 *4 *2)) (-4 *2 (-1238 *4)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-610 *2))) (-5 *4 (-642 (-1173)))
+ (-4 *2 (-13 (-430 (-169 *5)) (-1000) (-1197))) (-4 *5 (-556))
+ (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-1000) (-1197))))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047))))
((*1 *2 *1)
- (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170)))))
+ (-12 (-4 *2 (-1047)) (-5 *1 (-50 *2 *3)) (-14 *3 (-642 (-1173)))))
((*1 *2 *1)
(-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4))
- (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170)))))
+ (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173)))))
((*1 *2 *1)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045))))
+ (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1047))))
((*1 *2 *1)
- (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2181 *3) (-767)))
+ (-12 (-14 *3 (-642 (-1173))) (-4 *5 (-238 (-2127 *3) (-769)))
(-14 *6
- (-1 (-112) (-2 (|:| -2083 *4) (|:| -1838 *5))
- (-2 (|:| -2083 *4) (|:| -1838 *5))))
- (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846))
- (-4 *7 (-945 *2 *5 (-860 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1094))))
+ (-1 (-112) (-2 (|:| -2047 *4) (|:| -2700 *5))
+ (-2 (|:| -2047 *4) (|:| -2700 *5))))
+ (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-848))
+ (-4 *7 (-947 *2 *5 (-862 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-848)) (-4 *2 (-1097))))
((*1 *2 *1)
- (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045))))
+ (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1047))))
((*1 *2 *1)
- (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846))
- (-4 *3 (-722))))
- ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045))))
+ (-12 (-4 *2 (-1047)) (-5 *1 (-733 *2 *3)) (-4 *3 (-848))
+ (-4 *3 (-724))))
+ ((*1 *2 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047))))
((*1 *2 *1)
- (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846))
- (-4 *2 (-1045))))
+ (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *3 (-790)) (-4 *4 (-848))
+ (-4 *2 (-1047))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)))))
+ (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-745)))))
(((*1 *2 *3)
- (-12
- (-5 *2
- (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))
- (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))
- (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564)))
- (-5 *4 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))
- (-5 *1 (-1016 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-407 (-564)))
- (-5 *2 (-641 (-2 (|:| -4328 *5) (|:| -4337 *5)))) (-5 *1 (-1016 *3))
- (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -4328 *5) (|:| -4337 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))
- (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))
- (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-407 (-564))))
- (-5 *4 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-407 (-564)))
- (-5 *2 (-641 (-2 (|:| -4328 *4) (|:| -4337 *4)))) (-5 *1 (-1017 *3))
- (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-407 (-564)))
- (-5 *2 (-641 (-2 (|:| -4328 *5) (|:| -4337 *5)))) (-5 *1 (-1017 *3))
- (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -4328 *5) (|:| -4337 *5))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2177 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-363)) (-4 *7 (-1235 *6))
- (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
- (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-856)) (-5 *2 (-687 (-549))) (-5 *3 (-549)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564)))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302))))
+ (-12 (-4 *4 (-1047)) (-4 *5 (-1238 *4)) (-5 *2 (-1 *6 (-642 *6)))
+ (-5 *1 (-1256 *4 *5 *3 *6)) (-4 *3 (-654 *5)) (-4 *6 (-1253 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-848)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-642 *3)) (-5 *5 (-919)) (-4 *3 (-1238 *4))
+ (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1169 (-950 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363))
+ (-5 *2 (-1169 (-950 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-823)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-724)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1212))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1212))
+ (-14 *4 (-564)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790))))
((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094))))
+ (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1097))))
((*1 *2 *1)
- (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
- (-4 *6 (-238 (-2181 *3) (-767)))
+ (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172))
+ (-4 *6 (-238 (-2127 *3) (-769)))
(-14 *7
- (-1 (-112) (-2 (|:| -2083 *5) (|:| -1838 *6))
- (-2 (|:| -2083 *5) (|:| -1838 *6))))
- (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-846)) (-4 *8 (-945 *4 *6 (-860 *3)))))
+ (-1 (-112) (-2 (|:| -2047 *5) (|:| -2700 *6))
+ (-2 (|:| -2047 *5) (|:| -2700 *6))))
+ (-5 *2 (-711 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-848)) (-4 *8 (-947 *4 *6 (-862 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2))
- (-4 *3 (-1045))))
+ (-12 (-4 *2 (-724)) (-4 *2 (-848)) (-5 *1 (-733 *3 *2))
+ (-4 *3 (-1047))))
((*1 *1 *1)
- (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788))
- (-4 *4 (-846)))))
-(((*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-434))
- (-5 *2
- (-641
- (-3 (|:| -2562 (-1170))
- (|:| -3548 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564)))))))))
- (-5 *1 (-1174)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-5 *1 (-437)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131))
- (-4 *3 (-788)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045))
- (-5 *2 (-641 (-641 (-939 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-641 (-641 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045))
- (-4 *1 (-1128 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 (-939 *3)))) (-4 *3 (-1045))
- (-4 *1 (-1128 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112))
- (-4 *1 (-1128 *4)) (-4 *4 (-1045))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-641 (-641 (-939 *4)))) (-5 *3 (-112))
- (-4 *1 (-1128 *4)) (-4 *4 (-1045))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171)))
- (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1045))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-641 (-641 (-939 *5)))) (-5 *3 (-641 (-171)))
- (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1045)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-373 *2)) (-4 *2 (-1209))
- (-4 *2 (-846))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4408))
- (-4 *1 (-373 *3)) (-4 *3 (-1209)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564))
- (-5 *1 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1067))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-966))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1032))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1060))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))))
+ (-12 (-4 *1 (-971 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-790))
+ (-4 *4 (-848)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1238 *5))
+ (-4 *7 (-1238 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
+ (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-112))
+ (-5 *1 (-909 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
+ (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4)))
+ (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-910 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-919)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1169 *1))
+ (-4 *1 (-329 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1169 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363))
+ (-4 *2 (-1238 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-1169 *4))
+ (-5 *1 (-528 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330))
+ (-5 *1 (-332)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-222 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-254 *3))))
+ ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *5)) (-4 *5 (-430 *4)) (-4 *4 (-556))
+ (-5 *2 (-860)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4)))))
+ ((*1 *1 *1) (-5 *1 (-379)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4))))
+ (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-564))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1155))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-506))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-591))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-478))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1163))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-624))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1093))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1087))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1070))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-968))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-180))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1034))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-311))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-669))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-525))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1273))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1063))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-517))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-679))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-133))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1272))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-674))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-218))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-524))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1178)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2123 (-778 *3)) (|:| |coef2| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| -2123 *1) (|:| |coef2| *1)))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-789))
- (-4 *3 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))) (-4 *5 (-556))
- (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *3
- (-13 (-846)
- (-10 -8 (-15 -1311 ((-1170) $))
- (-15 -3395 ((-3 $ "failed") (-1170))))))
- (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *6))
- (-4 *6
- (-13 (-846)
- (-10 -8 (-15 -1311 ((-1170) $))
- (-15 -3395 ((-3 $ "failed") (-1170))))))
- (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2))
- (-4 *2 (-945 (-948 *4) *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1068 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-687 (-169 (-225))))
+ (-5 *2 (-1033)) (-5 *1 (-753)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790))
+ (-5 *2 (-769))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097))
+ (-5 *2 (-769))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-769)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-724)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169 *2)) (-4 *2 (-947 (-407 (-950 *6)) *5 *4))
+ (-5 *1 (-730 *5 *4 *6 *2)) (-4 *5 (-791))
+ (-4 *4 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $)))))
+ (-4 *6 (-556)))))
+(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047))))
+ ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
+(((*1 *1 *1) (-5 *1 (-1060))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-962 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7)))
- (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-574 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
- ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-751)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *4 (-769)) (-5 *5 (-642 *3)) (-4 *3 (-307)) (-4 *6 (-848))
+ (-4 *7 (-791)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8))
+ (-4 *8 (-947 *3 *7 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1169 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-697))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-697)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-969)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790))
(-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *7 (-896 *6))
- (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7))
- (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4407)))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846))
- (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
+ (-12 (-5 *3 (-468)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-379)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
+(((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
+ ((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
+ ((*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919))))
+ ((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-1153 (-564))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
+ (-4 *3 (-1062 *6 *7 *8))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4))))
+ (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -3530 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1062 *6 *7 *4)) (-4 *9 (-1068 *6 *7 *4 *8))
+ (-4 *6 (-452)) (-4 *7 (-791)) (-4 *4 (-848))
+ (-5 *2 (-642 (-2 (|:| |val| *8) (|:| -3530 *9))))
+ (-5 *1 (-1105 *6 *7 *4 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-748)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| A (-687 *5))
+ (|:| |eqs|
+ (-642
+ (-2 (|:| C (-687 *5)) (|:| |g| (-1262 *5)) (|:| -1640 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-811 *5 *6)) (-5 *3 (-687 *5)) (-5 *4 (-1262 *5))
+ (-4 *6 (-654 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *6 (-654 *5))
+ (-5 *2 (-2 (|:| -1780 (-687 *6)) (|:| |vec| (-1262 *5))))
+ (-5 *1 (-811 *5 *6)) (-5 *3 (-687 *6)) (-5 *4 (-1262 *5)))))
(((*1 *1 *1) (-4 *1 (-243)))
((*1 *1 *1)
(-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-2807 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209)))
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209)))))
+ (-2706 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1212)))
+ (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1212)))))
((*1 *1 *1) (-4 *1 (-473)))
- ((*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2123 *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6))
- (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262))))
- ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 *4) (-998) (-1194)))
- (-5 *1 (-598 *4 *2 *3))
- (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1194))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-917)) (-5 *1 (-466)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1022 *3))
+ (-4 *3 (-13 (-846) (-363) (-1020)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3))
+ (-4 *3 (-1238 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1065 *2 *3)) (-4 *2 (-13 (-846) (-363)))
+ (-4 *3 (-1238 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1047)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1238 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-919)) (-5 *1 (-784)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-307)) (-4 *3 (-990 *2)) (-4 *4 (-1238 *3))
+ (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1036 *3))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-888 (-564))))
- (-4 *5 (-882 (-564)))
- (-4 *5 (-13 (-1034 (-564)) (-452) (-637 (-564))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-567 *5 *3)) (-4 *3 (-627))
- (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *7)) (-4 *7 (-848))
+ (-4 *8 (-947 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1262 (-407 *8)) "failed"))
+ (|:| -4263 (-642 (-1262 (-407 *8))))))
+ (-5 *1 (-667 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-3 (-112) (-642 *1)))
+ (-4 *1 (-1068 *4 *5 *6 *3)))))
(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545)))
- ((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045))))
+ ((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047))))
((*1 *1 *1)
- (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34))))))
+ (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34)))
+ (-4 *3 (-13 (-1097) (-34))))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1194)))
- (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-998) (-1194))))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112))
- (-5 *2 (-1031)) (-5 *1 (-749)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-686 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3))
+ (-4 *3 (-646 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3))
+ (-4 *3 (-646 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047))))
+ ((*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1235 *4 *5)) (-5 *3 (-642 *5)) (-14 *4 (-1173))
+ (-4 *5 (-363)) (-5 *1 (-921 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *5)) (-4 *5 (-363)) (-5 *2 (-1169 *5))
+ (-5 *1 (-921 *4 *5)) (-14 *4 (-1173))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-642 *6)) (-5 *4 (-769)) (-4 *6 (-363))
+ (-5 *2 (-407 (-950 *6))) (-5 *1 (-1048 *5 *6)) (-14 *5 (-1173)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379)))
+ (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267))
+ (-5 *1 (-786))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379)))
+ (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267))
+ (-5 *1 (-786)))))
+(((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1173))
+ (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-192))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1173))
+ (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-300)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-407 (-564))))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *2 (-641 (-225)))
- (-5 *1 (-468)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
+ (-12
+ (-5 *3
+ (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))
+ (-5 *2 (-642 (-407 (-564)))) (-5 *1 (-1018 *4))
+ (-4 *4 (-1238 (-564))))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-827)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114))))))
- (-4 *4 (-349)) (-5 *2 (-767)) (-5 *1 (-346 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-351 *3 *4)) (-14 *3 (-917))
- (-14 *4 (-917))))
- ((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
- (-14 *4
- (-3 (-1166 *3)
- (-1259 (-641 (-2 (|:| -2128 *3) (|:| -2083 (-1114)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-917)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1034 *4)) (-4 *3 (-556)))))
+ (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020)))
+ (-14 *5 (-642 (-1173)))
+ (-5 *2
+ (-642 (-2 (|:| -1386 (-1169 *4)) (|:| -2067 (-642 (-950 *4))))))
+ (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2
+ (-642 (-2 (|:| -1386 (-1169 *5)) (|:| -2067 (-642 (-950 *5))))))
+ (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5)))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2
+ (-642 (-2 (|:| -1386 (-1169 *5)) (|:| -2067 (-642 (-950 *5))))))
+ (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5)))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2
+ (-642 (-2 (|:| -1386 (-1169 *5)) (|:| -2067 (-642 (-950 *5))))))
+ (-5 *1 (-1288 *5 *6 *7)) (-5 *3 (-642 (-950 *5)))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2
+ (-642 (-2 (|:| -1386 (-1169 *4)) (|:| -2067 (-642 (-950 *4))))))
+ (-5 *1 (-1288 *4 *5 *6)) (-5 *3 (-642 (-950 *4)))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
- (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
- (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
+ (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-407 (-564)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
- (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-315 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564)))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-4 *3 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-315 *6 *3))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8))
- (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564)))
- (-4 *8 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *5 (-1229 (-407 (-564)))) (-5 *6 (-407 (-564)))
+ (-4 *8 (-13 (-27) (-1197) (-430 *7)))
+ (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564))))
- (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8)))
- (-4 *8 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-407 (-564))))
+ (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *8)))
+ (-4 *8 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1045)) (-4 *1 (-1242 *4 *3))
- (-4 *3 (-1219 *4)))))
+ (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1047)) (-4 *1 (-1245 *4 *3))
+ (-4 *3 (-1222 *4)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1) (-4 *1 (-493)))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-817)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-827)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3)) (-4 *3 (-1097))
+ (-4 *3 (-1212)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-859))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-859)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1094)))))
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-247 *3 *4))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-1047))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-564))) (-14 *3 (-642 (-1173)))
+ (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1047))
+ (-4 *5 (-238 (-2127 *3) (-769)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-481 *3 *4))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-1047)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-307))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2185 *1)))
+ (-4 *1 (-307)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1194)))
- (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1194)))
- (-5 *1 (-598 *4 *5 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3))
- (-4 *3 (-1235 (-407 *4))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045))
- (-5 *1 (-1154 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045))
- (-14 *4 (-1170)) (-14 *5 *3))))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-556)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-750)))))
+(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-368)))))
+(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-241)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-642 (-642 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-642 (-3 (|:| |array| (-642 *3)) (|:| |scalar| (-1173)))))
+ (-5 *6 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1101))
+ (-5 *1 (-397))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-642 (-642 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-642 (-3 (|:| |array| (-642 *3)) (|:| |scalar| (-1173)))))
+ (-5 *6 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1101))
+ (-5 *1 (-397))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-642 (-1173))) (-5 *5 (-1176)) (-5 *3 (-1173))
+ (-5 *2 (-1101)) (-5 *1 (-397)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209))
+ (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212))
(-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4408)) (-4 *1 (-119 *3))
- (-4 *3 (-1209))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4411)) (-4 *1 (-119 *3))
+ (-4 *3 (-1212))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4408)) (-4 *1 (-119 *3))
- (-4 *3 (-1209))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4411)) (-4 *1 (-119 *3))
+ (-4 *3 (-1212))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094))
- (-4 *2 (-1209))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630))))
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1097))
+ (-4 *2 (-1212))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1173)) (-5 *1 (-630))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4408)) (-4 *1 (-647 *2))
- (-4 *2 (-1209))))
+ (-12 (-5 *3 (-1229 (-564))) (|has| *1 (-6 -4411)) (-4 *1 (-649 *2))
+ (-4 *2 (-1212))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045))
+ (-12 (-5 *2 (-642 (-564))) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4408)) (-4 *1 (-1006 *2))
- (-4 *2 (-1209))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4411)) (-4 *1 (-1008 *2))
+ (-4 *2 (-1212))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))
+ (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2))
- (-4 *2 (-1209))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2))
+ (-4 *2 (-1212))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4408)) (-4 *1 (-1247 *3))
- (-4 *3 (-1209))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *3))
+ (-4 *3 (-1212))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2))
- (-4 *2 (-1209)))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2))
+ (-4 *2 (-1212)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
- (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
- (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
+ (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-1034 *4) (-637 *4)))
+ (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-1036 *4) (-637 *4)))
(-5 *2 (-52)) (-5 *1 (-315 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
+ (-4 *3 (-13 (-27) (-1197) (-430 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-315 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-1034 *5) (-637 *5))) (-5 *5 (-564))
+ (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-452) (-1036 *5) (-637 *5))) (-5 *5 (-564))
(-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564)))
- (-4 *7 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-564)))
+ (-4 *7 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564)))
- (-4 *3 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-564)))
+ (-4 *3 (-13 (-27) (-1197) (-430 *7)))
+ (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-564)) (-4 *4 (-1045)) (-4 *1 (-1221 *4 *3))
- (-4 *3 (-1250 *4))))
+ (-12 (-5 *2 (-564)) (-4 *4 (-1047)) (-4 *1 (-1224 *4 *3))
+ (-4 *3 (-1253 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1219 *3)))))
+ (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1222 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1) (-4 *1 (-493)))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3))
- (-4 *3 (-1065 *4 *5 *6 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330))
- (-5 *1 (-332)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-948 *4)))) (-4 *4 (-452))
- (-5 *2 (-641 (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4)))))
- (-5 *1 (-292 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307))
- (-5 *2 (-641 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7))
- (-4 *3 (-1235 *6)) (-4 *7 (-945 *6 *4 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-905))
- (-5 *2 (-1259 *1)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1008)))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-642 (-564)))
+ (|:| |cols| (-642 (-564)))))
+ (-5 *4 (-687 *12)) (-5 *5 (-642 (-407 (-950 *9))))
+ (-5 *6 (-642 (-642 *12))) (-5 *7 (-769)) (-5 *8 (-564))
+ (-4 *9 (-13 (-307) (-147))) (-4 *12 (-947 *9 *11 *10))
+ (-4 *10 (-13 (-848) (-612 (-1173)))) (-4 *11 (-791))
+ (-5 *2
+ (-2 (|:| |eqzro| (-642 *12)) (|:| |neqzro| (-642 *12))
+ (|:| |wcond| (-642 (-950 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *9))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *9)))))))))
+ (-5 *1 (-922 *9 *10 *11 *12)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-872))))
+ ((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-642 (-1211))) (-5 *3 (-1211)) (-5 *1 (-679)))))
+(((*1 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-801)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *3 (-556)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-858)) (-5 *2 (-689 (-1220))) (-5 *3 (-1220)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-564))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
- (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
- (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
+ (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564))))
+ (-12 (-5 *4 (-769)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564))))
(-5 *2 (-52)) (-5 *1 (-315 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
+ (-4 *3 (-13 (-27) (-1197) (-430 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-315 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-294 *3)) (-5 *5 (-767))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-294 *3)) (-5 *5 (-769))
+ (-4 *3 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-315 *6 *3))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6))
- (-4 *6 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-4 *6 (-13 (-27) (-1197) (-430 *5)))
+ (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3))
+ (-4 *3 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-767)))
- (-4 *7 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-769)))
+ (-4 *7 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-767)))
- (-4 *3 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-769)))
+ (-4 *3 (-13 (-27) (-1197) (-430 *7)))
+ (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1250 *3)))))
+ (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1253 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1) (-4 *1 (-493)))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *1 (-263))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2052 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *1 (-1261))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1))
- (-4 *1 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1))
- (-4 *1 (-1065 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-610 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170)))
- (-4 *2 (-13 (-430 *5) (-27) (-1194)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1207 *3))
+ (-5 *1 (-788 *3)) (-4 *3 (-972))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-112))
+ (-5 *1 (-1207 *2)) (-4 *2 (-972)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047))
+ (-5 *2 (-247 *4 *5)) (-5 *1 (-942 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564))
- (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-687 (-1169 *8))) (-4 *5 (-1047)) (-4 *8 (-1047))
+ (-4 *6 (-1238 *5)) (-5 *2 (-687 *6)) (-5 *1 (-501 *5 *6 *7 *8))
+ (-4 *7 (-1238 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564))
+ (-14 *6 (-769)) (-4 *7 (-172)) (-4 *8 (-172))
(-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789))
- (-4 *8 (-1045)) (-4 *2 (-945 *9 *7 *5))
- (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789))
- (-4 *4 (-945 *8 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *5 (-556))
+ (-12 (-5 *3 (-642 *9)) (-4 *9 (-1047)) (-4 *5 (-848)) (-4 *6 (-791))
+ (-4 *8 (-1047)) (-4 *2 (-947 *9 *7 *5))
+ (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-791))
+ (-4 *4 (-947 *8 *6 *5)))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |minor| (-641 (-917))) (|:| -1606 *3)
- (|:| |minors| (-641 (-641 (-917)))) (|:| |ops| (-641 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-652 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6))))
- (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6))
- (-5 *1 (-1252 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
+ (-642
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-769)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-791)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-848))
+ (-5 *1 (-449 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-126 *3)))))
+(((*1 *1) (-5 *1 (-291))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
+ (-12 (-5 *2 (-642 (-642 *6))) (-4 *6 (-947 *3 *5 *4))
+ (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-848) (-612 (-1173))))
+ (-4 *5 (-791)) (-5 *1 (-922 *3 *4 *5 *6)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *1 *1) (-4 *1 (-493)))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))
- ((*1 *1 *1 *1) (-4 *1 (-789))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2123 (-778 *3)) (|:| |coef1| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| -2123 *1) (|:| |coef1| *1)))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *3))
- (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
+ ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
- (-14 *4 (-767)) (-4 *5 (-172)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790))
+ (-5 *2 (-642 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097))
+ (-5 *2 (-642 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1153 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1047))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 *3)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-724))))
+ ((*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-642 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1253 *3)) (-4 *3 (-1047)) (-5 *2 (-1153 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225)))
+ (-5 *2 (-1033)) (-5 *1 (-745)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1034 *5)))
- (-4 *5 (-882 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-927 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3))
- (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)))))
+ (-12
+ (-5 *3
+ (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4)
+ (-247 *4 (-407 (-564)))))
+ (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112))
+ (-5 *1 (-505 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
+ (-14 *4 (-769)) (-4 *5 (-172)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-109))) (-5 *1 (-175)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1286 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848))
+ (-4 *4 (-172))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-817 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-817 *3)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848))
+ (-4 *4 (-1047))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-860)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1173)) (-5 *6 (-112))
+ (-4 *7 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-4 *3 (-13 (-1197) (-957) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-841 *3)) (|:| |f2| (-642 (-841 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *7 *3)) (-5 *5 (-841 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *1 *1) (-4 *1 (-493)))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225))))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-5 *2 (-1259 *3)) (-5 *1 (-708 *3 *4))
- (-4 *4 (-1235 *3)))))
+ (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545))
+ (-4 *3 (-556))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-831 *3)) (-4 *3 (-545))
+ (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-841 *3)) (-4 *3 (-545))
+ (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1006 *3))
+ (-4 *3 (-1036 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-749)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-747)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194))))
- ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045))
- (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-945 *2 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379))))
- (-5 *1 (-305)))))
+ (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-642 (-316 (-225)))) (-5 *1 (-267)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-791))
+ (-4 *3 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))) (-4 *5 (-556))
+ (-5 *1 (-730 *4 *3 *5 *2)) (-4 *2 (-947 (-407 (-950 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1047)) (-4 *5 (-791))
+ (-4 *3
+ (-13 (-848)
+ (-10 -8 (-15 -1314 ((-1173) $))
+ (-15 -3329 ((-3 $ "failed") (-1173))))))
+ (-5 *1 (-982 *4 *5 *3 *2)) (-4 *2 (-947 (-950 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-642 *6))
+ (-4 *6
+ (-13 (-848)
+ (-10 -8 (-15 -1314 ((-1173) $))
+ (-15 -3329 ((-3 $ "failed") (-1173))))))
+ (-4 *4 (-1047)) (-4 *5 (-791)) (-5 *1 (-982 *4 *5 *6 *2))
+ (-4 *2 (-947 (-950 *4) *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4)))
+ (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *4 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1155)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-263)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *1 *1) (-4 *1 (-493)))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881))
+ (-5 *3 (-642 (-564))))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1177)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-556)) (-5 *2 (-641 (-641 (-948 *5)))) (-5 *1 (-1178 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3))))
- ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-870)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-556)))))
+ (-12 (-5 *3 (-642 (-2 (|:| -3643 *4) (|:| -2775 (-564)))))
+ (-4 *4 (-1238 (-564))) (-5 *2 (-735 (-769))) (-5 *1 (-442 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-418 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-1047))
+ (-5 *2 (-735 (-769))) (-5 *1 (-444 *4 *5)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-4 *3 (-1097))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-407 (-564))))
+ (-5 *2 (-2 (|:| -3827 (-1153 *4)) (|:| -3839 (-1153 *4))))
+ (-5 *1 (-1159 *4)) (-5 *3 (-1153 *4)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-225))
+ (-5 *7 (-687 (-564))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-750)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
+ (-12 (-5 *2 (-919)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
((*1 *2 *1)
- (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172))))
+ (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-917)) (-4 *4 (-349))
+ (-12 (-5 *2 (-1262 *4)) (-5 *3 (-919)) (-4 *4 (-349))
(-5 *1 (-528 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3))
- (-4 *3 (-1094)))))
+ (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (-4 *2 (-1047)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1330 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *1) (-5 *1 (-578))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1235 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368))
- (-5 *2 (-767)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))))
- (-4 *4 (-1235 *3))
+ (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))))
+ (-4 *4 (-1238 *3))
(-5 *2
- (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
+ (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-687 *3))))
(-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3))
+ (-12 (-5 *3 (-564)) (-4 *4 (-1238 *3))
(-5 *2
- (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-5 *1 (-764 *4 *5)) (-4 *5 (-409 *3 *4))))
+ (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-687 *3))))
+ (-5 *1 (-766 *4 *5)) (-4 *5 (-409 *3 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3))
+ (-12 (-4 *4 (-349)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 *3))
(-5 *2
- (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5))))
+ (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-687 *3))))
+ (-5 *1 (-983 *4 *3 *5 *6)) (-4 *6 (-722 *3 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3))
+ (-12 (-4 *4 (-349)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 *3))
(-5 *2
- (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))))
+ (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-687 *3))))
+ (-5 *1 (-1271 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3))
+ (-5 *1 (-740 *5 *4 *6 *3)) (-4 *3 (-947 *6 *5 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1097)) (-4 *3 (-898 *5)) (-5 *2 (-1262 *3))
+ (-5 *1 (-690 *5 *3 *6 *4)) (-4 *6 (-373 *3))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))))
+(((*1 *1) (-5 *1 (-144)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-263)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-841 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-687 *5)) (-4 *5 (-1047)) (-5 *1 (-1052 *3 *4 *5))
+ (-14 *3 (-769)) (-14 *4 (-769)))))
+(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-724) (-25))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-672 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-738 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-848))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *1 (-978 *3)) (-4 *3 (-1047))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7))
+ (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1))
+ (-4 *1 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1))
+ (-4 *1 (-1068 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))
- (-5 *2 (-641 (-1170))) (-5 *1 (-267))))
+ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))
+ (-5 *2 (-642 (-1173))) (-5 *1 (-267))))
((*1 *2 *3)
- (-12 (-5 *3 (-1166 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-641 *5))
+ (-12 (-5 *3 (-1169 *7)) (-4 *7 (-947 *6 *4 *5)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1047)) (-5 *2 (-642 *5))
(-5 *1 (-321 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2)
+ (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2)
(-14 *4 *2) (-4 *5 (-387))))
((*1 *2 *1)
- (-12 (-4 *1 (-430 *3)) (-4 *3 (-1094)) (-5 *2 (-641 (-1170)))))
+ (-12 (-4 *1 (-430 *3)) (-4 *3 (-1097)) (-5 *2 (-642 (-1173)))))
((*1 *2 *1)
- (-12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097))))
((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-641 *5))))
+ (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-642 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *5))
- (-5 *1 (-946 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047))
+ (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *5))
+ (-5 *1 (-948 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-363)
- (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $)))))))
+ (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-4 *5 (-846)) (-5 *2 (-641 *5))))
+ (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-790))
+ (-4 *5 (-848)) (-5 *2 (-642 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5))))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170)))
- (-5 *1 (-1039 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-846)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209))
- (-5 *2 (-112)))))
+ (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-5 *2 (-642 (-1173)))
+ (-5 *1 (-1041 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1036 (-564))))
+ (-4 *5 (-1238 *4)) (-5 *2 (-642 (-407 *5))) (-5 *1 (-1014 *4 *5))
+ (-5 *3 (-407 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))
- (-5 *2 (-379)) (-5 *1 (-267))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-679))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-968))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1070))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1115)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-998))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677))))
- ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-966))))
- ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1067))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-4 *5 (-430 *4))
- (-5 *2
- (-3 (|:| |overq| (-1166 (-407 (-564))))
- (|:| |overan| (-1166 (-48))) (|:| -3285 (-112))))
- (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-767)))))
-(((*1 *1) (-4 *1 (-349))))
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2022 *4)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-755)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1047)) (-5 *2 (-1262 *3)) (-5 *1 (-710 *3 *4))
+ (-4 *4 (-1238 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1153 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2))
- (-4 *2 (-13 (-430 *5) (-27) (-1194)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094))))
+ (-12 (-5 *3 (-1169 (-407 (-1169 *2)))) (-5 *4 (-610 *2))
+ (-4 *2 (-13 (-430 *5) (-27) (-1197)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1097))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166 *1)) (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *3 (-846))))
+ (-12 (-5 *2 (-1169 *1)) (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047))
+ (-4 *5 (-791)) (-4 *3 (-848))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1045)) (-4 *1 (-945 *4 *5 *3))
- (-4 *5 (-789)) (-4 *3 (-846))))
+ (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1047)) (-4 *1 (-947 *4 *5 *3))
+ (-4 *5 (-791)) (-4 *3 (-848))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-1166 *2))) (-4 *5 (-789)) (-4 *4 (-846))
- (-4 *6 (-1045))
+ (-12 (-5 *3 (-407 (-1169 *2))) (-4 *5 (-791)) (-4 *4 (-848))
+ (-4 *6 (-1047))
(-4 *2
(-13 (-363)
- (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $)))))
- (-5 *1 (-946 *5 *4 *6 *7 *2)) (-4 *7 (-945 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-1166 (-407 (-948 *5))))) (-5 *4 (-1170))
- (-5 *2 (-407 (-948 *5))) (-5 *1 (-1039 *5)) (-4 *5 (-556)))))
+ (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $)))))
+ (-5 *1 (-948 *5 *4 *6 *7 *2)) (-4 *7 (-947 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-1169 (-407 (-950 *5))))) (-5 *4 (-1173))
+ (-5 *2 (-407 (-950 *5))) (-5 *1 (-1041 *5)) (-4 *5 (-556)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-875 *2)) (-4 *2 (-1212))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-877 *2)) (-4 *2 (-1212))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *1 (-880 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *1) (-5 *1 (-1060))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))))
- (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
+ (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-919)) (-5 *2 (-1169 *3)) (-5 *1 (-1186 *3))
+ (-4 *3 (-363)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-767)) (-4 *5 (-172))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767))
- (-4 *4 (-172))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3))
- (-4 *4 (-373 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-858)) (-5 *1 (-1150 *3)) (-4 *3 (-1094))
- (-4 *3 (-1209)))))
+ (-12 (-4 *3 (-1238 (-407 (-564)))) (-5 *1 (-911 *3 *2))
+ (-4 *2 (-1238 (-407 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1173)) (-4 *5 (-363)) (-5 *2 (-642 (-1206 *5)))
+ (-5 *1 (-1270 *5)) (-5 *4 (-1206 *5)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
+ (-4 *3 (-1238 *4))
+ (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))))))
+(((*1 *1) (-5 *1 (-186))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169 *1)) (-4 *1 (-1010)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(-5 *2
(-2
@@ -3998,10 +4257,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
+ (-3 (|:| |str| (-1153 (-225)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2141
+ (|:| -3894
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -4009,1962 +4268,2027 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *1 (-559)))))
-(((*1 *1) (-5 *1 (-186))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4))
+ (-5 *2 (-2 (|:| -4378 (-407 *5)) (|:| |poly| *3)))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5))))))
(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *1 *1 *1) (-5 *1 (-379)))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-642 *10)) (-5 *5 (-112)) (-4 *10 (-1068 *6 *7 *8 *9))
+ (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
+ (-4 *9 (-1062 *6 *7 *8))
+ (-5 *2
+ (-642
+ (-2 (|:| -1640 (-642 *9)) (|:| -3530 *10) (|:| |ineq| (-642 *9)))))
+ (-5 *1 (-986 *6 *7 *8 *9 *10)) (-5 *3 (-642 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-642 *10)) (-5 *5 (-112)) (-4 *10 (-1068 *6 *7 *8 *9))
+ (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
+ (-4 *9 (-1062 *6 *7 *8))
+ (-5 *2
+ (-642
+ (-2 (|:| -1640 (-642 *9)) (|:| -3530 *10) (|:| |ineq| (-642 *9)))))
+ (-5 *1 (-1104 *6 *7 *8 *9 *10)) (-5 *3 (-642 *9)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-641 (-917))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917))
- (-4 *2 (-363)) (-14 *5 (-989 *4 *2))))
+ (-12 (-5 *3 (-642 (-919))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-919))
+ (-4 *2 (-363)) (-14 *5 (-991 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846))
- (-4 *6 (-238 (-2181 *4) (-767)))
+ (-12 (-5 *3 (-711 *5 *6 *7)) (-4 *5 (-848))
+ (-4 *6 (-238 (-2127 *4) (-769)))
(-14 *7
- (-1 (-112) (-2 (|:| -2083 *5) (|:| -1838 *6))
- (-2 (|:| -2083 *5) (|:| -1838 *6))))
- (-14 *4 (-641 (-1170))) (-4 *2 (-172))
- (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-945 *2 *6 (-860 *4)))))
+ (-1 (-112) (-2 (|:| -2047 *5) (|:| -2700 *6))
+ (-2 (|:| -2047 *5) (|:| -2700 *6))))
+ (-14 *4 (-642 (-1173))) (-4 *2 (-172))
+ (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-947 *2 *6 (-862 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846))))
+ (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-848))))
((*1 *1 *2 *3)
(-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4))
- (-4 *4 (-1235 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045))))
+ (-4 *4 (-1238 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-706 *2)) (-4 *2 (-1047))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722))))
+ (-12 (-5 *1 (-733 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-724))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-767))) (-4 *1 (-736 *4 *5))
- (-4 *4 (-1045)) (-4 *5 (-846))))
+ (-12 (-5 *2 (-642 *5)) (-5 *3 (-642 (-769))) (-4 *1 (-738 *4 *5))
+ (-4 *4 (-1047)) (-4 *5 (-848))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045))
- (-4 *2 (-846))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045))))
+ (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *2)) (-4 *4 (-1047))
+ (-4 *2 (-848))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-850 *2)) (-4 *2 (-1047))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-767))) (-4 *1 (-945 *4 *5 *6))
- (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846))))
+ (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 (-769))) (-4 *1 (-947 *4 *5 *6))
+ (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *2 (-846))))
+ (-12 (-5 *3 (-769)) (-4 *1 (-947 *4 *5 *2)) (-4 *4 (-1047))
+ (-4 *5 (-791)) (-4 *2 (-848))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 *5)) (-4 *1 (-969 *4 *5 *6))
- (-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846))))
+ (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 *5)) (-4 *1 (-971 *4 *5 *6))
+ (-4 *4 (-1047)) (-4 *5 (-790)) (-4 *6 (-848))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788))
- (-4 *2 (-846)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-820)) (-5 *3 (-641 (-1170))) (-5 *1 (-821)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (|has| *1 (-6 -4408)) (-4 *1 (-373 *3))
- (-4 *3 (-1209)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))))
+ (-12 (-4 *1 (-971 *4 *3 *2)) (-4 *4 (-1047)) (-4 *3 (-790))
+ (-4 *2 (-848)))))
+(((*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1169 (-1169 *4))))
+ (-5 *1 (-1210 *4)) (-5 *3 (-1169 (-1169 *4))))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *6 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-642 (-407 *7)))
+ (-4 *7 (-1238 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-574 *6 *7)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4))))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5))
+ (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-1275 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556))
+ (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1275 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1267))
+ (-5 *1 (-449 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-506)) (-5 *2 (-689 (-1101))) (-5 *1 (-291)))))
(((*1 *1) (-5 *1 (-186))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-839 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-985))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791)) (-5 *2 (-112)) (-5 *1 (-922 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-112))
+ (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1155)) (-5 *1 (-987))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209))
- (-5 *1 (-1086 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
- (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330))
- (-5 *1 (-332))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-948 (-564)))) (-5 *2 (-330))
- (-5 *1 (-332))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-671 *3)) (-4 *3 (-1045))
- (-4 *3 (-1094)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5))
- (|:| |c2| (-407 *5)) (|:| |deg| (-767))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330))))
- ((*1 *1) (-5 *1 (-330))))
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1091 *4)) (-4 *4 (-1212))
+ (-5 *1 (-1089 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-858)) (-5 *2 (-689 (-129))) (-5 *3 (-129)))))
+(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-759))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-745)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225)))
+ (|:| |lb| (-642 (-841 (-225))))
+ (|:| |cf| (-642 (-316 (-225))))
+ (|:| |ub| (-642 (-841 (-225))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-642 (-316 (-225))))
+ (|:| -3366 (-642 (-225)))))))
+ (-5 *2 (-642 (-1155))) (-5 *1 (-267)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-1 (-225) (-225) (-225) (-225)))
+ (-5 *2 (-1 (-941 (-225)) (-225) (-225))) (-5 *1 (-695)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-791)) (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848))
+ (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-407 (-564)))
+ (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5))
+ (-4 *5 (-13 (-556) (-1036 (-564)))) (-5 *2 (-1169 (-407 (-564))))
+ (-5 *1 (-433 *5 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-363)) (-4 *3 (-1047))
+ (-5 *1 (-1157 *3)))))
(((*1 *1) (-5 *1 (-186))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-114)) (-4 *4 (-1047)) (-5 *1 (-712 *4 *2))
+ (-4 *2 (-646 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-834 *2)) (-4 *2 (-1047)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114))))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225)))
+ (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225))))
+ (|:| |ub| (-642 (-841 (-225))))))
+ (-5 *1 (-267)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-642 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-330)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1047)) (-4 *1 (-1238 *3)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1101)) (-5 *1 (-280)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3))))
+ ((*1 *1 *1) (-4 *1 (-1200))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-642 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
+ (-5 *1 (-210)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -2827 (-642 *3)) (|:| -4233 (-642 *3))))
+ (-5 *1 (-1213 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3))
+ (-4 *3 (-1097)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-452)) (-4 *4 (-818))
+ (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-52)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-679))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1115)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6))
- (-4 *6 (-342 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))))
+ (-12 (-5 *2 (-1024 (-841 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1047)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791))
+ (-5 *2
+ (-642
+ (-2 (|:| |eqzro| (-642 *7)) (|:| |neqzro| (-642 *7))
+ (|:| |wcond| (-642 (-950 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *4))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *4))))))))))
+ (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3))))
+ ((*1 *1 *1) (-4 *1 (-1200))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 *4))))
- (-5 *1 (-885 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))))
+ (-12 (-5 *2 (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 *4))))
+ (-5 *1 (-887 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097))))
((*1 *2 *1)
- (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))
- (-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556))
- (-4 *8 (-945 *7 *5 *6))
- (-5 *2 (-2 (|:| -1838 (-767)) (|:| -4376 *3) (|:| |radicand| *3)))
- (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -2423 ($ *8)) (-15 -2323 (*8 $)) (-15 -2336 (*8 $))))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
+ (-12 (-4 *3 (-1097)) (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097))
+ (-4 *7 (-1097)) (-5 *2 (-642 *1)) (-4 *1 (-1100 *3 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-642 (-687 (-564))))
+ (-5 *1 (-1107)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-642
+ (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 *3))
+ (|:| |logand| (-1169 *3)))))
+ (-5 *1 (-585 *3)) (-4 *3 (-363)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 (-610 *5))) (-5 *3 (-1173)) (-4 *5 (-430 *4))
+ (-4 *4 (-1097)) (-5 *1 (-573 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3))))
- (-5 *1 (-594 *3)) (-4 *3 (-1045)))))
+ (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
+ (-5 *2 (-1169 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *2 (-112))
+ (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34)))
+ (-4 *4 (-13 (-1097) (-34))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1136))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))
+ (-5 *2 (-1033)) (-5 *1 (-746)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))
- ((*1 *1 *1) (-5 *1 (-858)))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3))))
+ ((*1 *1 *1) (-4 *1 (-1200))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))
+ ((*1 *1 *1) (-5 *1 (-860)))
((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3))))
- ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-1095 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-112)) (-5 *1 (-827)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4))
- (-4 *2 (-1235 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045))
- (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-844)) (-4 *5 (-363))
- (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1235 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5))
- (-5 *1 (-940 *4 *5)) (-14 *4 (-641 (-1170))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1235 (-407 (-564))))
- (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))
- (-5 *1 (-909 *3 *4)) (-4 *4 (-1235 (-407 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *3))
- (-4 *3 (-1235 (-407 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-564)) (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-307))
+ (-4 *9 (-947 *8 *6 *7))
+ (-5 *2 (-2 (|:| -4229 (-1169 *9)) (|:| |polval| (-1169 *8))))
+ (-5 *1 (-740 *6 *7 *8 *9)) (-5 *3 (-1169 *9)) (-5 *4 (-1169 *8)))))
+(((*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1207 *2)) (-4 *2 (-972)))))
+(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 (-407 *2)))
+ (-4 *2 (-1238 *4)) (-5 *1 (-341 *3 *4 *2 *5))
+ (-4 *3 (-342 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1216))
+ (-4 *4 (-1238 (-407 *2))) (-4 *2 (-1238 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-307)) (-5 *1 (-698 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *5)) (-5 *4 (-919)) (-4 *5 (-848))
+ (-5 *2 (-59 (-642 (-670 *5)))) (-5 *1 (-670 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
- (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-917))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363)))
- (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6))
- (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-829 (-917)))))
- ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-595 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-595 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4))
- (-4 *4 (-1235 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045))
- (-4 *3 (-846))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846))
- (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4))
- (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6)))
- (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1034 (-564))))
- (-5 *2 (-767)) (-5 *1 (-907 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
- (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4)))
- (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-767))
- (-5 *1 (-908 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363))
- (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4))
- (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767))
- (-5 *1 (-1014 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-4 *3 (-556))
- (-5 *2 (-767))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3))))
+ ((*1 *1 *1) (-4 *1 (-1200))))
+(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
+ ((*1 *2 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307))))
+ ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-307))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-564)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3))
+ (-4 *6 (-373 *3)) (-5 *1 (-686 *3 *5 *6 *2))
+ (-4 *2 (-685 *3 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117))))))
+ (-4 *4 (-349)) (-5 *2 (-1267)) (-5 *1 (-528 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264))
- (-5 *1 (-1210 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264))
- (-5 *1 (-1210 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *3))
- (-4 *3 (-1235 (-407 *4))))))
-(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34))))))
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4))
+ (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-556))
+ (-5 *2 (-2 (|:| -1780 (-687 *5)) (|:| |vec| (-1262 (-642 (-919))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-919)) (-4 *3 (-654 *5)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *6))))
+ (-5 *4 (-1024 (-841 (-564)))) (-5 *5 (-1173)) (-5 *7 (-407 (-564)))
+ (-4 *6 (-1047)) (-5 *2 (-860)) (-5 *1 (-594 *6)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2))
+ (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3))
+ (-4 *3 (-1097)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34)))
- (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-970)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *3))
- (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7))
- (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-789))
- (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))))
-(((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3))))
+ ((*1 *1 *1) (-4 *1 (-1200))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097))
+ (-5 *2 (-642 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-2 (|:| |k| (-891 *3)) (|:| |c| *4))))
+ (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848))
+ (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-670 *3))) (-5 *1 (-891 *3)) (-4 *3 (-848)))))
+(((*1 *2 *2) (-12 (-5 *2 (-687 (-316 (-564)))) (-5 *1 (-1029)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6))
+ (|:| -1442 *6)))
+ (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 (-407 (-950 *6))))
+ (-5 *3 (-407 (-950 *6)))
+ (-4 *6 (-13 (-556) (-1036 (-564)) (-147)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-570 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 *3))
+ (-4 *3 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-557 *6 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1133))) ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1330 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
+ (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1098 *3 *4)) (-14 *3 (-919))
+ (-14 *4 (-919)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1212)) (-4 *1 (-238 *3 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-697)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-1161 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1264))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1264)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-379)) (-5 *1 (-205)))))
(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-316 *4))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4))))))
+ (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-316 *4))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
+ (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3))))
+ ((*1 *1 *1) (-4 *1 (-1200))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2022 *4)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-787)) (-5 *5 (-564)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1034 (-564))) (-4 *3 (-556)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-302))))
- ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3))))
- ((*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363)))
- (-4 *2 (-1235 *3)))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-430 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173))))
+ ((*1 *1 *1) (-4 *1 (-160))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4))
- (-14 *3 (-641 (-1170))) (-4 *4 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170)))
- (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045))
- (-4 *5 (-238 (-2181 *3) (-767)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4))
- (-14 *3 (-641 (-1170))) (-4 *4 (-1045)))))
+ (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34)))
+ (-4 *3 (-13 (-1097) (-34))))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-769)) (-4 *5 (-172))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769))
+ (-4 *4 (-172))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1047)) (-4 *1 (-685 *3 *2 *4)) (-4 *2 (-373 *3))
+ (-4 *4 (-373 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1139 *2 *3)) (-14 *2 (-769)) (-4 *3 (-1047)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-767))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-1094)) (-5 *2 (-767)) (-5 *1 (-429 *3 *4))
- (-4 *3 (-430 *4))))
- ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545))))
- ((*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-792 *3 *4))
- (-4 *3 (-793 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-987 *3 *4))
- (-4 *3 (-988 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-992 *3 *4))
- (-4 *3 (-993 *4))))
- ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008))))
- ((*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767))))
- ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))))
-(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2123 *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
+ (-12 (-4 *3 (-1047)) (-5 *2 (-956 (-710 *3 *4))) (-5 *1 (-710 *3 *4))
+ (-4 *4 (-1238 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1238 *6))
+ (-4 *6 (-13 (-363) (-147) (-1036 *4))) (-5 *4 (-564))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -1640
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1013 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-1212)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097)))))
(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-316 *4))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))
+ (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-316 *4))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
+ (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 (-642 *8))) (-5 *3 (-642 *8))
+ (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-791))
+ (-4 *7 (-848)) (-5 *2 (-112)) (-5 *1 (-975 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-642 *11))
+ (|:| |todo| (-642 (-2 (|:| |val| *3) (|:| -3530 *11))))))
+ (-5 *6 (-769))
+ (-5 *2 (-642 (-2 (|:| |val| (-642 *10)) (|:| -3530 *11))))
+ (-5 *3 (-642 *10)) (-5 *4 (-642 *11)) (-4 *10 (-1062 *7 *8 *9))
+ (-4 *11 (-1068 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-791))
+ (-4 *9 (-848)) (-5 *1 (-1066 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-642 *11))
+ (|:| |todo| (-642 (-2 (|:| |val| *3) (|:| -3530 *11))))))
+ (-5 *6 (-769))
+ (-5 *2 (-642 (-2 (|:| |val| (-642 *10)) (|:| -3530 *11))))
+ (-5 *3 (-642 *10)) (-5 *4 (-642 *11)) (-4 *10 (-1062 *7 *8 *9))
+ (-4 *11 (-1106 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-791))
+ (-4 *9 (-848)) (-5 *1 (-1142 *7 *8 *9 *10 *11)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-642
+ (-2 (|:| -2414 (-769))
+ (|:| |eqns|
+ (-642
+ (-2 (|:| |det| *7) (|:| |rows| (-642 (-564)))
+ (|:| |cols| (-642 (-564))))))
+ (|:| |fgb| (-642 *7)))))
+ (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-769))
+ (-5 *1 (-922 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264))))
+ ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))))
(((*1 *1 *1) (-4 *1 (-627)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1194))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-1204 *3))
- (-4 *3 (-970)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9))
- (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *9 (-1059 *6 *7 *8))
+ (-4 *2 (-13 (-430 *3) (-1000) (-1197))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-654 *3)) (-4 *3 (-1047)) (-4 *3 (-363))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-769)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
+ (-5 *1 (-657 *5 *2)) (-4 *2 (-654 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
(-5 *2
- (-641
- (-2 (|:| -1606 (-641 *9)) (|:| -3577 *10) (|:| |ineq| (-641 *9)))))
- (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9))
- (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *9 (-1059 *6 *7 *8))
+ (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-787)) (-5 *5 (-564)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1173)) (-5 *1 (-673 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-642 *7) *7 (-1169 *7))) (-5 *5 (-1 (-418 *7) *7))
+ (-4 *7 (-1238 *6)) (-4 *6 (-13 (-363) (-147) (-1036 (-407 (-564)))))
+ (-5 *2 (-642 (-2 (|:| |frac| (-407 *7)) (|:| -1640 *3))))
+ (-5 *1 (-807 *6 *7 *3 *8)) (-4 *3 (-654 *7))
+ (-4 *8 (-654 (-407 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
(-5 *2
- (-641
- (-2 (|:| -1606 (-641 *9)) (|:| -3577 *10) (|:| |ineq| (-641 *9)))))
- (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-641 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
- (-4 *3 (-556)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
+ (-642 (-2 (|:| |frac| (-407 *6)) (|:| -1640 (-652 *6 (-407 *6))))))
+ (-5 *1 (-810 *5 *6)) (-5 *3 (-652 *6 (-407 *6))))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1136))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791)) (-5 *2 (-407 (-950 *4))) (-5 *1 (-922 *4 *5 *6 *3))
+ (-4 *3 (-947 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-687 *7)) (-4 *7 (-947 *4 *6 *5))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791)) (-5 *2 (-687 (-407 (-950 *4))))
+ (-5 *1 (-922 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *6 *5))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791)) (-5 *2 (-642 (-407 (-950 *4))))
+ (-5 *1 (-922 *4 *5 *6 *7)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564))))
- ((*1 *1 *1) (-4 *1 (-998)))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1008))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1008))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-917))))
- ((*1 *1 *1) (-4 *1 (-1008))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564))))
+ ((*1 *1 *1) (-4 *1 (-1000)))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1010))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1010))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-919))))
+ ((*1 *1 *1) (-4 *1 (-1010))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-481 *4 *5))) (-14 *4 (-642 (-1173)))
+ (-4 *5 (-452))
+ (-5 *2
+ (-2 (|:| |gblist| (-642 (-247 *4 *5)))
+ (|:| |gvlist| (-642 (-564)))))
+ (-5 *1 (-629 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-546))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34)))
+ (-4 *4 (-13 (-1097) (-34))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-305))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-1033))) (-5 *2 (-1033)) (-5 *1 (-305))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-649 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1 *1) (-5 *1 (-1060)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1150 *4))
+ (-4 *4 (-1212))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *1) (-5 *1 (-1079))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2141
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1031)) (-5 *1 (-305)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1045)) (-4 *4 (-556))
- (-5 *2 (-407 (-948 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1045)) (-4 *4 (-556))
- (-5 *2 (-407 (-948 *4))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-305))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1031))) (-5 *2 (-1031)) (-5 *1 (-305))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *1) (-5 *1 (-1057)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4))
- (-4 *4 (-1209))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
- (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225)))
- (-5 *1 (-693))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225)))
- (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3))
- (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2))
- (-4 *2 (-683 *3 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))
+ (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-1097)) (-4 *2 (-1097))
+ (-5 *1 (-609 *2 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-363)) (-5 *2 (-642 (-1153 *4))) (-5 *1 (-285 *4 *5))
+ (-5 *3 (-1153 *4)) (-4 *5 (-1253 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1176)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1097)) (-5 *2 (-112)) (-5 *1 (-883 *3 *4 *5))
+ (-4 *3 (-1097)) (-4 *5 (-664 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209))
- (-14 *4 (-564)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264))
- (-5 *1 (-1173))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264))
- (-5 *1 (-1173)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-846))
- (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307))
- (-5 *2 (-641 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-1235 *4)) (-4 *4 (-1045))
- (-5 *2 (-1259 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-848 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045))
- (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-849 *5 *3))
- (-4 *3 (-848 *5)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-887 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1235 (-48)))))
+ (-12 (-5 *4 (-642 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1238 (-48)))))
((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48)))))
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-48))) (-4 *5 (-846)) (-4 *6 (-789))
- (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-945 (-48) *6 *5))))
+ (-12 (-5 *4 (-642 (-48))) (-4 *5 (-848)) (-4 *6 (-791))
+ (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-947 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-48))) (-4 *5 (-846)) (-4 *6 (-789))
- (-4 *7 (-945 (-48) *6 *5)) (-5 *2 (-418 (-1166 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1166 *7))))
+ (-12 (-5 *4 (-642 (-48))) (-4 *5 (-848)) (-4 *6 (-791))
+ (-4 *7 (-947 (-48) *6 *5)) (-5 *2 (-418 (-1169 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1169 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3))
- (-4 *3 (-1235 (-169 *4)))))
+ (-4 *3 (-1238 (-169 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))
+ (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))
+ (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-418 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1235 *4))))
+ (-4 *3 (-1238 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1235 (-564)))))
+ (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1238 (-564)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1235 (-564)))))
+ (-12 (-5 *4 (-642 (-769))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1238 (-564)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3))
- (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
+ (-12 (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *2 (-418 *3))
+ (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1235 (-564)))))
+ (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1238 (-564)))))
((*1 *2 *3)
(-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446))
(-5 *3 (-169 (-564)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-846)
- (-10 -8 (-15 -1311 ((-1170) $))
- (-15 -3395 ((-3 $ "failed") (-1170))))))
- (-4 *5 (-789)) (-4 *7 (-556)) (-5 *2 (-418 *3))
+ (-13 (-848)
+ (-10 -8 (-15 -1314 ((-1173) $))
+ (-15 -3329 ((-3 $ "failed") (-1173))))))
+ (-4 *5 (-791)) (-4 *7 (-556)) (-5 *2 (-418 *3))
(-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556))
- (-4 *3 (-945 *7 *5 *4))))
+ (-4 *3 (-947 *7 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1166 *4))) (-5 *1 (-458 *4))
- (-5 *3 (-1166 *4))))
+ (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1169 *4))) (-5 *1 (-458 *4))
+ (-5 *3 (-1169 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-418 *3))
- (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1235 *7))))
+ (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363))
+ (-4 *7 (-13 (-363) (-147) (-722 *5 *6))) (-5 *2 (-418 *3))
+ (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1238 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7)))
- (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789))
+ (-12 (-5 *4 (-1 (-418 (-1169 *7)) (-1169 *7)))
+ (-4 *7 (-13 (-307) (-147))) (-4 *5 (-848)) (-4 *6 (-791))
(-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3))
- (-4 *3 (-945 *7 *6 *5))))
+ (-4 *3 (-947 *7 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7)))
- (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789))
- (-4 *8 (-945 *7 *6 *5)) (-5 *2 (-418 (-1166 *8)))
- (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1166 *8))))
+ (-12 (-5 *4 (-1 (-418 (-1169 *7)) (-1169 *7)))
+ (-4 *7 (-13 (-307) (-147))) (-4 *5 (-848)) (-4 *6 (-791))
+ (-4 *8 (-947 *7 *6 *5)) (-5 *2 (-418 (-1169 *8)))
+ (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1169 *8))))
((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-4 *6 (-1235 *5)) (-5 *2 (-641 (-649 (-407 *6))))
- (-5 *1 (-653 *5 *6)) (-5 *3 (-649 (-407 *6)))))
+ (-12 (-5 *4 (-1 (-642 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-4 *6 (-1238 *5)) (-5 *2 (-642 (-651 (-407 *6))))
+ (-5 *1 (-655 *5 *6)) (-5 *3 (-651 (-407 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5))))
- (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5)))))
+ (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-4 *5 (-1238 *4)) (-5 *2 (-642 (-651 (-407 *5))))
+ (-5 *1 (-655 *4 *5)) (-5 *3 (-651 (-407 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-641 (-668 *4)))
- (-5 *1 (-668 *4))))
+ (-12 (-5 *3 (-817 *4)) (-4 *4 (-848)) (-5 *2 (-642 (-670 *4)))
+ (-5 *1 (-670 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-5 *2 (-641 *3)) (-5 *1 (-692 *3))
- (-4 *3 (-1235 *4))))
+ (-12 (-5 *4 (-564)) (-5 *2 (-642 *3)) (-5 *1 (-694 *3))
+ (-4 *3 (-1238 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-5 *2 (-418 *3))
- (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))
+ (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-349)) (-5 *2 (-418 *3))
+ (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-947 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349))
- (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1166 *7)))
- (-5 *1 (-694 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
+ (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-349))
+ (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-418 (-1169 *7)))
+ (-5 *1 (-696 *4 *5 *6 *7)) (-5 *3 (-1169 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-789))
+ (-12 (-4 *4 (-791))
(-4 *5
- (-13 (-846)
- (-10 -8 (-15 -1311 ((-1170) $))
- (-15 -3395 ((-3 $ "failed") (-1170))))))
- (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-726 *4 *5 *6 *3))
- (-4 *3 (-945 (-948 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789))
- (-4 *5 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))) (-4 *6 (-556))
- (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3))
- (-4 *3 (-945 (-407 (-948 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147)))
- (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3))
- (-4 *3 (-945 (-407 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147)))
- (-5 *2 (-418 *3)) (-5 *1 (-737 *4 *5 *6 *3))
- (-4 *3 (-945 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147)))
- (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1166 *7)))
- (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3))
- (-4 *3 (-1235 (-407 (-564))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1037 *3))
- (-4 *3 (-1235 (-407 (-948 (-564)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1235 (-407 (-564))))
- (-4 *5 (-13 (-363) (-147) (-720 (-407 (-564)) *4)))
- (-5 *2 (-418 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1235 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1235 (-407 (-948 (-564)))))
- (-4 *5 (-13 (-363) (-147) (-720 (-407 (-948 (-564))) *4)))
- (-5 *2 (-418 *3)) (-5 *1 (-1075 *4 *5 *3)) (-4 *3 (-1235 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7))))
- (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
-(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-998))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+ (-13 (-848)
+ (-10 -8 (-15 -1314 ((-1173) $))
+ (-15 -3329 ((-3 $ "failed") (-1173))))))
+ (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3))
+ (-4 *3 (-947 (-950 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-791))
+ (-4 *5 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))) (-4 *6 (-556))
+ (-5 *2 (-418 *3)) (-5 *1 (-730 *4 *5 *6 *3))
+ (-4 *3 (-947 (-407 (-950 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-13 (-307) (-147)))
+ (-5 *2 (-418 *3)) (-5 *1 (-731 *4 *5 *6 *3))
+ (-4 *3 (-947 (-407 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-13 (-307) (-147)))
+ (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3))
+ (-4 *3 (-947 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-13 (-307) (-147)))
+ (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-418 (-1169 *7)))
+ (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1169 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-1005 *3))
+ (-4 *3 (-1238 (-407 (-564))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-1039 *3))
+ (-4 *3 (-1238 (-407 (-950 (-564)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1238 (-407 (-564))))
+ (-4 *5 (-13 (-363) (-147) (-722 (-407 (-564)) *4)))
+ (-5 *2 (-418 *3)) (-5 *1 (-1076 *4 *5 *3)) (-4 *3 (-1238 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1238 (-407 (-950 (-564)))))
+ (-4 *5 (-13 (-363) (-147) (-722 (-407 (-950 (-564))) *4)))
+ (-5 *2 (-418 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1238 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-452))
+ (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 (-407 *7))))
+ (-5 *1 (-1168 *4 *5 *6 *7)) (-5 *3 (-1169 (-407 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1216))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1097)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34))))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
- (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
- (-5 *1 (-784)))))
-(((*1 *1 *1) (-4 *1 (-627)))
+ (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-848))
+ (-4 *4 (-791)) (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1116))))
((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1194))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4))
- (-4 *4 (-1094))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-1094))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4))
- (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1094))
- (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-612 (-888 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4)))
- (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
- (-14 *4 (-767)) (-4 *5 (-172)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225)))
- (|:| |lb| (-641 (-839 (-225))))
- (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-839 (-225))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-641 (-316 (-225))))
- (|:| -3431 (-641 (-225)))))))
- (-5 *2 (-641 (-1152))) (-5 *1 (-267)))))
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-745)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-556))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *2 (-919)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1047))
+ (-4 *4 (-1212))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172))
+ (-4 *5 (-238 (-2127 *3) (-769)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2047 *2) (|:| -2700 *5))
+ (-2 (|:| -2047 *2) (|:| -2700 *5))))
+ (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-848))
+ (-4 *7 (-947 *4 *5 (-862 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-687 *1)) (-4 *1 (-349)) (-5 *2 (-1262 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-687 *1)) (-4 *1 (-145)) (-4 *1 (-907))
+ (-5 *2 (-1262 *1)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-687 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))))
+(((*1 *1 *1) (-4 *1 (-627)))
((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-1054))))
- ((*1 *1 *1) (-4 *1 (-844)))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)) (-4 *2 (-1054))))
- ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1) (-4 *1 (-1133))))
-(((*1 *1) (-5 *1 (-437))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000) (-1197))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114))))))
- (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4)))))
+ (-12 (-5 *3 (-642 (-2 (|:| -2085 *4) (|:| -1915 (-564)))))
+ (-4 *4 (-1097)) (-5 *2 (-1 *4)) (-5 *1 (-1015 *4)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-846))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4))
- (-14 *3 (-917)) (-4 *4 (-1045))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
- (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))))
+ (|partial| -12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047))
+ (-5 *1 (-1157 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047))
+ (-14 *4 (-1173)) (-14 *5 *3))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170)))
- (-4 *6 (-13 (-556) (-1034 *5))) (-4 *5 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-948 *6)))))) (-5 *1 (-1035 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
+ (-12 (-4 *5 (-363)) (-4 *7 (-1238 *5)) (-4 *4 (-722 *5 *7))
+ (-5 *2 (-2 (|:| -1780 (-687 *6)) (|:| |vec| (-1262 *5))))
+ (-5 *1 (-809 *5 *6 *7 *4 *3)) (-4 *6 (-654 *5)) (-4 *3 (-654 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-737 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-787)) (-5 *5 (-564)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *3 (-642 (-564)))
+ (-5 *1 (-881)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-1000) (-1197)))
+ (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-1000) (-1197))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-769)) (-5 *3 (-941 *5)) (-4 *5 (-1047))
+ (-5 *1 (-1161 *4 *5)) (-14 *4 (-919))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-642 (-769))) (-5 *3 (-769)) (-5 *1 (-1161 *4 *5))
+ (-14 *4 (-919)) (-4 *5 (-1047))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-642 (-769))) (-5 *3 (-941 *5)) (-4 *5 (-1047))
+ (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-975 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 *7)) (-5 *3 (-112)) (-4 *7 (-1062 *4 *5 *6))
+ (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *1 (-975 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1238 *4))
+ (-5 *1 (-775 *3 *4 *5 *2 *6)) (-4 *2 (-1238 *5)) (-14 *6 (-919))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-363)) (-4 *2 (-368)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1097)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4)))
+ (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))))
+ (-4 *4 (-1238 *3))
+ (-5 *2
+ (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-687 *3))))
+ (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1238 (-564)))
+ (-5 *2
+ (-2 (|:| -4263 (-687 (-564))) (|:| |basisDen| (-564))
+ (|:| |basisInv| (-687 (-564)))))
+ (-5 *1 (-766 *3 *4)) (-4 *4 (-409 (-564) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-349)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 *4))
+ (-5 *2
+ (-2 (|:| -4263 (-687 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-687 *4))))
+ (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-722 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-349)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 *4))
+ (-5 *2
+ (-2 (|:| -4263 (-687 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-687 *4))))
+ (-5 *1 (-1271 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-1094))
- (-4 *4 (-556)) (-5 *2 (-407 (-1166 *1)))))
+ (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-1097))
+ (-4 *4 (-556)) (-5 *2 (-407 (-1169 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2 (-1166 (-407 (-1166 *3)))) (-5 *1 (-560 *6 *3 *7))
- (-5 *5 (-1166 *3)) (-4 *7 (-1094))))
+ (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1197)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2 (-1169 (-407 (-1169 *3)))) (-5 *1 (-560 *6 *3 *7))
+ (-5 *5 (-1169 *3)) (-4 *7 (-1097))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1255 *5)) (-14 *5 (-1170)) (-4 *6 (-1045))
- (-5 *2 (-1232 *5 (-948 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-948 *6))))
+ (-12 (-5 *4 (-1258 *5)) (-14 *5 (-1173)) (-4 *6 (-1047))
+ (-5 *2 (-1235 *5 (-950 *6))) (-5 *1 (-945 *5 *6)) (-5 *3 (-950 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-1166 *3))))
+ (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-1169 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1166 *1))
- (-4 *1 (-945 *4 *5 *3))))
+ (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848)) (-5 *2 (-1169 *1))
+ (-4 *1 (-947 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-407 (-1166 *3)))
- (-5 *1 (-946 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-791)) (-4 *4 (-848)) (-4 *6 (-1047))
+ (-4 *7 (-947 *6 *5 *4)) (-5 *2 (-407 (-1169 *3)))
+ (-5 *1 (-948 *5 *4 *6 *7 *3))
(-4 *3
(-13 (-363)
- (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $)))))))
+ (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1166 *3))
+ (-12 (-5 *2 (-1169 *3))
(-4 *3
(-13 (-363)
- (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $)))))
- (-4 *7 (-945 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846))
- (-4 *6 (-1045)) (-5 *1 (-946 *5 *4 *6 *7 *3))))
+ (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $)))))
+ (-4 *7 (-947 *6 *5 *4)) (-4 *5 (-791)) (-4 *4 (-848))
+ (-4 *6 (-1047)) (-5 *1 (-948 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-556))
- (-5 *2 (-407 (-1166 (-407 (-948 *5))))) (-5 *1 (-1039 *5))
- (-5 *3 (-407 (-948 *5))))))
-(((*1 *2)
- (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))))
+ (-12 (-5 *4 (-1173)) (-4 *5 (-556))
+ (-5 *2 (-407 (-1169 (-407 (-950 *5))))) (-5 *1 (-1041 *5))
+ (-5 *3 (-407 (-950 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1238 *5))
+ (-5 *2 (-642 *3)) (-5 *1 (-775 *4 *5 *6 *3 *7)) (-4 *3 (-1238 *6))
+ (-14 *7 (-919)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1) (-4 *1 (-284)))
((*1 *2 *3)
(-12 (-5 *3 (-418 *4)) (-4 *4 (-556))
- (-5 *2 (-641 (-2 (|:| -4376 (-767)) (|:| |logand| *4))))
+ (-5 *2 (-642 (-2 (|:| -4378 (-769)) (|:| |logand| *4))))
(-5 *1 (-320 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *2 *1)
- (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917))))
+ (-12 (-5 *2 (-662 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848))
+ (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564)))))
- (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))
+ (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564)))))
+ (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4))
- (-4 *4 (-713 (-407 (-564)))) (-4 *3 (-846)) (-4 *4 (-172)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4))
+ (-4 *4 (-715 (-407 (-564)))) (-4 *3 (-848)) (-4 *4 (-172)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1173)) (-4 *4 (-1047)) (-4 *4 (-1097))
+ (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2700 (-564))))
+ (-4 *1 (-430 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1047)) (-4 *4 (-1097))
+ (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2700 (-564))))
+ (-4 *1 (-430 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1109)) (-4 *3 (-1097))
+ (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2700 (-564))))
+ (-4 *1 (-430 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-890 *3)) (|:| -2700 (-769))))
+ (-5 *1 (-890 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-2 (|:| |var| *5) (|:| -2700 (-769))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047))
+ (-4 *7 (-947 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -2700 (-564))))
+ (-5 *1 (-948 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $))
+ (-15 -2255 (*7 $))))))))
+(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1176)))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2))
- (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4407) (-6 -4408))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-846)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2))
- (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4407) (-6 -4408)))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-750)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-769))))
+ ((*1 *1 *1) (-4 *1 (-402))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4))))
- (-5 *1 (-802 *5 *6 *7 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))))
-(((*1 *2)
- (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
+ (-12 (-5 *4 (-642 *5)) (-4 *5 (-1238 *3)) (-4 *3 (-307))
+ (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564)))))
+ (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-610 *1))) (-4 *1 (-302)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-468)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263)))))
(((*1 *2 *1 *3)
(-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3)
(-5 *3 (-564))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-867 *4)) (-14 *4 *3)
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-869 *4)) (-14 *4 *3)
(-5 *3 (-564))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-868 *4 *5))
- (-5 *3 (-564)) (-4 *5 (-865 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-564)))))
+ (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-870 *4 *5))
+ (-5 *3 (-564)) (-4 *5 (-867 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1010)) (-5 *2 (-407 (-564)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363)))
- (-4 *3 (-1235 *2))))
+ (-12 (-4 *1 (-1065 *2 *3)) (-4 *2 (-13 (-846) (-363)))
+ (-4 *3 (-1238 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2423 (*2 (-1170))))
- (-4 *2 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-765))
- (-5 *2
- (-2 (|:| -3644 (-379)) (|:| -2562 (-1152))
- (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))))
- (-5 *1 (-565))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-765)) (-5 *4 (-1057))
- (-5 *2
- (-2 (|:| -3644 (-379)) (|:| -2562 (-1152))
- (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))))
- (-5 *1 (-565))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-783)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))
- (|:| |extra| (-1031))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-783)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))
- (|:| |extra| (-1031))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-796)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-804))
- (-5 *2
- (-2 (|:| -3644 (-379)) (|:| -2562 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-801))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-804)) (-5 *4 (-1057))
- (-5 *2
- (-2 (|:| -3644 (-379)) (|:| -2562 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-801))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-835)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))
- (-5 *2 (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-835)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225)))
- (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-839 (-225))))))
- (-5 *2 (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-837))
- (-5 *2
- (-2 (|:| -3644 (-379)) (|:| -2562 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-837)) (-5 *4 (-1057))
- (-5 *2
- (-2 (|:| -3644 (-379)) (|:| -2562 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-891)) (-5 *3 (-1057))
- (-5 *4
- (-2 (|:| |pde| (-641 (-316 (-225))))
- (|:| |constraints|
- (-641
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-767)) (|:| |boundaryType| (-564))
- (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
- (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
- (|:| |tol| (-225))))
- (-5 *2 (-2 (|:| -3644 (-379)) (|:| |explanations| (-1152))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-894))
+ (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2327 (*2 (-1173))))
+ (-4 *2 (-1047)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-817 *3)) (-4 *3 (-848)) (-5 *1 (-670 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-434))
(-5 *2
- (-2 (|:| -3644 (-379)) (|:| -2562 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-893))))
+ (-642
+ (-3 (|:| -2461 (-1173))
+ (|:| -2673 (-642 (-3 (|:| S (-1173)) (|:| P (-950 (-564)))))))))
+ (-5 *1 (-1177)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-919)) (-5 *1 (-1098 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791))
+ (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1066 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-894)) (-5 *4 (-1057))
- (-5 *2
- (-2 (|:| -3644 (-379)) (|:| -2562 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-893)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1170))
- (-4 *5 (-13 (-452) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-2 (|:| -2177 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-468)) (-5 *1 (-1260)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-767)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-846))
- (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8))
- (-4 *8 (-945 *3 *7 *6)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241))))
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791))
+ (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173))
+ (-14 *4 *2))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-241))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152))
+ (-12 (-5 *2 (-642 (-1155))) (-5 *3 (-564)) (-5 *4 (-1155))
(-5 *1 (-241))))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858))))
+ ((*1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860))))
((*1 *2 *1)
- (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))))
-(((*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
+ (-12 (-4 *1 (-1240 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4409 "*")))
- (-4 *4 (-1045)) (-5 *1 (-1024 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-917))
- (|has| *4 (-6 (-4409 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1115)) (-5 *1 (-1112)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1212)) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-672 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1235 (-169 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1235 (-169 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-1047))
+ (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-919)) (-4 *5 (-1047))
+ (-4 *2 (-13 (-404) (-1036 *5) (-363) (-1197) (-284)))
+ (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1238 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-263))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1265)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-860 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452))
- (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7))
- (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2)))))
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-848)) (-4 *5 (-907)) (-4 *6 (-791))
+ (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-418 (-1169 *8)))
+ (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-1169 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5)))
+ (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-612 (-379)))))
+ (-12 (-5 *2 (-169 (-379))) (-5 *1 (-783 *3)) (-4 *3 (-612 (-379)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-5 *2 (-169 (-379))) (-5 *1 (-781 *3))
+ (-12 (-5 *4 (-919)) (-5 *2 (-169 (-379))) (-5 *1 (-783 *3))
(-4 *3 (-612 (-379)))))
((*1 *2 *3)
(-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379)))
- (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
+ (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-169 *5)) (-5 *4 (-919)) (-4 *5 (-172))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379)))
- (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
+ (-12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379)))
+ (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-172))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 (-379)))
- (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
+ (-12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 (-379)))
+ (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379)))
- (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
+ (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379)))
+ (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-556))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
+ (-12 (-5 *3 (-407 (-950 (-169 *4)))) (-4 *4 (-556))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-556))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-407 (-950 (-169 *5)))) (-5 *4 (-919)) (-4 *5 (-556))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
+ (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-846))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
+ (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-848))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-556))
- (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-781 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349))
- (-5 *2 (-641 (-2 (|:| |deg| (-767)) (|:| -1770 *3))))
- (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-782)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))
- (-5 *2 (-641 (-225))) (-5 *1 (-305)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225)))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-939 (-225)))))
- (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-924)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-641 (-948 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-641 (-948 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-948 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-641 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-948 *4)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172))
- (-14 *5 (-917)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-556))
+ (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
+ (-5 *1 (-783 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1238 *5))
+ (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-556) (-1036 (-564))))
+ (-4 *7 (-1238 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2))
+ (-4 *2 (-342 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))
+ (-5 *2 (-1033)) (-5 *1 (-746)))))
+(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1155)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1155)) (-5 *1 (-97)))))
+(((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094))))
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1097))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112))
- (-5 *1 (-1210 *3)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-751))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-1230 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| -2128 *4) (|:| -3476 (-564)))))
- (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))))
-(((*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))))
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1097)) (-5 *2 (-112))
+ (-5 *1 (-1213 *3)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 *5)) (-4 *5 (-556))
- (-5 *2
- (-2 (|:| -1838 (-767)) (|:| -4376 *5) (|:| |radicand| (-641 *5))))
- (-5 *1 (-320 *5)) (-5 *4 (-767))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-564)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-919)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-872))
+ (-5 *2 (-1267)) (-5 *1 (-1263)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 *4))))
+ (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (|has| *1 (-6 -4408)) (-4 *1 (-1247 *3))
- (-4 *3 (-1209)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-556))
- (-5 *2 (-2 (|:| -2511 (-685 *5)) (|:| |vec| (-1259 (-641 (-917))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-652 *5)))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-436)))))
+(((*1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-1212)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 *4))))
- (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3))
- (-4 *3 (-363)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-641 (-2 (|:| -1604 *1) (|:| -2319 (-641 *7)))))
- (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7)))
- (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789))
- (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8)))
- (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
+ (|partial| -12 (-5 *2 (-642 (-1169 *7))) (-5 *3 (-1169 *7))
+ (-4 *7 (-947 *4 *5 *6)) (-4 *4 (-907)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-5 *1 (-904 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-642 (-1169 *5))) (-5 *3 (-1169 *5))
+ (-4 *5 (-1238 *4)) (-4 *4 (-907)) (-5 *1 (-905 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1235 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-641 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3))
- (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1235 (-564)))))
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-947 *4 *5 *6)) (-4 *6 (-612 (-1173)))
+ (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *2 (-1162 (-642 (-950 *4)) (-642 (-294 (-950 *4)))))
+ (-5 *1 (-504 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1033)) (-5 *1 (-747))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-388)) (-5 *2 (-1033)) (-5 *1 (-747)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3))
- (-4 *3 (-1235 (-407 (-564))))))
+ (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-112))
+ (-5 *1 (-357 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
+ (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-112))
+ (-5 *1 (-528 *4)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-687 (-533)))
- (-5 *1 (-533))))
+ (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-642 (-1173))) (-5 *2 (-642 (-1044 *5 *6)))
+ (-5 *1 (-626 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-919)) (-5 *4 (-418 *6)) (-4 *6 (-1238 *5))
+ (-4 *5 (-1047)) (-5 *2 (-642 *6)) (-5 *1 (-444 *5 *6)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-950 *6)) (-5 *4 (-1173))
+ (-5 *5 (-841 *7))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-4 *7 (-13 (-1197) (-29 *6))) (-5 *1 (-224 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1169 *6)) (-5 *4 (-841 *6))
+ (-4 *6 (-13 (-1197) (-29 *5)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-224 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-642 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5))
+ (-5 *2 (-642 (-2 (|:| -2858 *5) (|:| -1640 *3))))
+ (-5 *1 (-807 *5 *6 *3 *7)) (-4 *3 (-654 *6))
+ (-4 *7 (-654 (-407 *6))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-680 *2)) (-4 *2 (-1097))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-642 *5) (-642 *5))) (-5 *4 (-564))
+ (-5 *2 (-642 *5)) (-5 *1 (-680 *5)) (-4 *5 (-1097)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-769)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1238 *5))
+ (-5 *1 (-725 *5 *2)) (-4 *5 (-363)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1091 (-225))) (-5 *6 (-564)) (-5 *2 (-1207 (-924)))
+ (-5 *1 (-318))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1091 (-225))) (-5 *6 (-564)) (-5 *7 (-1155))
+ (-5 *2 (-1207 (-924))) (-5 *1 (-318))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1091 (-225))) (-5 *6 (-225)) (-5 *7 (-564))
+ (-5 *2 (-1207 (-924))) (-5 *1 (-318))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1091 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1155))
+ (-5 *2 (-1207 (-924))) (-5 *1 (-318)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-1062 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791))
+ (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1066 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-950)) (-4 *3 (-1094)) (-5 *2 (-687 *1))
- (-4 *1 (-763 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *6 (-612 (-1170)))
- (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *2 (-1159 (-641 (-948 *4)) (-641 (-294 (-948 *4)))))
- (-5 *1 (-504 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 *9)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-791))
+ (-4 *7 (-848)) (-5 *2 (-769)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 *1)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1047)) (-5 *1 (-687 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 *4)) (-4 *4 (-1047)) (-4 *1 (-1120 *3 *4 *5 *6))
+ (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-860)))))
+(((*1 *2)
+ (-12
+ (-5 *2
+ (-1262 (-642 (-2 (|:| -2085 (-908 *3)) (|:| -2047 (-1117))))))
+ (-5 *1 (-351 *3 *4)) (-14 *3 (-919)) (-14 *4 (-919))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1262 (-642 (-2 (|:| -2085 *3) (|:| -2047 (-1117))))))
+ (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1169 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1262 (-642 (-2 (|:| -2085 *3) (|:| -2047 (-1117))))))
+ (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-919)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-504 (-407 (-564)) (-240 *4 (-767)) (-860 *3)
+ (-504 (-407 (-564)) (-240 *4 (-769)) (-862 *3)
(-247 *3 (-407 (-564)))))
- (-14 *3 (-641 (-1170))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-955))))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *1 *1) (-5 *1 (-162)))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-917)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045))
- (-4 *4 (-1209))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
- (-4 *5 (-238 (-2181 *3) (-767)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2083 *2) (|:| -1838 *5))
- (-2 (|:| -2083 *2) (|:| -1838 *5))))
- (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846))
- (-4 *7 (-945 *4 *5 (-860 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-316 *5)))
- (-5 *1 (-1123 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-641 (-316 *5))))
- (-5 *1 (-1123 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-612 *2))))
+ (-14 *3 (-642 (-1173))) (-14 *4 (-769)) (-5 *1 (-505 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-452)) (-4 *3 (-848)) (-4 *4 (-791))
+ (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *2 (-13 (-430 *4) (-1000) (-1197)))
+ (-5 *1 (-598 *4 *2 *3))
+ (-4 *3 (-13 (-430 (-169 *4)) (-1000) (-1197))))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-564)) (-5 *5 (-1155)) (-5 *6 (-687 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))))
+(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-52)) (-5 *1 (-890 *4))
+ (-4 *4 (-1097)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-907))
+ (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-947 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *2 (-907))
+ (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-907)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1238 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-919)) (-5 *2 (-1262 (-1262 (-564)))) (-5 *1 (-466)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-820)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-783 *3)) (-4 *3 (-612 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-5 *2 (-379)) (-5 *1 (-781 *3))
+ (-12 (-5 *4 (-919)) (-5 *2 (-379)) (-5 *1 (-783 *3))
(-4 *3 (-612 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 *2))
- (-5 *2 (-379)) (-5 *1 (-781 *4))))
+ (-12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 *2))
+ (-5 *2 (-379)) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047))
+ (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2))
- (-5 *2 (-379)) (-5 *1 (-781 *4))))
+ (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2))
+ (-5 *2 (-379)) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556))
- (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556))
+ (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846))
- (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4))))
+ (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848))
+ (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556)) (-4 *5 (-846))
- (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))))
-(((*1 *1 *1) (-4 *1 (-627)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1194))))))
+ (-12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556)) (-4 *5 (-848))
+ (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197)))))
+ ((*1 *1 *1 *1) (-4 *1 (-791))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-610 *1))) (-4 *1 (-302)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $))
- (-15 -2336 ((-1119 *3 (-610 $)) $))
- (-15 -2423 ($ (-1119 *3 (-610 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $))
- (-15 -2336 ((-1119 *3 (-610 $)) $))
- (-15 -2423 ($ (-1119 *3 (-610 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2323 ((-1119 *4 (-610 $)) $))
- (-15 -2336 ((-1119 *4 (-610 $)) $))
- (-15 -2423 ($ (-1119 *4 (-610 $)))))))
- (-4 *4 (-556)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-610 *2)))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2323 ((-1119 *4 (-610 $)) $))
- (-15 -2336 ((-1119 *4 (-610 $)) $))
- (-15 -2423 ($ (-1119 *4 (-610 $)))))))
- (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-917))
- (-5 *2 (-1264)) (-5 *1 (-468))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1264)) (-5 *1 (-468))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-641 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-917))
- (-5 *2 (-1264)) (-5 *1 (-468)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564))))
+ (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564))))
+ (-5 *4 (-316 (-379))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564))))
+ (-5 *4 (-316 (-564))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-169 (-379)))))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-379)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-564)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-169 (-379)))))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-379)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-564)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-379))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-564))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564))))
+ (-5 *4 (-316 (-692))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564))))
+ (-5 *4 (-316 (-697))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-950 (-564))))
+ (-5 *4 (-316 (-699))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-692)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-697)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-316 (-699)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-692)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-697)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-316 (-699)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-692))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-697))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-699))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-692))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-697))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-687 (-699))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-692))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-697))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-316 (-699))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-1155)) (-5 *1 (-330))))
+ ((*1 *1 *1 *1) (-5 *1 (-860))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789))
- (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2462 (-641 *9))))
- (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2462 (-641 *8))))
- (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1057)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-747)))))
+ (|partial| -12 (-5 *5 (-642 *4)) (-4 *4 (-363)) (-5 *2 (-1262 *4))
+ (-5 *1 (-812 *4 *3)) (-4 *3 (-654 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1006 *3)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564))
- (-5 *2 (-685 *6)) (-5 *1 (-1025 *6)) (-4 *6 (-363)) (-4 *6 (-1045))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1025 *4))
- (-4 *4 (-363)) (-4 *4 (-1045))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5))
- (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-612 (-888 *3))) (-4 *3 (-882 *3)) (-4 *3 (-452))
- (-5 *1 (-1200 *3 *2)) (-4 *2 (-612 (-888 *3))) (-4 *2 (-882 *3))
- (-4 *2 (-13 (-430 *3) (-1194))))))
+ (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3))))
+ (-5 *2 (-642 (-1173))) (-5 *1 (-1073 *3 *4 *5))
+ (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1045)) (-5 *2 (-685 *4))
- (-5 *1 (-1025 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1031))
- (-5 *1 (-746)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-825)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7))
- (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))
- (-4 *7 (-1209))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6))
- (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))))
+ (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-642 (-769))) (-5 *3 (-112)) (-5 *1 (-1161 *4 *5))
+ (-14 *4 (-919)) (-4 *5 (-1047)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 (-169 (-564))))) (-5 *2 (-641 (-169 *4)))
- (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-407 (-948 (-169 (-564))))))
- (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5))))
- (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-844))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917))
- (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917))
- (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170)))
- (-14 *6 (-1259 (-685 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-641 (-1170)))
- (-14 *6 (-1259 (-685 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-917)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917))
- (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-909 *3 *2))
- (-4 *2 (-1235 (-407 *3))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
-(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870)))
- (-5 *4 (-641 (-917))) (-5 *5 (-641 (-263))) (-5 *1 (-468))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870)))
- (-5 *4 (-641 (-917))) (-5 *1 (-468))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468))))
- ((*1 *1 *1) (-5 *1 (-468))))
-(((*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-818)))))
+ (-12 (-5 *4 (-1173)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-701 *3))
+ (-4 *3 (-612 (-536)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1173)) (-5 *2 (-1 (-225) (-225) (-225)))
+ (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-869 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-14 *2 (-564))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-870 *3 *4))
+ (-4 *4 (-867 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-564)) (-5 *1 (-870 *2 *3)) (-4 *3 (-867 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-564)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-1253 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1253 *2)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1033))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-950 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-975 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-418 *4)) (-4 *4 (-556)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-787)) (-5 *5 (-564)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-876)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097))
+ (-4 *6 (-1097)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-682 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (|has| *1 (-6 -4398)) (-4 *1 (-404))
- (-5 *2 (-917)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084)))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-368))
- (-4 *3 (-1094)))))
+ (-12 (-5 *2 (-642 (-941 *4))) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1144 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848))
+ (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-947 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1047)) (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1)))
+ (-4 *1 (-1238 *3)))))
(((*1 *2 *3 *1)
- (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-5 *2 (-1259 *3)) (-5 *1 (-708 *3 *4))
- (-4 *4 (-1235 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-449 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170))
- (-14 *4 *2))))
-(((*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858))))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225)))
- (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-839 (-225))))))
- (-5 *1 (-267)))))
-(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *8)) (-4 *8 (-945 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170))))
- (-4 *7 (-789))
- (-5 *2
- (-641
- (-2 (|:| -2514 (-767))
- (|:| |eqns|
- (-641
- (-2 (|:| |det| *8) (|:| |rows| (-641 (-564)))
- (|:| |cols| (-641 (-564))))))
- (|:| |fgb| (-641 *8)))))
- (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1094)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1) (-5 *1 (-858)))
+ (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1) (-5 *1 (-860)))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-865 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6))))
- (-5 *4 (-1022 (-839 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564)))
- (-4 *6 (-1045)) (-5 *2 (-858)) (-5 *1 (-594 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-187))) (-5 *1 (-187)))))
-(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-821)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-740 *3)) (-4 *3 (-172)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-641 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3))
- (-4 *3 (-1059 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-641 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3))
- (-4 *3 (-1059 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
+ (-12 (-5 *2 (-1169 (-564))) (-5 *3 (-564)) (-4 *1 (-867 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-917)) (-4 *5 (-846))
- (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1197) (-1000))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-642 *7))) (-4 *1 (-1205 *4 *5 *6 *7))
+ (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-349))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368))
+ (-4 *6 (-1047)) (-5 *2 (-642 (-642 (-687 *6)))) (-5 *1 (-1027 *6))
+ (-5 *3 (-642 (-687 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1047))
+ (-5 *2 (-642 (-642 (-687 *4)))) (-5 *1 (-1027 *4))
+ (-5 *3 (-642 (-687 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047))
+ (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5))
+ (-5 *3 (-642 (-687 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-919)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047))
+ (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5))
+ (-5 *3 (-642 (-687 *5))))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-841 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1197) (-29 *6)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-224 *6 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4))))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *2 (-947 *4 *6 *5)) (-5 *1 (-922 *4 *5 *6 *2))
+ (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-564))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-858)) (-5 *2 (-689 (-549))) (-5 *3 (-549)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 *1)) (|has| *1 (-6 -4411)) (-4 *1 (-1008 *3))
+ (-4 *3 (-1212)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-939 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4)))
+ (-5 *2 (-1262 *6)) (-5 *1 (-336 *3 *4 *5 *6))
+ (-4 *6 (-342 *3 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3))
- (-4 *3 (-644 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3))
- (-4 *3 (-644 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045))))
- ((*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225))
- (-5 *2 (-641 (-939 *4))) (-5 *1 (-1205)) (-5 *3 (-939 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1235 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))))
+ (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5))
- (-4 *5 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8))
- (-5 *6 (-641 *8)) (-4 *8 (-430 *7))
- (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8)))
- (-4 *8 (-430 *7)) (-5 *5 (-294 *8))
- (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6))
- (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6))
- (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6))
- (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3))
- (-4 *3 (-430 *7)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *7 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| -3688 (-1166 *6)) (|:| -1838 (-564)))))
- (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-564))
- (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-917)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1))
- (-4 *1 (-329 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363))
- (-4 *2 (-1235 *3))))
+ (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-363)) (-5 *1 (-1023 *3 *2)) (-4 *2 (-654 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -1640 *3) (|:| -1660 (-642 *5))))
+ (-5 *1 (-1023 *5 *3)) (-5 *4 (-642 *5)) (-4 *3 (-654 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3))
+ (-4 *4 (-13 (-363) (-846))) (-4 *3 (-1238 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *3 (-1047))
+ (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-850 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1047))
+ (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-851 *5 *3))
+ (-4 *3 (-850 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -2116 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-642 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1238 *7))
+ (-5 *3 (-407 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-574 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173)))
+ (-4 *5 (-556)) (-5 *2 (-642 (-642 (-950 *5)))) (-5 *1 (-1181 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
+ ((*1 *2 *3) (-12 (-5 *3 (-969)) (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))
+ (-5 *2 (-379)) (-5 *1 (-267))))
((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *1) (-5 *1 (-1079))))
+ (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2)
+ (-12 (-14 *4 (-769)) (-4 *5 (-1212)) (-5 *2 (-134))
+ (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4))
+ (-4 *3 (-329 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-172))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-564))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791))
+ (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-978 *3)) (-4 *3 (-1047)) (-5 *2 (-919))))
+ ((*1 *2) (-12 (-4 *1 (-1269 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1209)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3))
- (-4 *3 (-670 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-846)))))
-(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-945 *4 *5 *6))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-449 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846))
- (-4 *4 (-266 *3)) (-4 *5 (-789)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))))
+ (|partial| -12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2362 (-642 *7))))
+ (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1097)) (-4 *6 (-1097))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-682 *4 *5 *6)) (-4 *5 (-1097)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-642 (-642 (-225)))) (-5 *4 (-225))
+ (-5 *2 (-642 (-941 *4))) (-5 *1 (-1208)) (-5 *3 (-941 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1097)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+ (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1169 (-1169 *5))))
+ (-5 *1 (-1210 *5)) (-5 *3 (-1169 (-1169 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))
+ (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *5))
+ (-4 *5 (-1238 (-407 *4))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-769)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-848))
+ (-4 *3 (-1097)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-642 (-1235 *5 *4)))
+ (-5 *1 (-1111 *4 *5)) (-5 *3 (-1235 *5 *4)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
+ (-4 *3 (-1062 *6 *7 *8))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4))))
+ (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -3530 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1062 *6 *7 *4)) (-4 *9 (-1068 *6 *7 *4 *8))
+ (-4 *6 (-452)) (-4 *7 (-791)) (-4 *4 (-848))
+ (-5 *2 (-642 (-2 (|:| |val| *8) (|:| -3530 *9))))
+ (-5 *1 (-1069 *6 *7 *4 *8 *9)))))
(((*1 *2)
(-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
(-4 *3 (-367 *4))))
((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169 *7)) (-4 *7 (-947 *6 *4 *5)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1047)) (-5 *2 (-1169 *6))
+ (-5 *1 (-321 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117))))))
+ (-4 *4 (-349)) (-5 *2 (-687 *4)) (-5 *1 (-346 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216))
+ (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
+ (-4 *2 (-1253 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3))
+ (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1253 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147)))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-757)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1193)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-848)) (-4 *5 (-791))
+ (-4 *6 (-556)) (-4 *7 (-947 *6 *5 *3))
+ (-5 *1 (-462 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1036 (-407 (-564))) (-363)
+ (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $))
+ (-15 -2255 (*7 $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *8)) (-5 *4 (-767)) (-4 *8 (-945 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170))))
- (-4 *7 (-789))
+ (-12 (-5 *3 (-651 *4)) (-4 *4 (-342 *5 *6 *7))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6)))
(-5 *2
- (-641
- (-2 (|:| |det| *8) (|:| |rows| (-641 (-564)))
- (|:| |cols| (-641 (-564))))))
- (-5 *1 (-920 *5 *6 *7 *8)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-767)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-556))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-556)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4))))
+ (-5 *1 (-804 *5 *6 *7 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-564)) (-5 *1 (-241))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-564)) (-5 *1 (-241)))))
(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))))
+ (-12 (-5 *2 (-642 *6)) (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5))
+ (-4 *3 (-556)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789))
- (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8))
- (-5 *2
- (-2 (|:| -1606 (-641 *9)) (|:| -3577 *4) (|:| |ineq| (-641 *9))))
- (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9))
- (-4 *4 (-1065 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789))
- (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8))
- (-5 *2
- (-2 (|:| -1606 (-641 *9)) (|:| -3577 *4) (|:| |ineq| (-641 *9))))
- (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9))
- (-4 *4 (-1065 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857)))))
+ (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564)))
+ (-5 *2 (-1262 (-407 (-564)))) (-5 *1 (-1289 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *1 (-802 *4 *2)) (-4 *2 (-13 (-29 *4) (-1197) (-957))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1173)) (-4 *1 (-27))
+ (-5 *2 (-642 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-950 *1)) (-4 *1 (-27)) (-5 *2 (-642 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *2 (-642 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-642 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1173))
+ (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1197) (-957)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -4263 (-642 *4))))
+ (-5 *1 (-799 *6 *4 *3)) (-4 *3 (-654 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4410)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1097))
+ (-4 *3 (-1212)) (-4 *3 (-1097)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-642 (-564))) (-5 *3 (-112)) (-5 *1 (-1107)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225))))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128)))))
+ (-12 (-4 *4 (-452))
+ (-5 *2
+ (-642
+ (-2 (|:| |eigval| (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4))))
+ (|:| |eigmult| (-769))
+ (|:| |eigvec| (-642 (-687 (-407 (-950 *4))))))))
+ (-5 *1 (-292 *4)) (-5 *3 (-687 (-407 (-950 *4)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-687 (-407 (-950 (-564)))))
+ (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| -4378 *4) (|:| -1420 *3) (|:| -3045 *3)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-1062 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1047))
+ (-5 *2 (-2 (|:| -4378 *3) (|:| -1420 *1) (|:| -3045 *1)))
+ (-4 *1 (-1238 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4))
- (-5 *1 (-1013 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379))))
+ (-12 (-4 *3 (-1238 (-407 (-564))))
+ (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))
+ (-5 *1 (-911 *3 *4)) (-4 *4 (-1238 (-407 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1043)))))
-(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1045)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+ (-12 (-4 *4 (-1238 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-911 *4 *3))
+ (-4 *3 (-1238 (-407 *4))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1262 *5)) (-5 *3 (-769)) (-5 *4 (-1117)) (-4 *5 (-349))
+ (-5 *1 (-528 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-582)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -4378 *3) (|:| |gap| (-769)) (|:| -1420 (-780 *3))
+ (|:| -3045 (-780 *3))))
+ (-5 *1 (-780 *3)) (-4 *3 (-1047))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848))
+ (-5 *2
+ (-2 (|:| -4378 *1) (|:| |gap| (-769)) (|:| -1420 *1)
+ (|:| -3045 *1)))
+ (-4 *1 (-1062 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2
+ (-2 (|:| -4378 *1) (|:| |gap| (-769)) (|:| -1420 *1)
+ (|:| -3045 *1)))
+ (-4 *1 (-1062 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1238 (-169 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-564)) (-4 *5 (-363))
+ (-4 *5 (-1047)) (-5 *2 (-112)) (-5 *1 (-1027 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-687 *4))) (-4 *4 (-363)) (-4 *4 (-1047))
+ (-5 *2 (-112)) (-5 *1 (-1027 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-860)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-848))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-642 (-112))) (-5 *7 (-687 (-225)))
+ (-5 *8 (-687 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112))
+ (-5 *2 (-1033)) (-5 *1 (-752)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-112))
+ (-5 *1 (-357 *4)))))
(((*1 *2 *1)
(-12
(-5 *2
@@ -5977,5281 +6301,5273 @@
(|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
(|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
(-5 *1 (-330)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225)))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2))
+ (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172))
+ (-5 *1 (-686 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1212)) (-4 *2 (-1097))
+ (-4 *2 (-848)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-642 (-316 (-225))))
+ (|:| |constraints|
+ (-642
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-769)) (|:| |boundaryType| (-564))
+ (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225))))))
+ (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155))
+ (|:| |tol| (-225))))
+ (-5 *2 (-112)) (-5 *1 (-210)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-452)))))
(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))
+ (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197)))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260))))
+ (-12 (-5 *3 (-919)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1263))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
- (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213))
- (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172))
- (-4 *1 (-367 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172))
- (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4))
- (-4 *4 (-1235 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3))
- (-5 *1 (-786 *3)) (-4 *3 (-970))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-112))
- (-5 *1 (-1204 *2)) (-4 *2 (-970)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262))))
- ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
+ (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1197))))
+ ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-998))))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-961))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-770))) (-5 *1 (-114)))))
+ (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1197)))
+ (-5 *1 (-583 *4 *2))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-585 (-407 (-950 *4))))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-316 *4))
+ (-5 *1 (-588 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *4)) (-4 *4 (-846)) (-4 *4 (-363)) (-5 *2 (-769))
+ (-5 *1 (-943 *4 *5)) (-4 *5 (-1238 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-939 (-225)))) (-5 *1 (-1260)))))
-(((*1 *1) (-5 *1 (-819))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
+ (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-848) (-612 (-1173))))
+ (-4 *5 (-791)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-947 *3 *5 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
(-5 *2
- (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4))
- (|:| |genIdeal| (-504 *4 *5 *6 *7))))
- (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241))))
+ (-2 (|:| -4199 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -1895 (-407 *6))
+ (|:| |special| (-407 *6))))
+ (-5 *1 (-725 *5 *6)) (-5 *3 (-407 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1170))
- (-14 *5 *3) (-5 *1 (-319 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767))))
- ((*1 *1 *1) (-4 *1 (-402))))
+ (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-894 *3 *4))
+ (-4 *3 (-1238 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-769)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -4326 *3) (|:| -4336 *3))) (-5 *1 (-894 *3 *5))
+ (-4 *3 (-1238 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112))
+ (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1066 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112))
+ (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1066 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112))
+ (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1142 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-642 *9)) (-5 *3 (-642 *8)) (-5 *4 (-112))
+ (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1142 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197)))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225)))
+ (-5 *2 (-1033)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-754)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-1262 *5))) (-5 *4 (-564)) (-5 *2 (-1262 *5))
+ (-5 *1 (-1027 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1047)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564)))))
+ (-4 *3 (-1238 *4)) (-5 *1 (-807 *4 *3 *2 *5)) (-4 *2 (-654 *3))
+ (-4 *5 (-654 (-407 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-407 *5))
+ (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *5 (-1238 *4))
+ (-5 *1 (-807 *4 *5 *2 *6)) (-4 *2 (-654 *5)) (-4 *6 (-654 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-963))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1155) (-772))) (-5 *1 (-114)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848))
+ (-5 *2 (-2 (|:| -4378 *1) (|:| |gap| (-769)) (|:| -3045 *1)))
+ (-4 *1 (-1062 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-2 (|:| -4378 *1) (|:| |gap| (-769)) (|:| -3045 *1)))
+ (-4 *1 (-1062 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2116 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-363)) (-4 *7 (-1238 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
+ (-2 (|:| -2116 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
+ (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-349))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2649 (-642 (-2 (|:| |irr| *3) (|:| -3672 (-564)))))))
+ (-5 *1 (-216 *5 *3)) (-4 *3 (-1238 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
- (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))))
+ (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))
+ (-5 *2 (-817 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-844)) (-5 *1 (-1285 *3 *2)) (-4 *3 (-1047)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1047)) (-4 *4 (-1238 *3)) (-5 *1 (-164 *3 *4 *2))
+ (-4 *2 (-1238 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-1169 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -2245 ((-1122 *4 (-610 $)) $))
+ (-15 -2255 ((-1122 *4 (-610 $)) $))
+ (-15 -2327 ($ (-1122 *4 (-610 $))))))))))
(((*1 *2 *1)
(-12
(-5 *2
- (-641
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
+ (-642
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225)))))
(-5 *1 (-559))))
((*1 *2 *1)
- (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-5 *2 (-641 *3))))
+ (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-5 *2 (-642 *3))))
((*1 *2 *1)
(-12
(-5 *2
- (-641
+ (-642
(-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
(|:| |abserr| (-225)) (|:| |relerr| (-225)))))
- (-5 *1 (-799)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-945 *4 *6 *5)) (-4 *4 (-452))
- (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-983 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -4337 *7) (|:| |sol?| (-112)))
- (-564) *7))
- (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7))
- (-5 *3 (-407 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-574 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-545))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1209)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452)))))
+ (-5 *1 (-801)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))))
+(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3) (-12 (-5 *3 (-950 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225)))
+ (-5 *1 (-695)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-747)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789)) (-5 *2 (-641 *3)) (-5 *1 (-920 *4 *5 *6 *3))
- (-4 *3 (-945 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27))
- (-5 *2 (-641 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *2 (-641 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027)))))
+ (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1121 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-912 *3)) (-4 *3 (-307)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-846))
- (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)))))
+ (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4))
+ (-4 *4 (-349)))))
+(((*1 *1) (-5 *1 (-821))))
+(((*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-397)))))
+(((*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265))))
+ ((*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))))
(((*1 *2)
- (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4))
- (-14 *3 (-917)) (-14 *4 (-917)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4))
- (-4 *4 (-172)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-846)) (-5 *1 (-1180 *3)))))
-(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-919)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1033))
+ (-5 *1 (-747)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1220))))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-820)))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-641
- (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *2))
- (|:| |logand| (-1166 *2)))))
- (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-363)) (-5 *1 (-585 *2)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-839 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1194) (-29 *6)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-224 *6 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846))))
- ((*1 *1) (-4 *1 (-1145))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-1094))
- (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
+ (-5 *2
+ (-642
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-564)))))
+ (-5 *1 (-418 *3)) (-4 *3 (-556))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-769)) (-4 *3 (-349)) (-4 *5 (-1238 *3))
+ (-5 *2 (-642 (-1169 *3))) (-5 *1 (-498 *3 *5 *6))
+ (-4 *6 (-1238 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
- (-5 *7 (-685 (-564)))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-749)))))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2) (-12 (-5 *2 (-1130 (-225))) (-5 *1 (-1195)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
- (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))))
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848))))
+ ((*1 *1) (-4 *1 (-1148))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-112)) (|:| -1654 (-769)) (|:| |period| (-769))))
+ (-5 *1 (-1153 *4)) (-4 *4 (-1212)) (-5 *3 (-769)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1217))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1189 *4 *5))
+ (-4 *4 (-1097)) (-4 *5 (-1097)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-754)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045))
- (-4 *5 (-846)) (-5 *2 (-948 *4))))
+ (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047))
+ (-4 *5 (-848)) (-5 *2 (-950 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045))
- (-4 *5 (-846)) (-5 *2 (-948 *4))))
+ (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *5)) (-4 *4 (-1047))
+ (-4 *5 (-848)) (-5 *2 (-950 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-1250 *4)) (-4 *4 (-1045))
- (-5 *2 (-948 *4))))
+ (-12 (-5 *3 (-769)) (-4 *1 (-1253 *4)) (-4 *4 (-1047))
+ (-5 *2 (-950 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-1250 *4)) (-4 *4 (-1045))
- (-5 *2 (-948 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3372 *4))) (-5 *1 (-965 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
- (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1065 *4 *5 *6 *7))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1))
- (-4 *1 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-641 *1))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4407)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094))
- (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452)))))
-(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))))
+ (-12 (-5 *3 (-769)) (-4 *1 (-1253 *4)) (-4 *4 (-1047))
+ (-5 *2 (-950 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-610 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173)))
+ (-4 *2 (-13 (-430 *5) (-27) (-1197)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1097)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ (-12 (-4 *4 (-556)) (-4 *5 (-990 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
+ (-4 *3 (-373 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))
+ (-12 (-4 *4 (-556)) (-4 *5 (-990 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-858))))))
+ (-12 (-5 *3 (-687 *5)) (-4 *5 (-990 *4)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |num| (-687 *4)) (|:| |den| *4)))
+ (-5 *1 (-691 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564)))))
+ (-4 *6 (-1238 *5))
+ (-5 *2 (-2 (|:| -1640 *7) (|:| |rh| (-642 (-407 *6)))))
+ (-5 *1 (-805 *5 *6 *7 *3)) (-5 *4 (-642 (-407 *6)))
+ (-4 *7 (-654 *6)) (-4 *3 (-654 (-407 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-990 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1231 *4 *5 *3))
+ (-4 *3 (-1238 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379))))
+ ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1031)) (-5 *3 (-1170)) (-5 *1 (-192)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-556))
- (-4 *3 (-945 *7 *5 *6))
- (-5 *2
- (-2 (|:| -1838 (-767)) (|:| -4376 *3) (|:| |radicand| (-641 *3))))
- (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767))
- (-4 *8
- (-13 (-363)
- (-10 -8 (-15 -2423 ($ *3)) (-15 -2323 (*3 $)) (-15 -2336 (*3 $))))))))
-(((*1 *1 *1 *1) (-4 *1 (-545))))
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1036 *2)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2))
- (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4407) (-6 -4408))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-846)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2))
- (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4407) (-6 -4408)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1060)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))
- (-4 *2 (-13 (-846) (-21))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209))
- (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3))
- (-4 *3 (-1094)))))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1153 *4))) (-4 *4 (-363))
+ (-4 *4 (-1047)) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4)))))
+(((*1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860))))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225))) (-5 *6 (-673 (-225)))
+ (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-748)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363)))))
+(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218))))
+ ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-674))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)))))
+(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-858)) (-5 *3 (-128)) (-5 *2 (-769)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1063)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-769)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-687 (-407 (-950 *4)))) (-4 *4 (-452))
+ (-5 *2 (-642 (-3 (-407 (-950 *4)) (-1162 (-1173) (-950 *4)))))
+ (-5 *1 (-292 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *1 (-686 *4 *5 *6 *2))
+ (-4 *2 (-685 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525)))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
+ (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4))))
((*1 *2 *3 *3)
(-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1045)) (-4 *4 (-1094))
- (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1838 (-564))))
- (-4 *1 (-430 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1045)) (-4 *4 (-1094))
- (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1838 (-564))))
- (-4 *1 (-430 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-1094))
- (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -1838 (-564))))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -1838 (-767))))
- (-5 *1 (-888 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -1838 (-767))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -1838 (-564))))
- (-5 *1 (-946 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $))
- (-15 -2336 (*7 $))))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789)) (-5 *2 (-641 (-641 (-564))))
- (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-945 *4 *6 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3))
- (-4 *3 (-13 (-430 *7) (-27) (-1194)))
- (-4 *7 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3))
- (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194)))
- (-4 *7 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-564)))))
-(((*1 *1) (-4 *1 (-963))))
-(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846))))
+ (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155))
+ (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1238 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363)))
+ (-4 *3 (-1238 *4)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-642 (-114))))))
+(((*1 *1) (-4 *1 (-965))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-687 *4)) (-5 *3 (-769)) (-4 *4 (-1047))
+ (-5 *1 (-688 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-860 *3)) (-14 *3 (-641 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-985))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209))))
+ (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-862 *3)) (-14 *3 (-642 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-987))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1089 *3)) (-4 *3 (-1212))))
((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-1170))))
- ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4))))
- (-5 *1 (-806 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-5 *2 (-2 (|:| -2047 (-641 (-407 *6))) (|:| -2511 (-685 *5))))
- (-5 *1 (-806 *5 *6)) (-5 *4 (-641 (-407 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4))))
- (-5 *1 (-806 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-5 *2 (-2 (|:| -2047 (-641 (-407 *6))) (|:| -2511 (-685 *5))))
- (-5 *1 (-806 *5 *6)) (-5 *4 (-641 (-407 *6))))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225))
- (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))))
-(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790))
+ (-5 *2 (-1173))))
+ ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1258 *3)) (-14 *3 *2))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-753)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *3 (-642 (-872)))
+ (-5 *1 (-468)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-772)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-772)) (-5 *1 (-114)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-848)) (-5 *4 (-642 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-642 *4))))
+ (-5 *1 (-1183 *6)) (-5 *5 (-642 *4)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3))))
- (-5 *1 (-386 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1 *1)
+ (-5 *3
+ (-2 (|:| -3978 (-379)) (|:| -2461 (-1155))
+ (|:| |explanations| (-642 (-1155)))))
+ (-5 *2 (-1033)) (-5 *1 (-305))))
+ ((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3))))
- (-5 *1 (-815 *3)) (-4 *3 (-846)))))
+ (-5 *3
+ (-2 (|:| -3978 (-379)) (|:| -2461 (-1155))
+ (|:| |explanations| (-642 (-1155))) (|:| |extra| (-1033))))
+ (-5 *2 (-1033)) (-5 *1 (-305)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-642 (-687 *4))) (-5 *2 (-687 *4)) (-4 *4 (-1047))
+ (-5 *1 (-1027 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4))
- (-4 *4 (-1235 *3)))))
+ (|partial| -12 (-5 *2 (-1277 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172))
+ (-5 *1 (-662 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-662 *3 *4)) (-5 *1 (-1282 *3 *4))
+ (-4 *3 (-848)) (-4 *4 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-1218))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330))
+ (-5 *1 (-332)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5))
- (-4 *4 (-1094)) (-4 *5 (-1094)))))
+ (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-169 (-225))))
+ (-5 *2 (-1033)) (-5 *1 (-752)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
- (-5 *2
- (-2 (|:| -4215 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -1887 (-407 *6))
- (|:| |special| (-407 *6))))
- (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-892 *3 *4))
- (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -4328 *3) (|:| -4337 *3))) (-5 *1 (-892 *3 *5))
- (-4 *3 (-1235 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
- (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
- (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
- (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
- (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-783)) (-5 *2 (-1031))
- (-5 *3
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-783)) (-5 *2 (-1031))
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1045))
- (-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1025 *5)) (-5 *4 (-1259 *5)))))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-817 *4)) (-4 *4 (-848)) (-5 *2 (-112))
+ (-5 *1 (-670 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-1155)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-903 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-917)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-363)) (-14 *5 (-989 *3 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-169 (-225))) (-5 *3 (-767)) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112))
- (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))))
+ (-12 (-5 *2 (-919)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-363)) (-14 *5 (-991 *3 *4)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-767))
- (-5 *2
- (-641
- (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-564))))))
- (-5 *1 (-505 *4 *5))
- (-5 *3
- (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-564))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045))
- (-5 *1 (-1154 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045))
- (-14 *4 (-1170)) (-14 *5 *3))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1170))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-641 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2177 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1194) (-27) (-430 *8)))
- (-4 *8 (-13 (-452) (-147) (-1034 *3) (-637 *3))) (-5 *3 (-564))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -4337 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1009 *8 *4)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
- (-4 *3 (-1094)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-112))
- (-5 *1 (-900 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-917)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-585 *3)) (-4 *3 (-363)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363))
- (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4))))
+ (-12 (-5 *3 (-1 *5 (-642 *5))) (-4 *5 (-1253 *4))
+ (-4 *4 (-38 (-407 (-564))))
+ (-5 *2 (-1 (-1153 *4) (-642 (-1153 *4)))) (-5 *1 (-1255 *4 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
+ ((*1 *1 *1 *1) (-5 *1 (-860)))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5))
- (-2351 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5)))
- (-5 *1 (-636 *5 *4)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-147) (-27) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5))
- (-5 *3 (-407 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-147) (-27) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))))
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045))
+ (-5 *3 (-564)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-954 (-1114)))
- (-5 *1 (-346 *4)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-564))) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-556)) (-4 *8 (-945 *7 *5 *6))
- (-5 *2 (-2 (|:| -1838 (-767)) (|:| -4376 *9) (|:| |radicand| *9)))
- (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767))
- (-4 *9
- (-13 (-363)
- (-10 -8 (-15 -2423 ($ *8)) (-15 -2323 (*8 $)) (-15 -2336 (*8 $))))))))
+ (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4))
+ (-4 *4 (-1047)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2))
- (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4))
- (-5 *1 (-806 *4 *2))
- (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564))))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6)))
- (-5 *1 (-626 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4))
- (-4 *4 (-905)) (-5 *1 (-659 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1121 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1170))
- (-4 *6 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1194) (-955)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2047 (-641 *4))))
- (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-652 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))))
-(((*1 *1 *1) (-4 *1 (-627)))
+ (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-430 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-55)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-114))))
((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1194))))))
+ (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-158 *3 *4))
+ (-4 *4 (-430 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-114)) (-5 *1 (-163))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-276 *3 *4))
+ (-4 *4 (-13 (-430 *3) (-1000)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302))))
+ ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *4 (-1097)) (-5 *1 (-429 *3 *4))
+ (-4 *3 (-430 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-431 *3 *4))
+ (-4 *4 (-430 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-556)) (-5 *1 (-628 *3 *4))
+ (-4 *4 (-13 (-430 *3) (-1000) (-1197)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1017)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170))
- (-4 *4 (-13 (-430 *7) (-27) (-1194)))
- (-4 *7 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4))))
- (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-755)))))
+ (-12 (-5 *2 (-872)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))))
+(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))))
+(((*1 *2 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047))))
+ ((*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2))
- (-4 *3 (-556)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1267)) (-5 *1 (-829)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-1177)) (-5 *1 (-1176)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))))
+(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-848))
+ (-4 *3 (-13 (-172) (-715 (-407 (-564))))) (-14 *4 (-919))))
+ ((*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-5 *1 (-860))))
+(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-112))
- (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))))
+ (-12 (-5 *3 (-1155)) (-5 *2 (-214 (-502))) (-5 *1 (-835)))))
+(((*1 *1) (-5 *1 (-291))))
(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970)))))
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045))
- (-5 *2 (-641 (-641 (-641 (-939 *3))))))))
-(((*1 *1) (-5 *1 (-1057))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4)))
- (-4 *4 (-846)) (-5 *1 (-1180 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-556)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-564)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-1062 *3 *4 *2)) (-4 *2 (-848))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848)))))
+(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4))
+ (-4 *4 (-349)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1238 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-327 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-516 *3 *4))
+ (-14 *4 (-564)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-742 *3)) (-4 *3 (-172)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *2)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))))
+ (-12 (-4 *3 (-556)) (-4 *4 (-990 *3)) (-5 *1 (-142 *3 *4 *2))
+ (-4 *2 (-373 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-990 *4)) (-4 *2 (-373 *4))
+ (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-687 *5)) (-4 *5 (-990 *4)) (-4 *4 (-556))
+ (-5 *2 (-687 *4)) (-5 *1 (-691 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-4 *4 (-990 *3)) (-5 *1 (-1231 *3 *4 *2))
+ (-4 *2 (-1238 *4)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-642 (-1173))) (-4 *2 (-172))
+ (-4 *4 (-238 (-2127 *5) (-769)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2047 *3) (|:| -2700 *4))
+ (-2 (|:| -2047 *3) (|:| -2700 *4))))
+ (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-848))
+ (-4 *7 (-947 *2 *4 (-862 *5))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1036 (-564))) (-4 *3 (-556)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1169 *4)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1047)) (-4 *1 (-302))))
+ ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1169 *3))))
+ ((*1 *2) (-12 (-4 *1 (-722 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1065 *3 *2)) (-4 *3 (-13 (-846) (-363)))
+ (-4 *2 (-1238 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363)))
- (-4 *3 (-1235 *4)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+ (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
+ (-5 *2 (-413 *4 (-407 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1262 *6)) (-4 *6 (-13 (-409 *4 *5) (-1036 *4)))
+ (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-4 *3 (-307))
+ (-5 *1 (-413 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1155)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-263))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045))
- (-5 *1 (-1158 *4 *5)) (-14 *4 (-917))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-767))) (-5 *3 (-767)) (-5 *1 (-1158 *4 *5))
- (-14 *4 (-917)) (-4 *5 (-1045))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045))
- (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))))
+ (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791))
+ (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-947 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112))
+ (-5 *1 (-1289 *4)))))
(((*1 *1 *2)
(-12
(-5 *2
- (-641
+ (-642
(-2
- (|:| -1901
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225))))
- (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225)))
- (|:| |g| (-316 (-225))) (|:| |abserr| (-225))
+ (|:| -1907
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
- (|:| -3813
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379)))))))
- (-5 *1 (-799)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330)))))
-(((*1 *1) (-5 *1 (-141))))
+ (|:| -3778
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1153 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3894
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-559)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1272)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-585 *3)) (-4 *3 (-363)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5))
- (-5 *1 (-886 *4 *5)) (-4 *5 (-1209)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6)
- (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1427 *6)))
- (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6)))))
+ (-12 (-5 *2 (-642 (-1169 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-1193)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-769)) (-4 *5 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-919)) (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-790))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1243 *3)) (-4 *3 (-1047)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-872))))
+ ((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-545))))
+ ((*1 *1 *1) (-4 *1 (-1057))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-749)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (|has| *1 (-6 -4411)) (-4 *1 (-1250 *3))
+ (-4 *3 (-1212)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-1129 *4 *2))
+ (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4410) (-6 -4411))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-848)) (-4 *3 (-1212)) (-5 *1 (-1129 *3 *2))
+ (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4410) (-6 -4411)))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
+ (-4 *2 (-1212)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) (-4 *6 (-452))
+ (-5 *2 (-642 (-642 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363))
+ (-4 *5 (-13 (-363) (-846))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-174 (-564))) (-5 *1 (-761 *3)) (-4 *3 (-404))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-867 *3)) (-14 *3 (-564))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564))))
- (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-564)))))
+ (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-769)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -4263 (-642 *1))))
+ (-4 *1 (-367 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-453 *3 *4 *5 *6))
+ (|:| -4263 (-642 (-453 *3 *4 *5 *6)))))
+ (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *3 (-1047))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2185 *1)))
+ (-4 *1 (-850 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1173)) (-5 *1 (-330)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088 (-839 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
- (-5 *1 (-305))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-767))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5))
- (-14 *4 (-917)) (-4 *5 (-1045)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172))
- (-4 *3 (-238 (-2181 *4) (-767)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2083 *5) (|:| -1838 *3))
- (-2 (|:| -2083 *5) (|:| -1838 *3))))
- (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846))
- (-4 *7 (-945 *2 *3 (-860 *4))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-825)))))
+ (-12 (-5 *3 (-1262 *4)) (-4 *4 (-1047)) (-4 *2 (-1238 *4))
+ (-5 *1 (-444 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-407 (-1169 (-316 *5)))) (-5 *3 (-1262 (-316 *5)))
+ (-5 *4 (-564)) (-4 *5 (-556)) (-5 *1 (-1127 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790))
+ (-4 *2 (-452))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1216)) (-4 *3 (-1238 *2))
+ (-4 *4 (-1238 (-407 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-452))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848)) (-4 *3 (-452))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-452))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1160 *3 *2))
+ (-4 *2 (-1238 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1262 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556))
+ (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020)))
+ (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-642 (-1022 (-407 *4)))))
+ (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-950 *4)))
+ (-4 *4 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-687 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-751)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1238 *6))
+ (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564))))
+ (-4 *8 (-1238 (-407 *7))) (-5 *2 (-585 *3))
+ (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-642 *5)) (-5 *4 (-564)) (-4 *5 (-846)) (-4 *5 (-363))
+ (-5 *2 (-769)) (-5 *1 (-943 *5 *6)) (-4 *6 (-1238 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302))))
+(((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-769)) (-5 *1 (-328 *3 *4))
+ (-4 *3 (-329 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-769)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52))
+ (-5 *1 (-1003)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1141))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+ (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212))
+ (-5 *2 (-642 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-735 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-439))) (-5 *1 (-863)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-564))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225))
- (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-748)))))
+ (-12 (-5 *3 (-642 (-919))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-687 *2)) (-5 *4 (-564))
+ (-4 *2 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))))
+ (-4 *5 (-1238 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363))
- (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1045))
- (-5 *2 (-112)) (-5 *1 (-1025 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879))
- (-5 *3 (-641 (-564))))))
+ (-12 (-5 *4 (-1173))
+ (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-642 (-610 *3)))
+ (|:| |vals| (-642 *3))))
+ (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5))))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094))
- (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4))))
- (-5 *1 (-1070 *4 *5 *2))
- (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4))))))
+ (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-1097))
+ (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4))))
+ (-5 *1 (-1073 *4 *5 *2))
+ (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4))))))
((*1 *1 *2 *2)
- (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3))))
- (-5 *1 (-1070 *3 *4 *2))
- (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564)))))
- (-4 *5 (-1235 *4))
- (-5 *2 (-641 (-2 (|:| |deg| (-767)) (|:| -1606 *5))))
- (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-652 *5))
- (-4 *6 (-652 (-407 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-860 *5))
- (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6))
- (-4 *6 (-452))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-860 *5))
- (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6))
- (-4 *6 (-452)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-767)) (-5 *1 (-561)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))))
+ (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3))))
+ (-5 *1 (-1073 *3 *4 *2))
+ (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-169 (-316 *4)))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-169 *3)) (-5 *1 (-1201 *4 *3))
+ (-4 *3 (-13 (-27) (-1197) (-430 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1155)) (|:| -2461 (-1155))))
+ (-5 *1 (-820)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-556))
- (-4 *7 (-945 *3 *5 *6))
- (-5 *2 (-2 (|:| -1838 (-767)) (|:| -4376 *8) (|:| |radicand| *8)))
- (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767))
- (-4 *8
- (-13 (-363)
- (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $)) (-15 -2336 (*7 $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267))
+ (-5 *1 (-1069 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267))
+ (-5 *1 (-1105 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-379)) (-5 *1 (-205)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-901 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-52)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 (-2 (|:| -3643 (-1169 *6)) (|:| -2700 (-564)))))
+ (-4 *6 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112))
+ (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-363))
- (-14 *4 (-989 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *1 *1) (|partial| -4 *1 (-718)))
- ((*1 *1 *1) (|partial| -4 *1 (-722)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363)))
- (-4 *2 (-1235 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4))
- (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3))))
+ (-12 (-5 *3 (-407 *5)) (-4 *4 (-1216)) (-4 *5 (-1238 *4))
+ (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1238 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564)))
+ (-12 (-5 *3 (-1175 (-407 (-564)))) (-5 *2 (-407 (-564)))
(-5 *1 (-190))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-685 (-316 (-225)))) (-5 *3 (-641 (-1170)))
- (-5 *4 (-1259 (-316 (-225)))) (-5 *1 (-205))))
+ (-12 (-5 *2 (-687 (-316 (-225)))) (-5 *3 (-642 (-1173)))
+ (-5 *4 (-1262 (-316 (-225)))) (-5 *1 (-205))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094))
- (-4 *3 (-1209)) (-5 *1 (-294 *3))))
+ (-12 (-5 *2 (-642 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1097))
+ (-4 *3 (-1212)) (-5 *1 (-294 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))
+ (-12 (-4 *2 (-309 *2)) (-4 *2 (-1097)) (-4 *2 (-1212))
(-5 *1 (-294 *2))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-642 *1))) (-4 *1 (-302))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 (-641 *1))))
+ (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 (-1 *1 (-642 *1))))
(-4 *1 (-302))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302))))
+ (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 (-1 *1 *1))) (-4 *1 (-302))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302))))
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302))))
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1 *1 (-642 *1))) (-4 *1 (-302))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 (-641 *1))))
+ (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-1 *1 (-642 *1))))
(-4 *1 (-302))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302))))
+ (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-1 *1 *1))) (-4 *1 (-302))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-642 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1097))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1097))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1172 (-407 (-564))))
+ (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1175 (-407 (-564))))
(-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *1)) (-4 *1 (-374 *4 *5))
- (-4 *4 (-846)) (-4 *5 (-172))))
+ (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 *1)) (-4 *1 (-374 *4 *5))
+ (-4 *4 (-848)) (-4 *5 (-172))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172))))
+ (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-430 *5)) (-4 *5 (-1094)) (-4 *5 (-1045))))
+ (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-641 *1)))
- (-4 *1 (-430 *5)) (-4 *5 (-1094)) (-4 *5 (-1045))))
+ (-12 (-5 *2 (-1173)) (-5 *3 (-769)) (-5 *4 (-1 *1 (-642 *1)))
+ (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-1047))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-767)))
- (-5 *4 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-1094))
- (-4 *5 (-1045))))
+ (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-769)))
+ (-5 *4 (-642 (-1 *1 (-642 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-1097))
+ (-4 *5 (-1047))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-767)))
- (-5 *4 (-641 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-1094))
- (-4 *5 (-1045))))
+ (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-642 (-769)))
+ (-5 *4 (-642 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-1097))
+ (-4 *5 (-1047))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 *1)) (-5 *4 (-1170))
- (-4 *1 (-430 *5)) (-4 *5 (-1094)) (-4 *5 (-612 (-536)))))
+ (-12 (-5 *2 (-642 (-114))) (-5 *3 (-642 *1)) (-5 *4 (-1173))
+ (-4 *1 (-430 *5)) (-4 *5 (-1097)) (-4 *5 (-612 (-536)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1170)) (-4 *1 (-430 *4)) (-4 *4 (-1094))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1173)) (-4 *1 (-430 *4)) (-4 *4 (-1097))
(-4 *4 (-612 (-536)))))
((*1 *1 *1)
- (-12 (-4 *1 (-430 *2)) (-4 *2 (-1094)) (-4 *2 (-612 (-536)))))
+ (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-612 (-536)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-1170))) (-4 *1 (-430 *3)) (-4 *3 (-1094))
+ (-12 (-5 *2 (-642 (-1173))) (-4 *1 (-430 *3)) (-4 *3 (-1097))
(-4 *3 (-612 (-536)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-1094))
+ (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097))
(-4 *3 (-612 (-536)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1209))))
+ (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1212))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *5)) (-4 *1 (-514 *4 *5))
- (-4 *4 (-1094)) (-4 *5 (-1209))))
+ (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 *5)) (-4 *1 (-514 *4 *5))
+ (-4 *4 (-1097)) (-4 *5 (-1212))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-829 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1094))))
+ (-12 (-5 *2 (-831 *3)) (-4 *3 (-363)) (-5 *1 (-716 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1097))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1170)) (-4 *4 (-556))
- (-5 *1 (-1039 *4))))
+ (-12 (-5 *2 (-407 (-950 *4))) (-5 *3 (-1173)) (-4 *4 (-556))
+ (-5 *1 (-1041 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-641 (-1170))) (-5 *4 (-641 (-407 (-948 *5))))
- (-5 *2 (-407 (-948 *5))) (-4 *5 (-556)) (-5 *1 (-1039 *5))))
+ (-12 (-5 *3 (-642 (-1173))) (-5 *4 (-642 (-407 (-950 *5))))
+ (-5 *2 (-407 (-950 *5))) (-4 *5 (-556)) (-5 *1 (-1041 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-5 *2 (-407 (-948 *4)))
- (-4 *4 (-556)) (-5 *1 (-1039 *4))))
+ (-12 (-5 *3 (-294 (-407 (-950 *4)))) (-5 *2 (-407 (-950 *4)))
+ (-4 *4 (-556)) (-5 *1 (-1041 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-294 (-407 (-948 *4))))) (-5 *2 (-407 (-948 *4)))
- (-4 *4 (-556)) (-5 *1 (-1039 *4))))
+ (-12 (-5 *3 (-642 (-294 (-407 (-950 *4))))) (-5 *2 (-407 (-950 *4)))
+ (-4 *4 (-556)) (-5 *1 (-1041 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3)))))
+ (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1153 *3)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1094))))
+ (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1097))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3))
- (-4 *3 (-1045))))
+ (-12 (-5 *4 (-564)) (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3))
+ (-4 *3 (-1047))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1276 *4 *3))
- (-4 *3 (-1045)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2746 *3) (|:| |coef2| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-586 *2)) (-4 *2 (-545)))))
+ (-12 (-5 *2 (-817 *4)) (-4 *4 (-848)) (-4 *1 (-1279 *4 *3))
+ (-4 *3 (-1047)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
- (-14 *4 (-641 (-1170)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
- (-14 *4 (-641 (-1170))))))
-(((*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
-(((*1 *1)
- (-12 (-4 *3 (-1094)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1094))
- (-4 *4 (-662 *3))))
- ((*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+ (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112))
- (-5 *1 (-668 *4)))))
+ (-12 (-5 *3 (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117))))))
+ (-4 *4 (-349)) (-5 *2 (-769)) (-5 *1 (-346 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-351 *3 *4)) (-14 *3 (-919))
+ (-14 *4 (-919))))
+ ((*1 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
+ (-14 *4
+ (-3 (-1169 *3)
+ (-1262 (-642 (-2 (|:| -2085 *3) (|:| -2047 (-1117)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349))
+ (-14 *4 (-919)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-407 (-564))))
- (-5 *2 (-2 (|:| -3722 (-1150 *4)) (|:| -3735 (-1150 *4))))
- (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-685 *2)) (-5 *4 (-767))
- (-4 *2 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))))
- (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3))
+ (-4 *3 (-13 (-404) (-1197)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))))
+(((*1 *1)
+ (-12 (-4 *3 (-1097)) (-5 *1 (-883 *2 *3 *4)) (-4 *2 (-1097))
+ (-4 *4 (-664 *3))))
+ ((*1 *1) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
+ (-12 (-4 *3 (-363)) (-4 *3 (-1047))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2185 *1)))
+ (-4 *1 (-850 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045))
- (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-307))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2249 *1)))
- (-4 *1 (-307)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1170))
- (-4 *4 (-13 (-556) (-1034 (-564)) (-147))) (-5 *1 (-570 *4)))))
+ (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-864 *4 *5 *6 *7))
+ (-4 *4 (-1047)) (-14 *5 (-642 (-1173))) (-14 *6 (-642 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-769)) (-4 *4 (-1047)) (-4 *5 (-848)) (-4 *6 (-791))
+ (-14 *8 (-642 *5)) (-5 *2 (-1267))
+ (-5 *1 (-1274 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-947 *4 *6 *5))
+ (-14 *9 (-642 *3)) (-14 *10 *3))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1036 *4)) (-4 *3 (-307))
+ (-4 *4 (-990 *3)) (-4 *5 (-1238 *4)) (-4 *6 (-409 *4 *5))
+ (-14 *7 (-1262 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1262 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-990 *3))
+ (-4 *5 (-1238 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1169 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -2116 (-407 *6)) (|:| |coeff| (-407 *6))))
+ (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-924))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-924))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-925))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-941 (-225)) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-925)))))
+(((*1 *2 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-846)) (-5 *1 (-303 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363))
- (-14 *4 (-1170)) (-14 *5 *3))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1045))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858))))
- ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1205))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1045)))))
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-642 (-263))) (-5 *1 (-1264))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-1155)) (-5 *1 (-1264))))
+ ((*1 *1 *1) (-5 *1 (-1264))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1091 (-841 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1267))
+ (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173)) (-4 *4 (-452)) (-4 *4 (-1097))
+ (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-610 *4)) (-5 *6 (-1173))
+ (-4 *4 (-13 (-430 *7) (-27) (-1197)))
+ (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4))))
+ (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536))))
+ (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-1173)) (-5 *1 (-536))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536)))))
+ (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536)))))
+ (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536)))))
+ (-12 (-5 *2 (-1173)) (-5 *1 (-702 *3)) (-4 *3 (-612 (-536)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-700 *3))
+ (-12 (-5 *4 (-642 (-1173))) (-5 *2 (-1173)) (-5 *1 (-702 *3))
(-4 *3 (-612 (-536))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-449 *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791))
+ (-5 *2 (-642 (-407 (-950 *4)))) (-5 *1 (-922 *4 *5 *6 *7))
+ (-4 *7 (-947 *4 *6 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))))
+(((*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-848))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -1907
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -3778
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1153 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3894
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-559))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-769)) (-4 *1 (-693 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -1907
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (|:| -3778
+ (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
+ (|:| |expense| (-379)) (|:| |accuracy| (-379))
+ (|:| |intermediateResults| (-379))))))
+ (-5 *1 (-801))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169 *5)) (-4 *5 (-452)) (-5 *2 (-642 *6))
+ (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-950 *5)) (-4 *5 (-452)) (-5 *2 (-642 *6))
+ (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-430 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112))
- (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112))
- (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-998)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))
- ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-1094)) (-5 *2 (-112))
- (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112))
- (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112))
- (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1194))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1045)) (-5 *1 (-594 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1045))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1045)))))
+ (-12 (-4 *4 (-848)) (-5 *2 (-642 (-642 *4))) (-5 *1 (-1183 *4))
+ (-5 *3 (-642 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305)))))
+ (-12 (-5 *3 (-1169 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-642
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-769)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-791)) (-4 *6 (-947 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-848))
+ (-5 *1 (-449 *4 *3 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816))
- (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-917))))
+ (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-192))))
((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-917))
- (-5 *1 (-528 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+ (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-305)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1033))
+ (-5 *1 (-756)))))
+(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4))
- (-4 *4 (-1045))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *1 (-231 *4))
+ (-4 *4 (-1047))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1047))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-769))))
((*1 *1 *1) (-4 *1 (-233)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846))))
- ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-4 *1 (-266 *3)) (-4 *3 (-848))))
+ ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
- (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216))
+ (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
- (-4 *4 (-1235 *3))))
+ (-12 (-5 *2 (-769)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
+ (-4 *4 (-1238 *3))))
((*1 *1 *1)
(-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3))
- (-4 *3 (-1235 *2))))
+ (-4 *3 (-1238 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-585 *2))
- (-5 *3 (-1170))))
+ (-12 (-4 *2 (-363)) (-4 *2 (-898 *3)) (-5 *1 (-585 *2))
+ (-5 *3 (-1173))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-767))) (-4 *1 (-896 *4))
- (-4 *4 (-1094))))
+ (-12 (-5 *2 (-642 *4)) (-5 *3 (-642 (-769))) (-4 *1 (-898 *4))
+ (-4 *4 (-1097))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1094))))
+ (-12 (-5 *3 (-769)) (-4 *1 (-898 *2)) (-4 *2 (-1097))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1094))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1094))))
+ (-12 (-5 *2 (-642 *3)) (-4 *1 (-898 *3)) (-4 *3 (-1097))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1097))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1170 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1238 *3)) (-4 *3 (-1047))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1247 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3))
- (-4 *3 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2 (-2 (|:| -2177 *3) (|:| |coeff| *3)))
- (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3)))
- (-4 *3 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2 (-2 (|:| -2177 *3) (|:| |coeff| *3)))
- (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846))
- (-4 *4 (-266 *3)) (-4 *5 (-789)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
- (-4 *5 (-238 (-2181 *3) (-767)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2083 *2) (|:| -1838 *5))
- (-2 (|:| -2083 *2) (|:| -1838 *5))))
- (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-945 *4 *5 (-860 *3))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-430 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-564))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363)))
- (-4 *3 (-1235 *4)) (-5 *2 (-564))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-556) (-1034 *2) (-637 *2) (-452)))
- (-5 *2 (-564)) (-5 *1 (-1110 *4 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-839 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-1034 *2) (-637 *2) (-452))) (-5 *2 (-564))
- (-5 *1 (-1110 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152))
- (-4 *6 (-13 (-556) (-1034 *2) (-637 *2) (-452))) (-5 *2 (-564))
- (-5 *1 (-1110 *6 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-564))
- (-5 *1 (-1111 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-839 (-407 (-948 *6))))
- (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-564))
- (-5 *1 (-1111 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1170))
- (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6))))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1133))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1036 (-564)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-848))
+ (-4 *4 (-266 *3)) (-4 *5 (-791)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1212)) (-5 *2 (-769)) (-5 *1 (-182 *4 *3))
+ (-4 *3 (-672 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033))
+ (-5 *1 (-753)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1107)))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045))
- (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789))
- (-4 *6 (-556)) (-4 *7 (-945 *6 *5 *3))
- (-5 *1 (-462 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1034 (-407 (-564))) (-363)
- (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $))
- (-15 -2336 (*7 $))))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1170)) (-5 *6 (-112))
- (-4 *7 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-4 *3 (-13 (-1194) (-955) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *7 *3)) (-5 *5 (-839 *3)))))
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1047))
+ (-5 *1 (-851 *5 *2)) (-4 *2 (-850 *5)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *2 (-1033)) (-5 *1 (-755)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1238 *4)) (-5 *2 (-687 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-687 *4))
+ (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3))
+ (-5 *2 (-687 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-788)) (-4 *3 (-172)))))
+ (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1097))
+ (-4 *6 (-1097)) (-4 *2 (-1097)) (-5 *1 (-678 *5 *6 *2)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267))
+ (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267))
+ (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1024 (-841 (-564))))
+ (-5 *3 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1047))
+ (-5 *1 (-594 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241))))
- ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
+ (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-241)) (-5 *3 (-1155))))
+ ((*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-241))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1209)) (-5 *2 (-1264)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-767)))))
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-5 *1 (-1262 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))))
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-642 (-171)))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
+ (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7))))
+ (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1148))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-919))
(-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-192)))))
+ (-3 (-1169 *4)
+ (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117)))))))
+ (-5 *1 (-346 *4)) (-4 *4 (-349)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1047)) (-5 *1 (-710 *3 *2)) (-4 *2 (-1238 *3)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *2 (-642 *4)) (-5 *1 (-777 *4))
+ (-4 *4 (-13 (-363) (-846))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-363) (-302)
- (-10 -8 (-15 -2323 ((-1119 *4 (-610 $)) $))
- (-15 -2336 ((-1119 *4 (-610 $)) $))
- (-15 -2423 ($ (-1119 *4 (-610 $))))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))))
+ (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-1000) (-1197)))
+ (-4 *4 (-556)) (-4 *2 (-13 (-430 (-169 *4)) (-1000) (-1197)))
+ (-5 *1 (-598 *4 *5 *2)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1170))
- (|:| |arrayIndex| (-641 (-948 (-564))))
+ (-2 (|:| |var| (-1173))
+ (|:| |arrayIndex| (-642 (-950 (-564))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -3354 (-858))))))
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -3284 (-860))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1170)) (|:| |rand| (-858))
+ (-2 (|:| |var| (-1173)) (|:| |rand| (-860))
(|:| |ints2Floats?| (-112))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330))
+ (-2 (|:| |switch| (-1172)) (|:| |thenClause| (-330))
(|:| |elseClause| (-330))))
(|:| |returnBranch|
- (-2 (|:| -1976 (-112))
- (|:| -2128
- (-2 (|:| |ints2Floats?| (-112)) (|:| -3354 (-858))))))
- (|:| |blockBranch| (-641 (-330)))
- (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152))
+ (-2 (|:| -3719 (-112))
+ (|:| -2085
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -3284 (-860))))))
+ (|:| |blockBranch| (-642 (-330)))
+ (|:| |commentBranch| (-642 (-1155))) (|:| |callBranch| (-1155))
(|:| |forBranch|
- (-2 (|:| -2141 (-1086 (-948 (-564))))
- (|:| |span| (-948 (-564))) (|:| -2575 (-330))))
- (|:| |labelBranch| (-1114))
- (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -2575 (-330))))
+ (-2 (|:| -3894 (-1089 (-950 (-564))))
+ (|:| |span| (-950 (-564))) (|:| -2474 (-330))))
+ (|:| |labelBranch| (-1117))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1172)) (|:| -2474 (-330))))
(|:| |commonBranch|
- (-2 (|:| -2562 (-1170)) (|:| |contents| (-641 (-1170)))))
- (|:| |printBranch| (-641 (-858)))))
+ (-2 (|:| -2461 (-1173)) (|:| |contents| (-642 (-1173)))))
+ (|:| |printBranch| (-642 (-860)))))
(-5 *1 (-330)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-564))))
- (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1012 *4 *5))
- (-5 *3 (-407 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-506)) (-5 *3 (-642 (-963))) (-5 *1 (-109)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-642 *2) *2 *2 *2)) (-4 *2 (-1097))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1097)) (-5 *1 (-103 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-998))
- (-4 *2 (-1045)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-870))))
- ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858))))
- ((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-641 (-1042 *5 *6))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-948 *4)))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-641 (-1042 *4 *5))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170))
- (-5 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-5 *2 (-1264))
- (-5 *1 (-1173))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1170))
- (-5 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void"))) (-5 *2 (-1264))
- (-5 *1 (-1173)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))))
+(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1097) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-13 (-1097) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-950 (-564)))) (-5 *1 (-437))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1173)) (-5 *4 (-687 (-225))) (-5 *2 (-1101))
+ (-5 *1 (-757))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1173)) (-5 *4 (-687 (-564))) (-5 *2 (-1101))
+ (-5 *1 (-757)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-586 *2)) (-4 *2 (-545)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)))))
+(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-687 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-247 *5 *6))) (-4 *6 (-452))
+ (-5 *2 (-247 *5 *6)) (-14 *5 (-642 (-1173))) (-5 *1 (-629 *5 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-912 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-913 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-418 (-950 *6))) (-5 *5 (-1173)) (-5 *3 (-950 *6))
+ (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-913 *6)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
- ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
- ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))))
+ (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5)))
+ (-5 *2 (-769)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-769)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-745)))))
(((*1 *2)
- (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *4))))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2746 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7))
- (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3))
- (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)))))
+ (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5)))
+ (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6))
+ (-5 *2 (-642 (-2 (|:| -1639 *1) (|:| -2241 (-642 *7)))))
+ (-5 *3 (-642 *7)) (-4 *1 (-1205 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
+ (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225)))
+ (-5 *1 (-695)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4))
+ (-4 *4 (-1238 *2)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6)))
- (-4 *6 (-363))
+ (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
+ (-4 *3 (-1062 *6 *7 *8))
(-5 *2
- (-641
- (-2 (|:| |outval| *7) (|:| |outmult| (-564))
- (|:| |outvect| (-641 (-685 *7))))))
- (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *6))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-752)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-641 *6)))
- (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-888 *5)))))
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-883 *5 *3 *4))
- (-4 *3 (-1034 (-1170))) (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5)))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
+ (-4 *3 (-1062 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1142 *6 *7 *8 *3 *4)) (-4 *4 (-1106 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-948 *3))))
- (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045))
- (-2351 (-4 *3 (-1034 (-1170)))) (-4 *3 (-882 *5))
- (-4 *4 (-612 (-888 *5)))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-564))))
+ (-4 *4 (-13 (-1238 *3) (-556) (-10 -8 (-15 -2080 ($ $ $)))))
+ (-4 *3 (-556)) (-5 *1 (-1241 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1081 *3)) (-4 *3 (-132)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-1 (-642 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-4 *6 (-1238 *5)) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-651 (-407 *7))) (-5 *4 (-1 (-642 *6) *7))
+ (-5 *5 (-1 (-418 *7) *7))
+ (-4 *6 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-4 *7 (-1238 *6)) (-5 *2 (-642 (-407 *7))) (-5 *1 (-810 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-5 *2 (-885 *5 *3)) (-5 *1 (-883 *5 *3 *4))
- (-2351 (-4 *3 (-1034 (-1170)))) (-2351 (-4 *3 (-1045)))
- (-4 *3 (-882 *5)) (-4 *4 (-612 (-888 *5))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-564))))
- (-4 *2 (-172)))))
+ (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-1 (-642 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-4 *6 (-1238 *5)) (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-652 *7 (-407 *7))) (-5 *4 (-1 (-642 *6) *7))
+ (-5 *5 (-1 (-418 *7) *7))
+ (-4 *6 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-4 *7 (-1238 *6)) (-5 *2 (-642 (-407 *7))) (-5 *1 (-810 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-651 (-407 *5))) (-4 *5 (-1238 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-5 *2 (-642 (-407 *5))) (-5 *1 (-810 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-651 (-407 *6))) (-5 *4 (-1 (-418 *6) *6))
+ (-4 *6 (-1238 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 *5 (-407 *5))) (-4 *5 (-1238 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-5 *2 (-642 (-407 *5))) (-5 *1 (-810 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6))
+ (-4 *6 (-1238 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-5 *2 (-642 (-407 *6))) (-5 *1 (-810 *5 *6)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
+ (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
+ (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-671 *2)) (-4 *2 (-1045)) (-4 *2 (-1094)))))
-(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209))))
+ (-12 (-5 *1 (-673 *2)) (-4 *2 (-1047)) (-4 *2 (-1097)))))
+(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212))))
((*1 *2 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3))))
+ (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
+ (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307))
- (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1205 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *5 (-1062 *2 *3 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848)))
+ (-14 *3 (-642 (-1173))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1047))
+ (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-685 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2047 (-641 *6)))
- *7 *6))
- (-4 *6 (-363)) (-4 *7 (-652 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1259 *6) "failed"))
- (|:| -2047 (-641 (-1259 *6)))))
- (-5 *1 (-809 *6 *7)) (-5 *4 (-1259 *6)))))
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556))
+ (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8))))
+ (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *1 (-1154 *3)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-112)) (-5 *1 (-300)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-919)) (-4 *3 (-363))
+ (-14 *4 (-991 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363))))
+ ((*1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363))))
+ ((*1 *1 *1) (|partial| -4 *1 (-720)))
+ ((*1 *1 *1) (|partial| -4 *1 (-724)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-774 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1065 *3 *2)) (-4 *3 (-13 (-846) (-363)))
+ (-4 *2 (-1238 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-452)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1094))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1094))))
+ (-12 (-5 *3 (-642 (-778 *5 (-862 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-642 (-1173)))
+ (-5 *2
+ (-642 (-1143 *5 (-531 (-862 *6)) (-862 *6) (-778 *5 (-862 *6)))))
+ (-5 *1 (-626 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1212))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-642 (-941 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-941 *3))) (-4 *3 (-1047)) (-4 *1 (-1131 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1045))
- (-5 *1 (-710 *3 *4))))
+ (-12 (-5 *2 (-642 (-642 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))))
-(((*1 *1) (-5 *1 (-141))))
+ (-12 (-5 *2 (-642 (-941 *3))) (-4 *1 (-1131 *3)) (-4 *3 (-1047)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-556))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-556)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-641
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-789)) (-4 *6 (-945 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846))
- (-5 *1 (-449 *4 *3 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-641 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094))
- (-5 *2 (-641 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-722))))
- ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-641 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1045)) (-5 *2 (-1150 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-506)) (-5 *2 (-641 (-961))) (-5 *1 (-291)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-948 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363))
- (-5 *2 (-1166 (-948 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225)))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-767)) (-4 *4 (-349))
- (-5 *1 (-528 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *1 *1 *1) (-4 *1 (-473)))
- ((*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-879))))
- ((*1 *1 *1) (-5 *1 (-967)))
- ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094)))))
-(((*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))))
+ (-12 (-5 *2 (-1173)) (-5 *3 (-379)) (-5 *1 (-1060)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-642 *1)) (-4 *1 (-1062 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-975 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789))
+ (-12 (-14 *4 (-642 (-1173))) (-4 *5 (-452))
(-5 *2
- (-641
- (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7))
- (|:| |wcond| (-641 (-948 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-948 *4))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *4))))))))))
- (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-778 *3)) (|:| |polden| *3) (|:| -3196 (-767))))
- (-5 *1 (-778 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3196 (-767))))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-173)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1034 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-819)) (-5 *1 (-818)))))
+ (-2 (|:| |glbase| (-642 (-247 *4 *5))) (|:| |glval| (-642 (-564)))))
+ (-5 *1 (-629 *4 *5)) (-5 *3 (-642 (-247 *4 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(((*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-964 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 (-950 *4))) (-5 *3 (-642 (-1173))) (-4 *4 (-452))
+ (-5 *1 (-916 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-379)) (-5 *1 (-1060)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-848))
+ (-4 *5 (-791)) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-759))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-839 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *2
- (-3 (-839 *3)
- (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-839 *3) "failed")))
- "failed"))
- (-5 *1 (-634 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-839 *3)) (-5 *1 (-634 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-839 (-948 *5)))) (-4 *5 (-452))
- (-5 *2
- (-3 (-839 (-407 (-948 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-839 (-407 (-948 *5))) "failed")))
- "failed"))
- (-5 *1 (-635 *5)) (-5 *3 (-407 (-948 *5)))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1169 *7)) (-4 *5 (-1047))
+ (-4 *7 (-1047)) (-4 *2 (-1238 *5)) (-5 *1 (-501 *5 *2 *6 *7))
+ (-4 *6 (-1238 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5)))
- (-4 *5 (-452))
- (-5 *2
- (-3 (-839 *3)
- (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-839 *3) "failed")))
- "failed"))
- (-5 *1 (-635 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-294 (-407 (-948 *6)))) (-5 *5 (-1152))
- (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-839 *3))
- (-5 *1 (-635 *6)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-753)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047))
+ (-4 *4 (-1238 *5)) (-5 *2 (-1169 *7)) (-5 *1 (-501 *5 *4 *6 *7))
+ (-4 *6 (-1238 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))))
+(((*1 *2 *3) (-12 (-5 *3 (-642 (-564))) (-5 *2 (-769)) (-5 *1 (-589)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468))))
+ (-12 (-5 *2 (-642 (-379))) (-5 *3 (-642 (-263))) (-5 *1 (-261))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-379))) (-5 *1 (-468))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1264)) (-5 *1 (-1260))))
+ (-12 (-5 *3 (-919)) (-5 *4 (-872)) (-5 *2 (-1267)) (-5 *1 (-1263))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225)))
- (-5 *1 (-693)))))
+ (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1047))
+ (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-850 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1047))
+ (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-851 *5 *3))
+ (-4 *3 (-850 *5)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-687 (-564)))
+ (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-755)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173))
+ (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-903 *3))) (-4 *3 (-1097)) (-5 *1 (-902 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112))
- (-5 *1 (-357 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112))
- (-5 *1 (-528 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-757))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170))
- (-4 *2 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-556) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-277 *5 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3))
- (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147)))
- (-5 *1 (-1146 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-556))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1045))
- (-5 *3 (-564)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))))
+ (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))
+ (-5 *2 (-2 (|:| |k| (-817 *3)) (|:| |c| *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-642 (-1073 *4 *5 *2))) (-4 *4 (-1097))
+ (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4))))
+ (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-642 (-1073 *5 *6 *2))) (-5 *4 (-919)) (-4 *5 (-1097))
+ (-4 *6 (-13 (-1047) (-884 *5) (-612 (-890 *5))))
+ (-4 *2 (-13 (-430 *6) (-884 *5) (-612 (-890 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1006 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4))
- (-14 *3 (-917)) (-4 *4 (-1045)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+ (-12 (-4 *1 (-1036 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3))
+ (-4 *3 (-13 (-1197) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173)) (-4 *5 (-13 (-556) (-1036 (-564)) (-147)))
+ (-5 *2 (-585 (-407 (-950 *5)))) (-5 *1 (-570 *5))
+ (-5 *3 (-407 (-950 *5))))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-610 *3)) (-5 *5 (-1169 *3))
+ (-4 *3 (-13 (-430 *6) (-27) (-1197)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1169 *3)))
+ (-4 *3 (-13 (-430 *6) (-27) (-1197)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3))))
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-1026 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3))))
+ (-12 (-5 *2 (-642 (-687 *3))) (-4 *3 (-1047)) (-5 *1 (-1026 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3))))
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-1026 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767))
- (-4 *4 (-172)))))
+ (-12 (-5 *2 (-642 (-687 *3))) (-4 *3 (-1047)) (-5 *1 (-1026 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-1047))))
+ ((*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1008 *2)) (-4 *2 (-1212)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-330)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3))
- (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))))
+ (-12 (-5 *2 (-642 (-169 *4))) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-1238 (-169 (-564)))) (-4 *4 (-13 (-363) (-846)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-642 (-169 *4)))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-363) (-846))) (-5 *2 (-642 (-169 *4)))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-902 *4))
+ (-4 *4 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))))
+(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1059))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1059)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-848)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-1255 *4 *2))
+ (-4 *4 (-38 (-407 (-564)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1153 *3))) (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1047)))))
+(((*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-689 (-187))) (-5 *1 (-187)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1097)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-833 *3)) (-4 *3 (-1097)) (-5 *2 (-55)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-564))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6))
- (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-564))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -1606
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1011 *6 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147)))
- (-5 *1 (-399 *3 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1055 (-1020 *4) (-1166 (-1020 *4)))) (-5 *3 (-858))
- (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1018))))))
+ (-12 (-4 *4 (-907)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-418 (-1169 *7)))
+ (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-1169 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5)))
+ (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-642 (-769))) (-5 *1 (-967 *4 *3))
+ (-4 *3 (-1238 *4)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-5 *1 (-894 *2 *3))
+ (-4 *2 (-1238 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-506)) (-5 *2 (-687 (-770))) (-5 *1 (-114))))
+ (-12 (-5 *3 (-506)) (-5 *2 (-689 (-772))) (-5 *1 (-114))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-770)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1098)) (-5 *1 (-961)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6))
- (-4 *6 (-430 *5)) (-4 *5 (-1094)) (-5 *1 (-573 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+ (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-772)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1101)) (-5 *1 (-963)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-642 (-407 *6))) (-5 *3 (-407 *6))
+ (-4 *6 (-1238 *5)) (-4 *5 (-13 (-363) (-147) (-1036 (-564))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-568 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-750)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-974 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2022 *3) (|:| |coef1| (-780 *3))))
+ (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-687 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-687 *4)) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-950 *5)) (-4 *5 (-1047)) (-5 *2 (-481 *4 *5))
+ (-5 *1 (-942 *4 *5)) (-14 *4 (-642 (-1173))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1047))
+ (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-363))
+ (-5 *2 (-112)) (-5 *1 (-665 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411))))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-112))
+ (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-5 *3 (-506)) (-5 *2 (-687 (-1098))) (-5 *1 (-291)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1259 *5)) (-5 *3 (-767)) (-5 *4 (-1114)) (-4 *5 (-349))
- (-5 *1 (-528 *5)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923))
- (-5 *1 (-921 *3)) (-4 *3 (-612 (-536)))))
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7)))
+ (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791))
+ (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8)))
+ (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7)))
+ (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-5 *2 (-923)) (-5 *1 (-921 *3))
- (-4 *3 (-612 (-536)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-923))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791))
+ (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8)))
+ (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-1198 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2047 *5) (|:| -2700 *2))
+ (-2 (|:| -2047 *5) (|:| -2700 *2))))
+ (-4 *2 (-238 (-2127 *3) (-769))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-848)) (-4 *7 (-947 *4 *2 (-862 *3))))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1045)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925))
+ (-5 *1 (-923 *3)) (-4 *3 (-612 (-536)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925))
+ (-5 *1 (-923 *3)) (-4 *3 (-612 (-536)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-924))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-924))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-925))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-925))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-642 (-1 (-225) (-225)))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-925))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213))
- (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-556))
- (-5 *1 (-1124 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-856)) (-5 *2 (-687 (-129))) (-5 *3 (-129)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-917)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-870))
- (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4))
- (-4 *4 (-644 *2))))
+ (-12 (-5 *2 (-642 (-1 (-225) (-225)))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-925))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-925))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-361 (-114))) (-5 *1 (-832 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209))))
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-925)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-791))
+ (-4 *3 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))) (-4 *5 (-556))
+ (-5 *1 (-730 *4 *3 *5 *2)) (-4 *2 (-947 (-407 (-950 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1047)) (-4 *5 (-791))
+ (-4 *3
+ (-13 (-848)
+ (-10 -8 (-15 -1314 ((-1173) $))
+ (-15 -3329 ((-3 $ "failed") (-1173))))))
+ (-5 *1 (-982 *4 *5 *3 *2)) (-4 *2 (-947 (-950 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-642 *6))
+ (-4 *6
+ (-13 (-848)
+ (-10 -8 (-15 -1314 ((-1173) $))
+ (-15 -3329 ((-3 $ "failed") (-1173))))))
+ (-4 *4 (-1047)) (-4 *5 (-791)) (-5 *1 (-982 *4 *5 *6 *2))
+ (-4 *2 (-947 (-950 *4) *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1212))))
((*1 *1 *2)
- (-12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (-12 (-5 *2 (-950 (-379))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
- (-12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (-12 (-5 *2 (-407 (-950 (-379)))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
(-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-379))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (-4 *5 (-1036 (-379))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
- (-12 (-5 *2 (-948 (-564))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (-12 (-5 *2 (-950 (-564))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
- (-12 (-5 *2 (-407 (-948 (-564)))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (-12 (-5 *2 (-407 (-950 (-564)))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
(-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1034 (-564))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (-4 *5 (-1036 (-564))) (-14 *3 (-642 (-1173)))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *1 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2))
- (-14 *4 (-641 *2)) (-4 *5 (-387))))
+ (-12 (-5 *2 (-1173)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-642 *2))
+ (-14 *4 (-642 *2)) (-4 *5 (-387))))
((*1 *1 *2)
(-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5))
- (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170)))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-948 (-564))))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-948 (-379))))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-948 (-564)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-948 (-379)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-564)))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-948 (-564))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-4 *1 (-396))))
+ (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-687 (-407 (-950 (-564))))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-687 (-407 (-950 (-379))))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-687 (-950 (-564)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-687 (-950 (-379)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-687 (-316 (-564)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-687 (-316 (-379)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-564)))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 (-950 (-379)))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-950 (-564))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-950 (-379))) (-4 *1 (-396))))
((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396))))
((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-948 (-564))))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-948 (-379))))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-948 (-564)))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-948 (-379)))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1262 (-407 (-950 (-564))))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1262 (-407 (-950 (-379))))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1262 (-950 (-564)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1262 (-950 (-379)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1262 (-316 (-564)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1262 (-316 (-379)))) (-4 *1 (-441))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(|:| |mdnia|
(-2 (|:| |fn| (-316 (-225)))
- (|:| -2141 (-641 (-1088 (-839 (-225)))))
+ (|:| -3894 (-642 (-1091 (-841 (-225)))))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))))
- (-5 *1 (-765))))
+ (-5 *1 (-767))))
((*1 *2 *1)
(-12
(-5 *2
(-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *1 (-804))))
+ (-5 *1 (-806))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225)))
- (|:| |lb| (-641 (-839 (-225))))
- (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-839 (-225))))))
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225)))
+ (|:| |lb| (-642 (-841 (-225))))
+ (|:| |cf| (-642 (-316 (-225))))
+ (|:| |ub| (-642 (-841 (-225))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-641 (-316 (-225))))
- (|:| -3431 (-641 (-225)))))))
- (-5 *1 (-837))))
+ (-2 (|:| |lfn| (-642 (-316 (-225))))
+ (|:| -3366 (-642 (-225)))))))
+ (-5 *1 (-839))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-641 (-316 (-225))))
+ (-2 (|:| |pde| (-642 (-316 (-225))))
(|:| |constraints|
- (-641
+ (-642
(-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-767)) (|:| |boundaryType| (-564))
- (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
- (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
+ (|:| |grid| (-769)) (|:| |boundaryType| (-564))
+ (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225))))))
+ (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155))
(|:| |tol| (-225))))
- (-5 *1 (-894))))
+ (-5 *1 (-896))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1209))))
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-1047))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *1 (-974 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1212))))
((*1 *1 *2)
- (-2807
- (-12 (-5 *2 (-948 *3))
- (-12 (-2351 (-4 *3 (-38 (-407 (-564)))))
- (-2351 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))
- (-12 (-5 *2 (-948 *3))
- (-12 (-2351 (-4 *3 (-545))) (-2351 (-4 *3 (-38 (-407 (-564)))))
- (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))
- (-12 (-5 *2 (-948 *3))
- (-12 (-2351 (-4 *3 (-988 (-564)))) (-4 *3 (-38 (-407 (-564))))
- (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789))
- (-4 *5 (-846)))))
+ (-2706
+ (-12 (-5 *2 (-950 *3))
+ (-12 (-2268 (-4 *3 (-38 (-407 (-564)))))
+ (-2268 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791))
+ (-4 *5 (-848)))
+ (-12 (-5 *2 (-950 *3))
+ (-12 (-2268 (-4 *3 (-545))) (-2268 (-4 *3 (-38 (-407 (-564)))))
+ (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791))
+ (-4 *5 (-848)))
+ (-12 (-5 *2 (-950 *3))
+ (-12 (-2268 (-4 *3 (-990 (-564)))) (-4 *3 (-38 (-407 (-564))))
+ (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5)) (-4 *4 (-791))
+ (-4 *5 (-848)))))
((*1 *1 *2)
- (-2807
- (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-2351 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
- (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))
- (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))))
+ (-2706
+ (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5))
+ (-12 (-2268 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
+ (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))
+ (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))))
((*1 *1 *2)
- (-12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))))
-(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706)))))
+ (-12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) (-4 *3 (-1047))
+ (-4 *4 (-791)) (-4 *5 (-848)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1262 (-1173))) (-5 *3 (-1262 (-453 *4 *5 *6 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-919))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-1262 (-687 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-1262 (-453 *4 *5 *6 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-919))
+ (-14 *6 (-642 *2)) (-14 *7 (-1262 (-687 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1262 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173)))
+ (-14 *6 (-1262 (-687 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1262 (-1173))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-172)) (-14 *4 (-919)) (-14 *5 (-642 (-1173)))
+ (-14 *6 (-1262 (-687 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1173)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-919)) (-14 *5 (-642 *2)) (-14 *6 (-1262 (-687 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-919))
+ (-14 *4 (-642 (-1173))) (-14 *5 (-1262 (-687 *2))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2080 (-780 *3)) (|:| |coef2| (-780 *3))))
+ (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-2 (|:| -2080 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1062 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2))
- (-4 *2 (-644 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-832 *2)) (-4 *2 (-1045)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170))))
- ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264))))
- ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132))))
- ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
+ (|partial| -12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1212))
+ (-4 *5 (-373 *4)) (-4 *2 (-373 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *6 *7 *2)) (-4 *6 (-1047))
+ (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536)))))
+ (-12 (-5 *2 (-1173)) (-5 *3 (-642 (-536))) (-5 *1 (-536)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-62 *3)) (-14 *3 (-1173))))
+ ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-69 *3)) (-14 *3 (-1173))))
+ ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-72 *3)) (-14 *3 (-1173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1267))))
+ ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1267)) (-5 *1 (-397))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1155)) (-5 *4 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135))))
+ ((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-642 (-481 *5 *6))) (-5 *4 (-862 *5))
+ (-14 *5 (-642 (-1173))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6))
+ (-4 *6 (-452))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-481 *5 *6))) (-5 *4 (-862 *5))
+ (-14 *5 (-642 (-1173))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6))
+ (-4 *6 (-452)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-549))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-1170)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4))
- (-4 *4 (-1045)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330))
- (-5 *1 (-332)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-757))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-846))
- (-4 *3 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3))
+ (-4 *3 (-1097)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-121 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1238 *4)) (-5 *1 (-807 *4 *2 *3 *5))
+ (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2))
+ (-4 *5 (-654 (-407 *2))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-687 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132)))))
+ (-12 (-4 *4 (-172)) (-4 *2 (-1238 *4)) (-5 *1 (-177 *4 *2 *3))
+ (-4 *3 (-722 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 (-407 (-950 *5)))) (-5 *4 (-1173))
+ (-5 *2 (-950 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-687 (-407 (-950 *4)))) (-5 *2 (-950 *4))
+ (-5 *1 (-292 *4)) (-4 *4 (-452))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-687 (-169 (-407 (-564)))))
+ (-5 *2 (-950 (-169 (-407 (-564))))) (-5 *1 (-762 *4))
+ (-4 *4 (-13 (-363) (-846)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *4 (-1173))
+ (-5 *2 (-950 (-169 (-407 (-564))))) (-5 *1 (-762 *5))
+ (-4 *5 (-13 (-363) (-846)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *2 (-950 (-407 (-564))))
+ (-5 *1 (-777 *4)) (-4 *4 (-13 (-363) (-846)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 (-407 (-564)))) (-5 *4 (-1173))
+ (-5 *2 (-950 (-407 (-564)))) (-5 *1 (-777 *5))
+ (-4 *5 (-13 (-363) (-846))))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-765 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *2 (-642 *3)) (-5 *1 (-975 *4 *5 *6 *3))
+ (-4 *3 (-1062 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-642 (-280))) (-5 *1 (-280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1178)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-391)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-687 *4)) (-4 *4 (-1047)) (-5 *1 (-1139 *3 *4))
+ (-14 *3 (-769)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-749)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1128 *4))
- (-4 *4 (-1045))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1264))
- (-5 *1 (-1261)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
+ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172))))
+ (-5 *1 (-1172)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791))
+ (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-642 *3))
+ (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1106 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
+ (-5 *2
+ (-642 (-2 (|:| -1386 (-1169 *5)) (|:| -2067 (-642 (-950 *5))))))
+ (-5 *1 (-1075 *5 *6)) (-5 *3 (-642 (-950 *5)))
+ (-14 *6 (-642 (-1173)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-307) (-147)))
+ (-5 *2
+ (-642 (-2 (|:| -1386 (-1169 *4)) (|:| -2067 (-642 (-950 *4))))))
+ (-5 *1 (-1075 *4 *5)) (-5 *3 (-642 (-950 *4)))
+ (-14 *5 (-642 (-1173)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
+ (-5 *2
+ (-642 (-2 (|:| -1386 (-1169 *5)) (|:| -2067 (-642 (-950 *5))))))
+ (-5 *1 (-1075 *5 *6)) (-5 *3 (-642 (-950 *5)))
+ (-14 *6 (-642 (-1173))))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790))
(-4 *2 (-363))))
((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225))))
((*1 *1 *1 *1)
- (-2807 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209)))
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209)))))
+ (-2706 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1212)))
+ (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1212)))))
((*1 *1 *1 *1) (-4 *1 (-363)))
((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-1094))
+ (-12 (-5 *2 (-1122 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-1097))
(-4 *1 (-430 *3))))
((*1 *1 *1 *1) (-4 *1 (-473)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
+ (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
((*1 *1 *1 *1) (-5 *1 (-536)))
((*1 *1 *2 *3)
(-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-722) *4))))
+ (-4 *3 (|SubsetCategory| (-724) *4))))
((*1 *1 *1 *2)
(-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-722) *4))))
+ (-4 *2 (|SubsetCategory| (-724) *4))))
((*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-172)) (-5 *1 (-658 *2 *4 *3)) (-4 *2 (-713 *4))
- (-4 *3 (|SubsetCategory| (-722) *4))))
+ (-12 (-4 *4 (-172)) (-5 *1 (-660 *2 *4 *3)) (-4 *2 (-715 *4))
+ (-4 *3 (|SubsetCategory| (-724) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-172)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-713 *4))
- (-4 *2 (|SubsetCategory| (-722) *4))))
+ (-12 (-4 *4 (-172)) (-5 *1 (-660 *3 *4 *2)) (-4 *3 (-715 *4))
+ (-4 *2 (|SubsetCategory| (-724) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
(-4 *4 (-373 *2)) (-4 *2 (-363))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
+ ((*1 *1 *1 *1) (-5 *1 (-860)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363))
- (-4 *2 (-1045)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-767)))
- (-14 *5 (-767))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556))))
+ (|partial| -12 (-5 *1 (-864 *2 *3 *4 *5)) (-4 *2 (-363))
+ (-4 *2 (-1047)) (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-769)))
+ (-14 *5 (-769))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045))
+ (-12 (-4 *1 (-1051 *3 *4 *2 *5 *6)) (-4 *2 (-1047))
(-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-363))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-363))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846))
- (-4 *4 (-789)) (-14 *6 (-641 *3))
- (-5 *1 (-1271 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-945 *2 *4 *3))
- (-14 *7 (-641 (-767))) (-14 *8 (-767))))
+ (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1047)) (-4 *3 (-848))
+ (-4 *4 (-791)) (-14 *6 (-642 *3))
+ (-5 *1 (-1274 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-947 *2 *4 *3))
+ (-14 *7 (-642 (-769))) (-14 *8 (-769))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045))
- (-4 *3 (-842)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7))
- (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-905)) (-4 *5 (-789))
- (-4 *6 (-846)) (-5 *1 (-902 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5))
- (-4 *5 (-1235 *4)) (-4 *4 (-905)) (-5 *1 (-903 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391))))
- ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391)))))
-(((*1 *1) (-5 *1 (-1173))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172))
- (-4 *4 (-238 (-2181 *5) (-767)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2083 *3) (|:| -1838 *4))
- (-2 (|:| -2083 *3) (|:| -1838 *4))))
- (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846))
- (-4 *7 (-945 *2 *4 (-860 *5))))))
+ (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1047))
+ (-4 *3 (-844)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-919)) (-5 *4 (-872)) (-5 *2 (-1267)) (-5 *1 (-1263))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1136))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-753))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388))
+ (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *1 *2) (-12 (-5 *2 (-817 *3)) (-4 *3 (-848)) (-5 *1 (-670 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1267)) (-5 *1 (-391))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-391)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 (-2 (|:| |val| (-642 *6)) (|:| -3530 *7))))
+ (-4 *6 (-1062 *3 *4 *5)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-986 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-642 (-2 (|:| |val| (-642 *6)) (|:| -3530 *7))))
+ (-4 *6 (-1062 *3 *4 *5)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-1104 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1033))
+ (-5 *1 (-744)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
+ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172))))
+ (-5 *1 (-1172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-134)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-214 *2))
(-4 *2
- (-13 (-846)
- (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 ((-1264) $))
- (-15 -1757 ((-1264) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209))))
+ (-13 (-848)
+ (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 ((-1267) $))
+ (-15 -1937 ((-1267) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
(-4 *4 (-373 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
(-4 *4 (-373 *2))))
- ((*1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858)))
+ ((*1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1 *1) (-5 *1 (-860)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4))
- (-5 *3 (-641 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1045)) (-5 *1 (-1281 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *1 (-1283 *3 *4)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-21)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1262 (-316 (-225))))
+ (-5 *2
+ (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564))
+ (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))))
+ (-5 *1 (-305)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
+ (-12 (-5 *2 (-642 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556))
+ (-4 *3 (-1212)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2649 (-642 (-2 (|:| |irr| *10) (|:| -3672 (-564)))))))
+ (-5 *6 (-642 *3)) (-5 *7 (-642 *8)) (-4 *8 (-848)) (-4 *3 (-307))
+ (-4 *10 (-947 *3 *9 *8)) (-4 *9 (-791))
+ (-5 *2
+ (-2 (|:| |polfac| (-642 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-642 (-1169 *3)))))
+ (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-642 (-1169 *3))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-379))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1097)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-436)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-564))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172))))
+ (-5 *1 (-1172)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-214 *2))
(-4 *2
- (-13 (-846)
- (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 ((-1264) $))
- (-15 -1757 ((-1264) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209))))
+ (-13 (-848)
+ (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 ((-1267) $))
+ (-15 -1937 ((-1267) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1212))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1212))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131))))
+ (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-131))))
((*1 *1 *2 *1)
(-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2))
- (-4 *2 (-1235 *3))))
+ (-4 *2 (-1238 *3))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))
+ (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4))))
((*1 *1 *1 *1) (-5 *1 (-536)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
(-4 *4 (-373 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-846)) (-4 *5 (-905)) (-4 *6 (-789))
- (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-418 (-1166 *8)))
- (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-1166 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5)))
- (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *1 *1 *1) (-4 *1 (-657))))
-(((*1 *1 *1) (-4 *1 (-556))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-25)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2080 (-780 *3)) (|:| |coef1| (-780 *3))))
+ (-5 *1 (-780 *3)) (-4 *3 (-556)) (-4 *3 (-1047))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-2 (|:| -2080 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1062 *3 *4 *5)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291)))
+ ((*1 *1) (-5 *1 (-860)))
+ ((*1 *1)
+ (-12 (-4 *2 (-452)) (-4 *3 (-848)) (-4 *4 (-791))
+ (-5 *1 (-985 *2 *3 *4 *5)) (-4 *5 (-947 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1082)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34)))
+ (-4 *3 (-13 (-1097) (-34)))))
+ ((*1 *1) (-5 *1 (-1176))) ((*1 *1) (-5 *1 (-1177))))
+(((*1 *1 *1 *1) (-4 *1 (-659))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-642 (-1173)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848)))
+ (-14 *3 (-642 (-1173))))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1082))) (-5 *1 (-291)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-612 (-1170))))
- (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-945 *3 *5 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1152)) (-5 *1 (-782)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -1887 (-418 *3)) (|:| |special| (-418 *3))))
- (-5 *1 (-723 *5 *3)))))
+ (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000)))
+ (-5 *1 (-176 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
+ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172))))
+ (-5 *1 (-1172)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-641 (-1170))) (-5 *1 (-210))
- (-5 *3 (-1170))))
+ (-12 (-5 *4 (-769)) (-5 *2 (-642 (-1173))) (-5 *1 (-210))
+ (-5 *3 (-1173))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-767)) (-5 *2 (-641 (-1170)))
+ (-12 (-5 *3 (-316 (-225))) (-5 *4 (-769)) (-5 *2 (-642 (-1173)))
(-5 *1 (-267))))
((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *2 (-641 *3))))
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172))
+ (-5 *2 (-642 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-641 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-673 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
+ (-12 (-5 *2 (-642 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848))
+ (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-675 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-817 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848))))
((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-641 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
+ (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))
+ (-5 *2 (-642 *3)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-564))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-903 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363)))
+ (-4 *3 (-1238 *4)) (-5 *2 (-564))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-556) (-1036 *2) (-637 *2) (-452)))
+ (-5 *2 (-564)) (-5 *1 (-1113 *4 *3))
+ (-4 *3 (-13 (-27) (-1197) (-430 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-841 *3))
+ (-4 *3 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-556) (-1036 *2) (-637 *2) (-452))) (-5 *2 (-564))
+ (-5 *1 (-1113 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-1155))
+ (-4 *6 (-13 (-556) (-1036 *2) (-637 *2) (-452))) (-5 *2 (-564))
+ (-5 *1 (-1113 *6 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-452)) (-5 *2 (-564))
+ (-5 *1 (-1114 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-841 (-407 (-950 *6))))
+ (-5 *3 (-407 (-950 *6))) (-4 *6 (-452)) (-5 *2 (-564))
+ (-5 *1 (-1114 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-407 (-950 *6))) (-5 *4 (-1173))
+ (-5 *5 (-1155)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1114 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1194 *3)) (-4 *3 (-1047)))))
+(((*1 *1 *1 *1) (-4 *1 (-659))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ (|partial| -12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791))
+ (-5 *2 (-112)) (-5 *1 (-985 *3 *4 *5 *6))
+ (-4 *6 (-947 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1235 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789))
- (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6))
- (-4 *6 (-945 *3 *5 *4))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34)))
+ (-4 *4 (-13 (-1097) (-34))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-642 (-642 *7)))
+ (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-642 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791))
+ (-4 *7 (-848)) (-4 *8 (-947 *5 *6 *7)) (-5 *2 (-642 (-642 *8)))
+ (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-642 *8)))))
+(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1262 *1)) (-4 *1 (-367 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6))
- (-4 *4 (-1045)) (-14 *5 (-1170)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6))
- (-4 *4 (-1045)) (-14 *5 (-1170)) (-14 *6 *4))))
-(((*1 *1 *1 *1) (-4 *1 (-657))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209))
- (-5 *2 (-641 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215))))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-1055)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-1055)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363)))
+ (-4 *3 (-1238 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-418 (-1169 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1169 *1))
+ (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1097))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1212))
+ (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-941 *5)) (-5 *3 (-769)) (-4 *5 (-1047))
+ (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))))
+(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1155)) (-5 *1 (-305)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1169 *1)) (-5 *3 (-1173)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-4 *1 (-29 *3)) (-4 *3 (-556))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1047)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-99 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-749)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4))
+ (-4 *4 (-349)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3))
- (-4 *2 (-1235 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307))
+ (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-947 *5 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-1132))))
+ (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-858))) (-5 *2 (-1264)) (-5 *1 (-1132)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1259 (-641 (-2 (|:| -2128 (-906 *3)) (|:| -2083 (-1114))))))
- (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))
- ((*1 *2)
- (-12 (-5 *2 (-1259 (-641 (-2 (|:| -2128 *3) (|:| -2083 (-1114))))))
- (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1259 (-641 (-2 (|:| -2128 *3) (|:| -2083 (-1114))))))
- (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-746)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4))
- (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-917))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
- ((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3))
- (-4 *3 (-13 (-1194) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1034 (-564)) (-147)))
- (-5 *2 (-585 (-407 (-948 *5)))) (-5 *1 (-570 *5))
- (-5 *3 (-407 (-948 *5))))))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *6 *4 *5))
+ (-5 *1 (-914 *4 *5 *6 *2)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-4 *6 (-307)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-687 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
+ (-5 *7 (-687 (-564)))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-751)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047))
+ (-14 *4 (-642 (-1173)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848)))
+ (-14 *4 (-642 (-1173))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-641 *3))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-642 *3))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
- (-5 *2 (-641 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
+ (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212))
+ (-5 *2 (-642 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
+ (-5 *5 (-1091 (-225))) (-5 *6 (-642 (-263))) (-5 *2 (-1130 (-225)))
+ (-5 *1 (-695))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-941 (-225)) (-225) (-225))) (-5 *4 (-1091 (-225)))
+ (-5 *5 (-642 (-263))) (-5 *2 (-1130 (-225))) (-5 *1 (-695))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1130 (-225))) (-5 *3 (-1 (-941 (-225)) (-225) (-225)))
+ (-5 *4 (-1091 (-225))) (-5 *5 (-642 (-263))) (-5 *1 (-695)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-5 *2 (-1267)) (-5 *1 (-1176))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1173))
+ (-5 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-5 *2 (-1267))
+ (-5 *1 (-1176))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1173))
+ (-5 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-5 *2 (-1267))
+ (-5 *1 (-1176)))))
+(((*1 *2 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-545)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-144))) (-5 *1 (-141))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-141)))))
(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225))
(-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))))
+ (-5 *2 (-1033)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-642 *6) "failed") (-564) *6 *6)) (-4 *6 (-363))
+ (-4 *7 (-1238 *6))
+ (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
+ (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+ (-12 (-5 *2 (-418 (-1169 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1169 *1))
+ (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1097))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1033)))))
+(((*1 *1 *1 *1) (-4 *1 (-759))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *6))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *1) (-4 *1 (-659))))
(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-687 (-407 *4))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4))
- (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6)))
- (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1034 (-564))))
- (-5 *2 (-2 (|:| -3744 (-767)) (|:| -3269 *8)))
- (-5 *1 (-907 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
- (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4)))
- (-4 *6 (-342 (-407 (-564)) *4 *5))
- (-5 *2 (-2 (|:| -3744 (-767)) (|:| -3269 *6)))
- (-5 *1 (-908 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564)))))
- (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -3639 *5) (|:| -3796 *5))))
- (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-652 *5))
- (-4 *6 (-652 (-407 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564)))))
- (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3639 *4) (|:| -3796 *4))))
- (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-652 *4))
- (-4 *6 (-652 (-407 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564)))))
- (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -3639 *5) (|:| -3796 *5))))
- (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-652 *5))
- (-4 *3 (-652 (-407 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564)))))
- (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3639 *4) (|:| -3796 *4))))
- (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-652 *4))
- (-4 *3 (-652 (-407 *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))))
+ (-12 (-4 *1 (-798))
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-1033)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1036 *4)) (-4 *3 (-556)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-769)) (-5 *1 (-780 *3)) (-4 *3 (-1047))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-961 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556))
+ (-4 *3 (-1047)) (-4 *2 (-790))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-769)) (-5 *1 (-1169 *3)) (-4 *3 (-1047))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-969)) (-4 *2 (-131)) (-5 *1 (-1175 *3)) (-4 *3 (-556))
+ (-4 *3 (-1047))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-769)) (-5 *1 (-1235 *4 *3)) (-14 *4 (-1173))
+ (-4 *3 (-1047)))))
+(((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267))
+ (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267))
+ (-5 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-642 (-642 *4)))) (-5 *2 (-642 (-642 *4)))
+ (-5 *1 (-1183 *4)) (-4 *4 (-848)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-945 *5 *4 *2))
- (-4 *2 (-846)) (-5 *1 (-946 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -2423 ($ *6)) (-15 -2323 (*6 $))
- (-15 -2336 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556))
- (-5 *2 (-1170)) (-5 *1 (-1039 *4)))))
-(((*1 *1) (-5 *1 (-559))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9)))
- (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-767)))
- (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-945 *9 *10 *11))
- (-4 *10 (-789)) (-5 *2 (-641 (-1166 *12)))
- (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1166 *12)))))
-(((*1 *1 *1) (-4 *1 (-657))))
-(((*1 *1 *1) (-4 *1 (-627)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1194))))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192))))
- ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300))))
- ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305)))))
-(((*1 *2 *2)
- (-12
+ (-12 (-5 *2 (-642 (-642 (-769)))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5))
(-5 *2
- (-641
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846))
- (-5 *1 (-449 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4))))
+ (-5 *1 (-1121 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-978 *2)) (-4 *2 (-1047))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1045)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2746 *3) (|:| |coef1| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1150 (-948 *4)) (-1150 (-948 *4))))
- (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3))
- (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))))
+ (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1047)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-860))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-641 (-948 *3))) (-4 *3 (-452))
- (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-641 (-776 *3 (-860 *4)))) (-4 *3 (-452))
- (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))))
+ ((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-687 (-225)))
+ (-5 *2 (-1033)) (-5 *1 (-753)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-923))
- (-5 *2
- (-2 (|:| |brans| (-641 (-641 (-939 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-923)) (-5 *4 (-407 (-564)))
- (-5 *2
- (-2 (|:| |brans| (-641 (-641 (-939 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
(-5 *2
- (-2 (|:| |brans| (-641 (-641 (-939 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153)) (-5 *3 (-641 (-939 (-225))))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-641 (-641 (-939 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153)) (-5 *3 (-641 (-641 (-939 (-225)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170))
- (-14 *4 *2))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-556))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))
- (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-909 *4 *5))
- (-4 *5 (-1235 (-407 *4))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))))
+ (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))))
+ (-5 *1 (-205)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1175 (-407 (-564)))) (-5 *2 (-407 (-564)))
+ (-5 *1 (-190)))))
+(((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))
+ ((*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-307))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564))))
+ ((*1 *1 *1) (-4 *1 (-1057))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-754)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-556)) (-4 *2 (-1047))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-556))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *3 (-1062 *4 *5 *6))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *1))))
+ (-4 *1 (-1068 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-901 *3)) (-4 *3 (-1097)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))))
(((*1 *1 *1 *2)
(|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))
+ (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790))
(-4 *2 (-556))))
((*1 *1 *1 *1) (|partial| -4 *1 (-556)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045))
+ (|partial| -12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047))
(-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-767)))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-769)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-556))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
+ (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-556))))
+ ((*1 *1 *1 *1) (-5 *1 (-860)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556))
- (-5 *1 (-965 *3 *4))))
+ (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-556))
+ (-5 *1 (-967 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045))
+ (|partial| -12 (-4 *1 (-1051 *3 *4 *2 *5 *6)) (-4 *2 (-1047))
(-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363))
- (-4 *4 (-1045)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291)))
- ((*1 *1) (-5 *1 (-858)))
- ((*1 *1)
- (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789))
- (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1079)))
- ((*1 *1)
- (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34)))))
- ((*1 *1) (-5 *1 (-1173))) ((*1 *1) (-5 *1 (-1174))))
+ (|partial| -12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-437)) (-5 *1 (-1177)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-846)) (-5 *2 (-641 (-660 *4 *5)))
- (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-564)))))
- (-14 *6 (-917)))))
+ (-12 (-5 *3 (-687 (-407 (-950 (-564))))) (-5 *2 (-642 (-316 (-564))))
+ (-5 *1 (-1029)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173))
+ (-14 *4 *2))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
+ (-5 *2 (-1169 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
+ (-5 *2 (-1169 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1))
+ (-4 *1 (-1062 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559)))))
+ (-12 (-5 *3 (-564)) (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1047))
+ (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-947 *2 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1047)) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1238 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363))
- (-4 *7 (-1235 *6))
- (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
- (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *1) (-5 *1 (-144)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1153 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3894
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1033)) (-5 *1 (-305)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3))))
- (-5 *1 (-815 *3)) (-4 *3 (-846))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-349))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -1572 (-641 (-2 (|:| |irr| *3) (|:| -2173 (-564)))))))
- (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923))
- (-5 *1 (-921 *3)) (-4 *3 (-612 (-536)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-923))
- (-5 *1 (-921 *3)) (-4 *3 (-612 (-536)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-922))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-922))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-922))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923)))))
-(((*1 *2)
- (-12 (-4 *1 (-349))
- (-5 *2 (-641 (-2 (|:| -3688 (-564)) (|:| -1838 (-564))))))))
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-817 *3)) (|:| |rm| (-817 *3))))
+ (-5 *1 (-817 *3)) (-4 *3 (-848))))
+ ((*1 *1 *1 *1) (-5 *1 (-860))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-564))))
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-795 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-545)) (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-545)) (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-995 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1006 *3)) (-4 *3 (-1036 (-407 (-564)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-697)) (-5 *1 (-305)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))
+ ((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-1034 (-564))) (-4 *3 (-556))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $))
- (-15 -2336 ((-1119 *3 (-610 $)) $))
- (-15 -2423 ($ (-1119 *3 (-610 $))))))))))
-(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141)))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1214))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1214)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212))))
((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
+ ((*1 *1 *1 *1) (-5 *1 (-860)))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1209)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767))
- (-5 *1 (-941 *4 *5)) (-4 *5 (-1235 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-796))
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-1031)))))
-(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-818)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1219 *3))
- (-5 *2 (-407 (-564))))))
-(((*1 *2 *3 *2)
- (-12
+ (-12 (-5 *2 (-112)) (-5 *1 (-1024 *3)) (-4 *3 (-1212)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363))
+ (-4 *7 (-1238 (-407 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -3722 *3)))
+ (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363))
(-5 *2
- (-641
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-789)) (-4 *3 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846))
- (-5 *1 (-449 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1020 (-407 *4)))))
- (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-948 *4)))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-867 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-564))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-868 *3 *4))
- (-4 *4 (-865 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-564)) (-5 *1 (-868 *2 *3)) (-4 *3 (-865 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-1250 *3))))
+ (-2 (|:| |answer| (-407 *6)) (|:| -3722 (-407 *6))
+ (|:| |specpart| (-407 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791)) (-5 *2 (-642 (-642 (-564))))
+ (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-947 *4 *6 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-769))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))))
+ (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))))
+(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1265))))
+ ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1265)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1250 *2)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-917)) (-4 *1 (-404))))
+ (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173))
+ (-14 *4 *2))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-769)) (-4 *4 (-363)) (-4 *5 (-1238 *4)) (-5 *2 (-1267))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1238 (-407 *5))) (-14 *7 *6))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-919)) (-4 *1 (-404))))
((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404))))
((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556))
- (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767)))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-679 *4 *5)) (-4 *4 (-1094))))
+ (-12 (-4 *1 (-1100 *3 *4 *5 *2 *6)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
+(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-769)))
+ ((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1097)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-681 *4 *5)) (-4 *4 (-1097))))
((*1 *2 *2)
- (-12 (-4 *3 (-1094)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3))))
+ (-12 (-4 *3 (-1097)) (-5 *1 (-927 *3 *2)) (-4 *2 (-430 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-926))))
+ (-12 (-5 *3 (-1173)) (-5 *2 (-316 (-564))) (-5 *1 (-928))))
((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045))))
+ (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047))))
((*1 *2 *1)
- (-12 (-4 *2 (-1045)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-842)))))
-(((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7))
- (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1235 *5))
- (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))))
+ (-12 (-4 *2 (-1047)) (-5 *1 (-1285 *2 *3)) (-4 *3 (-844)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-822)) (-5 *3 (-642 (-1173))) (-5 *1 (-823)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-967))
- (-5 *3 (-641 (-564))))))
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1047)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-612 *2))
- (-5 *2 (-379)) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556))
- (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556))
- (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))
+ (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4))
+ (-4 *4 (-349)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-642 (-1 *4 (-642 *4)))) (-4 *4 (-1097))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1097))
+ (-5 *1 (-113 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846))
- (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556))
- (-4 *5 (-846)) (-4 *5 (-612 *2)) (-5 *2 (-379))
- (-5 *1 (-781 *5)))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-642 (-1 *4 (-642 *4))))
+ (-5 *1 (-113 *4)) (-4 *4 (-1097)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225)))
- (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1031))
- (-5 *1 (-750)))))
-(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579)))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1255 *3 *2))
+ (-4 *2 (-1253 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-52)) (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-821))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-689 (-579))) (-5 *1 (-579)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-769)))
+ ((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767)))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218))))
- ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
+ (-12 (-5 *3 (-1139 *4 *2)) (-14 *4 (-919))
+ (-4 *2 (-13 (-1047) (-10 -7 (-6 (-4412 "*")))))
+ (-5 *1 (-900 *4 *2)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-564)))))
- (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112))
- (-5 *1 (-505 *4 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2))
- (-4 *4 (-38 (-407 (-564)))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2))
- (-4 *2 (-1250 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3)))
- (-4 *5 (-1235 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2))
- (-4 *2 (-1250 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3)))
- (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147)))
- (-5 *1 (-1146 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2))
- (-4 *3 (-13 (-1094) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879)) (-5 *3 (-564)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-858))))
- ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-958)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112))
- (-5 *2 (-1031)) (-5 *1 (-741)))))
+ (-12 (-5 *2 (-642 (-642 (-564)))) (-5 *1 (-969))
+ (-5 *3 (-642 (-564))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-4 *5 (-430 *4))
- (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -2423 ($ *7)))))
- (-4 *7 (-844))
- (-4 *8
- (-13 (-1237 *3 *7) (-363) (-1194)
- (-10 -8 (-15 -3254 ($ $)) (-15 -2070 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))))
- (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-979 *8))
- (-14 *10 (-1170)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2)))
- (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3))
- (-4 *3 (-342 *5 *2 *6)))))
+ (-12 (-5 *3 (-642 (-642 (-941 (-225)))))
+ (-5 *2 (-642 (-1091 (-225)))) (-5 *1 (-926)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1097) (-34))) (-5 *1 (-1137 *3 *2))
+ (-4 *3 (-13 (-1097) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1273)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1097)) (-5 *2 (-887 *3 *4)) (-5 *1 (-883 *3 *4 *5))
+ (-4 *3 (-1097)) (-4 *5 (-664 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-860))))
+ ((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-960)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917))))
+ (-12 (-5 *3 (-642 (-642 (-642 *4)))) (-5 *2 (-642 (-642 *4)))
+ (-4 *4 (-848)) (-5 *1 (-1183 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-912 *3)) (-4 *3 (-307)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-769))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-919))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767))
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769))
(-4 *4 (-172))))
((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-157))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-157))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194)))
+ (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197)))
(-5 *1 (-227 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-722))))
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-724))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-722))))
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-724))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209))))
+ (-12 (-5 *1 (-294 *2)) (-4 *2 (-1109)) (-4 *2 (-1212))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209))))
+ (-12 (-5 *1 (-294 *2)) (-4 *2 (-1109)) (-4 *2 (-1212))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094))))
+ (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-131))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1097))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846))))
+ (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-848))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1097))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
- (-4 *6 (-238 (-2181 *3) (-767)))
+ (-12 (-14 *3 (-642 (-1173))) (-4 *4 (-172))
+ (-4 *6 (-238 (-2127 *3) (-769)))
(-14 *7
- (-1 (-112) (-2 (|:| -2083 *5) (|:| -1838 *6))
- (-2 (|:| -2083 *5) (|:| -1838 *6))))
- (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846))
- (-4 *2 (-945 *4 *6 (-860 *3)))))
+ (-1 (-112) (-2 (|:| -2047 *5) (|:| -2700 *6))
+ (-2 (|:| -2047 *5) (|:| -2700 *6))))
+ (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-848))
+ (-4 *2 (-947 *4 *6 (-862 *3)))))
((*1 *1 *1 *2)
(-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1 *2 *1)
(-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))
+ (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
+ (-12 (-5 *2 (-1262 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
((*1 *1 *1 *1) (-5 *1 (-536)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1045))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1045))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1052))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-680 *5 *6 *7))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1047))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1047))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1047))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1097))
+ (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-682 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-373 *3))
+ (-12 (-4 *1 (-685 *3 *2 *4)) (-4 *3 (-1047)) (-4 *2 (-373 *3))
(-4 *4 (-373 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
+ (-12 (-4 *1 (-685 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-373 *3))
(-4 *2 (-373 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045))
+ (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
(-4 *4 (-373 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
(-4 *4 (-373 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
(-4 *4 (-373 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-716)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *1) (-4 *1 (-718)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556))
- (-5 *1 (-965 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1052))))
- ((*1 *1 *1 *1) (-4 *1 (-1106)))
+ (-12 (-5 *2 (-1262 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-556))
+ (-5 *1 (-967 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *1 *1) (-4 *1 (-1109)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *2 (-238 *3 *4))
+ (-12 (-4 *1 (-1120 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *2 (-238 *3 *4))
(-4 *5 (-238 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4))
+ (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4))
(-4 *2 (-238 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1120 *3 *4 *2))
- (-4 *2 (-945 *3 (-531 *4) *4))))
+ (-12 (-4 *3 (-1047)) (-4 *4 (-848)) (-5 *1 (-1123 *3 *4 *2))
+ (-4 *2 (-947 *3 (-531 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1205))))
+ (-12 (-5 *2 (-941 (-225))) (-5 *3 (-225)) (-5 *1 (-1208))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-722))))
+ (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-724))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-722))))
+ (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-724))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-564)) (-4 *1 (-1260 *3)) (-4 *3 (-1212)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
+ (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045))))
+ (-12 (-4 *1 (-1279 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1047))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-556))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-556))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-556))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-917)) (-4 *1 (-1008))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-917)) (-5 *4 (-858))
- (-4 *1 (-1008))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-844) (-363)))
- (-4 *1 (-1062 *4 *2)) (-4 *2 (-1235 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4))
- (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045))
- (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-839 (-564))) (-5 *1 (-534))))
- ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1006 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1) (-4 *1 (-545))))
+ (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1096 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767))
- (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-743)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112))
- (-5 *2 (-1031)) (-5 *1 (-741)))))
-(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-967)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214))))))
-(((*1 *2) (-12 (-5 *2 (-839 (-564))) (-5 *1 (-534))))
- ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))))
+ (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-407 (-564))))
- (-5 *2
- (-641
- (-2 (|:| |outval| *4) (|:| |outmult| (-564))
- (|:| |outvect| (-641 (-685 *4))))))
- (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))))
+ (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-1262 *5)) (-4 *5 (-307))
+ (-4 *5 (-1047)) (-5 *2 (-687 *5)) (-5 *1 (-1027 *5)))))
+(((*1 *1) (-5 *1 (-468))))
+(((*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379)))
+ ((*1 *1) (-5 *1 (-379))))
+(((*1 *2) (-12 (-5 *2 (-841 (-564))) (-5 *1 (-534))))
+ ((*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1097)))))
+(((*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-827)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-169 (-407 (-564)))))
- (-5 *2
- (-641
- (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564))
- (|:| |outvect| (-641 (-685 (-169 *4)))))))
- (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-767))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-684 *4 *5 *6 *3))
- (-4 *3 (-683 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
- (-5 *2 (-767)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2))
- (-4 *2 (-1235 (-169 *3))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-564)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-767)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209))
- (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-767))
- (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5))
- (-5 *1 (-239 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1209)) (-4 *5 (-1209))
- (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094))
- (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209))
- (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1209))
- (-4 *5 (-1209)) (-5 *2 (-954 *5)) (-5 *1 (-953 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209))
- (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209))
- (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045))
- (-5 *2 (-641 (-641 (-641 (-767))))))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-574 *5 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-769)) (-4 *4 (-556)) (-5 *1 (-967 *4 *2))
+ (-4 *2 (-1238 *4)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-750)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))))
+(((*1 *1 *1) (-4 *1 (-545))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *4)) (-5 *3 (-917)) (-4 *4 (-1045))
- (-5 *1 (-1024 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-917)) (-4 *4 (-1045))
- (-5 *1 (-1024 *4)))))
+ (-12 (-5 *3 (-642 (-247 *4 *5))) (-5 *2 (-247 *4 *5))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-1141))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))))
+ (-12 (-5 *3 (-407 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-556))
+ (-4 *4 (-1047)) (-4 *2 (-1253 *4)) (-5 *1 (-1256 *4 *5 *6 *2))
+ (-4 *6 (-654 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4))
- (-5 *2 (-2 (|:| -4326 (-621 *4 *5)) (|:| -2879 (-407 *5))))
- (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4))
- (-14 *3 (-917)) (-4 *4 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-452)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1235 *3)))))
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-642 (-950 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-642 (-950 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-642 (-950 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-642 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1262 (-453 *4 *5 *6 *7))) (-5 *2 (-642 (-950 *4)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172))
+ (-14 *5 (-919)) (-14 *6 (-642 (-1173))) (-14 *7 (-1262 (-687 *4))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3)) (-4 *3 (-972)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155)))))
+(((*1 *2) (-12 (-5 *2 (-841 (-564))) (-5 *1 (-534))))
+ ((*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2))
+ (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-860)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-642 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094))
- (-4 *2 (-846)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767))
- (-4 *4 (-172))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-430 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-172)))))
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047))
+ (-5 *2 (-642 (-642 (-941 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-642 (-642 (-941 *4)))) (-5 *3 (-112)) (-4 *4 (-1047))
+ (-4 *1 (-1131 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-642 (-941 *3)))) (-4 *3 (-1047))
+ (-4 *1 (-1131 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-642 (-642 (-642 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1131 *4)) (-4 *4 (-1047))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-642 (-642 (-941 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1131 *4)) (-4 *4 (-1047))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-642 (-642 (-642 *5)))) (-5 *3 (-642 (-171)))
+ (-5 *4 (-171)) (-4 *1 (-1131 *5)) (-4 *5 (-1047))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-642 (-642 (-941 *5)))) (-5 *3 (-642 (-171)))
+ (-5 *4 (-171)) (-4 *1 (-1131 *5)) (-4 *5 (-1047)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-642 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564))))))
+ (-5 *2 (-642 (-225))) (-5 *1 (-305)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836))))
+ (-12 (-4 *3 (-556)) (-5 *2 (-642 (-687 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-687 (-225)))
+ (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-753)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1169 (-1169 *4))))
+ (-5 *1 (-1210 *4)) (-5 *3 (-1169 (-1169 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-1173))) (-5 *2 (-1267)) (-5 *1 (-1176))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379)))
- (-5 *2 (-1031)) (-5 *1 (-836)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
- (-5 *1 (-984 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-641 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
- (-5 *1 (-1101 *3 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144))))
- ((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307))
- (-4 *4 (-988 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5))
- (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-988 *3))
- (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
+ (-12 (-5 *4 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1267))
+ (-5 *1 (-1176))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-642 (-1173))) (-5 *3 (-1173)) (-5 *2 (-1267))
+ (-5 *1 (-1176)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1253 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *8)) (-4 *8 (-945 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170))))
- (-4 *7 (-789))
- (-5 *2
- (-641
- (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8))
- (|:| |wcond| (-641 (-948 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-948 *5))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *5))))))))))
- (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-641 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-945 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170))))
- (-4 *7 (-789))
- (-5 *2
- (-641
- (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8))
- (|:| |wcond| (-641 (-948 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-948 *5))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *5))))))))))
- (-5 *1 (-920 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-1173)) (-4 *5 (-363)) (-5 *2 (-1153 (-1153 (-950 *5))))
+ (-5 *1 (-1270 *5)) (-5 *4 (-1153 (-950 *5))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-769)) (-5 *1 (-586 *2)) (-4 *2 (-545))))
((*1 *2 *3)
- (-12 (-5 *3 (-685 *7)) (-4 *7 (-945 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789))
- (-5 *2
- (-641
- (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7))
- (|:| |wcond| (-641 (-948 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-948 *4))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *4))))))))))
- (-5 *1 (-920 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-685 *9)) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7))
- (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-612 (-1170))))
- (-4 *8 (-789))
- (-5 *2
- (-641
- (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9))
- (|:| |wcond| (-641 (-948 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-948 *6))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *6))))))))))
- (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-641 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-917))
- (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
- (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789))
+ (-12 (-5 *2 (-2 (|:| -2547 *3) (|:| -2700 (-769)))) (-5 *1 (-586 *3))
+ (-4 *3 (-545)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-941 (-225)))) (-5 *1 (-1263)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2080 *3)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1186 *2)) (-4 *2 (-363)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1247 *3 *4 *5)) (-4 *3 (-363)) (-14 *4 (-1173))
+ (-14 *5 *3) (-5 *1 (-319 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379)))))
+(((*1 *1) (-5 *1 (-821))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1169 *7)) (-5 *3 (-564)) (-4 *7 (-947 *6 *4 *5))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047))
+ (-5 *1 (-321 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-144))))
+ ((*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-144)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-103 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-536)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
+ (-4 *3 (-1062 *6 *7 *8))
(-5 *2
- (-641
- (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9))
- (|:| |wcond| (-641 (-948 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-948 *6))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *6))))))))))
- (-5 *1 (-920 *6 *7 *8 *9))))
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *8)) (-5 *4 (-917)) (-4 *8 (-945 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170))))
- (-4 *7 (-789))
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
(-5 *2
- (-641
- (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8))
- (|:| |wcond| (-641 (-948 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-948 *5))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *5))))))))))
- (-5 *1 (-920 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152))
- (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
- (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564))
- (-5 *1 (-920 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-1152))
- (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
- (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564))
- (-5 *1 (-920 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *8)) (-5 *4 (-1152)) (-4 *8 (-945 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-612 (-1170))))
- (-4 *7 (-789)) (-5 *2 (-564)) (-5 *1 (-920 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 *10)) (-5 *5 (-917))
- (-5 *6 (-1152)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147)))
- (-4 *8 (-13 (-846) (-612 (-1170)))) (-4 *9 (-789)) (-5 *2 (-564))
- (-5 *1 (-920 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 (-1170))) (-5 *5 (-917))
- (-5 *6 (-1152)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147)))
- (-4 *8 (-13 (-846) (-612 (-1170)))) (-4 *9 (-789)) (-5 *2 (-564))
- (-5 *1 (-920 *7 *8 *9 *10))))
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2022 *4)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-585 *3) *3 (-1173)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1173)))
+ (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1036 *4)) (-4 *3 (-430 *7))
+ (-5 *4 (-1173)) (-4 *7 (-612 (-890 (-564)))) (-4 *7 (-452))
+ (-4 *7 (-884 (-564))) (-4 *7 (-1097)) (-5 *2 (-585 *3))
+ (-5 *1 (-573 *7 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-642
+ (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1169 *2))
+ (|:| |logand| (-1169 *2)))))
+ (-5 *4 (-642 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-363)) (-5 *1 (-585 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-363)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-642 *5))
+ (|:| |maps| (-642 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1125 *3 *5)) (-4 *3 (-1238 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-642 (-642 *4))) (-5 *2 (-642 *4)) (-4 *4 (-307))
+ (-5 *1 (-179 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-685 *9)) (-5 *4 (-917)) (-5 *5 (-1152))
- (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
- (-4 *7 (-13 (-846) (-612 (-1170)))) (-4 *8 (-789)) (-5 *2 (-564))
- (-5 *1 (-920 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-767))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))))
- (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-316 (-225))))
+ (-12 (-5 *3 (-642 *8))
+ (-5 *4
+ (-642
+ (-2 (|:| -4263 (-687 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-687 *7)))))
+ (-5 *5 (-769)) (-4 *8 (-1238 *7)) (-4 *7 (-1238 *6)) (-4 *6 (-349))
(-5 *2
- (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564))
- (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))))
- (-5 *1 (-305)))))
-(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-545))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-668 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+ (-2 (|:| -4263 (-687 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-687 *7))))
+ (-5 *1 (-498 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-363) (-147)))
- (-5 *2 (-641 (-2 (|:| -1838 (-767)) (|:| -3639 *4) (|:| |num| *4))))
- (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870))))
- ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1264))
- (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-641 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4))))
- (-5 *1 (-1180 *6)) (-5 *5 (-641 *4)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1088 (-839 (-225)))) (-5 *1 (-305)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1043)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2))
- (-4 *2 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))))
- (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))
+ (-12 (-5 *2 (-2 (|:| |var| (-642 (-1173))) (|:| |pred| (-52))))
+ (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-112))
+ (-5 *2 (-1033)) (-5 *1 (-743)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169 *1)) (-4 *1 (-1010)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-941 *4)) (-4 *4 (-1047)) (-5 *1 (-1161 *3 *4))
+ (-14 *3 (-919)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4410)) (-4 *1 (-489 *3)) (-4 *3 (-1212))
+ (-4 *3 (-1097)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-903 *4)) (-4 *4 (-1097)) (-5 *2 (-112))
+ (-5 *1 (-902 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-919)) (-5 *2 (-112)) (-5 *1 (-1098 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790))))
((*1 *2 *1)
- (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-330)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363))
- (-5 *2 (-641 (-294 (-948 *6)))) (-5 *1 (-538 *5 *6 *7))
- (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844))))))
+ (-12 (-5 *2 (-769)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047))
+ (-14 *4 (-642 (-1173)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848)))
+ (-14 *4 (-642 (-1173)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848))
+ (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-275))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169 *8)) (-5 *4 (-642 *6)) (-4 *6 (-848))
+ (-4 *8 (-947 *7 *5 *6)) (-4 *5 (-791)) (-4 *7 (-1047))
+ (-5 *2 (-642 (-769))) (-5 *1 (-321 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-919))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172))
+ (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4))
+ (-4 *4 (-1238 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-706 *3)) (-4 *3 (-1047)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-902 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-769)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-791))
+ (-4 *3 (-848)) (-5 *2 (-769))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-971 *3 *2 *4)) (-4 *3 (-1047)) (-4 *4 (-848))
+ (-4 *2 (-790))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-769))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1253 *3))
+ (-5 *2 (-564))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1222 *3))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-831 (-919)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))
+ (-5 *2 (-769)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848))
+ (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-642 (-769)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848))
+ (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-642 (-769))))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-564)) (-14 *4 (-769)))))
+(((*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265))))
+ ((*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4)))
+ (-5 *2 (-1262 *6)) (-5 *1 (-336 *3 *4 *5 *6))
+ (-4 *6 (-342 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48))))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170)))
- (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-4 *6 (-896 *5)) (-5 *2 (-685 *6))
- (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))))
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-769)) (-4 *4 (-1047)) (-5 *1 (-1234 *4 *2))
+ (-4 *2 (-1238 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-901 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4))
- (-5 *1 (-1024 *5)) (-4 *5 (-1045))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1024 *4))
- (-4 *4 (-1045))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-901 (-564)))) (-5 *4 (-564))
- (-5 *2 (-641 (-685 *4))) (-5 *1 (-1024 *5)) (-4 *5 (-1045))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564))))
- (-5 *1 (-1024 *4)) (-4 *4 (-1045)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))
- (-5 *2 (-1031)) (-5 *1 (-742)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3))
- (-4 *3 (-1235 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112)))))
-(((*1 *1)
- (-12 (-4 *1 (-404)) (-2351 (|has| *1 (-6 -4398)))
- (-2351 (|has| *1 (-6 -4390)))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-846))))
- ((*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846))))
- ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-407 (-564))))
- (-5 *2 (-2 (|:| -3858 (-1150 *4)) (|:| -3869 (-1150 *4))))
- (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209))
- (-14 *4 (-564)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-948 *5))))
- (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-948 *5))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))))
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363))
+ (-5 *2 (-642 (-2 (|:| C (-687 *5)) (|:| |g| (-1262 *5)))))
+ (-5 *1 (-976 *5)) (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1089 (-950 (-564)))) (-5 *3 (-950 (-564)))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1089 (-950 (-564)))) (-5 *1 (-330)))))
+(((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)) (-4 *2 (-545))))
+ ((*1 *1 *1) (-4 *1 (-1057))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1097))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-1193)))))
(((*1 *2)
- (-12 (-5 *2 (-685 (-906 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917))
- (-14 *4 (-917))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
((*1 *2)
- (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
- (-14 *4
- (-3 (-1166 *3)
- (-1259 (-641 (-2 (|:| -2128 *3) (|:| -2083 (-1114)))))))))
+ (-12 (-14 *4 *2) (-4 *5 (-1212)) (-5 *2 (-769))
+ (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
((*1 *2)
- (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-917)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260))))
- ((*1 *1 *1) (-5 *1 (-1260))))
+ (-12 (-4 *4 (-1097)) (-5 *2 (-769)) (-5 *1 (-429 *3 *4))
+ (-4 *3 (-430 *4))))
+ ((*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-544 *3)) (-4 *3 (-545))))
+ ((*1 *2) (-12 (-4 *1 (-761)) (-5 *2 (-769))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-794 *3 *4))
+ (-4 *3 (-795 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-989 *3 *4))
+ (-4 *3 (-990 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-769)) (-5 *1 (-994 *3 *4))
+ (-4 *3 (-995 *4))))
+ ((*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1009 *3)) (-4 *3 (-1010))))
+ ((*1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-769))))
+ ((*1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-1056 *3)) (-4 *3 (-1057)))))
+(((*1 *1)
+ (-12 (-4 *1 (-404)) (-2268 (|has| *1 (-6 -4401)))
+ (-2268 (|has| *1 (-6 -4393)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-848))))
+ ((*1 *2 *1) (-12 (-4 *1 (-828 *2)) (-4 *2 (-848))))
+ ((*1 *1) (-4 *1 (-842))) ((*1 *1 *1 *1) (-4 *1 (-848))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *6)) (-5 *4 (-1173)) (-4 *6 (-430 *5))
+ (-4 *5 (-1097)) (-5 *2 (-642 (-610 *6))) (-5 *1 (-573 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5))))
- (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))))
+ (-12 (-4 *1 (-893))
+ (-5 *3
+ (-2 (|:| |pde| (-642 (-316 (-225))))
+ (|:| |constraints|
+ (-642
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-769)) (|:| |boundaryType| (-564))
+ (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225))))))
+ (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155))
+ (|:| |tol| (-225))))
+ (-5 *2 (-1033)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1238 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1212)) (-5 *2 (-564)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-363)) (-4 *2 (-846)) (-5 *1 (-943 *2 *3))
+ (-4 *3 (-1238 *2)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-752)))))
+(((*1 *1 *1 *1) (-5 *1 (-162)))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-506)) (-5 *3 (-642 (-963))) (-5 *1 (-291)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *6)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-720 *5 *7))
- (-5 *2 (-2 (|:| -2511 (-685 *6)) (|:| |vec| (-1259 *5))))
- (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3)))
- (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-556)) (-5 *2 (-585 *3))
- (-5 *1 (-551 *6 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3577 *8)))
- (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3577 *8)))
- (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-948 *4)) (-948 *4)))
- (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-899 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-900 *4))
- (-5 *3 (-641 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-900 *4))
- (-5 *3 (-1096 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1096 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
- (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-641 (-767)))))
+ (-12 (-5 *3 (-407 (-564))) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-556)) (-4 *8 (-947 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2700 (-769)) (|:| -4378 *9) (|:| |radicand| *9)))
+ (-5 *1 (-951 *5 *6 *7 *8 *9)) (-5 *4 (-769))
+ (-4 *9
+ (-13 (-363)
+ (-10 -8 (-15 -2327 ($ *8)) (-15 -2245 (*8 $)) (-15 -2255 (*8 $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-641 (-767))))))
-(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1094)) (-4 *2 (-556))))
- ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-860 *4)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6))
- (-4 *6 (-452)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-844)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)) (-4 *2 (-848))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4))
+ (-14 *3 (-919)) (-4 *4 (-1047))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-919)) (-4 *3 (-1047)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-791)) (-4 *2 (-947 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2))
+ (-4 *4 (-452)) (-4 *6 (-848)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-769)) (-4 *5 (-1047)) (-5 *2 (-564))
+ (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1238 *5))
+ (-4 *6 (-13 (-404) (-1036 *5) (-363) (-1197) (-284)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
+ (-4 *3 (-1238 *4))
+ (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-183)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-1036 (-407 *2)))) (-5 *2 (-564))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-407 (-948 (-564))))) (-5 *4 (-641 (-1170)))
- (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5))
- (-4 *5 (-13 (-844) (-363)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-844) (-363))))))
+ (-12 (-5 *5 (-769)) (-4 *6 (-1097)) (-4 *3 (-898 *6))
+ (-5 *2 (-687 *3)) (-5 *1 (-690 *6 *3 *7 *4)) (-4 *7 (-373 *3))
+ (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4410)))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1097))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-769) (-769))) (-5 *1 (-386 *3)) (-4 *3 (-1097))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097)))))
+(((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-157)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-769)) (-4 *4 (-363)) (-5 *1 (-894 *2 *4))
+ (-4 *2 (-1238 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-407 (-564)))
+ (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-956 *3)) (-5 *1 (-1160 *4 *3))
+ (-4 *3 (-1238 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
+ ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *2 (-1033)) (-5 *1 (-752)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6))
- (-4 *6 (-342 *3 *4 *5)))))
+ (-12
+ (-5 *2
+ (-642
+ (-2
+ (|:| -1907
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -3778
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1153 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3894
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-559))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1212))
+ (-5 *2 (-642 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1212)) (-5 *1 (-182 *3 *2)) (-4 *2 (-672 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-888 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094))
- (-4 *5 (-1209)) (-5 *1 (-886 *4 *5))))
+ (-12 (-5 *2 (-890 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1097))
+ (-4 *5 (-1212)) (-5 *1 (-888 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-888 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094))
- (-4 *5 (-1209)) (-5 *1 (-886 *4 *5))))
+ (-12 (-5 *2 (-890 *4)) (-5 *3 (-642 (-1 (-112) *5))) (-4 *4 (-1097))
+ (-4 *5 (-1212)) (-5 *1 (-888 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-888 *5)) (-5 *3 (-641 (-1170)))
- (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209))
- (-5 *1 (-886 *5 *6))))
+ (-12 (-5 *2 (-890 *5)) (-5 *3 (-642 (-1173)))
+ (-5 *4 (-1 (-112) (-642 *6))) (-4 *5 (-1097)) (-4 *6 (-1212))
+ (-5 *1 (-888 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-1094))
- (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4))))
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1212)) (-4 *4 (-1097))
+ (-5 *1 (-935 *4 *2 *5)) (-4 *2 (-430 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-1094))
- (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4))))
+ (-12 (-5 *3 (-642 (-1 (-112) *5))) (-4 *5 (-1212)) (-4 *4 (-1097))
+ (-5 *1 (-935 *4 *2 *5)) (-4 *2 (-430 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209))
- (-5 *2 (-316 (-564))) (-5 *1 (-934 *5))))
+ (-12 (-5 *3 (-1173)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1212))
+ (-5 *2 (-316 (-564))) (-5 *1 (-936 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209))
- (-5 *2 (-316 (-564))) (-5 *1 (-934 *5))))
+ (-12 (-5 *3 (-1173)) (-5 *4 (-642 (-1 (-112) *5))) (-4 *5 (-1212))
+ (-5 *2 (-316 (-564))) (-5 *1 (-936 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6)))
- (-4 *6 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))) (-4 *4 (-1094))
- (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4))))
- (-5 *1 (-1070 *4 *5 *6)))))
+ (-12 (-5 *2 (-642 (-1173))) (-5 *3 (-1 (-112) (-642 *6)))
+ (-4 *6 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))) (-4 *4 (-1097))
+ (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4))))
+ (-5 *1 (-1073 *4 *5 *6)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3))
+ (-4 *3 (-1097)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1173)) (-5 *4 (-950 (-564))) (-5 *2 (-330))
+ (-5 *1 (-332))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1173)) (-5 *4 (-1089 (-950 (-564)))) (-5 *2 (-330))
+ (-5 *1 (-332))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-673 *3)) (-4 *3 (-1047))
+ (-4 *3 (-1097)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1170))
- (-14 *4 *2))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-556)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
- (-5 *2 (-1166 *3)))))
+ (-12 (-5 *2 (-642 (-481 *3 *4))) (-14 *3 (-642 (-1173)))
+ (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2177 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7))
- (-5 *3 (-407 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-574 *7 *8)))))
+ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172))))
+ (-5 *1 (-1172)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264))))
+ ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169 (-950 *6))) (-4 *6 (-556))
+ (-4 *2 (-947 (-407 (-950 *6)) *5 *4)) (-5 *1 (-730 *5 *4 *6 *2))
+ (-4 *5 (-791))
+ (-4 *4 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-621 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -4336 *4) (|:| |sol?| (-112)))
+ (-564) *4))
+ (-4 *4 (-363)) (-4 *5 (-1238 *4)) (-5 *1 (-574 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-829)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-641 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564))))
- (-5 *1 (-305)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-1 (-225) (-225) (-225) (-225)))
- (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-693)))))
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4))
+ (-4 *4 (-1212)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-941 (-225))) (-5 *2 (-1267)) (-5 *1 (-468)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
- (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1197) (-430 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
- (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
+ (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-407 (-564)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
- (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *5)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-315 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564)))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-4 *3 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-315 *6 *3))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6))
- (-4 *6 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-4 *6 (-13 (-27) (-1197) (-430 *5)))
+ (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3))
+ (-4 *3 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564)))
- (-4 *7 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1229 (-564)))
+ (-4 *7 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564)))
- (-4 *3 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-564)))
+ (-4 *3 (-13 (-27) (-1197) (-430 *7)))
+ (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *7 *3))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8))
- (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564)))
- (-4 *8 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-5 *5 (-1229 (-407 (-564)))) (-5 *6 (-407 (-564)))
+ (-4 *8 (-13 (-27) (-1197) (-430 *7)))
+ (-4 *7 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564))))
- (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8)))
- (-4 *8 (-13 (-556) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1173)) (-5 *5 (-294 *3)) (-5 *6 (-1229 (-407 (-564))))
+ (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1197) (-430 *8)))
+ (-4 *8 (-13 (-556) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-52))
(-5 *1 (-459 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3))))
- (-4 *3 (-1045)) (-5 *1 (-594 *3))))
+ (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3))))
+ (-4 *3 (-1047)) (-5 *1 (-594 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-595 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-595 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3))))
- (-4 *3 (-1045)) (-4 *1 (-1219 *3))))
+ (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3))))
+ (-4 *3 (-1047)) (-4 *1 (-1222 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-767))
- (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4))))
- (-4 *4 (-1045)) (-4 *1 (-1240 *4))))
+ (-12 (-5 *2 (-769))
+ (-5 *3 (-1153 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4))))
+ (-4 *4 (-1047)) (-4 *1 (-1243 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-4 *1 (-1250 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-4 *1 (-1253 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1150 (-2 (|:| |k| (-767)) (|:| |c| *3))))
- (-4 *3 (-1045)) (-4 *1 (-1250 *3)))))
+ (-12 (-5 *2 (-1153 (-2 (|:| |k| (-769)) (|:| |c| *3))))
+ (-4 *3 (-1047)) (-4 *1 (-1253 *3)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1045)) (-5 *2 (-1166 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *5 (-905)) (-5 *1 (-457 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-905)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
+ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172))))
+ (-5 *1 (-1172)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-919)) (-4 *5 (-307)) (-4 *3 (-1238 *5))
+ (-5 *2 (-2 (|:| |plist| (-642 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-460 *5 *3)) (-5 *4 (-642 *3)))))
+(((*1 *1) (-5 *1 (-130))))
(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-556) (-147)))
- (-5 *2 (-2 (|:| -4328 *3) (|:| -4337 *3))) (-5 *1 (-1229 *4 *3))
- (-4 *3 (-1235 *4)))))
+ (-12 (-5 *2 (-1247 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363))
+ (-14 *4 (-1173)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-697))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1097)) (-5 *1 (-711 *3 *2 *4)) (-4 *3 (-848))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2047 *3) (|:| -2700 *2))
+ (-2 (|:| -2047 *3) (|:| -2700 *2)))))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1173))
+ (-4 *5 (-13 (-556) (-1036 (-564)) (-147)))
+ (-5 *2
+ (-2 (|:| -2116 (-407 (-950 *5))) (|:| |coeff| (-407 (-950 *5)))))
+ (-5 *1 (-570 *5)) (-5 *3 (-407 (-950 *5))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-745)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1045))
- (-5 *1 (-1154 *4)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-641 *3)) (-5 *5 (-917)) (-4 *3 (-1235 *4))
- (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213))
- (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5))))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112))
- (-5 *1 (-1286 *4)))))
-(((*1 *1 *1) (-5 *1 (-1169)))
+ (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1097))
+ (-4 *2 (-1212)))))
+(((*1 *1 *1) (-5 *1 (-1172)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-506)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 (-939 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1045))
- (-5 *2 (-767)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225))))
- (-5 *2 (-1031)) (-5 *1 (-751)))))
-(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-641 (-1170)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846)))
- (-14 *3 (-641 (-1170))))))
+ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172))))
+ (-5 *1 (-1172)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-556)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1197) (-1000))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-1129 *4 *2))
+ (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4410) (-6 -4411))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-848)) (-4 *3 (-1212)) (-5 *1 (-1129 *3 *2))
+ (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4410) (-6 -4411)))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791)) (-5 *2 (-642 *3)) (-5 *1 (-922 *4 *5 *6 *3))
+ (-4 *3 (-947 *4 *6 *5)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-642
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-769)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-791)) (-4 *3 (-947 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-848))
+ (-5 *1 (-449 *4 *5 *6 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094))
- (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3))))
- (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3))))
- (-5 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5))
- (-5 *1 (-803 *5 *2 *3 *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564)))))
- (-4 *3 (-652 *2)) (-4 *6 (-652 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5))
- (-5 *1 (-803 *5 *2 *3 *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2))
- (-4 *6 (-652 (-407 *2))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-642 (-1073 *3 *4 *5))) (-4 *3 (-1097))
+ (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3))))
+ (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3))))
+ (-5 *1 (-1074 *3 *4 *5)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *3 (-1062 *4 *5 *6))
+ (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *1))))
+ (-4 *1 (-1068 *4 *5 *6 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-556))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-556))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-556))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917))
- (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-846))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-556))
- (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-846))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-556))
- (-4 *5 (-846)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-781 *5)))))
+ (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1197) (-1000))))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556))
- (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8))))
- (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-846))
- (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-945 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-641 (-2 (|:| -3688 (-1166 *9)) (|:| -1838 (-564)))))))
- (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1166 *9)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225)))
- (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-4 *5 (-430 *4))
- (-5 *2 (-418 (-1166 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3))
- (-4 *3 (-1235 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))))
+ (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *4)) (-4 *4 (-848)) (-5 *2 (-642 (-662 *4 *5)))
+ (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-715 (-407 (-564)))))
+ (-14 *6 (-919)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-642 *7)) (-5 *3 (-112)) (-4 *7 (-1062 *4 *5 *6))
+ (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *1 (-975 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-506))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-642 (-769))) (-5 *3 (-171)) (-5 *1 (-1161 *4 *5))
+ (-14 *4 (-919)) (-4 *5 (-1047)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-735 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-735 *2)) (-4 *2 (-1097))))
+ ((*1 *1) (-12 (-5 *1 (-735 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131))
+ (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-2 (|:| -4378 *3) (|:| -3214 *4))))
+ (-5 *1 (-733 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-724))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790))
+ (-5 *2 (-1153 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1087)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047))
+ (-14 *4 (-642 (-1173)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1212))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848)))
+ (-14 *4 (-642 (-1173)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-891 *3)) (-4 *3 (-848)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3))
+ (-4 *3 (-1097)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-848 *3))))
+ (-12 (-4 *3 (-556)) (-4 *3 (-1047))
+ (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-850 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1045))
- (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-849 *5 *3))
- (-4 *3 (-848 *5)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-641
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-564)))))
- (-4 *2 (-556)) (-5 *1 (-418 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-564))
- (|:| -1572 (-641 (-2 (|:| |irr| *4) (|:| -2173 (-564)))))))
- (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-506)) (-5 *3 (-641 (-961))) (-5 *1 (-291)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-430 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170))))
- ((*1 *1 *1) (-4 *1 (-160))))
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1047))
+ (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-851 *5 *3))
+ (-4 *3 (-850 *5)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1264))
+ (-12 (-5 *3 (-941 (-225))) (-5 *4 (-872)) (-5 *2 (-1267))
(-5 *1 (-468))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1047)) (-4 *1 (-978 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3))))
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-941 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1128 *3))))
+ (-12 (-5 *2 (-941 *3)) (-4 *3 (-1047)) (-4 *1 (-1131 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-769)) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-642 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-941 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1205)) (-5 *3 (-225)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))
- ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-564))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846))
- (-5 *1 (-449 *5 *6 *7 *4)))))
-(((*1 *1) (-5 *1 (-468))))
-(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))))
+ (-12 (-5 *2 (-941 (-225))) (-5 *1 (-1208)) (-5 *3 (-225)))))
+(((*1 *1) (-4 *1 (-349))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4))
- (-5 *1 (-918 *4 *2)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1031))
- (-5 *1 (-745)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-556)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))
+ (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1036 (-564)))
+ (-4 *4 (-556)) (-5 *2 (-1169 *5)) (-5 *1 (-32 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3))
- (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 *7)))
- (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-418 *1)) (-4 *1 (-945 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-418 *3))
- (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7))))
- (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3))
- (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -2123 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-14 *5 (-641 (-1170)))
- (-5 *2
- (-641 (-1140 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))))
- (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))))
+ (-12 (-5 *3 (-610 *1)) (-4 *1 (-1047)) (-4 *1 (-302))
+ (-5 *2 (-1169 *1)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-1229 (-564))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-1034 (-564)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))
+ (-12 (-4 *3 (-13 (-556) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1034 (-564))))
- (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-556) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-147) (-27) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-4 *5 (-1238 *4)) (-5 *2 (-1169 (-407 *5))) (-5 *1 (-613 *4 *5))
+ (-5 *3 (-407 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1238 *5))
+ (-4 *5 (-13 (-147) (-27) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-5 *2 (-1169 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-769)) (-5 *1 (-386 *4)) (-4 *4 (-1097))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-647 *4 *2 *5))
+ (-4 *4 (-1097)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-769)) (-5 *1 (-817 *4)) (-4 *4 (-848)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-192))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-969)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2080 *3)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 (-950 *4))) (-5 *3 (-642 (-1173))) (-4 *4 (-452))
+ (-5 *1 (-916 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-642 (-780 *3))) (-5 *1 (-780 *3)) (-4 *3 (-556))
+ (-4 *3 (-1047)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-330)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1235 *3)))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7))))
+ (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 (-564)))))
+ (-5 *1 (-361 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 (-769)))))
+ (-5 *1 (-386 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-2 (|:| -3643 *3) (|:| -2700 (-564)))))
+ (-5 *1 (-418 *3)) (-4 *3 (-556))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 (-769)))))
+ (-5 *1 (-817 *3)) (-4 *3 (-848)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4))
- (-4 *4 (-1094))))
+ (-12 (-5 *2 (-1173)) (-5 *3 (-642 *1)) (-4 *1 (-430 *4))
+ (-4 *4 (-1097))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-685 *2)) (-5 *4 (-564))
- (-4 *2 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))))
- (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4))
- (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-641 (-169 *4)))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-641 (-169 *4)))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7))
- (-4 *7 (-945 *5 *6 *4)) (-4 *5 (-905)) (-4 *6 (-789))
- (-4 *4 (-846)) (-5 *1 (-902 *5 *6 *4 *7)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *3 (-172))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-556))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436)))))
+ (-12 (-5 *2 (-1173)) (-4 *1 (-430 *3)) (-4 *3 (-1097)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-556)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2))
- (-4 *2 (-1235 *3)))))
+ (|partial| -12 (-5 *3 (-919))
+ (-5 *2 (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117))))))
+ (-5 *1 (-346 *4)) (-4 *4 (-349)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-1233 *4 *3))
+ (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-38 (-407 (-564))))
+ (-4 *2 (-172)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1137 *4 *5)) (-4 *4 (-13 (-1097) (-34)))
+ (-4 *5 (-13 (-1097) (-34))) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1155))
+ (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-749)))))
(((*1 *2 *1)
(-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
- (-5 *2 (-1166 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1264)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4))
- (-4 *4 (-38 (-407 (-564))))
- (-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-778 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556))
- (-4 *3 (-1045)) (-4 *2 (-788))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1166 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556))
- (-4 *3 (-1045))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170))
- (-4 *3 (-1045)))))
+ (-5 *2 (-1169 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047))
+ (-4 *2 (-1253 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52))
- (-5 *1 (-1001)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1057)))))
-(((*1 *2 *2)
(-12
- (-5 *2
- (-983 (-407 (-564)) (-860 *3) (-240 *4 (-767))
- (-247 *3 (-407 (-564)))))
- (-14 *3 (-641 (-1170))) (-14 *4 (-767)) (-5 *1 (-982 *3 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))
- ((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1) (-4 *1 (-865 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788))
- (-4 *4 (-846)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-858)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))))
+ (-5 *3
+ (-642
+ (-2 (|:| |eqzro| (-642 *8)) (|:| |neqzro| (-642 *8))
+ (|:| |wcond| (-642 (-950 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *5))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *5))))))))))
+ (-5 *4 (-1155)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-947 *5 *7 *6))
+ (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-564))
+ (-5 *1 (-922 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-687 *5))) (-4 *5 (-307)) (-4 *5 (-1047))
+ (-5 *2 (-1262 (-1262 *5))) (-5 *1 (-1027 *5)) (-5 *4 (-1262 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1214)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-823)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1047))
+ (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1238 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1047))
+ (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1238 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1047))
+ (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-4 *7 (-848))
+ (-4 *9 (-947 *8 *6 *7)) (-4 *6 (-791)) (-4 *8 (-307))
+ (-5 *2 (-642 (-769))) (-5 *1 (-740 *6 *7 *8 *9)) (-5 *5 (-769)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-175))) (-5 *1 (-1082)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-844)) (-5 *1 (-303 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-225))
- (-5 *2
- (-2 (|:| |brans| (-641 (-641 (-939 *4))))
- (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4))))
- (-5 *1 (-153)) (-5 *3 (-641 (-641 (-939 *4)))))))
+ (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-642 *3)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-642 *6)) (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5))
+ (-4 *3 (-556)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-887 *4 *5)) (-5 *3 (-887 *4 *6)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-664 *5)) (-5 *1 (-883 *4 *5 *6)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209))
+ (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1212))
(-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094))
- (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452))
- (-5 *2
- (-641
- (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4))))
- (|:| |geneigvec| (-641 (-685 (-407 (-948 *4))))))))
- (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-948 *4)))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1008)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -2177 (-407 *6)) (|:| |coeff| (-407 *6))))
- (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045))
- (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2))))
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1097))
+ (-4 *2 (-1212)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1219 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
+ (-12 (-4 *3 (-1212)) (-5 *2 (-642 *1)) (-4 *1 (-1008 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-642 (-1169 *11))) (-5 *3 (-1169 *11))
+ (-5 *4 (-642 *10)) (-5 *5 (-642 *8)) (-5 *6 (-642 (-769)))
+ (-5 *7 (-1262 (-642 (-1169 *8)))) (-4 *10 (-848))
+ (-4 *8 (-307)) (-4 *11 (-947 *8 *9 *10)) (-4 *9 (-791))
+ (-5 *1 (-705 *9 *10 *8 *11)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1212)) (-4 *2 (-1047))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-860))))
+ ((*1 *1 *1) (-5 *1 (-860)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-941 (-225))) (-5 *2 (-225)) (-5 *1 (-1208))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1047)))))
+(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1097)) (-4 *2 (-556))))
+ ((*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-1090 *3)) (-4 *3 (-1212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-564))) (-5 *4 (-903 (-564)))
+ (-5 *2 (-687 (-564))) (-5 *1 (-589))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-642 (-687 (-564))))
+ (-5 *1 (-589))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-564))) (-5 *4 (-642 (-903 (-564))))
+ (-5 *2 (-642 (-687 (-564)))) (-5 *1 (-589)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *3))
- (-4 *3 (-1209)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4))))
- (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917)))))
-(((*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *3))
+ (-4 *3 (-1212)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-564))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846))
- (-5 *1 (-449 *5 *6 *7 *4)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34)))
- (-5 *1 (-1135 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225))))))
+ (-12 (-4 *4 (-1097)) (-4 *2 (-898 *4)) (-5 *1 (-690 *4 *2 *5 *3))
+ (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4410)))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-307))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-447 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6))
+ (-4 *4 (-307)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *1 (-447 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6))
+ (-4 *4 (-307)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *1 (-447 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-848)) (-5 *2 (-1184 (-642 *4))) (-5 *1 (-1183 *4))
+ (-5 *3 (-642 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1047)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3))
+ (-4 *3 (-1238 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225)))
+ (-5 *2 (-1033)) (-5 *1 (-745)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-642 (-2 (|:| |k| (-1173)) (|:| |c| (-1284 *3)))))
+ (-5 *1 (-1284 *3)) (-4 *3 (-1047))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-131))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094))
- (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-948 (-564)))))
- (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1027)))))
+ (-12 (-5 *2 (-642 (-2 (|:| |k| *3) (|:| |c| (-1286 *3 *4)))))
+ (-5 *1 (-1286 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564))))
- (-5 *1 (-190)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1209))
- (-4 *2 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4))))
- (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3577 *9))))
- (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8))
- (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846))
- (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -3577 *9))))
- (-5 *1 (-1066 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5))
- (-5 *2 (-641 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6))
- (-14 *7 (-917)))))
+ (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3)))
+ (-5 *1 (-764 *3 *4)) (-4 *3 (-706 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *3 (-1047))
+ (-5 *2 (-2 (|:| -1420 *1) (|:| -3045 *1))) (-4 *1 (-850 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1047))
+ (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-851 *5 *3))
+ (-4 *3 (-850 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1088 (-225)))))
- ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225))))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7))
- (-5 *5 (-1 (-418 *7) *7))
- (-4 *6 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-808 *6 *7))))
+ (-12
+ (-5 *2
+ (-985 (-407 (-564)) (-862 *3) (-240 *4 (-769))
+ (-247 *3 (-407 (-564)))))
+ (-14 *3 (-642 (-1173))) (-14 *4 (-769)) (-5 *1 (-984 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1212))
+ (-4 *5 (-373 *4)) (-4 *2 (-373 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *6 *2 *7)) (-4 *6 (-1047))
+ (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-872))
+ (-5 *5 (-919)) (-5 *6 (-642 (-263))) (-5 *2 (-1263))
+ (-5 *1 (-1266))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7))
- (-5 *5 (-1 (-418 *7) *7))
- (-4 *6 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-808 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-5 *2 (-641 (-407 *5))) (-5 *1 (-808 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6))
- (-4 *6 (-1235 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-5 *2 (-641 (-407 *5))) (-5 *1 (-808 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6))
- (-4 *6 (-1235 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-5 *2 (-641 (-407 *6))) (-5 *1 (-808 *5 *6)))))
-(((*1 *1) (-5 *1 (-1261))))
+ (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-642 (-263)))
+ (-5 *2 (-1263)) (-5 *1 (-1266)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -3530 *8)))
+ (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-986 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -3530 *8)))
+ (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-1104 *4 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212))
+ (-4 *2 (-1097)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7))))
+ (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-235 *3))))
+ ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1097)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -2562 (-1152))))
- (-5 *1 (-818)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094)))))
+ (-12 (-4 *2 (-1097)) (-5 *1 (-962 *3 *2)) (-4 *3 (-1097)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
+(((*1 *1 *1) (-4 *1 (-867 *2))))
+(((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1091 (-225)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225))))))
(((*1 *1 *1)
- (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *1))))
- (-4 *1 (-1065 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1213)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2))
- (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2123 ($ $ $))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
- (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-767))))
+ (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1153 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-174 (-564))) (-5 *1 (-763 *3)) (-4 *3 (-404))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094))
- (-5 *2 (-641 (-2 (|:| -3813 *3) (|:| -4062 (-767))))))))
-(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094))))
- ((*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $))
- (-15 -2336 ((-1119 *3 (-610 $)) $))
- (-15 -2423 ($ (-1119 *3 (-610 $))))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1088 (-225)))))
- ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1088 (-225))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-869 *3)) (-14 *3 (-564))))
((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1045))
- (-5 *1 (-1025 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789))
- (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-817)))))
-(((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556))
- (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4))))
+ (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564))))
+ (-5 *1 (-870 *3 *4)) (-4 *4 (-867 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859)))))
+(((*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265))))
+ ((*1 *2 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1097)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-948 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452))
- (-5 *1 (-914 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))))
+ (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173))
+ (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-767))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-769))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-856)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217)))))
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-769)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-430 *3) (-1000))) (-5 *1 (-276 *3 *2))
+ (-4 *3 (-556)))))
+(((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1091 (-225)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1091 (-225))))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1097)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2))
- (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172))
- (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5))))
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1057)) (-4 *3 (-1197))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-754)))))
+(((*1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1205 *2 *3 *4 *5)) (-4 *2 (-556))
+ (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-1062 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (|has| *1 (-6 -4411)) (-4 *1 (-373 *3))
+ (-4 *3 (-1212)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-769))))
((*1 *2 *1)
- (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))))
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-769)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 (-642 *8))) (-5 *3 (-642 *8))
+ (-4 *8 (-947 *5 *7 *6)) (-4 *5 (-13 (-307) (-147)))
+ (-4 *6 (-13 (-848) (-612 (-1173)))) (-4 *7 (-791)) (-5 *2 (-112))
+ (-5 *1 (-922 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-820)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
+ ((*1 *1 *1) (|partial| -4 *1 (-720))))
(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917))
- (-4 *2 (-1094)))))
+ (-12 (-5 *3 (-769)) (-5 *1 (-213 *4 *2)) (-14 *4 (-919))
+ (-4 *2 (-1097)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1155)) (-5 *4 (-169 (-225))) (-5 *5 (-564))
+ (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-536))) (-5 *1 (-536)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1034 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-743)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-922)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-901 *3)))))
+ (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3))
+ (-4 *3 (-1097)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1197) (-1000))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-846))
- (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-846))))
- ((*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
+ (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1097)) (-4 *3 (-848))
+ (-4 *2 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-848))))
+ ((*1 *2 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848))))
((*1 *2 *1)
- (-12 (-4 *2 (-1209)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
+ (-12 (-4 *2 (-1212)) (-5 *1 (-871 *2 *3)) (-4 *3 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))
- ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5))
- (-5 *1 (-723 *5 *2)) (-4 *5 (-363)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241)))))
+ (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1033)) (-5 *1 (-751)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182)))))
+(((*1 *1)
+ (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))))
(((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2))
- (-4 *5 (-373 *2)) (-4 *2 (-1209))))
+ (-4 *5 (-373 *2)) (-4 *2 (-1212))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2))
- (-14 *4 (-917))))
+ (-12 (-5 *3 (-769)) (-4 *2 (-1097)) (-5 *1 (-213 *4 *2))
+ (-14 *4 (-919))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))
+ (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1212))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *2 *6 *7))
- (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) ((*1 *1) (-4 *1 (-545)))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-770)) (-5 *1 (-114))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-770)) (-5 *1 (-114)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-641 *11))
- (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -3577 *11))))))
- (-5 *6 (-767))
- (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -3577 *11))))
- (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1059 *7 *8 *9))
- (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789))
- (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-641 *11))
- (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -3577 *11))))))
- (-5 *6 (-767))
- (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -3577 *11))))
- (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1059 *7 *8 *9))
- (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789))
- (-4 *9 (-846)) (-5 *1 (-1139 *7 *8 *9 *10 *11)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-641 *4))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1034 (-48)))
- (-4 *4 (-13 (-556) (-1034 (-564)))) (-4 *5 (-430 *4))
- (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3))
- (-4 *3 (-1235 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
+ (-12 (-5 *3 (-564)) (-4 *1 (-1051 *4 *5 *2 *6 *7))
+ (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-642 (-642 (-941 (-225)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-642 (-642 (-941 (-225))))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1262 (-1098 *3 *4))) (-5 *1 (-1098 *3 *4))
+ (-14 *3 (-919)) (-14 *4 (-919)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *2 (-1267))
+ (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))) ((*1 *1) (-4 *1 (-545)))
+ ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1047)) (-5 *1 (-710 *3 *4))
+ (-4 *4 (-1238 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1097)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6)
+ (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1442 *6)))
+ (-5 *1 (-1014 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033))
+ (-5 *1 (-746)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1238 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 (-769))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-642 (-769))) (-5 *5 (-769)) (-5 *2 (-418 *3))
+ (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-769)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-1005 *3))
+ (-4 *3 (-1238 (-407 (-564))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2) (-12 (-5 *2 (-1144 (-1155))) (-5 *1 (-391)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-769)) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1047)) (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1173)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045))
- (-5 *2
- (-2 (|:| -2762 (-767)) (|:| |curves| (-767))
- (|:| |polygons| (-767)) (|:| |constructs| (-767)))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-506)) (-5 *2 (-687 (-109))) (-5 *1 (-175))))
+ (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-506)) (-5 *2 (-687 (-109))) (-5 *1 (-1079)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-1094)) (-4 *3 (-896 *6))
- (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3))
- (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4407)))))))
+ (-12 (-4 *1 (-1065 *4 *3)) (-4 *4 (-13 (-846) (-363)))
+ (-4 *3 (-1238 *4)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5))
- (-4 *3 (-1094)) (-4 *5 (-662 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564))
- (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047))
+ (-5 *2
+ (-2 (|:| -2747 (-769)) (|:| |curves| (-769))
+ (|:| |polygons| (-769)) (|:| |constructs| (-769)))))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3))
+ (-4 *3 (-1097)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1194 *3)) (-4 *3 (-1047)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-1153 *7))) (-4 *6 (-848))
+ (-4 *7 (-947 *5 (-531 *6) *6)) (-4 *5 (-1047))
+ (-5 *2 (-1 (-1153 *7) *7)) (-5 *1 (-1123 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))))
(((*1 *1) (-5 *1 (-578)))
- ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859))))
- ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1264)) (-5 *1 (-859))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-861))))
+ ((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-861))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-858)) (-5 *2 (-1264)) (-5 *1 (-859))))
+ (-12 (-5 *3 (-1155)) (-5 *4 (-860)) (-5 *2 (-1267)) (-5 *1 (-861))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4))
- (-4 *4 (-1094)) (-4 *4 (-1209)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3))))
- ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
+ (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1153 *4))
+ (-4 *4 (-1097)) (-4 *4 (-1212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))))
+(((*1 *1 *1) (-4 *1 (-173)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-5 *2 (-2 (|:| -1901 *3) (|:| -3813 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))
- ((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6))
- (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363))
- (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5)))
- (-5 *1 (-864 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363))
- (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5)))
- (-5 *1 (-864 *5 *6 *7)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-5 *2 (-2 (|:| -1907 *3) (|:| -3778 *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-374 *3 *4)) (-4 *3 (-848))
+ (-4 *4 (-172))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-848))
+ (-4 *4 (-1047)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1169 *1)) (-5 *3 (-1173)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-950 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-4 *1 (-29 *3)) (-4 *3 (-556))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-556))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169 *2)) (-5 *4 (-1173)) (-4 *2 (-430 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-556))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1169 *1)) (-5 *3 (-919)) (-4 *1 (-1010))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1169 *1)) (-5 *3 (-919)) (-5 *4 (-860))
+ (-4 *1 (-1010))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-919)) (-4 *4 (-13 (-846) (-363)))
+ (-4 *1 (-1065 *4 *2)) (-4 *2 (-1238 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-687 *4)) (-4 *4 (-363)) (-5 *2 (-1169 *4))
+ (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-846))))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173))
+ (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564))))
+ (-5 *2 (-2 (|:| -1529 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3))
+ (-4 *3 (-13 (-27) (-1197) (-430 *5))))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-767))
+ (-12 (-14 *4 *2) (-4 *5 (-1212)) (-5 *2 (-769))
(-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131))
- (-5 *2 (-767))))
+ (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-131))
+ (-5 *2 (-769))))
((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4))
+ (-12 (-4 *4 (-363)) (-5 *2 (-769)) (-5 *1 (-328 *3 *4))
(-4 *3 (-329 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
- ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-361 *3)) (-4 *3 (-1097))))
+ ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-386 *3)) (-4 *3 (-1097))))
((*1 *2)
- (-12 (-4 *4 (-1094)) (-5 *2 (-767)) (-5 *1 (-424 *3 *4))
+ (-12 (-4 *4 (-1097)) (-5 *2 (-769)) (-5 *1 (-424 *3 *4))
(-4 *3 (-425 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094))
+ (-12 (-5 *2 (-769)) (-5 *1 (-647 *3 *4 *5)) (-4 *3 (-1097))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-767))
- (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1002))))
+ (-12 (-4 *4 (-172)) (-4 *5 (-1238 *4)) (-5 *2 (-769))
+ (-5 *1 (-721 *3 *4 *5)) (-4 *3 (-722 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-817 *3)) (-4 *3 (-848))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1004))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1022 (-839 (-564))))
- (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1045))
- (-5 *1 (-594 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+ (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3))
+ (-4 *3 (-1238 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-974 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))))
-(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))))
-(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))
- ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -1572 (-641 (-2 (|:| |irr| *10) (|:| -2173 (-564)))))))
- (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-846)) (-4 *3 (-307))
- (-4 *10 (-945 *3 *9 *8)) (-4 *9 (-789))
- (-5 *2
- (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-641 (-1166 *3)))))
- (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7)))
- (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789))
- (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8)))
- (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-641 (-641 *7)))
- (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789))
- (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-641 (-641 *8)))
- (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
-(((*1 *2) (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1262)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-767))) (-5 *6 (-767))
+ (-12 (-4 *1 (-1036 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-1155)) (-5 *5 (-687 (-225)))
+ (-5 *2 (-1033)) (-5 *1 (-745)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
(-5 *2
(-2 (|:| |contp| (-564))
- (|:| -1572 (-641 (-2 (|:| |irr| *3) (|:| -2173 (-564)))))))
- (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1045)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2))
- (-4 *2 (-1235 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+ (|:| -2649 (-642 (-2 (|:| |irr| *3) (|:| -3672 (-564)))))))
+ (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-564))
+ (|:| -2649 (-642 (-2 (|:| |irr| *3) (|:| -3672 (-564)))))))
+ (-5 *1 (-1227 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))))
+(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1093))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-1250 *3)) (-4 *3 (-1212))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4))))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-998))))))
+ (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1157 *4)) (-4 *4 (-1047))
+ (-5 *3 (-564)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-769)) (-5 *2 (-1267)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-706 *3)) (-5 *1 (-825 *2 *3)) (-4 *3 (-1047)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-841 (-225)))) (-5 *4 (-225)) (-5 *2 (-642 *4))
+ (-5 *1 (-267)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-769)) (-4 *6 (-363)) (-5 *4 (-1206 *6))
+ (-5 *2 (-1 (-1153 *4) (-1153 *4))) (-5 *1 (-1270 *6))
+ (-5 *5 (-1153 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1107)) (-5 *3 (-564)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-769)) (-5 *3 (-941 *4)) (-4 *1 (-1131 *4))
+ (-4 *4 (-1047))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-769)) (-5 *4 (-941 (-225))) (-5 *2 (-1267))
+ (-5 *1 (-1264)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1216)) (-4 *5 (-1238 *3)) (-4 *6 (-1238 (-407 *5)))
+ (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556))
- (-4 *4 (-1045)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2))
- (-4 *6 (-652 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
+ (-12 (-5 *3 (-1099 *4)) (-4 *4 (-1097)) (-5 *2 (-1 *4))
+ (-5 *1 (-1015 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1091 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1045)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1094)) (-5 *2 (-885 *3 *5)) (-5 *1 (-881 *3 *4 *5))
- (-4 *3 (-1094)) (-4 *5 (-662 *4)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-641 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5))
- (-4 *3 (-556)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1031))
- (-5 *1 (-752)))))
+ (-12 (-4 *4 (-1097)) (-5 *2 (-887 *3 *5)) (-5 *1 (-883 *3 *4 *5))
+ (-4 *3 (-1097)) (-4 *5 (-664 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1097) (-1036 *5)))
+ (-4 *5 (-884 *4)) (-4 *4 (-1097)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-929 *4 *5 *6)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1045))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-646 *5)) (-4 *5 (-1047))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-850 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045))))
+ (-12 (-5 *2 (-687 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045))
- (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2)))))
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1047))
+ (-5 *1 (-851 *2 *3)) (-4 *3 (-850 *2)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1232 *3 *2))
+ (-4 *2 (-1238 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 *4))
+ (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-769))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225)))
- (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1173)) (-5 *5 (-1091 (-225))) (-5 *2 (-925))
+ (-5 *1 (-923 *3)) (-4 *3 (-612 (-536)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173)) (-5 *2 (-925)) (-5 *1 (-923 *3))
+ (-4 *3 (-612 (-536)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-925))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1091 (-225)))
+ (-5 *1 (-925)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1))
+ (-4 *1 (-1062 *3 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -3718 (-641 (-858))) (|:| -3878 (-641 (-858)))
- (|:| |presup| (-641 (-858))) (|:| -3122 (-641 (-858)))
- (|:| |args| (-641 (-858)))))
- (-5 *1 (-1170)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -4337 *6) (|:| |sol?| (-112))) (-564)
- *6))
- (-4 *6 (-363)) (-4 *7 (-1235 *6))
- (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
- (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))))
+ (-2 (|:| -2435 (-642 (-860))) (|:| -3532 (-642 (-860)))
+ (|:| |presup| (-642 (-860))) (|:| -1969 (-642 (-860)))
+ (|:| |args| (-642 (-860)))))
+ (-5 *1 (-1173)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1209))
- (-4 *2 (-1094))))
+ (-12 (|has| *1 (-6 -4410)) (-4 *1 (-151 *2)) (-4 *2 (-1212))
+ (-4 *2 (-1097))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *3))
- (-4 *3 (-1209))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *3))
+ (-4 *3 (-1212))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-672 *3)) (-4 *3 (-1212))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094))
- (-5 *1 (-733 *4))))
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1097))
+ (-5 *1 (-735 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-5 *1 (-733 *2)) (-4 *2 (-1094))))
+ (-12 (-5 *3 (-564)) (-5 *1 (-735 *2)) (-4 *2 (-1097))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))))
-(((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-687 (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
+ (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34)))
+ (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))))
- (-5 *1 (-205)))))
-(((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789))
- (-4 *5 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))) (-4 *6 (-556))
- (-5 *2 (-2 (|:| -3878 (-948 *6)) (|:| -2122 (-948 *6))))
- (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094))
- (-4 *3 (-1209)))))
-(((*1 *2 *1)
+ (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3))))
+ (-5 *1 (-386 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1 *1)
(-12
(-5 *2
- (-641
- (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3))
- (|:| |logand| (-1166 *3)))))
- (-5 *1 (-585 *3)) (-4 *3 (-363)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
+ (-2 (|:| |lm| (-817 *3)) (|:| |mm| (-817 *3)) (|:| |rm| (-817 *3))))
+ (-5 *1 (-817 *3)) (-4 *3 (-848)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-452)))))
+(((*1 *1 *1) (-5 *1 (-1060))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1238 *4))
+ (-5 *2 (-2 (|:| -4047 (-621 *4 *5)) (|:| -2286 (-407 *5))))
+ (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4))
+ (-14 *3 (-919)) (-4 *4 (-1047))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-452)) (-4 *3 (-1047))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1238 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564))
+ (-5 *2 (-1033)) (-5 *1 (-754)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1212)) (-5 *1 (-375 *4 *2))
+ (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-827)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))
+ (-12 (-4 *4 (-1047))
+ (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4))))
((*1 *1 *1) (-4 *1 (-545)))
- ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-668 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-673 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1209)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1206 *3)) (-4 *3 (-1209))))
+ ((*1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-670 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-919)) (-5 *1 (-675 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-817 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-891 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-1212)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-1209 *3)) (-4 *3 (-1212))))
((*1 *2 *1)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-998))
- (-4 *2 (-1045)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-901 *3))) (-4 *3 (-1094)) (-5 *1 (-900 *3)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 *10))
- (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8))
- (-4 *10 (-1103 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6)))
- (-5 *1 (-626 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-641 (-1170)))
- (-5 *2
- (-641 (-1140 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6)))))
- (-5 *1 (-626 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-641 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1042 *5 *6)))
- (-5 *1 (-1042 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-641 *1))
- (-4 *1 (-1065 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 *1))
- (-4 *1 (-1202 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-641 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-161))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-218))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-672))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1015))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1060))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-641
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846))
- (-5 *1 (-449 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
+ (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1212)) (-4 *2 (-1000))
+ (-4 *2 (-1047)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1725 *4)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 (-564)))
+ (-5 *2 (-1262 (-564))) (-5 *1 (-1289 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))
- (-4 *2 (-452))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2))
- (-4 *4 (-1235 (-407 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *3 (-452))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2))
- (-4 *2 (-1235 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))))
+ (-12 (-4 *2 (-349)) (-4 *2 (-1047)) (-5 *1 (-710 *2 *3))
+ (-4 *3 (-1238 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-674))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1017))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1063))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-1093)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349)) (-5 *2 (-956 (-1117)))
+ (-5 *1 (-346 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2))
+ (-4 *2 (-1253 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3)))
+ (-4 *5 (-1238 *4)) (-4 *6 (-722 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2))
+ (-4 *2 (-1253 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3)))
+ (-5 *1 (-542 *4 *2)) (-4 *2 (-1253 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147)))
+ (-5 *1 (-1149 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1166 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -1901
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -3813
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2141
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-559))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-691 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2)
- (-12
+ (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169 (-564))) (-5 *2 (-564)) (-5 *1 (-940)))))
+(((*1 *2 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-612 (-890 (-564))))
+ (-4 *5 (-884 (-564)))
+ (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-567 *5 *3)) (-4 *3 (-627))
+ (-4 *3 (-13 (-27) (-1197) (-430 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-950 (-564))))
(-5 *2
- (-2
- (|:| -1901
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (|:| -3813
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379))))))
- (-5 *1 (-799))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-564)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307))
- (-4 *9 (-945 *8 *6 *7))
- (-5 *2 (-2 (|:| -1744 (-1166 *9)) (|:| |polval| (-1166 *8))))
- (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8)))))
-(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-373 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96))))
+ (-2 (|:| |varOrder| (-642 (-1173)))
+ (|:| |inhom| (-3 (-642 (-1262 (-769))) "failed"))
+ (|:| |hom| (-642 (-1262 (-769))))))
+ (-5 *1 (-236)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-4 *4 (-1212)) (-5 *2 (-112))
+ (-5 *1 (-1153 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-235 *3))
+ (-4 *3 (-1097))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-96))))
((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-109))))
((*1 *2 *1)
- (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094))))
- ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-438 *3)) (-14 *3 *2)))
+ (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1097))))
+ ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-438 *3)) (-14 *3 *2)))
((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-961))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109))))
- ((*1 *1 *1) (-5 *1 (-1170))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-641 (-171)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))
- (-14 *4 (-1170)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -2423 ($ *4)))))
- (-4 *4 (-844))
- (-4 *5
- (-13 (-1237 *2 *4) (-363) (-1194)
- (-10 -8 (-15 -3254 ($ $)) (-15 -2070 ($ $)))))
- (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1170)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-610 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1) (-12 (-4 *1 (-833 *2)) (-4 *2 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-863))))
+ ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-963))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1072 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1112))))
+ ((*1 *1 *1) (-5 *1 (-1173))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-791)) (-4 *6 (-848)) (-4 *7 (-556))
+ (-4 *3 (-947 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -2700 (-769)) (|:| -4378 *3) (|:| |radicand| (-642 *3))))
+ (-5 *1 (-951 *5 *6 *7 *3 *8)) (-5 *4 (-769))
+ (-4 *8
+ (-13 (-363)
+ (-10 -8 (-15 -2327 ($ *3)) (-15 -2245 (*3 $)) (-15 -2255 (*3 $))))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-646 *3)) (-4 *3 (-1047))
+ (-5 *1 (-712 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-834 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1212))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302))))
+ (-12 (-5 *2 (-642 (-610 *1))) (-5 *3 (-642 *1)) (-4 *1 (-302))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-294 *1))) (-4 *1 (-302))))
((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))
+ (-12 (-5 *1 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1169 *3))
+ (-4 *3 (-13 (-430 *6) (-27) (-1197)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2 (-2 (|:| -2116 *3) (|:| |coeff| *3)))
+ (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1169 *3)))
+ (-4 *3 (-13 (-430 *6) (-27) (-1197)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2 (-2 (|:| -2116 *3) (|:| |coeff| *3)))
+ (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1097)))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769))
+ (-4 *4 (-172)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1010)) (-5 *2 (-860)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-887 *5 *3)) (-5 *4 (-890 *5)) (-4 *5 (-1097))
+ (-4 *3 (-166 *6)) (-4 (-950 *6) (-884 *5))
+ (-4 *6 (-13 (-884 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-887 *4 *1)) (-5 *3 (-890 *4)) (-4 *1 (-884 *4))
+ (-4 *4 (-1097))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-887 *5 *6)) (-5 *4 (-890 *5)) (-4 *5 (-1097))
+ (-4 *6 (-13 (-1097) (-1036 *3))) (-4 *3 (-884 *5))
+ (-5 *1 (-929 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097))
+ (-4 *3 (-13 (-430 *6) (-612 *4) (-884 *5) (-1036 (-610 $))))
+ (-5 *4 (-890 *5)) (-4 *6 (-13 (-556) (-884 *5)))
+ (-5 *1 (-930 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-887 (-564) *3)) (-5 *4 (-890 (-564))) (-4 *3 (-545))
+ (-5 *1 (-931 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-887 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1097))
+ (-4 *6 (-13 (-1097) (-1036 (-610 $)) (-612 *4) (-884 *5)))
+ (-5 *4 (-890 *5)) (-5 *1 (-932 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-883 *5 *6 *3)) (-5 *4 (-890 *5)) (-4 *5 (-1097))
+ (-4 *6 (-884 *5)) (-4 *3 (-664 *6)) (-5 *1 (-933 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-887 *6 *3) *8 (-890 *6) (-887 *6 *3)))
+ (-4 *8 (-848)) (-5 *2 (-887 *6 *3)) (-5 *4 (-890 *6))
+ (-4 *6 (-1097)) (-4 *3 (-13 (-947 *9 *7 *8) (-612 *4)))
+ (-4 *7 (-791)) (-4 *9 (-13 (-1047) (-884 *6)))
+ (-5 *1 (-934 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097))
+ (-4 *3 (-13 (-947 *8 *6 *7) (-612 *4))) (-5 *4 (-890 *5))
+ (-4 *7 (-884 *5)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *8 (-13 (-1047) (-884 *5))) (-5 *1 (-934 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-887 *5 *3)) (-4 *5 (-1097)) (-4 *3 (-990 *6))
+ (-4 *6 (-13 (-556) (-884 *5) (-612 *4))) (-5 *4 (-890 *5))
+ (-5 *1 (-937 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-887 *5 (-1173))) (-5 *3 (-1173)) (-5 *4 (-890 *5))
+ (-4 *5 (-1097)) (-5 *1 (-938 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-642 (-890 *7))) (-5 *5 (-1 *9 (-642 *9)))
+ (-5 *6 (-1 (-887 *7 *9) *9 (-890 *7) (-887 *7 *9))) (-4 *7 (-1097))
+ (-4 *9 (-13 (-1047) (-612 (-890 *7)) (-1036 *8)))
+ (-5 *2 (-887 *7 *9)) (-5 *3 (-642 *9)) (-4 *8 (-1047))
+ (-5 *1 (-939 *7 *8 *9)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-642 *1)) (-4 *1 (-1068 *4 *5 *6 *3)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-642 *1)) (-5 *3 (-642 *7)) (-4 *1 (-1068 *4 *5 *6 *7))
+ (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *1))
+ (-4 *1 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1))
+ (-4 *1 (-1068 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34)))
+ (-4 *3 (-13 (-1097) (-34))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-922)))
- (-5 *1 (-318))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152))
- (-5 *2 (-1204 (-922))) (-5 *1 (-318))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564))
- (-5 *2 (-1204 (-922))) (-5 *1 (-318))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152))
- (-5 *2 (-1204 (-922))) (-5 *1 (-318)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2))
- (-4 *2 (-1235 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))))
+ (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1197) (-1000))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-769)) (-4 *4 (-13 (-556) (-147)))
+ (-5 *1 (-1232 *4 *2)) (-4 *2 (-1238 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545))
- (-4 *3 (-556))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-829 *3)) (-4 *3 (-545))
- (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-839 *3)) (-4 *3 (-545))
- (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))))
+ (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-5 *2 (-1155)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *2 (-1097)) (-4 *3 (-1097))
+ (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4))))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1094)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-685 *3))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))))
- (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-685 *3))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))))
- (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1222 *3)))))
+(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-907)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094))
- (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-870)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-998)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2)))
- (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5))
- (-4 *3 (-342 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213))
- (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-641
- (-2 (|:| -2514 (-767))
- (|:| |eqns|
- (-641
- (-2 (|:| |det| *7) (|:| |rows| (-641 (-564)))
- (|:| |cols| (-641 (-564))))))
- (|:| |fgb| (-641 *7)))))
- (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-767))
- (-5 *1 (-920 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-4 *7 (-988 *4)) (-4 *2 (-683 *7 *8 *9))
- (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6))
- (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045))
- (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
- (-4 *2 (-683 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1045))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-1180 *3)))))
+ (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1144 (-1155))) (-5 *1 (-391)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3644 (-379)) (|:| -2562 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *2 (-1031)) (-5 *1 (-305))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3644 (-379)) (|:| -2562 (-1152))
- (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1031))))
- (-5 *2 (-1031)) (-5 *1 (-305)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1170)) (-5 *1 (-267)))))
-(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))))
+ (-12 (-5 *3 (-1262 (-1262 *4))) (-4 *4 (-1047)) (-5 *2 (-687 *4))
+ (-5 *1 (-1027 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094))
- (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))))
+ (-12 (-4 *1 (-1100 *2 *3 *4 *5 *6)) (-4 *2 (-1097)) (-4 *3 (-1097))
+ (-4 *4 (-1097)) (-4 *5 (-1097)) (-4 *6 (-1097)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
+ (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4))
(-4 *4 (-349))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
+ (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4))
(-4 *4 (-349))))
((*1 *1) (-4 *1 (-368)))
((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4))
+ (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4))
(-4 *4 (-349))))
((*1 *1 *1) (-4 *1 (-545))) ((*1 *1) (-4 *1 (-545)))
- ((*1 *1 *1) (-5 *1 (-564))) ((*1 *1 *1) (-5 *1 (-767)))
- ((*1 *2 *1) (-12 (-5 *2 (-901 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *1) (-5 *1 (-564))) ((*1 *1 *1) (-5 *1 (-769)))
+ ((*1 *2 *1) (-12 (-5 *2 (-903 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4))
- (-4 *4 (-1094))))
- ((*1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-545)) (-4 *2 (-556)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-938)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *1) (-5 *1 (-291))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225)))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1031)) (-5 *1 (-749)))))
+ (-12 (-5 *3 (-564)) (-5 *2 (-903 *4)) (-5 *1 (-902 *4))
+ (-4 *4 (-1097))))
+ ((*1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-545)) (-4 *2 (-556)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1094)) (-4 *2 (-896 *4)) (-5 *1 (-688 *4 *2 *5 *3))
- (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4407)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2511 (-685 (-407 (-948 *4))))
- (|:| |vec| (-641 (-407 (-948 *4)))) (|:| -2514 (-767))
- (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789))
+(((*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-134)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234)))) (-5 *3 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-746)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-4 *3 (-13 (-27) (-1197) (-430 *6) (-10 -8 (-15 -2327 ($ *7)))))
+ (-4 *7 (-846))
+ (-4 *8
+ (-13 (-1240 *3 *7) (-363) (-1197)
+ (-10 -8 (-15 -3175 ($ $)) (-15 -4107 ($ $)))))
(-5 *2
- (-2 (|:| |partsol| (-1259 (-407 (-948 *4))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *4)))))))
- (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1094)) (-5 *2 (-55)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *1 *1) (-5 *1 (-379)))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))))
+ (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1155)) (-4 *9 (-981 *8))
+ (-14 *10 (-1173)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-950 (-564))) (-5 *3 (-1173))
+ (-5 *4 (-1091 (-407 (-564)))) (-5 *1 (-30)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-769)) (-5 *4 (-1262 *2)) (-4 *5 (-307))
+ (-4 *6 (-990 *5)) (-4 *2 (-13 (-409 *6 *7) (-1036 *6)))
+ (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1238 *6)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-950 (-169 *4))) (-4 *4 (-172))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4))))
- (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-888 *4))
- (-4 *4 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))))
+ (|partial| -12 (-5 *3 (-950 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-172))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1047))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-950 (-169 *4)))) (-4 *4 (-556))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-407 (-950 (-169 *5)))) (-5 *4 (-919))
+ (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
+ (-5 *1 (-783 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556))
+ (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
+ (-5 *1 (-783 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-848))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-783 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-919)) (-4 *5 (-556))
+ (-4 *5 (-848)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
+ (-5 *1 (-783 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 (-169 (-407 (-564)))))
+ (-5 *2
+ (-642
+ (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564))
+ (|:| |outvect| (-642 (-687 (-169 *4)))))))
+ (-5 *1 (-762 *4)) (-4 *4 (-13 (-363) (-846))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-112)) (-5 *1 (-300)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-379)) (-5 *1 (-205)))))
+(((*1 *1 *2) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-1173)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
+ ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1253 *4))
+ (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1153 *4) (-1153 *4)))
+ (-5 *1 (-1255 *4 *5)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-112))
+ (-5 *1 (-887 *4 *5)) (-4 *5 (-1097))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-890 *5)) (-4 *5 (-1097)) (-5 *2 (-112))
+ (-5 *1 (-888 *5 *3)) (-4 *3 (-1212))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *6)) (-5 *4 (-890 *5)) (-4 *5 (-1097))
+ (-4 *6 (-1212)) (-5 *2 (-112)) (-5 *1 (-888 *5 *6)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-4 *2 (-1097))
+ (-5 *1 (-887 *4 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1212)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
+ (-12 (-5 *2 (-769)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
(-14 *4 *2) (-4 *5 (-172))))
((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4))
+ (-12 (-4 *4 (-172)) (-5 *2 (-919)) (-5 *1 (-165 *3 *4))
(-4 *3 (-166 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-917))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-919))))
((*1 *2)
- (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
- (-5 *2 (-917))))
+ (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3))
+ (-5 *2 (-919))))
((*1 *2 *3)
(-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))
+ (-5 *2 (-769)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363))
- (-5 *2 (-767)) (-5 *1 (-663 *5))))
+ (-12 (-5 *3 (-687 *5)) (-5 *4 (-1262 *5)) (-4 *5 (-363))
+ (-5 *2 (-769)) (-5 *1 (-665 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408))))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-767))
- (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411))))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))) (-5 *2 (-769))
+ (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-767))))
+ (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-769))))
((*1 *2 *3)
(-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-684 *4 *5 *6 *3))
- (-4 *3 (-683 *4 *5 *6))))
+ (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-686 *4 *5 *6 *3))
+ (-4 *3 (-685 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
(-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
- (-5 *2 (-767)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1034 (-564)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998)))
- (-5 *1 (-176 *3)))))
+ (-5 *2 (-769)))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1197))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-225))) (-5 *4 (-767)) (-5 *2 (-685 (-225)))
- (-5 *1 (-305)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-641 (-1170)))
+ (-12 (-5 *3 (-687 (-407 (-564))))
(-5 *2
- (-641 (-1140 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6)))))
- (-5 *1 (-626 *5 *6)))))
+ (-642
+ (-2 (|:| |outval| *4) (|:| |outmult| (-564))
+ (|:| |outvect| (-642 (-687 *4))))))
+ (-5 *1 (-777 *4)) (-4 *4 (-13 (-363) (-846))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452)))
+ (-5 *2 (-841 *4)) (-5 *1 (-313 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452)))
+ (-5 *2 (-841 *4)) (-5 *1 (-1248 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1197) (-430 *3))) (-14 *5 (-1173))
+ (-14 *6 *4))))
+(((*1 *1 *1) (-4 *1 (-627)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000) (-1197))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1173)) (-4 *5 (-612 (-890 (-564))))
+ (-4 *5 (-884 (-564)))
+ (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-567 *5 *3)) (-4 *3 (-627))
+ (-4 *3 (-13 (-27) (-1197) (-430 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1173)) (-5 *4 (-841 *2)) (-4 *2 (-1136))
+ (-4 *2 (-13 (-27) (-1197) (-430 *5)))
+ (-4 *5 (-612 (-890 (-564)))) (-4 *5 (-884 (-564)))
+ (-4 *5 (-13 (-1036 (-564)) (-452) (-637 (-564))))
+ (-5 *1 (-567 *5 *2)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(-5 *2
(-2
@@ -11266,10 +11582,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
+ (-3 (|:| |str| (-1153 (-225)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2141
+ (|:| -3894
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -11277,546 +11593,520 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *1 (-559)))))
-(((*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-767)) (-4 *5 (-172))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-767)) (-4 *5 (-172))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-564)))))
- (-5 *3 (-641 (-860 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-767))
- (-5 *1 (-505 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917))
- (-5 *2
- (-3 (-1166 *4)
- (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114)))))))
- (-5 *1 (-346 *4)) (-4 *4 (-349)))))
-(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2) (-12 (-5 *2 (-642 *3)) (-5 *1 (-1081 *3)) (-4 *3 (-132)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-564))
- (|:| -1572 (-641 (-2 (|:| |irr| *3) (|:| -2173 (-564)))))))
- (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-564))
- (|:| -1572 (-641 (-2 (|:| |irr| *3) (|:| -2173 (-564)))))))
- (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
+ (-12 (-5 *3 (-642 (-1 (-112) *8))) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-2 (|:| |goodPols| (-642 *8)) (|:| |badPols| (-642 *8))))
+ (-5 *1 (-975 *5 *6 *7 *8)) (-5 *4 (-642 *8)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000)))
+ (-5 *1 (-176 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1235 (-169 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1235 *2)) (-4 *2 (-988 *3)) (-5 *1 (-413 *3 *2 *4 *5))
- (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1034 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1235 *2)) (-4 *2 (-988 *3))
- (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4))
- (-14 *6 (-1259 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1194) (-284)))
- (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495))))
- (-5 *1 (-495))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-917)) (-4 *4 (-349))
- (-5 *1 (-528 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1235 *4))
- (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1235 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))
- ((*1 *1 *1) (-4 *1 (-1054))))
+ (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *4 *5 *6))
+ (-4 *4 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043)))))
+ (-12 (-5 *3 (-925))
+ (-5 *2
+ (-2 (|:| |brans| (-642 (-642 (-941 (-225)))))
+ (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-925)) (-5 *4 (-407 (-564)))
+ (-5 *2
+ (-2 (|:| |brans| (-642 (-642 (-941 (-225)))))
+ (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))))
+ (-5 *1 (-153)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-330)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-5 *5 (-642 (-642 *8)))
+ (-4 *7 (-848)) (-4 *8 (-307)) (-4 *9 (-947 *8 *6 *7)) (-4 *6 (-791))
+ (-5 *2
+ (-2 (|:| |upol| (-1169 *8)) (|:| |Lval| (-642 *8))
+ (|:| |Lfact|
+ (-642 (-2 (|:| -3643 (-1169 *8)) (|:| -2700 (-564)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-740 *6 *7 *8 *9)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3))
+ (-4 *3 (-363)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788))
- (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094))
- (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-722)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-970)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (|has| *1 (-6 -4398)) (-4 *1 (-404))
- (-5 *2 (-917)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-671 *3)) (-4 *3 (-1045))
- (-4 *3 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-827)))))
-(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-52)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6))
- (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-973 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
+ (-12 (-5 *2 (-1099 *3)) (-5 *1 (-903 *3)) (-4 *3 (-368))
+ (-4 *3 (-1097)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-1034 (-564))) (-4 *3 (-556))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $))
- (-15 -2336 ((-1119 *3 (-610 $)) $))
- (-15 -2423 ($ (-1119 *3 (-610 $))))))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))))
-(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-846))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-52)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2234))))
+ (-5 *2 (-1033)) (-5 *1 (-744)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1238 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-983 *4 *2 *3 *5))
+ (-4 *4 (-349)) (-4 *5 (-722 *2 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
+(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1212)) (-4 *2 (-848))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1212))))
((*1 *2 *2)
- (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1097))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
- (-4 *6 (-1059 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2882 *1) (|:| |upper| *1)))
- (-4 *1 (-972 *4 *5 *3 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-917)) (-5 *1 (-782)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-147))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-316 *5))
- (-5 *1 (-588 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *3 (-641 (-870)))
- (-5 *1 (-468)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4))
- (-4 *4 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248)))))
+ (-12 (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *3 (-848))
+ (-4 *6 (-1062 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -2759 *1) (|:| |upper| *1)))
+ (-4 *1 (-974 *4 *5 *3 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1262 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
+ (-4 *1 (-722 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1238 *5))
+ (-5 *2 (-687 *5)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5))
+ (-4 *5 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-642 *7))
+ (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-642 (-294 *7))) (-5 *4 (-642 (-114))) (-5 *5 (-294 *7))
+ (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-642 (-294 *8))) (-5 *4 (-642 (-114))) (-5 *5 (-294 *8))
+ (-5 *6 (-642 *8)) (-4 *8 (-430 *7))
+ (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-642 *7)) (-5 *4 (-642 (-114))) (-5 *5 (-294 *7))
+ (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 (-114))) (-5 *6 (-642 (-294 *8)))
+ (-4 *8 (-430 *7)) (-5 *5 (-294 *8))
+ (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6))
+ (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6))
+ (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6))
+ (-4 *6 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-642 *3))
+ (-4 *3 (-430 *7)) (-4 *7 (-13 (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *3 (-791)) (-4 *5 (-848)) (-5 *2 (-112))
+ (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-947 *4 *3 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-947 *3 *5 *4)) (-5 *1 (-985 *3 *4 *5 *2))
+ (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-248)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *6 (-225))
+ (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-787)) (-5 *5 (-564)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564)))
- (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-870))
- (-5 *5 (-917)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263))))
+ (|partial| -12 (-5 *3 (-950 *4)) (-4 *4 (-1047)) (-4 *4 (-612 *2))
+ (-5 *2 (-379)) (-5 *1 (-783 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-950 *5)) (-5 *4 (-919)) (-4 *5 (-1047))
+ (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *2 (-468))
- (-5 *1 (-1263))))
+ (|partial| -12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-556))
+ (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-641 (-263)))
- (-5 *2 (-468)) (-5 *1 (-1263)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-963))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-753)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031))
- (-5 *1 (-744)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-860 *4))
- (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4409 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2))
- (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2))
- (-4 *4 (-683 *2 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-112))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
+ (|partial| -12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-919)) (-4 *5 (-556))
+ (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-112))
- (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-848))
+ (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-783 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-919)) (-4 *5 (-556))
+ (-4 *5 (-848)) (-4 *5 (-612 *2)) (-5 *2 (-379))
+ (-5 *1 (-783 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *1 *1) (-4 *1 (-1136))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1155)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *1 *1) (-4 *1 (-545))))
+(((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2))
- (-4 *2 (-670 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170)))
- (-4 *5 (-452))
- (-5 *2
- (-2 (|:| |gblist| (-641 (-247 *4 *5)))
- (|:| |gvlist| (-641 (-564)))))
- (-5 *1 (-629 *4 *5)))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *6 (-225))
+ (-5 *3 (-564)) (-5 *2 (-1033)) (-5 *1 (-749)))))
(((*1 *2)
- (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))))
- (-4 *4 (-1235 *3))
- (-5 *2
- (-2 (|:| -2047 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1235 (-564)))
- (-5 *2
- (-2 (|:| -2047 (-685 (-564))) (|:| |basisDen| (-564))
- (|:| |basisInv| (-685 (-564)))))
- (-5 *1 (-764 *3 *4)) (-4 *4 (-409 (-564) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4))
- (-5 *2
- (-2 (|:| -2047 (-685 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-685 *4))))
- (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4))
- (-5 *2
- (-2 (|:| -2047 (-685 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-685 *4))))
- (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-858) (-858) (-858))) (-5 *4 (-564)) (-5 *2 (-858))
- (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-858)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-858)) (-5 *1 (-1166 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
+ (-12 (-4 *3 (-1047)) (-5 *2 (-956 (-710 *3 *4))) (-5 *1 (-710 *3 *4))
+ (-4 *4 (-1238 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1033)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-556)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-564)) (-5 *5 (-1155)) (-5 *6 (-687 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545))
- (-4 *3 (-556))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-829 *3)) (-4 *3 (-545))
- (-4 *3 (-1094))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-839 *3)) (-4 *3 (-545))
- (-4 *3 (-1094))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-430 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1004 *3))
- (-4 *3 (-1034 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112))
+ (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112))
+ (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-1000)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))
+ ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *5 (-1097)) (-5 *2 (-112))
+ (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112))
+ (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-556)) (-5 *2 (-112))
+ (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-1000) (-1197))))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-245 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047))
+ (-5 *1 (-1157 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047))
+ (-14 *4 (-1173)) (-14 *5 *3))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379)))
+ (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267))
+ (-5 *1 (-786)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *4 (-1170))
- (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))))
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-887 *4 *3))
+ (-4 *3 (-1097)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-452))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *5 (-907)) (-5 *1 (-457 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-907)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5))
- (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
- (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-112))
- (-5 *1 (-907 *4 *5 *6 *7 *8))))
+ (|partial| -12 (-4 *2 (-1097)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-1097)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
((*1 *2 *3)
- (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
- (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4)))
- (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-908 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-945 *6 *4 *5))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-5 *1 (-321 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1262)))))
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-689 (-129))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1097))
+ (-4 *2 (-131)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3)))
+ (-5 *1 (-686 *3 *4 *5 *6)) (-4 *6 (-685 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -1420 *3) (|:| -3045 *3))) (-5 *1 (-698 *3))
+ (-4 *3 (-307)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-769)) (-4 *5 (-556))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| -3688 *4) (|:| -1568 (-564)))))
- (-4 *4 (-1235 (-564))) (-5 *2 (-733 (-767))) (-5 *1 (-442 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1045))
- (-5 *2 (-733 (-767))) (-5 *1 (-444 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3))))
+ (-12 (-5 *2 (-1153 (-2 (|:| |k| (-564)) (|:| |c| *3))))
+ (-5 *1 (-594 *3)) (-4 *3 (-1047)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-642 *1))
+ (-4 *1 (-1068 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4))))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3)) (-5 *6 (-1169 *3))
+ (-4 *3 (-13 (-430 *7) (-27) (-1197)))
+ (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1097))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-642 *3))
+ (-5 *6 (-407 (-1169 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1197)))
+ (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1097)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1212)) (-4 *1 (-151 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-641 (-2 (|:| -1838 (-767)) (|:| -3639 *4) (|:| |num| *4))))
- (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))))
+ (-5 *2 (-642 (-2 (|:| -2700 (-769)) (|:| -3594 *4) (|:| |num| *4))))
+ (-4 *4 (-1238 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-112)) (-5 *1 (-437))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-112)) (-5 *1 (-437))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-5 *3 (-642 (-1173))) (-5 *4 (-112)) (-5 *1 (-437))))
((*1 *2 *1)
- (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 (-1153 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1212))))
((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4))
+ (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4))
(-4 *4 (-172))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4))
+ (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4))
(-4 *4 (-172))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-668 *3)) (-4 *3 (-846)) (-5 *1 (-660 *3 *4))
+ (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-5 *1 (-662 *3 *4))
(-4 *4 (-172))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094))
- (-5 *1 (-671 *3))))
+ (-12 (-5 *2 (-642 (-642 (-642 *3)))) (-4 *3 (-1097))
+ (-5 *1 (-673 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1094))
+ (-12 (-5 *1 (-711 *2 *3 *4)) (-4 *2 (-848)) (-4 *3 (-1097))
(-14 *4
- (-1 (-112) (-2 (|:| -2083 *2) (|:| -1838 *3))
- (-2 (|:| -2083 *2) (|:| -1838 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-834))))
+ (-1 (-112) (-2 (|:| -2047 *2) (|:| -2700 *3))
+ (-2 (|:| -2047 *2) (|:| -2700 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1115)) (-5 *1 (-836))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209))))
+ (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1212)) (-4 *3 (-1212))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 *4))))
- (-4 *4 (-1094)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 *4))))
+ (-4 *4 (-1097)) (-5 *1 (-887 *3 *4)) (-4 *3 (-1097))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34)))
- (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5))
- (-4 *3 (-13 (-1094) (-34)))))
+ (-12 (-5 *4 (-642 *5)) (-4 *5 (-13 (-1097) (-34)))
+ (-5 *2 (-642 (-1137 *3 *5))) (-5 *1 (-1137 *3 *5))
+ (-4 *3 (-13 (-1097) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -3577 *5))))
- (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34)))
- (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5))))
+ (-12 (-5 *3 (-642 (-2 (|:| |val| *4) (|:| -3530 *5))))
+ (-4 *4 (-13 (-1097) (-34))) (-4 *5 (-13 (-1097) (-34)))
+ (-5 *2 (-642 (-1137 *4 *5))) (-5 *1 (-1137 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3577 *4)))
- (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34)))
- (-5 *1 (-1134 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3530 *4)))
+ (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34)))
+ (-5 *1 (-1137 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34)))))
+ (-12 (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34)))
+ (-4 *3 (-13 (-1097) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34)))))
+ (-12 (-5 *4 (-112)) (-5 *1 (-1137 *2 *3)) (-4 *2 (-13 (-1097) (-34)))
+ (-4 *3 (-13 (-1097) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-13 (-1094) (-34)))
- (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34)))))
+ (-12 (-5 *4 (-642 *3)) (-4 *3 (-13 (-1097) (-34)))
+ (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1134 *2 *3))) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3))))
+ (-12 (-5 *4 (-642 (-1137 *2 *3))) (-4 *2 (-13 (-1097) (-34)))
+ (-4 *3 (-13 (-1097) (-34))) (-5 *1 (-1138 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1135 *2 *3))) (-5 *1 (-1135 *2 *3))
- (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34)))))
+ (-12 (-5 *4 (-642 (-1138 *2 *3))) (-5 *1 (-1138 *2 *3))
+ (-4 *2 (-13 (-1097) (-34))) (-4 *3 (-13 (-1097) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))
+ (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34)))
+ (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094))
- (-4 *5 (-13 (-1045) (-882 *4) (-612 (-888 *4))))
- (-4 *2 (-13 (-430 *5) (-882 *4) (-612 (-888 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1094))
- (-4 *6 (-13 (-1045) (-882 *5) (-612 (-888 *5))))
- (-4 *2 (-13 (-430 *6) (-882 *5) (-612 (-888 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
+ (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-769)) (-4 *5 (-349)) (-4 *6 (-1238 *5))
+ (-5 *2
+ (-642
+ (-2 (|:| -4263 (-687 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-687 *6)))))
+ (-5 *1 (-498 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -4263 (-687 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-687 *6))))
+ (-4 *7 (-1238 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-1045)) (-5 *2 (-1259 *4))
- (-5 *1 (-1171 *4))))
+ (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4))
+ (-4 *4 (-349)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-769)) (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1197) (-29 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3))
- (-4 *3 (-1045)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1166 (-1020 *3))))
- (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
+ (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173)) (-4 *5 (-147))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-316 *5))
+ (-5 *1 (-588 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-687 (-564))) (-5 *3 (-642 (-564))) (-5 *1 (-1107)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-712 *2 *3))
+ (-4 *3 (-646 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4))
- (-5 *1 (-1284 *4)) (-4 *4 (-1209))))
+ (-12 (-5 *3 (-1 (-1153 *4) (-1153 *4))) (-5 *2 (-1153 *4))
+ (-5 *1 (-1287 *4)) (-4 *4 (-1212))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564))
- (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-564))))
- (-4 *2 (-172)))))
+ (-12 (-5 *3 (-1 (-642 (-1153 *5)) (-642 (-1153 *5)))) (-5 *4 (-564))
+ (-5 *2 (-642 (-1153 *5))) (-5 *1 (-1287 *5)) (-4 *5 (-1212)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1238 *4)) (-4 *4 (-1216))
+ (-4 *6 (-1238 (-407 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-342 *4 *5 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-641 (-1170)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 (-1262 *3)) (-4 *3 (-363)) (-14 *6 (-1262 (-687 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-919)) (-14 *5 (-642 (-1173)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1212))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435 'JINT 'X 'ELAM) (-2435) (-695))))
- (-5 *1 (-61 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337 'JINT 'X 'ELAM) (-2337) (-697))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435) (-2435 'XC) (-695))))
- (-5 *1 (-63 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337) (-2337 'XC) (-697))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-339 (-2435 'X) (-2435) (-695))) (-5 *1 (-64 *3))
- (-14 *3 (-1170))))
+ (-12 (-5 *2 (-339 (-2337 'X) (-2337) (-697))) (-5 *1 (-64 *3))
+ (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-339 (-2435) (-2435 'XC) (-695))) (-5 *1 (-66 *3))
- (-14 *3 (-1170))))
+ (-12 (-5 *2 (-339 (-2337) (-2337 'XC) (-697))) (-5 *1 (-66 *3))
+ (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435 'X) (-2435 '-2425) (-695))))
- (-5 *1 (-71 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337 'X) (-2337 '-2329) (-697))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435) (-2435 'X) (-695))))
- (-5 *1 (-74 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337) (-2337 'X) (-697))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435 'X 'EPS) (-2435 '-2425) (-695))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170))
- (-14 *5 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337 'X 'EPS) (-2337 '-2329) (-697))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1173)) (-14 *4 (-1173))
+ (-14 *5 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435 'EPS) (-2435 'YA 'YB) (-695))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170))
- (-14 *5 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337 'EPS) (-2337 'YA 'YB) (-697))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1173)) (-14 *4 (-1173))
+ (-14 *5 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-339 (-2435) (-2435 'X) (-695))) (-5 *1 (-77 *3))
- (-14 *3 (-1170))))
+ (-12 (-5 *2 (-339 (-2337) (-2337 'X) (-697))) (-5 *1 (-77 *3))
+ (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-339 (-2435) (-2435 'X) (-695))) (-5 *1 (-78 *3))
- (-14 *3 (-1170))))
+ (-12 (-5 *2 (-339 (-2337) (-2337 'X) (-697))) (-5 *1 (-78 *3))
+ (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435) (-2435 'XC) (-695))))
- (-5 *1 (-79 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337) (-2337 'XC) (-697))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435) (-2435 'X) (-695))))
- (-5 *1 (-80 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337) (-2337 'X) (-697))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435 'X '-2425) (-2435) (-695))))
- (-5 *1 (-82 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337 'X '-2329) (-2337) (-697))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-685 (-339 (-2435 'X '-2425) (-2435) (-695))))
- (-5 *1 (-83 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-687 (-339 (-2337 'X '-2329) (-2337) (-697))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-685 (-339 (-2435 'X) (-2435) (-695)))) (-5 *1 (-84 *3))
- (-14 *3 (-1170))))
+ (-12 (-5 *2 (-687 (-339 (-2337 'X) (-2337) (-697)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435 'X) (-2435) (-695))))
- (-5 *1 (-85 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337 'X) (-2337) (-697))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-2435 'X) (-2435 '-2425) (-695))))
- (-5 *1 (-86 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-1262 (-339 (-2337 'X) (-2337 '-2329) (-697))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-685 (-339 (-2435 'XL 'XR 'ELAM) (-2435) (-695))))
- (-5 *1 (-87 *3)) (-14 *3 (-1170))))
+ (-12 (-5 *2 (-687 (-339 (-2337 'XL 'XR 'ELAM) (-2337) (-697))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-339 (-2435 'X) (-2435 '-2425) (-695))) (-5 *1 (-89 *3))
- (-14 *3 (-1170))))
+ (-12 (-5 *2 (-339 (-2337 'X) (-2337 '-2329) (-697))) (-5 *1 (-89 *3))
+ (-14 *3 (-1173))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-564)) (-14 *4 (-767)) (-4 *5 (-172))))
+ (-12 (-5 *2 (-642 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-564)) (-14 *4 (-769)) (-4 *5 (-172))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-564)) (-14 *4 (-767))))
+ (-12 (-5 *2 (-642 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-564)) (-14 *4 (-769))))
((*1 *1 *2)
- (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172))
+ (-12 (-5 *2 (-1139 *4 *5)) (-14 *4 (-769)) (-4 *5 (-172))
(-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))))
((*1 *1 *2)
- (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172))
+ (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-769)) (-4 *5 (-172))
(-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))))
((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172))
- (-5 *2 (-1259 (-685 (-407 (-948 *4))))) (-5 *1 (-189 *4))))
+ (-12 (-5 *3 (-1262 (-687 *4))) (-4 *4 (-172))
+ (-5 *2 (-1262 (-687 (-407 (-950 *4))))) (-5 *1 (-189 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1086 (-316 *4)))
- (-4 *4 (-13 (-846) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379)))
+ (-12 (-5 *3 (-1089 (-316 *4)))
+ (-4 *4 (-13 (-848) (-556) (-612 (-379)))) (-5 *2 (-1089 (-379)))
(-5 *1 (-258 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275))))
+ ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-848))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-275))))
((*1 *2 *1)
- (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1238 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7))
(-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3)))
- (-14 *5 (-1170)) (-14 *6 *4)
- (-4 *3 (-13 (-1034 (-564)) (-637 (-564)) (-452)))
+ (-12 (-5 *2 (-1247 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3)))
+ (-14 *5 (-1173)) (-14 *6 *4)
+ (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452)))
(-5 *1 (-313 *3 *4 *5 *6))))
((*1 *2 *1)
(-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5))
- (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ (-14 *3 (-642 (-1173))) (-14 *4 (-642 (-1173))) (-4 *5 (-387))))
((*1 *2 *3)
(-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2))
(-4 *3 (-329 *4))))
@@ -11824,4944 +12114,4487 @@
(-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3))
(-4 *3 (-329 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *2 (-1283 *3 *4))))
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172))
+ (-5 *2 (-1286 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *2 (-1274 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172))))
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172))
+ (-5 *2 (-1277 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-848)) (-4 *3 (-172))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))
(-4 *1 (-383))))
((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-687 (-697))) (-4 *1 (-383))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))
(-4 *1 (-384))))
((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384))))
- ((*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-384))))
+ ((*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1097))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))
(-4 *1 (-396))))
((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-396))))
((*1 *1 *2)
(-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
(-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
(-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
(-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
(-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
(-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-12 (-5 *2 (-294 (-316 (-692)))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
(-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
- (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-12 (-5 *2 (-294 (-316 (-699)))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
- (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-12 (-5 *2 (-316 (-692))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
(-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-316 (-699))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))
- (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170))
- (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))
+ (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-12 (-5 *2 (-642 (-330))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1173)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
- (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170))
- (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1836 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1173))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1177))))
((*1 *1 *2)
- (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21)))
+ (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-848) (-21)))
(-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))))
((*1 *1 *2)
(-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564)))))
- (-4 *3 (-13 (-846) (-21)))))
+ (-4 *3 (-13 (-848) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-407 (-948 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-1094))
+ (-12 (-5 *2 (-407 (-950 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-1097))
(-4 *1 (-430 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-948 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-1094))
+ (-12 (-5 *2 (-950 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-1097))
(-4 *1 (-430 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-1094))
+ (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-1097))
(-4 *1 (-430 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1045)) (-4 *3 (-1094))
+ (-12 (-5 *2 (-1122 *3 (-610 *1))) (-4 *3 (-1047)) (-4 *3 (-1097))
(-4 *1 (-430 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-434))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-434))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-434))))
((*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))
(-4 *1 (-440))))
((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-440))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1262 (-697))) (-4 *1 (-440))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -3228 (-641 (-330)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1177)) (|:| -3146 (-642 (-330)))))
(-4 *1 (-441))))
((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-330))) (-4 *1 (-441))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-407 (-948 *3)))) (-4 *3 (-172))
- (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-14 *4 (-917)) (-14 *5 (-641 (-1170)))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-468))))
+ (-12 (-5 *2 (-1262 (-407 (-950 *3)))) (-4 *3 (-172))
+ (-14 *6 (-1262 (-687 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-14 *4 (-919)) (-14 *5 (-642 (-1173)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-468))))
((*1 *1 *2)
- (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1170))
+ (-12 (-5 *2 (-1247 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1173))
(-14 *5 *3) (-5 *1 (-474 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502))))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-474 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-502))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604))))
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-363))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-504 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-524))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-604))))
((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-740 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1045))))
+ (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-742 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1047))))
((*1 *2 *1)
- (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917))))
+ (-12 (-5 *2 (-1282 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848))
+ (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919))))
((*1 *2 *1)
- (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917))))
+ (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848))
+ (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919))))
((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-740 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-668 *3)) (-4 *3 (-846))))
+ (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-742 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-675 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-670 *3)) (-4 *3 (-848))))
((*1 *2 *1)
- (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-671 *3))
- (-4 *3 (-1094))))
+ (-12 (-5 *2 (-956 (-956 (-956 *3)))) (-5 *1 (-673 *3))
+ (-4 *3 (-1097))))
((*1 *1 *2)
- (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1094))
- (-5 *1 (-671 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-673 *3)) (-4 *3 (-846))))
- ((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-956 (-956 (-956 *3)))) (-4 *3 (-1097))
+ (-5 *1 (-673 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-675 *3)) (-4 *3 (-848))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-679))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1097))))
((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3))
+ (-12 (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *2)) (-4 *4 (-373 *3))
(-4 *2 (-373 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-695))) (-5 *1 (-690))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-690))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690))))
- ((*1 *1 *2) (-12 (-5 *2 (-697)) (-5 *1 (-695))))
- ((*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697))))
- ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1152)) (-5 *1 (-706))))
+ ((*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-692))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-699))) (-5 *1 (-692))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-692))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-692))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-692))))
+ ((*1 *1 *2) (-12 (-5 *2 (-699)) (-5 *1 (-697))))
+ ((*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-697))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-699))) (-5 *1 (-699))))
+ ((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708))))
((*1 *2 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-172)) (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-172)) (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 (-2 (|:| -4376 *3) (|:| -3290 *4))))
- (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-759))))
+ (-12 (-5 *2 (-642 (-2 (|:| -4378 *3) (|:| -3214 *4))))
+ (-4 *3 (-1047)) (-4 *4 (-724)) (-5 *1 (-733 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-761))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(|:| |mdnia|
(-2 (|:| |fn| (-316 (-225)))
- (|:| -2141 (-641 (-1088 (-839 (-225)))))
+ (|:| -3894 (-642 (-1091 (-841 (-225)))))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))))
- (-5 *1 (-765))))
+ (-5 *1 (-767))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |fn| (-316 (-225)))
- (|:| -2141 (-641 (-1088 (-839 (-225))))) (|:| |abserr| (-225))
+ (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
- (-5 *1 (-765))))
+ (-5 *1 (-767))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
- (-5 *1 (-765))))
- ((*1 *2 *3) (-12 (-5 *2 (-770)) (-5 *1 (-769 *3)) (-4 *3 (-1209))))
+ (-5 *1 (-767))))
+ ((*1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-771 *3)) (-4 *3 (-1212))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |fn| (-1262 (-316 (-225)))) (|:| |yinit| (-642 (-225)))
+ (|:| |intvals| (-642 (-225))) (|:| |g| (-316 (-225)))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *1 (-804))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-820))))
+ (-5 *1 (-806))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-822))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225)))
- (|:| |lb| (-641 (-839 (-225))))
- (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-839 (-225))))))
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225)))
+ (|:| |lb| (-642 (-841 (-225))))
+ (|:| |cf| (-642 (-316 (-225))))
+ (|:| |ub| (-642 (-841 (-225))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-641 (-316 (-225))))
- (|:| -3431 (-641 (-225)))))))
- (-5 *1 (-837))))
+ (-2 (|:| |lfn| (-642 (-316 (-225))))
+ (|:| -3366 (-642 (-225)))))))
+ (-5 *1 (-839))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3431 (-641 (-225)))))
- (-5 *1 (-837))))
+ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))
+ (-5 *1 (-839))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-316 (-225))) (|:| -3431 (-641 (-225)))
- (|:| |lb| (-641 (-839 (-225)))) (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-839 (-225))))))
- (-5 *1 (-837))))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-854))))
- ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-871))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 (-48)))) (-5 *2 (-316 (-564)))
- (-5 *1 (-871))))
- ((*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225)))
+ (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225))))
+ (|:| |ub| (-642 (-841 (-225))))))
+ (-5 *1 (-839))))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-856))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-950 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-873))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-950 (-48)))) (-5 *2 (-316 (-564)))
+ (-5 *1 (-873))))
+ ((*1 *1 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848))))
+ ((*1 *2 *1) (-12 (-5 *2 (-817 *3)) (-5 *1 (-891 *3)) (-4 *3 (-848))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-641 (-316 (-225))))
+ (-2 (|:| |pde| (-642 (-316 (-225))))
(|:| |constraints|
- (-641
+ (-642
(-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-767)) (|:| |boundaryType| (-564))
- (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
- (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
+ (|:| |grid| (-769)) (|:| |boundaryType| (-564))
+ (|:| |dStart| (-687 (-225))) (|:| |dFinish| (-687 (-225))))))
+ (|:| |f| (-642 (-642 (-316 (-225))))) (|:| |st| (-1155))
(|:| |tol| (-225))))
- (-5 *1 (-894))))
+ (-5 *1 (-896))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 (-901 *3))) (-4 *3 (-1094)) (-5 *1 (-900 *3))))
+ (-12 (-5 *2 (-642 (-903 *3))) (-4 *3 (-1097)) (-5 *1 (-902 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-641 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1094))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-901 *3))))
+ (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-903 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3))))
+ (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307))))
+ (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-912 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307))))
((*1 *2 *3)
- (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-915 *4))
+ (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-917 *4))
(-4 *4 (-556))))
- ((*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1029 *3)) (-4 *3 (-1209))))
- ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1029 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1267)) (-5 *1 (-1031 *3)) (-4 *3 (-1212))))
+ ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1031 *2)) (-4 *2 (-1212))))
((*1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5))
- (-14 *6 (-641 *2))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-1032 *3 *4 *5 *2 *6)) (-4 *2 (-947 *3 *4 *5))
+ (-14 *6 (-642 *2))))
((*1 *2 *3)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-1039 *3)) (-4 *3 (-556))))
+ (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-1041 *3)) (-4 *3 (-556))))
((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1120 *3 *4 *2))
- (-4 *2 (-945 *3 (-531 *4) *4))))
+ (-12 (-4 *3 (-1047)) (-4 *4 (-848)) (-5 *1 (-1123 *3 *4 *2))
+ (-4 *2 (-947 *3 (-531 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1120 *3 *2 *4))
- (-4 *4 (-945 *3 (-531 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138))))
+ (-12 (-4 *3 (-1047)) (-4 *2 (-848)) (-5 *1 (-1123 *3 *2 *4))
+ (-4 *4 (-947 *3 (-531 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-860))))
+ ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1141))))
((*1 *2 *3)
- (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-1047))))
((*1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1164 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1171 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1170))
- (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1181 *3)) (-4 *3 (-1094))))
- ((*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-1235 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1173))
+ (-14 *5 *3) (-5 *1 (-1171 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185 (-1173) (-437))) (-5 *1 (-1177))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-1184 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *1 (-1191 *3)) (-4 *3 (-1097))))
((*1 *1 *2)
- (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-5 *1 (-1203 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-950 *3)) (-4 *3 (-1047)) (-5 *1 (-1206 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1206 *3)) (-4 *3 (-1047))))
((*1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1226 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3))))
+ (-12 (-5 *2 (-1091 *3)) (-4 *3 (-1212)) (-5 *1 (-1229 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5))
- (-4 *3 (-1045)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1258 *4)) (-14 *4 (-1173)) (-5 *1 (-1254 *3 *4 *5))
+ (-4 *3 (-1047)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1170))
- (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1260))))
- ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263))))
+ (-12 (-5 *2 (-1235 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1173))
+ (-14 *5 *3) (-5 *1 (-1254 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1258 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-1263))))
+ ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1263)) (-5 *1 (-1266))))
((*1 *1 *2)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
+ (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047))))
((*1 *2 *1)
- (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846))
+ (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848))
(-4 *4 (-172))))
((*1 *2 *1)
- (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-846))
+ (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848))
(-4 *4 (-172))))
((*1 *1 *2)
- (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *1 (-1279 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))))
-(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-905)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))))
+ (-12 (-5 *2 (-662 *3 *4)) (-4 *3 (-848)) (-4 *4 (-172))
+ (-5 *1 (-1282 *3 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267))
+ (-5 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-1267))
+ (-5 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *7 (-1068 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-687 (-407 (-950 (-564)))))
+ (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029))
+ (-5 *3 (-316 (-564))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-919)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-263)))))
(((*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-536))) ((*1 *1) (-4 *1 (-718)))
- ((*1 *1) (-4 *1 (-722)))
- ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094))))
- ((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556))
- (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-767)))
- (-5 *1 (-900 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-862 *4 *5 *6 *7))
- (-4 *4 (-1045)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789))
- (-14 *8 (-641 *5)) (-5 *2 (-1264))
- (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-945 *4 *6 *5))
- (-14 *9 (-641 *3)) (-14 *10 *3))))
+ ((*1 *1) (-5 *1 (-536))) ((*1 *1) (-4 *1 (-720)))
+ ((*1 *1) (-4 *1 (-724)))
+ ((*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097))))
+ ((*1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-848)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-967 *4 *3))
+ (-4 *3 (-1238 *4)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1036 (-564)) (-637 (-564)) (-452)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1247 *4 *5 *6))
+ (|:| |%expon| (-319 *4 *5 *6))
+ (|:| |%expTerms|
+ (-642 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4))))))
+ (|:| |%type| (-1155))))
+ (-5 *1 (-1248 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1197) (-430 *3)))
+ (-14 *5 (-1173)) (-14 *6 *4))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379))))
((*1 *1 *1 *1) (-4 *1 (-545)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-767)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-818)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
- (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363))))
+ ((*1 *1 *2) (-12 (-5 *1 (-716 *2)) (-4 *2 (-363))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-769)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1094))
- (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-790))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1097))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1047))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4))
+ (-4 *4 (-1238 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |k| (-889 *3)) (|:| |c| *4))))
- (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-14 *5 (-917))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-724))))
((*1 *2 *1)
- (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846)))))
+ (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-363)) (-4 *3 (-1047))
+ (-5 *1 (-1157 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-769)) (-4 *6 (-1097)) (-4 *7 (-898 *6))
+ (-5 *2 (-687 *7)) (-5 *1 (-690 *6 *7 *3 *4)) (-4 *3 (-373 *7))
+ (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4410)))))))
(((*1 *1) (-4 *1 (-23)))
((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-536)))
- ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-556))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-556)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1045)) (-4 *2 (-683 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)))))
+ ((*1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1055))))
+ ((*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097))))
+ ((*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4)))
- (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
- (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1094)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564)))
- (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-753)))))
+ (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1036 (-564))))
+ (-4 *5 (-1238 *4))
+ (-5 *2 (-2 (|:| -2116 (-407 *5)) (|:| |coeff| (-407 *5))))
+ (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-112)) (-5 *1 (-819)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1155)) (-5 *5 (-687 (-225))) (-5 *6 (-225))
+ (-5 *7 (-687 (-564))) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-13 (-363) (-147)))
+ (-5 *1 (-399 *3 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3396)) (-5 *2 (-112)) (-5 *1 (-615))))
+ (-12 (-5 *3 (|[\|\|]| -3331)) (-5 *2 (-112)) (-5 *1 (-615))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1443)) (-5 *2 (-112)) (-5 *1 (-615))))
+ (-12 (-5 *3 (|[\|\|]| -1462)) (-5 *2 (-112)) (-5 *1 (-615))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2136)) (-5 *2 (-112)) (-5 *1 (-615))))
+ (-12 (-5 *3 (|[\|\|]| -2092)) (-5 *2 (-112)) (-5 *1 (-615))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3413)) (-5 *2 (-112)) (-5 *1 (-687 *4))
- (-4 *4 (-611 (-858)))))
+ (-12 (-5 *3 (|[\|\|]| -3348)) (-5 *2 (-112)) (-5 *1 (-689 *4))
+ (-4 *4 (-611 (-860)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-858))) (-5 *2 (-112))
- (-5 *1 (-687 *4))))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-860))) (-5 *2 (-112))
+ (-5 *1 (-689 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-968))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1034))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1270))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1273))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-679))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1269))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-1272))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1134)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)) (-5 *1 (-1175))))
+ (-12 (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)) (-5 *1 (-1178))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1175))))
+ (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1178))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175))))
+ (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1178))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1031))
- (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+ (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-941 (-225))))) (-5 *1 (-468)))))
+(((*1 *1) (-5 *1 (-1263))))
(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4))))
- (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))))
+ (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *1 (-686 *3 *4 *5 *2))
+ (-4 *2 (-685 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4))
- (-4 *4 (-1045)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6))
- (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))))
+ (-12 (-5 *3 (-769)) (-5 *2 (-687 (-950 *4))) (-5 *1 (-1026 *4))
+ (-4 *4 (-1047)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-38 (-407 (-564))))
+ (-4 *2 (-172)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-192)))))
+(((*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-802 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1197) (-957))))))
(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1114))))
+ ((*1 *1 *1 *1) (-5 *1 (-1117))))
(((*1 *2 *1)
- (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363)))
- (-4 *3 (-1235 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4408)) (-4 *4 (-363)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3))
- (-4 *3 (-683 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4408)) (-4 *4 (-556)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *8 (-373 *7))
- (-4 *9 (-373 *7)) (-5 *2 (-641 *6))
- (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6))
- (-4 *10 (-683 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3))
- (-4 *3 (-683 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
- (-5 *2 (-641 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-917))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-917))
- (-14 *4 (-917)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-770)) (-5 *1 (-52)))))
+ (-12 (-5 *2 (-642 (-2 (|:| |k| (-670 *3)) (|:| |c| *4))))
+ (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-848))
+ (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-14 *5 (-919)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-1198 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
- ((*1 *1 *1) (|partial| -4 *1 (-718))))
-(((*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379)))
- ((*1 *1) (-5 *1 (-379))))
-(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-192)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1101)) (-5 *3 (-772)) (-5 *1 (-52)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5))
- (-4 *5 (-1094)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1) (-4 *1 (-963))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1097)) (-4 *5 (-1097))
+ (-4 *6 (-1097)) (-5 *2 (-1 *6 *5)) (-5 *1 (-682 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-604)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-363) (-147)))
+ (-5 *2 (-642 (-2 (|:| -2700 (-769)) (|:| -3594 *4) (|:| |num| *4))))
+ (-5 *1 (-399 *3 *4)) (-4 *4 (-1238 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1 *1) (-4 *1 (-965))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-753)))))
(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -2423 ($ *7)))))
- (-4 *7 (-844))
- (-4 *8
- (-13 (-1237 *3 *7) (-363) (-1194)
- (-10 -8 (-15 -3254 ($ $)) (-15 -2070 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))))
- (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-979 *8))
- (-14 *10 (-1170)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-948 (-564)))) (-5 *4 (-641 (-1170)))
- (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1019)) (-5 *5 (-379))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1020 (-407 *4)))))
- (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-641 (-641 (-1020 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-948 *4)))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-641 (-641 (-1020 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
-(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-861))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564)))
- (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1170))
- (-4 *5 (-13 (-556) (-1034 (-564)) (-147)))
- (-5 *2
- (-2 (|:| -2177 (-407 (-948 *5))) (|:| |coeff| (-407 (-948 *5)))))
- (-5 *1 (-570 *5)) (-5 *3 (-407 (-948 *5))))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
- (-5 *2 (-641 (-1259 *3))))))
+ ((*1 *1 *1) (-4 *1 (-1136))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-943 *4 *3))
+ (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-642 (-687 *6))) (-5 *4 (-112)) (-5 *5 (-564))
+ (-5 *2 (-687 *6)) (-5 *1 (-1027 *6)) (-4 *6 (-363)) (-4 *6 (-1047))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 (-687 *4))) (-5 *2 (-687 *4)) (-5 *1 (-1027 *4))
+ (-4 *4 (-363)) (-4 *4 (-1047))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-642 (-687 *5))) (-5 *4 (-564)) (-5 *2 (-687 *5))
+ (-5 *1 (-1027 *5)) (-4 *5 (-363)) (-4 *5 (-1047)))))
+(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-642 (-863))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
+ (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564))))
+ (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-1201 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *1) (-5 *1 (-1264))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-225))
+ (-5 *2
+ (-2 (|:| |brans| (-642 (-642 (-941 *4))))
+ (|:| |xValues| (-1091 *4)) (|:| |yValues| (-1091 *4))))
+ (-5 *1 (-153)) (-5 *3 (-642 (-642 (-941 *4)))))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1 *1) (-4 *1 (-965))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169 *4)) (-4 *4 (-349))
+ (-5 *2 (-1262 (-642 (-2 (|:| -2085 *4) (|:| -2047 (-1117))))))
+ (-5 *1 (-346 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-751)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-749)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564)))
- (-5 *1 (-190)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2))
- (-4 *2 (-1235 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1) (-4 *1 (-963))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-4 *7 (-1235 (-407 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -2583 *3)))
- (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))
+ (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1238 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |answer| (-407 *6)) (|:| -2583 (-407 *6))
- (|:| |specpart| (-407 *6)) (|:| |polypart| *6)))
- (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6)))))
+ (-12 (-5 *4 (-642 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-13 (-452) (-147)))
+ (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1) (-4 *1 (-965))) ((*1 *1 *1) (-5 *1 (-1117))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-235 *3))
+ (-4 *3 (-1097))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4410)) (-4 *1 (-235 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-1097))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1212))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1097))
+ (-5 *1 (-735 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-5 *1 (-735 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1137 *3 *4)) (-4 *3 (-13 (-1097) (-34)))
+ (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1047)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
+ (-4 *3 (-1238 *4))
+ (-4 *5 (-13 (-404) (-1036 *4) (-363) (-1197) (-284))))))
+(((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265))))
+ ((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-418 *4)) (-4 *4 (-556)))))
+ (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1205 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-4 *3 (-1062 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1) (-4 *1 (-963))) ((*1 *1 *1) (-5 *1 (-1114))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2177 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-363)) (-4 *7 (-1235 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
- (-2 (|:| -2177 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
- (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-998))))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-846)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5)
- (|:| |f4| (-641 *5))))
- (-5 *1 (-1180 *6)) (-5 *4 (-641 *5)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789))
- (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-945 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
+ (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1091 (-225)))
+ (-5 *5 (-112)) (-5 *2 (-1264)) (-5 *1 (-257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1212)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-363)) (-4 *3 (-1238 *4)) (-4 *5 (-1238 (-407 *3)))
+ (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1238 *2))
+ (-4 *5 (-1238 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6))
+ (-4 *6 (-342 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-363)) (-4 *3 (-1238 *2)) (-4 *4 (-1238 (-407 *3)))
+ (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4)))
+ (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363))
+ (-4 *1 (-335 *3 *4 *5 *6)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-844)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1572 (-418 *3))))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-1094))
- (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5)))))
-(((*1 *1) (-5 *1 (-1076))))
-(((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48))))
+ (-12 (-5 *2 (-1173)) (-5 *3 (-434)) (-4 *5 (-1097))
+ (-5 *1 (-1103 *5 *4)) (-4 *4 (-430 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-988 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307))
- (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3)))))
+ (-12 (-4 *3 (-990 *2)) (-4 *4 (-1238 *3)) (-4 *2 (-307))
+ (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1036 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1094)) (-5 *2 (-1119 *3 (-610 *1)))
+ (-12 (-4 *3 (-556)) (-4 *3 (-1097)) (-5 *2 (-1122 *3 (-610 *1)))
(-4 *1 (-430 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495))))
((*1 *2 *1)
- (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4))
+ (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-724) *4))
(-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4))))
((*1 *2 *1)
- (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4))
- (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-713 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1045)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-641 (-564)))
- (|:| |cols| (-641 (-564)))))
- (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-948 *9))))
- (-5 *6 (-641 (-641 *12))) (-5 *7 (-767)) (-5 *8 (-564))
- (-4 *9 (-13 (-307) (-147))) (-4 *12 (-945 *9 *11 *10))
- (-4 *10 (-13 (-846) (-612 (-1170)))) (-4 *11 (-789))
- (-5 *2
- (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12))
- (|:| |wcond| (-641 (-948 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-948 *9))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *9)))))))))
- (-5 *1 (-920 *9 *10 *11 *12)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5))
- (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-1272 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1272 *5 *6 *7 *8)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2047 (-641 *1))))
- (-4 *1 (-367 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-453 *3 *4 *5 *6))
- (|:| -2047 (-641 (-453 *3 *4 *5 *6)))))
- (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+ (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-724) *4))
+ (-5 *1 (-660 *3 *4 *2)) (-4 *3 (-715 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363))
- (-5 *2 (-112)) (-5 *1 (-663 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408))))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-112))
- (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1216)) (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4)))
+ (-5 *2 (-1262 *1)) (-4 *1 (-342 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-4 *6 (-1062 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *2 (-1106 *3 *4 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2022 *4)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1262 *4)) (-5 *3 (-687 *4)) (-4 *4 (-363))
+ (-5 *1 (-665 *4))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307))
- (-5 *1 (-179 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 *8))
- (-5 *4
- (-641
- (-2 (|:| -2047 (-685 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-685 *7)))))
- (-5 *5 (-767)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349))
+ (|partial| -12 (-4 *4 (-363))
+ (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4411))))
+ (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4411))))
+ (-5 *1 (-666 *4 *5 *2 *3)) (-4 *3 (-685 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-642 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363))
+ (-5 *1 (-812 *2 *3)) (-4 *3 (-654 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *8 (-1062 *5 *6 *7))
(-5 *2
- (-2 (|:| -2047 (-685 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-685 *7))))
- (-5 *1 (-498 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1045))
- (-4 *7 (-1045)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7))
- (-4 *6 (-1235 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045))
- (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7))
- (-4 *6 (-1235 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48))))
+ (-2 (|:| |val| (-642 *8))
+ (|:| |towers| (-642 (-1025 *5 *6 *7 *8)))))
+ (-5 *1 (-1025 *5 *6 *7 *8)) (-5 *3 (-642 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *8 (-1062 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-642 *8))
+ (|:| |towers| (-642 (-1143 *5 *6 *7 *8)))))
+ (-5 *1 (-1143 *5 *6 *7 *8)) (-5 *3 (-642 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4))
- (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6))
- (-4 *6 (-13 (-409 *4 *5) (-1034 *4)))))
+ (-12 (-4 *3 (-307)) (-4 *4 (-990 *3)) (-4 *5 (-1238 *4))
+ (-5 *2 (-1262 *6)) (-5 *1 (-413 *3 *4 *5 *6))
+ (-4 *6 (-13 (-409 *4 *5) (-1036 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *3 (-1094)) (-5 *2 (-1119 *3 (-610 *1)))
+ (-12 (-4 *3 (-1047)) (-4 *3 (-1097)) (-5 *2 (-1122 *3 (-610 *1)))
(-4 *1 (-430 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122 (-564) (-610 (-495)))) (-5 *1 (-495))))
((*1 *2 *1)
(-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-722) *3))))
+ (-4 *4 (|SubsetCategory| (-724) *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-658 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-722) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))))
+ (-12 (-4 *3 (-172)) (-4 *2 (-715 *3)) (-5 *1 (-660 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-724) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-556)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5))
+ (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1047)) (-4 *1 (-685 *3 *4 *5))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-858)))) (-5 *1 (-858))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-642 (-860)))) (-5 *1 (-860))))
((*1 *2 *1)
- (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-917))
+ (-12 (-5 *2 (-1139 *3 *4)) (-5 *1 (-991 *3 *4)) (-14 *3 (-919))
(-4 *4 (-363))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1045))
- (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5))
+ (-12 (-5 *2 (-642 (-642 *5))) (-4 *5 (-1047))
+ (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5))
(-4 *7 (-238 *3 *5)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846))
- (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *4 (-642 (-1173)))
+ (-5 *2 (-687 (-316 (-225)))) (-5 *1 (-205))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1097)) (-4 *6 (-898 *5)) (-5 *2 (-687 *6))
+ (-5 *1 (-690 *5 *6 *3 *4)) (-4 *3 (-373 *6))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))))
+(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094))
- (-4 *4 (-1094))))
+ (-12 (-5 *3 (-1155)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1097))
+ (-4 *4 (-1097))))
((*1 *1 *2)
- (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1045)) (-4 *2 (-1235 *4))
- (-5 *1 (-444 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5)))
- (-5 *4 (-564)) (-4 *5 (-556)) (-5 *1 (-1124 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8)))
- (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789))
- (-5 *2
- (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8))
- (|:| |Lfact|
- (-641 (-2 (|:| -3688 (-1166 *8)) (|:| -1838 (-564)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-738 *6 *7 *8 *9)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
+ (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-5 *2 (-642 *5)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-373 *2)) (-4 *2 (-1212))
+ (-4 *2 (-848))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4411))
+ (-4 *1 (-373 *3)) (-4 *3 (-1212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-848))
+ (-4 *4 (-266 *3)) (-4 *5 (-791)))))
(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170))
- (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170))
- (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1008))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1008))))
- ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-1008)) (-5 *2 (-641 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1008))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1008))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1008)) (-5 *2 (-641 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1))
- (-4 *1 (-1062 *4 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34))))))
+ (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))))
-(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *2 (-556)) (-5 *1 (-965 *2 *4))
- (-4 *4 (-1235 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-379)) (-5 *1 (-1036)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-848 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045))
- (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-849 *5 *3))
- (-4 *3 (-848 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3))
- (-4 *3 (-13 (-404) (-1194)))))
- ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-610 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2))
- (-4 *2 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-610 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170)))
- (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-641 (-641 (-939 (-225)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-641 (-641 (-939 (-225))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452))
- (-5 *2
- (-641
- (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1159 (-1170) (-948 *4))))
- (|:| |eigmult| (-767))
- (|:| |eigvec| (-641 (-685 (-407 (-948 *4))))))))
- (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-948 *4)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1057)) (-5 *3 (-1152)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564)))))
- (-5 *2 (-407 (-564))) (-5 *1 (-1016 *4)) (-4 *4 (-1235 (-564))))))
+ (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1062 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-791))
+ (-4 *8 (-848)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2362 (-642 *9))))
+ (-5 *3 (-642 *9)) (-4 *1 (-1205 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2362 (-642 *8))))
+ (-5 *3 (-642 *8)) (-4 *1 (-1205 *5 *6 *7 *8)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-687 *2)) (-5 *4 (-769))
+ (-4 *2 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))))
+ (-4 *5 (-1238 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1094))
- (-5 *2 (-2 (|:| -4376 (-564)) (|:| |var| (-610 *1))))
- (-4 *1 (-430 *3)))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4)))
+ (-5 *2 (-2 (|:| |num| (-1262 *4)) (|:| |den| *4))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-917)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3))
- (-4 *3 (-363)))))
+ (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *3 (-642 (-263)))
+ (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-468)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-564))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
-(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1056))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1056)))))
+ (|partial| -12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1047))
+ (-4 *2 (-1222 *3)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1045)) (-4 *8 (-1045))
- (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8))
- (-4 *7 (-1235 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917))))
- ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215)))
- ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-564))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *1 *1) (-4 *1 (-1141))))
+(((*1 *1) (-5 *1 (-1082))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *4 (-1173))
+ (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-642 (-225))) (-5 *1 (-300)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1155))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1033))
+ (-5 *1 (-748)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-610 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1169 (-48))) (-5 *3 (-642 (-610 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1169 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1238 (-169 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-919)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
-(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
+ (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1238 *2)) (-4 *2 (-990 *3)) (-5 *1 (-413 *3 *2 *4 *5))
+ (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1036 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1238 *2)) (-4 *2 (-990 *3))
+ (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4))
+ (-14 *6 (-1262 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-919)) (-4 *5 (-1047))
+ (-4 *2 (-13 (-404) (-1036 *5) (-363) (-1197) (-284)))
+ (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1238 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-610 (-495)))) (-5 *1 (-495))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1169 (-495))) (-5 *3 (-642 (-610 (-495))))
+ (-5 *1 (-495))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1169 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1262 *4)) (-5 *3 (-919)) (-4 *4 (-349))
+ (-5 *1 (-528 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-722 *4 *2)) (-4 *2 (-1238 *4))
+ (-5 *1 (-773 *4 *2 *5 *3)) (-4 *3 (-1238 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1) (-4 *1 (-1057))))
+(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-912 *3)) (-4 *3 (-307)))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769))
+ (-4 *4 (-172)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-169 (-225)))) (-5 *2 (-1033))
+ (-5 *1 (-752)))))
+(((*1 *1 *1 *1) (-5 *1 (-129)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919))))
+ ((*1 *1 *1 *1) (-5 *1 (-1217))) ((*1 *1 *1 *1) (-5 *1 (-1218)))
+ ((*1 *1 *1 *1) (-5 *1 (-1219))) ((*1 *1 *1 *1) (-5 *1 (-1220))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-917))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1002)))))
+ (-12 (-4 *4 (-349))
+ (-5 *2 (-642 (-2 (|:| |deg| (-769)) (|:| -2118 *3))))
+ (-5 *1 (-216 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-657 *4 *2))
+ (-4 *2 (-654 *4)))))
(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311))))
((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1203 *6))
- (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6))
- (-5 *5 (-1150 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-641 *3)) (-5 *1 (-957 *3)) (-4 *3 (-545)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-941 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-917)) (-4 *5 (-307)) (-4 *3 (-1235 *5))
- (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5)))
- (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3)))))
+ (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-579)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1253 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-769)) (-4 *4 (-556)) (-5 *1 (-967 *4 *2))
+ (-4 *2 (-1238 *4)))))
(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-917))))
- ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215)))
- ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5))
- (-4 *4 (-1094)) (-4 *5 (-1094)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))
- (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
- (-5 *2 (-685 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-556) (-1034 (-564)))) (-5 *2 (-1264))
- (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919))))
+ ((*1 *1 *1 *1) (-5 *1 (-1217))) ((*1 *1 *1 *1) (-5 *1 (-1218)))
+ ((*1 *1 *1 *1) (-5 *1 (-1219))) ((*1 *1 *1 *1) (-5 *1 (-1220))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *5))))
+ (-5 *1 (-1126 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-13 (-307) (-147)))
+ (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1126 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-407 (-950 *5)))) (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-294 (-316 *5))))
+ (-5 *1 (-1126 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-407 (-950 *4)))) (-4 *4 (-13 (-307) (-147)))
+ (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1126 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173)))
+ (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *5)))))
+ (-5 *1 (-1126 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-407 (-950 *4)))) (-4 *4 (-13 (-307) (-147)))
+ (-5 *2 (-642 (-642 (-294 (-316 *4))))) (-5 *1 (-1126 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-294 (-407 (-950 *5))))) (-5 *4 (-642 (-1173)))
+ (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *5)))))
+ (-5 *1 (-1126 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-294 (-407 (-950 *4)))))
+ (-4 *4 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-294 (-316 *4)))))
+ (-5 *1 (-1126 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-941 (-225)) (-225) (-225)))
+ (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265))))
+ ((*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-941 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
+ (-12 (-5 *3 (-1091 (-841 (-379)))) (-5 *2 (-1091 (-841 (-225))))
+ (-5 *1 (-305)))))
+(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-787)) (-5 *5 (-564)))))
(((*1 *1 *1) (-5 *1 (-225)))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *1 *1) (-5 *1 (-379))) ((*1 *1) (-5 *1 (-379))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
-(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1) (-5 *1 (-630))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *1) (-5 *1 (-144))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-556)))))
+(((*1 *1) (-5 *1 (-821))))
(((*1 *2 *3)
- (-12 (-4 *2 (-1235 *4)) (-5 *1 (-805 *4 *2 *3 *5))
- (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *3 (-652 *2))
- (-4 *5 (-652 (-407 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-842)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-922)))))
+ (-12 (-5 *3 (-1153 (-1153 *4))) (-5 *2 (-1153 *4)) (-5 *1 (-1157 *4))
+ (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1047)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1182)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-330)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-1255 *4 *2))
+ (-4 *4 (-38 (-407 (-564)))))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-642 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *6 (-1238 *5))
+ (-5 *2 (-642 (-2 (|:| |poly| *6) (|:| -1640 *3))))
+ (-5 *1 (-807 *5 *6 *3 *7)) (-4 *3 (-654 *6))
+ (-4 *7 (-654 (-407 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-642 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-4 *6 (-1238 *5))
+ (-5 *2 (-642 (-2 (|:| |poly| *6) (|:| -1640 (-652 *6 (-407 *6))))))
+ (-5 *1 (-810 *5 *6)) (-5 *3 (-652 *6 (-407 *6))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
- (-14 *4 (-641 (-1170)))))
+ (-12 (-5 *2 (-769)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047))
+ (-14 *4 (-642 (-1173)))))
((*1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
- (-14 *4 (-641 (-1170)))))
+ (-12 (-5 *2 (-769)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1047) (-848)))
+ (-14 *4 (-642 (-1173)))))
((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
((*1 *2 *1)
(|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363))
- (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
+ (-4 *4 (-1238 *3)) (-4 *5 (-1238 (-407 *4)))
(-4 *2 (-342 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-172))))
- ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1235 *2)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1235 *4))
- (-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6)))))
-(((*1 *1) (-5 *1 (-55))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-641 (-767)))) (-5 *1 (-900 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-564))))
- (-4 *2 (-172)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2746 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349))
- (-5 *2 (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114))))))
- (-5 *1 (-346 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-827)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225))
- (-5 *2 (-1031)) (-5 *1 (-745)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7))
- (-4 *7 (-945 *6 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695))))
- ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-695)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-641
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-564)))))
- (-5 *1 (-418 *3)) (-4 *3 (-556))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-767)) (-4 *3 (-349)) (-4 *5 (-1235 *3))
- (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6))
- (-4 *6 (-1235 *5)))))
+ ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-722 *2 *3)) (-4 *3 (-1238 *2)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-302))))
+ ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-860))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-1045)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1)))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| |deg| (-767)) (|:| -1770 *5))))
- (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5))
- (-5 *1 (-216 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-2 (|:| -3688 *5) (|:| -1568 (-564)))))
- (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5))
- (-5 *1 (-692 *5)))))
-(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-948 *6)) (-5 *4 (-1170))
- (-5 *5 (-839 *7))
- (-4 *6 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-839 *6))
- (-4 *6 (-13 (-1194) (-29 *5)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-224 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368))
- (-4 *6 (-1045)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1025 *6))
- (-5 *3 (-641 (-685 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045))
- (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1025 *4))
- (-5 *3 (-641 (-685 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045))
- (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5))
- (-5 *3 (-641 (-685 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045))
- (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5))
- (-5 *3 (-641 (-685 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-556))
- (-5 *2 (-858)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-1034 (-564)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-642 *2)) (-5 *1 (-113 *2))
+ (-4 *2 (-1097))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1034 (-564))))
- (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-642 *4))) (-4 *4 (-1097))
+ (-5 *1 (-113 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1097))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-642 *4)))
+ (-5 *1 (-113 *4)) (-4 *4 (-1097))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-646 *3)) (-4 *3 (-1047))
+ (-5 *1 (-712 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-834 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-890 *4)) (-4 *4 (-1097)) (-5 *1 (-888 *4 *3))
+ (-4 *3 (-1212))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1155))
+ (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-756)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3577 *4))))
- (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *4))))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-784)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-559)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1173)) (-5 *3 (-112)) (-5 *1 (-890 *4))
+ (-4 *4 (-1097)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564))
+ (-5 *2 (-1033)) (-5 *1 (-754)))))
+(((*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919))))
+ ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697))))
+ ((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-697)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1222 *3))
+ (-5 *2 (-407 (-564))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-556) (-1034 (-564)) (-637 (-564))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3)))
- (|:| |vals| (-641 *3))))
- (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-652 *3))))
+ (-12 (-5 *3 (-294 (-407 (-950 *5)))) (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-147)))
+ (-5 *2 (-1162 (-642 (-316 *5)) (-642 (-294 (-316 *5)))))
+ (-5 *1 (-1126 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -1606 *3) (|:| -1626 (-641 *5))))
- (-5 *1 (-1021 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112))
- (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1135 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-1094)) (-5 *2 (-641 *1))
- (-4 *1 (-382 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-722))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1))
- (-4 *1 (-945 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
+ (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-147)))
+ (-5 *2 (-1162 (-642 (-316 *5)) (-642 (-294 (-316 *5)))))
+ (-5 *1 (-1126 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 (-862 *5))) (-14 *5 (-642 (-1173))) (-4 *6 (-452))
+ (-5 *2
+ (-2 (|:| |dpolys| (-642 (-247 *5 *6)))
+ (|:| |coords| (-642 (-564)))))
+ (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-642 (-247 *5 *6))) (-4 *7 (-452)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-846)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2649 (-418 *3))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1238 (-169 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-685 *4)) (-4 *5 (-652 *4)))))
+ (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-157)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-685 *4)) (-4 *4 (-1045)) (-5 *1 (-1136 *3 *4))
- (-14 *3 (-767)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-1169 *4)) (-5 *1 (-528 *4))
+ (-4 *4 (-349)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-965 *4 *3))
- (-4 *3 (-1235 *4)))))
+ (|partial| -12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-556)) (-4 *2 (-947 *3 *5 *4))
+ (-5 *1 (-730 *5 *4 *6 *2)) (-5 *3 (-407 (-950 *6))) (-4 *5 (-791))
+ (-4 *4 (-13 (-848) (-10 -8 (-15 -1314 ((-1173) $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3))
- (-4 *3 (-373 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3))
- (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-685 *4)) (-4 *4 (-988 *2)) (-4 *2 (-556))
- (-5 *1 (-689 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-988 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846))
- (-4 *5 (-789)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))))
-(((*1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-621 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -4337 *4) (|:| |sol?| (-112)))
- (-564) *4))
- (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5)))))
+ (-12 (-4 *4 (-38 (-407 (-564))))
+ (-5 *2 (-2 (|:| -3679 (-1153 *4)) (|:| -3693 (-1153 *4))))
+ (-5 *1 (-1159 *4)) (-5 *3 (-1153 *4)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1033)) (-5 *1 (-747)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1047)) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1238 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $))
+ (-15 -2255 ((-1122 *3 (-610 $)) $))
+ (-15 -2327 ($ (-1122 *3 (-610 $))))))))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *1 (-660 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4))
- (-4 *3 (-846)) (-4 *4 (-172)))))
-(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))))
-(((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-945 *7 *5 *6))
- (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-307)))))
+ (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-1202 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-767))
- (-4 *4 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))))
-(((*1 *1) (-5 *1 (-330))))
-(((*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094)))))
+ (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-769)) (-4 *5 (-172))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-769)) (-4 *5 (-172))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4)
+ (-247 *4 (-407 (-564)))))
+ (-5 *3 (-642 (-862 *4))) (-14 *4 (-642 (-1173))) (-14 *5 (-769))
+ (-5 *1 (-505 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170))
- (-4 *5 (-363)) (-5 *1 (-919 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5))
- (-5 *1 (-919 *4 *5)) (-14 *4 (-1170))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-767)) (-4 *6 (-363))
- (-5 *2 (-407 (-948 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1170)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4))
- (-4 *4 (-1235 *2)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-34)) (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-842)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302))))
- ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
- (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))
+ (-5 *2 (-817 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))))
-(((*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
+ (-12 (-4 *2 (-844)) (-5 *1 (-1285 *3 *2)) (-4 *3 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *2 (-642 (-225)))
+ (-5 *1 (-468)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-642 *4))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-119 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-506)) (-5 *2 (-689 (-109))) (-5 *1 (-175))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-506)) (-5 *2 (-689 (-109))) (-5 *1 (-1082)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1033)) (-5 *1 (-751)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-564)))))
+(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-769))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-769)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-275)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-769)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-791))
+ (-4 *9 (-848)) (-4 *3 (-1062 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1066 *7 *8 *9 *3 *4)) (-4 *4 (-1068 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
+ (-4 *3 (-1062 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1068 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-769)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-791))
+ (-4 *9 (-848)) (-4 *3 (-1062 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1142 *7 *8 *9 *3 *4)) (-4 *4 (-1106 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
+ (-12 (-5 *5 (-769)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
+ (-4 *3 (-1062 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1142 *6 *7 *8 *3 *4)) (-4 *4 (-1106 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397)))))
+ (-2 (|:| |done| (-642 *4))
+ (|:| |todo| (-642 (-2 (|:| |val| (-642 *3)) (|:| -3530 *4))))))
+ (-5 *1 (-1142 *5 *6 *7 *3 *4)) (-4 *4 (-1106 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097)))))
+(((*1 *1) (-5 *1 (-330))))
+(((*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-1198 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-642 (-1198 *2))) (-5 *1 (-1198 *2)) (-4 *2 (-1097)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 (-950 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4))
+ (-14 *4 (-642 (-1173)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-450 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6))
+ (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *1 (-450 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-642 *7)) (-5 *3 (-1155)) (-4 *7 (-947 *4 *5 *6))
+ (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *1 (-450 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-642 (-778 *3 (-862 *4)))) (-4 *3 (-452))
+ (-14 *4 (-642 (-1173))) (-5 *1 (-626 *3 *4)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4410)) (-4 *1 (-34)) (-5 *2 (-769))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-564))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-769)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-844)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 (-1173))) (-4 *6 (-363))
+ (-5 *2 (-642 (-294 (-950 *6)))) (-5 *1 (-538 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *7 (-13 (-363) (-846))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-818)) (-14 *5 (-1173))
+ (-5 *2 (-642 *4)) (-5 *1 (-1111 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1))
+ (-4 *1 (-1062 *3 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131))
+ (-4 *2 (-1097))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1097))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1097))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *2 (-1097)) (-5 *1 (-647 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-817 *2)) (-4 *2 (-848)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260))))
+ (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-1263))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1263))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1263))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))))
+ (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-1155)) (-5 *1 (-1264))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1264))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1264)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4410)) (-4 *1 (-489 *4))
+ (-4 *4 (-1212)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1265))))
+ ((*1 *2 *2) (-12 (-5 *2 (-642 (-769))) (-5 *1 (-1265)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-468)) (-5 *3 (-642 (-263))) (-5 *1 (-1263))))
+ ((*1 *1 *1) (-5 *1 (-1263))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))))
(((*1 *2)
- (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4))
- (-4 *4 (-1235 *3)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452))
- (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363))
- (-4 *5 (-13 (-363) (-844))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3))))
- (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5))
- (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))
+ (-12 (-4 *3 (-556)) (-5 *2 (-642 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-642 (-1173))) (-4 *2 (-172))
+ (-4 *3 (-238 (-2127 *4) (-769)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2047 *5) (|:| -2700 *3))
+ (-2 (|:| -2047 *5) (|:| -2700 *3))))
+ (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-848))
+ (-4 *7 (-947 *2 *3 (-862 *4))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-407 (-950 *6)) (-1162 (-1173) (-950 *6))))
+ (-5 *5 (-769)) (-4 *6 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *6)))))
+ (-5 *1 (-292 *6)) (-5 *4 (-687 (-407 (-950 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-407 (-950 *5)) (-1162 (-1173) (-950 *5))))
+ (|:| |eigmult| (-769)) (|:| |eigvec| (-642 *4))))
+ (-4 *5 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *5)))))
+ (-5 *1 (-292 *5)) (-5 *4 (-687 (-407 (-950 *5)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1155)) (-5 *2 (-564)) (-5 *1 (-1194 *4))
+ (-4 *4 (-1047)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 *3))
+ (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1062 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2))
- (-4 *2 (-652 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-767))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *2)
- (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4))
- (-4 *4 (-1235 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))))
+ (-12 (-5 *3 (-1 (-642 *7) (-642 *7))) (-5 *2 (-642 *7))
+ (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-791))
+ (-4 *6 (-848)) (-5 *1 (-975 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
(((*1 *2 *1)
- (-12
+ (-12 (-5 *2 (-769)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-687 (-316 (-225))))
(-5 *2
- (-641
- (-641
- (-3 (|:| -2562 (-1170))
- (|:| -3548 (-641 (-3 (|:| S (-1170)) (|:| P (-948 (-564))))))))))
- (-5 *1 (-1174)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5))
- (-4 *3 (-556)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-1272 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556))
- (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1272 *5 *6 *7 *8)))))
+ (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))))
+ (-5 *1 (-205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1263))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-276 *4 *3))
- (-4 *3 (-13 (-430 *4) (-998))))))
+ (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1153 (-225))) (-5 *2 (-642 (-1155))) (-5 *1 (-305)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-790)) (-4 *2 (-1047))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1047)) (-5 *1 (-50 *2 *3)) (-14 *3 (-642 (-1173)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-642 (-919))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5))
+ (-14 *4 (-919)) (-14 *5 (-991 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4))
+ (-4 *3 (-13 (-1047) (-848))) (-14 *4 (-642 (-1173)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-131))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1097)) (-4 *2 (-1047))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4))
+ (-4 *4 (-1238 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-706 *2)) (-4 *2 (-1047))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1047)) (-5 *1 (-733 *2 *3)) (-4 *3 (-724))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-642 *5)) (-5 *3 (-642 (-769))) (-4 *1 (-738 *4 *5))
+ (-4 *4 (-1047)) (-4 *5 (-848))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-769)) (-4 *1 (-738 *4 *2)) (-4 *4 (-1047))
+ (-4 *2 (-848))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-4 *1 (-850 *2)) (-4 *2 (-1047))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-642 *6)) (-5 *3 (-642 (-769))) (-4 *1 (-947 *4 *5 *6))
+ (-4 *4 (-1047)) (-4 *5 (-791)) (-4 *6 (-848))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-769)) (-4 *1 (-947 *4 *5 *2)) (-4 *4 (-1047))
+ (-4 *5 (-791)) (-4 *2 (-848))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-769)) (-4 *2 (-947 *4 (-531 *5) *5))
+ (-5 *1 (-1123 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-848))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-950 *4)) (-5 *1 (-1206 *4))
+ (-4 *4 (-1047)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1155)) (-5 *1 (-784)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1197) (-957) (-29 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-5 *2 (-1169 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789)) (-4 *7 (-945 *4 *6 *5))
+ (-12 (-4 *4 (-556))
(-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7))))
- (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-1259 *2)) (-4 *5 (-307))
- (-4 *6 (-988 *5)) (-4 *2 (-13 (-409 *6 *7) (-1034 *6)))
- (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6)))))
-(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-641
- (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8))
- (|:| |wcond| (-641 (-948 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-948 *5))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *5))))))))))
- (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-945 *5 *7 *6))
- (-4 *6 (-13 (-846) (-612 (-1170)))) (-4 *7 (-789)) (-5 *2 (-564))
- (-5 *1 (-920 *5 *6 *7 *8)))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1194) (-998)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-839 (-379)))) (-5 *2 (-1088 (-839 (-225))))
- (-5 *1 (-305)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4))))
- (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3577 *9))))
- (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8))
- (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846))
- (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -3577 *9))))
- (-5 *1 (-1102 *6 *7 *4 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-948 *6))))
- (-5 *3 (-407 (-948 *6)))
- (-4 *6 (-13 (-556) (-1034 (-564)) (-147)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-570 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-452)) (-4 *3 (-1036 (-564))) (-4 *3 (-556))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -2245 ((-1122 *3 (-610 $)) $))
+ (-15 -2255 ((-1122 *3 (-610 $)) $))
+ (-15 -2327 ($ (-1122 *3 (-610 $))))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112))
- (-5 *1 (-1150 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-556)) (-4 *2 (-1045))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1235 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-556))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *1))))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))))
-(((*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11))
- (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-767)))
- (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-846))
- (-4 *8 (-307)) (-4 *11 (-945 *8 *9 *10)) (-4 *9 (-789))
- (-5 *1 (-703 *9 *10 *8 *11)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-276 *4 *3))
+ (-4 *3 (-13 (-430 *4) (-1000))))))
+(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1097)) (-5 *2 (-769)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
+(((*1 *1) (-4 *1 (-965))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1262 (-564))) (-5 *3 (-564)) (-5 *1 (-1107))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1262 (-564))) (-5 *3 (-642 (-564))) (-5 *4 (-564))
+ (-5 *1 (-1107)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
- (-5 *2 (-1166 *3)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
- (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-948 (-564))))) (-5 *2 (-641 (-316 (-564))))
- (-5 *1 (-1027)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-610 *3))
- (-4 *3 (-13 (-430 *5) (-27) (-1194)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2 (-2 (|:| -2177 *3) (|:| |coeff| *3)))
- (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))))
-(((*1 *1) (-4 *1 (-963))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2746 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3))
- (-4 *3 (-720 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-407 (-948 *5)))) (-5 *4 (-1170))
- (-5 *2 (-948 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-948 *4)))) (-5 *2 (-948 *4))
- (-5 *1 (-292 *4)) (-4 *4 (-452))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3))))
+ (-12 (-4 *3 (-233)) (-4 *3 (-1047)) (-4 *4 (-848)) (-4 *5 (-266 *4))
+ (-4 *6 (-791)) (-5 *2 (-1 *1 (-769))) (-4 *1 (-253 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-685 (-169 (-407 (-564)))))
- (-5 *2 (-948 (-169 (-407 (-564))))) (-5 *1 (-760 *4))
- (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170))
- (-5 *2 (-948 (-169 (-407 (-564))))) (-5 *1 (-760 *5))
- (-4 *5 (-13 (-363) (-844)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-948 (-407 (-564))))
- (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170))
- (-5 *2 (-948 (-407 (-564)))) (-5 *1 (-775 *5))
- (-4 *5 (-13 (-363) (-844))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-171))))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1235 *4)))))
+ (-12 (-4 *4 (-1047)) (-4 *3 (-848)) (-4 *5 (-266 *3)) (-4 *6 (-791))
+ (-5 *2 (-1 *1 (-769))) (-4 *1 (-253 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-4 *1 (-266 *2)) (-4 *2 (-848)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-919)) (-4 *5 (-556)) (-5 *2 (-687 *5))
+ (-5 *1 (-954 *5 *3)) (-4 *3 (-654 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-373 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-647 *2 *3 *4)) (-4 *2 (-1097)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4))))
- (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-854))))
- ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-961))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-985))))
- ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1209))))
+ (-12 (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4))))
+ (-5 *1 (-1138 *3 *4)) (-4 *3 (-13 (-1097) (-34)))
+ (-4 *4 (-13 (-1097) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-856))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-963))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-987))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1212))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3))
- (-4 *3 (-13 (-1094) (-34))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-816)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4)))
- (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4))))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-556) (-147)))
- (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452))))
+ (-12 (-4 *2 (-13 (-1097) (-34))) (-5 *1 (-1137 *2 *3))
+ (-4 *3 (-13 (-1097) (-34))))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1660 (-114)) (|:| |arg| (-642 (-890 *3)))))
+ (-5 *1 (-890 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-642 (-890 *4)))
+ (-5 *1 (-890 *4)) (-4 *4 (-1097)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1153 (-564))) (-5 *1 (-1157 *4)) (-4 *4 (-1047))
+ (-5 *3 (-564)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-452))))
((*1 *1 *1 *1) (-4 *1 (-452)))
((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564)))))
+ (-12 (-5 *3 (-642 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1238 (-564)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-767)))
+ (-12 (-5 *3 (-564)) (-5 *1 (-694 *2)) (-4 *2 (-1238 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-769)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307))
- (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4))))
+ (-12 (-4 *3 (-791)) (-4 *4 (-848)) (-4 *5 (-307))
+ (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-947 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *6 *4 *5))
- (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-947 *6 *4 *5))
+ (-5 *1 (-914 *4 *5 *6 *2)) (-4 *4 (-791)) (-4 *5 (-848))
(-4 *6 (-307))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1169 *6)) (-4 *6 (-947 *5 *3 *4)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *5 (-307)) (-5 *1 (-914 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-912 *4 *5 *6 *7))
- (-4 *7 (-945 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-917)))
+ (-12 (-5 *3 (-642 (-1169 *7))) (-4 *4 (-791)) (-4 *5 (-848))
+ (-4 *6 (-307)) (-5 *2 (-1169 *7)) (-5 *1 (-914 *4 *5 *6 *7))
+ (-4 *7 (-947 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-919)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-965 *3 *2))
- (-4 *2 (-1235 *3))))
+ (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-967 *3 *2))
+ (-4 *2 (-1238 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-452)))))
-(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1264)) (-5 *1 (-379)))))
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-452)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1155)) (-5 *4 (-169 (-225))) (-5 *5 (-564))
+ (-5 *2 (-1033)) (-5 *1 (-756)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307))
- (-4 *5 (-1045)) (-5 *2 (-685 *5)) (-5 *1 (-1025 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-349)) (-4 *6 (-1235 *5))
- (-5 *2
- (-641
- (-2 (|:| -2047 (-685 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-685 *6)))))
- (-5 *1 (-498 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2047 (-685 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-685 *6))))
- (-4 *7 (-1235 *6)))))
+ (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1212)) (-4 *3 (-1212)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-1 (-1153 (-950 *4)) (-1153 (-950 *4))))
+ (-5 *1 (-1270 *4)) (-4 *4 (-363)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2022 *4)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1153 *3))) (-5 *1 (-1153 *3)) (-4 *3 (-1212)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -4263 (-642 *1))))
+ (-4 *1 (-367 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-453 *3 *4 *5 *6))
+ (|:| -4263 (-642 (-453 *3 *4 *5 *6)))))
+ (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))))
+ (-12 (-5 *2 (-1229 (-564))) (-4 *1 (-649 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-649 *3)) (-4 *3 (-1212)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094))
- (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6))))
+ (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *6)) (-4 *5 (-1097))
+ (-4 *6 (-1212)) (-5 *2 (-1 *6 *5)) (-5 *1 (-639 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094))
- (-4 *2 (-1209)) (-5 *1 (-638 *5 *2))))
+ (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-4 *5 (-1097))
+ (-4 *2 (-1212)) (-5 *1 (-639 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094))
- (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5))))
+ (-12 (-5 *3 (-642 *6)) (-5 *4 (-642 *5)) (-4 *6 (-1097))
+ (-4 *5 (-1212)) (-5 *2 (-1 *5 *6)) (-5 *1 (-639 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094))
- (-4 *2 (-1209)) (-5 *1 (-638 *5 *2))))
+ (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-4 *5 (-1097))
+ (-4 *2 (-1212)) (-5 *1 (-639 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6))
- (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-642 *5)) (-5 *4 (-642 *6))
+ (-4 *5 (-1097)) (-4 *6 (-1212)) (-5 *1 (-639 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-767)))))
-(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
- (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1094)) (-5 *2 (-112))
- (-5 *1 (-885 *4 *5)) (-4 *5 (-1094))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-888 *5)) (-4 *5 (-1094)) (-5 *2 (-112))
- (-5 *1 (-886 *5 *3)) (-4 *3 (-1209))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1094))
- (-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-886 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1059 *5 *6 *7))
- (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564))))
- (-5 *1 (-190)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3479 (-641 (-1170))) (|:| -2600 (-641 (-1170)))))
- (-5 *1 (-1211)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
- (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))))
+ (-12 (-5 *3 (-642 *5)) (-5 *4 (-642 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1097)) (-4 *2 (-1212)) (-5 *1 (-639 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-144)) (-5 *2 (-769)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4))
- (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4)))
+ (-5 *2 (-2 (|:| |num| (-1262 *4)) (|:| |den| *4))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-787)) (-5 *5 (-564)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1047)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1238 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-941 (-225)) (-941 (-225)))) (-5 *1 (-263))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363))
+ (-5 *2 (-687 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1262 *3))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225)))
- (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-564))) (-5 *4 (-901 (-564)))
- (-5 *2 (-685 (-564))) (-5 *1 (-589))))
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-687 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-1262 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1238 *4)) (-5 *2 (-687 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1238 *4)) (-5 *2 (-1262 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564))))
- (-5 *1 (-589))))
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1238 *4)) (-5 *2 (-687 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3))
+ (-5 *2 (-1262 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172))
+ (-5 *2 (-687 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-901 (-564))))
- (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-789))
- (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
+ (-12 (-5 *4 (-642 (-687 *5))) (-5 *3 (-687 *5)) (-4 *5 (-363))
+ (-5 *2 (-1262 *5)) (-5 *1 (-1083 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-1047))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1238 *3)) (-4 *3 (-1047))
+ (-4 *3 (-556))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-673 *3)) (-4 *3 (-1047))
+ (-4 *3 (-1097)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-564)) (-5 *1 (-204)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170)))))
+ (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1047)) (-4 *2 (-685 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1238 *4)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 *4)) (-5 *1 (-1138 *3 *4))
+ (-4 *3 (-13 (-1097) (-34))) (-4 *4 (-13 (-1097) (-34))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1058 (-1022 *4) (-1169 (-1022 *4)))) (-5 *3 (-860))
+ (-5 *1 (-1022 *4)) (-4 *4 (-13 (-846) (-363) (-1020))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-769)) (-5 *1 (-226))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-169 (-225))) (-5 *3 (-769)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1136))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-556)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-5 *2 (-769)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-685 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-769))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *2 (-769)) (-5 *1 (-686 *4 *5 *6 *3))
+ (-4 *3 (-685 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
+ (-5 *2 (-769)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-948 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452))
- (-5 *1 (-914 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8))))
- (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-846))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2249 *1)))
- (-4 *1 (-848 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452))))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-846))) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-1238 (-169 *3))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047))))
+ ((*1 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1047)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-452))))
((*1 *1 *1 *1) (-4 *1 (-452))))
-(((*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-368))))
+(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-769)))))
+(((*1 *1 *2) (-12 (-5 *2 (-919)) (-4 *1 (-368))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4))
+ (-12 (-5 *3 (-919)) (-5 *2 (-1262 *4)) (-5 *1 (-528 *4))
(-4 *4 (-349))))
((*1 *2 *1)
- (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1094))
+ (-12 (-4 *2 (-848)) (-5 *1 (-711 *2 *3 *4)) (-4 *3 (-1097))
(-14 *4
- (-1 (-112) (-2 (|:| -2083 *2) (|:| -1838 *3))
- (-2 (|:| -2083 *2) (|:| -1838 *3)))))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
- (-14 *6
- (-1 (-112) (-2 (|:| -2083 *5) (|:| -1838 *2))
- (-2 (|:| -2083 *5) (|:| -1838 *2))))
- (-4 *2 (-238 (-2181 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-846)) (-4 *7 (-945 *4 *2 (-860 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 *4))))
- (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-294 (-316 *5))))
- (-5 *1 (-1123 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-13 (-307) (-147)))
- (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-294 (-316 *5))))
- (-5 *1 (-1123 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-147)))
- (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-948 *5)))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5)))))
- (-5 *1 (-1123 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-147)))
- (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-294 (-407 (-948 *5))))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5)))))
- (-5 *1 (-1123 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-294 (-407 (-948 *4)))))
- (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4)))))
- (-5 *1 (-1123 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-818)))))
+ (-1 (-112) (-2 (|:| -2047 *2) (|:| -2700 *3))
+ (-2 (|:| -2047 *2) (|:| -2700 *3)))))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-687 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-749)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1047))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-757)))))
(((*1 *2 *3 *2)
- (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-1094)) (-4 *2 (-1094))
- (-5 *1 (-609 *2 *4)))))
+ (-12 (-5 *1 (-677 *3 *2)) (-4 *3 (-1097)) (-4 *2 (-1097)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1267) (-1262 *5) (-1262 *5) (-379)))
+ (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267))
+ (-5 *1 (-786)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-641
- (-2
- (|:| -1901
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -3813
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2141
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-559))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209))
- (-5 *2 (-641 *4)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
- (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225)))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
+ (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1212)) (-4 *2 (-1097))
+ (-4 *2 (-848)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1097)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1086 (-839 *3))) (-4 *3 (-13 (-1194) (-955) (-29 *5)))
- (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2
- (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1086 (-839 *3))) (-5 *5 (-1152))
- (-4 *3 (-13 (-1194) (-955) (-29 *6)))
- (-4 *6 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2
- (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-641 (-839 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1086 (-839 (-316 *5))))
- (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2
- (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-641 (-839 (-316 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1086 (-839 (-316 *6))))
- (-5 *5 (-1152))
- (-4 *6 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2
- (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-641 (-839 (-316 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1086 (-839 (-407 (-948 *5))))) (-5 *3 (-407 (-948 *5)))
- (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2
- (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-641 (-839 (-316 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1086 (-839 (-407 (-948 *6))))) (-5 *5 (-1152))
- (-5 *3 (-407 (-948 *6)))
- (-4 *6 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2
- (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-641 (-839 (-316 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-3 *3 (-641 *3))) (-5 *1 (-428 *5 *3))
- (-4 *3 (-13 (-1194) (-955) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379))))
- (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379))))
- (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379))))
- (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-839 (-379))))
- (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379)))))
- (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379)))))
- (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379)))))
- (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-839 (-379)))))
- (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-839 (-379))))
- (-5 *5 (-1152)) (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-839 (-379))))
- (-5 *5 (-1170)) (-5 *2 (-1031)) (-5 *1 (-565))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-564)))) (-4 *5 (-1235 *4))
- (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170)) (-4 *5 (-147))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-3 (-316 *5) (-641 (-316 *5)))) (-5 *1 (-588 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846))
- (-4 *3 (-38 (-407 (-564))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-948 *3)) (-4 *3 (-38 (-407 (-564))))
- (-4 *3 (-1045))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-4 *2 (-846))
- (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045))
- (-5 *1 (-1154 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564))))
- (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-2807
- (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1045))
- (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194))
- (-4 *3 (-38 (-407 (-564))))))
- (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1045))
- (-12 (|has| *3 (-15 -3836 ((-641 *2) *3)))
- (|has| *3 (-15 -2070 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564))))))
- ((*1 *1 *1 *2)
- (-2807
- (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1045))
- (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194))
- (-4 *3 (-38 (-407 (-564))))))
- (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1045))
- (-12 (|has| *3 (-15 -3836 ((-641 *2) *3)))
- (|has| *3 (-15 -2070 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-2807
- (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1045))
- (-12 (-4 *3 (-29 (-564))) (-4 *3 (-955)) (-4 *3 (-1194))
- (-4 *3 (-38 (-407 (-564))))))
- (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1045))
- (-12 (|has| *3 (-15 -3836 ((-641 *2) *3)))
- (|has| *3 (-15 -2070 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-564))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1045)) (-14 *5 *3))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767))
- (-5 *1 (-1158 *4 *5)) (-14 *4 (-917))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-767))) (-5 *3 (-767)) (-5 *1 (-1158 *4 *5))
- (-14 *4 (-917)) (-4 *5 (-1045))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045))
- (-5 *1 (-1158 *4 *5)) (-14 *4 (-917)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
+ (-12 (-5 *4 (-642 *3)) (-4 *3 (-947 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-449 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564))
+ (-5 *2 (-1033)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
(((*1 *2 *2 *3)
- (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-685 (-407 (-948 (-564)))))
- (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1027)))))
+ (-12 (-5 *1 (-677 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097)))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
+ (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4))))
((*1 *2 *3 *3 *3 *3 *3)
(-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
+ (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-1094))
- (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5)))
- (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307))
- (-5 *2 (-767)) (-5 *1 (-455 *5 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-704 *3)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-5 *2 (-1152)))))
-(((*1 *1) (-5 *1 (-1260))))
-(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-767))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5))
- (-14 *4 (-917)) (-4 *5 (-1045)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1166 *7)))
- (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5)))
- (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2))
- (-4 *2 (-1250 *3)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1259 (-641 (-2 (|:| -2128 *4) (|:| -2083 (-1114))))))
- (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-192)))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307))
- (-4 *3 (-556)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-4 *4 (-363)) (-5 *2 (-1259 *1))
- (-4 *1 (-329 *4))))
- ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1))
- (-4 *1 (-409 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4))
- (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6))
- (-4 *6 (-13 (-409 *4 *5) (-1034 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1235 *4))
- (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))
- (-4 *6 (-409 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4))
- (-4 *4 (-349)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-59 *3)) (-4 *3 (-1209))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
- ((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-767)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *3 (-846)) (-5 *2 (-767)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-888 *6)))
- (-5 *5 (-1 (-885 *6 *8) *8 (-888 *6) (-885 *6 *8))) (-4 *6 (-1094))
- (-4 *8 (-13 (-1045) (-612 (-888 *6)) (-1034 *7)))
- (-5 *2 (-885 *6 *8)) (-4 *7 (-1045)) (-5 *1 (-937 *6 *7 *8)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1045)) (-4 *1 (-1235 *3)))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1189 *4 *5))
+ (-4 *4 (-1097)) (-4 *5 (-1097)))))
+(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-379)) (-5 *1 (-1038)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
+ (-12 (-5 *3 (-919)) (-5 *2 (-1169 *4)) (-5 *1 (-357 *4))
+ (-4 *4 (-349)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-790)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1060)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1173))
+ (-4 *5 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-2 (|:| -2116 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3))
+ (-4 *3 (-13 (-27) (-1197) (-430 *5))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848)) (-4 *3 (-172))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-556))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-172)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))))
+ (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *2 (-1267)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-769)) (-4 *5 (-556))
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -2306 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *1) (-5 *1 (-799))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5))
- (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1235 *5))
- (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-564)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1128 *3))))
- ((*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -4337 *6) (|:| |sol?| (-112))) (-564)
- *6))
- (-4 *6 (-363)) (-4 *7 (-1235 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
- (-2 (|:| -2177 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
- (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789))
- (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9))
+ (-12 (-5 *4 (-294 (-841 *3))) (-4 *3 (-13 (-27) (-1197) (-430 *5)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564))))
(-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3))))
+ (-3 (-841 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-841 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-841 *3) "failed")))
+ "failed"))
+ (-5 *1 (-634 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3))))
+ (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1155))
+ (-4 *3 (-13 (-27) (-1197) (-430 *6)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-841 *3)) (-5 *1 (-634 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
+ (-12 (-5 *4 (-294 (-841 (-950 *5)))) (-4 *5 (-452))
(-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789))
- (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9))
+ (-3 (-841 (-407 (-950 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-841 (-407 (-950 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-841 (-407 (-950 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-635 *5)) (-5 *3 (-407 (-950 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-294 (-407 (-950 *5)))) (-5 *3 (-407 (-950 *5)))
+ (-4 *5 (-452))
(-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3))))
+ (-3 (-841 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-841 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-841 *3) "failed")))
+ "failed"))
+ (-5 *1 (-635 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *3 (-1059 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
+ (|partial| -12 (-5 *4 (-294 (-407 (-950 *6)))) (-5 *5 (-1155))
+ (-5 *3 (-407 (-950 *6))) (-4 *6 (-452)) (-5 *2 (-841 *3))
+ (-5 *1 (-635 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-119 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-131)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))))
+ (-3 (|:| I (-316 (-564))) (|:| -2234 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1172))))
+ (-5 *1 (-1172)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
+ (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
+ (-4 *2 (-1253 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3))
+ (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1253 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147)))
+ (-5 *1 (-1149 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-818)) (-14 *5 (-1173)) (-5 *2 (-642 (-1235 *5 *4)))
+ (-5 *1 (-1111 *4 *5)) (-5 *3 (-1235 *5 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1212)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1043))
- (-5 *3 (-564)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263)))
- (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094))
- (-4 *3 (-1094)))))
-(((*1 *2)
- (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-917))
- (-14 *4 (-917))))
- ((*1 *2)
- (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-1166 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-954 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-917)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-833)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8))
- (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6))
- (|:| -1427 *6)))
- (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-641 (-939 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1128 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-939 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170)))
- (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 (-917))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5))
- (-14 *4 (-917)) (-14 *5 (-989 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4))
- (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-641 (-1170)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1045))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4))
- (-4 *4 (-1235 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-767))) (-4 *1 (-736 *4 *5))
- (-4 *4 (-1045)) (-4 *5 (-846))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045))
- (-4 *2 (-846))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-767))) (-4 *1 (-945 *4 *5 *6))
- (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *2 (-846))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *2 (-945 *4 (-531 *5) *5))
- (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-948 *4)) (-5 *1 (-1203 *4))
- (-4 *4 (-1045)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1045)) (-4 *1 (-683 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *4)) (-4 *4 (-1045)) (-4 *1 (-1117 *3 *4 *5 *6))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))))
-(((*1 *2)
- (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225))
- (-5 *3 (-564)) (-5 *2 (-1031)) (-5 *1 (-747)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -1626 (-114)) (|:| |arg| (-641 (-888 *3)))))
- (-5 *1 (-888 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-888 *4)))
- (-5 *1 (-888 *4)) (-4 *4 (-1094)))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038))))
+ ((*1 *1 *1 *1) (-4 *1 (-1136))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1)))
- (-4 *1 (-1065 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-564))
+ (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-947 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2123 *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306)))) (-5 *3 (-225))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(((*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-986 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1104 *4 *5 *6 *7 *3)) (-4 *3 (-1068 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112))
+ (-5 *1 (-843 *4 *5)) (-14 *4 (-769)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789))
- (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-641 *3))
- (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8))))
+ (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363))
+ (-4 *5 (-556)) (-5 *2 (-1262 *5)) (-5 *1 (-636 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
- (-5 *2
- (-641 (-2 (|:| -3560 (-1166 *5)) (|:| -4225 (-641 (-948 *5))))))
- (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-948 *5)))
- (-14 *6 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147)))
- (-5 *2
- (-641 (-2 (|:| -3560 (-1166 *4)) (|:| -4225 (-641 (-948 *4))))))
- (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-948 *4)))
- (-14 *5 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
- (-5 *2
- (-641 (-2 (|:| -3560 (-1166 *5)) (|:| -4225 (-641 (-948 *5))))))
- (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-948 *5)))
- (-14 *6 (-641 (-1170))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564))))) (-4 *6 (-1235 *5))
- (-5 *2 (-641 (-2 (|:| -2959 *5) (|:| -1606 *3))))
- (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-652 *6))
- (-4 *7 (-652 (-407 *6))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6))
- (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))))
-(((*1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-564))
- (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5))
- (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1194) (-284)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
- (-4 *3 (-1235 *4))
- (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *3 (-1262 *4)) (-4 *4 (-637 *5))
+ (-2268 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1262 (-407 *5)))
+ (-5 *1 (-636 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-836))) (-5 *1 (-140)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4))
+ (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1238 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-330)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-1262 (-687 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-687 *4)) (-4 *5 (-654 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1141)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
- ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917))))
- ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-1150 (-564))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
+ (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267))
+ (-5 *1 (-1069 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1155)) (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6)) (-5 *2 (-1267))
+ (-5 *1 (-1105 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-536)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1262 (-1262 (-564)))) (-5 *3 (-919)) (-5 *1 (-466)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1047)) (-4 *2 (-685 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1238 *4)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1238 *4)) (-5 *2 (-687 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3))
+ (-5 *2 (-687 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1235 *4)))))
+ (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-545)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2462 (-641 *7))))
- (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1045))
- (-5 *1 (-710 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-1175 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))
((*1 *2 *1)
- (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112))
- (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4))))
+ (-12 (-5 *2 (-1262 (-3 (-468) "undefined"))) (-5 *1 (-1263)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *5)) (-5 *4 (-919)) (-4 *5 (-848))
+ (-5 *2 (-642 (-670 *5))) (-5 *1 (-670 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307)) (-5 *2 (-418 *3))
+ (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-947 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307))
+ (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 *7)))
+ (-5 *1 (-740 *4 *5 *6 *7)) (-5 *3 (-1169 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *2)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170)))
- (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2))
- (-4 *3 (-556)))))
-(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-917)) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-829 (-917))) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917))))
- ((*1 *2)
- (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *3 (-128)) (-5 *2 (-767)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-418 *3)) (-4 *3 (-556))))
+ (-12 (-4 *3 (-452)) (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-418 *1)) (-4 *1 (-947 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| -3688 *4) (|:| -1568 (-564)))))
- (-4 *4 (-1235 (-564))) (-5 *2 (-767)) (-5 *1 (-442 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-954 (-1166 *4))) (-5 *1 (-357 *4))
- (-5 *3 (-1166 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3))
- (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147)))
- (-5 *1 (-1146 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -1744 *4))) (-5 *5 (-767))
- (-4 *4 (-945 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
+ (-12 (-4 *4 (-848)) (-4 *5 (-791)) (-4 *6 (-452)) (-5 *2 (-418 *3))
+ (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-947 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-452))
+ (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-418 (-1169 (-407 *7))))
+ (-5 *1 (-1168 *4 *5 *6 *7)) (-5 *3 (-1169 (-407 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1216))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1241 *4 *3))
+ (-4 *3 (-13 (-1238 *4) (-556) (-10 -8 (-15 -2080 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020)))
+ (-14 *5 (-642 (-1173)))
(-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-449 *6 *7 *8 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
- ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
- ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))))
-(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1262)))))
+ (-642 (-1143 *4 (-531 (-862 *6)) (-862 *6) (-778 *4 (-862 *6)))))
+ (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173))))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1033)) (-5 *1 (-746)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-129)))
+ ((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769))
+ (-4 *4 (-172))))
+ ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))
+ ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549)))
+ ((*1 *1) (-4 *1 (-724))) ((*1 *1) (-5 *1 (-1173)))
+ ((*1 *1) (-12 (-5 *1 (-1179 *2)) (-14 *2 (-919))))
+ ((*1 *1) (-12 (-5 *1 (-1180 *2)) (-14 *2 (-919))))
+ ((*1 *1) (-5 *1 (-1217))) ((*1 *1) (-5 *1 (-1218)))
+ ((*1 *1) (-5 *1 (-1219))) ((*1 *1) (-5 *1 (-1220))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-642 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1205 *5 *6 *7 *8)) (-4 *5 (-556))
+ (-4 *6 (-791)) (-4 *7 (-848)) (-4 *8 (-1062 *5 *6 *7)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-1094)) (-5 *2 (-641 *1))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3))
- (-4 *3 (-1094))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5))))
+ (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1141)) (-5 *3 (-564)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-1057))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 *8)) (-5 *4 (-769)) (-4 *8 (-947 *5 *7 *6))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173))))
+ (-4 *7 (-791))
+ (-5 *2
+ (-642
+ (-2 (|:| |det| *8) (|:| |rows| (-642 (-564)))
+ (|:| |cols| (-642 (-564))))))
+ (-5 *1 (-922 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-790)) (-4 *3 (-172)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-950 *4))) (-4 *4 (-307))
+ (-5 *2 (-407 (-418 (-950 *4)))) (-5 *1 (-1040 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))
+ ((*1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1185 (-919) (-769))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *3))
- (-5 *1 (-946 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $))
- (-15 -2336 (*7 $))))))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094))
- (-4 *2 (-846)))))
+ (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
+ (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1197) (-1000)))))
((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556))
- (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-788)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *4 (-1216)) (-4 *5 (-1238 (-407 *2)))
+ (-4 *2 (-1238 *4)) (-5 *1 (-341 *3 *4 *2 *5))
+ (-4 *3 (-342 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1216))
+ (-4 *4 (-1238 (-407 *2))) (-4 *2 (-1238 *3)))))
+(((*1 *2 *2 *2)
(-12
(-5 *2
- (-2 (|:| -2123 (-778 *3)) (|:| |coef1| (-778 *3))
- (|:| |coef2| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| -2123 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-235 *3))
- (-4 *3 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4407)) (-4 *1 (-235 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094))
- (-5 *1 (-733 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-5 *1 (-733 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452))
- (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1031))
- (-5 *1 (-750)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
- (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5))
- (-5 *2 (-685 *5)))))
+ (-642
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-769)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-791)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-848))
+ (-5 *1 (-449 *3 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265))))
+ ((*1 *2 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1265)))))
+(((*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-349))
+ (-5 *2 (-642 (-2 (|:| -3643 (-564)) (|:| -2700 (-564))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-642 (-225))) (-5 *1 (-204)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-919)) (-5 *1 (-1098 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-610 *4)) (-5 *6 (-1169 *4))
+ (-4 *4 (-13 (-430 *7) (-27) (-1197)))
+ (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4))))
+ (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1169 *4)))
+ (-4 *4 (-13 (-430 *7) (-27) (-1197)))
+ (-4 *7 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4))))
+ (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-654 *4)) (-4 *3 (-1097)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1034 (-564)))
- (-4 *4 (-556)) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5))))
+ (-12 (-5 *3 (-1155)) (-5 *2 (-642 (-1178))) (-5 *1 (-1133)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-642 (-1137 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1097) (-34))) (-4 *5 (-13 (-1097) (-34)))
+ (-5 *1 (-1138 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-642 (-1137 *3 *4))) (-4 *3 (-13 (-1097) (-34)))
+ (-4 *4 (-13 (-1097) (-34))) (-5 *1 (-1138 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-919))))
((*1 *2 *3)
- (-12 (-5 *3 (-610 *1)) (-4 *1 (-1045)) (-4 *1 (-302))
- (-5 *2 (-1166 *1)))))
+ (-12 (-5 *3 (-1262 *4)) (-4 *4 (-349)) (-5 *2 (-919))
+ (-5 *1 (-528 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1166 *7)))
- (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-905)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5)))
- (-5 *1 (-903 *4 *5)) (-5 *3 (-1166 *5)))))
+ (-12 (-5 *3 (-564)) (-4 *4 (-1238 (-407 *3))) (-5 *2 (-919))
+ (-5 *1 (-911 *4 *5)) (-4 *5 (-1238 (-407 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
-(((*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-939 (-225))))) (-5 *1 (-468)))))
-(((*1 *2)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6))
- (-4 *3 (-342 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3))))))
+ (-12 (-5 *2 (-1262 (-769))) (-5 *1 (-673 *3)) (-4 *3 (-1097)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-564))
- (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))))
-(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-112))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1047))))
((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-767)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1235 (-169 *2))))))
+ (-12 (-4 *1 (-971 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-790))
+ (-4 *5 (-848)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-307))
+ (-5 *2 (-769)) (-5 *1 (-455 *5 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1212)) (-4 *2 (-1097))))
+ ((*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-214 *4))
+ (-4 *4
+ (-13 (-848)
+ (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 (*2 $))
+ (-15 -1937 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1267)) (-5 *1 (-214 *3))
+ (-4 *3
+ (-13 (-848)
+ (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 (*2 $))
+ (-15 -1937 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-502)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-2 (|:| |gen| *3) (|:| -1723 *4))))
+ (-4 *3 (-1097)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-647 *3 *4 *5)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
+ ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
+ ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))))
+(((*1 *1) (-5 *1 (-1176))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1212)) (-5 *2 (-769)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-452)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-389)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-767)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-919)) (-5 *2 (-769)) (-5 *1 (-1098 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
- (-5 *2 (-2 (|:| -4376 *1) (|:| |gap| (-767)) (|:| -4071 *1)))
- (-4 *1 (-1059 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-2 (|:| -4376 *1) (|:| |gap| (-767)) (|:| -4071 *1)))
- (-4 *1 (-1059 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-995 *3)) (-4 *3 (-172)) (-5 *1 (-795 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-564)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2177 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045))
- (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7)))
- (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6)))))
+ (-12 (-4 *1 (-1120 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *5 (-238 *3 *4))
+ (-4 *2 (-238 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1170))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-641 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2177 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1194) (-27) (-430 *8)))
- (-4 *8 (-13 (-452) (-147) (-1034 *3) (-637 *3))) (-5 *3 (-564))
- (-5 *2 (-641 *4)) (-5 *1 (-1010 *8 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3)))
- (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-848 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045))
- (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-849 *5 *3))
- (-4 *3 (-848 *5)))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *4))))
+ (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-5 *1 (-1060))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1262 *3)) (-4 *3 (-1238 *4)) (-4 *4 (-1216))
+ (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1238 (-407 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4))
- (-5 *1 (-810 *4 *5)) (-4 *5 (-652 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-767)) (-4 *5 (-363))
- (-5 *2 (-685 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-652 *5)))))
+ (-12 (-5 *3 (-687 *2)) (-4 *4 (-1238 *2))
+ (-4 *2 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))))
+ (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-769)) (-4 *4 (-307)) (-4 *6 (-1238 *4))
+ (-5 *2 (-1262 (-642 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-642 *6)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1212))
+ (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))))
(((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-837))
(-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-1150 (-225))) (-5 *1 (-192))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170)))
- (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170)))
- (-5 *5 (-1088 (-839 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4))
- (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3)))))
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3366 (-642 (-225)))
+ (|:| |lb| (-642 (-841 (-225)))) (|:| |cf| (-642 (-316 (-225))))
+ (|:| |ub| (-642 (-841 (-225))))))
+ (-5 *2 (-1033))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-837))
+ (-5 *3
+ (-2 (|:| |lfn| (-642 (-316 (-225)))) (|:| -3366 (-642 (-225)))))
+ (-5 *2 (-1033)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848))
+ (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848))
+ (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-848)) (-5 *2 (-769)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-564)))) (-4 *5 (-1238 *4))
+ (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1013 *4 *5)) (-5 *3 (-407 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-846))
+ (-12 (-4 *4 (-848))
(-5 *2
- (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4))))
- (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4))))))
- (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
-(((*1 *2 *2 *3)
- (-12
+ (-2 (|:| |f1| (-642 *4)) (|:| |f2| (-642 (-642 (-642 *4))))
+ (|:| |f3| (-642 (-642 *4))) (|:| |f4| (-642 (-642 (-642 *4))))))
+ (-5 *1 (-1183 *4)) (-5 *3 (-642 (-642 (-642 *4)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-4 *3 (-13 (-27) (-1197) (-430 *6) (-10 -8 (-15 -2327 ($ *7)))))
+ (-4 *7 (-846))
+ (-4 *8
+ (-13 (-1240 *3 *7) (-363) (-1197)
+ (-10 -8 (-15 -3175 ($ $)) (-15 -4107 ($ $)))))
(-5 *2
- (-2 (|:| |partsol| (-1259 (-407 (-948 *4))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *4)))))))
- (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147)))
- (-4 *7 (-945 *4 *6 *5)) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-564)) (-14 *4 (-767)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))))
+ (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1155)) (-4 *9 (-981 *8))
+ (-14 *10 (-1173)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1212))
+ (-4 *5 (-1212)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-769))
+ (-4 *7 (-1212)) (-4 *5 (-1212)) (-5 *2 (-240 *6 *5))
+ (-5 *1 (-239 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1212)) (-4 *5 (-1212))
+ (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1097)) (-4 *5 (-1097))
+ (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-642 *6)) (-4 *6 (-1212))
+ (-4 *5 (-1212)) (-5 *2 (-642 *5)) (-5 *1 (-640 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-956 *6)) (-4 *6 (-1212))
+ (-4 *5 (-1212)) (-5 *2 (-956 *5)) (-5 *1 (-955 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1153 *6)) (-4 *6 (-1212))
+ (-4 *3 (-1212)) (-5 *2 (-1153 *3)) (-5 *1 (-1151 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1262 *6)) (-4 *6 (-1212))
+ (-4 *5 (-1212)) (-5 *2 (-1262 *5)) (-5 *1 (-1261 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
+ (-4 *2 (-1253 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1238 *3))
+ (-4 *5 (-722 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1253 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1253 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-13 (-556) (-147)))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-642 *2))) (-5 *4 (-642 *5))
+ (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1253 *5))
+ (-5 *1 (-1255 *5 *2)))))
(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1263))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1264)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
- (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225)))
- (-5 *1 (-693)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225)))
- (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3))
- (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2))
- (-4 *2 (-683 *3 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-418 (-948 *6))) (-5 *5 (-1170)) (-5 *3 (-948 *6))
- (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *6)))))
+ (-12 (-5 *3 (-819)) (-5 *4 (-52)) (-5 *2 (-1267)) (-5 *1 (-829)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1192)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1097)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3)))))
+ (|partial| -12 (-4 *4 (-13 (-556) (-147)))
+ (-5 *2 (-2 (|:| -4326 *3) (|:| -4336 *3))) (-5 *1 (-1232 *4 *3))
+ (-4 *3 (-1238 *4)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *2 (-556)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
- (-14 *4 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
- (-14 *4 (-641 (-1170)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-846))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564)))))
- (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129))))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546))))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-819))))
+ (-12 (-5 *3 (-1235 *5 *4)) (-4 *4 (-452)) (-4 *4 (-818))
+ (-14 *5 (-1173)) (-5 *2 (-564)) (-5 *1 (-1111 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -4336 *7) (|:| |sol?| (-112)))
+ (-564) *7))
+ (-5 *6 (-642 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1238 *7))
+ (-5 *3 (-407 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-574 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-128)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1097)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7))
- (-4 *5 (-556)) (-4 *6 (-789)) (-4 *7 (-846))
- (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8))))
- (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-1094)) (-5 *2 (-610 *5))
- (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-407 (-564)))
- (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-313 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1155)) (|:| |prob| (-1155))))))
+ (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1197) (-430 *5)))
+ (-14 *6 (-1173)) (-14 *7 *3))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5))))
- (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5))))))
+ (-12 (-5 *3 (-642 (-316 (-225)))) (-5 *4 (-769))
+ (-5 *2 (-687 (-225))) (-5 *1 (-267)))))
+(((*1 *2 *1) (-12 (-4 *1 (-672 *3)) (-4 *3 (-1212)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1038)) (-5 *3 (-379)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-675 *3)) (-4 *3 (-848))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-848)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-169 (-225))))
+ (-5 *2 (-1033)) (-5 *1 (-752)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1262 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556))
+ (-5 *2 (-1262 *4)) (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
+ ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264))))
+ ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *4)) (-4 *4 (-1047)) (-5 *2 (-1262 *4))
+ (-5 *1 (-1174 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-919)) (-5 *2 (-1262 *3)) (-5 *1 (-1174 *3))
+ (-4 *3 (-1047)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-641 *1))
- (-4 *1 (-1059 *3 *4 *5)))))
+ (-12 (-5 *2 (-941 *4)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
+(((*1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1265)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1238 *5)) (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1153 (-642 (-564)))) (-5 *1 (-881)) (-5 *3 (-564)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-642 (-481 *4 *5))) (-5 *3 (-862 *4))
+ (-14 *4 (-642 (-1173))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264))))
+ ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789))
- (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791))
+ (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-577))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))))
+(((*1 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-685 *3))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -2753 ((-418 $) $)))))
- (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+ (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
+ (|:| |expense| (-379)) (|:| |accuracy| (-379))
+ (|:| |intermediateResults| (-379))))
+ (-5 *2 (-1033)) (-5 *1 (-305)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -3718 (-641 (-858))) (|:| -3878 (-641 (-858)))
- (|:| |presup| (-641 (-858))) (|:| -3122 (-641 (-858)))
- (|:| |args| (-641 (-858)))))
- (-5 *1 (-1170))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-858)))) (-5 *1 (-1170)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-112)))))
+ (-2 (|:| -2435 (-642 (-860))) (|:| -3532 (-642 (-860)))
+ (|:| |presup| (-642 (-860))) (|:| -1969 (-642 (-860)))
+ (|:| |args| (-642 (-860)))))
+ (-5 *1 (-1173))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-642 (-860)))) (-5 *1 (-1173)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1097) (-34))) (-4 *6 (-13 (-1097) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1137 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-820)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *5 (-556))
+ (-5 *2
+ (-2 (|:| |minor| (-642 (-919))) (|:| -1640 *3)
+ (|:| |minors| (-642 (-642 (-919)))) (|:| |ops| (-642 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-919)) (-4 *3 (-654 *5)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-919)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-641 *5)) (-4 *5 (-846)) (-5 *1 (-1180 *5)))))
+ (-12 (-5 *3 (-1 *2 (-769) *2)) (-5 *4 (-769)) (-4 *2 (-1097))
+ (-5 *1 (-676 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-769) *3)) (-4 *3 (-1097)) (-5 *1 (-680 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-610 *5))) (-4 *4 (-1097)) (-5 *2 (-610 *5))
+ (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1045)) (-5 *1 (-686 *3)))))
+ (-12 (-5 *2 (-687 *3))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))))
+ (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1047)) (-5 *1 (-712 *2 *4))
+ (-4 *4 (-646 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-361 (-114))) (-5 *1 (-834 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-452) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-825)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-747)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| (-112)) (|:| -3530 *4))))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-736)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-642
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-564)))))
+ (-4 *2 (-556)) (-5 *1 (-418 *2))))
((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6))
- (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-948 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6))
- (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1152))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-112))
- (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-734)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-917)) (-4 *5 (-846))
- (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1145))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
- (-5 *1 (-210)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-899 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-564))
+ (|:| -2649 (-642 (-2 (|:| |irr| *4) (|:| -3672 (-564)))))))
+ (-4 *4 (-1238 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-769)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1238 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1153 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))
+ (-4 *2 (-13 (-848) (-21))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-901 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-767)))
- (-5 *1 (-900 *4)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-363))
- (-14 *4 (-1170)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1094)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846))
- (-14 *4
- (-1 (-112) (-2 (|:| -2083 *3) (|:| -1838 *2))
- (-2 (|:| -2083 *3) (|:| -1838 *2)))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)))))
-(((*1 *1) (-5 *1 (-1264))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-556)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6))
- (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1034 (-564))))
- (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3))
- (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-846)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4))
- (-5 *3 (-641 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7))
- (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-564)))))
- (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -1606 *3))))
- (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-652 *7))
- (-4 *8 (-652 (-407 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1034 (-564)) (-1034 (-407 (-564)))))
- (-5 *2
- (-641 (-2 (|:| |frac| (-407 *6)) (|:| -1606 (-650 *6 (-407 *6))))))
- (-5 *1 (-808 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3)))
- (-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3))) (-5 *1 (-696 *3))
- (-4 *3 (-307)))))
-(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624))))
+ (-12 (-5 *3 (-506)) (-5 *2 (-642 (-963))) (-5 *1 (-291)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-642 *1)) (-4 *1 (-307)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-919)) (-5 *1 (-442 *2))
+ (-4 *2 (-1238 (-564)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-919)) (-5 *4 (-769)) (-5 *1 (-442 *2))
+ (-4 *2 (-1238 (-564)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *1 (-442 *2))
+ (-4 *2 (-1238 (-564)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *5 (-769))
+ (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-919)) (-5 *4 (-642 (-769))) (-5 *5 (-769))
+ (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1238 (-564)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-919)) (-5 *4 (-418 *2)) (-4 *2 (-1238 *5))
+ (-5 *1 (-444 *5 *2)) (-4 *5 (-1047)))))
+(((*1 *1) (-5 *1 (-1267))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-819)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-753)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-4 *3 (-1097))
+ (-5 *2 (-112)))))
+(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1238 *2))
+ (-4 *2 (-172))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1238 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4))
+ (-4 *3 (-409 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1238 *2)) (-4 *2 (-172))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1238 *2)) (-5 *2 (-564)) (-5 *1 (-766 *3 *4))
+ (-4 *4 (-409 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-947 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848)) (-4 *3 (-172))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-556)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1238 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-172)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-478))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-591))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624))))
((*1 *2 *1)
- (-12 (-4 *3 (-1094))
- (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3))))
- (-5 *1 (-1070 *3 *4 *2))
- (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3))))))
+ (-12 (-4 *3 (-1097))
+ (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3))))
+ (-5 *1 (-1073 *3 *4 *2))
+ (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-981 *4 *2 *3 *5))
- (-4 *4 (-349)) (-4 *5 (-720 *2 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349))
- (-4 *2
- (-13 (-402)
- (-10 -7 (-15 -2423 (*2 *4)) (-15 -3256 ((-917) *2))
- (-15 -2047 ((-1259 *2) (-917))) (-15 -3037 (*2 *2)))))
- (-5 *1 (-356 *2 *4)))))
+ (-12 (-4 *2 (-1097)) (-5 *1 (-1162 *3 *2)) (-4 *3 (-1097)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-642 *11)) (-5 *5 (-642 (-1169 *9)))
+ (-5 *6 (-642 *9)) (-5 *7 (-642 *12)) (-5 *8 (-642 (-769)))
+ (-4 *11 (-848)) (-4 *9 (-307)) (-4 *12 (-947 *9 *10 *11))
+ (-4 *10 (-791)) (-5 *2 (-642 (-1169 *12)))
+ (-5 *1 (-705 *10 *11 *9 *12)) (-5 *3 (-1169 *12)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836))))
- ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836))))
+ (-12 (-5 *3 (-839)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-838))))
+ ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1033)) (-5 *1 (-838))))
((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-839 (-379))))
- (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1031))
- (-5 *1 (-836))))
+ (-12 (-5 *4 (-642 (-379))) (-5 *5 (-642 (-841 (-379))))
+ (-5 *6 (-642 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1033))
+ (-5 *1 (-838))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379)))
- (-5 *5 (-641 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-836))))
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-379)))
+ (-5 *5 (-642 (-841 (-379)))) (-5 *2 (-1033)) (-5 *1 (-838))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1031))
- (-5 *1 (-836))))
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-642 (-379))) (-5 *2 (-1033))
+ (-5 *1 (-838))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379)))
- (-5 *2 (-1031)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
-(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-916)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-858)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1152)) (-5 *1 (-782)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-789))
- (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624))))
+ (-12 (-5 *3 (-642 (-316 (-379)))) (-5 *4 (-642 (-379)))
+ (-5 *2 (-1033)) (-5 *1 (-838)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-642 *6)) (-4 *6 (-848)) (-4 *4 (-363)) (-4 *5 (-791))
+ (-5 *2
+ (-2 (|:| |mval| (-687 *4)) (|:| |invmval| (-687 *4))
+ (|:| |genIdeal| (-504 *4 *5 *6 *7))))
+ (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-947 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7))
+ (-5 *2 (-642 (-2 (|:| |val| *3) (|:| -3530 *4))))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1068 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1173)) (-5 *6 (-642 (-610 *3)))
+ (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *7)))
+ (-4 *7 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-2 (|:| -2116 *3) (|:| |coeff| *3)))
+ (-5 *1 (-557 *7 *3)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-642 (-2 (|:| |totdeg| (-769)) (|:| -4229 *3))))
+ (-5 *4 (-769)) (-4 *3 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-791))
+ (-4 *7 (-848)) (-5 *1 (-449 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1238 *2)) (-4 *2 (-1216)) (-5 *1 (-148 *2 *4 *3))
+ (-4 *3 (-1238 (-407 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-950 *5))) (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-316 *5)))
+ (-5 *1 (-1126 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173)))
+ (-4 *5 (-13 (-307) (-147))) (-5 *2 (-642 (-642 (-316 *5))))
+ (-5 *1 (-1126 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173)) (-4 *5 (-1216)) (-4 *6 (-1238 *5))
+ (-4 *7 (-1238 (-407 *6))) (-5 *2 (-642 (-950 *5)))
+ (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1173)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1216))
+ (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-4 *4 (-363))
+ (-5 *2 (-642 (-950 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-478))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-591))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-624))))
((*1 *2 *1)
- (-12 (-4 *3 (-1094))
- (-4 *2 (-13 (-430 *4) (-882 *3) (-612 (-888 *3))))
- (-5 *1 (-1070 *3 *4 *2))
- (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3))))))
+ (-12 (-4 *3 (-1097))
+ (-4 *2 (-13 (-430 *4) (-884 *3) (-612 (-890 *3))))
+ (-5 *1 (-1073 *3 *4 *2))
+ (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767)))
- (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1235 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-556) (-1034 (-564))))
- (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2))
- (-4 *2 (-342 *5 *6 *7)))))
+ (-12 (-4 *2 (-1097)) (-5 *1 (-1162 *2 *3)) (-4 *3 (-1097)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-307))
- (-5 *2 (-407 (-418 (-948 *4)))) (-5 *1 (-1038 *4)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846))
- (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1264))
- (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556))
- (-4 *3 (-1209)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-998))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-379)) (-5 *1 (-192)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-919)) (-5 *1 (-1030 *2))
+ (-4 *2 (-13 (-1097) (-10 -8 (-15 * ($ $ $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4))
- (-4 *4 (-349)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-564))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
+ (-12 (-5 *3 (-407 *6)) (-4 *5 (-1216)) (-4 *6 (-1238 *5))
+ (-5 *2 (-2 (|:| -2700 (-769)) (|:| -4378 *3) (|:| |radicand| *6)))
+ (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-769)) (-4 *7 (-1238 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-307))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6))
- (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-447 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6))
- (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-447 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-975 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-642 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1024 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-642
+ (-2 (|:| -2414 (-769))
+ (|:| |eqns|
+ (-642
+ (-2 (|:| |det| *7) (|:| |rows| (-642 (-564)))
+ (|:| |cols| (-642 (-564))))))
+ (|:| |fgb| (-642 *7)))))
+ (-4 *7 (-947 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-848) (-612 (-1173)))) (-4 *6 (-791)) (-5 *2 (-769))
+ (-5 *1 (-922 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-5 *1 (-998 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-872)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1259 *5)) (-4 *5 (-788)) (-5 *2 (-112))
- (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-975 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5))
+ (-5 *1 (-986 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-642 *7)) (-4 *7 (-1068 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5))
+ (-5 *1 (-1104 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-112)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-975 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-687 (-869 (-962 *3) (-962 *3)))) (-5 *1 (-962 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218))))
- ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439))))
- ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-834))))
- ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109))))
+ (-12 (-5 *2 (-689 (-871 (-964 *3) (-964 *3)))) (-5 *1 (-964 *3))
+ (-4 *3 (-1097)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-439))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-836))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1112))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225)))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031))
- (-5 *1 (-742)))))
-(((*1 *2)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157))))
- ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-556))
+ (-12 (-5 *2 (-642 (-1178))) (-5 *3 (-1178)) (-5 *1 (-1115)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *7)) (-4 *7 (-1062 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1068 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-687 (-225))) (-5 *5 (-687 (-564))) (-5 *3 (-564))
+ (-5 *2 (-1033)) (-5 *1 (-752)))))
+(((*1 *1) (-5 *1 (-144))))
+(((*1 *2) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1265))))
+ ((*1 *2 *2) (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1265)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1099 (-769))) (-5 *6 (-769))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225))
- (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *1) (-5 *1 (-437))))
+ (-2 (|:| |contp| (-564))
+ (|:| -2649 (-642 (-2 (|:| |irr| *3) (|:| -3672 (-564)))))))
+ (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-967 *3 *2)) (-4 *2 (-1238 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-556))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)) (-4 *2 (-556)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1097)) (-5 *2 (-642 *1))
+ (-4 *1 (-430 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3))
+ (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047))
+ (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *3))
+ (-5 *1 (-948 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $))
+ (-15 -2255 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1212)) (-5 *1 (-871 *3 *2)) (-4 *3 (-1212))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *3)) (-4 *3 (-848)) (-5 *1 (-484 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-753)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-841 (-379))) (-5 *2 (-841 (-225))) (-5 *1 (-305)))))
+(((*1 *2 *2) (-12 (-5 *2 (-642 (-687 (-316 (-564))))) (-5 *1 (-1029)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
+ (|partial| -12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4))
+ (-5 *2 (-418 (-1169 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3))
+ (-4 *3 (-1238 *5)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-529)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *3 (-564)) (-5 *1 (-241)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1238 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1238 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-769)))
+ (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1238 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1852 "void")))
+ (-5 *1 (-437)))))
+(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379))))
+(((*1 *1) (-5 *1 (-330))))
(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-948 *8))))
- (-5 *5 (-767)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147)))
- (-4 *11 (-945 *8 *10 *9)) (-4 *9 (-13 (-846) (-612 (-1170))))
- (-4 *10 (-789))
+ (-12 (-5 *3 (-687 *11)) (-5 *4 (-642 (-407 (-950 *8))))
+ (-5 *5 (-769)) (-5 *6 (-1155)) (-4 *8 (-13 (-307) (-147)))
+ (-4 *11 (-947 *8 *10 *9)) (-4 *9 (-13 (-848) (-612 (-1173))))
+ (-4 *10 (-791))
(-5 *2
(-2
(|:| |rgl|
- (-641
- (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11))
- (|:| |wcond| (-641 (-948 *8)))
+ (-642
+ (-2 (|:| |eqzro| (-642 *11)) (|:| |neqzro| (-642 *11))
+ (|:| |wcond| (-642 (-950 *8)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-948 *8))))
- (|:| -2047 (-641 (-1259 (-407 (-948 *8))))))))))
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *8))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *8))))))))))
(|:| |rgsz| (-564))))
- (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-564)))))
+ (-5 *1 (-922 *8 *9 *10 *11)) (-5 *7 (-564)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1097)) (-4 *4 (-1097))
+ (-4 *6 (-1097)) (-5 *2 (-1 *6 *5)) (-5 *1 (-682 *5 *4 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-1175 (-407 (-564))))
+ (-5 *1 (-190)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -4336 *6) (|:| |sol?| (-112))) (-564)
+ *6))
+ (-4 *6 (-363)) (-4 *7 (-1238 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
+ (-2 (|:| -2116 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
+ (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-225))) (-5 *4 (-769)) (-5 *2 (-687 (-225)))
+ (-5 *1 (-305)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1262 *4)) (-5 *3 (-564)) (-4 *4 (-349))
+ (-5 *1 (-528 *4)))))
+(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1262 *4)) (-5 *3 (-1117)) (-4 *4 (-349))
+ (-5 *1 (-528 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-407 (-564)))
- (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5))
- (-4 *5 (-13 (-556) (-1034 (-564)))) (-5 *2 (-1166 (-407 (-564))))
- (-5 *1 (-433 *5 *3)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-767)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4))
- (-4 *2 (-238 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1209)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1209))))
- ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1) (-5 *1 (-858))))
+ (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-1062 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-642 *7)) (|:| |badPols| (-642 *7))))
+ (-5 *1 (-975 *4 *5 *6 *7)) (-5 *3 (-642 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-827)) (-5 *3 (-1155)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-610 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173))) (-5 *5 (-1169 *2))
+ (-4 *2 (-13 (-430 *6) (-27) (-1197)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1097))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-610 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1173)))
+ (-5 *5 (-407 (-1169 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1197)))
+ (-4 *6 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1097)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1132))) (-5 *1 (-669))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-919))) (-5 *1 (-1098 *3 *4)) (-14 *3 (-919))
+ (-14 *4 (-919)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-782)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3)))
- (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2))
- (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6))
- (-4 *6 (-342 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3)))
- (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363))
- (-4 *1 (-335 *3 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *1) (-5 *1 (-330))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))))))
+ (-12 (-5 *3 (-418 *5)) (-4 *5 (-556))
+ (-5 *2
+ (-2 (|:| -2700 (-769)) (|:| -4378 *5) (|:| |radicand| (-642 *5))))
+ (-5 *1 (-320 *5)) (-5 *4 (-769))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1000)) (-5 *2 (-564)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *1 *1) (-4 *1 (-1136))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1169 *3)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-307) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-575 *4 *2))
+ (-4 *2 (-13 (-1197) (-957) (-1136) (-29 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1091 (-841 (-225)))) (-5 *1 (-305)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1264)) (-5 *1 (-214 *4))
- (-4 *4
- (-13 (-846)
- (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 (*2 $))
- (-15 -1757 (*2 $)))))))
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1212)) (-5 *2 (-1267)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1272)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1047)) (-4 *4 (-1097)) (-5 *2 (-642 *1))
+ (-4 *1 (-382 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3))
- (-4 *3
- (-13 (-846)
- (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 (*2 $))
- (-15 -1757 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4))
- (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844))))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-750)))))
+ (-12 (-5 *2 (-642 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-724))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-642 *1))
+ (-4 *1 (-947 *3 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-1235 *5 *4)) (-5 *1 (-1171 *4 *5 *6))
+ (-4 *4 (-1047)) (-14 *5 (-1173)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-1235 *5 *4)) (-5 *1 (-1254 *4 *5 *6))
+ (-4 *4 (-1047)) (-14 *5 (-1173)) (-14 *6 *4))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1153 *4)) (-5 *3 (-564)) (-4 *4 (-1047))
+ (-5 *1 (-1157 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-564)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1047))
+ (-14 *4 (-1173)) (-14 *5 *3))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3))
- (-4 *5 (-13 (-430 *4) (-998) (-1194)))
- (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1194))))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-752)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-539 *4 *2 *5 *6))
+ (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-769))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-687 *4)) (-5 *3 (-919)) (|has| *4 (-6 (-4412 "*")))
+ (-4 *4 (-1047)) (-5 *1 (-1026 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-642 (-687 *4))) (-5 *3 (-919))
+ (|has| *4 (-6 (-4412 "*"))) (-4 *4 (-1047)) (-5 *1 (-1026 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-373 *3)) (-4 *3 (-1212)) (-4 *3 (-848)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1212))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34)))
+ (-4 *3 (-13 (-1097) (-34))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1097)) (-4 *1 (-1095 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-407 (-948 *5)) (-1159 (-1170) (-948 *5))))
- (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *5)))))
- (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-948 *5)))))))
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-703 *3 *4)) (-4 *3 (-1212)) (-4 *4 (-1212)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-687 *3)) (|:| |invmval| (-687 *3))
+ (|:| |genIdeal| (-504 *3 *4 *5 *6))))
+ (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1153 *2)) (-4 *2 (-1212)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-917)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1045))
- (-4 *4 (-788))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1045)))))
-(((*1 *1) (-5 *1 (-1057))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-870))
- (-5 *5 (-917)) (-5 *6 (-641 (-263))) (-5 *2 (-1260))
- (-5 *1 (-1263))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-641 (-939 (-225))))) (-5 *4 (-641 (-263)))
- (-5 *2 (-1260)) (-5 *1 (-1263)))))
+ (-12 (-4 *1 (-974 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848)) (-4 *5 (-1062 *3 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564)))))
+ (-4 *5 (-1238 *4)) (-5 *2 (-642 (-2 (|:| -3594 *5) (|:| -3761 *5))))
+ (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-654 *5))
+ (-4 *6 (-654 (-407 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564)))))
+ (-4 *4 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -3594 *4) (|:| -3761 *4))))
+ (-5 *1 (-805 *5 *4 *3 *6)) (-4 *3 (-654 *4))
+ (-4 *6 (-654 (-407 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1036 (-407 (-564)))))
+ (-4 *5 (-1238 *4)) (-5 *2 (-642 (-2 (|:| -3594 *5) (|:| -3761 *5))))
+ (-5 *1 (-805 *4 *5 *6 *3)) (-4 *6 (-654 *5))
+ (-4 *3 (-654 (-407 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564)))))
+ (-4 *4 (-1238 *5)) (-5 *2 (-642 (-2 (|:| -3594 *4) (|:| -3761 *4))))
+ (-5 *1 (-805 *5 *4 *6 *3)) (-4 *6 (-654 *4))
+ (-4 *3 (-654 (-407 *4))))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033))
+ (-5 *1 (-753)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4))
- (-5 *1 (-528 *4)))))
-(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-888 (-564))))
- (-4 *5 (-882 (-564)))
- (-4 *5 (-13 (-1034 (-564)) (-452) (-637 (-564))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-567 *5 *3)) (-4 *3 (-627))
- (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-839 *2)) (-4 *2 (-1133))
- (-4 *2 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-612 (-888 (-564)))) (-4 *5 (-882 (-564)))
- (-4 *5 (-13 (-1034 (-564)) (-452) (-637 (-564))))
- (-5 *1 (-567 *5 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-1238 *4)) (-5 *1 (-539 *4 *2 *5 *6))
+ (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-769))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1212)) (-4 *3 (-1047))
+ (-5 *2 (-687 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1155)) (-5 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1177)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-919)) (-5 *1 (-697))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-687 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-363)) (-5 *1 (-976 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-689 (-964 *3))) (-5 *1 (-964 *3)) (-4 *3 (-1097)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-769))
+ (-4 *4 (-172))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-430 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1089 *2)) (-4 *2 (-430 *4)) (-4 *4 (-556))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1089 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1173))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-848))
+ (-4 *4 (-172)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5))
+ (-5 *2 (-2 (|:| -1639 (-642 *6)) (|:| -2241 (-642 *6)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-670 *3)) (-4 *3 (-848)) (-4 *1 (-374 *3 *4))
+ (-4 *4 (-172)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-860 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452))
- (-5 *2
- (-2 (|:| |dpolys| (-641 (-247 *5 *6)))
- (|:| |coords| (-641 (-564)))))
- (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-5 *2 (-767)))))
+ (-12 (-5 *4 (-1173))
+ (-4 *5 (-13 (-452) (-147) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3))
+ (-4 *3 (-13 (-27) (-1197) (-430 *5))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-641 (-2 (|:| -4328 (-407 (-564))) (|:| -4337 (-407 (-564))))))
- (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1016 *4))
- (-4 *4 (-1235 (-564))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))
- (-4 *2 (-13 (-846) (-21))))))
+ (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4)
+ (-247 *4 (-407 (-564)))))
+ (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112))
+ (-5 *1 (-505 *4 *5)))))
(((*1 *2)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-917))
- (-4 *4 (-1045)))))
-(((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031))
- (-5 *1 (-744)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2))
- (-4 *4 (-38 (-407 (-564)))))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3))))
- ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *2 (-641 *3)) (-5 *1 (-973 *4 *5 *6 *3))
- (-4 *3 (-1059 *4 *5 *6)))))
+ (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *2 (-1262 (-316 (-379))))
+ (-5 *1 (-305)))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-701 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1094)) (-5 *2 (-885 *3 *4)) (-5 *1 (-881 *3 *4 *5))
- (-4 *3 (-1094)) (-4 *5 (-662 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1094)) (-4 *2 (-1045))))
- ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)))))
+ (-12 (-5 *4 (-642 (-862 *5))) (-14 *5 (-642 (-1173))) (-4 *6 (-452))
+ (-5 *2 (-642 (-642 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7))
+ (-5 *3 (-642 (-247 *5 *6))) (-4 *7 (-452)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-1060)) (-5 *3 (-1155)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-590 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *8 (-1059 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-641 *8))
- (|:| |towers| (-641 (-1023 *5 *6 *7 *8)))))
- (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-641 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *8 (-1059 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-641 *8))
- (|:| |towers| (-641 (-1140 *5 *6 *7 *8)))))
- (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-955) (-29 *4))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1045))
- (-5 *2 (-685 *3)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))))
-(((*1 *1 *1) (-4 *1 (-1054)))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1238 *6))
+ (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1036 (-564))))
+ (-4 *8 (-1238 (-407 *7))) (-5 *2 (-585 *3))
+ (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-169 (-225)))) (-5 *2 (-1033))
+ (-5 *1 (-754)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))))
+(((*1 *1 *1) (-4 *1 (-1057)))
((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
+ (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-755)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-917)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-751)))))
-(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4))
- (-4 *4 (-38 (-407 (-564))))
- (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))))
+ (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-2 (|:| -3688 (-1166 *6)) (|:| -1838 (-564)))))
- (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3))
- (-4 *3 (-13 (-363) (-147) (-1034 (-564)))) (-5 *1 (-568 *3 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-767)) (-4 *5 (-556))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-965 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1086 (-948 (-564)))) (-5 *3 (-948 (-564)))
- (-5 *1 (-330))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-948 (-564)))) (-5 *1 (-330)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-733 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1094))))
- ((*1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1094)))))
+ (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-967 *2 *3))
+ (-4 *3 (-1238 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6))
- (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-556) (-1034 (-564))))
- (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3))
- (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
-(((*1 *2)
- (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))))
+ (-12 (-4 *5 (-1097)) (-4 *2 (-898 *5)) (-5 *1 (-690 *5 *2 *3 *4))
+ (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
- (-14 *4 (-641 (-1170)))))
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1047))
+ (-14 *4 (-642 (-1173)))))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998)))))
+ (-4 *2 (-13 (-430 *3) (-1000)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1253 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1224 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-979 *4))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1222 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1245 *3 *4)) (-4 *5 (-981 *4))))
((*1 *1 *1) (-4 *1 (-284)))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
((*1 *1 *2)
- (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-13 (-172) (-713 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5))
- (-14 *5 (-917))))
+ (-12 (-5 *2 (-662 *3 *4)) (-4 *3 (-848))
+ (-4 *4 (-13 (-172) (-715 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5))
+ (-14 *5 (-919))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-564)))))
- (-4 *5 (-846)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))
+ (-12 (-5 *3 (-769)) (-4 *4 (-13 (-1047) (-715 (-407 (-564)))))
+ (-4 *5 (-848)) (-5 *1 (-1278 *4 *5 *2)) (-4 *2 (-1283 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-1279 *3 *4))
- (-4 *4 (-713 (-407 (-564)))) (-4 *3 (-846)) (-4 *4 (-172)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))
- ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))
- ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-556)) (-4 *2 (-307))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564))))
- ((*1 *1 *1) (-4 *1 (-1054))))
+ (-12 (-5 *2 (-769)) (-5 *1 (-1282 *3 *4))
+ (-4 *4 (-715 (-407 (-564)))) (-4 *3 (-848)) (-4 *4 (-172)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-506)) (-5 *3 (-1101)) (-5 *1 (-291)))))
(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-556)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))
+(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379))))
+ ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1033)) (-5 *3 (-1173)) (-5 *1 (-267)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-790))))
((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-641 (-1170)))))
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-642 (-1173)))))
((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846)))
- (-14 *3 (-641 (-1170)))))
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1047) (-848)))
+ (-14 *3 (-642 (-1173)))))
((*1 *1 *1)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1094))))
+ (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1097))))
((*1 *1 *1)
- (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172))
- (-4 *5 (-238 (-2181 *2) (-767)))
+ (-12 (-14 *2 (-642 (-1173))) (-4 *3 (-172))
+ (-4 *5 (-238 (-2127 *2) (-769)))
(-14 *6
- (-1 (-112) (-2 (|:| -2083 *4) (|:| -1838 *5))
- (-2 (|:| -2083 *4) (|:| -1838 *5))))
- (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846))
- (-4 *7 (-945 *3 *5 (-860 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-846))))
+ (-1 (-112) (-2 (|:| -2047 *4) (|:| -2700 *5))
+ (-2 (|:| -2047 *4) (|:| -2700 *5))))
+ (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-848))
+ (-4 *7 (-947 *3 *5 (-862 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-848))))
((*1 *1 *1)
- (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045))))
+ (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1238 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1047))))
((*1 *1 *1)
- (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045))
- (-4 *3 (-722))))
- ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045))))
+ (-12 (-5 *1 (-733 *2 *3)) (-4 *3 (-848)) (-4 *2 (-1047))
+ (-4 *3 (-724))))
+ ((*1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846))))
+ (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848))))
((*1 *1 *1)
- (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
+ (-12 (-5 *1 (-1285 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-844)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-1094))
+ (-12 (-5 *2 (-642 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-1097))
(-5 *1 (-573 *3 *4))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2))
- (-4 *2 (-1094))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-846))
- (-5 *1 (-1210 *2)))))
+ (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1097)) (-4 *3 (-1097))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-4 *7 (-988 *4)) (-4 *2 (-683 *7 *8 *9))
- (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6))
- (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)) (-4 *2 (-307))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
- (-4 *2 (-683 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))))
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1173))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-642 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2116 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1197) (-27) (-430 *8)))
+ (-4 *8 (-13 (-452) (-147) (-1036 *3) (-637 *3))) (-5 *3 (-564))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -4336 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1011 *8 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-2 (|:| -1901 (-1170)) (|:| -3813 (-437)))))
- (-5 *1 (-1174)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1209)) (-4 *3 (-1094))
- (-5 *2 (-112)))))
+ (-12 (-5 *2 (-642 (-2 (|:| -1907 (-1173)) (|:| -3778 (-437)))))
+ (-5 *1 (-1177)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1173)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-700 *3 *5 *6 *7))
+ (-4 *3 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212))
+ (-4 *7 (-1212))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *3 *5 *6))
+ (-4 *3 (-612 (-536))) (-4 *5 (-1212)) (-4 *6 (-1212)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-769)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-785)) (-5 *2 (-1033))
+ (-5 *3
+ (-2 (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-642 (-1091 (-841 (-225))))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-785)) (-5 *2 (-1033))
+ (-5 *3
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225)))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3))))
- (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+ (-12 (-4 *3 (-452)) (-4 *4 (-848)) (-4 *5 (-791)) (-5 *2 (-642 *6))
+ (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-947 *3 *5 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114))))
+ (|partial| -12 (-5 *2 (-1 (-536) (-642 (-536)))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-642 (-536)))) (-5 *1 (-114))))
((*1 *1) (-5 *1 (-578))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-1259 *3))
- (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-131)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1235 *3)) (-4 *3 (-1045)))))
+ (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) (-4 *5 (-556))
+ (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-768 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-556))
+ (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-768 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-687 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4263 (-642 *6)))
+ *7 *6))
+ (-4 *6 (-363)) (-4 *7 (-654 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1262 *6) "failed"))
+ (|:| -4263 (-642 (-1262 *6)))))
+ (-5 *1 (-811 *6 *7)) (-5 *4 (-1262 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1155)) (-5 *1 (-708)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *3))
- (-4 *3 (-1209))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *3))
+ (-4 *3 (-1212))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-672 *3)) (-4 *3 (-1212))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556))
- (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3))))
+ (|partial| -12 (-4 *1 (-1205 *4 *5 *3 *2)) (-4 *4 (-556))
+ (-4 *5 (-791)) (-4 *3 (-848)) (-4 *2 (-1062 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *1 (-1206 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789)) (-5 *2 (-407 (-948 *4))) (-5 *1 (-920 *4 *5 *6 *3))
- (-4 *3 (-945 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-685 *7)) (-4 *7 (-945 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789)) (-5 *2 (-685 (-407 (-948 *4))))
- (-5 *1 (-920 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-612 (-1170))))
- (-4 *6 (-789)) (-5 *2 (-641 (-407 (-948 *4))))
- (-5 *1 (-920 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112))
- (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-172))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-815 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-172))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2885 *1) (|:| -4394 *1) (|:| |associate| *1)))
- (-4 *1 (-556)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
+ (-12 (-5 *3 (-769)) (-5 *1 (-1209 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-860)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-363) (-147) (-1036 (-564)) (-1036 (-407 (-564)))))
+ (-4 *5 (-1238 *4)) (-5 *2 (-642 (-651 (-407 *5))))
+ (-5 *1 (-655 *4 *5)) (-5 *3 (-651 (-407 *5))))))
+(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182)))))
+(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 *3)) (-4 *3 (-1106 *5 *6 *7 *8))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *8 (-1062 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-590 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2116 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-363)) (-4 *7 (-1238 *6))
+ (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
+ (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1193))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1193)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094))
- (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-191)) (-5 *3 (-564))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-781 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-642 (-950 *3))) (-4 *3 (-452))
+ (-5 *1 (-360 *3 *4)) (-14 *4 (-642 (-1173)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-642 (-778 *3 (-862 *4)))) (-4 *3 (-452))
+ (-14 *4 (-642 (-1173))) (-5 *1 (-626 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-225))) (-5 *2 (-1262 (-697))) (-5 *1 (-305)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-834))) (-5 *1 (-140)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3))))
+ (|partial| -12 (-5 *2 (-407 (-950 *4))) (-5 *3 (-1173))
+ (-4 *4 (-13 (-556) (-1036 (-564)) (-147))) (-5 *1 (-570 *4)))))
+(((*1 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265))))
+ ((*1 *2 *2) (-12 (-5 *2 (-919)) (-5 *1 (-1265)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -2085 *4) (|:| -1449 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-787)) (-5 *5 (-564)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1277 (-1173) *3)) (-4 *3 (-1047)) (-5 *1 (-1284 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4))
- (-14 *4 (-564)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
+ (-12 (-5 *2 (-1277 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))
+ (-5 *1 (-1286 *3 *4)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4409 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2))
- (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2))
- (-4 *4 (-683 *2 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307))
- (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-724)) (-4 *2 (-1212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-97)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5))
+ (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-1275 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-642 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1062 *5 *6 *7)) (-4 *5 (-556))
+ (-4 *6 (-791)) (-4 *7 (-848)) (-5 *1 (-1275 *5 *6 *7 *8)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-769)) (-5 *1 (-854 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *6 *4 *5))
- (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846))
- (-4 *6 (-307)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -4376 *3) (|:| |gap| (-767)) (|:| -3979 (-778 *3))
- (|:| -4071 (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-1045))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
- (-5 *2
- (-2 (|:| -4376 *1) (|:| |gap| (-767)) (|:| -3979 *1)
- (|:| -4071 *1)))
- (-4 *1 (-1059 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2
- (-2 (|:| -4376 *1) (|:| |gap| (-767)) (|:| -3979 *1)
- (|:| -4071 *1)))
- (-4 *1 (-1059 *3 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1166 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))))
+ (-12 (-5 *2 (-1169 (-564))) (-5 *1 (-940)) (-5 *3 (-564)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-4 *6 (-556)) (-5 *2 (-641 (-316 *6)))
- (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1045))))
+ (-12 (-5 *4 (-919)) (-4 *6 (-556)) (-5 *2 (-642 (-316 *6)))
+ (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1047))))
((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))
((*1 *2 *3)
- (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194)))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *2 (-641 *5))
+ (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1197)))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-642 *5))
(-5 *1 (-583 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-585 (-407 (-948 *4))))
- (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4))))
+ (-12 (-5 *3 (-585 (-407 (-950 *4))))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *2 (-642 (-316 *4))) (-5 *1 (-588 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1143 *3))))
+ (-12 (-4 *1 (-1092 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1146 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-844))
- (-4 *2 (-1143 *4))))
+ (-12 (-5 *3 (-642 *1)) (-4 *1 (-1092 *4 *2)) (-4 *4 (-846))
+ (-4 *2 (-1146 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194)))))
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-1277 (-1173) *3)) (-5 *1 (-1284 *3)) (-4 *3 (-1047))))
((*1 *2 *1)
- (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-846))
- (-4 *4 (-1045)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045))
- (-4 *2 (-1250 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1094)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1094)))))
+ (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-848))
+ (-4 *4 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047))
+ (-5 *2 (-950 *5)) (-5 *1 (-942 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-1 (-1153 (-950 *4)) (-1153 (-950 *4))))
+ (-5 *1 (-1270 *4)) (-4 *4 (-363)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *3)) (-4 *3 (-1238 (-564))) (-5 *1 (-486 *3)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-769)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1263))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-769)) (-5 *4 (-919)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-491)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-642 (-642 (-225)))) (-5 *1 (-1208)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-769)) (-4 *3 (-556)) (-5 *1 (-967 *3 *2))
+ (-4 *2 (-1238 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-574 *5 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547))))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1259 (-767))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2746 *3) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3))))
- (-5 *1 (-778 *3)) (-4 *3 (-556)) (-4 *3 (-1045)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-770))) (-5 *1 (-114)))))
+ (-12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) (-5 *2 (-112))
+ (-5 *1 (-263)))))
(((*1 *1 *1) (-5 *1 (-536))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-858))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-641 (-858)))) (-5 *1 (-114))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-860) (-860))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-860) (-642 (-860)))) (-5 *1 (-114))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-858) (-641 (-858)))) (-5 *1 (-114))))
+ (|partial| -12 (-5 *2 (-1 (-860) (-642 (-860)))) (-5 *1 (-114))))
((*1 *2 *1)
- (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3))
+ (-12 (-5 *2 (-1267)) (-5 *1 (-214 *3))
(-4 *3
- (-13 (-846)
- (-10 -8 (-15 -4366 ((-1152) $ (-1170))) (-15 -1630 (*2 $))
- (-15 -1757 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502))))
- ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-706))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189)))))
+ (-13 (-848)
+ (-10 -8 (-15 -4368 ((-1155) $ (-1173))) (-15 -1664 (*2 $))
+ (-15 -1937 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-394))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-394))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-502))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-708))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1192))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1192)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-612 *2)))
- (-5 *2 (-888 *3)) (-5 *1 (-1070 *3 *4 *5))
- (-4 *5 (-13 (-430 *4) (-882 *3) (-612 *2))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-641
- (-2 (|:| -2514 (-767))
- (|:| |eqns|
- (-641
- (-2 (|:| |det| *7) (|:| |rows| (-641 (-564)))
- (|:| |cols| (-641 (-564))))))
- (|:| |fgb| (-641 *7)))))
- (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-846) (-612 (-1170)))) (-4 *6 (-789)) (-5 *2 (-767))
- (-5 *1 (-920 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 *2)))
+ (-5 *2 (-890 *3)) (-5 *1 (-1073 *3 *4 *5))
+ (-4 *5 (-13 (-430 *4) (-884 *3) (-612 *2))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-919)) (-5 *2 (-468)) (-5 *1 (-1263)))))
(((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-823 *2 *3)) (-4 *2 (-704 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-750)))))
+ (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-4 *1 (-901 *3)))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-1047)) (-5 *1 (-825 *2 *3)) (-4 *2 (-706 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))))
-(((*1 *1) (-5 *1 (-141))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-724) (-25))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-112))
- (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-776 *4 (-860 *5)))) (-4 *4 (-452))
- (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2306))))
- (-5 *2 (-1031)) (-5 *1 (-744)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-743)))))
+ (|partial| -12 (-4 *5 (-1036 (-48)))
+ (-4 *4 (-13 (-556) (-1036 (-564)))) (-4 *5 (-430 *4))
+ (-5 *2 (-418 (-1169 (-48)))) (-5 *1 (-435 *4 *5 *3))
+ (-4 *3 (-1238 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-1097)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1082)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-769)) (-5 *1 (-673 *2)) (-4 *2 (-1097)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1197))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1262 (-687 *4))) (-4 *4 (-172))
+ (-5 *2 (-1262 (-687 (-950 *4)))) (-5 *1 (-189 *4)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1094))
- (-5 *1 (-674 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-769)) (-4 *2 (-1097))
+ (-5 *1 (-676 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1097)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-1045))) (-5 *2 (-1152))
- (-5 *1 (-822 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-824) (-1045)))
- (-5 *2 (-1152)) (-5 *1 (-822 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-818)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-824) (-1045)))
- (-5 *2 (-1264)) (-5 *1 (-822 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-818)) (-5 *4 (-316 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-824) (-1045))) (-5 *2 (-1264)) (-5 *1 (-822 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1152))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1152))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *2 (-1264))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *4 (-112)) (-5 *2 (-1264)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
+ (-12 (-4 *4 (-13 (-556) (-1036 (-564)))) (-5 *2 (-112))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 (-169 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-112))
+ (-5 *1 (-1201 *4 *3)) (-4 *3 (-13 (-27) (-1197) (-430 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860)))))
(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138))))
((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))))
-(((*1 *1) (-5 *1 (-291))))
-(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-825)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-642 *3)) (-5 *1 (-959 *3)) (-4 *3 (-545)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-938)) (-5 *3 (-564)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1068))))
+ (-12 (-4 *1 (-907)) (-5 *2 (-418 (-1169 *1))) (-5 *3 (-1169 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-407 (-950 *5)) (-1162 (-1173) (-950 *5))))
+ (-4 *5 (-452)) (-5 *2 (-642 (-687 (-407 (-950 *5)))))
+ (-5 *1 (-292 *5)) (-5 *4 (-687 (-407 (-950 *5)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1155)) (-5 *1 (-305)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1071))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261))))
- ((*1 *1 *1) (-5 *1 (-1261))))
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1045))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2249 *1)))
- (-4 *1 (-848 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4))
- (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4)))
- (-5 *1 (-1252 *4 *5)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1263))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480))))
+ (-12 (-5 *3 (-769)) (-5 *2 (-1262 (-642 (-564)))) (-5 *1 (-480))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-599 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6))
- (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))))
-(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349))
- (-5 *1 (-528 *4)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1212)) (-5 *1 (-1153 *3)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4408)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094))
- (-4 *2 (-1209)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-767)) (-5 *1 (-586 *2)) (-4 *2 (-545))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2648 *3) (|:| -1838 (-767)))) (-5 *1 (-586 *3))
- (-4 *3 (-545)))))
+ (-12 (-5 *1 (-1137 *3 *2)) (-4 *3 (-13 (-1097) (-34)))
+ (-4 *2 (-13 (-1097) (-34))))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-687 (-225))) (-5 *6 (-687 (-564))) (-5 *3 (-564))
+ (-5 *4 (-225)) (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *1) (-5 *1 (-630))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1047)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1045)))))
+(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1155)) (-5 *1 (-52)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))
+ (-12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-307))
+ (-5 *2 (-642 (-769))) (-5 *1 (-776 *3 *4 *5 *6 *7))
+ (-4 *3 (-1238 *6)) (-4 *7 (-947 *6 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-642 (-316 (-225)))) (-5 *1 (-267)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1173))
+ (-5 *2 (-3 (|:| |fst| (-434)) (|:| -1852 "void"))) (-5 *1 (-1176)))))
+(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-491)) (-5 *4 (-952)) (-5 *2 (-689 (-533)))
+ (-5 *1 (-533))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-917)) (-4 *5 (-1045))
- (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1194) (-284)))
- (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *3)
+ (-12 (-5 *4 (-952)) (-4 *3 (-1097)) (-5 *2 (-689 *1))
+ (-4 *1 (-765 *3)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-564))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-769)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-791)) (-4 *4 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-848))
+ (-5 *1 (-449 *5 *6 *7 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-642 (-642 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-642 (-642 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-642 *3))) (-5 *1 (-1184 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1033)) (-5 *3 (-1173)) (-5 *1 (-192)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1033))
+ (-5 *1 (-746)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-445 *3)) (-4 *3 (-1047)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-697)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
+ ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
+ ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-407 (-950 (-564)))))
+ (-5 *2 (-642 (-642 (-294 (-950 *4))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-846) (-363)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-294 (-407 (-950 (-564))))))
+ (-5 *2 (-642 (-642 (-294 (-950 *4))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-846) (-363)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-950 (-564)))) (-5 *2 (-642 (-294 (-950 *4))))
+ (-5 *1 (-380 *4)) (-4 *4 (-13 (-846) (-363)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-407 (-950 (-564)))))
+ (-5 *2 (-642 (-294 (-950 *4)))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-846) (-363)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1173))
+ (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1197) (-957)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -4263 (-642 *4))))
+ (-5 *1 (-650 *6 *4 *3)) (-4 *3 (-654 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1173)) (-5 *5 (-642 *2))
+ (-4 *2 (-13 (-29 *6) (-1197) (-957)))
+ (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *1 (-650 *6 *2 *3)) (-4 *3 (-654 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 *5)) (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1262 *5) "failed"))
+ (|:| -4263 (-642 (-1262 *5)))))
+ (-5 *1 (-665 *5)) (-5 *4 (-1262 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-642 *5))) (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1262 *5) "failed"))
+ (|:| -4263 (-642 (-1262 *5)))))
+ (-5 *1 (-665 *5)) (-5 *4 (-1262 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 *5)) (-4 *5 (-363))
+ (-5 *2
+ (-642
+ (-2 (|:| |particular| (-3 (-1262 *5) "failed"))
+ (|:| -4263 (-642 (-1262 *5))))))
+ (-5 *1 (-665 *5)) (-5 *4 (-642 (-1262 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-642 *5))) (-4 *5 (-363))
+ (-5 *2
+ (-642
+ (-2 (|:| |particular| (-3 (-1262 *5) "failed"))
+ (|:| -4263 (-642 (-1262 *5))))))
+ (-5 *1 (-665 *5)) (-5 *4 (-642 (-1262 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411))))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4263 (-642 *4))))
+ (-5 *1 (-666 *5 *6 *4 *3)) (-4 *3 (-685 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4411))))
+ (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4411))))
+ (-5 *2
+ (-642
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4263 (-642 *7)))))
+ (-5 *1 (-666 *5 *6 *7 *3)) (-5 *4 (-642 *7))
+ (-4 *3 (-685 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173))) (-4 *5 (-556))
+ (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-768 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-950 *4))) (-4 *4 (-556))
+ (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-768 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *1 (-770 *5 *2)) (-4 *2 (-13 (-29 *5) (-1197) (-957)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-687 *7)) (-5 *5 (-1173))
+ (-4 *7 (-13 (-29 *6) (-1197) (-957)))
+ (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1262 *7)) (|:| -4263 (-642 (-1262 *7)))))
+ (-5 *1 (-800 *6 *7)) (-5 *4 (-1262 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-687 *6)) (-5 *4 (-1173))
+ (-4 *6 (-13 (-29 *5) (-1197) (-957)))
+ (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-642 (-1262 *6))) (-5 *1 (-800 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-642 (-294 *7))) (-5 *4 (-642 (-114)))
+ (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957)))
+ (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1262 *7)) (|:| -4263 (-642 (-1262 *7)))))
+ (-5 *1 (-800 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-642 *7)) (-5 *4 (-642 (-114)))
+ (-5 *5 (-1173)) (-4 *7 (-13 (-29 *6) (-1197) (-957)))
+ (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1262 *7)) (|:| -4263 (-642 (-1262 *7)))))
+ (-5 *1 (-800 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1173))
+ (-4 *7 (-13 (-29 *6) (-1197) (-957)))
+ (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -4263 (-642 *7))) *7 "failed"))
+ (-5 *1 (-800 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-1173))
+ (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -4263 (-642 *3))) *3 "failed"))
+ (-5 *1 (-800 *6 *3)) (-4 *3 (-13 (-29 *6) (-1197) (-957)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-642 *2))
+ (-4 *2 (-13 (-29 *6) (-1197) (-957))) (-5 *1 (-800 *6 *2))
+ (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-642 *2))
+ (-4 *2 (-13 (-29 *6) (-1197) (-957)))
+ (-4 *6 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *1 (-800 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1033)) (-5 *1 (-803))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-806)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-803))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4))
+ (-5 *2 (-1033)) (-5 *1 (-803))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4))
+ (-5 *2 (-1033)) (-5 *1 (-803))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379)))
+ (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1262 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-642 *4))
+ (-5 *2 (-1033)) (-5 *1 (-803))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379)))
+ (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1262 (-316 *4))) (-5 *5 (-642 (-379)))
+ (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1033)) (-5 *1 (-803))))
+ ((*1 *2 *3 *4 *5)
(|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-641 (-225))) (-5 *1 (-204)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-379))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -4376 (-641 *1)) (|:| -2249 *1)))
- (-5 *3 (-641 *1)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-846))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-846))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846)))))
-(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -4263 (-642 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-363)) (-4 *7 (-654 *6))
+ (-5 *2 (-2 (|:| |particular| (-1262 *6)) (|:| -4263 (-687 *6))))
+ (-5 *1 (-811 *6 *7)) (-5 *3 (-687 *6)) (-5 *4 (-1262 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-1033)) (-5 *1 (-895))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-896)) (-5 *4 (-1060)) (-5 *2 (-1033)) (-5 *1 (-895))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-769)) (-5 *6 (-642 (-642 (-316 *3)))) (-5 *7 (-1155))
+ (-5 *8 (-225)) (-5 *5 (-642 (-316 (-379)))) (-5 *3 (-379))
+ (-5 *2 (-1033)) (-5 *1 (-895))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-769)) (-5 *6 (-642 (-642 (-316 *3)))) (-5 *7 (-1155))
+ (-5 *5 (-642 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1033))
+ (-5 *1 (-895))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-950 (-407 (-564)))) (-5 *2 (-642 (-379)))
+ (-5 *1 (-1021)) (-5 *4 (-379))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-950 (-564))) (-5 *2 (-642 (-379))) (-5 *1 (-1021))
+ (-5 *4 (-379))))
((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-938)) (-5 *3 (-564)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3577 *4))))
- (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-825)) (-5 *3 (-1152)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225)))
- (-5 *2 (-1261)) (-5 *1 (-257)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192))))
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300))))
+ (-12 (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1128 *4))
+ (-5 *3 (-316 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))))
+ (-12 (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-642 (-294 (-316 *4)))) (-5 *1 (-1128 *4))
+ (-5 *3 (-294 (-316 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1128 *5))
+ (-5 *3 (-294 (-316 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173))
+ (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-642 (-294 (-316 *5)))) (-5 *1 (-1128 *5))
+ (-5 *3 (-316 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 (-1173)))
+ (-4 *5 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-642 (-642 (-294 (-316 *5))))) (-5 *1 (-1128 *5))
+ (-5 *3 (-642 (-294 (-316 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-407 (-950 *5)))) (-5 *4 (-642 (-1173)))
+ (-4 *5 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *5))))))
+ (-5 *1 (-1181 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 (-1173))) (-4 *5 (-556))
+ (-5 *2 (-642 (-642 (-294 (-407 (-950 *5)))))) (-5 *1 (-1181 *5))
+ (-5 *3 (-642 (-294 (-407 (-950 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-407 (-950 *4)))) (-4 *4 (-556))
+ (-5 *2 (-642 (-642 (-294 (-407 (-950 *4)))))) (-5 *1 (-1181 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-642 (-642 (-294 (-407 (-950 *4))))))
+ (-5 *1 (-1181 *4)) (-5 *3 (-642 (-294 (-407 (-950 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173)) (-4 *5 (-556))
+ (-5 *2 (-642 (-294 (-407 (-950 *5))))) (-5 *1 (-1181 *5))
+ (-5 *3 (-407 (-950 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1173)) (-4 *5 (-556))
+ (-5 *2 (-642 (-294 (-407 (-950 *5))))) (-5 *1 (-1181 *5))
+ (-5 *3 (-294 (-407 (-950 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *4)))))
+ (-5 *1 (-1181 *4)) (-5 *3 (-407 (-950 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-642 (-294 (-407 (-950 *4)))))
+ (-5 *1 (-1181 *4)) (-5 *3 (-294 (-407 (-950 *4)))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-848)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209))
- (-4 *5 (-373 *4)) (-4 *2 (-373 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045))
- (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))))
+ (-12 (-5 *3 (-642 (-941 *4))) (-4 *1 (-1131 *4)) (-4 *4 (-1047))
+ (-5 *2 (-769)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *5 (-112))
+ (-5 *2 (-1033)) (-5 *1 (-743)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3))
+ (-4 *3 (-13 (-363) (-147) (-1036 (-564)))) (-5 *1 (-568 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 (-564)))))
- (-5 *1 (-361 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 (-767)))))
- (-5 *1 (-386 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| -3688 *3) (|:| -1838 (-564)))))
- (-5 *1 (-418 *3)) (-4 *3 (-556))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -1689 (-767)))))
- (-5 *1 (-815 *3)) (-4 *3 (-846)))))
+ (-12 (-5 *2 (-418 (-1169 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-917))
- (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4409 "*")))))
- (-5 *1 (-898 *4 *2)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-564)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3372 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045))
- (-14 *4 (-641 (-1170)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846)))
- (-14 *4 (-641 (-1170)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846))
- (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *8)) (-5 *4 (-641 *6)) (-4 *6 (-846))
- (-4 *8 (-945 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045))
- (-5 *2 (-641 (-767))) (-5 *1 (-321 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172))
- (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4))
- (-4 *4 (-1235 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-641 (-767)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *3 (-846)) (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *2 (-788))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1250 *3))
- (-5 *2 (-564))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1219 *3))
- (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-767)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1846 *4)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1238 (-169 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-363) (-846))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1238 (-169 *2))))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1033)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033))
+ (-5 *1 (-746)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-988 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
- (-4 *3 (-373 *5))))
+ (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-826) (-1047))) (-5 *2 (-1155))
+ (-5 *1 (-824 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-826) (-1047)))
+ (-5 *2 (-1155)) (-5 *1 (-824 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-820)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-826) (-1047)))
+ (-5 *2 (-1267)) (-5 *1 (-824 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-820)) (-5 *4 (-316 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-826) (-1047))) (-5 *2 (-1267)) (-5 *1 (-824 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-826)) (-5 *2 (-1155))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-826)) (-5 *3 (-112)) (-5 *2 (-1155))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-826)) (-5 *3 (-820)) (-5 *2 (-1267))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-826)) (-5 *3 (-820)) (-5 *4 (-112)) (-5 *2 (-1267)))))
+(((*1 *1 *1) (-5 *1 (-112))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3))
+ (-4 *3 (-373 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-988 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5))))
+ (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3))
+ (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-685 *5)) (-4 *5 (-988 *4)) (-4 *4 (-556))
- (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4)))
- (-5 *1 (-689 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-564)))))
- (-4 *6 (-1235 *5))
- (-5 *2 (-2 (|:| -1606 *7) (|:| |rh| (-641 (-407 *6)))))
- (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6)))
- (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6)))))
+ (-12 (-5 *3 (-687 *4)) (-4 *4 (-990 *2)) (-4 *2 (-556))
+ (-5 *1 (-691 *2 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-988 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3))
- (-4 *3 (-1235 *5)))))
+ (-12 (-4 *4 (-990 *2)) (-4 *2 (-556)) (-5 *1 (-1231 *2 *4 *3))
+ (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-642 (-1169 *13))) (-5 *3 (-1169 *13))
+ (-5 *4 (-642 *12)) (-5 *5 (-642 *10)) (-5 *6 (-642 *13))
+ (-5 *7 (-642 (-642 (-2 (|:| -1831 (-769)) (|:| |pcoef| *13)))))
+ (-5 *8 (-642 (-769))) (-5 *9 (-1262 (-642 (-1169 *10))))
+ (-4 *12 (-848)) (-4 *10 (-307)) (-4 *13 (-947 *10 *11 *12))
+ (-4 *11 (-791)) (-5 *1 (-705 *11 *12 *10 *13)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *4)) (-4 *4 (-363)) (-4 *2 (-1238 *4))
+ (-5 *1 (-920 *4 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173)) (-4 *4 (-556)) (-4 *4 (-1097))
+ (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-642 *1)) (-4 *1 (-1062 *4 *5 *6)) (-4 *4 (-1047))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1205 *5 *6 *7 *3))
+ (-4 *5 (-556)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-4 *3 (-1062 *5 *6 *7)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3577 *9))))
- (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1264))
- (-5 *1 (-1063 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3577 *9))))
- (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8))
- (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1264))
- (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1045))
- (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209))
- (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1020 *3))
- (-4 *3 (-13 (-844) (-363) (-1018)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-1235 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363)))
- (-4 *3 (-1235 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-963))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))))
+ (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -3530 *9))))
+ (-5 *4 (-769)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1068 *5 *6 *7 *8))
+ (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-1267))
+ (-5 *1 (-1066 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-2 (|:| |val| (-642 *8)) (|:| -3530 *9))))
+ (-5 *4 (-769)) (-4 *8 (-1062 *5 *6 *7)) (-4 *9 (-1106 *5 *6 *7 *8))
+ (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848)) (-5 *2 (-1267))
+ (-5 *1 (-1142 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *1 *2) (-12 (-5 *1 (-689 *2)) (-4 *2 (-611 (-860))))))
+(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-379))))
+ ((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-379)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-903 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1097)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-891))
- (-5 *3
- (-2 (|:| |pde| (-641 (-316 (-225))))
- (|:| |constraints|
- (-641
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-767)) (|:| |boundaryType| (-564))
- (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
- (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
- (|:| |tol| (-225))))
- (-5 *2 (-1031)))))
+ (-12 (-4 *4 (-556)) (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-112))
+ (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-1062 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(((*1 *2) (-12 (-5 *2 (-1267)) (-5 *1 (-1176))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-13 (-1097) (-34)))
+ (-4 *3 (-13 (-1097) (-34))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-4 *3 (-896 *5)) (-5 *2 (-685 *3))
- (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
- (-5 *2 (-641 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-733 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-861)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767))
- (-14 *4 (-767)) (-4 *5 (-172)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))))
+ (-12 (-5 *4 (-564)) (-5 *2 (-642 (-2 (|:| -3643 *3) (|:| -2775 *4))))
+ (-5 *1 (-694 *3)) (-4 *3 (-1238 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4)))
- (-5 *1 (-1180 *4)) (-4 *4 (-846)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-564)) (-5 *1 (-204)))))
+(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-564)) (|has| *1 (-6 -4401)) (-4 *1 (-404))
+ (-5 *2 (-919)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-1173)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-769)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-1034 (-564)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1034 *3))
- (-4 *2 (-363))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363))))
+ (-12 (-4 *3 (-13 (-556) (-1036 (-564)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1197) (-430 (-169 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-628 *4 *2))
- (-4 *2 (-13 (-430 *4) (-998) (-1194)))))
+ (-12 (-5 *3 (-1173)) (-4 *4 (-13 (-556) (-1036 (-564))))
+ (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 (-169 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-1201 *3 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1194)))
- (-4 *4 (-556)) (-5 *1 (-628 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-1170))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-955)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-846))
- (-5 *1 (-1180 *4)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-747)))))
-(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-757))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-1201 *4 *2)) (-4 *2 (-13 (-27) (-1197) (-430 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363))
- (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2))
- (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1216))
+ (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5)))
+ (-5 *2 (-2 (|:| |num| (-687 *5)) (|:| |den| *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-642 *4)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-1238 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-642 *3)) (-5 *1 (-1125 *4 *3)) (-4 *4 (-1238 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-183))) (-5 *1 (-140)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-642 (-950 (-564)))) (-5 *4 (-642 (-1173)))
+ (-5 *2 (-642 (-642 (-379)))) (-5 *1 (-1021)) (-5 *5 (-379))))
((*1 *2 *3)
- (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172))
- (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5))))
+ (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-846) (-307) (-147) (-1020)))
+ (-14 *5 (-642 (-1173))) (-5 *2 (-642 (-642 (-1022 (-407 *4)))))
+ (-5 *1 (-1288 *4 *5 *6)) (-14 *6 (-642 (-1173)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-642 (-642 (-1022 (-407 *5))))) (-5 *1 (-1288 *5 *6 *7))
+ (-14 *6 (-642 (-1173))) (-14 *7 (-642 (-1173)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-950 *4)))
+ (-4 *4 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-642 (-642 (-1022 (-407 *4))))) (-5 *1 (-1288 *4 *5 *6))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1109)) (-4 *3 (-1097)) (-5 *2 (-642 *1))
+ (-4 *1 (-430 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))))
-(((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-685 (-948 *4))) (-5 *1 (-1024 *4))
- (-4 *4 (-1045)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-767)) (|:| -1744 *3))))
- (-5 *4 (-767)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789))
- (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-948 (-564))))
- (-5 *2
- (-2 (|:| |varOrder| (-641 (-1170)))
- (|:| |inhom| (-3 (-641 (-1259 (-767))) "failed"))
- (|:| |hom| (-641 (-1259 (-767))))))
- (-5 *1 (-236)))))
+ (|partial| -12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3))
+ (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-642 *1)) (-4 *1 (-947 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-791)) (-4 *5 (-848)) (-4 *6 (-1047))
+ (-4 *7 (-947 *6 *4 *5)) (-5 *2 (-642 *3))
+ (-5 *1 (-948 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $))
+ (-15 -2255 (*7 $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-4 *5 (-1097)) (-4 *6 (-884 *5)) (-5 *2 (-883 *5 *6 (-642 *6)))
+ (-5 *1 (-885 *5 *6 *4)) (-5 *3 (-642 *6)) (-4 *4 (-612 (-890 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1097)) (-5 *2 (-642 (-294 *3))) (-5 *1 (-885 *5 *3 *4))
+ (-4 *3 (-1036 (-1173))) (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1097)) (-5 *2 (-642 (-294 (-950 *3))))
+ (-5 *1 (-885 *5 *3 *4)) (-4 *3 (-1047))
+ (-2268 (-4 *3 (-1036 (-1173)))) (-4 *3 (-884 *5))
+ (-4 *4 (-612 (-890 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1097)) (-5 *2 (-887 *5 *3)) (-5 *1 (-885 *5 *3 *4))
+ (-2268 (-4 *3 (-1036 (-1173)))) (-2268 (-4 *3 (-1047)))
+ (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1262 (-642 *3))) (-4 *4 (-307))
+ (-5 *2 (-642 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-941 *2)) (-5 *1 (-980 *2)) (-4 *2 (-1047)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-1034 (-564))) (-4 *3 (-556))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2323 ((-1119 *3 (-610 $)) $))
- (-15 -2336 ((-1119 *3 (-610 $)) $))
- (-15 -2423 ($ (-1119 *3 (-610 $))))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3))
- (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094))
- (-4 *2 (-131)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452))
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-642 (-1155))) (-5 *1 (-394)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-947 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-449 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1141)) (-5 *2 (-144)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1279 *3 *4)) (-4 *3 (-848)) (-4 *4 (-1047))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-1047))
+ (-4 *4 (-844)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-642 (-225)))) (-5 *1 (-924)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1216)) (-4 *5 (-1238 *4))
(-5 *2
- (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564)))))
- (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5))))))
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5))
+ (|:| |c2| (-407 *5)) (|:| |deg| (-769))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1238 (-407 *5))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-103 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-642 (-642 (-642 *4)))) (-5 *3 (-642 *4)) (-4 *4 (-848))
+ (-5 *1 (-1183 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-556))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)) (-4 *2 (-556)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 *8)) (-4 *8 (-947 *5 *7 *6))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-848) (-612 (-1173))))
+ (-4 *7 (-791))
+ (-5 *2
+ (-642
+ (-2 (|:| -2414 (-769))
+ (|:| |eqns|
+ (-642
+ (-2 (|:| |det| *8) (|:| |rows| (-642 (-564)))
+ (|:| |cols| (-642 (-564))))))
+ (|:| |fgb| (-642 *8)))))
+ (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-769)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-363)) (-5 *1 (-764 *2 *3)) (-4 *2 (-706 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-757)))))
+(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1033)) (-5 *1 (-838))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-316 (-379)))) (-5 *4 (-642 (-379)))
+ (-5 *2 (-1033)) (-5 *1 (-838)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-998))))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
- (-5 *2 (-1031)) (-5 *1 (-752)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-556)) (-5 *1 (-965 *4 *2))
- (-4 *2 (-1235 *4)))))
+ (-12 (|has| *2 (-6 (-4412 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2))
+ (-4 *2 (-1047)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1238 *2))
+ (-4 *4 (-685 *2 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-564))
+ (-5 *6
+ (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2612 (-379))))
+ (-5 *7 (-1 (-1267) (-1262 *5) (-1262 *5) (-379)))
+ (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267))
+ (-5 *1 (-786))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-564))
+ (-5 *6
+ (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2612 (-379))))
+ (-5 *7 (-1 (-1267) (-1262 *5) (-1262 *5) (-379)))
+ (-5 *3 (-1262 (-379))) (-5 *5 (-379)) (-5 *2 (-1267))
+ (-5 *1 (-786)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1033)) (-5 *1 (-751)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
- (-4 *3 (-1235 *4))
- (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1250 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4))
- (-14 *4 (-641 (-1170)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-450 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-945 *4 *5 *6))
- (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846))
- (-5 *1 (-450 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-641 (-776 *3 (-860 *4)))) (-4 *3 (-452))
- (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))))
-(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379))))
-(((*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))
- ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))))
-(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-767)) (-5 *1 (-589)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1094))
- (-4 *3 (-166 *6)) (-4 (-948 *6) (-882 *5))
- (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-885 *4 *1)) (-5 *3 (-888 *4)) (-4 *1 (-882 *4))
- (-4 *4 (-1094))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1094))
- (-4 *6 (-13 (-1094) (-1034 *3))) (-4 *3 (-882 *5))
- (-5 *1 (-927 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094))
- (-4 *3 (-13 (-430 *6) (-612 *4) (-882 *5) (-1034 (-610 $))))
- (-5 *4 (-888 *5)) (-4 *6 (-13 (-556) (-882 *5)))
- (-5 *1 (-928 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 (-564) *3)) (-5 *4 (-888 (-564))) (-4 *3 (-545))
- (-5 *1 (-929 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094))
- (-4 *6 (-13 (-1094) (-1034 (-610 $)) (-612 *4) (-882 *5)))
- (-5 *4 (-888 *5)) (-5 *1 (-930 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1094))
- (-4 *6 (-882 *5)) (-4 *3 (-662 *6)) (-5 *1 (-931 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-885 *6 *3) *8 (-888 *6) (-885 *6 *3)))
- (-4 *8 (-846)) (-5 *2 (-885 *6 *3)) (-5 *4 (-888 *6))
- (-4 *6 (-1094)) (-4 *3 (-13 (-945 *9 *7 *8) (-612 *4)))
- (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-882 *6)))
- (-5 *1 (-932 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094))
- (-4 *3 (-13 (-945 *8 *6 *7) (-612 *4))) (-5 *4 (-888 *5))
- (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *8 (-13 (-1045) (-882 *5))) (-5 *1 (-932 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-988 *6))
- (-4 *6 (-13 (-556) (-882 *5) (-612 *4))) (-5 *4 (-888 *5))
- (-5 *1 (-935 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-888 *5))
- (-4 *5 (-1094)) (-5 *1 (-936 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-641 (-888 *7))) (-5 *5 (-1 *9 (-641 *9)))
- (-5 *6 (-1 (-885 *7 *9) *9 (-888 *7) (-885 *7 *9))) (-4 *7 (-1094))
- (-4 *9 (-13 (-1045) (-612 (-888 *7)) (-1034 *8)))
- (-5 *2 (-885 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-1045))
- (-5 *1 (-937 *7 *8 *9)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147)))
- (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
+ (-12 (-4 *4 (-907)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-947 *4 *5 *6)) (-5 *2 (-418 (-1169 *7)))
+ (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-1169 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-907)) (-4 *5 (-1238 *4)) (-5 *2 (-418 (-1169 *5)))
+ (-5 *1 (-905 *4 *5)) (-5 *3 (-1169 *5)))))
+(((*1 *2) (-12 (-5 *2 (-642 (-1173))) (-5 *1 (-105)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1267)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-1279 *3 *4)) (-4 *3 (-848))
+ (-4 *4 (-1047)) (-4 *4 (-172))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1279 *2 *3)) (-4 *2 (-848)) (-4 *3 (-1047))
+ (-4 *3 (-172)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767))
- (-14 *4 (-767)) (-4 *5 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5))
- (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-948 *5)))
- (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7))))
+ (-12 (-5 *2 (-642 (-564))) (-5 *1 (-1002 *3)) (-14 *3 (-564)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-642 *1)) (-4 *1 (-918)))))
+(((*1 *2)
+ (-12 (-5 *2 (-687 (-908 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-919))
+ (-14 *4 (-919))))
+ ((*1 *2)
+ (-12 (-5 *2 (-687 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
+ (-14 *4
+ (-3 (-1169 *3)
+ (-1262 (-642 (-2 (|:| -2085 *3) (|:| -2047 (-1117)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-687 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349))
+ (-14 *4 (-919)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-769)) (-4 *5 (-1047)) (-4 *2 (-1238 *5))
+ (-5 *1 (-1256 *5 *2 *6 *3)) (-4 *6 (-654 *2)) (-4 *3 (-1253 *5)))))
+(((*1 *1) (-5 *1 (-559))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-872))
+ (-5 *5 (-919)) (-5 *6 (-642 (-263))) (-5 *2 (-468)) (-5 *1 (-1266))))
((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213))
- (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363))
- (-5 *2 (-641 (-948 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
+ (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *2 (-468))
+ (-5 *1 (-1266))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-642 (-941 (-225))))) (-5 *4 (-642 (-263)))
+ (-5 *2 (-468)) (-5 *1 (-1266)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-1238 *3)) (-4 *3 (-1047)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-1267)) (-5 *1 (-1176))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-1177)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-967 *4 *3)) (-4 *3 (-1238 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-307)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-789))
- (-4 *3 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $))))) (-4 *5 (-556))
- (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789))
- (-4 *3
- (-13 (-846)
- (-10 -8 (-15 -1311 ((-1170) $))
- (-15 -3395 ((-3 $ "failed") (-1170))))))
- (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *6))
- (-4 *6
- (-13 (-846)
- (-10 -8 (-15 -1311 ((-1170) $))
- (-15 -3395 ((-3 $ "failed") (-1170))))))
- (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2))
- (-4 *2 (-945 (-948 *4) *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-818)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1197))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-681 *4 *3)) (-4 *4 (-1097))
+ (-4 *3 (-1097)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1169 *6)) (-4 *6 (-1047)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *2 (-1169 *7)) (-5 *1 (-321 *4 *5 *6 *7))
+ (-4 *7 (-947 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-2 (|:| -3643 (-1169 *6)) (|:| -2700 (-564)))))
+ (-4 *6 (-307)) (-4 *4 (-791)) (-4 *5 (-848)) (-5 *2 (-564))
+ (-5 *1 (-740 *4 *5 *6 *7)) (-4 *7 (-947 *6 *4 *5)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170))
- (-5 *1 (-262 *2)) (-4 *2 (-1209))))
+ (|partial| -12 (-5 *3 (-642 (-263))) (-5 *4 (-1173))
+ (-5 *1 (-262 *2)) (-4 *2 (-1212))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52))
+ (|partial| -12 (-5 *3 (-642 (-263))) (-5 *4 (-1173)) (-5 *2 (-52))
(-5 *1 (-263)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1262 *4)) (-5 *3 (-769)) (-4 *4 (-349))
+ (-5 *1 (-528 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-919)) (-5 *1 (-328 *3 *4))
+ (-4 *3 (-329 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-831 (-919))) (-5 *1 (-328 *3 *4))
+ (-4 *3 (-329 *4))))
+ ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-919))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-831 (-919))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1173)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1173)) (-5 *2 (-112)) (-5 *1 (-610 *4))
+ (-4 *4 (-1097))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-1097))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-833 *3)) (-4 *3 (-1097)) (-5 *2 (-112))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1097)) (-5 *2 (-112)) (-5 *1 (-885 *5 *3 *4))
+ (-4 *3 (-884 *5)) (-4 *4 (-612 (-890 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *6)) (-4 *6 (-884 *5)) (-4 *5 (-1097))
+ (-5 *2 (-112)) (-5 *1 (-885 *5 *6 *4)) (-4 *4 (-612 (-890 *5))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2))
- (-4 *2 (-652 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3))
- (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1235 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *1) (-5 *1 (-130))))
+ (-12 (-5 *2 (-642 *7)) (-5 *3 (-564)) (-4 *7 (-947 *4 *5 *6))
+ (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-5 *1 (-449 *4 *5 *6 *7)))))
(((*1 *1)
- (-12 (-4 *1 (-404)) (-2351 (|has| *1 (-6 -4398)))
- (-2351 (|has| *1 (-6 -4390)))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-846))))
- ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846)))
- ((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))))
+ (-12 (-4 *1 (-404)) (-2268 (|has| *1 (-6 -4401)))
+ (-2268 (|has| *1 (-6 -4393)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1097)) (-4 *2 (-848))))
+ ((*1 *1) (-4 *1 (-842))) ((*1 *1 *1 *1) (-4 *1 (-848)))
+ ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-848)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379))))
- (-5 *1 (-799)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363)))
- (-4 *3 (-1235 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564))
- (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-789))
- (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1253 *4))
+ (-4 *4 (-38 (-407 (-564))))
+ (-5 *2 (-1 (-1153 *4) (-1153 *4) (-1153 *4))) (-5 *1 (-1255 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-950 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-850 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-610 *3))
+ (-4 *3 (-13 (-430 *5) (-27) (-1197)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2 (-2 (|:| -2116 *3) (|:| |coeff| *3)))
+ (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1097)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-848)) (-5 *1 (-1183 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140))))
((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183))))
((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))))
-(((*1 *1 *1) (-5 *1 (-1057))))
(((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-556))
- (-5 *2 (-112)))))
+ (-12 (-4 *3 (-1212)) (-5 *2 (-642 *1)) (-4 *1 (-1008 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-1161 *3 *4))) (-5 *1 (-1161 *3 *4))
+ (-14 *3 (-919)) (-4 *4 (-1047)))))
(((*1 *1 *1) (-4 *1 (-627)))
((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998) (-1194))))))
-(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4))
- (-4 *4 (-13 (-430 *7) (-27) (-1194)))
- (-4 *7 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4))))
- (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4)))
- (-4 *4 (-13 (-430 *7) (-27) (-1194)))
- (-4 *7 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2047 (-641 *4))))
- (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *2)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4))
- (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789))
- (-4 *4 (-13 (-846) (-10 -8 (-15 -1311 ((-1170) $)))))
- (-4 *6 (-556)))))
+ (-4 *2 (-13 (-430 *3) (-1000) (-1197))))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264))))
+ ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1264)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
+ (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-1034 (-564)))) (-5 *2 (-169 (-316 *4)))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-685 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5))
- (-14 *3 (-767)) (-14 *4 (-767)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-799)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172))
- (-5 *2 (-1259 (-685 (-948 *4)))) (-5 *1 (-189 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-996 *3)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-819)) (-5 *1 (-818)))))
-(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-922))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-922))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-556)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-564)) (-5 *1 (-1153 *3)) (-4 *3 (-1212))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-1259 (-685 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363))
- (-5 *2 (-1259 (-685 (-407 (-948 *5))))) (-5 *1 (-1080 *5))
- (-5 *4 (-685 (-407 (-948 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363))
- (-5 *2 (-1259 (-685 (-948 *5)))) (-5 *1 (-1080 *5))
- (-5 *4 (-685 (-948 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363))
- (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4)))))
-(((*1 *1) (-4 *1 (-349)))
+ (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363))
+ (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-685 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2))
+ (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5)))
- (|:| |prim| (-1166 *5))))
- (-5 *1 (-432 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-556) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3))
- (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3))))
- (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-948 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147)))
- (-5 *2
- (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564))
- (|:| |prim| (-1166 *5))))
- (-5 *1 (-956 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-948 *5))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-13 (-363) (-147)))
- (-5 *2
- (-2 (|:| -4376 (-641 (-564))) (|:| |poly| (-641 (-1166 *5)))
- (|:| |prim| (-1166 *5))))
- (-5 *1 (-956 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-948 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170))
- (-4 *6 (-13 (-363) (-147)))
- (-5 *2
- (-2 (|:| -4376 (-641 (-564))) (|:| |poly| (-641 (-1166 *6)))
- (|:| |prim| (-1166 *6))))
- (-5 *1 (-956 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-815 *3))))
+ (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172))
+ (-5 *1 (-686 *2 *4 *5 *3)) (-4 *3 (-685 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-842)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1045)))))
+ (-12 (-4 *1 (-1120 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4412 "*"))) (-4 *2 (-1047)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1150 (-948 *4)) (-1150 (-948 *4))))
- (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170)))))
- (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098))
- (-5 *1 (-397))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170)))))
- (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098))
- (-5 *1 (-397))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170))
- (-5 *2 (-1098)) (-5 *1 (-397)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
+ (-12 (-5 *3 (-1155)) (-5 *2 (-642 (-1178))) (-5 *1 (-878)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-235 *3))
- (-4 *3 (-1094))))
+ (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1047)) (-5 *1 (-594 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))))))
-(((*1 *1) (-5 *1 (-819))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-846))
- (-4 *8 (-945 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-789))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed"))
- (|:| -2047 (-641 (-1259 (-407 *8))))))
- (-5 *1 (-665 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1222 *3)) (-4 *3 (-1047))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1253 *3)) (-4 *3 (-1047)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1045)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
- (-4 *3 (-1235 *4))
- (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1194) (-284))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846))
- (-4 *3 (-1059 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -3577 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-818)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1045))
- (-5 *1 (-1154 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1045))
- (-14 *4 (-1170)) (-14 *5 *3))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879))
- (-5 *3 (-641 (-564)))))
+ (-12 (-5 *2 (-1 (-941 *3) (-941 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1197) (-1000))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1262 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-687 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-687 *4)) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-687 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-769)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-919)) (|has| *1 (-6 -4401)) (-4 *1 (-404))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-919)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-556))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1267)) (-5 *1 (-1135))))
((*1 *2 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-879))
- (-5 *3 (-641 (-564))))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3)))))
+ (-12 (-5 *3 (-642 (-860))) (-5 *2 (-1267)) (-5 *1 (-1135)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-903 (-564))) (-5 *4 (-564)) (-5 *2 (-687 *4))
+ (-5 *1 (-1026 *5)) (-4 *5 (-1047))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-687 (-564))) (-5 *1 (-1026 *4))
+ (-4 *4 (-1047))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-903 (-564)))) (-5 *4 (-564))
+ (-5 *2 (-642 (-687 *4))) (-5 *1 (-1026 *5)) (-4 *5 (-1047))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-642 (-564)))) (-5 *2 (-642 (-687 (-564))))
+ (-5 *1 (-1026 *4)) (-4 *4 (-1047)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *4)) (-4 *4 (-363)) (-5 *2 (-687 *4))
+ (-5 *1 (-812 *4 *5)) (-4 *5 (-654 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 *5)) (-5 *4 (-769)) (-4 *5 (-363))
+ (-5 *2 (-687 *5)) (-5 *1 (-812 *5 *6)) (-4 *6 (-654 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2746 *4)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
+ (-12 (|has| *2 (-6 (-4412 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2))
+ (-4 *2 (-1047)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1238 *2))
+ (-4 *4 (-685 *2 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-1047))
+ (-5 *2 (-481 *4 *5)) (-5 *1 (-942 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-1211))) (-5 *1 (-524)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-925)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1136))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-687 *6)) (-5 *5 (-1 (-418 (-1169 *6)) (-1169 *6)))
+ (-4 *6 (-363))
+ (-5 *2
+ (-642
+ (-2 (|:| |outval| *7) (|:| |outmult| (-564))
+ (|:| |outvect| (-642 (-687 *7))))))
+ (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-846))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-687 *3))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))))
+ (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-687 *3))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))))
+ (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-901 *3)) (-4 *3 (-1097)) (-5 *2 (-1099 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1097)) (-5 *2 (-1099 (-642 *4))) (-5 *1 (-902 *4))
+ (-5 *3 (-642 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1097)) (-5 *2 (-1099 (-1099 *4))) (-5 *1 (-902 *4))
+ (-5 *3 (-1099 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1099 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1097)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846))
- (-4 *5 (-789)) (-4 *2 (-266 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-307) (-1034 (-564)) (-637 (-564)) (-147)))
- (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-955)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1) (-5 *1 (-858)))
+ (-12 (-5 *3 (-642 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1213 *2))
+ (-4 *2 (-1097))))
((*1 *2 *3)
- (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1045)))))
+ (-12 (-5 *3 (-642 *2)) (-4 *2 (-1097)) (-4 *2 (-848))
+ (-5 *1 (-1213 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173))
+ (-14 *4 *2))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-903 *3)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-642 (-564))) (-5 *3 (-687 (-564))) (-5 *1 (-1107)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))
+ (-4 *2 (-13 (-848) (-21))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1238 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1152) (-1175)))
- (-5 *1 (-1175)))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1238 *3)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1047))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-713 *3 *2 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-867 *3)) (-5 *2 (-564)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-848))
+ (-4 *5 (-791)) (-4 *2 (-266 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1173))
+ (-4 *4 (-13 (-307) (-1036 (-564)) (-637 (-564)) (-147)))
+ (-5 *1 (-802 *4 *2)) (-4 *2 (-13 (-29 *4) (-1197) (-957)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-860))) ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1) (-5 *1 (-860)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1153 *3)) (-5 *1 (-1157 *3)) (-4 *3 (-1047)))))
+(((*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-504 (-407 (-564)) (-240 *5 (-769)) (-862 *4)
+ (-247 *4 (-407 (-564)))))
+ (-14 *4 (-642 (-1173))) (-14 *5 (-769)) (-5 *2 (-112))
+ (-5 *1 (-505 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-545))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1216)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1097)) (-4 *3 (-898 *5)) (-5 *2 (-687 *3))
+ (-5 *1 (-690 *5 *3 *6 *4)) (-4 *6 (-373 *3))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4410)))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112))
+ (-5 *1 (-843 *4 *5)) (-14 *4 (-769)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4411)) (-4 *1 (-244 *2)) (-4 *2 (-1212)))))
(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-1267)) (-5 *1 (-1264))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-767))
- (-5 *2 (-685 (-225))) (-5 *1 (-267)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *1) (-5 *1 (-615))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-506)) (-4 *4 (-1094)) (-5 *1 (-925 *4 *2))
+ (-12 (-5 *3 (-506)) (-4 *4 (-1097)) (-5 *1 (-927 *4 *2))
(-4 *2 (-430 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-506)) (-5 *2 (-316 (-564)))
- (-5 *1 (-926)))))
-(((*1 *1) (-5 *1 (-615))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2047 (-641 *1))))
- (-4 *1 (-367 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-453 *3 *4 *5 *6))
- (|:| -2047 (-641 (-453 *3 *4 *5 *6)))))
- (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209))
- (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-967)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-748)))))
-(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112))
- (-5 *1 (-357 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-4 *4 (-988 *3)) (-5 *1 (-142 *3 *4 *2))
- (-4 *2 (-373 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-988 *4)) (-4 *2 (-373 *4))
- (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-685 *5)) (-4 *5 (-988 *4)) (-4 *4 (-556))
- (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-4 *4 (-988 *3)) (-5 *1 (-1228 *3 *4 *2))
- (-4 *2 (-1235 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296))))
+ (-12 (-5 *3 (-1173)) (-5 *4 (-506)) (-5 *2 (-316 (-564)))
+ (-5 *1 (-928)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-564))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-769)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-791)) (-4 *4 (-947 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-848))
+ (-5 *1 (-449 *5 *6 *7 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-642 (-183))) (-5 *1 (-140)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-769)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047))
+ (-5 *2 (-642 (-642 (-642 (-941 *3))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1267)) (-5 *1 (-820)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1155)) (-5 *4 (-564)) (-5 *5 (-687 (-225)))
+ (-5 *2 (-1033)) (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-769))
+ (-4 *3 (-13 (-724) (-368) (-10 -7 (-15 ** (*3 *3 (-564))))))
+ (-5 *1 (-246 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1169 *9)) (-5 *4 (-642 *7)) (-5 *5 (-642 *8))
+ (-4 *7 (-848)) (-4 *8 (-1047)) (-4 *9 (-947 *8 *6 *7))
+ (-4 *6 (-791)) (-5 *2 (-1169 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-296))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296))))
+ (-12 (-5 *3 (-642 (-1155))) (-5 *2 (-312)) (-5 *1 (-296))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-312)) (-5 *1 (-296))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312))
+ (-12 (-5 *4 (-642 (-1155))) (-5 *3 (-1155)) (-5 *2 (-312))
(-5 *1 (-296)))))
+(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1182)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1045) (-882 *3) (-612 (-888 *3))))
- (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5))
- (-4 *5 (-13 (-430 *4) (-882 *3) (-612 (-888 *3)))))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-1045))
- (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-1235 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-859)))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))))
+ (-12 (-4 *3 (-1097)) (-4 *4 (-13 (-1047) (-884 *3) (-612 (-890 *3))))
+ (-5 *2 (-642 (-1073 *3 *4 *5))) (-5 *1 (-1074 *3 *4 *5))
+ (-4 *5 (-13 (-430 *4) (-884 *3) (-612 (-890 *3)))))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-925)))))
+(((*1 *1 *1 *1) (-5 *1 (-860))))
+(((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3) (-12 (-5 *3 (-642 (-52))) (-5 *2 (-1267)) (-5 *1 (-861)))))
+(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1 (-379))) (-5 *1 (-1038)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-919))
+ (-4 *4 (-1047)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5))
- (-5 *2 (-2 (|:| -1838 (-767)) (|:| -4376 *3) (|:| |radicand| *6)))
- (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1235 *3)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13))
- (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13))
- (-5 *7 (-641 (-641 (-2 (|:| -4369 (-767)) (|:| |pcoef| *13)))))
- (-5 *8 (-641 (-767))) (-5 *9 (-1259 (-641 (-1166 *10))))
- (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-945 *10 *11 *12))
- (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-641 (-778 *3))) (-5 *1 (-778 *3)) (-4 *3 (-556))
- (-4 *3 (-1045)))))
+ (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1238 *5))
+ (-5 *1 (-805 *5 *2 *3 *6))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564)))))
+ (-4 *3 (-654 *2)) (-4 *6 (-654 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-642 (-407 *2))) (-4 *2 (-1238 *5))
+ (-5 *1 (-805 *5 *2 *3 *6))
+ (-4 *5 (-13 (-363) (-147) (-1036 (-407 (-564))))) (-4 *3 (-654 *2))
+ (-4 *6 (-654 (-407 *2))))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-750)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1097)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))
- (-4 *4 (-13 (-556) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-277 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564))
- (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6)))))
+ (|partial| -12 (-5 *2 (-642 (-1169 *4))) (-5 *3 (-1169 *4))
+ (-4 *4 (-907)) (-5 *1 (-661 *4)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1141))))
+(((*1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-129)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-846) (-363))) (-5 *2 (-112)) (-5 *1 (-1058 *4 *3))
+ (-4 *3 (-1238 *4)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-114)) (-5 *4 (-767)) (-4 *5 (-452))
- (-4 *5 (-1034 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2))
- (-4 *2 (-430 *5))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -2323 ((-1119 *5 (-610 $)) $))
- (-15 -2336 ((-1119 *5 (-610 $)) $))
- (-15 -2423 ($ (-1119 *5 (-610 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-998))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-556)))))
+ (|partial| -12 (-5 *3 (-642 (-610 *2))) (-5 *4 (-1173))
+ (-4 *2 (-13 (-27) (-1197) (-430 *5)))
+ (-4 *5 (-13 (-556) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *5 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-642 (-1178))) (-5 *1 (-1178))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-506)) (-5 *3 (-642 (-1178))) (-5 *1 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-517)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-791)) (-4 *6 (-848)) (-4 *3 (-556))
+ (-4 *7 (-947 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2700 (-769)) (|:| -4378 *8) (|:| |radicand| *8)))
+ (-5 *1 (-951 *5 *6 *3 *7 *8)) (-5 *4 (-769))
+ (-4 *8
+ (-13 (-363)
+ (-10 -8 (-15 -2327 ($ *7)) (-15 -2245 (*7 $)) (-15 -2255 (*7 $))))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1034 (-564))) (-4 *4 (-556))
+ (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1036 (-564))) (-4 *4 (-556))
(-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4))))
((*1 *1 *1 *1) (-5 *1 (-134)))
((*1 *2 *2 *2)
@@ -16770,1531 +16603,1701 @@
((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3))
- (-4 *5 (-1250 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1221 *4 *5))))
+ (-4 *5 (-1253 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1224 *4 *5))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3))
- (-4 *5 (-1219 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1242 *4 *5))
- (-4 *6 (-979 *5))))
+ (-4 *5 (-1222 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1245 *4 *5))
+ (-4 *6 (-981 *5))))
((*1 *1 *1 *1) (-4 *1 (-284)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1097))))
((*1 *1 *1 *1) (-5 *1 (-379)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-386 *2)) (-4 *2 (-1097))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-430 *3)) (-4 *3 (-1094))
- (-4 *3 (-1106))))
+ (-12 (-5 *2 (-769)) (-4 *1 (-430 *3)) (-4 *3 (-1097))
+ (-4 *3 (-1109))))
((*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))
+ (-12 (-5 *2 (-769)) (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-947 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349))
+ (-12 (-5 *2 (-1262 *4)) (-5 *3 (-564)) (-4 *4 (-349))
(-5 *1 (-528 *4))))
((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-536))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-536))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1094))
- (-5 *1 (-678 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-769)) (-4 *4 (-1097))
+ (-5 *1 (-680 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045))
+ (-12 (-5 *2 (-564)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1045))
+ (-12 (-5 *2 (-769)) (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *4)) (-5 *3 (-767)) (-4 *4 (-1045))
- (-5 *1 (-686 *4))))
+ (-12 (-5 *2 (-687 *4)) (-5 *3 (-769)) (-4 *4 (-1047))
+ (-5 *1 (-688 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4))
- (-4 *4 (-644 *3))))
+ (-12 (-5 *2 (-564)) (-4 *3 (-1047)) (-5 *1 (-712 *3 *4))
+ (-4 *4 (-646 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1045))
- (-5 *1 (-710 *4 *5)) (-4 *5 (-644 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-832 *3)) (-4 *3 (-1045))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1047))
+ (-5 *1 (-712 *4 *5)) (-4 *5 (-646 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-919))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-769))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-769))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-769)) (-5 *1 (-817 *2)) (-4 *2 (-848))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-834 *3)) (-4 *3 (-1047))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-832 *4)) (-4 *4 (-1045))))
- ((*1 *1 *1 *1) (-5 *1 (-858)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1094))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-564)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1106)) (-5 *2 (-917))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-834 *4)) (-4 *4 (-1047))))
+ ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1097))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-890 *3)) (-4 *3 (-1097))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1000)) (-5 *2 (-407 (-564)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1109)) (-5 *2 (-919))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *4 (-1045))
+ (-12 (-5 *2 (-564)) (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *4 (-1047))
(-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1158 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1159 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1231 *4 *2))
- (-4 *2 (-1235 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))))
+ (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1047)) (-4 *2 (-363)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848))
+ (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-769))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-848))
+ (-4 *5 (-266 *3)) (-4 *6 (-791)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-848)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-919))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363)))
+ (-4 *5 (-1238 *4)) (-4 *6 (-1238 (-407 *5))) (-4 *7 (-342 *4 *5 *6))
+ (-5 *2 (-769)) (-5 *1 (-392 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-831 (-919)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-769)) (-5 *1 (-595 *3)) (-4 *3 (-1047))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-595 *3)) (-4 *3 (-1047))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4))
+ (-4 *4 (-1238 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-738 *4 *3)) (-4 *4 (-1047))
+ (-4 *3 (-848))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-738 *4 *3)) (-4 *4 (-1047)) (-4 *3 (-848))
+ (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-902 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-903 *3)) (-4 *3 (-1097))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4))
+ (-4 *6 (-1238 *5)) (-4 *7 (-1238 (-407 *6)))
+ (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-556) (-1036 (-564))))
+ (-5 *2 (-769)) (-5 *1 (-909 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
+ (-4 *4 (-1238 (-407 (-564)))) (-4 *5 (-1238 (-407 *4)))
+ (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-769))
+ (-5 *1 (-910 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363))
+ (-4 *7 (-1238 *6)) (-4 *4 (-1238 (-407 *7))) (-4 *8 (-342 *6 *7 *4))
+ (-4 *9 (-13 (-368) (-363))) (-5 *2 (-769))
+ (-5 *1 (-1016 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1238 *3)) (-4 *3 (-1047)) (-4 *3 (-556))
+ (-5 *2 (-769))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-687 (-169 (-407 (-564))))) (-5 *2 (-642 (-169 *4)))
+ (-5 *1 (-762 *4)) (-4 *4 (-13 (-363) (-846))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-948 (-169 (-564))))))
- (-5 *2 (-641 (-641 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-844)))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1097)) (-4 *5 (-1097))
+ (-5 *2 (-1 *5)) (-5 *1 (-681 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-612 (-890 *3))) (-4 *3 (-884 *3)) (-4 *3 (-452))
+ (-5 *1 (-1203 *3 *2)) (-4 *2 (-612 (-890 *3))) (-4 *2 (-884 *3))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *1 (-1125 *3 *2)) (-4 *3 (-1238 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-947 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-791)) (-4 *4 (-848))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-947 *2 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *3 (-556)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-975 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-952)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-821)) (-5 *1 (-820)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1212)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1238 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-848))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1197)))
+ (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-583 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-585 (-407 (-950 *3))))
+ (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *1 (-588 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-294 (-407 (-948 (-169 (-564)))))))
- (-5 *2 (-641 (-641 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-844)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1238 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -1895 *3) (|:| |special| *3))) (-5 *1 (-725 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-948 (-169 (-564)))))
- (-5 *2 (-641 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-844)))))
+ (-12 (-5 *4 (-1262 *5)) (-4 *5 (-363)) (-4 *5 (-1047))
+ (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5))
+ (-5 *3 (-642 (-687 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-948 (-169 (-564))))))
- (-5 *2 (-641 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-844))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2)))
- (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5))
- (-4 *3 (-342 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213))
- (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))))
+ (-12 (-5 *4 (-1262 (-1262 *5))) (-4 *5 (-363)) (-4 *5 (-1047))
+ (-5 *2 (-642 (-642 (-687 *5)))) (-5 *1 (-1027 *5))
+ (-5 *3 (-642 (-687 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-642 *1)) (-4 *1 (-1141))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-642 *1)) (-4 *1 (-1141)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1262 *6)) (-5 *4 (-1262 (-564))) (-5 *5 (-564))
+ (-4 *6 (-1097)) (-5 *2 (-1 *6)) (-5 *1 (-1015 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1194))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-948 (-564))) (-5 *3 (-1170))
- (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-900 (-564))) (-5 *1 (-913))))
- ((*1 *2) (-12 (-5 *2 (-900 (-564))) (-5 *1 (-913)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-950)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789))
- (-4 *4 (-846))))
- ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-307))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2)))))
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-848))
+ (-4 *5 (-266 *4)) (-4 *6 (-791)) (-5 *2 (-642 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905))
- (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-945 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905))
- (-5 *1 (-902 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-905)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1235 *2)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-888 *4)) (-4 *4 (-1094)) (-5 *1 (-885 *4 *3))
- (-4 *3 (-1094)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-1097))
+ (-4 *4 (-1097)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-745)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-860)) (-5 *1 (-1153 *3)) (-4 *3 (-1097))
+ (-4 *3 (-1212)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213))
- (-4 *6 (-1235 (-407 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-342 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))))
+ (-12 (-5 *3 (-941 *5)) (-4 *5 (-1047)) (-5 *2 (-769))
+ (-5 *1 (-1161 *4 *5)) (-14 *4 (-919))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-642 (-769))) (-5 *3 (-769)) (-5 *1 (-1161 *4 *5))
+ (-14 *4 (-919)) (-4 *5 (-1047))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-642 (-769))) (-5 *3 (-941 *5)) (-4 *5 (-1047))
+ (-5 *1 (-1161 *4 *5)) (-14 *4 (-919)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-687 (-225))) (-5 *4 (-564)) (-5 *2 (-1033))
+ (-5 *1 (-754)))))
+(((*1 *1 *1 *1) (-4 *1 (-965))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1031)) (-5 *1 (-751)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
+ (-12 (-5 *3 (-642 (-536))) (-5 *2 (-1173)) (-5 *1 (-536)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-1222 *4)) (-4 *4 (-1047)) (-4 *4 (-556))
+ (-5 *2 (-407 (-950 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-1222 *4)) (-4 *4 (-1047)) (-4 *4 (-556))
+ (-5 *2 (-407 (-950 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-790))))
+ ((*1 *2 *1) (-12 (-4 *1 (-706 *3)) (-4 *3 (-1047)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-4 *1 (-850 *3)) (-4 *3 (-1047)) (-5 *2 (-769))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-642 *6)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1047))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-642 (-769)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-947 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-791))
+ (-4 *3 (-848)) (-5 *2 (-769)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1238 (-407 *2)))
+ (-4 *2 (-1238 *5)) (-5 *1 (-215 *5 *2 *6 *3))
+ (-4 *3 (-342 *5 *2 *6)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1034 (-564)) (-637 (-564)) (-452)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1244 *4 *5 *6))
- (|:| |%expon| (-319 *4 *5 *6))
- (|:| |%expTerms|
- (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4))))))
- (|:| |%type| (-1152))))
- (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3)))
- (-14 *5 (-1170)) (-14 *6 *4))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -2128 *4) (|:| -1433 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-785)) (-5 *5 (-564)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-767))
- (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-564))))))
- (-5 *1 (-246 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-307))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3))))
- (-5 *1 (-386 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3979 (-767)) (|:| -4071 (-767))))
- (-5 *1 (-767))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -3979 *3) (|:| -4071 *3)))
- (-5 *1 (-965 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1170))
- (-4 *4 (-13 (-307) (-147) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-575 *4 *2))
- (-4 *2 (-13 (-1194) (-955) (-1133) (-29 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302))))
- ((*1 *1 *1) (-4 *1 (-302)))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))
- ((*1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-564))
- (-5 *6
- (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2715 (-379))))
- (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
- (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
- (-5 *1 (-784))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-564))
- (-5 *6
- (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2715 (-379))))
- (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
- (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
- (-5 *1 (-784)))))
+ (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3))
+ (-4 *3 (-1238 *2)))))
+(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1038)))))
(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846))
- (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1))) (-4 *1 (-945 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3979 *1) (|:| -4071 *1)))
- (-4 *1 (-1235 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2)
- (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1057)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846))
- (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1113))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-1169 (-950 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363))
+ (-5 *2 (-1169 (-950 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1169 (-407 (-950 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-919))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-1262 (-687 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1212)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1097)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1045)) (-5 *1 (-1154 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-825)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1264)) (-5 *1 (-818)))))
+ (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1047)) (-5 *1 (-1157 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1254 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1173))
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890 *4)) (-4 *4 (-1097)) (-5 *2 (-642 *5))
+ (-5 *1 (-888 *4 *5)) (-4 *5 (-1212)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1 *1) (-4 *1 (-473)))
+ ((*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172))))
+ ((*1 *2 *2) (-12 (-5 *2 (-642 (-564))) (-5 *1 (-881))))
+ ((*1 *1 *1) (-5 *1 (-969)))
+ ((*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1155)) (-4 *6 (-452)) (-4 *7 (-791)) (-4 *8 (-848))
+ (-4 *4 (-1062 *6 *7 *8)) (-5 *2 (-1267))
+ (-5 *1 (-774 *6 *7 *8 *4 *5)) (-4 *5 (-1068 *6 *7 *8 *4)))))
+(((*1 *1 *1) (-4 *1 (-556))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-950 (-169 (-564))))) (-5 *2 (-642 (-169 *4)))
+ (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-846)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-642 (-407 (-950 (-169 (-564))))))
+ (-5 *4 (-642 (-1173))) (-5 *2 (-642 (-642 (-169 *5))))
+ (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-846))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-407 (-950 (-169 (-564))))))
+ (-5 *2 (-642 (-642 (-294 (-950 (-169 *4)))))) (-5 *1 (-378 *4))
+ (-4 *4 (-13 (-363) (-846)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-294 (-407 (-950 (-169 (-564)))))))
+ (-5 *2 (-642 (-642 (-294 (-950 (-169 *4)))))) (-5 *1 (-378 *4))
+ (-4 *4 (-13 (-363) (-846)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-950 (-169 (-564)))))
+ (-5 *2 (-642 (-294 (-950 (-169 *4))))) (-5 *1 (-378 *4))
+ (-4 *4 (-13 (-363) (-846)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-407 (-950 (-169 (-564))))))
+ (-5 *2 (-642 (-294 (-950 (-169 *4))))) (-5 *1 (-378 *4))
+ (-4 *4 (-13 (-363) (-846))))))
(((*1 *1 *2)
+ (-12 (-5 *2 (-1161 3 *3)) (-4 *3 (-1047)) (-4 *1 (-1131 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1047)))))
+(((*1 *1 *1) (-4 *1 (-627)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-628 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000) (-1197))))))
+(((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| -1780 (-687 (-407 (-950 *4))))
+ (|:| |vec| (-642 (-407 (-950 *4)))) (|:| -2414 (-769))
+ (|:| |rows| (-642 (-564))) (|:| |cols| (-642 (-564)))))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-848) (-612 (-1173))))
+ (-4 *6 (-791))
(-5 *2
- (-641
- (-2
- (|:| -1901
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -3813
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2141
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-559)))))
+ (-2 (|:| |partsol| (-1262 (-407 (-950 *4))))
+ (|:| -4263 (-642 (-1262 (-407 (-950 *4)))))))
+ (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-947 *4 *6 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1057))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-642 (-1173)))
+ (-14 *3 (-642 (-1173))) (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-172)) (-4 *2 (-1057))))
+ ((*1 *1 *1) (-4 *1 (-846)))
+ ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-172)) (-4 *2 (-1057))))
+ ((*1 *1 *1) (-4 *1 (-1057))) ((*1 *1 *1) (-4 *1 (-1136))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1155))
+ (-4 *4 (-13 (-452) (-1036 (-564)) (-637 (-564)))) (-5 *2 (-112))
+ (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1197) (-29 *4))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1173)) (-5 *2 (-379)) (-5 *1 (-1060)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1097)) (-4 *6 (-1097))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-682 *4 *5 *6)) (-4 *4 (-1097)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-917))
- (-5 *1 (-909 *4 *5)) (-4 *5 (-1235 (-407 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858))))
- ((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))))
-(((*1 *1 *1 *1) (-5 *1 (-858))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4))
- (-4 *4 (-1209)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3))
- (-4 *3 (-612 (-536)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225)))
- (-5 *1 (-699 *3)) (-4 *3 (-612 (-536))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1022 (-839 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1045)))))
-(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))
+ (-12 (-5 *3 (-642 (-1173))) (-4 *4 (-1097))
+ (-4 *5 (-13 (-1047) (-884 *4) (-612 (-890 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-430 *5) (-884 *4) (-612 (-890 *4)))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1062 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-791))
+ (-4 *2 (-848))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-1202 *3 *4 *5 *2)) (-4 *2 (-685 *3 *4 *5)))))
+(((*1 *1) (-5 *1 (-1060))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-687 (-225))) (-5 *2 (-1033))
+ (-5 *1 (-753)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1062 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-791))
+ (-4 *4 (-848))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1205 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-791))
+ (-4 *5 (-848)) (-4 *2 (-1062 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1155)) (-5 *1 (-784)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-52)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-642 (-890 *6)))
+ (-5 *5 (-1 (-887 *6 *8) *8 (-890 *6) (-887 *6 *8))) (-4 *6 (-1097))
+ (-4 *8 (-13 (-1047) (-612 (-890 *6)) (-1036 *7)))
+ (-5 *2 (-887 *6 *8)) (-4 *7 (-1047)) (-5 *1 (-939 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1036 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1100 *3 *4 *2 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-642 (-642 (-642 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-642 *5)) (-4 *5 (-848)) (-5 *1 (-1183 *5)))))
+(((*1 *1 *1) (-5 *1 (-1060))))
+(((*1 *1) (-4 *1 (-349)))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-564)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1264))
- (-5 *1 (-449 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-642 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-147)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-642 (-1169 *5)))
+ (|:| |prim| (-1169 *5))))
+ (-5 *1 (-432 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-556) (-147)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1169 *3))
+ (|:| |pol2| (-1169 *3)) (|:| |prim| (-1169 *3))))
+ (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-950 *5)) (-5 *4 (-1173)) (-4 *5 (-13 (-363) (-147)))
+ (-5 *2
+ (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564))
+ (|:| |prim| (-1169 *5))))
+ (-5 *1 (-958 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-642 (-950 *5))) (-5 *4 (-642 (-1173)))
+ (-4 *5 (-13 (-363) (-147)))
+ (-5 *2
+ (-2 (|:| -4378 (-642 (-564))) (|:| |poly| (-642 (-1169 *5)))
+ (|:| |prim| (-1169 *5))))
+ (-5 *1 (-958 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-642 (-950 *6))) (-5 *4 (-642 (-1173))) (-5 *5 (-1173))
+ (-4 *6 (-13 (-363) (-147)))
+ (-5 *2
+ (-2 (|:| -4378 (-642 (-564))) (|:| |poly| (-642 (-1169 *6)))
+ (|:| |prim| (-1169 *6))))
+ (-5 *1 (-958 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1205 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-791))
+ (-4 *3 (-848)) (-4 *6 (-1062 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-948 (-564))) (-5 *2 (-330))
- (-5 *1 (-332)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1000 *3)) (-14 *3 (-564)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))))
-(((*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1034 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
+ (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-947 *7 *5 *6))
+ (-5 *1 (-740 *5 *6 *7 *2)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *7 (-307)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8))
- (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-945 *8 *6 *7))
- (-4 *6 (-789)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-962 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307))
- (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *3 (-642 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *1 (-263))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *2 (-1267)) (-5 *1 (-1264))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4352 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *1 (-1264))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2))
- (-4 *2 (-1235 (-169 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-966))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-990))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1032))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1067)))))
-(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1262)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1))
- (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-1094))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1238 (-564))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-311))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-968))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-992))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1034))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-1070)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-791)) (-4 *6 (-848))
+ (-4 *2 (-1062 *4 *5 *6)) (-5 *1 (-774 *4 *5 *6 *2 *3))
+ (-4 *3 (-1068 *4 *5 *6 *2)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-687 (-564))) (-5 *5 (-112)) (-5 *7 (-687 (-225)))
+ (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1033)) (-5 *1 (-752)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-642 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1212)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1173))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-642 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-642 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2116 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1197) (-27) (-430 *8)))
+ (-4 *8 (-13 (-452) (-147) (-1036 *3) (-637 *3))) (-5 *3 (-564))
+ (-5 *2 (-642 *4)) (-5 *1 (-1012 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-642 *3)) (-5 *1 (-943 *4 *3))
+ (-4 *3 (-1238 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-827)))))
(((*1 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452))
- (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -2141 (-1088 (-839 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-2 (|:| -1626 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
-(((*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446))))
- ((*1 *2 *3)
+ (-12 (-4 *1 (-1100 *3 *2 *4 *5 *6)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *2 (-1097)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-687 *3)) (-4 *3 (-1047)) (-5 *1 (-688 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1262 *5)) (-4 *5 (-790)) (-5 *2 (-112))
+ (-5 *1 (-843 *4 *5)) (-14 *4 (-769)))))
+(((*1 *2 *2 *2)
(-12
- (-5 *3
- (-504 (-407 (-564)) (-240 *5 (-767)) (-860 *4)
- (-247 *4 (-407 (-564)))))
- (-14 *4 (-641 (-1170))) (-14 *5 (-767)) (-5 *2 (-112))
- (-5 *1 (-505 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-957 *3)) (-4 *3 (-545))))
- ((*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1031))
- (-5 *1 (-748)))))
-(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3)))))
+ (-5 *2
+ (-2 (|:| -4263 (-687 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-687 *3))))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -1978 ((-418 $) $)))))
+ (-4 *4 (-1238 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1169 *5)) (-4 *5 (-363)) (-5 *2 (-642 *6))
+ (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-846))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1000))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-769)) (-4 *1 (-1062 *3 *4 *5)) (-4 *3 (-1047))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-4 *3 (-556)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-642 (-52))) (-5 *1 (-890 *3)) (-4 *3 (-1097)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-769)) (-4 *5 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-967 *5 *3)) (-4 *3 (-1238 *5)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-941 *3)) (-4 *3 (-13 (-363) (-1197) (-1000)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1047))
+ (-5 *2 (-642 (-642 (-642 (-769))))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-846))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194)))
- (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *1 (-583 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-585 (-407 (-948 *3))))
- (-4 *3 (-13 (-452) (-1034 (-564)) (-637 (-564)))) (-5 *1 (-588 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -1887 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1045))
- (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5))
- (-5 *3 (-641 (-685 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1045))
- (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1025 *5))
- (-5 *3 (-641 (-685 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))))
-(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))))
+ (-12 (-4 *4 (-349)) (-5 *2 (-956 (-1169 *4))) (-5 *1 (-357 *4))
+ (-5 *3 (-1169 *4)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-919)) (-5 *4 (-1155)) (-5 *2 (-1267)) (-5 *1 (-1263)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))
- (-5 *2 (-815 *3))))
+ (-12 (-4 *1 (-685 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *2 (-842)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1045)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-983 *3 *4 *5 *2))
- (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-407 (-948 *6)) (-1159 (-1170) (-948 *6))))
- (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *6)))))
- (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-948 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-407 (-948 *5)) (-1159 (-1170) (-948 *5))))
- (|:| |eigmult| (-767)) (|:| |eigvec| (-641 *4))))
- (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-948 *5)))))
- (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-948 *5)))))))
-(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2))
- (-4 *2 (-172))))
+ (-12 (-4 *1 (-1051 *3 *4 *5 *6 *7)) (-4 *5 (-1047))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-1263))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-769)) (-5 *2 (-1267)) (-5 *1 (-1264)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-902 (-564))) (-5 *1 (-915))))
+ ((*1 *2) (-12 (-5 *2 (-902 (-564))) (-5 *1 (-915)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3))
+ (-4 *6 (-373 *3)) (-5 *1 (-686 *3 *5 *6 *2))
+ (-4 *2 (-685 *3 *5 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-343 *3 *4)) (-14 *3 (-919))
+ (-14 *4 (-919))))
((*1 *2)
- (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4))
- (-4 *3 (-409 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172))))
+ (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349))
+ (-14 *4 (-1169 *3))))
((*1 *2)
- (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-764 *3 *4))
- (-4 *4 (-409 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789))
- (-4 *2 (-846)) (-4 *3 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-556)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1235 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -3688 *3) (|:| -1568 *4))))
- (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-858))) (-5 *1 (-858)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-767)) (-4 *1 (-652 *3)) (-4 *3 (-1045)) (-4 *3 (-363))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
- (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1094))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5))
- (-4 *4 (-1094)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-917)) (-5 *1 (-782)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1045) (-846)))
- (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))))
+ (-12 (-5 *2 (-956 (-1117))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349))
+ (-14 *4 (-919)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-641 *1)) (-4 *1 (-1059 *3 *4 *5)))))
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-1238 *4))
+ (-4 *5 (-1238 (-407 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-1238 *3))
+ (-4 *5 (-1238 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-981 *2)) (-4 *2 (-1197)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-5 *1 (-1203 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1197))))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1169 (-407 (-564)))) (-5 *1 (-940)) (-5 *3 (-564)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1091 (-225)))
+ (-5 *2 (-1264)) (-5 *1 (-257)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209))
- (-4 *2 (-1209)) (-5 *1 (-58 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1212))
+ (-4 *2 (-1212)) (-5 *1 (-58 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4407))
- (-4 *1 (-151 *2)) (-4 *2 (-1209))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1097)) (|has| *1 (-6 -4410))
+ (-4 *1 (-151 *2)) (-4 *2 (-1212))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *2))
- (-4 *2 (-1209))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *2))
+ (-4 *2 (-1212))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *2))
- (-4 *2 (-1209))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4410)) (-4 *1 (-151 *2))
+ (-4 *2 (-1212))))
((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-5 *2 (-2 (|:| -1744 (-1166 *4)) (|:| |deg| (-917))))
- (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-556))))
+ (-12 (-4 *4 (-1047))
+ (-5 *2 (-2 (|:| -4229 (-1169 *4)) (|:| |deg| (-919))))
+ (-5 *1 (-221 *4 *5)) (-5 *3 (-1169 *4)) (-4 *5 (-556))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767))
- (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-769))
+ (-4 *6 (-1212)) (-4 *2 (-1212)) (-5 *1 (-239 *5 *6 *2))))
((*1 *1 *2 *3)
(-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-4 *2 (-1238 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-1094))))
+ ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-1097))))
((*1 *1 *1)
- (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2))
- (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4))))
+ (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1238 *2))
+ (-4 *4 (-1238 (-407 *3))) (-4 *5 (-342 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1212)) (-4 *2 (-1212))
(-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1097)) (-4 *2 (-1097))
(-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2))))
((*1 *1 *1) (-5 *1 (-495)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209))
- (-4 *2 (-1209)) (-5 *1 (-639 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-642 *5)) (-4 *5 (-1212))
+ (-4 *2 (-1212)) (-5 *1 (-640 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1047)) (-4 *2 (-1047))
(-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2))
- (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9))))
+ (-4 *9 (-373 *2)) (-5 *1 (-683 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-685 *5 *6 *7)) (-4 *10 (-685 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1235 *3))))
+ (-12 (-4 *3 (-1047)) (-5 *1 (-710 *3 *2)) (-4 *2 (-1238 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363))
- (-4 *3 (-172)) (-4 *1 (-720 *3 *4))))
+ (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1238 *3)) (-4 *3 (-363))
+ (-4 *3 (-172)) (-4 *1 (-722 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1235 *3))))
+ (-12 (-4 *3 (-172)) (-4 *1 (-722 *3 *2)) (-4 *2 (-1238 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1209))
- (-4 *2 (-1209)) (-5 *1 (-953 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-956 *5)) (-4 *5 (-1212))
+ (-4 *2 (-1212)) (-5 *1 (-955 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5))
- (-14 *6 (-641 *2))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848))
+ (-5 *1 (-1032 *3 *4 *5 *2 *6)) (-4 *2 (-947 *3 *4 *5))
+ (-14 *6 (-642 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045))
- (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1047)) (-4 *2 (-1047))
+ (-14 *5 (-769)) (-14 *6 (-769)) (-4 *8 (-238 *6 *7))
(-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2))
- (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11))))
+ (-5 *1 (-1053 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1051 *5 *6 *7 *8 *9)) (-4 *12 (-1051 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209))
- (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1153 *5)) (-4 *5 (-1212))
+ (-4 *2 (-1212)) (-5 *1 (-1151 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-789))
- (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7))))
+ (-4 *1 (-1205 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-791))
+ (-4 *7 (-848)) (-4 *2 (-1062 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209))
- (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-825)))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1262 *5)) (-4 *5 (-1212))
+ (-4 *2 (-1212)) (-5 *1 (-1261 *5 *2)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-642
+ (-2
+ (|:| -1907
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1262 (-316 (-225))))
+ (|:| |yinit| (-642 (-225))) (|:| |intvals| (-642 (-225)))
+ (|:| |g| (-316 (-225))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -3778
+ (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
+ (|:| |expense| (-379)) (|:| |accuracy| (-379))
+ (|:| |intermediateResults| (-379)))))))
+ (-5 *1 (-801)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6))
- (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
- (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
- (-5 *1 (-784))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
- (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
- (-5 *1 (-784)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-5 *3 (-642 (-564))) (-5 *2 (-1175 (-407 (-564))))
+ (-5 *1 (-190)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-5 *2 (-1267))
+ (-5 *1 (-1213 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-642 *4)) (-4 *4 (-1097)) (-5 *2 (-1267))
+ (-5 *1 (-1213 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1173)) (|:| |fn| (-316 (-225)))
+ (|:| -3894 (-1091 (-841 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-1153 (-225))) (-5 *1 (-192))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-316 (-225))) (-5 *4 (-642 (-1173)))
+ (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1262 (-316 (-225)))) (-5 *4 (-642 (-1173)))
+ (-5 *5 (-1091 (-841 (-225)))) (-5 *2 (-1153 (-225))) (-5 *1 (-300)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-918)) (-5 *2 (-2 (|:| -4378 (-642 *1)) (|:| -2185 *1)))
+ (-5 *3 (-642 *1)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-888 *4))
- (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5))))
+ (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-890 *4))
+ (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1097)) (-4 *3 (-166 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1088 (-839 (-379)))))
- (-5 *2 (-641 (-1088 (-839 (-225))))) (-5 *1 (-305))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-394))))
+ (-12 (-5 *3 (-642 (-1091 (-841 (-379)))))
+ (-5 *2 (-642 (-1091 (-841 (-225))))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-394))))
((*1 *1 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4))
- (-4 *4 (-1235 *3))))
+ (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4))
+ (-4 *4 (-1238 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
- (-5 *2 (-1259 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3))))
+ (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1238 *3))
+ (-5 *2 (-1262 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1262 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1262 *3))))
((*1 *1 *2)
(-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556))
- (-4 *3 (-1094))))
+ (-4 *3 (-1097))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-536))))
- ((*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1209))))
+ (-12 (-5 *2 (-642 *6)) (-4 *6 (-1062 *3 *4 *5)) (-4 *3 (-1047))
+ (-4 *4 (-791)) (-4 *5 (-848)) (-5 *1 (-463 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1101)) (-5 *1 (-536))))
+ ((*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1212))))
+ ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1212))))
((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1235 *3))))
+ (-12 (-4 *3 (-172)) (-4 *1 (-722 *3 *2)) (-4 *2 (-1238 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1094))))
+ (-12 (-5 *2 (-642 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1097))))
((*1 *1 *2)
- (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5))
- (-4 *5 (-612 (-1170))) (-4 *4 (-789)) (-4 *5 (-846))))
+ (-12 (-5 *2 (-950 *3)) (-4 *3 (-1047)) (-4 *1 (-1062 *3 *4 *5))
+ (-4 *5 (-612 (-1173))) (-4 *4 (-791)) (-4 *5 (-848))))
((*1 *1 *2)
- (-2807
- (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-2351 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
- (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))
- (-12 (-5 *2 (-948 (-564))) (-4 *1 (-1059 *3 *4 *5))
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))))
- (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))))
+ (-2706
+ (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5))
+ (-12 (-2268 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
+ (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))
+ (-12 (-5 *2 (-950 (-564))) (-4 *1 (-1062 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))))
+ (-4 *3 (-1047)) (-4 *4 (-791)) (-4 *5 (-848)))))
((*1 *1 *2)
- (-12 (-5 *2 (-948 (-407 (-564)))) (-4 *1 (-1059 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1045))
- (-4 *4 (-789)) (-4 *5 (-846))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3577 *8)))
- (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1152))
- (-5 *1 (-1063 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3577 *8)))
- (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452))
- (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1152))
- (-5 *1 (-1139 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1175))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-1189))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-564)) (-5 *1 (-1189))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-776 *4 (-860 *5)))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-641 (-1170)))
- (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *6 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-776 *4 (-860 *6)))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-641 (-1170)))
- (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *5 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018)))
- (-5 *2 (-1166 (-1020 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))
+ (-12 (-5 *2 (-950 (-407 (-564)))) (-4 *1 (-1062 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1173))) (-4 *3 (-1047))
+ (-4 *4 (-791)) (-4 *5 (-848))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -3530 *8)))
+ (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1068 *4 *5 *6 *7)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1155))
+ (-5 *1 (-1066 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-642 *7)) (|:| -3530 *8)))
+ (-4 *7 (-1062 *4 *5 *6)) (-4 *8 (-1106 *4 *5 *6 *7)) (-4 *4 (-452))
+ (-4 *5 (-791)) (-4 *6 (-848)) (-5 *2 (-1155))
+ (-5 *1 (-1142 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1101)) (-5 *1 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1178))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-1192))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-860)) (-5 *3 (-564)) (-5 *1 (-1192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-778 *4 (-862 *5)))
+ (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *5 (-642 (-1173)))
+ (-5 *2 (-778 *4 (-862 *6))) (-5 *1 (-1288 *4 *5 *6))
+ (-14 *6 (-642 (-1173)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-950 *4)) (-4 *4 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-950 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-778 *4 (-862 *6)))
+ (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *6 (-642 (-1173)))
+ (-5 *2 (-950 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6))
+ (-14 *5 (-642 (-1173)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-846) (-307) (-147) (-1020)))
+ (-5 *2 (-1169 (-1022 (-407 *4)))) (-5 *1 (-1288 *4 *5 *6))
+ (-14 *5 (-642 (-1173))) (-14 *6 (-642 (-1173)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1140 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))
- (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-641 (-1170)))
- (-5 *2 (-641 (-776 *4 (-860 *6)))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *5 (-641 (-1170))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1045)))))
+ (-5 *3 (-1143 *4 (-531 (-862 *6)) (-862 *6) (-778 *4 (-862 *6))))
+ (-4 *4 (-13 (-846) (-307) (-147) (-1020))) (-14 *6 (-642 (-1173)))
+ (-5 *2 (-642 (-778 *4 (-862 *6)))) (-5 *1 (-1288 *4 *5 *6))
+ (-14 *5 (-642 (-1173))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-536)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816))
- (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1209)))))
+ (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-379)) (-5 *1 (-784)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4))
- (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
+ (-12 (-5 *3 (-925))
+ (-5 *2
+ (-2 (|:| |brans| (-642 (-642 (-941 (-225)))))
+ (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-925)) (-5 *4 (-407 (-564)))
+ (-5 *2
+ (-2 (|:| |brans| (-642 (-642 (-941 (-225)))))
+ (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-642 (-642 (-941 (-225)))))
+ (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))))
+ (-5 *1 (-153)) (-5 *3 (-642 (-941 (-225))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-642 (-642 (-941 (-225)))))
+ (|:| |xValues| (-1091 (-225))) (|:| |yValues| (-1091 (-225)))))
+ (-5 *1 (-153)) (-5 *3 (-642 (-642 (-941 (-225)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-1091 (-379)))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1047)) (-5 *2 (-642 *1)) (-4 *1 (-1131 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-642 (-1262 *4))) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
+ (-5 *2 (-642 (-1262 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-147) (-637 (-564))))
- (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7))
- (-5 *3 (-1166 *6)) (-4 *7 (-1094))))
+ (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1197)))
+ (-4 *5 (-13 (-452) (-1036 (-564)) (-147) (-637 (-564))))
+ (-5 *2 (-1169 (-407 (-1169 *6)))) (-5 *1 (-560 *5 *6 *7))
+ (-5 *3 (-1169 *6)) (-4 *7 (-1097))))
((*1 *2 *1)
- (-12 (-4 *2 (-1235 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045))))
+ (-12 (-4 *2 (-1238 *3)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1047))))
((*1 *2 *1)
- (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3))))
+ (-12 (-4 *1 (-722 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1238 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10))
- (-5 *7 (-641 (-767))) (-5 *8 (-641 *11)) (-4 *10 (-846))
- (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-945 *11 *9 *10))
- (-5 *2 (-641 (-1166 *5))) (-5 *1 (-738 *9 *10 *11 *5))
- (-5 *3 (-1166 *5))))
+ (|partial| -12 (-5 *4 (-1169 *11)) (-5 *6 (-642 *10))
+ (-5 *7 (-642 (-769))) (-5 *8 (-642 *11)) (-4 *10 (-848))
+ (-4 *11 (-307)) (-4 *9 (-791)) (-4 *5 (-947 *11 *9 *10))
+ (-5 *2 (-642 (-1169 *5))) (-5 *1 (-740 *9 *10 *11 *5))
+ (-5 *3 (-1169 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-945 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6))
- (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-641 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1031)) (-5 *1 (-747)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *2 (-13 (-1094) (-34))))))
+ (-12 (-4 *2 (-947 *3 *4 *5)) (-5 *1 (-1032 *3 *4 *5 *2 *6))
+ (-4 *3 (-363)) (-4 *4 (-791)) (-4 *5 (-848)) (-14 *6 (-642 *2)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1047)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1094)) (-5 *2 (-641 *1))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-641 (-888 *3))) (-5 *1 (-888 *3))
- (-4 *3 (-1094))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))
- (-5 *2 (-641 *1)) (-4 *1 (-945 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045))
- (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-641 *3))
- (-5 *1 (-946 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -2423 ($ *7)) (-15 -2323 (*7 $))
- (-15 -2336 (*7 $))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363))
- (-5 *1 (-989 *3 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-1034 (-564)) (-452) (-637 (-564))))
- (-5 *2 (-2 (|:| -2018 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1031)) (-5 *1 (-754)))))
+ (-12 (-4 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *3 (-1097)) (-4 *4 (-1097))
+ (-4 *5 (-1097)) (-4 *6 (-1097)) (-4 *7 (-1097)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-294 (-829 *3)))
- (-4 *5 (-13 (-452) (-1034 (-564)) (-637 (-564))))
- (-5 *2 (-829 *3)) (-5 *1 (-634 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-829 (-948 *5)))) (-4 *5 (-452))
- (-5 *2 (-829 (-407 (-948 *5)))) (-5 *1 (-635 *5))
- (-5 *3 (-407 (-948 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5)))
- (-4 *5 (-452)) (-5 *2 (-829 *3)) (-5 *1 (-635 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-767))))
- ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-767))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1045))
- (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1194) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-610 *3)) (-4 *3 (-1094))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-858)))))
-((-1292 . 731279) (-1293 . 731208) (-1294 . 730712) (-1295 . 730615)
- (-1296 . 730408) (-1297 . 730190) (-1298 . 730081) (-1299 . 729980)
- (-1300 . 729906) (-1301 . 729298) (-1302 . 729190) (-1303 . 729056)
- (-1304 . 729000) (-1305 . 728158) (-1306 . 727968) (-1307 . 727885)
- (-1308 . 727817) (-1309 . 727684) (-1310 . 727598) (-1311 . 723931)
- (-1312 . 723843) (-1313 . 723481) (-1314 . 723341) (-1315 . 723275)
- (-1316 . 719666) (-1317 . 719532) (-1318 . 719466) (-1319 . 719410)
- (-1320 . 719344) (-1321 . 719198) (-1322 . 719042) (-1323 . 718923)
- (-1324 . 718855) (-1325 . 718495) (-1326 . 718285) (-1327 . 718216)
- (-1328 . 718157) (-1329 . 718025) (-1330 . 717322) (-1331 . 716837)
- (-1332 . 716714) (-1333 . 716541) (-1334 . 716489) (-1335 . 715397)
- (-1336 . 715326) (-1337 . 715198) (-1338 . 715146) (-1339 . 714757)
- (-1340 . 714488) (-1341 . 714350) (-1342 . 714297) (-1343 . 714168)
- (-1344 . 714013) (-1345 . 713930) (-1346 . 713850) (-1347 . 713798)
- (-1348 . 713580) (-1349 . 713479) (-1350 . 713169) (-1351 . 713067)
- (-1352 . 712949) (-1353 . 712896) (-1354 . 712822) (-1355 . 712712)
- (-1356 . 712505) (-1357 . 712409) (-1358 . 712272) (-1359 . 712062)
- (-1360 . 711997) (-1361 . 711916) (-1362 . 711818) (-1363 . 711658)
- (-1364 . 711008) (-1365 . 710938) (-1366 . 710850) (-1367 . 710616)
- (-1368 . 710492) (-1369 . 710458) (-1370 . 710251) (-1371 . 710160)
- (-1372 . 710030) (-1373 . 709977) (-1374 . 709891) (-1375 . 709808)
- (-1376 . 708362) (-1377 . 708291) (-1378 . 708220) (-1379 . 708142)
- (-1380 . 707823) (-1381 . 707751) (-1382 . 707596) (-1383 . 707543)
- (-1384 . 707291) (-1385 . 707196) (-1386 . 706653) (-1387 . 706483)
- (-1388 . 706285) (-1389 . 705850) (-1390 . 705773) (-1391 . 705627)
- (-1392 . 705408) (-1393 . 704945) (-1394 . 704832) (-1395 . 704689)
- (-1396 . 704623) (-1397 . 704543) (-1398 . 704488) (-1399 . 704262)
- (-1400 . 704158) (-1401 . 703848) (-1402 . 703704) (-1403 . 703497)
- (-1404 . 703446) (-1405 . 703393) (-1406 . 703256) (-1407 . 703148)
- (-1408 . 703027) (-1409 . 702894) (-1410 . 702619) (-1411 . 702365)
- (-1412 . 701713) (-1413 . 701641) (-1414 . 701533) (** . 698469)
- (-1416 . 698370) (-1417 . 698276) (-1418 . 697950) (-1419 . 697809)
- (-1420 . 697757) (-1421 . 697661) (-1422 . 697501) (-1423 . 697397)
- (-1424 . 696976) (-1425 . 696765) (-1426 . 696713) (-1427 . 696640)
- (-1428 . 696566) (-1429 . 696443) (-1430 . 696290) (-1431 . 696256)
- (-1432 . 696053) (-1433 . 695744) (-1434 . 695304) (-1435 . 695251)
- (-1436 . 695107) (-1437 . 694982) (-1438 . 694927) (-1439 . 694875)
- (-1440 . 694752) (-1441 . 694344) (-1442 . 694270) (-1443 . 694242)
- (-1444 . 693993) (-1445 . 693915) (-1446 . 693849) (-1447 . 693790)
- (-1448 . 693679) (-1449 . 693627) (-1450 . 693474) (-1451 . 693378)
- (-1452 . 693042) (-1453 . 692924) (-1454 . 692809) (-1455 . 692721)
- (-1456 . 692591) (-1457 . 692518) (-1458 . 692329) (-1459 . 692111)
- (-1460 . 692058) (-1461 . 691833) (-1462 . 691675) (-1463 . 691397)
- (-1464 . 691369) (-1465 . 691232) (-1466 . 691041) (-1467 . 690962)
- (-1468 . 690359) (-1469 . 690234) (-1470 . 690061) (-1471 . 688913)
- (-1472 . 688212) (-1473 . 688104) (-1474 . 687687) (-1475 . 687613)
- (-1476 . 687539) (-1477 . 687465) (-1478 . 687346) (-1479 . 687296)
- (-1480 . 687178) (-1481 . 686868) (-1482 . 686774) (-1483 . 686570)
- (-1484 . 686518) (-1485 . 685878) (-1486 . 685805) (-1487 . 685753)
- (-1488 . 685622) (-1489 . 685464) (-1490 . 685432) (-1491 . 685280)
- (-1492 . 685155) (-1493 . 685035) (-1494 . 684687) (-1495 . 684208)
- (-1496 . 684155) (-1497 . 683877) (-1498 . 683849) (-1499 . 683783)
- (-1500 . 683670) (-1501 . 683492) (-1502 . 683411) (-1503 . 683188)
- (-1504 . 683135) (-1505 . 682478) (-1506 . 682320) (-1507 . 682229)
- (-1508 . 681877) (-1509 . 681764) (-1510 . 681698) (-1511 . 681596)
- (-1512 . 681348) (-1513 . 679121) (-1514 . 678992) (-1515 . 678813)
- (-1516 . 678739) (-1517 . 678684) (-1518 . 678547) (-1519 . 678494)
- (-1520 . 677677) (-1521 . 677596) (-1522 . 677438) (-1523 . 677335)
- (-1524 . 677179) (-1525 . 677065) (-1526 . 676912) (-1527 . 676714)
- (-1528 . 676665) (-1529 . 676568) (-1530 . 676454) (-1531 . 676167)
- (-1532 . 676079) (-1533 . 675862) (-1534 . 675658) (-1535 . 675592)
- (-1536 . 675490) (-1537 . 675380) (-1538 . 675286) (-1539 . 675218)
- (-1540 . 674694) (-1541 . 674593) (-1542 . 674528) (-1543 . 674394)
- (-1544 . 674280) (-1545 . 674228) (-1546 . 674118) (-1547 . 674059)
- (-1548 . 673553) (-1549 . 673289) (-1550 . 673171) (-1551 . 673117)
- (-1552 . 673065) (-1553 . 672952) (-1554 . 672722) (-1555 . 672650)
- (-1556 . 672476) (-1557 . 672047) (-1558 . 671977) (-1559 . 671925)
- (-1560 . 671897) (-1561 . 671863) (-1562 . 671556) (-1563 . 671458)
- (-1564 . 671328) (-1565 . 670824) (-1566 . 669954) (-1567 . 669838)
- (-1568 . 667724) (-1569 . 667559) (-1570 . 667340) (-1571 . 667203)
- (-1572 . 666751) (-1573 . 666720) (-1574 . 666637) (-1575 . 666385)
- (-1576 . 666333) (-1577 . 666085) (-1578 . 665957) (-1579 . 665879)
- (-1580 . 665664) (-1581 . 665508) (-1582 . 665293) (-1583 . 665183)
- (-1584 . 664867) (-1585 . 664815) (-1586 . 664573) (-1587 . 664271)
- (-1588 . 664216) (-1589 . 664160) (-1590 . 664072) (-1591 . 663882)
- (-1592 . 663674) (-1593 . 663577) (-1594 . 663419) (-1595 . 663300)
- (-1596 . 663155) (-1597 . 663081) (-1598 . 662928) (-1599 . 662773)
- (-1600 . 662650) (-1601 . 662335) (-1602 . 662182) (-1603 . 662038)
- (-1604 . 661879) (-1605 . 661681) (-1606 . 661471) (-1607 . 661394)
- (-1608 . 661314) (-1609 . 661257) (-1610 . 661229) (-1611 . 661127)
- (-1612 . 661074) (-1613 . 660298) (-1614 . 660217) (-1615 . 660183)
- (-1616 . 660082) (-1617 . 659981) (-1618 . 659815) (-1619 . 659753)
- (-1620 . 659645) (-1621 . 659559) (-1622 . 659297) (-1623 . 659269)
- (-1624 . 659181) (-1625 . 659074) (-1626 . 658995) (-1627 . 658602)
- (-1628 . 658536) (-1629 . 658361) (-1630 . 657607) (-1631 . 657576)
- (-1632 . 657507) (-1633 . 657345) (-1634 . 657292) (-1635 . 657211)
- (-1636 . 657137) (-1637 . 657078) (-1638 . 656920) (-1639 . 656843)
- (-1640 . 656746) (-1641 . 655779) (-1642 . 655700) (-1643 . 655154)
- (-1644 . 654743) (-1645 . 654560) (-1646 . 654433) (-1647 . 654380)
- (-1648 . 654252) (-1649 . 654085) (-1650 . 653938) (-1651 . 653768)
- (-1652 . 653691) (-1653 . 653580) (-1654 . 653521) (-1655 . 653439)
- (-1656 . 653380) (-1657 . 653237) (-1658 . 653070) (-1659 . 653017)
- (-1660 . 652911) (-1661 . 652719) (-1662 . 652162) (-1663 . 651889)
- (-1664 . 651836) (-1665 . 651229) (-1666 . 651076) (-1667 . 650589)
- (-1668 . 650512) (-1669 . 650416) (-1670 . 650315) (-1671 . 650242)
- (-1672 . 650067) (-1673 . 649886) (-1674 . 649761) (-1675 . 649665)
- (-1676 . 649588) (-1677 . 649494) (-1678 . 649392) (-1679 . 648574)
- (-1680 . 648372) (-1681 . 648298) (-1682 . 647936) (-1683 . 647803)
- (-1684 . 646666) (-1685 . 646567) (-1686 . 646515) (-1687 . 646165)
- (-1688 . 646079) (-1689 . 644880) (-1690 . 644726) (-1691 . 644633)
- (-1692 . 644539) (-1693 . 644301) (-1694 . 644122) (-1695 . 643954)
- (-1696 . 643794) (-1697 . 643653) (-1698 . 643392) (-1699 . 643225)
- (-1700 . 643173) (-1701 . 643063) (-1702 . 642858) (-1703 . 642764)
- (-1704 . 642712) (-1705 . 642642) (-1706 . 642511) (-1707 . 642458)
- (-1708 . 642343) (-1709 . 642152) (-1710 . 642055) (-1711 . 641909)
- (-1712 . 641810) (-1713 . 641642) (-1714 . 641572) (-1715 . 641062)
- (-1716 . 640852) (-1717 . 640727) (-1718 . 640610) (-1719 . 640429)
- (-1720 . 640307) (-1721 . 640251) (-1722 . 640121) (-1723 . 639961)
- (-1724 . 639832) (-1725 . 639750) (-1726 . 639651) (-1727 . 639561)
- (-1728 . 639527) (-1729 . 639409) (-1730 . 639241) (-1731 . 638906)
- (-1732 . 638810) (-1733 . 638658) (-1734 . 638482) (-1735 . 638363)
- (-1736 . 638183) (-1737 . 637940) (-1738 . 637810) (-1739 . 637560)
- (-1740 . 637457) (-1741 . 637315) (-1742 . 636729) (-1743 . 636673)
- (-1744 . 636575) (-1745 . 636295) (-1746 . 636266) (-1747 . 636011)
- (-1748 . 635818) (-1749 . 635745) (-1750 . 635638) (-1751 . 635466)
- (-1752 . 635325) (-1753 . 635179) (-1754 . 635110) (-1755 . 635058)
- (-1756 . 634987) (-1757 . 634565) (-1758 . 634413) (-1759 . 634385)
- (-1760 . 634299) (-1761 . 633541) (-1762 . 633404) (-1763 . 633336)
- (-1764 . 633266) (-1765 . 633095) (-1766 . 632972) (-1767 . 632917)
- (-1768 . 632839) (-1769 . 632751) (-1770 . 632654) (-1771 . 632573)
- (-1772 . 632441) (-1773 . 632328) (-1774 . 632273) (-1775 . 632202)
- (-1776 . 632118) (-1777 . 631840) (-1778 . 631220) (-1779 . 631136)
- (-1780 . 631108) (-1781 . 630909) (-1782 . 630684) (-1783 . 630627)
- (-1784 . 630446) (-1785 . 630322) (-1786 . 630146) (-1787 . 629966)
- (-1788 . 629741) (-1789 . 629454) (-1790 . 629351) (-1791 . 629235)
- (-1792 . 629177) (-1793 . 629083) (-1794 . 628617) (-1795 . 628371)
- (-1796 . 628265) (-1797 . 628184) (-1798 . 628090) (-1799 . 628002)
- (-1800 . 627888) (-1801 . 627661) (-1802 . 627560) (-1803 . 627482)
- (-1804 . 627324) (-1805 . 627227) (-1806 . 627028) (-1807 . 626910)
- (-1808 . 626671) (-1809 . 626616) (-1810 . 626513) (-1811 . 626336)
- (-1812 . 626046) (-1813 . 625487) (-1814 . 625436) (-1815 . 625350)
- (-1816 . 625138) (-1817 . 625070) (-1818 . 625007) (-1819 . 624955)
- (-1820 . 624887) (-1821 . 624831) (-1822 . 624732) (-1823 . 624053)
- (-1824 . 623827) (-1825 . 623775) (-1826 . 623647) (-1827 . 623088)
- (-1828 . 623017) (-1829 . 622720) (-1830 . 622146) (-1831 . 622042)
- (-1832 . 621804) (-1833 . 621740) (-1834 . 621612) (-1835 . 621535)
- (-1836 . 621506) (-1837 . 621400) (-1838 . 620932) (-1839 . 620794)
- (-1840 . 620690) (-1841 . 620524) (-1842 . 620450) (-1843 . 620390)
- (-1844 . 620283) (-1845 . 620056) (-1846 . 620014) (-1847 . 619893)
- (-1848 . 619824) (-1849 . 619758) (-1850 . 619684) (-1851 . 619521)
- (-1852 . 619226) (-1853 . 619173) (-1854 . 619039) (-1855 . 618926)
- (-1856 . 618859) (-1857 . 618673) (-1858 . 618594) (-1859 . 618451)
- (-1860 . 618395) (-1861 . 618117) (-1862 . 617947) (-1863 . 617873)
- (-1864 . 617581) (-1865 . 617300) (-1866 . 617184) (-1867 . 617044)
- (-1868 . 616880) (-1869 . 616755) (-1870 . 616702) (-1871 . 616561)
- (-1872 . 616490) (-1873 . 616332) (-1874 . 616085) (-1875 . 616057)
- (-1876 . 615988) (-1877 . 615886) (-1878 . 615752) (-1879 . 615693)
- (-1880 . 615634) (-1881 . 615481) (-1882 . 615429) (-1883 . 615343)
- (-1884 . 614839) (-1885 . 614726) (-1886 . 614564) (-1887 . 614486)
- (-1888 . 614413) (-1889 . 614329) (-1890 . 613972) (-1891 . 613944)
- (-1892 . 613807) (-1893 . 613660) (-1894 . 613504) (-1895 . 613358)
- (-1896 . 613138) (-1897 . 613050) (-1898 . 612967) (-1899 . 612906)
- (-1900 . 612823) (-1901 . 612669) (-1902 . 612574) (-1903 . 612458)
- (-1904 . 612164) (-1905 . 612085) (-1906 . 612012) (-1907 . 611775)
- (-1908 . 611648) (-1909 . 611134) (-1910 . 610884) (-1911 . 610473)
- (-1912 . 609958) (-1913 . 609870) (-1914 . 609694) (-1915 . 609616)
- (-1916 . 609435) (-1917 . 609357) (-1918 . 609138) (-1919 . 608787)
- (-1920 . 608633) (-1921 . 608458) (-1922 . 608377) (-1923 . 608044)
- (-1924 . 607935) (-1925 . 607833) (-1926 . 607774) (-1927 . 607700)
- (-1928 . 607559) (-1929 . 607032) (-1930 . 606965) (-1931 . 606827)
- (-1932 . 606516) (-1933 . 606443) (-1934 . 606330) (-1935 . 606278)
- (-1936 . 606201) (-1937 . 606149) (-1938 . 606064) (-1939 . 605768)
- (-1940 . 605535) (-1941 . 605287) (-1942 . 605128) (-1943 . 605014)
- (-1944 . 604854) (-1945 . 604111) (-1946 . 603758) (-1947 . 603615)
- (-1948 . 603514) (-1949 . 603382) (-1950 . 603319) (-1951 . 603240)
- (-1952 . 603189) (-1953 . 603130) (-1954 . 603072) (-1955 . 602813)
- (-1956 . 602718) (-1957 . 602634) (-1958 . 602024) (-1959 . 601923)
- (-1960 . 601728) (-1961 . 601438) (-1962 . 600992) (-1963 . 600887)
- (-1964 . 600682) (-1965 . 600612) (-1966 . 600409) (-1967 . 600078)
- (-1968 . 599920) (-1969 . 599825) (-1970 . 599723) (-1971 . 599632)
- (-1972 . 599489) (-1973 . 599433) (-1974 . 599323) (-1975 . 598980)
- (-1976 . 598675) (-1977 . 598618) (-1978 . 598436) (-1979 . 598203)
- (-1980 . 598106) (-1981 . 598012) (-1982 . 597697) (-1983 . 597607)
- (-1984 . 597533) (-1985 . 597201) (-1986 . 597041) (-1987 . 596852)
- (-1988 . 596703) (-1989 . 596449) (-1990 . 595585) (-1991 . 595530)
- (-1992 . 595472) (-1993 . 595278) (-1994 . 595148) (-1995 . 594987)
- (-1996 . 594888) (-1997 . 594804) (-1998 . 594548) (-1999 . 594468)
- (-2000 . 594312) (-2001 . 594242) (-2002 . 594114) (-2003 . 594031)
- (-2004 . 593968) (-2005 . 593919) (-2006 . 593475) (-2007 . 591887)
- (-2008 . 591831) (-2009 . 591762) (-2010 . 591709) (-2011 . 591594)
- (-2012 . 591141) (-2013 . 591019) (-2014 . 590744) (-2015 . 590556)
- (-2016 . 590479) (-2017 . 590181) (-2018 . 590082) (-2019 . 589787)
- (-2020 . 589482) (-2021 . 589372) (-2022 . 589338) (-2023 . 589244)
- (-2024 . 587514) (-2025 . 587164) (-2026 . 587107) (-2027 . 586975)
- (-2028 . 586920) (-2029 . 586849) (-2030 . 586792) (-2031 . 586647)
- (-2032 . 586508) (-2033 . 586368) (-2034 . 586340) (-2035 . 586168)
- (-2036 . 586085) (-2037 . 586001) (-2038 . 585903) (-2039 . 585825)
- (-2040 . 585709) (-2041 . 585445) (-2042 . 585304) (-2043 . 584841)
- (-2044 . 584771) (-2045 . 584714) (-2046 . 584570) (-2047 . 583704)
- (-2048 . 583494) (-2049 . 583352) (-2050 . 583264) (-2051 . 583125)
- (-2052 . 582846) (-2053 . 582747) (-2054 . 582451) (-2055 . 582327)
- (-2056 . 582256) (-2057 . 582227) (-2058 . 582131) (-2059 . 582052)
- (-2060 . 581934) (-2061 . 581809) (-2062 . 581678) (-2063 . 581600)
- (-2064 . 581300) (-2065 . 581179) (-2066 . 581099) (-2067 . 580944)
- (-2068 . 580580) (-2069 . 580409) (-2070 . 573466) (-2071 . 573392)
- (-2072 . 573243) (-2073 . 573112) (-2074 . 572975) (-2075 . 571433)
- (-2076 . 571322) (-2077 . 571242) (-2078 . 571170) (-2079 . 569947)
- (-2080 . 569804) (-2081 . 569649) (-2082 . 569365) (-2083 . 569038)
- (-2084 . 568951) (-2085 . 568833) (-2086 . 568689) (-2087 . 568471)
- (-2088 . 568400) (-2089 . 568153) (-2090 . 568042) (-2091 . 567989)
- (-2092 . 567779) (-2093 . 567666) (-2094 . 567438) (-2095 . 567381)
- (-2096 . 567303) (-2097 . 566978) (-2098 . 566773) (-2099 . 566386)
- (-2100 . 566263) (-2101 . 566132) (-2102 . 566022) (-2103 . 565927)
- (-2104 . 565833) (-2105 . 565725) (-2106 . 565659) (-2107 . 565600)
- (-2108 . 565176) (-2109 . 564801) (-2110 . 564587) (-2111 . 564550)
- (-2112 . 564449) (-2113 . 563576) (-2114 . 563420) (-2115 . 563091)
- (-2116 . 563011) (-2117 . 562883) (-2118 . 562741) (-2119 . 562686)
- (-2120 . 562606) (-2121 . 562538) (-2122 . 562469) (-2123 . 561367)
- (-2124 . 561242) (-2125 . 561112) (-2126 . 560894) (-2127 . 560759)
- (-2128 . 560447) (-2129 . 560289) (-2130 . 560186) (-2131 . 560102)
- (-2132 . 560029) (-2133 . 559948) (-2134 . 558863) (-2135 . 558733)
- (-2136 . 558705) (-2137 . 558440) (-2138 . 558332) (-2139 . 558232)
- (-2140 . 558138) (-2141 . 557999) (-2142 . 557962) (-2143 . 557617)
- (-2144 . 557559) (-2145 . 557507) (-2146 . 557054) (-2147 . 556998)
- (-2148 . 556884) (-2149 . 556850) (-2150 . 556553) (-2151 . 556395)
- (-2152 . 556069) (-2153 . 555963) (-2154 . 555824) (-2155 . 555747)
- (-2156 . 555217) (-2157 . 555115) (-2158 . 555016) (-2159 . 554568)
- (-2160 . 554482) (-2161 . 554432) (-2162 . 554248) (-2163 . 553984)
- (-2164 . 553875) (-2165 . 553499) (-2166 . 553322) (-2167 . 553270)
- (-2168 . 553162) (-2169 . 553056) (-2170 . 552878) (-2171 . 552684)
- (-2172 . 552490) (-2173 . 552382) (-2174 . 551988) (-2175 . 551928)
- (-2176 . 550810) (-2177 . 550755) (-2178 . 550693) (-2179 . 550310)
- (-2180 . 550198) (-2181 . 549881) (-2182 . 549780) (-2183 . 549390)
- (-2184 . 549308) (-2185 . 549090) (-2186 . 549062) (-2187 . 548946)
- (-2188 . 548893) (-2189 . 548798) (-2190 . 548674) (-2191 . 548512)
- (-2192 . 548480) (-2193 . 548430) (-2194 . 548206) (-2195 . 548123)
- (-2196 . 547905) (-2197 . 547852) (-2198 . 547821) (-2199 . 547666)
- (-2200 . 547595) (-2201 . 547173) (-2202 . 547070) (-2203 . 546974)
- (-2204 . 546821) (-2205 . 546722) (-2206 . 546598) (-2207 . 546512)
- (-2208 . 546445) (-2209 . 546371) (-2210 . 546055) (-2211 . 545878)
- (-2212 . 545762) (-2213 . 545709) (-2214 . 545635) (-2215 . 545402)
- (-2216 . 545150) (-2217 . 544932) (-2218 . 544862) (-2219 . 544295)
- (-2220 . 544182) (-2221 . 543505) (-2222 . 543363) (-2223 . 543226)
- (-2224 . 542780) (-2225 . 542679) (-2226 . 542367) (-2227 . 542207)
- (-2228 . 542070) (-2229 . 541735) (-2230 . 541513) (-2231 . 541441)
- (-2232 . 541390) (-2233 . 541296) (-2234 . 541078) (-2235 . 540913)
- (-2236 . 540668) (-2237 . 540596) (-2238 . 540435) (-2239 . 540290)
- (-2240 . 540177) (-2241 . 540027) (-2242 . 539921) (-2243 . 539825)
- (-2244 . 539738) (-2245 . 539711) (-2246 . 539551) (-2247 . 539477)
- (-2248 . 539349) (-2249 . 538738) (-2250 . 538689) (-2251 . 538533)
- (-2252 . 538226) (-2253 . 538057) (-2254 . 537923) (-2255 . 537796)
- (-2256 . 537768) (-2257 . 537672) (-2258 . 537561) (-2259 . 537476)
- (-2260 . 537392) (-2261 . 537305) (-2262 . 537108) (-2263 . 537022)
- (-2264 . 536922) (-2265 . 536839) (-2266 . 536738) (-2267 . 536623)
- (-2268 . 536564) (-2269 . 536470) (-2270 . 536137) (-2271 . 535974)
- (-2272 . 535858) (-2273 . 535636) (-2274 . 535454) (-2275 . 535351)
- (-2276 . 535273) (-2277 . 535115) (-2278 . 534969) (-2279 . 534900)
- (-2280 . 534826) (-2281 . 534743) (-2282 . 534677) (-2283 . 534431)
- (-2284 . 534209) (-2285 . 533980) (-2286 . 533875) (-2287 . 533629)
- (-2288 . 533531) (-2289 . 533402) (-2290 . 533254) (-2291 . 533098)
- (-2292 . 533016) (-2293 . 532748) (-2294 . 532604) (-2295 . 532012)
- (-2296 . 531352) (-2297 . 531119) (-2298 . 530833) (-2299 . 530749)
- (-2300 . 530681) (-2301 . 530609) (-2302 . 530555) (-2303 . 530452)
- (-2304 . 530380) (-2305 . 530306) (-2306 . 530228) (-2307 . 530120)
- (-2308 . 529531) (-2309 . 529475) (-2310 . 529201) (-2311 . 529111)
- (-2312 . 529026) (-2313 . 528863) (-2314 . 528774) (-2315 . 528408)
- (-2316 . 528314) (-2317 . 528073) (-2318 . 527847) (-2319 . 527673)
- (-2320 . 527386) (-2321 . 527145) (-2322 . 526712) (-2323 . 526010)
- (-2324 . 525938) (-2325 . 525604) (-2326 . 525545) (-2327 . 525455)
- (-2328 . 524869) (-2329 . 524554) (-2330 . 524146) (-2331 . 523770)
- (-2332 . 523136) (-2333 . 522904) (-2334 . 522770) (-2335 . 522715)
- (-2336 . 522036) (-2337 . 522007) (-2338 . 521887) (-2339 . 521816)
- (-2340 . 521756) (-2341 . 521599) (-2342 . 521522) (-2343 . 521441)
- (-2344 . 521170) (-2345 . 521004) (-2346 . 520779) (-2347 . 520665)
- (-2348 . 520412) (-2349 . 520082) (-2350 . 520004) (-2351 . 519887)
- (-2352 . 519831) (-2353 . 519754) (-2354 . 519634) (-2355 . 519445)
- (-2356 . 518994) (-2357 . 518922) (-2358 . 518825) (-2359 . 518719)
- (-2360 . 518638) (-2361 . 518541) (-2362 . 518445) (-2363 . 518245)
- (-2364 . 518005) (-2365 . 517872) (-2366 . 517813) (-2367 . 516551)
- (-2368 . 516069) (-2369 . 515854) (-2370 . 515770) (-2371 . 515651)
- (-2372 . 515554) (-2373 . 515410) (-2374 . 515350) (-2375 . 515279)
- (-2376 . 515194) (-2377 . 515123) (-2378 . 515002) (-2379 . 514907)
- (-2380 . 514837) (-2381 . 514734) (-2382 . 514590) (-2383 . 513703)
- (-2384 . 513455) (-2385 . 513357) (-2386 . 513279) (-2387 . 513120)
- (-2388 . 512909) (-2389 . 512816) (-2390 . 512605) (-2391 . 512511)
- (-2392 . 512459) (-2393 . 512336) (-2394 . 512284) (-2395 . 512232)
- (-2396 . 508897) (-2397 . 508743) (-2398 . 508666) (-2399 . 508414)
- (-2400 . 508279) (-2401 . 508121) (-2402 . 507891) (-2403 . 507720)
- (-2404 . 507336) (-2405 . 507208) (-2406 . 507150) (-2407 . 507068)
- (-2408 . 506816) (-2409 . 506764) (-2410 . 506515) (-2411 . 506135)
- (-2412 . 506063) (-2413 . 505920) (-2414 . 505816) (-2415 . 505761)
- (-2416 . 505646) (-2417 . 505399) (-2418 . 505347) (-2419 . 505132)
- (-2420 . 505003) (-2421 . 504950) (-2422 . 504881) (-2423 . 486306)
- (-2424 . 486200) (-2425 . 485931) (-2426 . 485815) (-2427 . 485766)
- (-2428 . 485697) (-2429 . 485627) (-2430 . 485486) (-2431 . 485290)
- (-2432 . 484860) (-2433 . 484786) (-2434 . 484492) (-2435 . 481671)
- (-2436 . 481406) (-2437 . 481349) (-2438 . 481270) (-2439 . 481155)
- (-2440 . 480991) (-2441 . 480564) (-2442 . 480419) (-2443 . 480323)
- (-2444 . 480243) (-2445 . 480160) (-2446 . 480111) (-2447 . 479995)
- (-2448 . 479899) (-2449 . 479813) (-2450 . 478996) (-2451 . 478926)
- (-2452 . 478791) (-2453 . 478687) (-2454 . 478123) (-2455 . 478050)
- (-2456 . 477934) (-2457 . 476936) (-2458 . 476729) (-2459 . 476677)
- (-2460 . 476582) (-2461 . 476493) (-2462 . 476436) (-2463 . 476384)
- (-2464 . 476275) (-2465 . 476146) (-2466 . 475802) (-2467 . 475616)
- (-2468 . 475585) (-2469 . 475446) (-2470 . 475281) (-2471 . 475177)
- (-2472 . 475143) (-2473 . 474968) (-2474 . 474855) (-2475 . 474488)
- (-2476 . 474386) (-2477 . 474263) (-2478 . 474210) (-2479 . 474118)
- (-2480 . 474015) (-2481 . 473962) (-2482 . 473631) (-2483 . 473563)
- (-2484 . 473132) (-2485 . 473063) (-2486 . 472967) (-2487 . 472680)
- (-2488 . 472627) (-2489 . 472318) (-2490 . 472267) (-2491 . 472201)
- (-2492 . 472109) (-2493 . 472055) (-2494 . 471961) (-2495 . 471887)
- (-2496 . 471834) (-2497 . 471555) (-2498 . 471470) (-2499 . 469687)
- (-2500 . 469505) (-2501 . 469126) (-2502 . 469052) (-2503 . 468993)
- (-2504 . 468827) (-2505 . 468717) (-2506 . 468277) (-2507 . 468206)
- (-2508 . 466910) (-2509 . 466687) (-2510 . 466593) (-2511 . 466489)
- (-2512 . 466390) (-2513 . 466109) (-2514 . 464859) (-2515 . 464763)
- (-2516 . 464553) (-2517 . 464492) (-2518 . 464388) (-2519 . 464307)
- (-2520 . 463774) (-2521 . 463697) (-2522 . 463582) (-2523 . 463529)
- (-2524 . 463459) (-2525 . 463011) (-2526 . 462675) (-2527 . 462522)
- (-2528 . 462470) (-2529 . 462299) (-2530 . 462271) (-2531 . 462198)
- (-2532 . 462121) (-2533 . 461980) (-2534 . 461330) (-2535 . 461192)
- (-2536 . 460856) (-2537 . 460755) (-2538 . 460683) (-2539 . 460347)
- (-2540 . 459381) (-2541 . 458988) (-2542 . 458601) (-2543 . 458535)
- (-2544 . 458456) (-2545 . 458362) (-2546 . 458224) (-2547 . 458154)
- (-2548 . 458031) (-2549 . 457746) (-2550 . 457405) (-2551 . 457077)
- (-2552 . 456735) (-2553 . 456022) (-2554 . 455966) (-2555 . 455863)
- (-2556 . 455109) (-2557 . 454972) (-2558 . 454895) (-2559 . 454616)
- (-2560 . 454112) (-2561 . 454024) (-2562 . 453308) (-2563 . 453083)
- (-2564 . 452833) (-2565 . 452730) (-2566 . 450315) (-2567 . 450162)
- (-2568 . 449975) (-2569 . 449918) (-2570 . 449859) (-2571 . 449264)
- (-2572 . 449187) (-2573 . 449104) (-2574 . 448865) (-2575 . 448273)
- (-2576 . 448137) (-2577 . 448009) (-2578 . 446041) (-2579 . 445942)
- (-2580 . 445859) (-2581 . 445185) (-2582 . 444543) (-2583 . 444365)
- (-2584 . 444275) (-2585 . 444198) (-2586 . 443959) (-2587 . 443927)
- (-2588 . 443568) (-2589 . 443485) (-2590 . 443453) (-2591 . 442854)
- (-2592 . 442789) (-2593 . 442738) (-2594 . 442458) (-2595 . 442191)
- (-2596 . 441984) (-2597 . 441888) (-2598 . 441497) (-2599 . 441387)
- (-2600 . 441330) (-2601 . 441166) (-2602 . 441085) (-2603 . 440963)
- (-2604 . 440736) (-2605 . 440573) (-2606 . 440459) (-2607 . 440385)
- (-2608 . 440226) (-2609 . 439992) (-2610 . 439885) (-2611 . 439770)
- (-2612 . 439006) (-2613 . 438555) (-2614 . 438461) (-2615 . 438087)
- (-2616 . 438027) (-2617 . 437910) (-2618 . 437858) (-2619 . 437755)
- (-2620 . 437597) (-2621 . 437449) (-2622 . 436445) (-2623 . 436349)
- (-2624 . 435813) (-2625 . 435727) (-2626 . 435631) (-2627 . 435543)
- (-2628 . 435405) (-2629 . 435208) (-2630 . 435114) (-2631 . 435059)
- (-2632 . 434701) (-2633 . 434581) (-2634 . 434372) (-2635 . 434180)
- (-2636 . 434023) (-2637 . 433848) (-2638 . 433754) (-2639 . 433658)
- (-2640 . 433458) (-2641 . 433278) (-2642 . 432476) (-2643 . 432404)
- (-2644 . 432241) (-2645 . 432145) (-2646 . 432000) (-2647 . 431947)
- (-2648 . 431701) (-2649 . 431642) (-2650 . 431608) (-2651 . 431504)
- (-2652 . 431072) (-2653 . 431022) (-2654 . 430864) (-2655 . 430742)
- (-2656 . 430714) (-2657 . 430660) (-2658 . 430047) (-2659 . 429973)
- (-2660 . 429907) (-2661 . 429781) (-2662 . 429685) (-2663 . 429489)
- (-2664 . 429388) (-2665 . 428991) (-2666 . 428910) (-2667 . 428664)
- (-2668 . 428586) (-2669 . 428475) (-2670 . 428316) (-2671 . 427889)
- (-2672 . 427836) (-2673 . 427713) (-2674 . 427605) (-2675 . 427078)
- (-2676 . 426984) (-2677 . 426866) (-2678 . 426638) (-2679 . 426512)
- (-2680 . 426397) (-2681 . 426151) (-2682 . 425937) (-2683 . 425490)
- (-2684 . 425428) (-2685 . 425334) (-2686 . 425305) (-2687 . 423527)
- (-2688 . 423448) (-2689 . 423347) (-2690 . 423229) (-2691 . 423176)
- (-2692 . 423077) (-2693 . 422912) (-2694 . 422382) (-2695 . 422311)
- (-2696 . 422212) (-2697 . 422115) (-2698 . 422000) (-2699 . 421802)
- (-2700 . 421432) (-2701 . 421185) (-2702 . 421125) (-2703 . 421001)
- (-2704 . 420858) (-2705 . 420548) (-2706 . 420295) (-2707 . 420212)
- (-2708 . 420130) (-2709 . 420036) (-2710 . 419979) (-2711 . 419799)
- (-2712 . 419735) (-2713 . 419707) (-2714 . 419480) (-2715 . 419424)
- (-2716 . 419343) (-2717 . 419180) (-2718 . 419090) (-2719 . 419013)
- (-2720 . 418890) (-2721 . 418687) (-2722 . 418577) (-2723 . 418489)
- (-2724 . 418422) (-2725 . 418180) (-2726 . 417948) (-2727 . 417730)
- (-2728 . 417657) (-2729 . 417491) (-2730 . 417414) (-2731 . 417345)
- (-2732 . 417027) (-2733 . 416847) (-2734 . 416760) (-2735 . 416663)
- (-2736 . 416166) (-2737 . 415999) (-2738 . 415928) (-2739 . 415834)
- (-2740 . 415722) (-2741 . 415600) (-2742 . 415507) (-2743 . 415435)
- (-2744 . 415273) (-2745 . 415223) (-2746 . 414836) (-2747 . 414643)
- (-2748 . 414256) (-2749 . 414065) (-2750 . 413649) (-2751 . 413569)
- (-2752 . 413002) (-2753 . 411729) (-2754 . 411625) (-2755 . 411537)
- (-2756 . 411438) (-2757 . 411404) (-2758 . 411297) (-2759 . 411096)
- (-2760 . 410993) (-2761 . 410942) (-2762 . 410849) (-2763 . 410790)
- (-2764 . 410762) (-2765 . 410506) (-2766 . 410452) (-2767 . 410315)
- (-2768 . 410023) (-2769 . 409841) (-2770 . 409203) (-2771 . 408944)
- (-2772 . 408862) (-2773 . 408806) (-2774 . 408435) (-2775 . 408149)
- (-2776 . 407989) (-2777 . 407923) (-2778 . 407867) (-2779 . 407687)
- (-2780 . 407504) (-2781 . 407186) (-2782 . 407133) (-2783 . 406893)
- (-2784 . 406332) (-2785 . 404476) (-2786 . 404258) (-2787 . 403855)
- (-2788 . 403649) (-2789 . 403466) (-2790 . 403414) (-2791 . 403264)
- (-2792 . 403159) (-2793 . 403016) (-2794 . 402891) (-2795 . 402692)
- (-2796 . 402590) (-2797 . 402541) (-2798 . 402357) (-2799 . 402233)
- (-2800 . 402126) (-2801 . 401968) (-2802 . 401830) (-2803 . 401720)
- (-2804 . 401649) (-2805 . 401390) (-2806 . 401312) (-2807 . 401140)
- (-2808 . 398299) (-2809 . 398129) (-2810 . 397986) (-2811 . 397935)
- (-2812 . 397842) (-2813 . 397729) (-2814 . 397586) (-2815 . 397457)
- (-2816 . 397405) (-2817 . 397291) (-2818 . 396824) (-12 . 396652)
- (-2820 . 396558) (-2821 . 396421) (-2822 . 396248) (-2823 . 395096)
- (-2824 . 394936) (-2825 . 394649) (-2826 . 394469) (-2827 . 394345)
- (-2828 . 394064) (-2829 . 393692) (-2830 . 393574) (-2831 . 393502)
- (-2832 . 393449) (-2833 . 392992) (-2834 . 392936) (-2835 . 392856)
- (-2836 . 392784) (-2837 . 392735) (-2838 . 392675) (-2839 . 392499)
- (-2840 . 392398) (-2841 . 392324) (-2842 . 392112) (-2843 . 391903)
- (-2844 . 391793) (-2845 . 391434) (-2846 . 391276) (-2847 . 391124)
- (-2848 . 390984) (-2849 . 390762) (-2850 . 390692) (-2851 . 390640)
- (-2852 . 390568) (-2853 . 390404) (-2854 . 390249) (-2855 . 389971)
- (-2856 . 389762) (-2857 . 389624) (-2858 . 389464) (-2859 . 388990)
- (-2860 . 388939) (-2861 . 388856) (-2862 . 388557) (-2863 . 388458)
- (-2864 . 388322) (-2865 . 388228) (-2866 . 388040) (-2867 . 387981)
- (-2868 . 387703) (-2869 . 387641) (-2870 . 387574) (-2871 . 387500)
- (-2872 . 387376) (-2873 . 387178) (-2874 . 387104) (-2875 . 386965)
- (-2876 . 386908) (-2877 . 386614) (-2878 . 386440) (-2879 . 386273)
- (-2880 . 386200) (-2881 . 386127) (-2882 . 386027) (-2883 . 385814)
- (-2884 . 385716) (-2885 . 385527) (-2886 . 385397) (-2887 . 385345)
- (-2888 . 385178) (-2889 . 385077) (-2890 . 380917) (-2891 . 380556)
- (-2892 . 380453) (-2893 . 380102) (-2894 . 380016) (-2895 . 379838)
- (-2896 . 379680) (-2897 . 379096) (-2898 . 379001) (-2899 . 378578)
- (-2900 . 378355) (-2901 . 378154) (-2902 . 378056) (-2903 . 376875)
- (-2904 . 376762) (-2905 . 376540) (-2906 . 376438) (-2907 . 375856)
- (-2908 . 375697) (-2909 . 375459) (-2910 . 375242) (-2911 . 375190)
- (-2912 . 375137) (-2913 . 375030) (-2914 . 374970) (-2915 . 374858)
- (-2916 . 374739) (-2917 . 374610) (-2918 . 374472) (-2919 . 374410)
- (-2920 . 374311) (-2921 . 374170) (-2922 . 374117) (-2923 . 373965)
- (-2924 . 373934) (-2925 . 373850) (-2926 . 373743) (-2927 . 373616)
- (-2928 . 373425) (-2929 . 373226) (-2930 . 372489) (-2931 . 372218)
- (* . 367672) (-2933 . 367503) (-2934 . 367340) (-2935 . 366858)
- (-2936 . 366716) (-2937 . 366597) (-2938 . 366478) (-2939 . 366221)
- (-2940 . 366013) (-2941 . 365488) (-2942 . 365364) (-2943 . 365166)
- (-2944 . 364914) (-2945 . 364804) (-2946 . 364707) (-2947 . 364570)
- (-2948 . 364496) (-2949 . 364309) (-2950 . 364208) (-2951 . 364045)
- (-2952 . 363205) (-2953 . 363112) (-2954 . 363033) (-2955 . 362835)
- (-2956 . 362641) (-2957 . 362582) (-2958 . 362511) (-2959 . 362094)
- (-2960 . 361997) (-2961 . 361794) (-2962 . 361532) (-2963 . 360936)
- (-2964 . 360053) (-2965 . 359814) (-2966 . 359708) (-2967 . 359577)
- (-2968 . 359525) (-2969 . 359232) (-2970 . 359116) (-2971 . 359043)
- (-2972 . 358913) (-2973 . 358718) (-2974 . 358446) (-2975 . 358336)
- (-2976 . 358196) (-2977 . 358146) (-2978 . 358096) (-2979 . 357809)
- (-2980 . 357563) (-2981 . 357466) (-2982 . 356286) (-2983 . 356087)
- (-2984 . 355924) (-2985 . 355872) (-2986 . 355787) (-2987 . 355619)
- (-2988 . 355376) (-2989 . 355281) (-2990 . 355231) (-2991 . 355133)
- (-2992 . 355081) (-2993 . 354908) (-2994 . 354532) (-2995 . 354428)
- (-2996 . 354279) (-2997 . 354242) (-2998 . 353381) (-2999 . 353150)
- (-3000 . 352971) (-3001 . 352790) (-3002 . 352617) (-3003 . 352519)
- (-3004 . 352447) (-3005 . 351531) (-3006 . 351475) (-3007 . 351389)
- (-3008 . 351131) (-3009 . 351044) (-3010 . 350900) (-3011 . 350813)
- (-3012 . 350760) (-3013 . 350635) (-3014 . 350504) (-3015 . 350308)
- (-3016 . 350072) (-3017 . 349872) (-3018 . 349735) (-3019 . 349683)
- (-3020 . 349552) (-3021 . 349521) (-3022 . 349190) (-3023 . 349031)
- (-3024 . 349003) (-3025 . 348525) (-3026 . 348454) (-3027 . 347566)
- (-3028 . 347025) (-3029 . 346891) (-3030 . 346818) (-3031 . 346735)
- (-3032 . 346653) (-3033 . 346461) (-3034 . 346374) (-3035 . 346155)
- (-3036 . 345811) (-3037 . 345509) (-3038 . 345372) (-3039 . 345227)
- (-3040 . 344787) (-3041 . 344642) (-3042 . 344415) (-3043 . 344235)
- (-3044 . 344183) (-3045 . 344085) (-3046 . 344025) (-3047 . 343972)
- (-3048 . 343843) (-3049 . 343661) (-3050 . 343563) (-3051 . 343529)
- (-3052 . 343257) (-3053 . 342982) (-3054 . 342851) (-3055 . 342785)
- (-3056 . 342072) (-3057 . 341976) (-3058 . 341160) (-3059 . 340988)
- (-3060 . 340820) (-3061 . 340752) (-3062 . 340595) (-3063 . 340564)
- (-3064 . 340530) (-3065 . 340426) (-3066 . 340109) (-3067 . 340021)
- (-3068 . 339964) (-3069 . 339881) (-3070 . 338695) (-3071 . 338552)
- (-3072 . 338380) (-3073 . 338314) (-3074 . 337963) (-3075 . 337810)
- (-3076 . 337756) (-3077 . 337724) (-3078 . 337538) (-3079 . 337395)
- (-3080 . 337342) (-3081 . 337237) (-3082 . 336055) (-3083 . 335924)
- (-3084 . 335752) (-3085 . 335459) (-3086 . 335430) (-3087 . 335295)
- (-3088 . 335199) (-3089 . 335064) (-3090 . 334980) (-3091 . 334649)
- (-3092 . 332442) (-3093 . 332349) (-3094 . 332148) (-3095 . 331976)
- (-3096 . 331831) (-3097 . 331669) (-3098 . 331619) (-3099 . 331582)
- (-3100 . 331484) (-3101 . 331432) (-3102 . 331366) (-3103 . 331314)
- (-3104 . 331264) (-3105 . 331156) (-3106 . 331093) (-3107 . 331030)
- (-3108 . 330901) (-3109 . 330821) (-3110 . 330755) (-3111 . 330204)
- (-3112 . 330032) (-3113 . 329785) (-3114 . 329717) (-3115 . 329618)
- (-3116 . 329530) (-3117 . 329463) (-3118 . 329330) (-3119 . 329270)
- (-3120 . 323932) (-3121 . 323744) (-3122 . 323710) (-3123 . 323615)
- (-3124 . 323532) (-3125 . 323374) (-3126 . 323295) (-3127 . 323263)
- (-3128 . 323179) (-3129 . 323079) (-3130 . 323006) (-3131 . 322872)
- (-3132 . 322491) (-3133 . 322427) (-3134 . 322311) (-3135 . 322210)
- (-3136 . 322127) (-3137 . 321964) (-3138 . 321912) (-3139 . 321765)
- (-3140 . 321536) (-3141 . 321390) (-3142 . 321277) (-3143 . 320933)
- (-3144 . 320850) (-3145 . 320709) (-3146 . 320621) (-3147 . 320526)
- (-3148 . 320398) (-3149 . 320342) (-3150 . 320020) (-3151 . 319968)
- (-3152 . 319844) (-3153 . 319762) (-3154 . 319577) (-3155 . 319503)
- (-3156 . 319403) (-3157 . 319214) (-3158 . 318768) (-3159 . 318560)
- (-3160 . 318488) (-3161 . 318393) (-3162 . 318338) (-3163 . 318304)
- (-3164 . 318033) (-3165 . 317856) (-3166 . 317804) (-3167 . 317661)
- (-3168 . 317562) (-3169 . 317419) (-3170 . 317035) (-3171 . 316916)
- (-3172 . 316758) (-3173 . 316692) (-3174 . 316572) (-3175 . 315274)
- (-3176 . 315203) (-3177 . 315007) (-3178 . 314665) (-3179 . 314559)
- (-3180 . 314243) (-3181 . 313816) (-3182 . 313663) (-3183 . 313608)
- (-3184 . 313520) (-3185 . 313241) (-3186 . 313144) (-3187 . 312973)
- (-3188 . 312918) (-3189 . 312536) (-3190 . 312457) (-3191 . 311946)
- (-3192 . 311707) (-3193 . 311524) (-3194 . 311496) (-3195 . 310894)
- (-3196 . 310795) (-3197 . 310712) (-3198 . 310108) (-3199 . 309963)
- (-3200 . 309738) (-3201 . 309470) (-3202 . 309364) (-3203 . 308654)
- (-3204 . 308585) (-3205 . 308478) (-3206 . 308336) (-3207 . 308114)
- (-3208 . 307824) (-3209 . 307688) (-3210 . 307614) (-3211 . 307561)
- (-3212 . 307382) (-3213 . 307232) (-3214 . 306838) (-3215 . 306744)
- (-3216 . 306549) (-3217 . 306472) (-3218 . 306299) (-3219 . 305926)
- (-3220 . 305282) (-3221 . 305198) (-3222 . 305148) (-3223 . 305024)
- (-3224 . 304931) (-3225 . 304859) (-3226 . 304680) (-3227 . 304620)
- (-3228 . 303439) (-3229 . 303370) (-3230 . 303123) (-3231 . 302550)
- (-3232 . 302442) (-3233 . 302383) (-3234 . 302230) (-3235 . 302160)
- (-3236 . 302036) (-3237 . 301958) (-3238 . 301571) (-3239 . 301488)
- (-3240 . 301411) (-3241 . 301225) (-3242 . 301110) (-3243 . 301024)
- (-3244 . 300689) (-3245 . 300546) (-3246 . 300240) (-3247 . 300113)
- (-3248 . 299898) (-3249 . 298555) (-3250 . 298243) (-3251 . 297956)
- (-3252 . 297838) (-3253 . 297250) (-3254 . 295088) (-3255 . 295011)
- (-3256 . 294867) (-3257 . 294731) (-3258 . 294660) (-3259 . 294499)
- (-3260 . 294432) (-3261 . 294303) (-3262 . 294053) (-3263 . 293213)
- (-3264 . 293119) (-3265 . 293068) (-3266 . 292998) (-3267 . 292747)
- (-3268 . 292594) (-3269 . 292148) (-3270 . 291832) (-3271 . 291715)
- (-3272 . 291570) (-3273 . 291146) (-3274 . 290933) (-3275 . 290806)
- (-3276 . 290753) (-3277 . 290676) (-3278 . 290488) (-3279 . 290402)
- (-3280 . 290228) (-3281 . 290109) (-3282 . 290039) (-3283 . 289884)
- (-3284 . 289791) (-3285 . 289623) (-3286 . 289550) (-3287 . 289334)
- (-3288 . 289261) (-3289 . 289130) (-3290 . 288854) (-3291 . 284847)
- (-3292 . 284795) (-3293 . 283579) (-3294 . 283527) (-3295 . 283211)
- (-3296 . 283124) (-3297 . 283029) (-3298 . 282959) (-3299 . 282860)
- (-3300 . 282539) (-3301 . 282471) (-3302 . 282242) (-3303 . 281867)
- (-3304 . 281770) (-3305 . 281520) (-3306 . 281346) (-3307 . 281280)
- (-3308 . 281159) (-3309 . 280972) (-3310 . 280905) (-3311 . 280782)
- (-3312 . 280489) (-3313 . 280365) (-3314 . 280021) (-3315 . 279799)
- (-3316 . 279290) (-3317 . 278977) (-3318 . 278907) (-3319 . 278791)
- (-3320 . 278763) (-3321 . 278682) (-3322 . 278136) (-3323 . 277769)
- (-3324 . 277617) (-3325 . 277551) (-3326 . 277303) (-3327 . 277159)
- (-3328 . 277107) (-3329 . 277029) (-3330 . 276977) (-3331 . 276918)
- (-3332 . 276696) (-3333 . 276597) (-3334 . 276511) (-3335 . 276428)
- (-3336 . 276348) (-3337 . 276227) (-3338 . 276156) (-3339 . 276127)
- (-3340 . 276026) (-3341 . 275955) (-3342 . 275815) (-3343 . 275424)
- (-3344 . 275333) (-3345 . 275283) (-3346 . 274973) (-3347 . 274746)
- (-3348 . 274473) (-3349 . 274342) (-3350 . 274290) (-3351 . 274038)
- (-3352 . 273942) (-3353 . 273784) (-3354 . 273646) (-3355 . 273525)
- (-3356 . 273403) (-3357 . 273231) (-3358 . 273158) (-3359 . 273080)
- (-3360 . 272877) (-3361 . 272779) (-3362 . 272461) (-3363 . 272123)
- (-3364 . 272037) (-3365 . 271935) (-3366 . 271502) (-3367 . 271183)
- (-3368 . 271064) (-3369 . 270748) (-3370 . 270237) (-3371 . 270152)
- (-3372 . 270052) (-3373 . 269834) (-3374 . 269781) (-3375 . 269496)
- (-3376 . 269380) (-3377 . 269121) (-3378 . 268900) (-3379 . 268682)
- (-3380 . 268567) (-3381 . 268416) (-3382 . 268009) (-3383 . 267893)
- (-3384 . 266316) (-3385 . 266203) (-3386 . 266071) (-3387 . 265969)
- (-3388 . 265678) (-3389 . 265270) (-3390 . 265185) (-3391 . 264921)
- (-3392 . 264866) (-3393 . 263838) (-3394 . 263750) (-3395 . 263330)
- (-3396 . 263302) (-3397 . 263083) (-3398 . 262293) (-3399 . 262138)
- (-3400 . 261931) (-3401 . 260853) (-3402 . 260562) (-3403 . 260458)
- (-3404 . 260335) (-3405 . 260216) (-3406 . 260163) (-3407 . 260044)
- (-3408 . 259748) (-3409 . 259714) (-3410 . 259387) (-3411 . 259310)
- (-3412 . 259224) (-3413 . 259165) (-3414 . 258917) (-3415 . 258851)
- (-3416 . 258738) (-3417 . 258602) (-3418 . 257979) (-3419 . 257832)
- (-3420 . 257744) (-3421 . 257452) (-3422 . 257304) (-3423 . 256878)
- (-3424 . 256747) (-3425 . 256692) (-3426 . 256594) (-3427 . 256190)
- (-3428 . 256011) (-3429 . 255925) (-3430 . 255809) (-3431 . 255684)
- (-3432 . 255467) (-3433 . 255221) (-3434 . 255138) (-3435 . 255042)
- (-3436 . 254963) (-3437 . 254855) (-3438 . 254743) (-3439 . 254669)
- (-3440 . 254419) (-3441 . 253892) (-3442 . 253490) (-3443 . 253312)
- (-3444 . 253199) (-3445 . 253142) (-3446 . 253059) (-3447 . 252958)
- (-3448 . 252858) (-3449 . 252372) (-3450 . 252277) (-3451 . 252225)
- (-3452 . 252160) (-3453 . 252016) (-3454 . 251421) (-3455 . 251126)
- (-3456 . 251042) (-3457 . 250851) (-3458 . 250708) (-3459 . 250454)
- (-3460 . 250426) (-3461 . 250359) (-3462 . 250290) (-3463 . 250196)
- (-3464 . 250073) (-3465 . 249959) (-3466 . 249756) (-3467 . 249660)
- (-3468 . 249557) (-3469 . 249391) (-3470 . 249305) (-3471 . 249204)
- (-3472 . 249138) (-3473 . 248907) (-3474 . 248310) (-3475 . 248169)
- (-3476 . 247731) (-3477 . 247486) (-3478 . 247098) (-3479 . 247041)
- (-3480 . 246976) (-3481 . 246461) (-3482 . 246409) (-3483 . 246177)
- (-3484 . 246122) (-3485 . 245868) (-3486 . 245816) (-3487 . 245677)
- (-3488 . 245583) (-3489 . 245431) (-3490 . 244792) (-3491 . 244724)
- (-3492 . 244636) (-3493 . 244578) (-3494 . 244450) (-3495 . 244377)
- (-3496 . 244147) (-3497 . 243988) (-3498 . 243906) (-3499 . 243600)
- (-3500 . 243527) (-3501 . 243454) (-3502 . 243296) (-3503 . 242902)
- (-3504 . 242828) (-3505 . 242710) (-3506 . 242545) (-3507 . 242472)
- (-3508 . 242398) (-3509 . 242312) (-3510 . 242260) (-3511 . 242163)
- (-3512 . 242134) (-3513 . 242041) (-3514 . 241666) (-3515 . 241463)
- (-3516 . 241429) (-3517 . 239648) (-3518 . 239565) (-3519 . 239479)
- (-3520 . 239293) (-3521 . 239228) (-3522 . 239086) (-3523 . 239033)
- (-3524 . 238981) (-3525 . 238630) (-3526 . 238489) (-3527 . 237905)
- (-3528 . 237799) (-3529 . 237672) (-3530 . 237568) (-3531 . 236908)
- (-3532 . 236835) (-3533 . 236675) (-3534 . 236623) (-3535 . 236549)
- (-3536 . 236339) (-3537 . 236196) (-3538 . 236042) (-3539 . 235628)
- (-3540 . 235557) (-3541 . 235338) (-3542 . 235276) (-3543 . 235103)
- (-3544 . 234908) (-3545 . 234806) (-3546 . 234724) (-3547 . 234629)
- (-3548 . 234568) (-3549 . 234474) (-3550 . 234396) (-3551 . 234325)
- (-3552 . 234270) (-3553 . 233885) (-3554 . 233765) (-3555 . 233646)
- (-3556 . 233542) (-3557 . 233465) (-3558 . 232469) (-3559 . 232320)
- (-3560 . 232005) (-3561 . 231693) (-3562 . 231640) (-3563 . 231572)
- (-3564 . 231326) (-3565 . 231228) (-3566 . 231156) (-3567 . 231049)
- (-3568 . 230864) (-3569 . 230815) (-3570 . 230749) (-3571 . 230675)
- (-3572 . 230256) (-3573 . 230179) (-3574 . 230051) (-3575 . 229974)
- (-3576 . 229456) (-3577 . 229394) (-3578 . 229067) (-3579 . 228924)
- (-3580 . 227960) (-3581 . 227829) (-3582 . 226908) (-3583 . 226805)
- (-3584 . 226494) (-3585 . 226393) (-3586 . 225955) (-3587 . 225606)
- (-3588 . 225522) (-3589 . 225432) (-3590 . 225404) (-3591 . 225239)
- (-3592 . 225059) (-3593 . 224832) (-3594 . 224629) (-3595 . 224551)
- (-3596 . 224499) (-3597 . 224433) (-3598 . 224241) (-3599 . 224189)
- (-3600 . 223391) (-3601 . 223011) (-3602 . 222915) (-3603 . 222862)
- (-3604 . 222802) (-3605 . 222596) (-3606 . 222499) (-3607 . 222356)
- (-3608 . 222262) (-3609 . 222118) (-3610 . 221948) (-3611 . 221846)
- (-3612 . 221671) (-3613 . 221619) (-3614 . 221389) (-3615 . 221336)
- (-3616 . 221204) (-3617 . 221056) (-3618 . 220518) (-3619 . 220257)
- (-3620 . 219589) (-3621 . 219481) (-3622 . 219159) (-3623 . 219016)
- (-3624 . 218920) (-3625 . 218871) (-3626 . 218791) (-3627 . 218652)
- (-3628 . 216520) (-3629 . 216438) (-3630 . 216239) (-3631 . 215958)
- (-3632 . 215753) (-3633 . 215667) (-3634 . 215306) (-3635 . 215167)
- (-3636 . 214910) (-3637 . 214824) (-3638 . 214772) (-3639 . 214441)
- (-3640 . 214261) (-3641 . 214190) (-3642 . 214032) (-3643 . 213797)
- (-3644 . 210498) (-3645 . 210410) (-3646 . 209734) (-3647 . 209639)
- (-3648 . 209577) (-3649 . 209422) (-3650 . 209363) (-3651 . 209070)
- (-3652 . 208912) (-3653 . 208616) (-3654 . 208558) (-3655 . 208167)
- (-3656 . 208112) (-3657 . 206887) (-3658 . 206806) (-3659 . 206712)
- (-3660 . 205310) (-3661 . 205254) (-3662 . 205058) (-3663 . 204986)
- (-3664 . 204931) (-3665 . 204783) (-3666 . 204569) (-3667 . 204507)
- (-3668 . 204423) (-3669 . 203885) (-3670 . 203752) (-3671 . 203611)
- (-3672 . 203583) (-3673 . 203098) (-3674 . 202938) (-3675 . 202854)
- (-3676 . 202455) (-3677 . 202332) (-3678 . 202195) (-3679 . 201535)
- (-3680 . 201404) (-3681 . 201219) (-3682 . 201145) (-3683 . 201040)
- (-3684 . 200954) (-3685 . 200840) (-3686 . 200790) (-3687 . 200662)
- (-3688 . 195148) (-3689 . 194862) (-3690 . 194763) (-3691 . 194557)
- (-3692 . 194277) (-3693 . 194113) (-3694 . 193957) (-3695 . 193412)
- (-3696 . 192782) (-3697 . 192541) (-3698 . 192467) (-3699 . 191402)
- (-3700 . 191010) (-3701 . 190958) (-3702 . 190894) (-3703 . 190730)
- (-3704 . 190097) (-3705 . 190009) (-3706 . 189912) (-3707 . 189884)
- (-3708 . 189813) (-3709 . 189635) (-3710 . 189539) (-3711 . 189408)
- (-3712 . 188967) (-3713 . 188705) (-3714 . 188575) (-3715 . 188498)
- (-3716 . 188442) (-3717 . 188390) (-3718 . 188356) (-3719 . 187494)
- (-3720 . 187120) (-3721 . 186636) (-3722 . 185908) (-3723 . 185573)
- (-3724 . 185449) (-3725 . 185347) (-3726 . 185220) (-3727 . 184865)
- (-3728 . 184733) (-3729 . 184653) (-3730 . 184311) (-3731 . 184262)
- (-3732 . 183509) (-3733 . 183453) (-3734 . 183308) (-3735 . 182580)
- (-3736 . 182475) (-3737 . 182306) (-3738 . 182220) (-3739 . 182152)
- (-3740 . 182037) (-3741 . 181970) (-3742 . 181578) (-3743 . 181385)
- (-3744 . 179129) (-3745 . 178454) (-3746 . 178360) (-3747 . 178086)
- (-3748 . 178023) (-3749 . 177896) (-3750 . 177862) (-3751 . 177711)
- (-3752 . 177588) (-3753 . 177488) (-3754 . 177456) (-3755 . 177241)
- (-3756 . 176678) (-3757 . 176566) (-3758 . 176510) (-3759 . 176410)
- (-3760 . 176342) (-3761 . 176260) (-3762 . 176112) (-3763 . 176057)
- (-3764 . 175726) (-3765 . 175437) (-3766 . 174874) (-3767 . 174786)
- (-3768 . 174712) (-3769 . 174420) (-3770 . 174361) (-3771 . 174242)
- (-3772 . 174082) (-3773 . 174026) (-3774 . 173930) (-3775 . 173853)
- (-3776 . 173782) (-3777 . 173219) (-3778 . 173166) (-3779 . 173114)
- (-3780 . 173054) (-3781 . 173002) (-3782 . 172943) (-3783 . 172872)
- (-3784 . 172767) (-3785 . 172688) (-3786 . 172570) (-3787 . 171897)
- (-9 . 171869) (-3789 . 171492) (-3790 . 171219) (-3791 . 171166)
- (-3792 . 170933) (-3793 . 170831) (-3794 . 170527) (-3795 . 170364)
- (-3796 . 170137) (-3797 . 170076) (-3798 . 170004) (-3799 . 169331)
- (-8 . 169303) (-3801 . 169150) (-3802 . 169067) (-3803 . 168808)
- (-3804 . 168756) (-3805 . 168703) (-3806 . 168599) (-3807 . 168415)
- (-3808 . 168314) (-3809 . 168234) (-3810 . 166605) (-3811 . 165869)
- (-7 . 165841) (-3813 . 164639) (-3814 . 164546) (-3815 . 164496)
- (-3816 . 164007) (-3817 . 163883) (-3818 . 163804) (-3819 . 163710)
- (-3820 . 163624) (-3821 . 163539) (-3822 . 163419) (-3823 . 163326)
- (-3824 . 162467) (-3825 . 161906) (-3826 . 161878) (-3827 . 161605)
- (-3828 . 161372) (-3829 . 161319) (-3830 . 161060) (-3831 . 160943)
- (-3832 . 160725) (-3833 . 160534) (-3834 . 160482) (-3835 . 160429)
- (-3836 . 159133) (-3837 . 158572) (-3838 . 157693) (-3839 . 157597)
- (-3840 . 157439) (-3841 . 157277) (-3842 . 157240) (-3843 . 157185)
- (-3844 . 157157) (-3845 . 157010) (-3846 . 156903) (-3847 . 156477)
- (-3848 . 155916) (-3849 . 155817) (-3850 . 155732) (-3851 . 155566)
- (-3852 . 155487) (-3853 . 155362) (-3854 . 155211) (-3855 . 155137)
- (-3856 . 155064) (-3857 . 154998) (-3858 . 154324) (-3859 . 154222)
- (-3860 . 154083) (-3861 . 153995) (-3862 . 153799) (-3863 . 153717)
- (-3864 . 153615) (-3865 . 153467) (-3866 . 153360) (-3867 . 153222)
- (-3868 . 153134) (-3869 . 152460) (-3870 . 152039) (-3871 . 151940)
- (-3872 . 151773) (-3873 . 151685) (-3874 . 151569) (-3875 . 151489)
- (-3876 . 151344) (-3877 . 151044) (-3878 . 150943) (-3879 . 150847)
- (-3880 . 150173) (-3881 . 150077) (-3882 . 149968) (-3883 . 149797)
- (-3884 . 149713) (-3885 . 149474) (-3886 . 149073) (-3887 . 148803)
- (-3888 . 147843) (-3889 . 146503) (-3890 . 146417) (-3891 . 145855)
- (-3892 . 144089) (-3893 . 144022) (-3894 . 143969) (-3895 . 143778)
- (-3896 . 143608) (-3897 . 143450) (-3898 . 143352) (-3899 . 143254)
- (-3900 . 143093) (-3901 . 142997) (-3902 . 142435) (-3903 . 140980)
- (-3904 . 139676) (-3905 . 139458) (-3906 . 139343) (-3907 . 139289)
- (-3908 . 139117) (-3909 . 139026) (-3910 . 138954) (-3911 . 138867)
- (-3912 . 138783) (-3913 . 138637) (-3914 . 138075) (-3915 . 136585)
- (-3916 . 136468) (-3917 . 136416) (-3918 . 136250) (-3919 . 136031)
- (-3920 . 135552) (-3921 . 135486) (-3922 . 135386) (-3923 . 135234)
- (-3924 . 135083) (-3925 . 134522) (-3926 . 134195) (-3927 . 133884)
- (-3928 . 133796) (-3929 . 133642) (-3930 . 133590) (-3931 . 133530)
- (-3932 . 133442) (-3933 . 133326) (-3934 . 133181) (-3935 . 133031)
- (-3936 . 132295) (-3937 . 131734) (-3938 . 131531) (-3939 . 131293)
- (-3940 . 131098) (-3941 . 130958) (-3942 . 130859) (-3943 . 130767)
- (-3944 . 130604) (-3945 . 130516) (-3946 . 130417) (-3947 . 130242)
- (-3948 . 130138) (-3949 . 129577) (-3950 . 129483) (-3951 . 129389)
- (-3952 . 129258) (-3953 . 129117) (-3954 . 128989) (-3955 . 128686)
- (-3956 . 128525) (-3957 . 127868) (-3958 . 127802) (-3959 . 127502)
- (-3960 . 126941) (-3961 . 125084) (-3962 . 124893) (-3963 . 124685)
- (-3964 . 123878) (-3965 . 123846) (-3966 . 123749) (-3967 . 123656)
- (-3968 . 123475) (-3969 . 123422) (-3970 . 123355) (-3971 . 122711)
- (-3972 . 122150) (-3973 . 122088) (-3974 . 122060) (-3975 . 121780)
- (-3976 . 121701) (-3977 . 121627) (-3978 . 121528) (-3979 . 121278)
- (-3980 . 121018) (-3981 . 119586) (-3982 . 118414) (-3983 . 118340)
- (-3984 . 118196) (-3985 . 118125) (-3986 . 118073) (-3987 . 117727)
- (-3988 . 117475) (-3989 . 117389) (-3990 . 117334) (-3991 . 117166)
- (-3992 . 117012) (-3993 . 116897) (-3994 . 116759) (-3995 . 116728)
- (-3996 . 116598) (-3997 . 116420) (-3998 . 115899) (-3999 . 115652)
- (-4000 . 115575) (-4001 . 115412) (-4002 . 115339) (-4003 . 114804)
- (-4004 . 114421) (-4005 . 114342) (-4006 . 114264) (-4007 . 114119)
- (-4008 . 113929) (-4009 . 113861) (-4010 . 113806) (-4011 . 113774)
- (-4012 . 113730) (-4013 . 113617) (-4014 . 113474) (-4015 . 113353)
- (-4016 . 112155) (-4017 . 112081) (-4018 . 112007) (-4019 . 111954)
- (-4020 . 111769) (-4021 . 111513) (-4022 . 111364) (-4023 . 111263)
- (-4024 . 111161) (-4025 . 110683) (-4026 . 110595) (-4027 . 110501)
- (-4028 . 110348) (-4029 . 110046) (-4030 . 109951) (-4031 . 109825)
- (-4032 . 109737) (-4033 . 109367) (-4034 . 109281) (-4035 . 109247)
- (-4036 . 109159) (-4037 . 109125) (-4038 . 108963) (-4039 . 108864)
- (-4040 . 108665) (-4041 . 108604) (-4042 . 108386) (-4043 . 108331)
- (-4044 . 108202) (-4045 . 108143) (-4046 . 108007) (-4047 . 107909)
- (-4048 . 106607) (-4049 . 106534) (-4050 . 106419) (-4051 . 106367)
- (-4052 . 106248) (-4053 . 106107) (-4054 . 106054) (-4055 . 105951)
- (-4056 . 105821) (-4057 . 105601) (-4058 . 105515) (-4059 . 105419)
- (-4060 . 105127) (-4061 . 105035) (-4062 . 104796) (-4063 . 103964)
- (-4064 . 103849) (-4065 . 103289) (-4066 . 103222) (-4067 . 103096)
- (-4068 . 102974) (-4069 . 102867) (-4070 . 102807) (-4071 . 102599)
- (-4072 . 102434) (-4073 . 102361) (-4074 . 102282) (-4075 . 102124)
- (-4076 . 101995) (-4077 . 101818) (-4078 . 101735) (-4079 . 101655)
- (-4080 . 101121) (-4081 . 100979) (-4082 . 100874) (-4083 . 100717)
- (-4084 . 100308) (-4085 . 100089) (-4086 . 99837) (-4087 . 99751)
- (-4088 . 99579) (-4089 . 99406) (-4090 . 99024) (-4091 . 98943)
- (-4092 . 98745) (-4093 . 98579) (-4094 . 98483) (-4095 . 97992)
- (-4096 . 97812) (-4097 . 97733) (-4098 . 97487) (-4099 . 97360)
- (-4100 . 97208) (-4101 . 96855) (-4102 . 96803) (-4103 . 96645)
- (-4104 . 96286) (-4105 . 96131) (-4106 . 96033) (-4107 . 95476)
- (-4108 . 95377) (-4109 . 95294) (-4110 . 95101) (-4111 . 94759)
- (-4112 . 94472) (-4113 . 94306) (-4114 . 93946) (-4115 . 93686)
- (-4116 . 93492) (-4117 . 93464) (-4118 . 93342) (-4119 . 92796)
- (-4120 . 92369) (-4121 . 92231) (-4122 . 92024) (-4123 . 91920)
- (-4124 . 91824) (-4125 . 91724) (-4126 . 91632) (-4127 . 91573)
- (-4128 . 90503) (-4129 . 90017) (-4130 . 89923) (-4131 . 89829)
- (-4132 . 89771) (-4133 . 89668) (-4134 . 89515) (-4135 . 89464)
- (-4136 . 89285) (-4137 . 89225) (-4138 . 89052) (-4139 . 88934)
- (-4140 . 88506) (-4141 . 88384) (-4142 . 88292) (-4143 . 88229)
- (-4144 . 88144) (-4145 . 88085) (-4146 . 87999) (-4147 . 87946)
- (-4148 . 87812) (-4149 . 87525) (-4150 . 87466) (-4151 . 87100)
- (-4152 . 86987) (-4153 . 86895) (-4154 . 86677) (-4155 . 86385)
- (-4156 . 86207) (-4157 . 86103) (-4158 . 85924) (-4159 . 85705)
- (-4160 . 85589) (-4161 . 85374) (-4162 . 85283) (-4163 . 85197)
- (-4164 . 85141) (-4165 . 84982) (-4166 . 84817) (-4167 . 84475)
- (-4168 . 83997) (-4169 . 83661) (-4170 . 83605) (-4171 . 83470)
- (-4172 . 83356) (-4173 . 83305) (-4174 . 83198) (-4175 . 82988)
- (-4176 . 82935) (-4177 . 82792) (-4178 . 82556) (-4179 . 82438)
- (-4180 . 82046) (-4181 . 81831) (-4182 . 81660) (-4183 . 81273)
- (-4184 . 80928) (-4185 . 80809) (-4186 . 80742) (-4187 . 80659)
- (-4188 . 80445) (-4189 . 80374) (-4190 . 80221) (-4191 . 80159)
- (-4192 . 79671) (-4193 . 79085) (-4194 . 78894) (-4195 . 78764)
- (-4196 . 78556) (-4197 . 78366) (-4198 . 78139) (-4199 . 77921)
- (-4200 . 77492) (-4201 . 77440) (-4202 . 77279) (-4203 . 77176)
- (-4204 . 77046) (-4205 . 76822) (-4206 . 76456) (-4207 . 76428)
- (-4208 . 76298) (-4209 . 76183) (-4210 . 75993) (-4211 . 75899)
- (-4212 . 75762) (-4213 . 75421) (-4214 . 75344) (-4215 . 75288)
- (-4216 . 75235) (-4217 . 75114) (-4218 . 75020) (-4219 . 74840)
- (-4220 . 74442) (-4221 . 74359) (-4222 . 74276) (-4223 . 74247)
- (-4224 . 74163) (-4225 . 72971) (-4226 . 72880) (-4227 . 72463)
- (-4228 . 72366) (-4229 . 72161) (-4230 . 72060) (-4231 . 71858)
- (-4232 . 70765) (-4233 . 70677) (-4234 . 70493) (-4235 . 70422)
- (-4236 . 70245) (-4237 . 70217) (-4238 . 69447) (-4239 . 69200)
- (-4240 . 69079) (-4241 . 68852) (-4242 . 68333) (-4243 . 68152)
- (-4244 . 67881) (-4245 . 67779) (-4246 . 67595) (-4247 . 67525)
- (-4248 . 67369) (-4249 . 67337) (-4250 . 67254) (-4251 . 67108)
- (-4252 . 66995) (-4253 . 66644) (-4254 . 66570) (-4255 . 66455)
- (-4256 . 57005) (-4257 . 56953) (-4258 . 56901) (-4259 . 56572)
- (-4260 . 56490) (-4261 . 56458) (-4262 . 56337) (-4263 . 56248)
- (-4264 . 56008) (-4265 . 55924) (-4266 . 55783) (-4267 . 55527)
- (-4268 . 55474) (-4269 . 55361) (-4270 . 55242) (-4271 . 55186)
- (-4272 . 54450) (-4273 . 54279) (-4274 . 54027) (-4275 . 53651)
- (-4276 . 53524) (-4277 . 53267) (-4278 . 53173) (-4279 . 52950)
- (-4280 . 52741) (-4281 . 52562) (-4282 . 52455) (-4283 . 52331)
- (-4284 . 47789) (-4285 . 47693) (-4286 . 47510) (-4287 . 47392)
- (-4288 . 44611) (-4289 . 44230) (-4290 . 44019) (-4291 . 43925)
- (-4292 . 43859) (-4293 . 43589) (-4294 . 43490) (-4295 . 43181)
- (-4296 . 42885) (-4297 . 42801) (-4298 . 42705) (-4299 . 42517)
- (-4300 . 42090) (-4301 . 42005) (-4302 . 41939) (-4303 . 41870)
- (-4304 . 41744) (-4305 . 40316) (-4306 . 40203) (-4307 . 39983)
- (-4308 . 39804) (-4309 . 39495) (-4310 . 39373) (-4311 . 39188)
- (-4312 . 39030) (-4313 . 38978) (-4314 . 38892) (-4315 . 38739)
- (-4316 . 34676) (-4317 . 34294) (-4318 . 33751) (-4319 . 33168)
- (-4320 . 32896) (-4321 . 32790) (-4322 . 32689) (-4323 . 32591)
- (-4324 . 32418) (-4325 . 32272) (-4326 . 32177) (-4327 . 31442)
- (-4328 . 31104) (-4329 . 31036) (-4330 . 30881) (-4331 . 30795)
- (-4332 . 30739) (-4333 . 30420) (-4334 . 30329) (-4335 . 29857)
- (-4336 . 29734) (-4337 . 29396) (-4338 . 29192) (-4339 . 28825)
- (-4340 . 28510) (-4341 . 28454) (-4342 . 28357) (-4343 . 28230)
- (-4344 . 27479) (-4345 . 27101) (-4346 . 27022) (-4347 . 26938)
- (-4348 . 26867) (-4349 . 26632) (-4350 . 26559) (-4351 . 26443)
- (-4352 . 26388) (-4353 . 24043) (-4354 . 23582) (-4355 . 23440)
- (-4356 . 23221) (-4357 . 9134) (-4358 . 8921) (-4359 . 8828)
- (-4360 . 8779) (-4361 . 8702) (-4362 . 8608) (-4363 . 8504)
- (-4364 . 8313) (-4365 . 8195) (-4366 . 3096) (-4367 . 3068)
- (-4368 . 3016) (-4369 . 2905) (-4370 . 2877) (-4371 . 2431)
- (-4372 . 2229) (-4373 . 2145) (-4374 . 2013) (-4375 . 1521)
- (-4376 . 1163) (-4377 . 1039) (-4378 . 986) (-4379 . 834)
- (-4380 . 669) (-4381 . 562) (-4382 . 509) (-4383 . 375) (-4384 . 242)
- (-4385 . 186) (-4386 . 85) (-4387 . 30)) \ No newline at end of file
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1033)) (-5 *1 (-756)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-642 (-1173))) (-4 *5 (-452))
+ (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1047))
+ (-5 *1 (-1157 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-642 *1)) (-4 *1 (-302))))
+ ((*1 *1 *1) (-4 *1 (-302)))
+ ((*1 *1 *2) (-12 (-5 *2 (-642 (-860))) (-5 *1 (-860))))
+ ((*1 *1 *1) (-5 *1 (-860))))
+(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-144)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-642 (-1025 *5 *6 *7 *8))) (-5 *1 (-1025 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-642 *8)) (-5 *4 (-112)) (-4 *8 (-1062 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-791)) (-4 *7 (-848))
+ (-5 *2 (-642 (-1143 *5 *6 *7 *8))) (-5 *1 (-1143 *5 *6 *7 *8)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-642 (-642 *3))) (-4 *3 (-1097)) (-5 *1 (-1184 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1197) (-430 *3)))
+ (-14 *4 (-1173)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-1036 (-564)) (-637 (-564))))
+ (-4 *2 (-13 (-27) (-1197) (-430 *3) (-10 -8 (-15 -2327 ($ *4)))))
+ (-4 *4 (-846))
+ (-4 *5
+ (-13 (-1240 *2 *4) (-363) (-1197)
+ (-10 -8 (-15 -3175 ($ $)) (-15 -4107 ($ $)))))
+ (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-981 *5)) (-14 *7 (-1173)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4))
+ (-5 *1 (-419 *4))))
+ ((*1 *1 *1) (-5 *1 (-924)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-924))))
+ ((*1 *1 *1) (-5 *1 (-925)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 (-225))) (-5 *1 (-925))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))
+ (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1238 (-564)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))
+ (-5 *4 (-407 (-564))) (-5 *1 (-1019 *3)) (-4 *3 (-1238 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4326 (-407 (-564))) (|:| -4336 (-407 (-564)))))
+ (-5 *1 (-1019 *3)) (-4 *3 (-1238 (-407 (-564))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-846) (-363))) (-5 *1 (-1058 *2 *3))
+ (-4 *3 (-1238 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1212)) (-5 *2 (-769))))
+ ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-769))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1047))
+ (-4 *2 (-13 (-404) (-1036 *4) (-363) (-1197) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1238 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-610 *3)) (-4 *3 (-1097))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-860)))))
+((-1295 . 731571) (-1296 . 730501) (-1297 . 729997) (-1298 . 729913)
+ (-1299 . 729505) (-1300 . 729453) (-1301 . 729283) (-1302 . 729176)
+ (-1303 . 729047) (-1304 . 728959) (-1305 . 728806) (-1306 . 728727)
+ (-1307 . 728667) (-1308 . 727825) (-1309 . 727625) (-1310 . 727548)
+ (-1311 . 726632) (-1312 . 726552) (-1313 . 726499) (-1314 . 722832)
+ (-1315 . 722722) (-1316 . 722208) (-1317 . 722015) (-1318 . 721921)
+ (-1319 . 721375) (-1320 . 717766) (-1321 . 717657) (-1322 . 717529)
+ (-1323 . 717395) (-1324 . 717299) (-1325 . 717233) (-1326 . 716981)
+ (-1327 . 716683) (-1328 . 716527) (-1329 . 716390) (-1330 . 716238)
+ (-1331 . 716172) (-1332 . 715925) (-1333 . 715832) (-1334 . 715727)
+ (-1335 . 715629) (-1336 . 715529) (-1337 . 715492) (-1338 . 715369)
+ (-1339 . 715209) (-1340 . 715130) (-1341 . 714996) (-1342 . 714901)
+ (-1343 . 714752) (-1344 . 714506) (-1345 . 714390) (-1346 . 714308)
+ (-1347 . 714170) (-1348 . 714074) (-1349 . 713916) (-1350 . 713849)
+ (-1351 . 713749) (-1352 . 713234) (-1353 . 713178) (-1354 . 713080)
+ (-1355 . 712897) (-1356 . 712736) (-1357 . 712426) (-1358 . 712308)
+ (-1359 . 712228) (-1360 . 710888) (-1361 . 710726) (-1362 . 710514)
+ (-1363 . 709366) (-1364 . 709334) (-1365 . 709191) (-1366 . 709163)
+ (-1367 . 708953) (-1368 . 708689) (-1369 . 708638) (-1370 . 708543)
+ (-1371 . 708475) (-1372 . 708248) (-1373 . 708144) (-1374 . 708115)
+ (-1375 . 707982) (-1376 . 707779) (-1377 . 707581) (-1378 . 707441)
+ (-1379 . 707369) (-1380 . 707206) (-1381 . 706721) (-1382 . 706273)
+ (-1383 . 706141) (-1384 . 706009) (-1385 . 705357) (-1386 . 705042)
+ (-1387 . 705011) (-1388 . 704812) (-1389 . 704533) (-1390 . 704417)
+ (-1391 . 704244) (-1392 . 704102) (-1393 . 703720) (-1394 . 703670)
+ (-1395 . 703574) (-1396 . 703411) (-1397 . 703359) (-1398 . 702896)
+ (-1399 . 702655) (-1400 . 702569) (-1401 . 702489) (-1402 . 702412)
+ (-1403 . 702378) (-1404 . 702268) (-1405 . 701904) (-1406 . 701815)
+ (-1407 . 701722) (-1408 . 701621) (-1409 . 701528) (-1410 . 701392)
+ (-1411 . 701298) (-1412 . 701210) (-1413 . 701069) (-1414 . 699977)
+ (-1415 . 699750) (-1416 . 699543) (-1417 . 699472) (-1418 . 699419)
+ (-1419 . 699256) (-1420 . 699006) (-1421 . 698867) (-1422 . 698800)
+ (-1423 . 698615) (-1424 . 698497) (-1425 . 698360) (-1426 . 698261)
+ (-1427 . 696005) (-1428 . 695945) (** . 692880) (-1430 . 692564)
+ (-1431 . 692511) (-1432 . 692368) (-1433 . 692160) (-1434 . 692046)
+ (-1435 . 691994) (-1436 . 691908) (-1437 . 691787) (-1438 . 691669)
+ (-1439 . 691550) (-1440 . 691147) (-1441 . 691051) (-1442 . 690978)
+ (-1443 . 690904) (-1444 . 690847) (-1445 . 690813) (-1446 . 690667)
+ (-1447 . 690464) (-1448 . 690413) (-1449 . 690104) (-1450 . 689897)
+ (-1451 . 689751) (-1452 . 689619) (-1453 . 689566) (-1454 . 689465)
+ (-1455 . 689370) (-1456 . 689314) (-1457 . 689286) (-1458 . 689220)
+ (-1459 . 689161) (-1460 . 688908) (-1461 . 688659) (-1462 . 688631)
+ (-1463 . 688543) (-1464 . 688391) (-1465 . 688339) (-1466 . 688256)
+ (-1467 . 688140) (-1468 . 687966) (-1469 . 687577) (-1470 . 687241)
+ (-1471 . 687123) (-1472 . 686410) (-1473 . 686291) (-1474 . 686201)
+ (-1475 . 686145) (-1476 . 686076) (-1477 . 685993) (-1478 . 685820)
+ (-1479 . 685764) (-1480 . 685562) (-1481 . 685190) (-1482 . 684849)
+ (-1483 . 684559) (-1484 . 684332) (-1485 . 684283) (-1486 . 684223)
+ (-1487 . 684093) (-1488 . 683907) (-1489 . 683657) (-1490 . 683602)
+ (-1491 . 683128) (-1492 . 682983) (-1493 . 682855) (-1494 . 682802)
+ (-1495 . 682724) (-1496 . 682566) (-1497 . 682377) (-1498 . 682284)
+ (-1499 . 682025) (-1500 . 681910) (-1501 . 681812) (-1502 . 681562)
+ (-1503 . 681484) (-1504 . 680960) (-1505 . 680798) (-1506 . 680699)
+ (-1507 . 680569) (-1508 . 680517) (-1509 . 680452) (-1510 . 680351)
+ (-1511 . 680219) (-1512 . 680034) (-1513 . 679882) (-1514 . 679799)
+ (-1515 . 679728) (-1516 . 679463) (-1517 . 679377) (-1518 . 679198)
+ (-1519 . 679031) (-1520 . 678753) (-1521 . 678588) (-1522 . 678480)
+ (-1523 . 677817) (-1524 . 677486) (-1525 . 677389) (-1526 . 677166)
+ (-1527 . 676963) (-1528 . 676798) (-1529 . 676699) (-1530 . 676627)
+ (-1531 . 676546) (-1532 . 676502) (-1533 . 676425) (-1534 . 676370)
+ (-1535 . 676228) (-1536 . 676106) (-1537 . 676029) (-1538 . 675662)
+ (-1539 . 675634) (-1540 . 675489) (-1541 . 675130) (-1542 . 675062)
+ (-1543 . 674981) (-1544 . 674772) (-1545 . 674678) (-1546 . 674621)
+ (-1547 . 674325) (-1548 . 674154) (-1549 . 673611) (-1550 . 673559)
+ (-1551 . 673376) (-1552 . 673221) (-1553 . 673043) (-1554 . 672994)
+ (-1555 . 672841) (-1556 . 672427) (-1557 . 672197) (-1558 . 672044)
+ (-1559 . 671930) (-1560 . 671856) (-1561 . 671623) (-1562 . 671557)
+ (-1563 . 671250) (-1564 . 671140) (-1565 . 670999) (-1566 . 670936)
+ (-1567 . 670840) (-1568 . 670766) (-1569 . 670676) (-1570 . 670531)
+ (-1571 . 669821) (-1572 . 669211) (-1573 . 667949) (-1574 . 667839)
+ (-1575 . 667780) (-1576 . 667486) (-1577 . 667302) (-1578 . 666735)
+ (-1579 . 666577) (-1580 . 666487) (-1581 . 666424) (-1582 . 666330)
+ (-1583 . 666256) (-1584 . 666046) (-1585 . 665914) (-1586 . 665809)
+ (-1587 . 665619) (-1588 . 665450) (-1589 . 665416) (-1590 . 665277)
+ (-1591 . 665194) (-1592 . 665098) (-1593 . 664982) (-1594 . 664920)
+ (-1595 . 664867) (-1596 . 664363) (-1597 . 663942) (-1598 . 663868)
+ (-1599 . 663752) (-1600 . 663649) (-1601 . 663228) (-1602 . 662806)
+ (-1603 . 662740) (-1604 . 662709) (-1605 . 661933) (-1606 . 661829)
+ (-1607 . 661704) (-1608 . 661499) (-1609 . 661372) (-1610 . 661288)
+ (-1611 . 661147) (-1612 . 661028) (-1613 . 660942) (-1614 . 660837)
+ (-1615 . 660722) (-1616 . 651272) (-1617 . 651077) (-1618 . 650978)
+ (-1619 . 650909) (-1620 . 650744) (-1621 . 650667) (-1622 . 650533)
+ (-1623 . 650404) (-1624 . 650055) (-1625 . 649799) (-1626 . 649607)
+ (-1627 . 649540) (-1628 . 649427) (-1629 . 649361) (-1630 . 649191)
+ (-1631 . 649124) (-1632 . 649039) (-1633 . 648973) (-1634 . 648887)
+ (-1635 . 648802) (-1636 . 648625) (-1637 . 648517) (-1638 . 648202)
+ (-1639 . 648043) (-1640 . 647833) (-1641 . 647765) (-1642 . 647572)
+ (-1643 . 647488) (-1644 . 647410) (-1645 . 647308) (-1646 . 647249)
+ (-1647 . 646905) (-1648 . 646849) (-1649 . 646776) (-1650 . 646675)
+ (-1651 . 646556) (-1652 . 646467) (-1653 . 646382) (-1654 . 646320)
+ (-1655 . 646268) (-1656 . 646212) (-1657 . 646124) (-1658 . 645924)
+ (-1659 . 645836) (-1660 . 645757) (-1661 . 645674) (-1662 . 645603)
+ (-1663 . 645428) (-1664 . 644674) (-1665 . 644643) (-1666 . 644545)
+ (-1667 . 644439) (-1668 . 644355) (-1669 . 644302) (-1670 . 644108)
+ (-1671 . 644009) (-1672 . 643926) (-1673 . 643801) (-1674 . 643674)
+ (-1675 . 642707) (-1676 . 642559) (-1677 . 642183) (-1678 . 642109)
+ (-1679 . 641974) (-1680 . 641900) (-1681 . 641817) (-1682 . 641650)
+ (-1683 . 641464) (-1684 . 641242) (-1685 . 641169) (-1686 . 641068)
+ (-1687 . 640923) (-1688 . 640839) (-1689 . 640581) (-1690 . 640358)
+ (-1691 . 640191) (-1692 . 640082) (-1693 . 639822) (-1694 . 639612)
+ (-1695 . 639538) (-1696 . 639487) (-1697 . 639278) (-1698 . 639172)
+ (-1699 . 639119) (-1700 . 638632) (-1701 . 638560) (-1702 . 638487)
+ (-1703 . 638419) (-1704 . 638360) (-1705 . 638272) (-1706 . 637668)
+ (-1707 . 637487) (-1708 . 637419) (-1709 . 637278) (-1710 . 636871)
+ (-1711 . 636801) (-1712 . 636489) (-1713 . 636387) (-1714 . 635876)
+ (-1715 . 635796) (-1716 . 635701) (-1717 . 635339) (-1718 . 634202)
+ (-1719 . 634130) (-1720 . 634014) (-1721 . 633962) (-1722 . 633883)
+ (-1723 . 632683) (-1724 . 632530) (-1725 . 632430) (-1726 . 632239)
+ (-1727 . 632116) (-1728 . 631993) (-1729 . 631755) (-1730 . 631673)
+ (-1731 . 631474) (-1732 . 631372) (-1733 . 631316) (-1734 . 631158)
+ (-1735 . 630960) (-1736 . 630774) (-1737 . 630678) (-1738 . 630493)
+ (-1739 . 629909) (-1740 . 629826) (-1741 . 629632) (-1742 . 629578)
+ (-1743 . 629486) (-1744 . 629429) (-1745 . 629330) (-1746 . 629185)
+ (-1747 . 629069) (-1748 . 628181) (-1749 . 628053) (-1750 . 627936)
+ (-1751 . 627700) (-1752 . 627614) (-1753 . 627484) (-1754 . 627355)
+ (-1755 . 627237) (-1756 . 627174) (-1757 . 626983) (-1758 . 626881)
+ (-1759 . 626624) (-1760 . 626479) (-1761 . 626261) (-1762 . 625989)
+ (-1763 . 625673) (-1764 . 625619) (-1765 . 625495) (-1766 . 625428)
+ (-1767 . 625354) (-1768 . 625156) (-1769 . 625082) (-1770 . 625009)
+ (-1771 . 624794) (-1772 . 624563) (-1773 . 624402) (-1774 . 623810)
+ (-1775 . 623732) (-1776 . 623518) (-1777 . 623417) (-1778 . 623361)
+ (-1779 . 623264) (-1780 . 623160) (-1781 . 623064) (-1782 . 622714)
+ (-1783 . 622617) (-1784 . 622545) (-1785 . 622402) (-1786 . 621782)
+ (-1787 . 621754) (-1788 . 621701) (-1789 . 621608) (-1790 . 621318)
+ (-1791 . 621247) (-1792 . 621191) (-1793 . 621136) (-1794 . 620956)
+ (-1795 . 620882) (-1796 . 620799) (-1797 . 620686) (-1798 . 620613)
+ (-1799 . 620481) (-1800 . 620407) (-1801 . 620354) (-1802 . 619746)
+ (-1803 . 619673) (-1804 . 619402) (-1805 . 619168) (-1806 . 619080)
+ (-1807 . 619023) (-1808 . 618908) (-1809 . 618880) (-1810 . 618751)
+ (-1811 . 618364) (-1812 . 618077) (-1813 . 618024) (-1814 . 617936)
+ (-1815 . 617833) (-1816 . 617673) (-1817 . 617605) (-1818 . 617254)
+ (-1819 . 617076) (-1820 . 616981) (-1821 . 616853) (-1822 . 616801)
+ (-1823 . 616727) (-1824 . 616675) (-1825 . 616619) (-1826 . 616226)
+ (-1827 . 616169) (-1828 . 616040) (-1829 . 615898) (-1830 . 615687)
+ (-1831 . 615576) (-1832 . 615366) (-1833 . 614807) (-1834 . 614455)
+ (-1835 . 614144) (-1836 . 614029) (-1837 . 613825) (-1838 . 613538)
+ (-1839 . 613323) (-1840 . 613069) (-1841 . 612390) (-1842 . 612059)
+ (-1843 . 611500) (-1844 . 611447) (-1845 . 611352) (-1846 . 610649)
+ (-1847 . 610553) (-1848 . 610498) (-1849 . 610388) (-1850 . 610335)
+ (-1851 . 610269) (-1852 . 610240) (-1853 . 609489) (-1854 . 609421)
+ (-1855 . 609342) (-1856 . 609223) (-1857 . 609144) (-1858 . 609041)
+ (-1859 . 608670) (-1860 . 608601) (-1861 . 608207) (-1862 . 608111)
+ (-1863 . 607923) (-1864 . 607753) (-1865 . 607628) (-1866 . 607573)
+ (-1867 . 607383) (-1868 . 607231) (-1869 . 606992) (-1870 . 606943)
+ (-1871 . 606890) (-1872 . 606706) (-1873 . 606428) (-1874 . 606208)
+ (-1875 . 606053) (-1876 . 605950) (-1877 . 605655) (-1878 . 605554)
+ (-1879 . 605415) (-1880 . 605158) (-1881 . 604936) (-1882 . 604878)
+ (-1883 . 604779) (-1884 . 604583) (-1885 . 604510) (-1886 . 604436)
+ (-1887 . 604383) (-1888 . 604282) (-1889 . 604201) (-1890 . 604064)
+ (-1891 . 603932) (-1892 . 603784) (-1893 . 603731) (-1894 . 603516)
+ (-1895 . 603438) (-1896 . 603367) (-1897 . 603256) (-1898 . 602937)
+ (-1899 . 602860) (-1900 . 602808) (-1901 . 602322) (-1902 . 602186)
+ (-1903 . 602028) (-1904 . 601956) (-1905 . 601895) (-1906 . 601808)
+ (-1907 . 601654) (-1908 . 601508) (-1909 . 601062) (-1910 . 599881)
+ (-1911 . 599399) (-1912 . 599162) (-1913 . 599110) (-1914 . 598919)
+ (-1915 . 598481) (-1916 . 598111) (-1917 . 598041) (-1918 . 597989)
+ (-1919 . 597866) (-1920 . 597706) (-1921 . 597428) (-1922 . 597294)
+ (-1923 . 597262) (-1924 . 597043) (-1925 . 596930) (-1926 . 596821)
+ (-1927 . 596762) (-1928 . 596649) (-1929 . 596576) (-1930 . 596435)
+ (-1931 . 596382) (-1932 . 596353) (-1933 . 596158) (-1934 . 596023)
+ (-1935 . 595910) (-1936 . 595767) (-1937 . 595345) (-1938 . 595219)
+ (-1939 . 595101) (-1940 . 595050) (-1941 . 594869) (-1942 . 594784)
+ (-1943 . 594703) (-1944 . 594573) (-1945 . 594429) (-1946 . 594119)
+ (-1947 . 594040) (-1948 . 593988) (-1949 . 593348) (-1950 . 593244)
+ (-1951 . 593002) (-1952 . 592905) (-1953 . 592747) (-1954 . 592676)
+ (-1955 . 592575) (-1956 . 592336) (-1957 . 591948) (-1958 . 591811)
+ (-1959 . 591723) (-1960 . 591664) (-1961 . 591592) (-1962 . 591521)
+ (-1963 . 591455) (-1964 . 591371) (-1965 . 591283) (-1966 . 591165)
+ (-1967 . 591050) (-1968 . 590995) (-1969 . 590961) (-1970 . 590655)
+ (-1971 . 590623) (-1972 . 590549) (-1973 . 590471) (-1974 . 590292)
+ (-1975 . 590089) (-1976 . 589555) (-1977 . 589360) (-1978 . 588087)
+ (-1979 . 587966) (-1980 . 587893) (-1981 . 587731) (-1982 . 587676)
+ (-1983 . 587537) (-1984 . 587317) (-1985 . 587159) (-1986 . 587071)
+ (-1987 . 587008) (-1988 . 586616) (-1989 . 586537) (-1990 . 586481)
+ (-1991 . 586357) (-1992 . 586304) (-1993 . 586249) (-1994 . 586153)
+ (-1995 . 586011) (-1996 . 585952) (-1997 . 585633) (-1998 . 585517)
+ (-1999 . 585166) (-2000 . 585132) (-2001 . 584994) (-2002 . 584945)
+ (-2003 . 584610) (-2004 . 584552) (-2005 . 584524) (-2006 . 584467)
+ (-2007 . 584332) (-2008 . 584280) (-2009 . 583834) (-2010 . 583662)
+ (-2011 . 583610) (-2012 . 583509) (-2013 . 583401) (-2014 . 583318)
+ (-2015 . 583235) (-2016 . 583180) (-2017 . 581882) (-2018 . 581701)
+ (-2019 . 581605) (-2020 . 581451) (-2021 . 581373) (-2022 . 580986)
+ (-2023 . 580751) (-2024 . 580694) (-2025 . 580622) (-2026 . 580521)
+ (-2027 . 580427) (-2028 . 580359) (-2029 . 580243) (-2030 . 580148)
+ (-2031 . 580062) (-2032 . 579762) (-2033 . 579682) (-2034 . 579627)
+ (-2035 . 579489) (-2036 . 579294) (-2037 . 579242) (-2038 . 579084)
+ (-2039 . 578968) (-2040 . 578873) (-2041 . 578688) (-2042 . 578608)
+ (-2043 . 578555) (-2044 . 578397) (-2045 . 578284) (-2046 . 578156)
+ (-2047 . 577829) (-2048 . 577777) (-2049 . 577690) (-2050 . 577519)
+ (-2051 . 577433) (-2052 . 577331) (-2053 . 577253) (-2054 . 576671)
+ (-2055 . 576572) (-2056 . 576313) (-2057 . 576126) (-2058 . 576040)
+ (-2059 . 575861) (-2060 . 575715) (-2061 . 575592) (-2062 . 575434)
+ (-2063 . 575337) (-2064 . 575245) (-2065 . 574974) (-2066 . 574915)
+ (-2067 . 573723) (-2068 . 573652) (-2069 . 573569) (-2070 . 573350)
+ (-2071 . 573184) (-2072 . 572311) (-2073 . 572155) (-2074 . 571747)
+ (-2075 . 571664) (-2076 . 571534) (-2077 . 571409) (-2078 . 571329)
+ (-2079 . 571209) (-2080 . 570107) (-2081 . 570007) (-2082 . 569937)
+ (-2083 . 569841) (-2084 . 569585) (-2085 . 569273) (-2086 . 569115)
+ (-2087 . 568890) (-2088 . 568760) (-2089 . 568394) (-2090 . 568203)
+ (-2091 . 568150) (-2092 . 568122) (-2093 . 568043) (-2094 . 567972)
+ (-2095 . 567862) (-2096 . 567575) (-2097 . 567412) (-2098 . 567186)
+ (-2099 . 567108) (-2100 . 566940) (-2101 . 566872) (-2102 . 565284)
+ (-2103 . 565229) (-2104 . 565151) (-2105 . 564900) (-2106 . 564794)
+ (-2107 . 564641) (-2108 . 564545) (-2109 . 564449) (-2110 . 564397)
+ (-2111 . 563644) (-2112 . 563551) (-2113 . 563066) (-2114 . 562773)
+ (-2115 . 562678) (-2116 . 562623) (-2117 . 562535) (-2118 . 562438)
+ (-2119 . 562328) (-2120 . 562213) (-2121 . 562089) (-2122 . 561695)
+ (-2123 . 561203) (-2124 . 561087) (-2125 . 560963) (-2126 . 560775)
+ (-2127 . 560458) (-2128 . 559641) (-2129 . 559542) (-2130 . 559460)
+ (-2131 . 559242) (-2132 . 559214) (-2133 . 559143) (-2134 . 557413)
+ (-2135 . 557354) (-2136 . 557239) (-2137 . 557162) (-2138 . 556985)
+ (-2139 . 556889) (-2140 . 556732) (-2141 . 556649) (-2142 . 556618)
+ (-2143 . 556438) (-2144 . 556343) (-2145 . 556243) (-2146 . 556070)
+ (-2147 . 555630) (-2148 . 555550) (-2149 . 555417) (-2150 . 555189)
+ (-2151 . 555105) (-2152 . 554947) (-2153 . 554863) (-2154 . 554772)
+ (-2155 . 554522) (-2156 . 554367) (-2157 . 554314) (-2158 . 554121)
+ (-2159 . 553738) (-2160 . 553644) (-2161 . 553563) (-2162 . 553486)
+ (-2163 . 553415) (-2164 . 553341) (-2165 . 553257) (-2166 . 553100)
+ (-2167 . 552850) (-2168 . 552483) (-2169 . 552377) (-2170 . 552159)
+ (-2171 . 552012) (-2172 . 551975) (-2173 . 551874) (-2174 . 551800)
+ (-2175 . 551750) (-2176 . 551682) (-2177 . 551463) (-2178 . 551325)
+ (-2179 . 551153) (-2180 . 550551) (-2181 . 550439) (-2182 . 550405)
+ (-2183 . 550324) (-2184 . 550194) (-2185 . 549583) (-2186 . 549064)
+ (-2187 . 548991) (-2188 . 548869) (-2189 . 548745) (-2190 . 548634)
+ (-2191 . 548584) (-2192 . 548556) (-2193 . 548420) (-2194 . 548392)
+ (-2195 . 548195) (-2196 . 547973) (-2197 . 547865) (-2198 . 547763)
+ (-2199 . 547662) (-2200 . 547609) (-2201 . 547482) (-2202 . 547394)
+ (-2203 . 546171) (-2204 . 545949) (-2205 . 545846) (-2206 . 545765)
+ (-2207 . 545712) (-2208 . 545655) (-2209 . 545509) (-2210 . 545331)
+ (-2211 . 545151) (-2212 . 545012) (-2213 . 544790) (-2214 . 544676)
+ (-2215 . 544566) (-2216 . 544471) (-2217 . 544398) (-2218 . 542615)
+ (-2219 . 542369) (-2220 . 542316) (-2221 . 541965) (-2222 . 541820)
+ (-2223 . 541724) (-2224 . 541628) (-2225 . 541599) (-2226 . 541567)
+ (-2227 . 541479) (-2228 . 541382) (-2229 . 541087) (-2230 . 540921)
+ (-2231 . 540733) (-2232 . 540215) (-2233 . 540111) (-2234 . 540033)
+ (-2235 . 539857) (-2236 . 539739) (-2237 . 539645) (-2238 . 539592)
+ (-2239 . 539384) (-2240 . 539241) (-2241 . 539067) (-2242 . 538993)
+ (-2243 . 538694) (-2244 . 538261) (-2245 . 537559) (-2246 . 537049)
+ (-2247 . 536466) (-2248 . 536376) (-2249 . 536324) (-2250 . 536194)
+ (-2251 . 536005) (-2252 . 535949) (-2253 . 535821) (-2254 . 535733)
+ (-2255 . 535054) (-2256 . 534934) (-2257 . 534857) (-2258 . 534099)
+ (-2259 . 534028) (-2260 . 533882) (-2261 . 533805) (-2262 . 533278)
+ (-2263 . 533177) (-2264 . 533019) (-2265 . 532276) (-2266 . 532180)
+ (-2267 . 532065) (-2268 . 531948) (-2269 . 531700) (-2270 . 531590)
+ (-2271 . 531459) (-2272 . 531376) (-2273 . 531231) (-2274 . 531160)
+ (-2275 . 531063) (-2276 . 530845) (-2277 . 530816) (-2278 . 530721)
+ (-2279 . 530154) (-2280 . 530095) (-2281 . 529676) (-2282 . 529573)
+ (-2283 . 529358) (-2284 . 529227) (-2285 . 529130) (-2286 . 528963)
+ (-2287 . 528903) (-2288 . 528837) (-2289 . 528679) (-2290 . 528536)
+ (-2291 . 528466) (-2292 . 528394) (-2293 . 527903) (-2294 . 527818)
+ (-2295 . 527638) (-2296 . 527540) (-2297 . 527356) (-2298 . 527287)
+ (-2299 . 526714) (-2300 . 526608) (-2301 . 526506) (-2302 . 526343)
+ (-2303 . 526314) (-2304 . 526241) (-2305 . 522906) (-2306 . 522793)
+ (-2307 . 522594) (-2308 . 522523) (-2309 . 522458) (-2310 . 522243)
+ (-2311 . 522184) (-2312 . 521910) (-2313 . 521715) (-2314 . 521665)
+ (-2315 . 521566) (-2316 . 521031) (-2317 . 520782) (-2318 . 520319)
+ (-2319 . 520216) (-2320 . 519952) (-2321 . 519900) (-2322 . 519653)
+ (-2323 . 519524) (-2324 . 519381) (-2325 . 519329) (-2326 . 518987)
+ (-2327 . 500412) (-2328 . 500186) (-2329 . 499917) (-2330 . 499751)
+ (-2331 . 499661) (-2332 . 499609) (-2333 . 499278) (-2334 . 499192)
+ (-2335 . 499098) (-2336 . 498769) (-2337 . 495948) (-2338 . 495158)
+ (-2339 . 494940) (-2340 . 494791) (-2341 . 494697) (-2342 . 494585)
+ (-2343 . 494404) (-2344 . 494107) (-2345 . 494033) (-2346 . 493936)
+ (-2347 . 493877) (-2348 . 493722) (-2349 . 493634) (-2350 . 493537)
+ (-2351 . 493278) (-2352 . 493174) (-2353 . 493078) (-2354 . 492899)
+ (-2355 . 492681) (-2356 . 492608) (-2357 . 491766) (-2358 . 491444)
+ (-2359 . 491331) (-2360 . 491279) (-2361 . 491226) (-2362 . 491169)
+ (-2363 . 491061) (-2364 . 490905) (-2365 . 490810) (-2366 . 490740)
+ (-2367 . 490709) (-2368 . 490656) (-2369 . 490607) (-2370 . 490511)
+ (-2371 . 490412) (-2372 . 490197) (-2373 . 489357) (-2374 . 489138)
+ (-2375 . 488964) (-2376 . 488798) (-2377 . 488745) (-2378 . 488622)
+ (-2379 . 488481) (-2380 . 488428) (-2381 . 486647) (-2382 . 486488)
+ (-2383 . 486057) (-2384 . 485875) (-2385 . 485747) (-2386 . 485665)
+ (-2387 . 485505) (-2388 . 485435) (-2389 . 485384) (-2390 . 485289)
+ (-2391 . 485203) (-2392 . 485108) (-2393 . 485011) (-2394 . 484645)
+ (-2395 . 484592) (-2396 . 484194) (-2397 . 484054) (-2398 . 483966)
+ (-2399 . 483821) (-2400 . 483744) (-2401 . 483644) (-2402 . 483570)
+ (-2403 . 483518) (-2404 . 483432) (-2405 . 483185) (-2406 . 483114)
+ (-2407 . 481818) (-2408 . 481232) (-2409 . 481100) (-2410 . 480673)
+ (-2411 . 480617) (-2412 . 480400) (-2413 . 480331) (-2414 . 479081)
+ (-2415 . 479011) (-2416 . 478897) (-2417 . 478522) (-2418 . 478369)
+ (-2419 . 478316) (-2420 . 478179) (-2421 . 478064) (-2422 . 477772)
+ (-2423 . 477534) (-2424 . 475678) (-2425 . 475590) (-2426 . 475406)
+ (-2427 . 475285) (-2428 . 474803) (-2429 . 474751) (-2430 . 474557)
+ (-2431 . 474505) (-2432 . 474453) (-2433 . 473803) (-2434 . 473665)
+ (-2435 . 473631) (-2436 . 473524) (-2437 . 473466) (-2438 . 473384)
+ (-2439 . 473255) (-2440 . 473174) (-2441 . 473091) (-2442 . 472995)
+ (-2443 . 472837) (-2444 . 472622) (-2445 . 472484) (-2446 . 472388)
+ (-2447 . 472261) (-2448 . 472191) (-2449 . 472076) (-2450 . 471928)
+ (-2451 . 471823) (-2452 . 470863) (-2453 . 468636) (-2454 . 468573)
+ (-2455 . 468478) (-2456 . 467890) (-2457 . 467813) (-2458 . 467534)
+ (-2459 . 467352) (-2460 . 467025) (-2461 . 466309) (-2462 . 466118)
+ (-2463 . 466004) (-2464 . 465787) (-2465 . 465476) (-2466 . 465379)
+ (-2467 . 465323) (-2468 . 465246) (-2469 . 465164) (-2470 . 464639)
+ (-2471 . 464562) (-2472 . 464460) (-2473 . 464109) (-2474 . 463517)
+ (-2475 . 463419) (-2476 . 463296) (-2477 . 463222) (-2478 . 463149)
+ (-2479 . 462984) (-2480 . 462309) (-2481 . 462242) (-2482 . 462105)
+ (-2483 . 461949) (-2484 . 461872) (-2485 . 461819) (-2486 . 461396)
+ (-2487 . 461364) (-2488 . 461251) (-2489 . 460960) (-2490 . 460361)
+ (-2491 . 460094) (-2492 . 459978) (-2493 . 459597) (-2494 . 459501)
+ (-2495 . 459311) (-2496 . 459199) (-2497 . 458808) (-2498 . 458641)
+ (-2499 . 458588) (-2500 . 458522) (-2501 . 458449) (-2502 . 458327)
+ (-2503 . 458073) (-2504 . 457788) (-2505 . 457760) (-2506 . 457559)
+ (-2507 . 457476) (-2508 . 457318) (-2509 . 457211) (-2510 . 457132)
+ (-2511 . 457061) (-2512 . 456961) (-2513 . 456743) (-2514 . 456369)
+ (-2515 . 456309) (-2516 . 455930) (-2517 . 455798) (-2518 . 455746)
+ (-2519 . 455550) (-2520 . 455361) (-2521 . 454357) (-2522 . 454150)
+ (-2523 . 454031) (-2524 . 453885) (-2525 . 453148) (-2526 . 452956)
+ (-2527 . 452818) (-2528 . 452712) (-2529 . 452660) (-2530 . 452302)
+ (-2531 . 452230) (-2532 . 452039) (-2533 . 451955) (-2534 . 451852)
+ (-2535 . 451792) (-2536 . 451617) (-2537 . 451546) (-2538 . 451298)
+ (-2539 . 451174) (-2540 . 450942) (-2541 . 450884) (-2542 . 450086)
+ (-2543 . 449918) (-2544 . 449605) (-2545 . 449432) (-2546 . 449330)
+ (-2547 . 449084) (-2548 . 448969) (-2549 . 448861) (-2550 . 448717)
+ (-2551 . 448285) (-2552 . 448223) (-2553 . 448133) (-2554 . 448082)
+ (-2555 . 447996) (-2556 . 447825) (-2557 . 447212) (-2558 . 447097)
+ (-2559 . 446994) (-2560 . 446875) (-2561 . 446732) (-2562 . 446612)
+ (-2563 . 446511) (-2564 . 446390) (-2565 . 446337) (-2566 . 446113)
+ (-2567 . 445867) (-2568 . 445763) (-2569 . 445667) (-2570 . 445240)
+ (-2571 . 445037) (-2572 . 444895) (-2573 . 444762) (-2574 . 444572)
+ (-2575 . 444487) (-2576 . 444369) (-2577 . 444277) (-2578 . 444124)
+ (-2579 . 443878) (-2580 . 443760) (-2581 . 443708) (-2582 . 443347)
+ (-2583 . 443285) (-2584 . 443152) (-2585 . 443035) (-2586 . 442883)
+ (-2587 . 442374) (-2588 . 442288) (-2589 . 442170) (-2590 . 442136)
+ (-2591 . 442084) (-2592 . 442007) (-2593 . 441882) (-2594 . 441668)
+ (-2595 . 441569) (-2596 . 441516) (-2597 . 441059) (-2598 . 440973)
+ (-2599 . 440693) (-2600 . 440441) (-2601 . 440381) (-2602 . 440201)
+ (-2603 . 439790) (-2604 . 439534) (-2605 . 439408) (-2606 . 439199)
+ (-2607 . 439116) (-2608 . 439011) (-2609 . 438545) (-2610 . 438392)
+ (-2611 . 438297) (-2612 . 438241) (-2613 . 438014) (-2614 . 437689)
+ (-2615 . 437639) (-2616 . 437568) (-2617 . 437491) (-2618 . 437367)
+ (-2619 . 437051) (-2620 . 436706) (-2621 . 436535) (-2622 . 436458)
+ (-2623 . 436385) (-2624 . 436319) (-2625 . 436087) (-2626 . 435941)
+ (-2627 . 435777) (-2628 . 435700) (-2629 . 435640) (-2630 . 435588)
+ (-2631 . 435382) (-2632 . 434921) (-2633 . 434861) (-2634 . 434801)
+ (-2635 . 434672) (-2636 . 434621) (-2637 . 434470) (-2638 . 434022)
+ (-2639 . 433925) (-2640 . 433831) (-2641 . 433724) (-2642 . 433583)
+ (-2643 . 433438) (-2644 . 433332) (-2645 . 433184) (-2646 . 433027)
+ (-2647 . 432611) (-2648 . 432539) (-2649 . 432087) (-2650 . 431873)
+ (-2651 . 431778) (-2652 . 431725) (-2653 . 431621) (-2654 . 431510)
+ (-2655 . 431380) (-2656 . 431328) (-2657 . 431193) (-2658 . 431109)
+ (-2659 . 430749) (-2660 . 430697) (-2661 . 430264) (-2662 . 429972)
+ (-2663 . 429905) (-2664 . 429702) (-2665 . 429633) (-2666 . 429400)
+ (-2667 . 429013) (-2668 . 428985) (-2669 . 428347) (-2670 . 428061)
+ (-2671 . 427962) (-2672 . 427458) (-2673 . 427397) (-2674 . 427016)
+ (-2675 . 426837) (-2676 . 426713) (-2677 . 426657) (-2678 . 426629)
+ (-2679 . 426320) (-2680 . 426147) (-2681 . 426068) (-2682 . 425910)
+ (-2683 . 425348) (-2684 . 425233) (-2685 . 424904) (-2686 . 424739)
+ (-2687 . 424533) (-2688 . 424294) (-2689 . 424116) (-2690 . 424061)
+ (-2691 . 423765) (-2692 . 423647) (-2693 . 423590) (-2694 . 423468)
+ (-2695 . 423269) (-2696 . 423061) (-2697 . 422982) (-2698 . 422881)
+ (-2699 . 422641) (-2700 . 422173) (-2701 . 422145) (-2702 . 421963)
+ (-2703 . 421855) (-2704 . 421802) (-2705 . 421736) (-2706 . 421564)
+ (-2707 . 418723) (-2708 . 418670) (-2709 . 418590) (-2710 . 418466)
+ (-2711 . 418400) (-2712 . 418220) (-2713 . 418002) (-2714 . 417791)
+ (-2715 . 417739) (-2716 . 417638) (-2717 . 417572) (-12 . 417400)
+ (-2719 . 417285) (-2720 . 416981) (-2721 . 416874) (-2722 . 415722)
+ (-2723 . 415640) (-2724 . 414098) (-2725 . 413957) (-2726 . 413820)
+ (-2727 . 413765) (-2728 . 413661) (-2729 . 413497) (-2730 . 413441)
+ (-2731 . 413341) (-2732 . 413292) (-2733 . 413005) (-2734 . 412813)
+ (-2735 . 412757) (-2736 . 412636) (-2737 . 412576) (-2738 . 412244)
+ (-2739 . 412021) (-2740 . 411483) (-2741 . 411295) (-2742 . 410957)
+ (-2743 . 410814) (-2744 . 410732) (-2745 . 410613) (-2746 . 410535)
+ (-2747 . 410442) (-2748 . 410358) (-2749 . 410251) (-2750 . 410154)
+ (-2751 . 410082) (-2752 . 409422) (-2753 . 408993) (-2754 . 408849)
+ (-2755 . 408571) (-2756 . 407709) (-2757 . 407581) (-2758 . 407528)
+ (-2759 . 407428) (-2760 . 407260) (-2761 . 407098) (-2762 . 407021)
+ (-2763 . 406969) (-2764 . 406873) (-2765 . 406765) (-2766 . 406669)
+ (-2767 . 406545) (-2768 . 406467) (-2769 . 406307) (-2770 . 406206)
+ (-2771 . 406090) (-2772 . 405966) (-2773 . 405685) (-2774 . 405628)
+ (-2775 . 403514) (-2776 . 403198) (-2777 . 403096) (-2778 . 403029)
+ (-2779 . 402947) (-2780 . 402828) (-2781 . 402708) (-2782 . 402122)
+ (-2783 . 401866) (-2784 . 401725) (-2785 . 401479) (-2786 . 401101)
+ (-2787 . 400971) (-2788 . 400905) (-2789 . 400345) (-2790 . 400292)
+ (-2791 . 400213) (-2792 . 400110) (-2793 . 399946) (-2794 . 399918)
+ (-2795 . 399727) (-2796 . 399653) (-2797 . 399523) (-2798 . 399456)
+ (-2799 . 399266) (-2800 . 399126) (-2801 . 399044) (-2802 . 398764)
+ (-2803 . 398642) (-2804 . 398493) (-2805 . 398391) (-2806 . 398248)
+ (-2807 . 398196) (-2808 . 397389) (-2809 . 397310) (-2810 . 397258)
+ (-2811 . 397121) (-2812 . 397014) (-2813 . 396961) (-2814 . 396887)
+ (-2815 . 396219) (-2816 . 396056) (-2817 . 396024) (-2818 . 395885)
+ (-2819 . 395854) (-2820 . 395795) (-2821 . 395673) (-2822 . 395570)
+ (-2823 . 395412) (-2824 . 395355) (-2825 . 395248) (-2826 . 395163)
+ (-2827 . 395106) (-2828 . 395078) (-2829 . 394936) (-2830 . 394749)
+ (* . 390255) (-2832 . 390185) (-2833 . 390111) (-2834 . 390062)
+ (-2835 . 389964) (-2836 . 389843) (-2837 . 389724) (-2838 . 389602)
+ (-2839 . 389394) (-2840 . 389286) (-2841 . 389193) (-2842 . 389056)
+ (-2843 . 388985) (-2844 . 388890) (-2845 . 388793) (-2846 . 388266)
+ (-2847 . 388192) (-2848 . 388039) (-2849 . 388011) (-2850 . 387853)
+ (-2851 . 387787) (-2852 . 387688) (-2853 . 387593) (-2854 . 387265)
+ (-2855 . 387171) (-2856 . 387068) (-2857 . 386988) (-2858 . 386571)
+ (-2859 . 386474) (-2860 . 386359) (-2861 . 386097) (-2862 . 385941)
+ (-2863 . 385854) (-2864 . 385681) (-2865 . 385565) (-2866 . 385506)
+ (-2867 . 385339) (-2868 . 385132) (-2869 . 385055) (-2870 . 384604)
+ (-2871 . 384525) (-2872 . 384253) (-2873 . 384094) (-2874 . 384067)
+ (-2875 . 383993) (-2876 . 383898) (-2877 . 383651) (-2878 . 383510)
+ (-2879 . 383419) (-2880 . 383352) (-2881 . 382702) (-2882 . 382539)
+ (-2883 . 382467) (-2884 . 381402) (-2885 . 381318) (-2886 . 381216)
+ (-2887 . 381077) (-2888 . 380916) (-2889 . 380800) (-2890 . 380748)
+ (-2891 . 380546) (-2892 . 380460) (-2893 . 380287) (-2894 . 380179)
+ (-2895 . 380107) (-2896 . 379246) (-2897 . 379015) (-2898 . 378943)
+ (-2899 . 378490) (-2900 . 378196) (-2901 . 378122) (-2902 . 378012)
+ (-2903 . 377662) (-2904 . 377565) (-2905 . 377206) (-2906 . 377063)
+ (-2907 . 376976) (-2908 . 376889) (-2909 . 376693) (-2910 . 376482)
+ (-2911 . 376395) (-2912 . 376277) (-2913 . 375936) (-2914 . 375439)
+ (-2915 . 375322) (-2916 . 375029) (-2917 . 374895) (-2918 . 374864)
+ (-2919 . 374642) (-2920 . 374608) (-2921 . 374555) (-2922 . 374396)
+ (-2923 . 374178) (-2924 . 373935) (-2925 . 373743) (-2926 . 373633)
+ (-2927 . 373545) (-2928 . 373459) (-2929 . 373377) (-2930 . 373322)
+ (-2931 . 372949) (-2932 . 372854) (-2933 . 372309) (-2934 . 372222)
+ (-2935 . 372017) (-2936 . 371798) (-2937 . 371582) (-2938 . 371178)
+ (-2939 . 370767) (-2940 . 370701) (-2941 . 370607) (-2942 . 370473)
+ (-2943 . 370241) (-2944 . 370080) (-2945 . 369985) (-2946 . 369683)
+ (-2947 . 369587) (-2948 . 369519) (-2949 . 369396) (-2950 . 369273)
+ (-2951 . 369055) (-2952 . 368568) (-2953 . 368503) (-2954 . 368432)
+ (-2955 . 368052) (-2956 . 367777) (-2957 . 367679) (-2958 . 367645)
+ (-2959 . 366302) (-2960 . 366221) (-2961 . 365405) (-2962 . 365233)
+ (-2963 . 365147) (-2964 . 365113) (-2965 . 365013) (-2966 . 364953)
+ (-2967 . 364770) (-2968 . 364736) (-2969 . 364650) (-2970 . 364597)
+ (-2971 . 364563) (-2972 . 364187) (-2973 . 363887) (-2974 . 362701)
+ (-2975 . 362605) (-2976 . 362433) (-2977 . 362187) (-2978 . 362062)
+ (-2979 . 361967) (-2980 . 361917) (-2981 . 361834) (-2982 . 361518)
+ (-2983 . 361067) (-2984 . 360966) (-2985 . 360753) (-2986 . 360665)
+ (-2987 . 359483) (-2988 . 359412) (-2989 . 359240) (-2990 . 359057)
+ (-2991 . 358628) (-2992 . 358493) (-2993 . 358420) (-2994 . 358324)
+ (-2995 . 357786) (-2996 . 357559) (-2997 . 357305) (-2998 . 355098)
+ (-2999 . 354234) (-3000 . 354138) (-3001 . 353966) (-3002 . 353853)
+ (-3003 . 353754) (-3004 . 353704) (-3005 . 353616) (-3006 . 353488)
+ (-3007 . 353402) (-3008 . 353242) (-3009 . 353171) (-3010 . 353119)
+ (-3011 . 352034) (-3012 . 351865) (-3013 . 351831) (-3014 . 351758)
+ (-3015 . 351654) (-3016 . 351576) (-3017 . 351517) (-3018 . 351196)
+ (-3019 . 350645) (-3020 . 350565) (-3021 . 350268) (-3022 . 350016)
+ (-3023 . 349932) (-3024 . 349632) (-3025 . 348636) (-3026 . 348565)
+ (-3027 . 343227) (-3028 . 342570) (-3029 . 342348) (-3030 . 341168)
+ (-3031 . 341106) (-3032 . 340822) (-3033 . 340711) (-3034 . 340626)
+ (-3035 . 340574) (-3036 . 339810) (-3037 . 339758) (-3038 . 339443)
+ (-3039 . 339300) (-3040 . 339173) (-3041 . 339044) (-3042 . 338992)
+ (-3043 . 338733) (-3044 . 338602) (-3045 . 338394) (-3046 . 338281)
+ (-3047 . 338204) (-3048 . 337895) (-3049 . 337814) (-3050 . 337585)
+ (-3051 . 337487) (-3052 . 337380) (-3053 . 337084) (-3054 . 336838)
+ (-3055 . 336768) (-3056 . 336668) (-3057 . 336577) (-3058 . 336503)
+ (-3059 . 336367) (-3060 . 336254) (-3061 . 336136) (-3062 . 336066)
+ (-3063 . 335961) (-3064 . 335893) (-3065 . 335725) (-3066 . 335625)
+ (-3067 . 335238) (-3068 . 335179) (-3069 . 335151) (-3070 . 335067)
+ (-3071 . 334942) (-3072 . 334620) (-3073 . 334142) (-3074 . 333798)
+ (-3075 . 333742) (-3076 . 333546) (-3077 . 333116) (-3078 . 332990)
+ (-3079 . 332907) (-3080 . 332786) (-3081 . 332632) (-3082 . 332346)
+ (-3083 . 331962) (-3084 . 331888) (-3085 . 331829) (-3086 . 331762)
+ (-3087 . 331428) (-3088 . 331391) (-3089 . 331236) (-3090 . 331159)
+ (-3091 . 331048) (-3092 . 330974) (-3093 . 330890) (-3094 . 330692)
+ (-3095 . 330529) (-3096 . 330434) (-3097 . 330300) (-3098 . 330223)
+ (-3099 . 329993) (-3100 . 329540) (-3101 . 329445) (-3102 . 329222)
+ (-3103 . 329109) (-3104 . 327893) (-3105 . 327683) (-3106 . 327443)
+ (-3107 . 327341) (-3108 . 327241) (-3109 . 327182) (-3110 . 327039)
+ (-3111 . 326938) (-3112 . 326833) (-3113 . 326767) (-3114 . 326642)
+ (-3115 . 326417) (-3116 . 326149) (-3117 . 324371) (-3118 . 323984)
+ (-3119 . 323915) (-3120 . 323680) (-3121 . 323594) (-3122 . 322476)
+ (-3123 . 322375) (-3124 . 322155) (-3125 . 322055) (-3126 . 321849)
+ (-3127 . 321576) (-3128 . 321472) (-3129 . 321199) (-3130 . 320842)
+ (-3131 . 320682) (-3132 . 320340) (-3133 . 320257) (-3134 . 320171)
+ (-3135 . 320110) (-3136 . 320012) (-3137 . 319939) (-3138 . 319679)
+ (-3139 . 319527) (-3140 . 319461) (-3141 . 319323) (-3142 . 319140)
+ (-3143 . 319045) (-3144 . 318966) (-3145 . 318914) (-3146 . 317733)
+ (-3147 . 317559) (-3148 . 317436) (-3149 . 317309) (-3150 . 317229)
+ (-3151 . 317063) (-3152 . 316967) (-3153 . 316839) (-3154 . 316770)
+ (-3155 . 316700) (-3156 . 316648) (-3157 . 316606) (-3158 . 316392)
+ (-3159 . 316304) (-3160 . 316227) (-3161 . 316041) (-3162 . 315893)
+ (-3163 . 315502) (-3164 . 315359) (-3165 . 315281) (-3166 . 314948)
+ (-3167 . 314819) (-3168 . 314692) (-3169 . 314636) (-3170 . 314552)
+ (-3171 . 314445) (-3172 . 314348) (-3173 . 314230) (-3174 . 313949)
+ (-3175 . 311787) (-3176 . 311732) (-3177 . 311634) (-3178 . 311386)
+ (-3179 . 311147) (-3180 . 311045) (-3181 . 310941) (-3182 . 310646)
+ (-3183 . 308231) (-3184 . 308075) (-3185 . 308007) (-3186 . 307945)
+ (-3187 . 307727) (-3188 . 307583) (-3189 . 307488) (-3190 . 307421)
+ (-3191 . 307339) (-3192 . 306893) (-3193 . 306583) (-3194 . 306452)
+ (-3195 . 306364) (-3196 . 306225) (-3197 . 305977) (-3198 . 305779)
+ (-3199 . 305443) (-3200 . 305348) (-3201 . 305275) (-3202 . 304858)
+ (-3203 . 304655) (-3204 . 304512) (-3205 . 304438) (-3206 . 304077)
+ (-3207 . 303697) (-3208 . 303553) (-3209 . 303385) (-3210 . 303152)
+ (-3211 . 303057) (-3212 . 302578) (-3213 . 302501) (-3214 . 302225)
+ (-3215 . 298218) (-3216 . 298132) (-3217 . 297871) (-3218 . 297819)
+ (-3219 . 297616) (-3220 . 297521) (-3221 . 297447) (-3222 . 297155)
+ (-3223 . 296763) (-3224 . 296675) (-3225 . 296609) (-3226 . 296515)
+ (-3227 . 296205) (-3228 . 295830) (-3229 . 295578) (-3230 . 295437)
+ (-3231 . 295342) (-3232 . 295151) (-3233 . 295068) (-3234 . 294838)
+ (-3235 . 294752) (-3236 . 294655) (-3237 . 294496) (-3238 . 294434)
+ (-3239 . 294283) (-3240 . 294045) (-3241 . 293820) (-3242 . 292937)
+ (-3243 . 292822) (-3244 . 292756) (-3245 . 292704) (-3246 . 292109)
+ (-3247 . 291868) (-3248 . 291787) (-3249 . 291643) (-3250 . 291235)
+ (-3251 . 291122) (-3252 . 291027) (-3253 . 290833) (-3254 . 290733)
+ (-3255 . 290437) (-3256 . 290335) (-3257 . 290240) (-3258 . 290187)
+ (-3259 . 290135) (-3260 . 289932) (-3261 . 289828) (-3262 . 289718)
+ (-3263 . 289632) (-3264 . 289532) (-3265 . 289358) (-3266 . 289324)
+ (-3267 . 289069) (-3268 . 288909) (-3269 . 288845) (-3270 . 288761)
+ (-3271 . 288642) (-3272 . 288588) (-3273 . 287142) (-3274 . 287040)
+ (-3275 . 286769) (-3276 . 286687) (-3277 . 286414) (-3278 . 286328)
+ (-3279 . 285850) (-3280 . 285366) (-3281 . 285296) (-3282 . 285003)
+ (-3283 . 284563) (-3284 . 284425) (-3285 . 284352) (-3286 . 284278)
+ (-3287 . 284108) (-3288 . 283922) (-3289 . 283763) (-3290 . 283542)
+ (-3291 . 283490) (-3292 . 283337) (-3293 . 283309) (-3294 . 283232)
+ (-3295 . 283180) (-3296 . 283149) (-3297 . 283077) (-3298 . 282701)
+ (-3299 . 282637) (-3300 . 282564) (-3301 . 282492) (-3302 . 282399)
+ (-3303 . 282303) (-3304 . 282166) (-3305 . 282097) (-3306 . 282018)
+ (-3307 . 280923) (-3308 . 280713) (-3309 . 280605) (-3310 . 280300)
+ (-3311 . 280133) (-3312 . 280018) (-3313 . 279944) (-3314 . 279916)
+ (-3315 . 279862) (-3316 . 279769) (-3317 . 279629) (-3318 . 279490)
+ (-3319 . 279392) (-3320 . 279332) (-3321 . 279108) (-3322 . 279000)
+ (-3323 . 278904) (-3324 . 278568) (-3325 . 278370) (-3326 . 278225)
+ (-3327 . 278122) (-3328 . 278012) (-3329 . 277592) (-3330 . 277486)
+ (-3331 . 277458) (-3332 . 277399) (-3333 . 277151) (-3334 . 277048)
+ (-3335 . 276910) (-3336 . 276619) (-3337 . 276567) (-3338 . 276414)
+ (-3339 . 276256) (-3340 . 276165) (-3341 . 276077) (-3342 . 275958)
+ (-3343 . 275888) (-3344 . 275833) (-3345 . 275581) (-3346 . 275517)
+ (-3347 . 275310) (-3348 . 275251) (-3349 . 275102) (-3350 . 274575)
+ (-3351 . 274431) (-3352 . 274345) (-3353 . 274211) (-3354 . 274113)
+ (-3355 . 273997) (-3356 . 273127) (-3357 . 272857) (-3358 . 272776)
+ (-3359 . 272350) (-3360 . 272243) (-3361 . 272130) (-3362 . 271882)
+ (-3363 . 271829) (-3364 . 271769) (-3365 . 271606) (-3366 . 271481)
+ (-3367 . 271328) (-3368 . 271270) (-3369 . 271182) (-3370 . 271039)
+ (-3371 . 270961) (-3372 . 270626) (-3373 . 270574) (-3374 . 270479)
+ (-3375 . 270419) (-3376 . 270391) (-3377 . 270190) (-3378 . 270035)
+ (-3379 . 269934) (-3380 . 269874) (-3381 . 269846) (-3382 . 269752)
+ (-3383 . 269679) (-3384 . 269497) (-3385 . 269252) (-3386 . 269027)
+ (-3387 . 268850) (-3388 . 268794) (-3389 . 268720) (-3390 . 268612)
+ (-3391 . 268539) (-3392 . 268384) (-3393 . 267789) (-3394 . 267542)
+ (-3395 . 267383) (-3396 . 267355) (-3397 . 267182) (-3398 . 267145)
+ (-3399 . 267073) (-3400 . 266874) (-3401 . 266544) (-3402 . 266473)
+ (-3403 . 266140) (-3404 . 266017) (-3405 . 265664) (-3406 . 265509)
+ (-3407 . 265439) (-3408 . 265332) (-3409 . 265203) (-3410 . 265037)
+ (-3411 . 264949) (-3412 . 263372) (-3413 . 263215) (-3414 . 263085)
+ (-3415 . 262976) (-3416 . 262680) (-3417 . 262484) (-3418 . 262239)
+ (-3419 . 262126) (-3420 . 261698) (-3421 . 261603) (-3422 . 261206)
+ (-3423 . 260691) (-3424 . 260547) (-3425 . 260481) (-3426 . 260276)
+ (-3427 . 260058) (-3428 . 260002) (-3429 . 259752) (-3430 . 259650)
+ (-3431 . 259104) (-3432 . 258981) (-3433 . 258912) (-3434 . 258828)
+ (-3435 . 258712) (-3436 . 258438) (-3437 . 258011) (-3438 . 257896)
+ (-3439 . 257628) (-3440 . 257545) (-3441 . 257409) (-3442 . 257157)
+ (-3443 . 256755) (-3444 . 256590) (-3445 . 256457) (-3446 . 256293)
+ (-3447 . 256150) (-3448 . 255857) (-3449 . 255551) (-3450 . 255497)
+ (-3451 . 255447) (-3452 . 255001) (-3453 . 254870) (-3454 . 254743)
+ (-3455 . 254602) (-3456 . 254437) (-3457 . 254360) (-3458 . 254310)
+ (-3459 . 254152) (-3460 . 253622) (-3461 . 253487) (-3462 . 253325)
+ (-3463 . 253146) (-3464 . 253006) (-3465 . 252866) (-3466 . 252724)
+ (-3467 . 252629) (-3468 . 252595) (-3469 . 252466) (-3470 . 252386)
+ (-3471 . 252246) (-3472 . 252013) (-3473 . 251834) (-3474 . 251099)
+ (-3475 . 251046) (-3476 . 250828) (-3477 . 250673) (-3478 . 250522)
+ (-3479 . 250055) (-3480 . 249769) (-3481 . 249656) (-3482 . 249423)
+ (-3483 . 249340) (-3484 . 249254) (-3485 . 249099) (-3486 . 248945)
+ (-3487 . 248874) (-3488 . 248714) (-3489 . 248609) (-3490 . 248530)
+ (-3491 . 248284) (-3492 . 248106) (-3493 . 247888) (-3494 . 247671)
+ (-3495 . 246994) (-3496 . 246903) (-3497 . 246724) (-3498 . 246609)
+ (-3499 . 246521) (-3500 . 246466) (-3501 . 246323) (-3502 . 246203)
+ (-3503 . 246060) (-3504 . 245808) (-3505 . 245715) (-3506 . 245638)
+ (-3507 . 245532) (-3508 . 245437) (-3509 . 245282) (-3510 . 245139)
+ (-3511 . 244917) (-3512 . 244797) (-3513 . 244634) (-3514 . 244551)
+ (-3515 . 244414) (-3516 . 244234) (-3517 . 243638) (-3518 . 243583)
+ (-3519 . 243349) (-3520 . 243296) (-3521 . 243172) (-3522 . 243084)
+ (-3523 . 242890) (-3524 . 242753) (-3525 . 239972) (-3526 . 239884)
+ (-3527 . 239850) (-3528 . 239797) (-3529 . 239702) (-3530 . 239640)
+ (-3531 . 239465) (-3532 . 239364) (-3533 . 239302) (-3534 . 238381)
+ (-3535 . 238295) (-3536 . 238242) (-3537 . 238157) (-3538 . 237847)
+ (-3539 . 237689) (-3540 . 237585) (-3541 . 237533) (-3542 . 237145)
+ (-3543 . 236989) (-3544 . 236866) (-3545 . 236686) (-3546 . 236246)
+ (-3547 . 236177) (-3548 . 235733) (-3549 . 235309) (-3550 . 235164)
+ (-3551 . 235069) (-3552 . 234315) (-3553 . 234193) (-3554 . 234141)
+ (-3555 . 234070) (-3556 . 233998) (-3557 . 233793) (-3558 . 233539)
+ (-3559 . 233093) (-3560 . 232956) (-3561 . 232784) (-3562 . 232638)
+ (-3563 . 232367) (-3564 . 231824) (-3565 . 231597) (-3566 . 231266)
+ (-3567 . 231091) (-3568 . 231022) (-3569 . 230933) (-3570 . 230880)
+ (-3571 . 230737) (-3572 . 230579) (-3573 . 230421) (-3574 . 230333)
+ (-3575 . 230278) (-3576 . 230017) (-3577 . 229947) (-3578 . 229806)
+ (-3579 . 229732) (-3580 . 229566) (-3581 . 229514) (-3582 . 229275)
+ (-3583 . 227143) (-3584 . 227071) (-3585 . 226754) (-3586 . 226703)
+ (-3587 . 226514) (-3588 . 226419) (-3589 . 226117) (-3590 . 226022)
+ (-3591 . 225950) (-3592 . 225864) (-3593 . 225812) (-3594 . 225481)
+ (-3595 . 225328) (-3596 . 225155) (-3597 . 224731) (-3598 . 224624)
+ (-3599 . 224443) (-3600 . 224358) (-3601 . 223682) (-3602 . 223590)
+ (-3603 . 223528) (-3604 . 223469) (-3605 . 223316) (-3606 . 223198)
+ (-3607 . 223114) (-3608 . 222986) (-3609 . 222928) (-3610 . 222877)
+ (-3611 . 221799) (-3612 . 220573) (-3613 . 220408) (-3614 . 220072)
+ (-3615 . 218670) (-3616 . 218546) (-3617 . 218460) (-3618 . 218423)
+ (-3619 . 218360) (-3620 . 217362) (-3621 . 217313) (-3622 . 217251)
+ (-3623 . 216949) (-3624 . 216613) (-3625 . 216246) (-3626 . 216093)
+ (-3627 . 215996) (-3628 . 215777) (-3629 . 215699) (-3630 . 215633)
+ (-3631 . 215421) (-3632 . 215203) (-3633 . 215022) (-3634 . 214890)
+ (-3635 . 214758) (-3636 . 214587) (-3637 . 214396) (-3638 . 213958)
+ (-3639 . 213857) (-3640 . 213538) (-3641 . 213467) (-3642 . 213414)
+ (-3643 . 207900) (-3644 . 207691) (-3645 . 207572) (-3646 . 207442)
+ (-3647 . 207217) (-3648 . 207106) (-3649 . 206981) (-3650 . 206952)
+ (-3651 . 206322) (-3652 . 206199) (-3653 . 206140) (-3654 . 205933)
+ (-3655 . 205540) (-3656 . 204933) (-3657 . 204706) (-3658 . 204572)
+ (-3659 . 203998) (-3660 . 203918) (-3661 . 203699) (-3662 . 203489)
+ (-3663 . 203357) (-3664 . 203256) (-3665 . 202863) (-3666 . 202061)
+ (-3667 . 201873) (-3668 . 201432) (-3669 . 201338) (-3670 . 201266)
+ (-3671 . 200922) (-3672 . 200814) (-3673 . 200325) (-3674 . 200217)
+ (-3675 . 199958) (-3676 . 199834) (-3677 . 199615) (-3678 . 199465)
+ (-3679 . 198736) (-3680 . 198401) (-3681 . 198109) (-3682 . 197837)
+ (-3683 . 197735) (-3684 . 197591) (-3685 . 197511) (-3686 . 197455)
+ (-3687 . 197352) (-3688 . 197010) (-3689 . 196684) (-3690 . 196409)
+ (-3691 . 196342) (-3692 . 195958) (-3693 . 195229) (-3694 . 195126)
+ (-3695 . 194989) (-3696 . 194861) (-3697 . 194792) (-3698 . 194582)
+ (-3699 . 194412) (-3700 . 194160) (-3701 . 194018) (-3702 . 193862)
+ (-3703 . 193635) (-3704 . 192959) (-3705 . 192856) (-3706 . 192729)
+ (-3707 . 192648) (-3708 . 192373) (-3709 . 192305) (-3710 . 192249)
+ (-3711 . 192194) (-3712 . 191944) (-3713 . 191866) (-3714 . 191795)
+ (-3715 . 191580) (-3716 . 191016) (-3717 . 190850) (-3718 . 190623)
+ (-3719 . 190318) (-3720 . 190224) (-3721 . 190098) (-3722 . 189920)
+ (-3723 . 189826) (-3724 . 189685) (-3725 . 189636) (-3726 . 189347)
+ (-3727 . 188783) (-3728 . 188712) (-3729 . 188660) (-3730 . 188233)
+ (-3731 . 188145) (-3732 . 188026) (-3733 . 187975) (-3734 . 187947)
+ (-3735 . 187814) (-3736 . 187715) (-3737 . 187599) (-3738 . 187492)
+ (-3739 . 186928) (-3740 . 186865) (-3741 . 186719) (-3742 . 186641)
+ (-3743 . 186588) (-3744 . 186456) (-3745 . 186237) (-3746 . 185984)
+ (-3747 . 185898) (-3748 . 185726) (-3749 . 185577) (-3750 . 184903)
+ (-9 . 184875) (-3752 . 184776) (-3753 . 184498) (-3754 . 184260)
+ (-3755 . 184090) (-3756 . 183691) (-3757 . 183636) (-3758 . 183529)
+ (-3759 . 183464) (-3760 . 183385) (-3761 . 183158) (-3762 . 182767)
+ (-3763 . 182093) (-8 . 182065) (-3765 . 181982) (-3766 . 181822)
+ (-3767 . 181446) (-3768 . 181228) (-3769 . 181155) (-3770 . 180852)
+ (-3771 . 180678) (-3772 . 180556) (-3773 . 180501) (-3774 . 178872)
+ (-3775 . 178239) (-3776 . 177502) (-3777 . 177336) (-3778 . 176134)
+ (-3779 . 176067) (-7 . 176039) (-3781 . 175881) (-3782 . 175750)
+ (-3783 . 175625) (-3784 . 175521) (-3785 . 175455) (-3786 . 175357)
+ (-3787 . 175264) (-3788 . 175232) (-3789 . 175014) (-3790 . 174155)
+ (-3791 . 173593) (-3792 . 173510) (-3793 . 173408) (-3794 . 173304)
+ (-3795 . 173154) (-3796 . 172895) (-3797 . 172797) (-3798 . 172711)
+ (-3799 . 172532) (-3800 . 172426) (-3801 . 172343) (-3802 . 171047)
+ (-3803 . 170485) (-3804 . 169287) (-3805 . 169202) (-3806 . 169143)
+ (-3807 . 169025) (-3808 . 168953) (-3809 . 168785) (-3810 . 168610)
+ (-3811 . 168537) (-3812 . 168393) (-3813 . 168240) (-3814 . 167361)
+ (-3815 . 166935) (-3816 . 166373) (-3817 . 166189) (-3818 . 166034)
+ (-3819 . 165392) (-3820 . 165296) (-3821 . 165227) (-3822 . 165199)
+ (-3823 . 164934) (-3824 . 164846) (-3825 . 164785) (-3826 . 164688)
+ (-3827 . 164013) (-3828 . 163882) (-3829 . 163722) (-3830 . 163065)
+ (-3831 . 162784) (-3832 . 162718) (-3833 . 162636) (-3834 . 162372)
+ (-3835 . 162294) (-3836 . 162184) (-3837 . 162132) (-3838 . 161315)
+ (-3839 . 160640) (-3840 . 160305) (-3841 . 160249) (-3842 . 159692)
+ (-3843 . 159633) (-3844 . 159517) (-3845 . 159319) (-3846 . 159193)
+ (-3847 . 159140) (-3848 . 159083) (-3849 . 158572) (-3850 . 158435)
+ (-3851 . 157760) (-3852 . 157575) (-3853 . 157473) (-3854 . 157445)
+ (-3855 . 157372) (-3856 . 157289) (-3857 . 157053) (-3858 . 156652)
+ (-3859 . 156423) (-3860 . 156293) (-3861 . 156062) (-3862 . 155926)
+ (-3863 . 155363) (-3864 . 153597) (-3865 . 153351) (-3866 . 153270)
+ (-3867 . 153133) (-3868 . 153083) (-3869 . 153009) (-3870 . 152928)
+ (-3871 . 152804) (-3872 . 152170) (-3873 . 151923) (-3874 . 151743)
+ (-3875 . 151180) (-3876 . 149725) (-3877 . 148421) (-3878 . 147818)
+ (-3879 . 147768) (-3880 . 147697) (-3881 . 147584) (-3882 . 147485)
+ (-3883 . 147272) (-3884 . 146898) (-3885 . 146795) (-3886 . 146736)
+ (-3887 . 146646) (-3888 . 146083) (-3889 . 144593) (-3890 . 143291)
+ (-3891 . 143220) (-3892 . 143139) (-3893 . 142959) (-3894 . 142820)
+ (-3895 . 142546) (-3896 . 142490) (-3897 . 142128) (-3898 . 141738)
+ (-3899 . 141154) (-3900 . 140592) (-3901 . 140265) (-3902 . 140104)
+ (-3903 . 140070) (-3904 . 139792) (-3905 . 139714) (-3906 . 139570)
+ (-3907 . 139502) (-3908 . 139445) (-3909 . 139283) (-3910 . 138976)
+ (-3911 . 138240) (-3912 . 137768) (-3913 . 137206) (-3914 . 137069)
+ (-3915 . 137016) (-3916 . 136486) (-3917 . 136434) (-3918 . 136119)
+ (-3919 . 135990) (-3920 . 135898) (-3921 . 135735) (-3922 . 135669)
+ (-3923 . 135541) (-3924 . 135488) (-3925 . 135376) (-3926 . 134814)
+ (-3927 . 134735) (-3928 . 134555) (-3929 . 134475) (-3930 . 134443)
+ (-3931 . 134362) (-3932 . 134234) (-3933 . 134030) (-3934 . 133751)
+ (-3935 . 133601) (-3936 . 133320) (-3937 . 133249) (-3938 . 132687)
+ (-3939 . 130830) (-3940 . 130777) (-3941 . 130244) (-3942 . 130172)
+ (-3943 . 130059) (-3944 . 129985) (-3945 . 129788) (-3946 . 129690)
+ (-3947 . 129315) (-3948 . 129156) (-3949 . 128729) (-3950 . 128085)
+ (-3951 . 127523) (-3952 . 127359) (-3953 . 127072) (-3954 . 127020)
+ (-3955 . 126916) (-3956 . 126534) (-3957 . 126410) (-3958 . 126326)
+ (-3959 . 126252) (-3960 . 126099) (-3961 . 125998) (-3962 . 124826)
+ (-3963 . 124616) (-3964 . 124486) (-3965 . 124334) (-3966 . 124282)
+ (-3967 . 124227) (-3968 . 124172) (-3969 . 124104) (-3970 . 123933)
+ (-3971 . 123839) (-3972 . 123697) (-3973 . 123543) (-3974 . 123428)
+ (-3975 . 123362) (-3976 . 123260) (-3977 . 123095) (-3978 . 119796)
+ (-3979 . 119275) (-3980 . 119127) (-3981 . 118984) (-3982 . 118625)
+ (-3983 . 118566) (-3984 . 118483) (-3985 . 118415) (-3986 . 118328)
+ (-3987 . 118251) (-3988 . 118106) (-3989 . 118078) (-3990 . 118024)
+ (-3991 . 117819) (-3992 . 117660) (-3993 . 117516) (-3994 . 117451)
+ (-3995 . 117317) (-3996 . 117137) (-3997 . 117039) (-3998 . 116965)
+ (-3999 . 116866) (-4000 . 116719) (-4001 . 116635) (-4002 . 116549)
+ (-4003 . 116205) (-4004 . 116135) (-4005 . 115845) (-4006 . 115691)
+ (-4007 . 115639) (-4008 . 115538) (-4009 . 115382) (-4010 . 115327)
+ (-4011 . 111167) (-4012 . 110855) (-4013 . 110755) (-4014 . 110513)
+ (-4015 . 110418) (-4016 . 110290) (-4017 . 110111) (-4018 . 110059)
+ (-4019 . 109946) (-4020 . 109615) (-4021 . 109547) (-4022 . 109470)
+ (-4023 . 109417) (-4024 . 109346) (-4025 . 109202) (-4026 . 109136)
+ (-4027 . 109049) (-4028 . 108667) (-4029 . 108603) (-4030 . 108425)
+ (-4031 . 108083) (-4032 . 108031) (-4033 . 107912) (-4034 . 107199)
+ (-4035 . 106844) (-4036 . 106767) (-4037 . 106715) (-4038 . 106369)
+ (-4039 . 106263) (-4040 . 106131) (-4041 . 105973) (-4042 . 105817)
+ (-4043 . 105578) (-4044 . 104746) (-4045 . 104631) (-4046 . 104304)
+ (-4047 . 104209) (-4048 . 104106) (-4049 . 103819) (-4050 . 103532)
+ (-4051 . 103441) (-4052 . 103081) (-4053 . 103029) (-4054 . 102955)
+ (-4055 . 102712) (-4056 . 102684) (-4057 . 102120) (-4058 . 101997)
+ (-4059 . 101913) (-4060 . 101562) (-4061 . 101501) (-4062 . 101409)
+ (-4063 . 101202) (-4064 . 101136) (-4065 . 101083) (-4066 . 100931)
+ (-4067 . 100667) (-4068 . 100273) (-4069 . 100190) (-4070 . 100019)
+ (-4071 . 99967) (-4072 . 99915) (-4073 . 99702) (-4074 . 99319)
+ (-4075 . 99215) (-4076 . 99163) (-4077 . 98627) (-4078 . 98315)
+ (-4079 . 98199) (-4080 . 98023) (-4081 . 97919) (-4082 . 97809)
+ (-4083 . 97757) (-4084 . 97683) (-4085 . 97536) (-4086 . 97303)
+ (-4087 . 97116) (-4088 . 97037) (-4089 . 96954) (-4090 . 96780)
+ (-4091 . 96711) (-4092 . 96683) (-4093 . 96126) (-4094 . 95638)
+ (-4095 . 95540) (-4096 . 95462) (-4097 . 95341) (-4098 . 94795)
+ (-4099 . 94682) (-4100 . 94413) (-4101 . 94126) (-4102 . 93960)
+ (-4103 . 93753) (-4104 . 93585) (-4105 . 93472) (-4106 . 93419)
+ (-4107 . 86476) (-4108 . 86338) (-4109 . 85859) (-4110 . 85373)
+ (-4111 . 85270) (-4112 . 85132) (-4113 . 85073) (-4114 . 84910)
+ (-4115 . 84858) (-4116 . 84122) (-4117 . 84002) (-4118 . 83950)
+ (-4119 . 83777) (-4120 . 83634) (-4121 . 83578) (-4122 . 83507)
+ (-4123 . 83288) (-4124 . 83196) (-4125 . 83075) (-4126 . 82925)
+ (-4127 . 82773) (-4128 . 82479) (-4129 . 82232) (-4130 . 81916)
+ (-4131 . 81817) (-4132 . 81766) (-4133 . 81635) (-4134 . 81543)
+ (-4135 . 81366) (-4136 . 81282) (-4137 . 81129) (-4138 . 81048)
+ (-4139 . 80901) (-4140 . 80823) (-4141 . 80771) (-4142 . 80675)
+ (-4143 . 80595) (-4144 . 80509) (-4145 . 80411) (-4146 . 80329)
+ (-4147 . 80195) (-4148 . 80072) (-4149 . 80002) (-4150 . 79773)
+ (-4151 . 79598) (-4152 . 79499) (-4153 . 79156) (-4154 . 79104)
+ (-4155 . 79052) (-4156 . 78997) (-4157 . 78903) (-4158 . 78407)
+ (-4159 . 78308) (-4160 . 77719) (-4161 . 77607) (-4162 . 77447)
+ (-4163 . 77353) (-4164 . 77279) (-4165 . 77134) (-4166 . 77078)
+ (-4167 . 75646) (-4168 . 74680) (-4169 . 74583) (-4170 . 74272)
+ (-4171 . 74114) (-4172 . 74085) (-4173 . 73985) (-4174 . 73932)
+ (-4175 . 73788) (-4176 . 73687) (-4177 . 73496) (-4178 . 73392)
+ (-4179 . 73312) (-4180 . 73181) (-4181 . 73111) (-4182 . 72900)
+ (-4183 . 72776) (-4184 . 72298) (-4185 . 72013) (-4186 . 71925)
+ (-4187 . 71806) (-4188 . 71711) (-4189 . 71549) (-4190 . 71172)
+ (-4191 . 71057) (-4192 . 70947) (-4193 . 70287) (-4194 . 70188)
+ (-4195 . 70030) (-4196 . 69951) (-4197 . 69633) (-4198 . 69537)
+ (-4199 . 69481) (-4200 . 69263) (-4201 . 69084) (-4202 . 68675)
+ (-4203 . 68625) (-4204 . 68338) (-4205 . 68306) (-4206 . 68142)
+ (-4207 . 68090) (-4208 . 66122) (-4209 . 65985) (-4210 . 65808)
+ (-4211 . 65753) (-4212 . 65638) (-4213 . 65580) (-4214 . 65476)
+ (-4215 . 65277) (-4216 . 65129) (-4217 . 65011) (-4218 . 64809)
+ (-4219 . 64708) (-4220 . 64515) (-4221 . 63918) (-4222 . 63765)
+ (-4223 . 63257) (-4224 . 63205) (-4225 . 63078) (-4226 . 62980)
+ (-4227 . 62210) (-4228 . 62144) (-4229 . 62046) (-4230 . 61932)
+ (-4231 . 61780) (-4232 . 61555) (-4233 . 61498) (-4234 . 61379)
+ (-4235 . 61117) (-4236 . 61047) (-4237 . 60795) (-4238 . 60639)
+ (-4239 . 59821) (-4240 . 59688) (-4241 . 59639) (-4242 . 59581)
+ (-4243 . 59460) (-4244 . 59432) (-4245 . 59378) (-4246 . 59319)
+ (-4247 . 59159) (-4248 . 58841) (-4249 . 58755) (-4250 . 58659)
+ (-4251 . 58344) (-4252 . 58217) (-4253 . 58042) (-4254 . 57866)
+ (-4255 . 57626) (-4256 . 57346) (-4257 . 57225) (-4258 . 56197)
+ (-4259 . 56131) (-4260 . 56048) (-4261 . 55942) (-4262 . 55859)
+ (-4263 . 54993) (-4264 . 54797) (-4265 . 54544) (-4266 . 54447)
+ (-4267 . 54248) (-4268 . 54220) (-4269 . 53958) (-4270 . 53885)
+ (-4271 . 53836) (-4272 . 53762) (-4273 . 53663) (-4274 . 53297)
+ (-4275 . 53190) (-4276 . 52546) (-4277 . 52481) (-4278 . 47939)
+ (-4279 . 47398) (-4280 . 47343) (-4281 . 47070) (-4282 . 46948)
+ (-4283 . 46801) (-4284 . 46772) (-4285 . 46713) (-4286 . 45826)
+ (-4287 . 45556) (-4288 . 45380) (-4289 . 45279) (-4290 . 44894)
+ (-4291 . 44817) (-4292 . 44690) (-4293 . 44532) (-4294 . 44414)
+ (-4295 . 44175) (-4296 . 44123) (-4297 . 44089) (-4298 . 43797)
+ (-4299 . 43742) (-4300 . 43516) (-4301 . 42088) (-4302 . 41975)
+ (-4303 . 41815) (-4304 . 41764) (-4305 . 41455) (-4306 . 41339)
+ (-4307 . 41220) (-4308 . 41031) (-4309 . 40975) (-4310 . 40389)
+ (-4311 . 40191) (-4312 . 40010) (-4313 . 35947) (-4314 . 35853)
+ (-4315 . 35596) (-4316 . 35149) (-4317 . 34779) (-4318 . 34461)
+ (-4319 . 33497) (-4320 . 33444) (-4321 . 33281) (-4322 . 32936)
+ (-4323 . 32656) (-4324 . 32541) (-4325 . 31918) (-4326 . 31580)
+ (-4327 . 31530) (-4328 . 31456) (-4329 . 31315) (-4330 . 31241)
+ (-4331 . 31103) (-4332 . 30972) (-4333 . 30855) (-4334 . 30749)
+ (-4335 . 30618) (-4336 . 30280) (-4337 . 29954) (-4338 . 29785)
+ (-4339 . 29581) (-4340 . 29456) (-4341 . 29370) (-4342 . 29318)
+ (-4343 . 29117) (-4344 . 28940) (-4345 . 28758) (-4346 . 28466)
+ (-4347 . 28382) (-4348 . 27965) (-4349 . 27872) (-4350 . 27742)
+ (-4351 . 27618) (-4352 . 27339) (-4353 . 24994) (-4354 . 24909)
+ (-4355 . 24853) (-4356 . 24606) (-4357 . 24465) (-4358 . 10378)
+ (-4359 . 10346) (-4360 . 10258) (-4361 . 9557) (-4362 . 9523)
+ (-4363 . 9400) (-4364 . 8761) (-4365 . 8711) (-4366 . 8679)
+ (-4367 . 8583) (-4368 . 3484) (-4369 . 3411) (-4370 . 3309)
+ (-4371 . 3081) (-4372 . 2987) (-4373 . 2959) (-4374 . 2617)
+ (-4375 . 2456) (-4376 . 2021) (-4377 . 1950) (-4378 . 1592)
+ (-4379 . 1522) (-4380 . 1463) (-4381 . 1348) (-4382 . 1195)
+ (-4383 . 954) (-4384 . 871) (-4385 . 518) (-4386 . 444) (-4387 . 244)
+ (-4388 . 152) (-4389 . 83) (-4390 . 30)) \ No newline at end of file